1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isZero()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOne()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnes()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// This is called when we see this pattern: 99 /// cmp pred (load (gep GV, ...)), cmpcst 100 /// where GV is a global variable with a constant initializer. Try to simplify 101 /// this into some simple computation that does not need the load. For example 102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 103 /// 104 /// If AndCst is non-null, then the loaded value is masked with that constant 105 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 107 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 108 ConstantInt *AndCst) { 109 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 110 GV->getValueType() != GEP->getSourceElementType() || 111 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 112 return nullptr; 113 114 Constant *Init = GV->getInitializer(); 115 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 116 return nullptr; 117 118 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 119 // Don't blow up on huge arrays. 120 if (ArrayElementCount > MaxArraySizeForCombine) 121 return nullptr; 122 123 // There are many forms of this optimization we can handle, for now, just do 124 // the simple index into a single-dimensional array. 125 // 126 // Require: GEP GV, 0, i {{, constant indices}} 127 if (GEP->getNumOperands() < 3 || 128 !isa<ConstantInt>(GEP->getOperand(1)) || 129 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 130 isa<Constant>(GEP->getOperand(2))) 131 return nullptr; 132 133 // Check that indices after the variable are constants and in-range for the 134 // type they index. Collect the indices. This is typically for arrays of 135 // structs. 136 SmallVector<unsigned, 4> LaterIndices; 137 138 Type *EltTy = Init->getType()->getArrayElementType(); 139 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 140 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 141 if (!Idx) return nullptr; // Variable index. 142 143 uint64_t IdxVal = Idx->getZExtValue(); 144 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 145 146 if (StructType *STy = dyn_cast<StructType>(EltTy)) 147 EltTy = STy->getElementType(IdxVal); 148 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 149 if (IdxVal >= ATy->getNumElements()) return nullptr; 150 EltTy = ATy->getElementType(); 151 } else { 152 return nullptr; // Unknown type. 153 } 154 155 LaterIndices.push_back(IdxVal); 156 } 157 158 enum { Overdefined = -3, Undefined = -2 }; 159 160 // Variables for our state machines. 161 162 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 163 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 164 // and 87 is the second (and last) index. FirstTrueElement is -2 when 165 // undefined, otherwise set to the first true element. SecondTrueElement is 166 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 167 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 168 169 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 170 // form "i != 47 & i != 87". Same state transitions as for true elements. 171 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 172 173 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 174 /// define a state machine that triggers for ranges of values that the index 175 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 176 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 177 /// index in the range (inclusive). We use -2 for undefined here because we 178 /// use relative comparisons and don't want 0-1 to match -1. 179 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 180 181 // MagicBitvector - This is a magic bitvector where we set a bit if the 182 // comparison is true for element 'i'. If there are 64 elements or less in 183 // the array, this will fully represent all the comparison results. 184 uint64_t MagicBitvector = 0; 185 186 // Scan the array and see if one of our patterns matches. 187 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 188 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 189 Constant *Elt = Init->getAggregateElement(i); 190 if (!Elt) return nullptr; 191 192 // If this is indexing an array of structures, get the structure element. 193 if (!LaterIndices.empty()) 194 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 195 196 // If the element is masked, handle it. 197 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 198 199 // Find out if the comparison would be true or false for the i'th element. 200 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 201 CompareRHS, DL, &TLI); 202 // If the result is undef for this element, ignore it. 203 if (isa<UndefValue>(C)) { 204 // Extend range state machines to cover this element in case there is an 205 // undef in the middle of the range. 206 if (TrueRangeEnd == (int)i-1) 207 TrueRangeEnd = i; 208 if (FalseRangeEnd == (int)i-1) 209 FalseRangeEnd = i; 210 continue; 211 } 212 213 // If we can't compute the result for any of the elements, we have to give 214 // up evaluating the entire conditional. 215 if (!isa<ConstantInt>(C)) return nullptr; 216 217 // Otherwise, we know if the comparison is true or false for this element, 218 // update our state machines. 219 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 220 221 // State machine for single/double/range index comparison. 222 if (IsTrueForElt) { 223 // Update the TrueElement state machine. 224 if (FirstTrueElement == Undefined) 225 FirstTrueElement = TrueRangeEnd = i; // First true element. 226 else { 227 // Update double-compare state machine. 228 if (SecondTrueElement == Undefined) 229 SecondTrueElement = i; 230 else 231 SecondTrueElement = Overdefined; 232 233 // Update range state machine. 234 if (TrueRangeEnd == (int)i-1) 235 TrueRangeEnd = i; 236 else 237 TrueRangeEnd = Overdefined; 238 } 239 } else { 240 // Update the FalseElement state machine. 241 if (FirstFalseElement == Undefined) 242 FirstFalseElement = FalseRangeEnd = i; // First false element. 243 else { 244 // Update double-compare state machine. 245 if (SecondFalseElement == Undefined) 246 SecondFalseElement = i; 247 else 248 SecondFalseElement = Overdefined; 249 250 // Update range state machine. 251 if (FalseRangeEnd == (int)i-1) 252 FalseRangeEnd = i; 253 else 254 FalseRangeEnd = Overdefined; 255 } 256 } 257 258 // If this element is in range, update our magic bitvector. 259 if (i < 64 && IsTrueForElt) 260 MagicBitvector |= 1ULL << i; 261 262 // If all of our states become overdefined, bail out early. Since the 263 // predicate is expensive, only check it every 8 elements. This is only 264 // really useful for really huge arrays. 265 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 266 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 267 FalseRangeEnd == Overdefined) 268 return nullptr; 269 } 270 271 // Now that we've scanned the entire array, emit our new comparison(s). We 272 // order the state machines in complexity of the generated code. 273 Value *Idx = GEP->getOperand(2); 274 275 // If the index is larger than the pointer size of the target, truncate the 276 // index down like the GEP would do implicitly. We don't have to do this for 277 // an inbounds GEP because the index can't be out of range. 278 if (!GEP->isInBounds()) { 279 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 280 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 281 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 282 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 283 } 284 285 // If inbounds keyword is not present, Idx * ElementSize can overflow. 286 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 287 // Then, there are two possible values for Idx to match offset 0: 288 // 0x00..00, 0x80..00. 289 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 290 // comparison is false if Idx was 0x80..00. 291 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 292 unsigned ElementSize = 293 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 294 auto MaskIdx = [&](Value* Idx){ 295 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 296 Value *Mask = ConstantInt::get(Idx->getType(), -1); 297 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 298 Idx = Builder.CreateAnd(Idx, Mask); 299 } 300 return Idx; 301 }; 302 303 // If the comparison is only true for one or two elements, emit direct 304 // comparisons. 305 if (SecondTrueElement != Overdefined) { 306 Idx = MaskIdx(Idx); 307 // None true -> false. 308 if (FirstTrueElement == Undefined) 309 return replaceInstUsesWith(ICI, Builder.getFalse()); 310 311 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 312 313 // True for one element -> 'i == 47'. 314 if (SecondTrueElement == Undefined) 315 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 316 317 // True for two elements -> 'i == 47 | i == 72'. 318 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 319 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 320 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 321 return BinaryOperator::CreateOr(C1, C2); 322 } 323 324 // If the comparison is only false for one or two elements, emit direct 325 // comparisons. 326 if (SecondFalseElement != Overdefined) { 327 Idx = MaskIdx(Idx); 328 // None false -> true. 329 if (FirstFalseElement == Undefined) 330 return replaceInstUsesWith(ICI, Builder.getTrue()); 331 332 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 333 334 // False for one element -> 'i != 47'. 335 if (SecondFalseElement == Undefined) 336 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 337 338 // False for two elements -> 'i != 47 & i != 72'. 339 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 340 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 341 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 342 return BinaryOperator::CreateAnd(C1, C2); 343 } 344 345 // If the comparison can be replaced with a range comparison for the elements 346 // where it is true, emit the range check. 347 if (TrueRangeEnd != Overdefined) { 348 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 349 Idx = MaskIdx(Idx); 350 351 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 352 if (FirstTrueElement) { 353 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 354 Idx = Builder.CreateAdd(Idx, Offs); 355 } 356 357 Value *End = ConstantInt::get(Idx->getType(), 358 TrueRangeEnd-FirstTrueElement+1); 359 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 360 } 361 362 // False range check. 363 if (FalseRangeEnd != Overdefined) { 364 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 365 Idx = MaskIdx(Idx); 366 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 367 if (FirstFalseElement) { 368 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 369 Idx = Builder.CreateAdd(Idx, Offs); 370 } 371 372 Value *End = ConstantInt::get(Idx->getType(), 373 FalseRangeEnd-FirstFalseElement); 374 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 375 } 376 377 // If a magic bitvector captures the entire comparison state 378 // of this load, replace it with computation that does: 379 // ((magic_cst >> i) & 1) != 0 380 { 381 Type *Ty = nullptr; 382 383 // Look for an appropriate type: 384 // - The type of Idx if the magic fits 385 // - The smallest fitting legal type 386 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 387 Ty = Idx->getType(); 388 else 389 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 390 391 if (Ty) { 392 Idx = MaskIdx(Idx); 393 Value *V = Builder.CreateIntCast(Idx, Ty, false); 394 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 395 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 396 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 397 } 398 } 399 400 return nullptr; 401 } 402 403 /// Return a value that can be used to compare the *offset* implied by a GEP to 404 /// zero. For example, if we have &A[i], we want to return 'i' for 405 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 406 /// are involved. The above expression would also be legal to codegen as 407 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 408 /// This latter form is less amenable to optimization though, and we are allowed 409 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 410 /// 411 /// If we can't emit an optimized form for this expression, this returns null. 412 /// 413 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 414 const DataLayout &DL) { 415 gep_type_iterator GTI = gep_type_begin(GEP); 416 417 // Check to see if this gep only has a single variable index. If so, and if 418 // any constant indices are a multiple of its scale, then we can compute this 419 // in terms of the scale of the variable index. For example, if the GEP 420 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 421 // because the expression will cross zero at the same point. 422 unsigned i, e = GEP->getNumOperands(); 423 int64_t Offset = 0; 424 for (i = 1; i != e; ++i, ++GTI) { 425 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 426 // Compute the aggregate offset of constant indices. 427 if (CI->isZero()) continue; 428 429 // Handle a struct index, which adds its field offset to the pointer. 430 if (StructType *STy = GTI.getStructTypeOrNull()) { 431 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 432 } else { 433 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 434 Offset += Size*CI->getSExtValue(); 435 } 436 } else { 437 // Found our variable index. 438 break; 439 } 440 } 441 442 // If there are no variable indices, we must have a constant offset, just 443 // evaluate it the general way. 444 if (i == e) return nullptr; 445 446 Value *VariableIdx = GEP->getOperand(i); 447 // Determine the scale factor of the variable element. For example, this is 448 // 4 if the variable index is into an array of i32. 449 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 450 451 // Verify that there are no other variable indices. If so, emit the hard way. 452 for (++i, ++GTI; i != e; ++i, ++GTI) { 453 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 454 if (!CI) return nullptr; 455 456 // Compute the aggregate offset of constant indices. 457 if (CI->isZero()) continue; 458 459 // Handle a struct index, which adds its field offset to the pointer. 460 if (StructType *STy = GTI.getStructTypeOrNull()) { 461 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 462 } else { 463 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 464 Offset += Size*CI->getSExtValue(); 465 } 466 } 467 468 // Okay, we know we have a single variable index, which must be a 469 // pointer/array/vector index. If there is no offset, life is simple, return 470 // the index. 471 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 472 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 473 if (Offset == 0) { 474 // Cast to intptrty in case a truncation occurs. If an extension is needed, 475 // we don't need to bother extending: the extension won't affect where the 476 // computation crosses zero. 477 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 478 IntPtrWidth) { 479 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 480 } 481 return VariableIdx; 482 } 483 484 // Otherwise, there is an index. The computation we will do will be modulo 485 // the pointer size. 486 Offset = SignExtend64(Offset, IntPtrWidth); 487 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 488 489 // To do this transformation, any constant index must be a multiple of the 490 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 491 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 492 // multiple of the variable scale. 493 int64_t NewOffs = Offset / (int64_t)VariableScale; 494 if (Offset != NewOffs*(int64_t)VariableScale) 495 return nullptr; 496 497 // Okay, we can do this evaluation. Start by converting the index to intptr. 498 if (VariableIdx->getType() != IntPtrTy) 499 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 500 true /*Signed*/); 501 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 502 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 503 } 504 505 /// Returns true if we can rewrite Start as a GEP with pointer Base 506 /// and some integer offset. The nodes that need to be re-written 507 /// for this transformation will be added to Explored. 508 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 509 const DataLayout &DL, 510 SetVector<Value *> &Explored) { 511 SmallVector<Value *, 16> WorkList(1, Start); 512 Explored.insert(Base); 513 514 // The following traversal gives us an order which can be used 515 // when doing the final transformation. Since in the final 516 // transformation we create the PHI replacement instructions first, 517 // we don't have to get them in any particular order. 518 // 519 // However, for other instructions we will have to traverse the 520 // operands of an instruction first, which means that we have to 521 // do a post-order traversal. 522 while (!WorkList.empty()) { 523 SetVector<PHINode *> PHIs; 524 525 while (!WorkList.empty()) { 526 if (Explored.size() >= 100) 527 return false; 528 529 Value *V = WorkList.back(); 530 531 if (Explored.contains(V)) { 532 WorkList.pop_back(); 533 continue; 534 } 535 536 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 537 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 538 // We've found some value that we can't explore which is different from 539 // the base. Therefore we can't do this transformation. 540 return false; 541 542 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 543 auto *CI = cast<CastInst>(V); 544 if (!CI->isNoopCast(DL)) 545 return false; 546 547 if (!Explored.contains(CI->getOperand(0))) 548 WorkList.push_back(CI->getOperand(0)); 549 } 550 551 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 552 // We're limiting the GEP to having one index. This will preserve 553 // the original pointer type. We could handle more cases in the 554 // future. 555 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 556 GEP->getSourceElementType() != ElemTy) 557 return false; 558 559 if (!Explored.contains(GEP->getOperand(0))) 560 WorkList.push_back(GEP->getOperand(0)); 561 } 562 563 if (WorkList.back() == V) { 564 WorkList.pop_back(); 565 // We've finished visiting this node, mark it as such. 566 Explored.insert(V); 567 } 568 569 if (auto *PN = dyn_cast<PHINode>(V)) { 570 // We cannot transform PHIs on unsplittable basic blocks. 571 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 572 return false; 573 Explored.insert(PN); 574 PHIs.insert(PN); 575 } 576 } 577 578 // Explore the PHI nodes further. 579 for (auto *PN : PHIs) 580 for (Value *Op : PN->incoming_values()) 581 if (!Explored.contains(Op)) 582 WorkList.push_back(Op); 583 } 584 585 // Make sure that we can do this. Since we can't insert GEPs in a basic 586 // block before a PHI node, we can't easily do this transformation if 587 // we have PHI node users of transformed instructions. 588 for (Value *Val : Explored) { 589 for (Value *Use : Val->uses()) { 590 591 auto *PHI = dyn_cast<PHINode>(Use); 592 auto *Inst = dyn_cast<Instruction>(Val); 593 594 if (Inst == Base || Inst == PHI || !Inst || !PHI || 595 !Explored.contains(PHI)) 596 continue; 597 598 if (PHI->getParent() == Inst->getParent()) 599 return false; 600 } 601 } 602 return true; 603 } 604 605 // Sets the appropriate insert point on Builder where we can add 606 // a replacement Instruction for V (if that is possible). 607 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 608 bool Before = true) { 609 if (auto *PHI = dyn_cast<PHINode>(V)) { 610 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 611 return; 612 } 613 if (auto *I = dyn_cast<Instruction>(V)) { 614 if (!Before) 615 I = &*std::next(I->getIterator()); 616 Builder.SetInsertPoint(I); 617 return; 618 } 619 if (auto *A = dyn_cast<Argument>(V)) { 620 // Set the insertion point in the entry block. 621 BasicBlock &Entry = A->getParent()->getEntryBlock(); 622 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 623 return; 624 } 625 // Otherwise, this is a constant and we don't need to set a new 626 // insertion point. 627 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 628 } 629 630 /// Returns a re-written value of Start as an indexed GEP using Base as a 631 /// pointer. 632 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 633 const DataLayout &DL, 634 SetVector<Value *> &Explored) { 635 // Perform all the substitutions. This is a bit tricky because we can 636 // have cycles in our use-def chains. 637 // 1. Create the PHI nodes without any incoming values. 638 // 2. Create all the other values. 639 // 3. Add the edges for the PHI nodes. 640 // 4. Emit GEPs to get the original pointers. 641 // 5. Remove the original instructions. 642 Type *IndexType = IntegerType::get( 643 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 644 645 DenseMap<Value *, Value *> NewInsts; 646 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 647 648 // Create the new PHI nodes, without adding any incoming values. 649 for (Value *Val : Explored) { 650 if (Val == Base) 651 continue; 652 // Create empty phi nodes. This avoids cyclic dependencies when creating 653 // the remaining instructions. 654 if (auto *PHI = dyn_cast<PHINode>(Val)) 655 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 656 PHI->getName() + ".idx", PHI); 657 } 658 IRBuilder<> Builder(Base->getContext()); 659 660 // Create all the other instructions. 661 for (Value *Val : Explored) { 662 663 if (NewInsts.find(Val) != NewInsts.end()) 664 continue; 665 666 if (auto *CI = dyn_cast<CastInst>(Val)) { 667 // Don't get rid of the intermediate variable here; the store can grow 668 // the map which will invalidate the reference to the input value. 669 Value *V = NewInsts[CI->getOperand(0)]; 670 NewInsts[CI] = V; 671 continue; 672 } 673 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 674 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 675 : GEP->getOperand(1); 676 setInsertionPoint(Builder, GEP); 677 // Indices might need to be sign extended. GEPs will magically do 678 // this, but we need to do it ourselves here. 679 if (Index->getType()->getScalarSizeInBits() != 680 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 681 Index = Builder.CreateSExtOrTrunc( 682 Index, NewInsts[GEP->getOperand(0)]->getType(), 683 GEP->getOperand(0)->getName() + ".sext"); 684 } 685 686 auto *Op = NewInsts[GEP->getOperand(0)]; 687 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 688 NewInsts[GEP] = Index; 689 else 690 NewInsts[GEP] = Builder.CreateNSWAdd( 691 Op, Index, GEP->getOperand(0)->getName() + ".add"); 692 continue; 693 } 694 if (isa<PHINode>(Val)) 695 continue; 696 697 llvm_unreachable("Unexpected instruction type"); 698 } 699 700 // Add the incoming values to the PHI nodes. 701 for (Value *Val : Explored) { 702 if (Val == Base) 703 continue; 704 // All the instructions have been created, we can now add edges to the 705 // phi nodes. 706 if (auto *PHI = dyn_cast<PHINode>(Val)) { 707 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 708 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 709 Value *NewIncoming = PHI->getIncomingValue(I); 710 711 if (NewInsts.find(NewIncoming) != NewInsts.end()) 712 NewIncoming = NewInsts[NewIncoming]; 713 714 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 715 } 716 } 717 } 718 719 PointerType *PtrTy = 720 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 721 for (Value *Val : Explored) { 722 if (Val == Base) 723 continue; 724 725 // Depending on the type, for external users we have to emit 726 // a GEP or a GEP + ptrtoint. 727 setInsertionPoint(Builder, Val, false); 728 729 // Cast base to the expected type. 730 Value *NewVal = Builder.CreateBitOrPointerCast( 731 Base, PtrTy, Start->getName() + "to.ptr"); 732 NewVal = Builder.CreateInBoundsGEP( 733 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 734 NewVal = Builder.CreateBitOrPointerCast( 735 NewVal, Val->getType(), Val->getName() + ".conv"); 736 Val->replaceAllUsesWith(NewVal); 737 } 738 739 return NewInsts[Start]; 740 } 741 742 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 743 /// the input Value as a constant indexed GEP. Returns a pair containing 744 /// the GEPs Pointer and Index. 745 static std::pair<Value *, Value *> 746 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 747 Type *IndexType = IntegerType::get(V->getContext(), 748 DL.getIndexTypeSizeInBits(V->getType())); 749 750 Constant *Index = ConstantInt::getNullValue(IndexType); 751 while (true) { 752 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 753 // We accept only inbouds GEPs here to exclude the possibility of 754 // overflow. 755 if (!GEP->isInBounds()) 756 break; 757 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 758 GEP->getSourceElementType() == ElemTy) { 759 V = GEP->getOperand(0); 760 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 761 Index = ConstantExpr::getAdd( 762 Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType)); 763 continue; 764 } 765 break; 766 } 767 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 768 if (!CI->isNoopCast(DL)) 769 break; 770 V = CI->getOperand(0); 771 continue; 772 } 773 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 774 if (!CI->isNoopCast(DL)) 775 break; 776 V = CI->getOperand(0); 777 continue; 778 } 779 break; 780 } 781 return {V, Index}; 782 } 783 784 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 785 /// We can look through PHIs, GEPs and casts in order to determine a common base 786 /// between GEPLHS and RHS. 787 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 788 ICmpInst::Predicate Cond, 789 const DataLayout &DL) { 790 // FIXME: Support vector of pointers. 791 if (GEPLHS->getType()->isVectorTy()) 792 return nullptr; 793 794 if (!GEPLHS->hasAllConstantIndices()) 795 return nullptr; 796 797 Type *ElemTy = GEPLHS->getSourceElementType(); 798 Value *PtrBase, *Index; 799 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 800 801 // The set of nodes that will take part in this transformation. 802 SetVector<Value *> Nodes; 803 804 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 805 return nullptr; 806 807 // We know we can re-write this as 808 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 809 // Since we've only looked through inbouds GEPs we know that we 810 // can't have overflow on either side. We can therefore re-write 811 // this as: 812 // OFFSET1 cmp OFFSET2 813 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 814 815 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 816 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 817 // offset. Since Index is the offset of LHS to the base pointer, we will now 818 // compare the offsets instead of comparing the pointers. 819 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 820 } 821 822 /// Fold comparisons between a GEP instruction and something else. At this point 823 /// we know that the GEP is on the LHS of the comparison. 824 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 825 ICmpInst::Predicate Cond, 826 Instruction &I) { 827 // Don't transform signed compares of GEPs into index compares. Even if the 828 // GEP is inbounds, the final add of the base pointer can have signed overflow 829 // and would change the result of the icmp. 830 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 831 // the maximum signed value for the pointer type. 832 if (ICmpInst::isSigned(Cond)) 833 return nullptr; 834 835 // Look through bitcasts and addrspacecasts. We do not however want to remove 836 // 0 GEPs. 837 if (!isa<GetElementPtrInst>(RHS)) 838 RHS = RHS->stripPointerCasts(); 839 840 Value *PtrBase = GEPLHS->getOperand(0); 841 // FIXME: Support vector pointer GEPs. 842 if (PtrBase == RHS && GEPLHS->isInBounds() && 843 !GEPLHS->getType()->isVectorTy()) { 844 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 845 // This transformation (ignoring the base and scales) is valid because we 846 // know pointers can't overflow since the gep is inbounds. See if we can 847 // output an optimized form. 848 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 849 850 // If not, synthesize the offset the hard way. 851 if (!Offset) 852 Offset = EmitGEPOffset(GEPLHS); 853 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 854 Constant::getNullValue(Offset->getType())); 855 } 856 857 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 858 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 859 !NullPointerIsDefined(I.getFunction(), 860 RHS->getType()->getPointerAddressSpace())) { 861 // For most address spaces, an allocation can't be placed at null, but null 862 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 863 // the only valid inbounds address derived from null, is null itself. 864 // Thus, we have four cases to consider: 865 // 1) Base == nullptr, Offset == 0 -> inbounds, null 866 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 867 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 868 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 869 // 870 // (Note if we're indexing a type of size 0, that simply collapses into one 871 // of the buckets above.) 872 // 873 // In general, we're allowed to make values less poison (i.e. remove 874 // sources of full UB), so in this case, we just select between the two 875 // non-poison cases (1 and 4 above). 876 // 877 // For vectors, we apply the same reasoning on a per-lane basis. 878 auto *Base = GEPLHS->getPointerOperand(); 879 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 880 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 881 Base = Builder.CreateVectorSplat(EC, Base); 882 } 883 return new ICmpInst(Cond, Base, 884 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 885 cast<Constant>(RHS), Base->getType())); 886 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 887 // If the base pointers are different, but the indices are the same, just 888 // compare the base pointer. 889 if (PtrBase != GEPRHS->getOperand(0)) { 890 bool IndicesTheSame = 891 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 892 GEPLHS->getPointerOperand()->getType() == 893 GEPRHS->getPointerOperand()->getType() && 894 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 895 if (IndicesTheSame) 896 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 897 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 898 IndicesTheSame = false; 899 break; 900 } 901 902 // If all indices are the same, just compare the base pointers. 903 Type *BaseType = GEPLHS->getOperand(0)->getType(); 904 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 905 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 906 907 // If we're comparing GEPs with two base pointers that only differ in type 908 // and both GEPs have only constant indices or just one use, then fold 909 // the compare with the adjusted indices. 910 // FIXME: Support vector of pointers. 911 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 912 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 913 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 914 PtrBase->stripPointerCasts() == 915 GEPRHS->getOperand(0)->stripPointerCasts() && 916 !GEPLHS->getType()->isVectorTy()) { 917 Value *LOffset = EmitGEPOffset(GEPLHS); 918 Value *ROffset = EmitGEPOffset(GEPRHS); 919 920 // If we looked through an addrspacecast between different sized address 921 // spaces, the LHS and RHS pointers are different sized 922 // integers. Truncate to the smaller one. 923 Type *LHSIndexTy = LOffset->getType(); 924 Type *RHSIndexTy = ROffset->getType(); 925 if (LHSIndexTy != RHSIndexTy) { 926 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 927 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 928 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 929 } else 930 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 931 } 932 933 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 934 LOffset, ROffset); 935 return replaceInstUsesWith(I, Cmp); 936 } 937 938 // Otherwise, the base pointers are different and the indices are 939 // different. Try convert this to an indexed compare by looking through 940 // PHIs/casts. 941 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 942 } 943 944 // If one of the GEPs has all zero indices, recurse. 945 // FIXME: Handle vector of pointers. 946 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 947 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 948 ICmpInst::getSwappedPredicate(Cond), I); 949 950 // If the other GEP has all zero indices, recurse. 951 // FIXME: Handle vector of pointers. 952 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 953 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 954 955 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 956 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 957 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 958 // If the GEPs only differ by one index, compare it. 959 unsigned NumDifferences = 0; // Keep track of # differences. 960 unsigned DiffOperand = 0; // The operand that differs. 961 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 962 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 963 Type *LHSType = GEPLHS->getOperand(i)->getType(); 964 Type *RHSType = GEPRHS->getOperand(i)->getType(); 965 // FIXME: Better support for vector of pointers. 966 if (LHSType->getPrimitiveSizeInBits() != 967 RHSType->getPrimitiveSizeInBits() || 968 (GEPLHS->getType()->isVectorTy() && 969 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 970 // Irreconcilable differences. 971 NumDifferences = 2; 972 break; 973 } 974 975 if (NumDifferences++) break; 976 DiffOperand = i; 977 } 978 979 if (NumDifferences == 0) // SAME GEP? 980 return replaceInstUsesWith(I, // No comparison is needed here. 981 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 982 983 else if (NumDifferences == 1 && GEPsInBounds) { 984 Value *LHSV = GEPLHS->getOperand(DiffOperand); 985 Value *RHSV = GEPRHS->getOperand(DiffOperand); 986 // Make sure we do a signed comparison here. 987 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 988 } 989 } 990 991 // Only lower this if the icmp is the only user of the GEP or if we expect 992 // the result to fold to a constant! 993 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 994 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 995 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 996 Value *L = EmitGEPOffset(GEPLHS); 997 Value *R = EmitGEPOffset(GEPRHS); 998 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 999 } 1000 } 1001 1002 // Try convert this to an indexed compare by looking through PHIs/casts as a 1003 // last resort. 1004 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1005 } 1006 1007 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1008 const AllocaInst *Alloca) { 1009 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1010 1011 // It would be tempting to fold away comparisons between allocas and any 1012 // pointer not based on that alloca (e.g. an argument). However, even 1013 // though such pointers cannot alias, they can still compare equal. 1014 // 1015 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1016 // doesn't escape we can argue that it's impossible to guess its value, and we 1017 // can therefore act as if any such guesses are wrong. 1018 // 1019 // The code below checks that the alloca doesn't escape, and that it's only 1020 // used in a comparison once (the current instruction). The 1021 // single-comparison-use condition ensures that we're trivially folding all 1022 // comparisons against the alloca consistently, and avoids the risk of 1023 // erroneously folding a comparison of the pointer with itself. 1024 1025 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1026 1027 SmallVector<const Use *, 32> Worklist; 1028 for (const Use &U : Alloca->uses()) { 1029 if (Worklist.size() >= MaxIter) 1030 return nullptr; 1031 Worklist.push_back(&U); 1032 } 1033 1034 unsigned NumCmps = 0; 1035 while (!Worklist.empty()) { 1036 assert(Worklist.size() <= MaxIter); 1037 const Use *U = Worklist.pop_back_val(); 1038 const Value *V = U->getUser(); 1039 --MaxIter; 1040 1041 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1042 isa<SelectInst>(V)) { 1043 // Track the uses. 1044 } else if (isa<LoadInst>(V)) { 1045 // Loading from the pointer doesn't escape it. 1046 continue; 1047 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1048 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1049 if (SI->getValueOperand() == U->get()) 1050 return nullptr; 1051 continue; 1052 } else if (isa<ICmpInst>(V)) { 1053 if (NumCmps++) 1054 return nullptr; // Found more than one cmp. 1055 continue; 1056 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1057 switch (Intrin->getIntrinsicID()) { 1058 // These intrinsics don't escape or compare the pointer. Memset is safe 1059 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1060 // we don't allow stores, so src cannot point to V. 1061 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1062 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1063 continue; 1064 default: 1065 return nullptr; 1066 } 1067 } else { 1068 return nullptr; 1069 } 1070 for (const Use &U : V->uses()) { 1071 if (Worklist.size() >= MaxIter) 1072 return nullptr; 1073 Worklist.push_back(&U); 1074 } 1075 } 1076 1077 auto *Res = ConstantInt::get(ICI.getType(), 1078 !CmpInst::isTrueWhenEqual(ICI.getPredicate())); 1079 return replaceInstUsesWith(ICI, Res); 1080 } 1081 1082 /// Fold "icmp pred (X+C), X". 1083 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1084 ICmpInst::Predicate Pred) { 1085 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1086 // so the values can never be equal. Similarly for all other "or equals" 1087 // operators. 1088 assert(!!C && "C should not be zero!"); 1089 1090 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1091 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1092 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1093 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1094 Constant *R = ConstantInt::get(X->getType(), 1095 APInt::getMaxValue(C.getBitWidth()) - C); 1096 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1097 } 1098 1099 // (X+1) >u X --> X <u (0-1) --> X != 255 1100 // (X+2) >u X --> X <u (0-2) --> X <u 254 1101 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1102 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1103 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1104 ConstantInt::get(X->getType(), -C)); 1105 1106 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1107 1108 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1109 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1110 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1111 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1112 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1113 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1114 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1115 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1116 ConstantInt::get(X->getType(), SMax - C)); 1117 1118 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1119 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1120 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1121 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1122 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1123 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1124 1125 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1126 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1127 ConstantInt::get(X->getType(), SMax - (C - 1))); 1128 } 1129 1130 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1131 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1132 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1133 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1134 const APInt &AP1, 1135 const APInt &AP2) { 1136 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1137 1138 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1139 if (I.getPredicate() == I.ICMP_NE) 1140 Pred = CmpInst::getInversePredicate(Pred); 1141 return new ICmpInst(Pred, LHS, RHS); 1142 }; 1143 1144 // Don't bother doing any work for cases which InstSimplify handles. 1145 if (AP2.isZero()) 1146 return nullptr; 1147 1148 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1149 if (IsAShr) { 1150 if (AP2.isAllOnes()) 1151 return nullptr; 1152 if (AP2.isNegative() != AP1.isNegative()) 1153 return nullptr; 1154 if (AP2.sgt(AP1)) 1155 return nullptr; 1156 } 1157 1158 if (!AP1) 1159 // 'A' must be large enough to shift out the highest set bit. 1160 return getICmp(I.ICMP_UGT, A, 1161 ConstantInt::get(A->getType(), AP2.logBase2())); 1162 1163 if (AP1 == AP2) 1164 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1165 1166 int Shift; 1167 if (IsAShr && AP1.isNegative()) 1168 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1169 else 1170 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1171 1172 if (Shift > 0) { 1173 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1174 // There are multiple solutions if we are comparing against -1 and the LHS 1175 // of the ashr is not a power of two. 1176 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1177 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1178 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1179 } else if (AP1 == AP2.lshr(Shift)) { 1180 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1181 } 1182 } 1183 1184 // Shifting const2 will never be equal to const1. 1185 // FIXME: This should always be handled by InstSimplify? 1186 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1187 return replaceInstUsesWith(I, TorF); 1188 } 1189 1190 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1191 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1192 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1193 const APInt &AP1, 1194 const APInt &AP2) { 1195 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1196 1197 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1198 if (I.getPredicate() == I.ICMP_NE) 1199 Pred = CmpInst::getInversePredicate(Pred); 1200 return new ICmpInst(Pred, LHS, RHS); 1201 }; 1202 1203 // Don't bother doing any work for cases which InstSimplify handles. 1204 if (AP2.isZero()) 1205 return nullptr; 1206 1207 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1208 1209 if (!AP1 && AP2TrailingZeros != 0) 1210 return getICmp( 1211 I.ICMP_UGE, A, 1212 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1213 1214 if (AP1 == AP2) 1215 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1216 1217 // Get the distance between the lowest bits that are set. 1218 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1219 1220 if (Shift > 0 && AP2.shl(Shift) == AP1) 1221 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1222 1223 // Shifting const2 will never be equal to const1. 1224 // FIXME: This should always be handled by InstSimplify? 1225 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1226 return replaceInstUsesWith(I, TorF); 1227 } 1228 1229 /// The caller has matched a pattern of the form: 1230 /// I = icmp ugt (add (add A, B), CI2), CI1 1231 /// If this is of the form: 1232 /// sum = a + b 1233 /// if (sum+128 >u 255) 1234 /// Then replace it with llvm.sadd.with.overflow.i8. 1235 /// 1236 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1237 ConstantInt *CI2, ConstantInt *CI1, 1238 InstCombinerImpl &IC) { 1239 // The transformation we're trying to do here is to transform this into an 1240 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1241 // with a narrower add, and discard the add-with-constant that is part of the 1242 // range check (if we can't eliminate it, this isn't profitable). 1243 1244 // In order to eliminate the add-with-constant, the compare can be its only 1245 // use. 1246 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1247 if (!AddWithCst->hasOneUse()) 1248 return nullptr; 1249 1250 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1251 if (!CI2->getValue().isPowerOf2()) 1252 return nullptr; 1253 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1254 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1255 return nullptr; 1256 1257 // The width of the new add formed is 1 more than the bias. 1258 ++NewWidth; 1259 1260 // Check to see that CI1 is an all-ones value with NewWidth bits. 1261 if (CI1->getBitWidth() == NewWidth || 1262 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1263 return nullptr; 1264 1265 // This is only really a signed overflow check if the inputs have been 1266 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1267 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1268 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1269 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1270 return nullptr; 1271 1272 // In order to replace the original add with a narrower 1273 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1274 // and truncates that discard the high bits of the add. Verify that this is 1275 // the case. 1276 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1277 for (User *U : OrigAdd->users()) { 1278 if (U == AddWithCst) 1279 continue; 1280 1281 // Only accept truncates for now. We would really like a nice recursive 1282 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1283 // chain to see which bits of a value are actually demanded. If the 1284 // original add had another add which was then immediately truncated, we 1285 // could still do the transformation. 1286 TruncInst *TI = dyn_cast<TruncInst>(U); 1287 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1288 return nullptr; 1289 } 1290 1291 // If the pattern matches, truncate the inputs to the narrower type and 1292 // use the sadd_with_overflow intrinsic to efficiently compute both the 1293 // result and the overflow bit. 1294 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1295 Function *F = Intrinsic::getDeclaration( 1296 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1297 1298 InstCombiner::BuilderTy &Builder = IC.Builder; 1299 1300 // Put the new code above the original add, in case there are any uses of the 1301 // add between the add and the compare. 1302 Builder.SetInsertPoint(OrigAdd); 1303 1304 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1305 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1306 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1307 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1308 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1309 1310 // The inner add was the result of the narrow add, zero extended to the 1311 // wider type. Replace it with the result computed by the intrinsic. 1312 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1313 IC.eraseInstFromFunction(*OrigAdd); 1314 1315 // The original icmp gets replaced with the overflow value. 1316 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1317 } 1318 1319 /// If we have: 1320 /// icmp eq/ne (urem/srem %x, %y), 0 1321 /// iff %y is a power-of-two, we can replace this with a bit test: 1322 /// icmp eq/ne (and %x, (add %y, -1)), 0 1323 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1324 // This fold is only valid for equality predicates. 1325 if (!I.isEquality()) 1326 return nullptr; 1327 ICmpInst::Predicate Pred; 1328 Value *X, *Y, *Zero; 1329 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1330 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1331 return nullptr; 1332 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1333 return nullptr; 1334 // This may increase instruction count, we don't enforce that Y is a constant. 1335 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1336 Value *Masked = Builder.CreateAnd(X, Mask); 1337 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1338 } 1339 1340 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1341 /// by one-less-than-bitwidth into a sign test on the original value. 1342 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1343 Instruction *Val; 1344 ICmpInst::Predicate Pred; 1345 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1346 return nullptr; 1347 1348 Value *X; 1349 Type *XTy; 1350 1351 Constant *C; 1352 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1353 XTy = X->getType(); 1354 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1355 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1356 APInt(XBitWidth, XBitWidth - 1)))) 1357 return nullptr; 1358 } else if (isa<BinaryOperator>(Val) && 1359 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1360 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1361 /*AnalyzeForSignBitExtraction=*/true))) { 1362 XTy = X->getType(); 1363 } else 1364 return nullptr; 1365 1366 return ICmpInst::Create(Instruction::ICmp, 1367 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1368 : ICmpInst::ICMP_SLT, 1369 X, ConstantInt::getNullValue(XTy)); 1370 } 1371 1372 // Handle icmp pred X, 0 1373 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1374 CmpInst::Predicate Pred = Cmp.getPredicate(); 1375 if (!match(Cmp.getOperand(1), m_Zero())) 1376 return nullptr; 1377 1378 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1379 if (Pred == ICmpInst::ICMP_SGT) { 1380 Value *A, *B; 1381 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1382 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1383 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1384 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1385 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1386 } 1387 } 1388 1389 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1390 return New; 1391 1392 // Given: 1393 // icmp eq/ne (urem %x, %y), 0 1394 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1395 // icmp eq/ne %x, 0 1396 Value *X, *Y; 1397 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1398 ICmpInst::isEquality(Pred)) { 1399 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1400 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1401 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1402 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1403 } 1404 1405 return nullptr; 1406 } 1407 1408 /// Fold icmp Pred X, C. 1409 /// TODO: This code structure does not make sense. The saturating add fold 1410 /// should be moved to some other helper and extended as noted below (it is also 1411 /// possible that code has been made unnecessary - do we canonicalize IR to 1412 /// overflow/saturating intrinsics or not?). 1413 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1414 // Match the following pattern, which is a common idiom when writing 1415 // overflow-safe integer arithmetic functions. The source performs an addition 1416 // in wider type and explicitly checks for overflow using comparisons against 1417 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1418 // 1419 // TODO: This could probably be generalized to handle other overflow-safe 1420 // operations if we worked out the formulas to compute the appropriate magic 1421 // constants. 1422 // 1423 // sum = a + b 1424 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1425 CmpInst::Predicate Pred = Cmp.getPredicate(); 1426 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1427 Value *A, *B; 1428 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1429 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1430 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1431 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1432 return Res; 1433 1434 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1435 Constant *C = dyn_cast<Constant>(Op1); 1436 if (!C || C->canTrap()) 1437 return nullptr; 1438 1439 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1440 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1441 Type *Ty = Cmp.getType(); 1442 Builder.SetInsertPoint(Phi); 1443 PHINode *NewPhi = 1444 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1445 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1446 auto *Input = 1447 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1448 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1449 NewPhi->addIncoming(BoolInput, Predecessor); 1450 } 1451 NewPhi->takeName(&Cmp); 1452 return replaceInstUsesWith(Cmp, NewPhi); 1453 } 1454 1455 return nullptr; 1456 } 1457 1458 /// Canonicalize icmp instructions based on dominating conditions. 1459 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1460 // This is a cheap/incomplete check for dominance - just match a single 1461 // predecessor with a conditional branch. 1462 BasicBlock *CmpBB = Cmp.getParent(); 1463 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1464 if (!DomBB) 1465 return nullptr; 1466 1467 Value *DomCond; 1468 BasicBlock *TrueBB, *FalseBB; 1469 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1470 return nullptr; 1471 1472 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1473 "Predecessor block does not point to successor?"); 1474 1475 // The branch should get simplified. Don't bother simplifying this condition. 1476 if (TrueBB == FalseBB) 1477 return nullptr; 1478 1479 // Try to simplify this compare to T/F based on the dominating condition. 1480 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1481 if (Imp) 1482 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1483 1484 CmpInst::Predicate Pred = Cmp.getPredicate(); 1485 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1486 ICmpInst::Predicate DomPred; 1487 const APInt *C, *DomC; 1488 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1489 match(Y, m_APInt(C))) { 1490 // We have 2 compares of a variable with constants. Calculate the constant 1491 // ranges of those compares to see if we can transform the 2nd compare: 1492 // DomBB: 1493 // DomCond = icmp DomPred X, DomC 1494 // br DomCond, CmpBB, FalseBB 1495 // CmpBB: 1496 // Cmp = icmp Pred X, C 1497 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1498 ConstantRange DominatingCR = 1499 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1500 : ConstantRange::makeExactICmpRegion( 1501 CmpInst::getInversePredicate(DomPred), *DomC); 1502 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1503 ConstantRange Difference = DominatingCR.difference(CR); 1504 if (Intersection.isEmptySet()) 1505 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1506 if (Difference.isEmptySet()) 1507 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1508 1509 // Canonicalizing a sign bit comparison that gets used in a branch, 1510 // pessimizes codegen by generating branch on zero instruction instead 1511 // of a test and branch. So we avoid canonicalizing in such situations 1512 // because test and branch instruction has better branch displacement 1513 // than compare and branch instruction. 1514 bool UnusedBit; 1515 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1516 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1517 return nullptr; 1518 1519 // Avoid an infinite loop with min/max canonicalization. 1520 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1521 if (Cmp.hasOneUse() && 1522 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1523 return nullptr; 1524 1525 if (const APInt *EqC = Intersection.getSingleElement()) 1526 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1527 if (const APInt *NeC = Difference.getSingleElement()) 1528 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1529 } 1530 1531 return nullptr; 1532 } 1533 1534 /// Fold icmp (trunc X, Y), C. 1535 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1536 TruncInst *Trunc, 1537 const APInt &C) { 1538 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1539 Value *X = Trunc->getOperand(0); 1540 if (C.isOne() && C.getBitWidth() > 1) { 1541 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1542 Value *V = nullptr; 1543 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1544 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1545 ConstantInt::get(V->getType(), 1)); 1546 } 1547 1548 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1549 SrcBits = X->getType()->getScalarSizeInBits(); 1550 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1551 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1552 // of the high bits truncated out of x are known. 1553 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1554 1555 // If all the high bits are known, we can do this xform. 1556 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1557 // Pull in the high bits from known-ones set. 1558 APInt NewRHS = C.zext(SrcBits); 1559 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1560 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1561 } 1562 } 1563 1564 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1565 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1566 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1567 Value *ShOp; 1568 const APInt *ShAmtC; 1569 bool TrueIfSigned; 1570 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1571 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1572 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1573 return TrueIfSigned 1574 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1575 ConstantInt::getNullValue(X->getType())) 1576 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1577 ConstantInt::getAllOnesValue(X->getType())); 1578 } 1579 1580 return nullptr; 1581 } 1582 1583 /// Fold icmp (xor X, Y), C. 1584 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1585 BinaryOperator *Xor, 1586 const APInt &C) { 1587 Value *X = Xor->getOperand(0); 1588 Value *Y = Xor->getOperand(1); 1589 const APInt *XorC; 1590 if (!match(Y, m_APInt(XorC))) 1591 return nullptr; 1592 1593 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1594 // fold the xor. 1595 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1596 bool TrueIfSigned = false; 1597 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1598 1599 // If the sign bit of the XorCst is not set, there is no change to 1600 // the operation, just stop using the Xor. 1601 if (!XorC->isNegative()) 1602 return replaceOperand(Cmp, 0, X); 1603 1604 // Emit the opposite comparison. 1605 if (TrueIfSigned) 1606 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1607 ConstantInt::getAllOnesValue(X->getType())); 1608 else 1609 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1610 ConstantInt::getNullValue(X->getType())); 1611 } 1612 1613 if (Xor->hasOneUse()) { 1614 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1615 if (!Cmp.isEquality() && XorC->isSignMask()) { 1616 Pred = Cmp.getFlippedSignednessPredicate(); 1617 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1618 } 1619 1620 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1621 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1622 Pred = Cmp.getFlippedSignednessPredicate(); 1623 Pred = Cmp.getSwappedPredicate(Pred); 1624 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1625 } 1626 } 1627 1628 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1629 if (Pred == ICmpInst::ICMP_UGT) { 1630 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1631 if (*XorC == ~C && (C + 1).isPowerOf2()) 1632 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1633 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1634 if (*XorC == C && (C + 1).isPowerOf2()) 1635 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1636 } 1637 if (Pred == ICmpInst::ICMP_ULT) { 1638 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1639 if (*XorC == -C && C.isPowerOf2()) 1640 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1641 ConstantInt::get(X->getType(), ~C)); 1642 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1643 if (*XorC == C && (-C).isPowerOf2()) 1644 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1645 ConstantInt::get(X->getType(), ~C)); 1646 } 1647 return nullptr; 1648 } 1649 1650 /// Fold icmp (and (sh X, Y), C2), C1. 1651 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1652 BinaryOperator *And, 1653 const APInt &C1, 1654 const APInt &C2) { 1655 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1656 if (!Shift || !Shift->isShift()) 1657 return nullptr; 1658 1659 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1660 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1661 // code produced by the clang front-end, for bitfield access. 1662 // This seemingly simple opportunity to fold away a shift turns out to be 1663 // rather complicated. See PR17827 for details. 1664 unsigned ShiftOpcode = Shift->getOpcode(); 1665 bool IsShl = ShiftOpcode == Instruction::Shl; 1666 const APInt *C3; 1667 if (match(Shift->getOperand(1), m_APInt(C3))) { 1668 APInt NewAndCst, NewCmpCst; 1669 bool AnyCmpCstBitsShiftedOut; 1670 if (ShiftOpcode == Instruction::Shl) { 1671 // For a left shift, we can fold if the comparison is not signed. We can 1672 // also fold a signed comparison if the mask value and comparison value 1673 // are not negative. These constraints may not be obvious, but we can 1674 // prove that they are correct using an SMT solver. 1675 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1676 return nullptr; 1677 1678 NewCmpCst = C1.lshr(*C3); 1679 NewAndCst = C2.lshr(*C3); 1680 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1681 } else if (ShiftOpcode == Instruction::LShr) { 1682 // For a logical right shift, we can fold if the comparison is not signed. 1683 // We can also fold a signed comparison if the shifted mask value and the 1684 // shifted comparison value are not negative. These constraints may not be 1685 // obvious, but we can prove that they are correct using an SMT solver. 1686 NewCmpCst = C1.shl(*C3); 1687 NewAndCst = C2.shl(*C3); 1688 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1689 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1690 return nullptr; 1691 } else { 1692 // For an arithmetic shift, check that both constants don't use (in a 1693 // signed sense) the top bits being shifted out. 1694 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1695 NewCmpCst = C1.shl(*C3); 1696 NewAndCst = C2.shl(*C3); 1697 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1698 if (NewAndCst.ashr(*C3) != C2) 1699 return nullptr; 1700 } 1701 1702 if (AnyCmpCstBitsShiftedOut) { 1703 // If we shifted bits out, the fold is not going to work out. As a 1704 // special case, check to see if this means that the result is always 1705 // true or false now. 1706 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1707 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1708 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1709 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1710 } else { 1711 Value *NewAnd = Builder.CreateAnd( 1712 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1713 return new ICmpInst(Cmp.getPredicate(), 1714 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1715 } 1716 } 1717 1718 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1719 // preferable because it allows the C2 << Y expression to be hoisted out of a 1720 // loop if Y is invariant and X is not. 1721 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1722 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1723 // Compute C2 << Y. 1724 Value *NewShift = 1725 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1726 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1727 1728 // Compute X & (C2 << Y). 1729 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1730 return replaceOperand(Cmp, 0, NewAnd); 1731 } 1732 1733 return nullptr; 1734 } 1735 1736 /// Fold icmp (and X, C2), C1. 1737 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1738 BinaryOperator *And, 1739 const APInt &C1) { 1740 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1741 1742 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1743 // TODO: We canonicalize to the longer form for scalars because we have 1744 // better analysis/folds for icmp, and codegen may be better with icmp. 1745 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1746 match(And->getOperand(1), m_One())) 1747 return new TruncInst(And->getOperand(0), Cmp.getType()); 1748 1749 const APInt *C2; 1750 Value *X; 1751 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1752 return nullptr; 1753 1754 // Don't perform the following transforms if the AND has multiple uses 1755 if (!And->hasOneUse()) 1756 return nullptr; 1757 1758 if (Cmp.isEquality() && C1.isZero()) { 1759 // Restrict this fold to single-use 'and' (PR10267). 1760 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1761 if (C2->isSignMask()) { 1762 Constant *Zero = Constant::getNullValue(X->getType()); 1763 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1764 return new ICmpInst(NewPred, X, Zero); 1765 } 1766 1767 // Restrict this fold only for single-use 'and' (PR10267). 1768 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1769 if ((~(*C2) + 1).isPowerOf2()) { 1770 Constant *NegBOC = 1771 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1772 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1773 return new ICmpInst(NewPred, X, NegBOC); 1774 } 1775 } 1776 1777 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1778 // the input width without changing the value produced, eliminate the cast: 1779 // 1780 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1781 // 1782 // We can do this transformation if the constants do not have their sign bits 1783 // set or if it is an equality comparison. Extending a relational comparison 1784 // when we're checking the sign bit would not work. 1785 Value *W; 1786 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1787 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1788 // TODO: Is this a good transform for vectors? Wider types may reduce 1789 // throughput. Should this transform be limited (even for scalars) by using 1790 // shouldChangeType()? 1791 if (!Cmp.getType()->isVectorTy()) { 1792 Type *WideType = W->getType(); 1793 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1794 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1795 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1796 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1797 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1798 } 1799 } 1800 1801 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1802 return I; 1803 1804 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1805 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1806 // 1807 // iff pred isn't signed 1808 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1809 match(And->getOperand(1), m_One())) { 1810 Constant *One = cast<Constant>(And->getOperand(1)); 1811 Value *Or = And->getOperand(0); 1812 Value *A, *B, *LShr; 1813 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1814 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1815 unsigned UsesRemoved = 0; 1816 if (And->hasOneUse()) 1817 ++UsesRemoved; 1818 if (Or->hasOneUse()) 1819 ++UsesRemoved; 1820 if (LShr->hasOneUse()) 1821 ++UsesRemoved; 1822 1823 // Compute A & ((1 << B) | 1) 1824 Value *NewOr = nullptr; 1825 if (auto *C = dyn_cast<Constant>(B)) { 1826 if (UsesRemoved >= 1) 1827 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1828 } else { 1829 if (UsesRemoved >= 3) 1830 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1831 /*HasNUW=*/true), 1832 One, Or->getName()); 1833 } 1834 if (NewOr) { 1835 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1836 return replaceOperand(Cmp, 0, NewAnd); 1837 } 1838 } 1839 } 1840 1841 return nullptr; 1842 } 1843 1844 /// Fold icmp (and X, Y), C. 1845 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1846 BinaryOperator *And, 1847 const APInt &C) { 1848 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1849 return I; 1850 1851 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1852 bool TrueIfNeg; 1853 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1854 // ((X - 1) & ~X) < 0 --> X == 0 1855 // ((X - 1) & ~X) >= 0 --> X != 0 1856 Value *X; 1857 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1858 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1859 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1860 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1861 } 1862 } 1863 1864 // TODO: These all require that Y is constant too, so refactor with the above. 1865 1866 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1867 Value *X = And->getOperand(0); 1868 Value *Y = And->getOperand(1); 1869 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1870 if (auto *LI = dyn_cast<LoadInst>(X)) 1871 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1872 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1873 if (Instruction *Res = 1874 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1875 return Res; 1876 1877 if (!Cmp.isEquality()) 1878 return nullptr; 1879 1880 // X & -C == -C -> X > u ~C 1881 // X & -C != -C -> X <= u ~C 1882 // iff C is a power of 2 1883 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1884 auto NewPred = 1885 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1886 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1887 } 1888 1889 return nullptr; 1890 } 1891 1892 /// Fold icmp (or X, Y), C. 1893 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1894 BinaryOperator *Or, 1895 const APInt &C) { 1896 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1897 if (C.isOne()) { 1898 // icmp slt signum(V) 1 --> icmp slt V, 1 1899 Value *V = nullptr; 1900 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1901 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1902 ConstantInt::get(V->getType(), 1)); 1903 } 1904 1905 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1906 const APInt *MaskC; 1907 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1908 if (*MaskC == C && (C + 1).isPowerOf2()) { 1909 // X | C == C --> X <=u C 1910 // X | C != C --> X >u C 1911 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1912 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1913 return new ICmpInst(Pred, OrOp0, OrOp1); 1914 } 1915 1916 // More general: canonicalize 'equality with set bits mask' to 1917 // 'equality with clear bits mask'. 1918 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1919 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1920 if (Or->hasOneUse()) { 1921 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1922 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1923 return new ICmpInst(Pred, And, NewC); 1924 } 1925 } 1926 1927 // (X | (X-1)) s< 0 --> X s< 1 1928 // (X | (X-1)) s> -1 --> X s> 0 1929 Value *X; 1930 bool TrueIfSigned; 1931 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1932 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1933 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1934 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1935 return new ICmpInst(NewPred, X, NewC); 1936 } 1937 1938 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1939 return nullptr; 1940 1941 Value *P, *Q; 1942 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1943 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1944 // -> and (icmp eq P, null), (icmp eq Q, null). 1945 Value *CmpP = 1946 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1947 Value *CmpQ = 1948 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1949 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1950 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1951 } 1952 1953 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1954 // a shorter form that has more potential to be folded even further. 1955 Value *X1, *X2, *X3, *X4; 1956 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1957 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1958 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1959 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1960 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1961 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1962 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1963 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1964 } 1965 1966 return nullptr; 1967 } 1968 1969 /// Fold icmp (mul X, Y), C. 1970 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1971 BinaryOperator *Mul, 1972 const APInt &C) { 1973 const APInt *MulC; 1974 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1975 return nullptr; 1976 1977 // If this is a test of the sign bit and the multiply is sign-preserving with 1978 // a constant operand, use the multiply LHS operand instead. 1979 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1980 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1981 if (MulC->isNegative()) 1982 Pred = ICmpInst::getSwappedPredicate(Pred); 1983 return new ICmpInst(Pred, Mul->getOperand(0), 1984 Constant::getNullValue(Mul->getType())); 1985 } 1986 1987 // If the multiply does not wrap, try to divide the compare constant by the 1988 // multiplication factor. 1989 if (Cmp.isEquality() && !MulC->isZero()) { 1990 // (mul nsw X, MulC) == C --> X == C /s MulC 1991 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 1992 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1993 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1994 } 1995 // (mul nuw X, MulC) == C --> X == C /u MulC 1996 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 1997 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1998 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1999 } 2000 } 2001 2002 return nullptr; 2003 } 2004 2005 /// Fold icmp (shl 1, Y), C. 2006 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2007 const APInt &C) { 2008 Value *Y; 2009 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2010 return nullptr; 2011 2012 Type *ShiftType = Shl->getType(); 2013 unsigned TypeBits = C.getBitWidth(); 2014 bool CIsPowerOf2 = C.isPowerOf2(); 2015 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2016 if (Cmp.isUnsigned()) { 2017 // (1 << Y) pred C -> Y pred Log2(C) 2018 if (!CIsPowerOf2) { 2019 // (1 << Y) < 30 -> Y <= 4 2020 // (1 << Y) <= 30 -> Y <= 4 2021 // (1 << Y) >= 30 -> Y > 4 2022 // (1 << Y) > 30 -> Y > 4 2023 if (Pred == ICmpInst::ICMP_ULT) 2024 Pred = ICmpInst::ICMP_ULE; 2025 else if (Pred == ICmpInst::ICMP_UGE) 2026 Pred = ICmpInst::ICMP_UGT; 2027 } 2028 2029 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2030 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2031 unsigned CLog2 = C.logBase2(); 2032 if (CLog2 == TypeBits - 1) { 2033 if (Pred == ICmpInst::ICMP_UGE) 2034 Pred = ICmpInst::ICMP_EQ; 2035 else if (Pred == ICmpInst::ICMP_ULT) 2036 Pred = ICmpInst::ICMP_NE; 2037 } 2038 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2039 } else if (Cmp.isSigned()) { 2040 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2041 if (C.isAllOnes()) { 2042 // (1 << Y) <= -1 -> Y == 31 2043 if (Pred == ICmpInst::ICMP_SLE) 2044 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2045 2046 // (1 << Y) > -1 -> Y != 31 2047 if (Pred == ICmpInst::ICMP_SGT) 2048 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2049 } else if (!C) { 2050 // (1 << Y) < 0 -> Y == 31 2051 // (1 << Y) <= 0 -> Y == 31 2052 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2053 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2054 2055 // (1 << Y) >= 0 -> Y != 31 2056 // (1 << Y) > 0 -> Y != 31 2057 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2058 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2059 } 2060 } else if (Cmp.isEquality() && CIsPowerOf2) { 2061 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2062 } 2063 2064 return nullptr; 2065 } 2066 2067 /// Fold icmp (shl X, Y), C. 2068 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2069 BinaryOperator *Shl, 2070 const APInt &C) { 2071 const APInt *ShiftVal; 2072 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2073 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2074 2075 const APInt *ShiftAmt; 2076 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2077 return foldICmpShlOne(Cmp, Shl, C); 2078 2079 // Check that the shift amount is in range. If not, don't perform undefined 2080 // shifts. When the shift is visited, it will be simplified. 2081 unsigned TypeBits = C.getBitWidth(); 2082 if (ShiftAmt->uge(TypeBits)) 2083 return nullptr; 2084 2085 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2086 Value *X = Shl->getOperand(0); 2087 Type *ShType = Shl->getType(); 2088 2089 // NSW guarantees that we are only shifting out sign bits from the high bits, 2090 // so we can ASHR the compare constant without needing a mask and eliminate 2091 // the shift. 2092 if (Shl->hasNoSignedWrap()) { 2093 if (Pred == ICmpInst::ICMP_SGT) { 2094 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2095 APInt ShiftedC = C.ashr(*ShiftAmt); 2096 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2097 } 2098 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2099 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2100 APInt ShiftedC = C.ashr(*ShiftAmt); 2101 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2102 } 2103 if (Pred == ICmpInst::ICMP_SLT) { 2104 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2105 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2106 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2107 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2108 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2109 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2110 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2111 } 2112 // If this is a signed comparison to 0 and the shift is sign preserving, 2113 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2114 // do that if we're sure to not continue on in this function. 2115 if (isSignTest(Pred, C)) 2116 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2117 } 2118 2119 // NUW guarantees that we are only shifting out zero bits from the high bits, 2120 // so we can LSHR the compare constant without needing a mask and eliminate 2121 // the shift. 2122 if (Shl->hasNoUnsignedWrap()) { 2123 if (Pred == ICmpInst::ICMP_UGT) { 2124 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2125 APInt ShiftedC = C.lshr(*ShiftAmt); 2126 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2127 } 2128 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2129 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2130 APInt ShiftedC = C.lshr(*ShiftAmt); 2131 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2132 } 2133 if (Pred == ICmpInst::ICMP_ULT) { 2134 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2135 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2136 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2137 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2138 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2139 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2140 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2141 } 2142 } 2143 2144 if (Cmp.isEquality() && Shl->hasOneUse()) { 2145 // Strength-reduce the shift into an 'and'. 2146 Constant *Mask = ConstantInt::get( 2147 ShType, 2148 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2149 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2150 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2151 return new ICmpInst(Pred, And, LShrC); 2152 } 2153 2154 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2155 bool TrueIfSigned = false; 2156 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2157 // (X << 31) <s 0 --> (X & 1) != 0 2158 Constant *Mask = ConstantInt::get( 2159 ShType, 2160 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2161 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2162 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2163 And, Constant::getNullValue(ShType)); 2164 } 2165 2166 // Simplify 'shl' inequality test into 'and' equality test. 2167 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2168 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2169 if ((C + 1).isPowerOf2() && 2170 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2171 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2172 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2173 : ICmpInst::ICMP_NE, 2174 And, Constant::getNullValue(ShType)); 2175 } 2176 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2177 if (C.isPowerOf2() && 2178 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2179 Value *And = 2180 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2181 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2182 : ICmpInst::ICMP_NE, 2183 And, Constant::getNullValue(ShType)); 2184 } 2185 } 2186 2187 // Transform (icmp pred iM (shl iM %v, N), C) 2188 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2189 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2190 // This enables us to get rid of the shift in favor of a trunc that may be 2191 // free on the target. It has the additional benefit of comparing to a 2192 // smaller constant that may be more target-friendly. 2193 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2194 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2195 DL.isLegalInteger(TypeBits - Amt)) { 2196 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2197 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2198 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2199 Constant *NewC = 2200 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2201 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2202 } 2203 2204 return nullptr; 2205 } 2206 2207 /// Fold icmp ({al}shr X, Y), C. 2208 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2209 BinaryOperator *Shr, 2210 const APInt &C) { 2211 // An exact shr only shifts out zero bits, so: 2212 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2213 Value *X = Shr->getOperand(0); 2214 CmpInst::Predicate Pred = Cmp.getPredicate(); 2215 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2216 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2217 2218 const APInt *ShiftVal; 2219 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2220 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2221 2222 const APInt *ShiftAmt; 2223 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2224 return nullptr; 2225 2226 // Check that the shift amount is in range. If not, don't perform undefined 2227 // shifts. When the shift is visited it will be simplified. 2228 unsigned TypeBits = C.getBitWidth(); 2229 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2230 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2231 return nullptr; 2232 2233 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2234 bool IsExact = Shr->isExact(); 2235 Type *ShrTy = Shr->getType(); 2236 // TODO: If we could guarantee that InstSimplify would handle all of the 2237 // constant-value-based preconditions in the folds below, then we could assert 2238 // those conditions rather than checking them. This is difficult because of 2239 // undef/poison (PR34838). 2240 if (IsAShr) { 2241 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2242 // When ShAmtC can be shifted losslessly: 2243 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2244 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2245 APInt ShiftedC = C.shl(ShAmtVal); 2246 if (ShiftedC.ashr(ShAmtVal) == C) 2247 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2248 } 2249 if (Pred == CmpInst::ICMP_SGT) { 2250 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2251 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2252 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2253 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2254 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2255 } 2256 if (Pred == CmpInst::ICMP_UGT) { 2257 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2258 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd 2259 // clause accounts for that pattern. 2260 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2261 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) || 2262 (C + 1).shl(ShAmtVal).isMinSignedValue()) 2263 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2264 } 2265 2266 // If the compare constant has significant bits above the lowest sign-bit, 2267 // then convert an unsigned cmp to a test of the sign-bit: 2268 // (ashr X, ShiftC) u> C --> X s< 0 2269 // (ashr X, ShiftC) u< C --> X s> -1 2270 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2271 if (Pred == CmpInst::ICMP_UGT) { 2272 return new ICmpInst(CmpInst::ICMP_SLT, X, 2273 ConstantInt::getNullValue(ShrTy)); 2274 } 2275 if (Pred == CmpInst::ICMP_ULT) { 2276 return new ICmpInst(CmpInst::ICMP_SGT, X, 2277 ConstantInt::getAllOnesValue(ShrTy)); 2278 } 2279 } 2280 } else { 2281 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2282 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2283 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2284 APInt ShiftedC = C.shl(ShAmtVal); 2285 if (ShiftedC.lshr(ShAmtVal) == C) 2286 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2287 } 2288 if (Pred == CmpInst::ICMP_UGT) { 2289 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2290 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2291 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2292 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2293 } 2294 } 2295 2296 if (!Cmp.isEquality()) 2297 return nullptr; 2298 2299 // Handle equality comparisons of shift-by-constant. 2300 2301 // If the comparison constant changes with the shift, the comparison cannot 2302 // succeed (bits of the comparison constant cannot match the shifted value). 2303 // This should be known by InstSimplify and already be folded to true/false. 2304 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2305 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2306 "Expected icmp+shr simplify did not occur."); 2307 2308 // If the bits shifted out are known zero, compare the unshifted value: 2309 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2310 if (Shr->isExact()) 2311 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2312 2313 if (C.isZero()) { 2314 // == 0 is u< 1. 2315 if (Pred == CmpInst::ICMP_EQ) 2316 return new ICmpInst(CmpInst::ICMP_ULT, X, 2317 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2318 else 2319 return new ICmpInst(CmpInst::ICMP_UGT, X, 2320 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2321 } 2322 2323 if (Shr->hasOneUse()) { 2324 // Canonicalize the shift into an 'and': 2325 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2326 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2327 Constant *Mask = ConstantInt::get(ShrTy, Val); 2328 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2329 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2330 } 2331 2332 return nullptr; 2333 } 2334 2335 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2336 BinaryOperator *SRem, 2337 const APInt &C) { 2338 // Match an 'is positive' or 'is negative' comparison of remainder by a 2339 // constant power-of-2 value: 2340 // (X % pow2C) sgt/slt 0 2341 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2342 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2343 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2344 return nullptr; 2345 2346 // TODO: The one-use check is standard because we do not typically want to 2347 // create longer instruction sequences, but this might be a special-case 2348 // because srem is not good for analysis or codegen. 2349 if (!SRem->hasOneUse()) 2350 return nullptr; 2351 2352 const APInt *DivisorC; 2353 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2354 return nullptr; 2355 2356 // For cmp_sgt/cmp_slt only zero valued C is handled. 2357 // For cmp_eq/cmp_ne only positive valued C is handled. 2358 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2359 !C.isZero()) || 2360 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2361 !C.isStrictlyPositive())) 2362 return nullptr; 2363 2364 // Mask off the sign bit and the modulo bits (low-bits). 2365 Type *Ty = SRem->getType(); 2366 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2367 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2368 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2369 2370 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2371 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2372 2373 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2374 // bit is set. Example: 2375 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2376 if (Pred == ICmpInst::ICMP_SGT) 2377 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2378 2379 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2380 // bit is set. Example: 2381 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2382 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2383 } 2384 2385 /// Fold icmp (udiv X, Y), C. 2386 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2387 BinaryOperator *UDiv, 2388 const APInt &C) { 2389 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2390 Value *X = UDiv->getOperand(0); 2391 Value *Y = UDiv->getOperand(1); 2392 Type *Ty = UDiv->getType(); 2393 2394 const APInt *C2; 2395 if (!match(X, m_APInt(C2))) 2396 return nullptr; 2397 2398 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2399 2400 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2401 if (Pred == ICmpInst::ICMP_UGT) { 2402 assert(!C.isMaxValue() && 2403 "icmp ugt X, UINT_MAX should have been simplified already."); 2404 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2405 ConstantInt::get(Ty, C2->udiv(C + 1))); 2406 } 2407 2408 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2409 if (Pred == ICmpInst::ICMP_ULT) { 2410 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2411 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2412 ConstantInt::get(Ty, C2->udiv(C))); 2413 } 2414 2415 return nullptr; 2416 } 2417 2418 /// Fold icmp ({su}div X, Y), C. 2419 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2420 BinaryOperator *Div, 2421 const APInt &C) { 2422 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2423 Value *X = Div->getOperand(0); 2424 Value *Y = Div->getOperand(1); 2425 Type *Ty = Div->getType(); 2426 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2427 2428 // If unsigned division and the compare constant is bigger than 2429 // UMAX/2 (negative), there's only one pair of values that satisfies an 2430 // equality check, so eliminate the division: 2431 // (X u/ Y) == C --> (X == C) && (Y == 1) 2432 // (X u/ Y) != C --> (X != C) || (Y != 1) 2433 // Similarly, if signed division and the compare constant is exactly SMIN: 2434 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) 2435 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) 2436 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && 2437 (!DivIsSigned || C.isMinSignedValue())) { 2438 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C)); 2439 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1)); 2440 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2441 return BinaryOperator::Create(Logic, XBig, YOne); 2442 } 2443 2444 // Fold: icmp pred ([us]div X, C2), C -> range test 2445 // Fold this div into the comparison, producing a range check. 2446 // Determine, based on the divide type, what the range is being 2447 // checked. If there is an overflow on the low or high side, remember 2448 // it, otherwise compute the range [low, hi) bounding the new value. 2449 // See: InsertRangeTest above for the kinds of replacements possible. 2450 const APInt *C2; 2451 if (!match(Y, m_APInt(C2))) 2452 return nullptr; 2453 2454 // FIXME: If the operand types don't match the type of the divide 2455 // then don't attempt this transform. The code below doesn't have the 2456 // logic to deal with a signed divide and an unsigned compare (and 2457 // vice versa). This is because (x /s C2) <s C produces different 2458 // results than (x /s C2) <u C or (x /u C2) <s C or even 2459 // (x /u C2) <u C. Simply casting the operands and result won't 2460 // work. :( The if statement below tests that condition and bails 2461 // if it finds it. 2462 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2463 return nullptr; 2464 2465 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2466 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2467 // division-by-constant cases should be present, we can not assert that they 2468 // have happened before we reach this icmp instruction. 2469 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2470 return nullptr; 2471 2472 // Compute Prod = C * C2. We are essentially solving an equation of 2473 // form X / C2 = C. We solve for X by multiplying C2 and C. 2474 // By solving for X, we can turn this into a range check instead of computing 2475 // a divide. 2476 APInt Prod = C * *C2; 2477 2478 // Determine if the product overflows by seeing if the product is not equal to 2479 // the divide. Make sure we do the same kind of divide as in the LHS 2480 // instruction that we're folding. 2481 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2482 2483 // If the division is known to be exact, then there is no remainder from the 2484 // divide, so the covered range size is unit, otherwise it is the divisor. 2485 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2486 2487 // Figure out the interval that is being checked. For example, a comparison 2488 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2489 // Compute this interval based on the constants involved and the signedness of 2490 // the compare/divide. This computes a half-open interval, keeping track of 2491 // whether either value in the interval overflows. After analysis each 2492 // overflow variable is set to 0 if it's corresponding bound variable is valid 2493 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2494 int LoOverflow = 0, HiOverflow = 0; 2495 APInt LoBound, HiBound; 2496 2497 if (!DivIsSigned) { // udiv 2498 // e.g. X/5 op 3 --> [15, 20) 2499 LoBound = Prod; 2500 HiOverflow = LoOverflow = ProdOV; 2501 if (!HiOverflow) { 2502 // If this is not an exact divide, then many values in the range collapse 2503 // to the same result value. 2504 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2505 } 2506 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2507 if (C.isZero()) { // (X / pos) op 0 2508 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2509 LoBound = -(RangeSize - 1); 2510 HiBound = RangeSize; 2511 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2512 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2513 HiOverflow = LoOverflow = ProdOV; 2514 if (!HiOverflow) 2515 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2516 } else { // (X / pos) op neg 2517 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2518 HiBound = Prod + 1; 2519 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2520 if (!LoOverflow) { 2521 APInt DivNeg = -RangeSize; 2522 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2523 } 2524 } 2525 } else if (C2->isNegative()) { // Divisor is < 0. 2526 if (Div->isExact()) 2527 RangeSize.negate(); 2528 if (C.isZero()) { // (X / neg) op 0 2529 // e.g. X/-5 op 0 --> [-4, 5) 2530 LoBound = RangeSize + 1; 2531 HiBound = -RangeSize; 2532 if (HiBound == *C2) { // -INTMIN = INTMIN 2533 HiOverflow = 1; // [INTMIN+1, overflow) 2534 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2535 } 2536 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2537 // e.g. X/-5 op 3 --> [-19, -14) 2538 HiBound = Prod + 1; 2539 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2540 if (!LoOverflow) 2541 LoOverflow = 2542 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0; 2543 } else { // (X / neg) op neg 2544 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2545 LoOverflow = HiOverflow = ProdOV; 2546 if (!HiOverflow) 2547 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2548 } 2549 2550 // Dividing by a negative swaps the condition. LT <-> GT 2551 Pred = ICmpInst::getSwappedPredicate(Pred); 2552 } 2553 2554 switch (Pred) { 2555 default: 2556 llvm_unreachable("Unhandled icmp predicate!"); 2557 case ICmpInst::ICMP_EQ: 2558 if (LoOverflow && HiOverflow) 2559 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2560 if (HiOverflow) 2561 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2562 X, ConstantInt::get(Ty, LoBound)); 2563 if (LoOverflow) 2564 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2565 X, ConstantInt::get(Ty, HiBound)); 2566 return replaceInstUsesWith( 2567 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2568 case ICmpInst::ICMP_NE: 2569 if (LoOverflow && HiOverflow) 2570 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2571 if (HiOverflow) 2572 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2573 X, ConstantInt::get(Ty, LoBound)); 2574 if (LoOverflow) 2575 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2576 X, ConstantInt::get(Ty, HiBound)); 2577 return replaceInstUsesWith( 2578 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); 2579 case ICmpInst::ICMP_ULT: 2580 case ICmpInst::ICMP_SLT: 2581 if (LoOverflow == +1) // Low bound is greater than input range. 2582 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2583 if (LoOverflow == -1) // Low bound is less than input range. 2584 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2585 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound)); 2586 case ICmpInst::ICMP_UGT: 2587 case ICmpInst::ICMP_SGT: 2588 if (HiOverflow == +1) // High bound greater than input range. 2589 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2590 if (HiOverflow == -1) // High bound less than input range. 2591 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2592 if (Pred == ICmpInst::ICMP_UGT) 2593 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); 2594 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound)); 2595 } 2596 2597 return nullptr; 2598 } 2599 2600 /// Fold icmp (sub X, Y), C. 2601 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2602 BinaryOperator *Sub, 2603 const APInt &C) { 2604 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2605 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2606 Type *Ty = Sub->getType(); 2607 2608 // (SubC - Y) == C) --> Y == (SubC - C) 2609 // (SubC - Y) != C) --> Y != (SubC - C) 2610 Constant *SubC; 2611 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2612 return new ICmpInst(Pred, Y, 2613 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2614 } 2615 2616 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2617 const APInt *C2; 2618 APInt SubResult; 2619 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2620 bool HasNSW = Sub->hasNoSignedWrap(); 2621 bool HasNUW = Sub->hasNoUnsignedWrap(); 2622 if (match(X, m_APInt(C2)) && 2623 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2624 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2625 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2626 2627 // X - Y == 0 --> X == Y. 2628 // X - Y != 0 --> X != Y. 2629 // TODO: We allow this with multiple uses as long as the other uses are not 2630 // in phis. The phi use check is guarding against a codegen regression 2631 // for a loop test. If the backend could undo this (and possibly 2632 // subsequent transforms), we would not need this hack. 2633 if (Cmp.isEquality() && C.isZero() && 2634 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2635 return new ICmpInst(Pred, X, Y); 2636 2637 // The following transforms are only worth it if the only user of the subtract 2638 // is the icmp. 2639 // TODO: This is an artificial restriction for all of the transforms below 2640 // that only need a single replacement icmp. Can these use the phi test 2641 // like the transform above here? 2642 if (!Sub->hasOneUse()) 2643 return nullptr; 2644 2645 if (Sub->hasNoSignedWrap()) { 2646 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2647 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2648 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2649 2650 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2651 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2652 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2653 2654 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2655 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2656 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2657 2658 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2659 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2660 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2661 } 2662 2663 if (!match(X, m_APInt(C2))) 2664 return nullptr; 2665 2666 // C2 - Y <u C -> (Y | (C - 1)) == C2 2667 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2668 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2669 (*C2 & (C - 1)) == (C - 1)) 2670 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2671 2672 // C2 - Y >u C -> (Y | C) != C2 2673 // iff C2 & C == C and C + 1 is a power of 2 2674 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2675 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2676 2677 // We have handled special cases that reduce. 2678 // Canonicalize any remaining sub to add as: 2679 // (C2 - Y) > C --> (Y + ~C2) < ~C 2680 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2681 HasNUW, HasNSW); 2682 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2683 } 2684 2685 /// Fold icmp (add X, Y), C. 2686 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2687 BinaryOperator *Add, 2688 const APInt &C) { 2689 Value *Y = Add->getOperand(1); 2690 const APInt *C2; 2691 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2692 return nullptr; 2693 2694 // Fold icmp pred (add X, C2), C. 2695 Value *X = Add->getOperand(0); 2696 Type *Ty = Add->getType(); 2697 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2698 2699 // If the add does not wrap, we can always adjust the compare by subtracting 2700 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2701 // are canonicalized to SGT/SLT/UGT/ULT. 2702 if ((Add->hasNoSignedWrap() && 2703 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2704 (Add->hasNoUnsignedWrap() && 2705 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2706 bool Overflow; 2707 APInt NewC = 2708 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2709 // If there is overflow, the result must be true or false. 2710 // TODO: Can we assert there is no overflow because InstSimplify always 2711 // handles those cases? 2712 if (!Overflow) 2713 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2714 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2715 } 2716 2717 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2718 const APInt &Upper = CR.getUpper(); 2719 const APInt &Lower = CR.getLower(); 2720 if (Cmp.isSigned()) { 2721 if (Lower.isSignMask()) 2722 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2723 if (Upper.isSignMask()) 2724 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2725 } else { 2726 if (Lower.isMinValue()) 2727 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2728 if (Upper.isMinValue()) 2729 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2730 } 2731 2732 // This set of folds is intentionally placed after folds that use no-wrapping 2733 // flags because those folds are likely better for later analysis/codegen. 2734 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2735 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2736 2737 // Fold compare with offset to opposite sign compare if it eliminates offset: 2738 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2739 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2740 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2741 2742 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2743 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2744 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2745 2746 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2747 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2748 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2749 2750 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2751 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2752 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2753 2754 if (!Add->hasOneUse()) 2755 return nullptr; 2756 2757 // X+C <u C2 -> (X & -C2) == C 2758 // iff C & (C2-1) == 0 2759 // C2 is a power of 2 2760 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2761 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2762 ConstantExpr::getNeg(cast<Constant>(Y))); 2763 2764 // X+C >u C2 -> (X & ~C2) != C 2765 // iff C & C2 == 0 2766 // C2+1 is a power of 2 2767 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2768 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2769 ConstantExpr::getNeg(cast<Constant>(Y))); 2770 2771 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2772 // to the ult form. 2773 // X+C2 >u C -> X+(C2-C-1) <u ~C 2774 if (Pred == ICmpInst::ICMP_UGT) 2775 return new ICmpInst(ICmpInst::ICMP_ULT, 2776 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2777 ConstantInt::get(Ty, ~C)); 2778 2779 return nullptr; 2780 } 2781 2782 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2783 Value *&RHS, ConstantInt *&Less, 2784 ConstantInt *&Equal, 2785 ConstantInt *&Greater) { 2786 // TODO: Generalize this to work with other comparison idioms or ensure 2787 // they get canonicalized into this form. 2788 2789 // select i1 (a == b), 2790 // i32 Equal, 2791 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2792 // where Equal, Less and Greater are placeholders for any three constants. 2793 ICmpInst::Predicate PredA; 2794 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2795 !ICmpInst::isEquality(PredA)) 2796 return false; 2797 Value *EqualVal = SI->getTrueValue(); 2798 Value *UnequalVal = SI->getFalseValue(); 2799 // We still can get non-canonical predicate here, so canonicalize. 2800 if (PredA == ICmpInst::ICMP_NE) 2801 std::swap(EqualVal, UnequalVal); 2802 if (!match(EqualVal, m_ConstantInt(Equal))) 2803 return false; 2804 ICmpInst::Predicate PredB; 2805 Value *LHS2, *RHS2; 2806 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2807 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2808 return false; 2809 // We can get predicate mismatch here, so canonicalize if possible: 2810 // First, ensure that 'LHS' match. 2811 if (LHS2 != LHS) { 2812 // x sgt y <--> y slt x 2813 std::swap(LHS2, RHS2); 2814 PredB = ICmpInst::getSwappedPredicate(PredB); 2815 } 2816 if (LHS2 != LHS) 2817 return false; 2818 // We also need to canonicalize 'RHS'. 2819 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2820 // x sgt C-1 <--> x sge C <--> not(x slt C) 2821 auto FlippedStrictness = 2822 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2823 PredB, cast<Constant>(RHS2)); 2824 if (!FlippedStrictness) 2825 return false; 2826 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2827 "basic correctness failure"); 2828 RHS2 = FlippedStrictness->second; 2829 // And kind-of perform the result swap. 2830 std::swap(Less, Greater); 2831 PredB = ICmpInst::ICMP_SLT; 2832 } 2833 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2834 } 2835 2836 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2837 SelectInst *Select, 2838 ConstantInt *C) { 2839 2840 assert(C && "Cmp RHS should be a constant int!"); 2841 // If we're testing a constant value against the result of a three way 2842 // comparison, the result can be expressed directly in terms of the 2843 // original values being compared. Note: We could possibly be more 2844 // aggressive here and remove the hasOneUse test. The original select is 2845 // really likely to simplify or sink when we remove a test of the result. 2846 Value *OrigLHS, *OrigRHS; 2847 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2848 if (Cmp.hasOneUse() && 2849 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2850 C3GreaterThan)) { 2851 assert(C1LessThan && C2Equal && C3GreaterThan); 2852 2853 bool TrueWhenLessThan = 2854 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2855 ->isAllOnesValue(); 2856 bool TrueWhenEqual = 2857 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2858 ->isAllOnesValue(); 2859 bool TrueWhenGreaterThan = 2860 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2861 ->isAllOnesValue(); 2862 2863 // This generates the new instruction that will replace the original Cmp 2864 // Instruction. Instead of enumerating the various combinations when 2865 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2866 // false, we rely on chaining of ORs and future passes of InstCombine to 2867 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2868 2869 // When none of the three constants satisfy the predicate for the RHS (C), 2870 // the entire original Cmp can be simplified to a false. 2871 Value *Cond = Builder.getFalse(); 2872 if (TrueWhenLessThan) 2873 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2874 OrigLHS, OrigRHS)); 2875 if (TrueWhenEqual) 2876 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2877 OrigLHS, OrigRHS)); 2878 if (TrueWhenGreaterThan) 2879 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2880 OrigLHS, OrigRHS)); 2881 2882 return replaceInstUsesWith(Cmp, Cond); 2883 } 2884 return nullptr; 2885 } 2886 2887 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2888 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2889 if (!Bitcast) 2890 return nullptr; 2891 2892 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2893 Value *Op1 = Cmp.getOperand(1); 2894 Value *BCSrcOp = Bitcast->getOperand(0); 2895 Type *SrcType = Bitcast->getSrcTy(); 2896 Type *DstType = Bitcast->getType(); 2897 2898 // Make sure the bitcast doesn't change between scalar and vector and 2899 // doesn't change the number of vector elements. 2900 if (SrcType->isVectorTy() == DstType->isVectorTy() && 2901 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { 2902 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2903 Value *X; 2904 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2905 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2906 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2907 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2908 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2909 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2910 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2911 match(Op1, m_Zero())) 2912 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2913 2914 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2915 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2916 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2917 2918 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2919 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2920 return new ICmpInst(Pred, X, 2921 ConstantInt::getAllOnesValue(X->getType())); 2922 } 2923 2924 // Zero-equality checks are preserved through unsigned floating-point casts: 2925 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2926 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2927 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2928 if (Cmp.isEquality() && match(Op1, m_Zero())) 2929 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2930 2931 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2932 // the FP extend/truncate because that cast does not change the sign-bit. 2933 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2934 // The sign-bit is always the most significant bit in those types. 2935 const APInt *C; 2936 bool TrueIfSigned; 2937 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2938 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2939 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2940 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2941 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2942 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2943 Type *XType = X->getType(); 2944 2945 // We can't currently handle Power style floating point operations here. 2946 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { 2947 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2948 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2949 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2950 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2951 if (TrueIfSigned) 2952 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2953 ConstantInt::getNullValue(NewType)); 2954 else 2955 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2956 ConstantInt::getAllOnesValue(NewType)); 2957 } 2958 } 2959 } 2960 } 2961 2962 // Test to see if the operands of the icmp are casted versions of other 2963 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2964 if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2965 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2966 // so eliminate it as well. 2967 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2968 Op1 = BC2->getOperand(0); 2969 2970 Op1 = Builder.CreateBitCast(Op1, SrcType); 2971 return new ICmpInst(Pred, BCSrcOp, Op1); 2972 } 2973 2974 const APInt *C; 2975 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || 2976 !SrcType->isIntOrIntVectorTy()) 2977 return nullptr; 2978 2979 // If this is checking if all elements of a vector compare are set or not, 2980 // invert the casted vector equality compare and test if all compare 2981 // elements are clear or not. Compare against zero is generally easier for 2982 // analysis and codegen. 2983 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2984 // Example: are all elements equal? --> are zero elements not equal? 2985 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2986 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2987 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2988 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType); 2989 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); 2990 } 2991 2992 // If this is checking if all elements of an extended vector are clear or not, 2993 // compare in a narrow type to eliminate the extend: 2994 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2995 Value *X; 2996 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2997 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2998 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2999 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 3000 Value *NewCast = Builder.CreateBitCast(X, NewType); 3001 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 3002 } 3003 } 3004 3005 // Folding: icmp <pred> iN X, C 3006 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 3007 // and C is a splat of a K-bit pattern 3008 // and SC is a constant vector = <C', C', C', ..., C'> 3009 // Into: 3010 // %E = extractelement <M x iK> %vec, i32 C' 3011 // icmp <pred> iK %E, trunc(C) 3012 Value *Vec; 3013 ArrayRef<int> Mask; 3014 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 3015 // Check whether every element of Mask is the same constant 3016 if (is_splat(Mask)) { 3017 auto *VecTy = cast<VectorType>(SrcType); 3018 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 3019 if (C->isSplat(EltTy->getBitWidth())) { 3020 // Fold the icmp based on the value of C 3021 // If C is M copies of an iK sized bit pattern, 3022 // then: 3023 // => %E = extractelement <N x iK> %vec, i32 Elem 3024 // icmp <pred> iK %SplatVal, <pattern> 3025 Value *Elem = Builder.getInt32(Mask[0]); 3026 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3027 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3028 return new ICmpInst(Pred, Extract, NewC); 3029 } 3030 } 3031 } 3032 return nullptr; 3033 } 3034 3035 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3036 /// where X is some kind of instruction. 3037 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3038 const APInt *C; 3039 3040 if (match(Cmp.getOperand(1), m_APInt(C))) { 3041 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) 3042 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) 3043 return I; 3044 3045 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) 3046 // For now, we only support constant integers while folding the 3047 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3048 // similar to the cases handled by binary ops above. 3049 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3050 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3051 return I; 3052 3053 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) 3054 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3055 return I; 3056 3057 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3058 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3059 return I; 3060 } 3061 3062 if (match(Cmp.getOperand(1), m_APIntAllowUndef(C))) 3063 return foldICmpInstWithConstantAllowUndef(Cmp, *C); 3064 3065 return nullptr; 3066 } 3067 3068 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3069 /// icmp eq/ne BO, C. 3070 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3071 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3072 // TODO: Some of these folds could work with arbitrary constants, but this 3073 // function is limited to scalar and vector splat constants. 3074 if (!Cmp.isEquality()) 3075 return nullptr; 3076 3077 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3078 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3079 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3080 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3081 3082 switch (BO->getOpcode()) { 3083 case Instruction::SRem: 3084 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3085 if (C.isZero() && BO->hasOneUse()) { 3086 const APInt *BOC; 3087 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3088 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3089 return new ICmpInst(Pred, NewRem, 3090 Constant::getNullValue(BO->getType())); 3091 } 3092 } 3093 break; 3094 case Instruction::Add: { 3095 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3096 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3097 if (BO->hasOneUse()) 3098 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3099 } else if (C.isZero()) { 3100 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3101 // efficiently invertible, or if the add has just this one use. 3102 if (Value *NegVal = dyn_castNegVal(BOp1)) 3103 return new ICmpInst(Pred, BOp0, NegVal); 3104 if (Value *NegVal = dyn_castNegVal(BOp0)) 3105 return new ICmpInst(Pred, NegVal, BOp1); 3106 if (BO->hasOneUse()) { 3107 Value *Neg = Builder.CreateNeg(BOp1); 3108 Neg->takeName(BO); 3109 return new ICmpInst(Pred, BOp0, Neg); 3110 } 3111 } 3112 break; 3113 } 3114 case Instruction::Xor: 3115 if (BO->hasOneUse()) { 3116 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3117 // For the xor case, we can xor two constants together, eliminating 3118 // the explicit xor. 3119 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3120 } else if (C.isZero()) { 3121 // Replace ((xor A, B) != 0) with (A != B) 3122 return new ICmpInst(Pred, BOp0, BOp1); 3123 } 3124 } 3125 break; 3126 case Instruction::Or: { 3127 const APInt *BOC; 3128 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3129 // Comparing if all bits outside of a constant mask are set? 3130 // Replace (X | C) == -1 with (X & ~C) == ~C. 3131 // This removes the -1 constant. 3132 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3133 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3134 return new ICmpInst(Pred, And, NotBOC); 3135 } 3136 break; 3137 } 3138 case Instruction::And: { 3139 const APInt *BOC; 3140 if (match(BOp1, m_APInt(BOC))) { 3141 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3142 if (C == *BOC && C.isPowerOf2()) 3143 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3144 BO, Constant::getNullValue(RHS->getType())); 3145 } 3146 break; 3147 } 3148 case Instruction::UDiv: 3149 if (C.isZero()) { 3150 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3151 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3152 return new ICmpInst(NewPred, BOp1, BOp0); 3153 } 3154 break; 3155 default: 3156 break; 3157 } 3158 return nullptr; 3159 } 3160 3161 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3162 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3163 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3164 Type *Ty = II->getType(); 3165 unsigned BitWidth = C.getBitWidth(); 3166 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3167 3168 switch (II->getIntrinsicID()) { 3169 case Intrinsic::abs: 3170 // abs(A) == 0 -> A == 0 3171 // abs(A) == INT_MIN -> A == INT_MIN 3172 if (C.isZero() || C.isMinSignedValue()) 3173 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3174 break; 3175 3176 case Intrinsic::bswap: 3177 // bswap(A) == C -> A == bswap(C) 3178 return new ICmpInst(Pred, II->getArgOperand(0), 3179 ConstantInt::get(Ty, C.byteSwap())); 3180 3181 case Intrinsic::ctlz: 3182 case Intrinsic::cttz: { 3183 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3184 if (C == BitWidth) 3185 return new ICmpInst(Pred, II->getArgOperand(0), 3186 ConstantInt::getNullValue(Ty)); 3187 3188 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3189 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3190 // Limit to one use to ensure we don't increase instruction count. 3191 unsigned Num = C.getLimitedValue(BitWidth); 3192 if (Num != BitWidth && II->hasOneUse()) { 3193 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3194 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3195 : APInt::getHighBitsSet(BitWidth, Num + 1); 3196 APInt Mask2 = IsTrailing 3197 ? APInt::getOneBitSet(BitWidth, Num) 3198 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3199 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3200 ConstantInt::get(Ty, Mask2)); 3201 } 3202 break; 3203 } 3204 3205 case Intrinsic::ctpop: { 3206 // popcount(A) == 0 -> A == 0 and likewise for != 3207 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3208 bool IsZero = C.isZero(); 3209 if (IsZero || C == BitWidth) 3210 return new ICmpInst(Pred, II->getArgOperand(0), 3211 IsZero ? Constant::getNullValue(Ty) 3212 : Constant::getAllOnesValue(Ty)); 3213 3214 break; 3215 } 3216 3217 case Intrinsic::fshl: 3218 case Intrinsic::fshr: 3219 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3220 const APInt *RotAmtC; 3221 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3222 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3223 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3224 return new ICmpInst(Pred, II->getArgOperand(0), 3225 II->getIntrinsicID() == Intrinsic::fshl 3226 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3227 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3228 } 3229 break; 3230 3231 case Intrinsic::uadd_sat: { 3232 // uadd.sat(a, b) == 0 -> (a | b) == 0 3233 if (C.isZero()) { 3234 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3235 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3236 } 3237 break; 3238 } 3239 3240 case Intrinsic::usub_sat: { 3241 // usub.sat(a, b) == 0 -> a <= b 3242 if (C.isZero()) { 3243 ICmpInst::Predicate NewPred = 3244 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3245 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3246 } 3247 break; 3248 } 3249 default: 3250 break; 3251 } 3252 3253 return nullptr; 3254 } 3255 3256 /// Fold an icmp with LLVM intrinsics 3257 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3258 assert(Cmp.isEquality()); 3259 3260 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3261 Value *Op0 = Cmp.getOperand(0); 3262 Value *Op1 = Cmp.getOperand(1); 3263 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3264 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3265 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3266 return nullptr; 3267 3268 switch (IIOp0->getIntrinsicID()) { 3269 case Intrinsic::bswap: 3270 case Intrinsic::bitreverse: 3271 // If both operands are byte-swapped or bit-reversed, just compare the 3272 // original values. 3273 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3274 case Intrinsic::fshl: 3275 case Intrinsic::fshr: 3276 // If both operands are rotated by same amount, just compare the 3277 // original values. 3278 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3279 break; 3280 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3281 break; 3282 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3283 break; 3284 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3285 default: 3286 break; 3287 } 3288 3289 return nullptr; 3290 } 3291 3292 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3293 /// where X is some kind of instruction and C is AllowUndef. 3294 /// TODO: Move more folds which allow undef to this function. 3295 Instruction * 3296 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp, 3297 const APInt &C) { 3298 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3299 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) { 3300 switch (II->getIntrinsicID()) { 3301 default: 3302 break; 3303 case Intrinsic::fshl: 3304 case Intrinsic::fshr: 3305 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { 3306 // (rot X, ?) == 0/-1 --> X == 0/-1 3307 if (C.isZero() || C.isAllOnes()) 3308 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3309 } 3310 break; 3311 } 3312 } 3313 3314 return nullptr; 3315 } 3316 3317 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. 3318 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, 3319 BinaryOperator *BO, 3320 const APInt &C) { 3321 switch (BO->getOpcode()) { 3322 case Instruction::Xor: 3323 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 3324 return I; 3325 break; 3326 case Instruction::And: 3327 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 3328 return I; 3329 break; 3330 case Instruction::Or: 3331 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 3332 return I; 3333 break; 3334 case Instruction::Mul: 3335 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 3336 return I; 3337 break; 3338 case Instruction::Shl: 3339 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 3340 return I; 3341 break; 3342 case Instruction::LShr: 3343 case Instruction::AShr: 3344 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 3345 return I; 3346 break; 3347 case Instruction::SRem: 3348 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) 3349 return I; 3350 break; 3351 case Instruction::UDiv: 3352 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 3353 return I; 3354 LLVM_FALLTHROUGH; 3355 case Instruction::SDiv: 3356 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 3357 return I; 3358 break; 3359 case Instruction::Sub: 3360 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 3361 return I; 3362 break; 3363 case Instruction::Add: 3364 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 3365 return I; 3366 break; 3367 default: 3368 break; 3369 } 3370 3371 // TODO: These folds could be refactored to be part of the above calls. 3372 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); 3373 } 3374 3375 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3376 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3377 IntrinsicInst *II, 3378 const APInt &C) { 3379 if (Cmp.isEquality()) 3380 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3381 3382 Type *Ty = II->getType(); 3383 unsigned BitWidth = C.getBitWidth(); 3384 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3385 switch (II->getIntrinsicID()) { 3386 case Intrinsic::ctpop: { 3387 // (ctpop X > BitWidth - 1) --> X == -1 3388 Value *X = II->getArgOperand(0); 3389 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3390 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3391 ConstantInt::getAllOnesValue(Ty)); 3392 // (ctpop X < BitWidth) --> X != -1 3393 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3394 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3395 ConstantInt::getAllOnesValue(Ty)); 3396 break; 3397 } 3398 case Intrinsic::ctlz: { 3399 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3400 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3401 unsigned Num = C.getLimitedValue(); 3402 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3403 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3404 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3405 } 3406 3407 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3408 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3409 unsigned Num = C.getLimitedValue(); 3410 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3411 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3412 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3413 } 3414 break; 3415 } 3416 case Intrinsic::cttz: { 3417 // Limit to one use to ensure we don't increase instruction count. 3418 if (!II->hasOneUse()) 3419 return nullptr; 3420 3421 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3422 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3423 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3424 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3425 Builder.CreateAnd(II->getArgOperand(0), Mask), 3426 ConstantInt::getNullValue(Ty)); 3427 } 3428 3429 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3430 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3431 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3432 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3433 Builder.CreateAnd(II->getArgOperand(0), Mask), 3434 ConstantInt::getNullValue(Ty)); 3435 } 3436 break; 3437 } 3438 default: 3439 break; 3440 } 3441 3442 return nullptr; 3443 } 3444 3445 /// Handle icmp with constant (but not simple integer constant) RHS. 3446 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3447 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3448 Constant *RHSC = dyn_cast<Constant>(Op1); 3449 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3450 if (!RHSC || !LHSI) 3451 return nullptr; 3452 3453 switch (LHSI->getOpcode()) { 3454 case Instruction::GetElementPtr: 3455 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3456 if (RHSC->isNullValue() && 3457 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3458 return new ICmpInst( 3459 I.getPredicate(), LHSI->getOperand(0), 3460 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3461 break; 3462 case Instruction::PHI: 3463 // Only fold icmp into the PHI if the phi and icmp are in the same 3464 // block. If in the same block, we're encouraging jump threading. If 3465 // not, we are just pessimizing the code by making an i1 phi. 3466 if (LHSI->getParent() == I.getParent()) 3467 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3468 return NV; 3469 break; 3470 case Instruction::IntToPtr: 3471 // icmp pred inttoptr(X), null -> icmp pred X, 0 3472 if (RHSC->isNullValue() && 3473 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3474 return new ICmpInst( 3475 I.getPredicate(), LHSI->getOperand(0), 3476 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3477 break; 3478 3479 case Instruction::Load: 3480 // Try to optimize things like "A[i] > 4" to index computations. 3481 if (GetElementPtrInst *GEP = 3482 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3483 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3484 if (Instruction *Res = 3485 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3486 return Res; 3487 break; 3488 } 3489 3490 return nullptr; 3491 } 3492 3493 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 3494 SelectInst *SI, Value *RHS, 3495 const ICmpInst &I) { 3496 // Try to fold the comparison into the select arms, which will cause the 3497 // select to be converted into a logical and/or. 3498 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 3499 if (Value *Res = SimplifyICmpInst(Pred, Op, RHS, SQ)) 3500 return Res; 3501 if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op, 3502 RHS, DL, SelectCondIsTrue)) 3503 return ConstantInt::get(I.getType(), *Impl); 3504 return nullptr; 3505 }; 3506 3507 ConstantInt *CI = nullptr; 3508 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 3509 if (Op1) 3510 CI = dyn_cast<ConstantInt>(Op1); 3511 3512 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 3513 if (Op2) 3514 CI = dyn_cast<ConstantInt>(Op2); 3515 3516 // We only want to perform this transformation if it will not lead to 3517 // additional code. This is true if either both sides of the select 3518 // fold to a constant (in which case the icmp is replaced with a select 3519 // which will usually simplify) or this is the only user of the 3520 // select (in which case we are trading a select+icmp for a simpler 3521 // select+icmp) or all uses of the select can be replaced based on 3522 // dominance information ("Global cases"). 3523 bool Transform = false; 3524 if (Op1 && Op2) 3525 Transform = true; 3526 else if (Op1 || Op2) { 3527 // Local case 3528 if (SI->hasOneUse()) 3529 Transform = true; 3530 // Global cases 3531 else if (CI && !CI->isZero()) 3532 // When Op1 is constant try replacing select with second operand. 3533 // Otherwise Op2 is constant and try replacing select with first 3534 // operand. 3535 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 3536 } 3537 if (Transform) { 3538 if (!Op1) 3539 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 3540 if (!Op2) 3541 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 3542 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 3543 } 3544 3545 return nullptr; 3546 } 3547 3548 /// Some comparisons can be simplified. 3549 /// In this case, we are looking for comparisons that look like 3550 /// a check for a lossy truncation. 3551 /// Folds: 3552 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3553 /// Where Mask is some pattern that produces all-ones in low bits: 3554 /// (-1 >> y) 3555 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3556 /// ~(-1 << y) 3557 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3558 /// The Mask can be a constant, too. 3559 /// For some predicates, the operands are commutative. 3560 /// For others, x can only be on a specific side. 3561 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3562 InstCombiner::BuilderTy &Builder) { 3563 ICmpInst::Predicate SrcPred; 3564 Value *X, *M, *Y; 3565 auto m_VariableMask = m_CombineOr( 3566 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3567 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3568 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3569 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3570 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3571 if (!match(&I, m_c_ICmp(SrcPred, 3572 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3573 m_Deferred(X)))) 3574 return nullptr; 3575 3576 ICmpInst::Predicate DstPred; 3577 switch (SrcPred) { 3578 case ICmpInst::Predicate::ICMP_EQ: 3579 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3580 DstPred = ICmpInst::Predicate::ICMP_ULE; 3581 break; 3582 case ICmpInst::Predicate::ICMP_NE: 3583 // x & (-1 >> y) != x -> x u> (-1 >> y) 3584 DstPred = ICmpInst::Predicate::ICMP_UGT; 3585 break; 3586 case ICmpInst::Predicate::ICMP_ULT: 3587 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3588 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3589 DstPred = ICmpInst::Predicate::ICMP_UGT; 3590 break; 3591 case ICmpInst::Predicate::ICMP_UGE: 3592 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3593 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3594 DstPred = ICmpInst::Predicate::ICMP_ULE; 3595 break; 3596 case ICmpInst::Predicate::ICMP_SLT: 3597 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3598 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3599 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3600 return nullptr; 3601 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3602 return nullptr; 3603 DstPred = ICmpInst::Predicate::ICMP_SGT; 3604 break; 3605 case ICmpInst::Predicate::ICMP_SGE: 3606 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3607 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3608 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3609 return nullptr; 3610 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3611 return nullptr; 3612 DstPred = ICmpInst::Predicate::ICMP_SLE; 3613 break; 3614 case ICmpInst::Predicate::ICMP_SGT: 3615 case ICmpInst::Predicate::ICMP_SLE: 3616 return nullptr; 3617 case ICmpInst::Predicate::ICMP_UGT: 3618 case ICmpInst::Predicate::ICMP_ULE: 3619 llvm_unreachable("Instsimplify took care of commut. variant"); 3620 break; 3621 default: 3622 llvm_unreachable("All possible folds are handled."); 3623 } 3624 3625 // The mask value may be a vector constant that has undefined elements. But it 3626 // may not be safe to propagate those undefs into the new compare, so replace 3627 // those elements by copying an existing, defined, and safe scalar constant. 3628 Type *OpTy = M->getType(); 3629 auto *VecC = dyn_cast<Constant>(M); 3630 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3631 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3632 Constant *SafeReplacementConstant = nullptr; 3633 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3634 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3635 SafeReplacementConstant = VecC->getAggregateElement(i); 3636 break; 3637 } 3638 } 3639 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3640 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3641 } 3642 3643 return Builder.CreateICmp(DstPred, X, M); 3644 } 3645 3646 /// Some comparisons can be simplified. 3647 /// In this case, we are looking for comparisons that look like 3648 /// a check for a lossy signed truncation. 3649 /// Folds: (MaskedBits is a constant.) 3650 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3651 /// Into: 3652 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3653 /// Where KeptBits = bitwidth(%x) - MaskedBits 3654 static Value * 3655 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3656 InstCombiner::BuilderTy &Builder) { 3657 ICmpInst::Predicate SrcPred; 3658 Value *X; 3659 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3660 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3661 if (!match(&I, m_c_ICmp(SrcPred, 3662 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3663 m_APInt(C1))), 3664 m_Deferred(X)))) 3665 return nullptr; 3666 3667 // Potential handling of non-splats: for each element: 3668 // * if both are undef, replace with constant 0. 3669 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3670 // * if both are not undef, and are different, bailout. 3671 // * else, only one is undef, then pick the non-undef one. 3672 3673 // The shift amount must be equal. 3674 if (*C0 != *C1) 3675 return nullptr; 3676 const APInt &MaskedBits = *C0; 3677 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3678 3679 ICmpInst::Predicate DstPred; 3680 switch (SrcPred) { 3681 case ICmpInst::Predicate::ICMP_EQ: 3682 // ((%x << MaskedBits) a>> MaskedBits) == %x 3683 // => 3684 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3685 DstPred = ICmpInst::Predicate::ICMP_ULT; 3686 break; 3687 case ICmpInst::Predicate::ICMP_NE: 3688 // ((%x << MaskedBits) a>> MaskedBits) != %x 3689 // => 3690 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3691 DstPred = ICmpInst::Predicate::ICMP_UGE; 3692 break; 3693 // FIXME: are more folds possible? 3694 default: 3695 return nullptr; 3696 } 3697 3698 auto *XType = X->getType(); 3699 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3700 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3701 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3702 3703 // KeptBits = bitwidth(%x) - MaskedBits 3704 const APInt KeptBits = BitWidth - MaskedBits; 3705 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3706 // ICmpCst = (1 << KeptBits) 3707 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3708 assert(ICmpCst.isPowerOf2()); 3709 // AddCst = (1 << (KeptBits-1)) 3710 const APInt AddCst = ICmpCst.lshr(1); 3711 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3712 3713 // T0 = add %x, AddCst 3714 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3715 // T1 = T0 DstPred ICmpCst 3716 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3717 3718 return T1; 3719 } 3720 3721 // Given pattern: 3722 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3723 // we should move shifts to the same hand of 'and', i.e. rewrite as 3724 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3725 // We are only interested in opposite logical shifts here. 3726 // One of the shifts can be truncated. 3727 // If we can, we want to end up creating 'lshr' shift. 3728 static Value * 3729 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3730 InstCombiner::BuilderTy &Builder) { 3731 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3732 !I.getOperand(0)->hasOneUse()) 3733 return nullptr; 3734 3735 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3736 3737 // Look for an 'and' of two logical shifts, one of which may be truncated. 3738 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3739 Instruction *XShift, *MaybeTruncation, *YShift; 3740 if (!match( 3741 I.getOperand(0), 3742 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3743 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3744 m_AnyLogicalShift, m_Instruction(YShift))), 3745 m_Instruction(MaybeTruncation))))) 3746 return nullptr; 3747 3748 // We potentially looked past 'trunc', but only when matching YShift, 3749 // therefore YShift must have the widest type. 3750 Instruction *WidestShift = YShift; 3751 // Therefore XShift must have the shallowest type. 3752 // Or they both have identical types if there was no truncation. 3753 Instruction *NarrowestShift = XShift; 3754 3755 Type *WidestTy = WidestShift->getType(); 3756 Type *NarrowestTy = NarrowestShift->getType(); 3757 assert(NarrowestTy == I.getOperand(0)->getType() && 3758 "We did not look past any shifts while matching XShift though."); 3759 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3760 3761 // If YShift is a 'lshr', swap the shifts around. 3762 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3763 std::swap(XShift, YShift); 3764 3765 // The shifts must be in opposite directions. 3766 auto XShiftOpcode = XShift->getOpcode(); 3767 if (XShiftOpcode == YShift->getOpcode()) 3768 return nullptr; // Do not care about same-direction shifts here. 3769 3770 Value *X, *XShAmt, *Y, *YShAmt; 3771 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3772 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3773 3774 // If one of the values being shifted is a constant, then we will end with 3775 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3776 // however, we will need to ensure that we won't increase instruction count. 3777 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3778 // At least one of the hands of the 'and' should be one-use shift. 3779 if (!match(I.getOperand(0), 3780 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3781 return nullptr; 3782 if (HadTrunc) { 3783 // Due to the 'trunc', we will need to widen X. For that either the old 3784 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3785 if (!MaybeTruncation->hasOneUse() && 3786 !NarrowestShift->getOperand(1)->hasOneUse()) 3787 return nullptr; 3788 } 3789 } 3790 3791 // We have two shift amounts from two different shifts. The types of those 3792 // shift amounts may not match. If that's the case let's bailout now. 3793 if (XShAmt->getType() != YShAmt->getType()) 3794 return nullptr; 3795 3796 // As input, we have the following pattern: 3797 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3798 // We want to rewrite that as: 3799 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3800 // While we know that originally (Q+K) would not overflow 3801 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3802 // shift amounts. so it may now overflow in smaller bitwidth. 3803 // To ensure that does not happen, we need to ensure that the total maximal 3804 // shift amount is still representable in that smaller bit width. 3805 unsigned MaximalPossibleTotalShiftAmount = 3806 (WidestTy->getScalarSizeInBits() - 1) + 3807 (NarrowestTy->getScalarSizeInBits() - 1); 3808 APInt MaximalRepresentableShiftAmount = 3809 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3810 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3811 return nullptr; 3812 3813 // Can we fold (XShAmt+YShAmt) ? 3814 auto *NewShAmt = dyn_cast_or_null<Constant>( 3815 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3816 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3817 if (!NewShAmt) 3818 return nullptr; 3819 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3820 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3821 3822 // Is the new shift amount smaller than the bit width? 3823 // FIXME: could also rely on ConstantRange. 3824 if (!match(NewShAmt, 3825 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3826 APInt(WidestBitWidth, WidestBitWidth)))) 3827 return nullptr; 3828 3829 // An extra legality check is needed if we had trunc-of-lshr. 3830 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3831 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3832 WidestShift]() { 3833 // It isn't obvious whether it's worth it to analyze non-constants here. 3834 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3835 // If *any* of these preconditions matches we can perform the fold. 3836 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3837 ? NewShAmt->getSplatValue() 3838 : NewShAmt; 3839 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3840 if (NewShAmtSplat && 3841 (NewShAmtSplat->isNullValue() || 3842 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3843 return true; 3844 // We consider *min* leading zeros so a single outlier 3845 // blocks the transform as opposed to allowing it. 3846 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3847 KnownBits Known = computeKnownBits(C, SQ.DL); 3848 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3849 // If the value being shifted has at most lowest bit set we can fold. 3850 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3851 if (MaxActiveBits <= 1) 3852 return true; 3853 // Precondition: NewShAmt u<= countLeadingZeros(C) 3854 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3855 return true; 3856 } 3857 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3858 KnownBits Known = computeKnownBits(C, SQ.DL); 3859 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3860 // If the value being shifted has at most lowest bit set we can fold. 3861 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3862 if (MaxActiveBits <= 1) 3863 return true; 3864 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3865 if (NewShAmtSplat) { 3866 APInt AdjNewShAmt = 3867 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3868 if (AdjNewShAmt.ule(MinLeadZero)) 3869 return true; 3870 } 3871 } 3872 return false; // Can't tell if it's ok. 3873 }; 3874 if (!CanFold()) 3875 return nullptr; 3876 } 3877 3878 // All good, we can do this fold. 3879 X = Builder.CreateZExt(X, WidestTy); 3880 Y = Builder.CreateZExt(Y, WidestTy); 3881 // The shift is the same that was for X. 3882 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3883 ? Builder.CreateLShr(X, NewShAmt) 3884 : Builder.CreateShl(X, NewShAmt); 3885 Value *T1 = Builder.CreateAnd(T0, Y); 3886 return Builder.CreateICmp(I.getPredicate(), T1, 3887 Constant::getNullValue(WidestTy)); 3888 } 3889 3890 /// Fold 3891 /// (-1 u/ x) u< y 3892 /// ((x * y) ?/ x) != y 3893 /// to 3894 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3895 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3896 /// will mean that we are looking for the opposite answer. 3897 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3898 ICmpInst::Predicate Pred; 3899 Value *X, *Y; 3900 Instruction *Mul; 3901 Instruction *Div; 3902 bool NeedNegation; 3903 // Look for: (-1 u/ x) u</u>= y 3904 if (!I.isEquality() && 3905 match(&I, m_c_ICmp(Pred, 3906 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3907 m_Instruction(Div)), 3908 m_Value(Y)))) { 3909 Mul = nullptr; 3910 3911 // Are we checking that overflow does not happen, or does happen? 3912 switch (Pred) { 3913 case ICmpInst::Predicate::ICMP_ULT: 3914 NeedNegation = false; 3915 break; // OK 3916 case ICmpInst::Predicate::ICMP_UGE: 3917 NeedNegation = true; 3918 break; // OK 3919 default: 3920 return nullptr; // Wrong predicate. 3921 } 3922 } else // Look for: ((x * y) / x) !=/== y 3923 if (I.isEquality() && 3924 match(&I, 3925 m_c_ICmp(Pred, m_Value(Y), 3926 m_CombineAnd( 3927 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3928 m_Value(X)), 3929 m_Instruction(Mul)), 3930 m_Deferred(X))), 3931 m_Instruction(Div))))) { 3932 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3933 } else 3934 return nullptr; 3935 3936 BuilderTy::InsertPointGuard Guard(Builder); 3937 // If the pattern included (x * y), we'll want to insert new instructions 3938 // right before that original multiplication so that we can replace it. 3939 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3940 if (MulHadOtherUses) 3941 Builder.SetInsertPoint(Mul); 3942 3943 Function *F = Intrinsic::getDeclaration(I.getModule(), 3944 Div->getOpcode() == Instruction::UDiv 3945 ? Intrinsic::umul_with_overflow 3946 : Intrinsic::smul_with_overflow, 3947 X->getType()); 3948 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3949 3950 // If the multiplication was used elsewhere, to ensure that we don't leave 3951 // "duplicate" instructions, replace uses of that original multiplication 3952 // with the multiplication result from the with.overflow intrinsic. 3953 if (MulHadOtherUses) 3954 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3955 3956 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3957 if (NeedNegation) // This technically increases instruction count. 3958 Res = Builder.CreateNot(Res, "mul.not.ov"); 3959 3960 // If we replaced the mul, erase it. Do this after all uses of Builder, 3961 // as the mul is used as insertion point. 3962 if (MulHadOtherUses) 3963 eraseInstFromFunction(*Mul); 3964 3965 return Res; 3966 } 3967 3968 static Instruction *foldICmpXNegX(ICmpInst &I) { 3969 CmpInst::Predicate Pred; 3970 Value *X; 3971 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3972 return nullptr; 3973 3974 if (ICmpInst::isSigned(Pred)) 3975 Pred = ICmpInst::getSwappedPredicate(Pred); 3976 else if (ICmpInst::isUnsigned(Pred)) 3977 Pred = ICmpInst::getSignedPredicate(Pred); 3978 // else for equality-comparisons just keep the predicate. 3979 3980 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3981 Constant::getNullValue(X->getType()), I.getName()); 3982 } 3983 3984 /// Try to fold icmp (binop), X or icmp X, (binop). 3985 /// TODO: A large part of this logic is duplicated in InstSimplify's 3986 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3987 /// duplication. 3988 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3989 const SimplifyQuery &SQ) { 3990 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3991 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3992 3993 // Special logic for binary operators. 3994 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3995 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3996 if (!BO0 && !BO1) 3997 return nullptr; 3998 3999 if (Instruction *NewICmp = foldICmpXNegX(I)) 4000 return NewICmp; 4001 4002 const CmpInst::Predicate Pred = I.getPredicate(); 4003 Value *X; 4004 4005 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 4006 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 4007 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 4008 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4009 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 4010 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 4011 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 4012 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4013 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 4014 4015 { 4016 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 4017 Constant *C; 4018 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 4019 m_ImmConstant(C)))) && 4020 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 4021 Constant *C2 = ConstantExpr::getNot(C); 4022 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 4023 } 4024 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 4025 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 4026 m_ImmConstant(C)))) && 4027 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 4028 Constant *C2 = ConstantExpr::getNot(C); 4029 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 4030 } 4031 } 4032 4033 { 4034 // Similar to above: an unsigned overflow comparison may use offset + mask: 4035 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 4036 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 4037 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 4038 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 4039 BinaryOperator *BO; 4040 const APInt *C; 4041 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 4042 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4043 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 4044 CmpInst::Predicate NewPred = 4045 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4046 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4047 return new ICmpInst(NewPred, Op1, Zero); 4048 } 4049 4050 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4051 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4052 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 4053 CmpInst::Predicate NewPred = 4054 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4055 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4056 return new ICmpInst(NewPred, Op0, Zero); 4057 } 4058 } 4059 4060 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4061 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 4062 NoOp0WrapProblem = 4063 ICmpInst::isEquality(Pred) || 4064 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 4065 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 4066 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 4067 NoOp1WrapProblem = 4068 ICmpInst::isEquality(Pred) || 4069 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 4070 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 4071 4072 // Analyze the case when either Op0 or Op1 is an add instruction. 4073 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4074 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4075 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4076 A = BO0->getOperand(0); 4077 B = BO0->getOperand(1); 4078 } 4079 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4080 C = BO1->getOperand(0); 4081 D = BO1->getOperand(1); 4082 } 4083 4084 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4085 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4086 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4087 return new ICmpInst(Pred, A == Op1 ? B : A, 4088 Constant::getNullValue(Op1->getType())); 4089 4090 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4091 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4092 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4093 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4094 C == Op0 ? D : C); 4095 4096 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4097 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4098 NoOp1WrapProblem) { 4099 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4100 Value *Y, *Z; 4101 if (A == C) { 4102 // C + B == C + D -> B == D 4103 Y = B; 4104 Z = D; 4105 } else if (A == D) { 4106 // D + B == C + D -> B == C 4107 Y = B; 4108 Z = C; 4109 } else if (B == C) { 4110 // A + C == C + D -> A == D 4111 Y = A; 4112 Z = D; 4113 } else { 4114 assert(B == D); 4115 // A + D == C + D -> A == C 4116 Y = A; 4117 Z = C; 4118 } 4119 return new ICmpInst(Pred, Y, Z); 4120 } 4121 4122 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4123 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4124 match(B, m_AllOnes())) 4125 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4126 4127 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4128 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4129 match(B, m_AllOnes())) 4130 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4131 4132 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4133 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4134 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4135 4136 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4137 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4138 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4139 4140 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4141 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4142 match(D, m_AllOnes())) 4143 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4144 4145 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4146 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4147 match(D, m_AllOnes())) 4148 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4149 4150 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4151 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4152 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4153 4154 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4155 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4156 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4157 4158 // TODO: The subtraction-related identities shown below also hold, but 4159 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4160 // wouldn't happen even if they were implemented. 4161 // 4162 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4163 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4164 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4165 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4166 4167 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4168 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4169 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4170 4171 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4172 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4173 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4174 4175 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4176 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4177 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4178 4179 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4180 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4181 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4182 4183 // if C1 has greater magnitude than C2: 4184 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4185 // s.t. C3 = C1 - C2 4186 // 4187 // if C2 has greater magnitude than C1: 4188 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4189 // s.t. C3 = C2 - C1 4190 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4191 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4192 const APInt *AP1, *AP2; 4193 // TODO: Support non-uniform vectors. 4194 // TODO: Allow undef passthrough if B AND D's element is undef. 4195 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4196 AP1->isNegative() == AP2->isNegative()) { 4197 APInt AP1Abs = AP1->abs(); 4198 APInt AP2Abs = AP2->abs(); 4199 if (AP1Abs.uge(AP2Abs)) { 4200 APInt Diff = *AP1 - *AP2; 4201 bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1); 4202 bool HasNSW = BO0->hasNoSignedWrap(); 4203 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4204 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4205 return new ICmpInst(Pred, NewAdd, C); 4206 } else { 4207 APInt Diff = *AP2 - *AP1; 4208 bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2); 4209 bool HasNSW = BO1->hasNoSignedWrap(); 4210 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4211 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4212 return new ICmpInst(Pred, A, NewAdd); 4213 } 4214 } 4215 Constant *Cst1, *Cst2; 4216 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4217 ICmpInst::isEquality(Pred)) { 4218 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4219 Value *NewAdd = Builder.CreateAdd(C, Diff); 4220 return new ICmpInst(Pred, A, NewAdd); 4221 } 4222 } 4223 4224 // Analyze the case when either Op0 or Op1 is a sub instruction. 4225 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4226 A = nullptr; 4227 B = nullptr; 4228 C = nullptr; 4229 D = nullptr; 4230 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4231 A = BO0->getOperand(0); 4232 B = BO0->getOperand(1); 4233 } 4234 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4235 C = BO1->getOperand(0); 4236 D = BO1->getOperand(1); 4237 } 4238 4239 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4240 if (A == Op1 && NoOp0WrapProblem) 4241 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4242 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4243 if (C == Op0 && NoOp1WrapProblem) 4244 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4245 4246 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4247 // (A - B) u>/u<= A --> B u>/u<= A 4248 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4249 return new ICmpInst(Pred, B, A); 4250 // C u</u>= (C - D) --> C u</u>= D 4251 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4252 return new ICmpInst(Pred, C, D); 4253 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4254 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4255 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4256 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4257 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4258 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4259 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4260 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4261 4262 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4263 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4264 return new ICmpInst(Pred, A, C); 4265 4266 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4267 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4268 return new ICmpInst(Pred, D, B); 4269 4270 // icmp (0-X) < cst --> x > -cst 4271 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4272 Value *X; 4273 if (match(BO0, m_Neg(m_Value(X)))) 4274 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4275 if (RHSC->isNotMinSignedValue()) 4276 return new ICmpInst(I.getSwappedPredicate(), X, 4277 ConstantExpr::getNeg(RHSC)); 4278 } 4279 4280 { 4281 // Try to remove shared constant multiplier from equality comparison: 4282 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4283 Value *X, *Y; 4284 const APInt *C; 4285 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4286 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4287 if (!C->countTrailingZeros() || 4288 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4289 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4290 return new ICmpInst(Pred, X, Y); 4291 } 4292 4293 BinaryOperator *SRem = nullptr; 4294 // icmp (srem X, Y), Y 4295 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4296 SRem = BO0; 4297 // icmp Y, (srem X, Y) 4298 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4299 Op0 == BO1->getOperand(1)) 4300 SRem = BO1; 4301 if (SRem) { 4302 // We don't check hasOneUse to avoid increasing register pressure because 4303 // the value we use is the same value this instruction was already using. 4304 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4305 default: 4306 break; 4307 case ICmpInst::ICMP_EQ: 4308 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4309 case ICmpInst::ICMP_NE: 4310 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4311 case ICmpInst::ICMP_SGT: 4312 case ICmpInst::ICMP_SGE: 4313 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4314 Constant::getAllOnesValue(SRem->getType())); 4315 case ICmpInst::ICMP_SLT: 4316 case ICmpInst::ICMP_SLE: 4317 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4318 Constant::getNullValue(SRem->getType())); 4319 } 4320 } 4321 4322 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4323 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4324 switch (BO0->getOpcode()) { 4325 default: 4326 break; 4327 case Instruction::Add: 4328 case Instruction::Sub: 4329 case Instruction::Xor: { 4330 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4331 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4332 4333 const APInt *C; 4334 if (match(BO0->getOperand(1), m_APInt(C))) { 4335 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4336 if (C->isSignMask()) { 4337 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4338 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4339 } 4340 4341 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4342 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4343 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4344 NewPred = I.getSwappedPredicate(NewPred); 4345 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4346 } 4347 } 4348 break; 4349 } 4350 case Instruction::Mul: { 4351 if (!I.isEquality()) 4352 break; 4353 4354 const APInt *C; 4355 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4356 !C->isOne()) { 4357 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4358 // Mask = -1 >> count-trailing-zeros(C). 4359 if (unsigned TZs = C->countTrailingZeros()) { 4360 Constant *Mask = ConstantInt::get( 4361 BO0->getType(), 4362 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4363 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4364 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4365 return new ICmpInst(Pred, And1, And2); 4366 } 4367 } 4368 break; 4369 } 4370 case Instruction::UDiv: 4371 case Instruction::LShr: 4372 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4373 break; 4374 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4375 4376 case Instruction::SDiv: 4377 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4378 break; 4379 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4380 4381 case Instruction::AShr: 4382 if (!BO0->isExact() || !BO1->isExact()) 4383 break; 4384 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4385 4386 case Instruction::Shl: { 4387 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4388 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4389 if (!NUW && !NSW) 4390 break; 4391 if (!NSW && I.isSigned()) 4392 break; 4393 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4394 } 4395 } 4396 } 4397 4398 if (BO0) { 4399 // Transform A & (L - 1) `ult` L --> L != 0 4400 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4401 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4402 4403 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4404 auto *Zero = Constant::getNullValue(BO0->getType()); 4405 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4406 } 4407 } 4408 4409 if (Value *V = foldMultiplicationOverflowCheck(I)) 4410 return replaceInstUsesWith(I, V); 4411 4412 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4413 return replaceInstUsesWith(I, V); 4414 4415 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4416 return replaceInstUsesWith(I, V); 4417 4418 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4419 return replaceInstUsesWith(I, V); 4420 4421 return nullptr; 4422 } 4423 4424 /// Fold icmp Pred min|max(X, Y), X. 4425 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4426 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4427 Value *Op0 = Cmp.getOperand(0); 4428 Value *X = Cmp.getOperand(1); 4429 4430 // Canonicalize minimum or maximum operand to LHS of the icmp. 4431 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4432 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4433 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4434 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4435 std::swap(Op0, X); 4436 Pred = Cmp.getSwappedPredicate(); 4437 } 4438 4439 Value *Y; 4440 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4441 // smin(X, Y) == X --> X s<= Y 4442 // smin(X, Y) s>= X --> X s<= Y 4443 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4444 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4445 4446 // smin(X, Y) != X --> X s> Y 4447 // smin(X, Y) s< X --> X s> Y 4448 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4449 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4450 4451 // These cases should be handled in InstSimplify: 4452 // smin(X, Y) s<= X --> true 4453 // smin(X, Y) s> X --> false 4454 return nullptr; 4455 } 4456 4457 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4458 // smax(X, Y) == X --> X s>= Y 4459 // smax(X, Y) s<= X --> X s>= Y 4460 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4461 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4462 4463 // smax(X, Y) != X --> X s< Y 4464 // smax(X, Y) s> X --> X s< Y 4465 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4466 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4467 4468 // These cases should be handled in InstSimplify: 4469 // smax(X, Y) s>= X --> true 4470 // smax(X, Y) s< X --> false 4471 return nullptr; 4472 } 4473 4474 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4475 // umin(X, Y) == X --> X u<= Y 4476 // umin(X, Y) u>= X --> X u<= Y 4477 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4478 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4479 4480 // umin(X, Y) != X --> X u> Y 4481 // umin(X, Y) u< X --> X u> Y 4482 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4483 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4484 4485 // These cases should be handled in InstSimplify: 4486 // umin(X, Y) u<= X --> true 4487 // umin(X, Y) u> X --> false 4488 return nullptr; 4489 } 4490 4491 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4492 // umax(X, Y) == X --> X u>= Y 4493 // umax(X, Y) u<= X --> X u>= Y 4494 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4495 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4496 4497 // umax(X, Y) != X --> X u< Y 4498 // umax(X, Y) u> X --> X u< Y 4499 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4500 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4501 4502 // These cases should be handled in InstSimplify: 4503 // umax(X, Y) u>= X --> true 4504 // umax(X, Y) u< X --> false 4505 return nullptr; 4506 } 4507 4508 return nullptr; 4509 } 4510 4511 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4512 if (!I.isEquality()) 4513 return nullptr; 4514 4515 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4516 const CmpInst::Predicate Pred = I.getPredicate(); 4517 Value *A, *B, *C, *D; 4518 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4519 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4520 Value *OtherVal = A == Op1 ? B : A; 4521 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4522 } 4523 4524 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4525 // A^c1 == C^c2 --> A == C^(c1^c2) 4526 ConstantInt *C1, *C2; 4527 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4528 Op1->hasOneUse()) { 4529 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4530 Value *Xor = Builder.CreateXor(C, NC); 4531 return new ICmpInst(Pred, A, Xor); 4532 } 4533 4534 // A^B == A^D -> B == D 4535 if (A == C) 4536 return new ICmpInst(Pred, B, D); 4537 if (A == D) 4538 return new ICmpInst(Pred, B, C); 4539 if (B == C) 4540 return new ICmpInst(Pred, A, D); 4541 if (B == D) 4542 return new ICmpInst(Pred, A, C); 4543 } 4544 } 4545 4546 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4547 // A == (A^B) -> B == 0 4548 Value *OtherVal = A == Op0 ? B : A; 4549 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4550 } 4551 4552 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4553 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4554 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4555 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4556 4557 if (A == C) { 4558 X = B; 4559 Y = D; 4560 Z = A; 4561 } else if (A == D) { 4562 X = B; 4563 Y = C; 4564 Z = A; 4565 } else if (B == C) { 4566 X = A; 4567 Y = D; 4568 Z = B; 4569 } else if (B == D) { 4570 X = A; 4571 Y = C; 4572 Z = B; 4573 } 4574 4575 if (X) { // Build (X^Y) & Z 4576 Op1 = Builder.CreateXor(X, Y); 4577 Op1 = Builder.CreateAnd(Op1, Z); 4578 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4579 } 4580 } 4581 4582 { 4583 // Similar to above, but specialized for constant because invert is needed: 4584 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4585 Value *X, *Y; 4586 Constant *C; 4587 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4588 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4589 Value *Xor = Builder.CreateXor(X, Y); 4590 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4591 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4592 } 4593 } 4594 4595 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4596 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4597 ConstantInt *Cst1; 4598 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4599 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4600 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4601 match(Op1, m_ZExt(m_Value(A))))) { 4602 APInt Pow2 = Cst1->getValue() + 1; 4603 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4604 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4605 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4606 } 4607 4608 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4609 // For lshr and ashr pairs. 4610 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4611 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4612 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4613 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4614 unsigned TypeBits = Cst1->getBitWidth(); 4615 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4616 if (ShAmt < TypeBits && ShAmt != 0) { 4617 ICmpInst::Predicate NewPred = 4618 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4619 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4620 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4621 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4622 } 4623 } 4624 4625 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4626 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4627 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4628 unsigned TypeBits = Cst1->getBitWidth(); 4629 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4630 if (ShAmt < TypeBits && ShAmt != 0) { 4631 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4632 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4633 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4634 I.getName() + ".mask"); 4635 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4636 } 4637 } 4638 4639 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4640 // "icmp (and X, mask), cst" 4641 uint64_t ShAmt = 0; 4642 if (Op0->hasOneUse() && 4643 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4644 match(Op1, m_ConstantInt(Cst1)) && 4645 // Only do this when A has multiple uses. This is most important to do 4646 // when it exposes other optimizations. 4647 !A->hasOneUse()) { 4648 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4649 4650 if (ShAmt < ASize) { 4651 APInt MaskV = 4652 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4653 MaskV <<= ShAmt; 4654 4655 APInt CmpV = Cst1->getValue().zext(ASize); 4656 CmpV <<= ShAmt; 4657 4658 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4659 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4660 } 4661 } 4662 4663 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4664 return ICmp; 4665 4666 // Canonicalize checking for a power-of-2-or-zero value: 4667 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4668 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4669 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4670 m_Deferred(A)))) || 4671 !match(Op1, m_ZeroInt())) 4672 A = nullptr; 4673 4674 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4675 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4676 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4677 A = Op1; 4678 else if (match(Op1, 4679 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4680 A = Op0; 4681 4682 if (A) { 4683 Type *Ty = A->getType(); 4684 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4685 return Pred == ICmpInst::ICMP_EQ 4686 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4687 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4688 } 4689 4690 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4691 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4692 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4693 // of instcombine. 4694 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4695 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4696 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4697 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4698 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4699 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4700 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4701 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4702 : ICmpInst::ICMP_UGE, 4703 Add, ConstantInt::get(A->getType(), C.shl(1))); 4704 } 4705 4706 return nullptr; 4707 } 4708 4709 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4710 InstCombiner::BuilderTy &Builder) { 4711 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4712 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4713 4714 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4715 // The trunc masks high bits while the compare may effectively mask low bits. 4716 Value *X; 4717 const APInt *C; 4718 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4719 return nullptr; 4720 4721 // This matches patterns corresponding to tests of the signbit as well as: 4722 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4723 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4724 APInt Mask; 4725 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4726 Value *And = Builder.CreateAnd(X, Mask); 4727 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4728 return new ICmpInst(Pred, And, Zero); 4729 } 4730 4731 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4732 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4733 // If C is a negative power-of-2 (high-bit mask): 4734 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4735 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4736 Value *And = Builder.CreateAnd(X, MaskC); 4737 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4738 } 4739 4740 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4741 // If C is not-of-power-of-2 (one clear bit): 4742 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4743 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4744 Value *And = Builder.CreateAnd(X, MaskC); 4745 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4746 } 4747 4748 return nullptr; 4749 } 4750 4751 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 4752 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4753 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4754 Value *X; 4755 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4756 return nullptr; 4757 4758 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4759 bool IsSignedCmp = ICmp.isSigned(); 4760 4761 // icmp Pred (ext X), (ext Y) 4762 Value *Y; 4763 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 4764 bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0)); 4765 bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1)); 4766 4767 // If we have mismatched casts, treat the zext of a non-negative source as 4768 // a sext to simulate matching casts. Otherwise, we are done. 4769 // TODO: Can we handle some predicates (equality) without non-negative? 4770 if (IsZext0 != IsZext1) { 4771 if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) || 4772 (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT))) 4773 IsSignedExt = true; 4774 else 4775 return nullptr; 4776 } 4777 4778 // Not an extension from the same type? 4779 Type *XTy = X->getType(), *YTy = Y->getType(); 4780 if (XTy != YTy) { 4781 // One of the casts must have one use because we are creating a new cast. 4782 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 4783 return nullptr; 4784 // Extend the narrower operand to the type of the wider operand. 4785 CastInst::CastOps CastOpcode = 4786 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 4787 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4788 X = Builder.CreateCast(CastOpcode, X, YTy); 4789 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4790 Y = Builder.CreateCast(CastOpcode, Y, XTy); 4791 else 4792 return nullptr; 4793 } 4794 4795 // (zext X) == (zext Y) --> X == Y 4796 // (sext X) == (sext Y) --> X == Y 4797 if (ICmp.isEquality()) 4798 return new ICmpInst(ICmp.getPredicate(), X, Y); 4799 4800 // A signed comparison of sign extended values simplifies into a 4801 // signed comparison. 4802 if (IsSignedCmp && IsSignedExt) 4803 return new ICmpInst(ICmp.getPredicate(), X, Y); 4804 4805 // The other three cases all fold into an unsigned comparison. 4806 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4807 } 4808 4809 // Below here, we are only folding a compare with constant. 4810 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4811 if (!C) 4812 return nullptr; 4813 4814 // Compute the constant that would happen if we truncated to SrcTy then 4815 // re-extended to DestTy. 4816 Type *SrcTy = CastOp0->getSrcTy(); 4817 Type *DestTy = CastOp0->getDestTy(); 4818 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4819 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4820 4821 // If the re-extended constant didn't change... 4822 if (Res2 == C) { 4823 if (ICmp.isEquality()) 4824 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4825 4826 // A signed comparison of sign extended values simplifies into a 4827 // signed comparison. 4828 if (IsSignedExt && IsSignedCmp) 4829 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4830 4831 // The other three cases all fold into an unsigned comparison. 4832 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4833 } 4834 4835 // The re-extended constant changed, partly changed (in the case of a vector), 4836 // or could not be determined to be equal (in the case of a constant 4837 // expression), so the constant cannot be represented in the shorter type. 4838 // All the cases that fold to true or false will have already been handled 4839 // by SimplifyICmpInst, so only deal with the tricky case. 4840 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4841 return nullptr; 4842 4843 // Is source op positive? 4844 // icmp ult (sext X), C --> icmp sgt X, -1 4845 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4846 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4847 4848 // Is source op negative? 4849 // icmp ugt (sext X), C --> icmp slt X, 0 4850 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4851 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4852 } 4853 4854 /// Handle icmp (cast x), (cast or constant). 4855 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4856 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4857 // icmp compares only pointer's value. 4858 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4859 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4860 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4861 if (SimplifiedOp0 || SimplifiedOp1) 4862 return new ICmpInst(ICmp.getPredicate(), 4863 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4864 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4865 4866 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4867 if (!CastOp0) 4868 return nullptr; 4869 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4870 return nullptr; 4871 4872 Value *Op0Src = CastOp0->getOperand(0); 4873 Type *SrcTy = CastOp0->getSrcTy(); 4874 Type *DestTy = CastOp0->getDestTy(); 4875 4876 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4877 // integer type is the same size as the pointer type. 4878 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4879 if (isa<VectorType>(SrcTy)) { 4880 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4881 DestTy = cast<VectorType>(DestTy)->getElementType(); 4882 } 4883 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4884 }; 4885 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4886 CompatibleSizes(SrcTy, DestTy)) { 4887 Value *NewOp1 = nullptr; 4888 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4889 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4890 if (PtrSrc->getType()->getPointerAddressSpace() == 4891 Op0Src->getType()->getPointerAddressSpace()) { 4892 NewOp1 = PtrToIntOp1->getOperand(0); 4893 // If the pointer types don't match, insert a bitcast. 4894 if (Op0Src->getType() != NewOp1->getType()) 4895 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4896 } 4897 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4898 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4899 } 4900 4901 if (NewOp1) 4902 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4903 } 4904 4905 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4906 return R; 4907 4908 return foldICmpWithZextOrSext(ICmp); 4909 } 4910 4911 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4912 switch (BinaryOp) { 4913 default: 4914 llvm_unreachable("Unsupported binary op"); 4915 case Instruction::Add: 4916 case Instruction::Sub: 4917 return match(RHS, m_Zero()); 4918 case Instruction::Mul: 4919 return match(RHS, m_One()); 4920 } 4921 } 4922 4923 OverflowResult 4924 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4925 bool IsSigned, Value *LHS, Value *RHS, 4926 Instruction *CxtI) const { 4927 switch (BinaryOp) { 4928 default: 4929 llvm_unreachable("Unsupported binary op"); 4930 case Instruction::Add: 4931 if (IsSigned) 4932 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4933 else 4934 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4935 case Instruction::Sub: 4936 if (IsSigned) 4937 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4938 else 4939 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4940 case Instruction::Mul: 4941 if (IsSigned) 4942 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4943 else 4944 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4945 } 4946 } 4947 4948 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4949 bool IsSigned, Value *LHS, 4950 Value *RHS, Instruction &OrigI, 4951 Value *&Result, 4952 Constant *&Overflow) { 4953 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4954 std::swap(LHS, RHS); 4955 4956 // If the overflow check was an add followed by a compare, the insertion point 4957 // may be pointing to the compare. We want to insert the new instructions 4958 // before the add in case there are uses of the add between the add and the 4959 // compare. 4960 Builder.SetInsertPoint(&OrigI); 4961 4962 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4963 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4964 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4965 4966 if (isNeutralValue(BinaryOp, RHS)) { 4967 Result = LHS; 4968 Overflow = ConstantInt::getFalse(OverflowTy); 4969 return true; 4970 } 4971 4972 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4973 case OverflowResult::MayOverflow: 4974 return false; 4975 case OverflowResult::AlwaysOverflowsLow: 4976 case OverflowResult::AlwaysOverflowsHigh: 4977 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4978 Result->takeName(&OrigI); 4979 Overflow = ConstantInt::getTrue(OverflowTy); 4980 return true; 4981 case OverflowResult::NeverOverflows: 4982 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4983 Result->takeName(&OrigI); 4984 Overflow = ConstantInt::getFalse(OverflowTy); 4985 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4986 if (IsSigned) 4987 Inst->setHasNoSignedWrap(); 4988 else 4989 Inst->setHasNoUnsignedWrap(); 4990 } 4991 return true; 4992 } 4993 4994 llvm_unreachable("Unexpected overflow result"); 4995 } 4996 4997 /// Recognize and process idiom involving test for multiplication 4998 /// overflow. 4999 /// 5000 /// The caller has matched a pattern of the form: 5001 /// I = cmp u (mul(zext A, zext B), V 5002 /// The function checks if this is a test for overflow and if so replaces 5003 /// multiplication with call to 'mul.with.overflow' intrinsic. 5004 /// 5005 /// \param I Compare instruction. 5006 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 5007 /// the compare instruction. Must be of integer type. 5008 /// \param OtherVal The other argument of compare instruction. 5009 /// \returns Instruction which must replace the compare instruction, NULL if no 5010 /// replacement required. 5011 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 5012 Value *OtherVal, 5013 InstCombinerImpl &IC) { 5014 // Don't bother doing this transformation for pointers, don't do it for 5015 // vectors. 5016 if (!isa<IntegerType>(MulVal->getType())) 5017 return nullptr; 5018 5019 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 5020 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 5021 auto *MulInstr = dyn_cast<Instruction>(MulVal); 5022 if (!MulInstr) 5023 return nullptr; 5024 assert(MulInstr->getOpcode() == Instruction::Mul); 5025 5026 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 5027 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 5028 assert(LHS->getOpcode() == Instruction::ZExt); 5029 assert(RHS->getOpcode() == Instruction::ZExt); 5030 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 5031 5032 // Calculate type and width of the result produced by mul.with.overflow. 5033 Type *TyA = A->getType(), *TyB = B->getType(); 5034 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 5035 WidthB = TyB->getPrimitiveSizeInBits(); 5036 unsigned MulWidth; 5037 Type *MulType; 5038 if (WidthB > WidthA) { 5039 MulWidth = WidthB; 5040 MulType = TyB; 5041 } else { 5042 MulWidth = WidthA; 5043 MulType = TyA; 5044 } 5045 5046 // In order to replace the original mul with a narrower mul.with.overflow, 5047 // all uses must ignore upper bits of the product. The number of used low 5048 // bits must be not greater than the width of mul.with.overflow. 5049 if (MulVal->hasNUsesOrMore(2)) 5050 for (User *U : MulVal->users()) { 5051 if (U == &I) 5052 continue; 5053 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5054 // Check if truncation ignores bits above MulWidth. 5055 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 5056 if (TruncWidth > MulWidth) 5057 return nullptr; 5058 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5059 // Check if AND ignores bits above MulWidth. 5060 if (BO->getOpcode() != Instruction::And) 5061 return nullptr; 5062 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 5063 const APInt &CVal = CI->getValue(); 5064 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 5065 return nullptr; 5066 } else { 5067 // In this case we could have the operand of the binary operation 5068 // being defined in another block, and performing the replacement 5069 // could break the dominance relation. 5070 return nullptr; 5071 } 5072 } else { 5073 // Other uses prohibit this transformation. 5074 return nullptr; 5075 } 5076 } 5077 5078 // Recognize patterns 5079 switch (I.getPredicate()) { 5080 case ICmpInst::ICMP_EQ: 5081 case ICmpInst::ICMP_NE: 5082 // Recognize pattern: 5083 // mulval = mul(zext A, zext B) 5084 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 5085 ConstantInt *CI; 5086 Value *ValToMask; 5087 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 5088 if (ValToMask != MulVal) 5089 return nullptr; 5090 const APInt &CVal = CI->getValue() + 1; 5091 if (CVal.isPowerOf2()) { 5092 unsigned MaskWidth = CVal.logBase2(); 5093 if (MaskWidth == MulWidth) 5094 break; // Recognized 5095 } 5096 } 5097 return nullptr; 5098 5099 case ICmpInst::ICMP_UGT: 5100 // Recognize pattern: 5101 // mulval = mul(zext A, zext B) 5102 // cmp ugt mulval, max 5103 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5104 APInt MaxVal = APInt::getMaxValue(MulWidth); 5105 MaxVal = MaxVal.zext(CI->getBitWidth()); 5106 if (MaxVal.eq(CI->getValue())) 5107 break; // Recognized 5108 } 5109 return nullptr; 5110 5111 case ICmpInst::ICMP_UGE: 5112 // Recognize pattern: 5113 // mulval = mul(zext A, zext B) 5114 // cmp uge mulval, max+1 5115 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5116 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5117 if (MaxVal.eq(CI->getValue())) 5118 break; // Recognized 5119 } 5120 return nullptr; 5121 5122 case ICmpInst::ICMP_ULE: 5123 // Recognize pattern: 5124 // mulval = mul(zext A, zext B) 5125 // cmp ule mulval, max 5126 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5127 APInt MaxVal = APInt::getMaxValue(MulWidth); 5128 MaxVal = MaxVal.zext(CI->getBitWidth()); 5129 if (MaxVal.eq(CI->getValue())) 5130 break; // Recognized 5131 } 5132 return nullptr; 5133 5134 case ICmpInst::ICMP_ULT: 5135 // Recognize pattern: 5136 // mulval = mul(zext A, zext B) 5137 // cmp ule mulval, max + 1 5138 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5139 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5140 if (MaxVal.eq(CI->getValue())) 5141 break; // Recognized 5142 } 5143 return nullptr; 5144 5145 default: 5146 return nullptr; 5147 } 5148 5149 InstCombiner::BuilderTy &Builder = IC.Builder; 5150 Builder.SetInsertPoint(MulInstr); 5151 5152 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5153 Value *MulA = A, *MulB = B; 5154 if (WidthA < MulWidth) 5155 MulA = Builder.CreateZExt(A, MulType); 5156 if (WidthB < MulWidth) 5157 MulB = Builder.CreateZExt(B, MulType); 5158 Function *F = Intrinsic::getDeclaration( 5159 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5160 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5161 IC.addToWorklist(MulInstr); 5162 5163 // If there are uses of mul result other than the comparison, we know that 5164 // they are truncation or binary AND. Change them to use result of 5165 // mul.with.overflow and adjust properly mask/size. 5166 if (MulVal->hasNUsesOrMore(2)) { 5167 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5168 for (User *U : make_early_inc_range(MulVal->users())) { 5169 if (U == &I || U == OtherVal) 5170 continue; 5171 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5172 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5173 IC.replaceInstUsesWith(*TI, Mul); 5174 else 5175 TI->setOperand(0, Mul); 5176 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5177 assert(BO->getOpcode() == Instruction::And); 5178 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5179 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5180 APInt ShortMask = CI->getValue().trunc(MulWidth); 5181 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5182 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5183 IC.replaceInstUsesWith(*BO, Zext); 5184 } else { 5185 llvm_unreachable("Unexpected Binary operation"); 5186 } 5187 IC.addToWorklist(cast<Instruction>(U)); 5188 } 5189 } 5190 if (isa<Instruction>(OtherVal)) 5191 IC.addToWorklist(cast<Instruction>(OtherVal)); 5192 5193 // The original icmp gets replaced with the overflow value, maybe inverted 5194 // depending on predicate. 5195 bool Inverse = false; 5196 switch (I.getPredicate()) { 5197 case ICmpInst::ICMP_NE: 5198 break; 5199 case ICmpInst::ICMP_EQ: 5200 Inverse = true; 5201 break; 5202 case ICmpInst::ICMP_UGT: 5203 case ICmpInst::ICMP_UGE: 5204 if (I.getOperand(0) == MulVal) 5205 break; 5206 Inverse = true; 5207 break; 5208 case ICmpInst::ICMP_ULT: 5209 case ICmpInst::ICMP_ULE: 5210 if (I.getOperand(1) == MulVal) 5211 break; 5212 Inverse = true; 5213 break; 5214 default: 5215 llvm_unreachable("Unexpected predicate"); 5216 } 5217 if (Inverse) { 5218 Value *Res = Builder.CreateExtractValue(Call, 1); 5219 return BinaryOperator::CreateNot(Res); 5220 } 5221 5222 return ExtractValueInst::Create(Call, 1); 5223 } 5224 5225 /// When performing a comparison against a constant, it is possible that not all 5226 /// the bits in the LHS are demanded. This helper method computes the mask that 5227 /// IS demanded. 5228 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5229 const APInt *RHS; 5230 if (!match(I.getOperand(1), m_APInt(RHS))) 5231 return APInt::getAllOnes(BitWidth); 5232 5233 // If this is a normal comparison, it demands all bits. If it is a sign bit 5234 // comparison, it only demands the sign bit. 5235 bool UnusedBit; 5236 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5237 return APInt::getSignMask(BitWidth); 5238 5239 switch (I.getPredicate()) { 5240 // For a UGT comparison, we don't care about any bits that 5241 // correspond to the trailing ones of the comparand. The value of these 5242 // bits doesn't impact the outcome of the comparison, because any value 5243 // greater than the RHS must differ in a bit higher than these due to carry. 5244 case ICmpInst::ICMP_UGT: 5245 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5246 5247 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5248 // Any value less than the RHS must differ in a higher bit because of carries. 5249 case ICmpInst::ICMP_ULT: 5250 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5251 5252 default: 5253 return APInt::getAllOnes(BitWidth); 5254 } 5255 } 5256 5257 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5258 /// should be swapped. 5259 /// The decision is based on how many times these two operands are reused 5260 /// as subtract operands and their positions in those instructions. 5261 /// The rationale is that several architectures use the same instruction for 5262 /// both subtract and cmp. Thus, it is better if the order of those operands 5263 /// match. 5264 /// \return true if Op0 and Op1 should be swapped. 5265 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5266 // Filter out pointer values as those cannot appear directly in subtract. 5267 // FIXME: we may want to go through inttoptrs or bitcasts. 5268 if (Op0->getType()->isPointerTy()) 5269 return false; 5270 // If a subtract already has the same operands as a compare, swapping would be 5271 // bad. If a subtract has the same operands as a compare but in reverse order, 5272 // then swapping is good. 5273 int GoodToSwap = 0; 5274 for (const User *U : Op0->users()) { 5275 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5276 GoodToSwap++; 5277 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5278 GoodToSwap--; 5279 } 5280 return GoodToSwap > 0; 5281 } 5282 5283 /// Check that one use is in the same block as the definition and all 5284 /// other uses are in blocks dominated by a given block. 5285 /// 5286 /// \param DI Definition 5287 /// \param UI Use 5288 /// \param DB Block that must dominate all uses of \p DI outside 5289 /// the parent block 5290 /// \return true when \p UI is the only use of \p DI in the parent block 5291 /// and all other uses of \p DI are in blocks dominated by \p DB. 5292 /// 5293 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5294 const Instruction *UI, 5295 const BasicBlock *DB) const { 5296 assert(DI && UI && "Instruction not defined\n"); 5297 // Ignore incomplete definitions. 5298 if (!DI->getParent()) 5299 return false; 5300 // DI and UI must be in the same block. 5301 if (DI->getParent() != UI->getParent()) 5302 return false; 5303 // Protect from self-referencing blocks. 5304 if (DI->getParent() == DB) 5305 return false; 5306 for (const User *U : DI->users()) { 5307 auto *Usr = cast<Instruction>(U); 5308 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5309 return false; 5310 } 5311 return true; 5312 } 5313 5314 /// Return true when the instruction sequence within a block is select-cmp-br. 5315 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5316 const BasicBlock *BB = SI->getParent(); 5317 if (!BB) 5318 return false; 5319 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5320 if (!BI || BI->getNumSuccessors() != 2) 5321 return false; 5322 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5323 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5324 return false; 5325 return true; 5326 } 5327 5328 /// True when a select result is replaced by one of its operands 5329 /// in select-icmp sequence. This will eventually result in the elimination 5330 /// of the select. 5331 /// 5332 /// \param SI Select instruction 5333 /// \param Icmp Compare instruction 5334 /// \param SIOpd Operand that replaces the select 5335 /// 5336 /// Notes: 5337 /// - The replacement is global and requires dominator information 5338 /// - The caller is responsible for the actual replacement 5339 /// 5340 /// Example: 5341 /// 5342 /// entry: 5343 /// %4 = select i1 %3, %C* %0, %C* null 5344 /// %5 = icmp eq %C* %4, null 5345 /// br i1 %5, label %9, label %7 5346 /// ... 5347 /// ; <label>:7 ; preds = %entry 5348 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5349 /// ... 5350 /// 5351 /// can be transformed to 5352 /// 5353 /// %5 = icmp eq %C* %0, null 5354 /// %6 = select i1 %3, i1 %5, i1 true 5355 /// br i1 %6, label %9, label %7 5356 /// ... 5357 /// ; <label>:7 ; preds = %entry 5358 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5359 /// 5360 /// Similar when the first operand of the select is a constant or/and 5361 /// the compare is for not equal rather than equal. 5362 /// 5363 /// NOTE: The function is only called when the select and compare constants 5364 /// are equal, the optimization can work only for EQ predicates. This is not a 5365 /// major restriction since a NE compare should be 'normalized' to an equal 5366 /// compare, which usually happens in the combiner and test case 5367 /// select-cmp-br.ll checks for it. 5368 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5369 const ICmpInst *Icmp, 5370 const unsigned SIOpd) { 5371 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5372 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5373 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5374 // The check for the single predecessor is not the best that can be 5375 // done. But it protects efficiently against cases like when SI's 5376 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5377 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5378 // replaced can be reached on either path. So the uniqueness check 5379 // guarantees that the path all uses of SI (outside SI's parent) are on 5380 // is disjoint from all other paths out of SI. But that information 5381 // is more expensive to compute, and the trade-off here is in favor 5382 // of compile-time. It should also be noticed that we check for a single 5383 // predecessor and not only uniqueness. This to handle the situation when 5384 // Succ and Succ1 points to the same basic block. 5385 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5386 NumSel++; 5387 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5388 return true; 5389 } 5390 } 5391 return false; 5392 } 5393 5394 /// Try to fold the comparison based on range information we can get by checking 5395 /// whether bits are known to be zero or one in the inputs. 5396 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5397 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5398 Type *Ty = Op0->getType(); 5399 ICmpInst::Predicate Pred = I.getPredicate(); 5400 5401 // Get scalar or pointer size. 5402 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5403 ? Ty->getScalarSizeInBits() 5404 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5405 5406 if (!BitWidth) 5407 return nullptr; 5408 5409 KnownBits Op0Known(BitWidth); 5410 KnownBits Op1Known(BitWidth); 5411 5412 if (SimplifyDemandedBits(&I, 0, 5413 getDemandedBitsLHSMask(I, BitWidth), 5414 Op0Known, 0)) 5415 return &I; 5416 5417 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5418 return &I; 5419 5420 // Given the known and unknown bits, compute a range that the LHS could be 5421 // in. Compute the Min, Max and RHS values based on the known bits. For the 5422 // EQ and NE we use unsigned values. 5423 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5424 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5425 if (I.isSigned()) { 5426 Op0Min = Op0Known.getSignedMinValue(); 5427 Op0Max = Op0Known.getSignedMaxValue(); 5428 Op1Min = Op1Known.getSignedMinValue(); 5429 Op1Max = Op1Known.getSignedMaxValue(); 5430 } else { 5431 Op0Min = Op0Known.getMinValue(); 5432 Op0Max = Op0Known.getMaxValue(); 5433 Op1Min = Op1Known.getMinValue(); 5434 Op1Max = Op1Known.getMaxValue(); 5435 } 5436 5437 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5438 // out that the LHS or RHS is a constant. Constant fold this now, so that 5439 // code below can assume that Min != Max. 5440 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5441 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5442 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5443 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5444 5445 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5446 // min/max canonical compare with some other compare. That could lead to 5447 // conflict with select canonicalization and infinite looping. 5448 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5449 auto isMinMaxCmp = [&](Instruction &Cmp) { 5450 if (!Cmp.hasOneUse()) 5451 return false; 5452 Value *A, *B; 5453 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5454 if (!SelectPatternResult::isMinOrMax(SPF)) 5455 return false; 5456 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5457 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5458 }; 5459 if (!isMinMaxCmp(I)) { 5460 switch (Pred) { 5461 default: 5462 break; 5463 case ICmpInst::ICMP_ULT: { 5464 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5465 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5466 const APInt *CmpC; 5467 if (match(Op1, m_APInt(CmpC))) { 5468 // A <u C -> A == C-1 if min(A)+1 == C 5469 if (*CmpC == Op0Min + 1) 5470 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5471 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5472 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5473 // exceeds the log2 of C. 5474 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5475 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5476 Constant::getNullValue(Op1->getType())); 5477 } 5478 break; 5479 } 5480 case ICmpInst::ICMP_UGT: { 5481 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5482 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5483 const APInt *CmpC; 5484 if (match(Op1, m_APInt(CmpC))) { 5485 // A >u C -> A == C+1 if max(a)-1 == C 5486 if (*CmpC == Op0Max - 1) 5487 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5488 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5489 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5490 // exceeds the log2 of C. 5491 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5492 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5493 Constant::getNullValue(Op1->getType())); 5494 } 5495 break; 5496 } 5497 case ICmpInst::ICMP_SLT: { 5498 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5499 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5500 const APInt *CmpC; 5501 if (match(Op1, m_APInt(CmpC))) { 5502 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5503 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5504 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5505 } 5506 break; 5507 } 5508 case ICmpInst::ICMP_SGT: { 5509 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5510 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5511 const APInt *CmpC; 5512 if (match(Op1, m_APInt(CmpC))) { 5513 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5514 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5515 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5516 } 5517 break; 5518 } 5519 } 5520 } 5521 5522 // Based on the range information we know about the LHS, see if we can 5523 // simplify this comparison. For example, (x&4) < 8 is always true. 5524 switch (Pred) { 5525 default: 5526 llvm_unreachable("Unknown icmp opcode!"); 5527 case ICmpInst::ICMP_EQ: 5528 case ICmpInst::ICMP_NE: { 5529 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5530 return replaceInstUsesWith( 5531 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5532 5533 // If all bits are known zero except for one, then we know at most one bit 5534 // is set. If the comparison is against zero, then this is a check to see if 5535 // *that* bit is set. 5536 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5537 if (Op1Known.isZero()) { 5538 // If the LHS is an AND with the same constant, look through it. 5539 Value *LHS = nullptr; 5540 const APInt *LHSC; 5541 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5542 *LHSC != Op0KnownZeroInverted) 5543 LHS = Op0; 5544 5545 Value *X; 5546 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5547 APInt ValToCheck = Op0KnownZeroInverted; 5548 Type *XTy = X->getType(); 5549 if (ValToCheck.isPowerOf2()) { 5550 // ((1 << X) & 8) == 0 -> X != 3 5551 // ((1 << X) & 8) != 0 -> X == 3 5552 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5553 auto NewPred = ICmpInst::getInversePredicate(Pred); 5554 return new ICmpInst(NewPred, X, CmpC); 5555 } else if ((++ValToCheck).isPowerOf2()) { 5556 // ((1 << X) & 7) == 0 -> X >= 3 5557 // ((1 << X) & 7) != 0 -> X < 3 5558 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5559 auto NewPred = 5560 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5561 return new ICmpInst(NewPred, X, CmpC); 5562 } 5563 } 5564 5565 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5566 const APInt *CI; 5567 if (Op0KnownZeroInverted.isOne() && 5568 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5569 // ((8 >>u X) & 1) == 0 -> X != 3 5570 // ((8 >>u X) & 1) != 0 -> X == 3 5571 unsigned CmpVal = CI->countTrailingZeros(); 5572 auto NewPred = ICmpInst::getInversePredicate(Pred); 5573 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5574 } 5575 } 5576 break; 5577 } 5578 case ICmpInst::ICMP_ULT: { 5579 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5580 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5581 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5582 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5583 break; 5584 } 5585 case ICmpInst::ICMP_UGT: { 5586 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5587 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5588 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5589 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5590 break; 5591 } 5592 case ICmpInst::ICMP_SLT: { 5593 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5594 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5595 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5596 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5597 break; 5598 } 5599 case ICmpInst::ICMP_SGT: { 5600 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5601 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5602 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5603 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5604 break; 5605 } 5606 case ICmpInst::ICMP_SGE: 5607 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5608 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5609 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5610 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5611 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5612 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5613 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5614 break; 5615 case ICmpInst::ICMP_SLE: 5616 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5617 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5618 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5619 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5620 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5621 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5622 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5623 break; 5624 case ICmpInst::ICMP_UGE: 5625 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5626 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5627 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5628 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5629 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5630 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5631 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5632 break; 5633 case ICmpInst::ICMP_ULE: 5634 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5635 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5636 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5637 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5638 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5639 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5640 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5641 break; 5642 } 5643 5644 // Turn a signed comparison into an unsigned one if both operands are known to 5645 // have the same sign. 5646 if (I.isSigned() && 5647 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5648 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5649 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5650 5651 return nullptr; 5652 } 5653 5654 /// If one operand of an icmp is effectively a bool (value range of {0,1}), 5655 /// then try to reduce patterns based on that limit. 5656 static Instruction *foldICmpUsingBoolRange(ICmpInst &I, 5657 InstCombiner::BuilderTy &Builder) { 5658 Value *X, *Y; 5659 ICmpInst::Predicate Pred; 5660 5661 // X must be 0 and bool must be true for "ULT": 5662 // X <u (zext i1 Y) --> (X == 0) & Y 5663 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) && 5664 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT) 5665 return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y); 5666 5667 // X must be 0 or bool must be true for "ULE": 5668 // X <=u (sext i1 Y) --> (X == 0) | Y 5669 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) && 5670 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE) 5671 return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y); 5672 5673 return nullptr; 5674 } 5675 5676 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5677 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5678 Constant *C) { 5679 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5680 "Only for relational integer predicates."); 5681 5682 Type *Type = C->getType(); 5683 bool IsSigned = ICmpInst::isSigned(Pred); 5684 5685 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5686 bool WillIncrement = 5687 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5688 5689 // Check if the constant operand can be safely incremented/decremented 5690 // without overflowing/underflowing. 5691 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5692 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5693 }; 5694 5695 Constant *SafeReplacementConstant = nullptr; 5696 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5697 // Bail out if the constant can't be safely incremented/decremented. 5698 if (!ConstantIsOk(CI)) 5699 return llvm::None; 5700 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5701 unsigned NumElts = FVTy->getNumElements(); 5702 for (unsigned i = 0; i != NumElts; ++i) { 5703 Constant *Elt = C->getAggregateElement(i); 5704 if (!Elt) 5705 return llvm::None; 5706 5707 if (isa<UndefValue>(Elt)) 5708 continue; 5709 5710 // Bail out if we can't determine if this constant is min/max or if we 5711 // know that this constant is min/max. 5712 auto *CI = dyn_cast<ConstantInt>(Elt); 5713 if (!CI || !ConstantIsOk(CI)) 5714 return llvm::None; 5715 5716 if (!SafeReplacementConstant) 5717 SafeReplacementConstant = CI; 5718 } 5719 } else { 5720 // ConstantExpr? 5721 return llvm::None; 5722 } 5723 5724 // It may not be safe to change a compare predicate in the presence of 5725 // undefined elements, so replace those elements with the first safe constant 5726 // that we found. 5727 // TODO: in case of poison, it is safe; let's replace undefs only. 5728 if (C->containsUndefOrPoisonElement()) { 5729 assert(SafeReplacementConstant && "Replacement constant not set"); 5730 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5731 } 5732 5733 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5734 5735 // Increment or decrement the constant. 5736 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5737 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5738 5739 return std::make_pair(NewPred, NewC); 5740 } 5741 5742 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5743 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5744 /// allows them to be folded in visitICmpInst. 5745 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5746 ICmpInst::Predicate Pred = I.getPredicate(); 5747 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5748 InstCombiner::isCanonicalPredicate(Pred)) 5749 return nullptr; 5750 5751 Value *Op0 = I.getOperand(0); 5752 Value *Op1 = I.getOperand(1); 5753 auto *Op1C = dyn_cast<Constant>(Op1); 5754 if (!Op1C) 5755 return nullptr; 5756 5757 auto FlippedStrictness = 5758 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5759 if (!FlippedStrictness) 5760 return nullptr; 5761 5762 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5763 } 5764 5765 /// If we have a comparison with a non-canonical predicate, if we can update 5766 /// all the users, invert the predicate and adjust all the users. 5767 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5768 // Is the predicate already canonical? 5769 CmpInst::Predicate Pred = I.getPredicate(); 5770 if (InstCombiner::isCanonicalPredicate(Pred)) 5771 return nullptr; 5772 5773 // Can all users be adjusted to predicate inversion? 5774 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5775 return nullptr; 5776 5777 // Ok, we can canonicalize comparison! 5778 // Let's first invert the comparison's predicate. 5779 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5780 I.setName(I.getName() + ".not"); 5781 5782 // And, adapt users. 5783 freelyInvertAllUsersOf(&I); 5784 5785 return &I; 5786 } 5787 5788 /// Integer compare with boolean values can always be turned into bitwise ops. 5789 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5790 InstCombiner::BuilderTy &Builder) { 5791 Value *A = I.getOperand(0), *B = I.getOperand(1); 5792 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5793 5794 // A boolean compared to true/false can be simplified to Op0/true/false in 5795 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5796 // Cases not handled by InstSimplify are always 'not' of Op0. 5797 if (match(B, m_Zero())) { 5798 switch (I.getPredicate()) { 5799 case CmpInst::ICMP_EQ: // A == 0 -> !A 5800 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5801 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5802 return BinaryOperator::CreateNot(A); 5803 default: 5804 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5805 } 5806 } else if (match(B, m_One())) { 5807 switch (I.getPredicate()) { 5808 case CmpInst::ICMP_NE: // A != 1 -> !A 5809 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5810 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5811 return BinaryOperator::CreateNot(A); 5812 default: 5813 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5814 } 5815 } 5816 5817 switch (I.getPredicate()) { 5818 default: 5819 llvm_unreachable("Invalid icmp instruction!"); 5820 case ICmpInst::ICMP_EQ: 5821 // icmp eq i1 A, B -> ~(A ^ B) 5822 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5823 5824 case ICmpInst::ICMP_NE: 5825 // icmp ne i1 A, B -> A ^ B 5826 return BinaryOperator::CreateXor(A, B); 5827 5828 case ICmpInst::ICMP_UGT: 5829 // icmp ugt -> icmp ult 5830 std::swap(A, B); 5831 LLVM_FALLTHROUGH; 5832 case ICmpInst::ICMP_ULT: 5833 // icmp ult i1 A, B -> ~A & B 5834 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5835 5836 case ICmpInst::ICMP_SGT: 5837 // icmp sgt -> icmp slt 5838 std::swap(A, B); 5839 LLVM_FALLTHROUGH; 5840 case ICmpInst::ICMP_SLT: 5841 // icmp slt i1 A, B -> A & ~B 5842 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5843 5844 case ICmpInst::ICMP_UGE: 5845 // icmp uge -> icmp ule 5846 std::swap(A, B); 5847 LLVM_FALLTHROUGH; 5848 case ICmpInst::ICMP_ULE: 5849 // icmp ule i1 A, B -> ~A | B 5850 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5851 5852 case ICmpInst::ICMP_SGE: 5853 // icmp sge -> icmp sle 5854 std::swap(A, B); 5855 LLVM_FALLTHROUGH; 5856 case ICmpInst::ICMP_SLE: 5857 // icmp sle i1 A, B -> A | ~B 5858 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5859 } 5860 } 5861 5862 // Transform pattern like: 5863 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5864 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5865 // Into: 5866 // (X l>> Y) != 0 5867 // (X l>> Y) == 0 5868 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5869 InstCombiner::BuilderTy &Builder) { 5870 ICmpInst::Predicate Pred, NewPred; 5871 Value *X, *Y; 5872 if (match(&Cmp, 5873 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5874 switch (Pred) { 5875 case ICmpInst::ICMP_ULE: 5876 NewPred = ICmpInst::ICMP_NE; 5877 break; 5878 case ICmpInst::ICMP_UGT: 5879 NewPred = ICmpInst::ICMP_EQ; 5880 break; 5881 default: 5882 return nullptr; 5883 } 5884 } else if (match(&Cmp, m_c_ICmp(Pred, 5885 m_OneUse(m_CombineOr( 5886 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5887 m_Add(m_Shl(m_One(), m_Value(Y)), 5888 m_AllOnes()))), 5889 m_Value(X)))) { 5890 // The variant with 'add' is not canonical, (the variant with 'not' is) 5891 // we only get it because it has extra uses, and can't be canonicalized, 5892 5893 switch (Pred) { 5894 case ICmpInst::ICMP_ULT: 5895 NewPred = ICmpInst::ICMP_NE; 5896 break; 5897 case ICmpInst::ICMP_UGE: 5898 NewPred = ICmpInst::ICMP_EQ; 5899 break; 5900 default: 5901 return nullptr; 5902 } 5903 } else 5904 return nullptr; 5905 5906 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5907 Constant *Zero = Constant::getNullValue(NewX->getType()); 5908 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5909 } 5910 5911 static Instruction *foldVectorCmp(CmpInst &Cmp, 5912 InstCombiner::BuilderTy &Builder) { 5913 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5914 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5915 Value *V1, *V2; 5916 ArrayRef<int> M; 5917 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5918 return nullptr; 5919 5920 // If both arguments of the cmp are shuffles that use the same mask and 5921 // shuffle within a single vector, move the shuffle after the cmp: 5922 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5923 Type *V1Ty = V1->getType(); 5924 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5925 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5926 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5927 return new ShuffleVectorInst(NewCmp, M); 5928 } 5929 5930 // Try to canonicalize compare with splatted operand and splat constant. 5931 // TODO: We could generalize this for more than splats. See/use the code in 5932 // InstCombiner::foldVectorBinop(). 5933 Constant *C; 5934 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5935 return nullptr; 5936 5937 // Length-changing splats are ok, so adjust the constants as needed: 5938 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5939 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5940 int MaskSplatIndex; 5941 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5942 // We allow undefs in matching, but this transform removes those for safety. 5943 // Demanded elements analysis should be able to recover some/all of that. 5944 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5945 ScalarC); 5946 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5947 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5948 return new ShuffleVectorInst(NewCmp, NewM); 5949 } 5950 5951 return nullptr; 5952 } 5953 5954 // extract(uadd.with.overflow(A, B), 0) ult A 5955 // -> extract(uadd.with.overflow(A, B), 1) 5956 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5957 CmpInst::Predicate Pred = I.getPredicate(); 5958 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5959 5960 Value *UAddOv; 5961 Value *A, *B; 5962 auto UAddOvResultPat = m_ExtractValue<0>( 5963 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5964 if (match(Op0, UAddOvResultPat) && 5965 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5966 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5967 (match(A, m_One()) || match(B, m_One()))) || 5968 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5969 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5970 // extract(uadd.with.overflow(A, B), 0) < A 5971 // extract(uadd.with.overflow(A, 1), 0) == 0 5972 // extract(uadd.with.overflow(A, -1), 0) != -1 5973 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5974 else if (match(Op1, UAddOvResultPat) && 5975 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5976 // A > extract(uadd.with.overflow(A, B), 0) 5977 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5978 else 5979 return nullptr; 5980 5981 return ExtractValueInst::Create(UAddOv, 1); 5982 } 5983 5984 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5985 if (!I.getOperand(0)->getType()->isPointerTy() || 5986 NullPointerIsDefined( 5987 I.getParent()->getParent(), 5988 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5989 return nullptr; 5990 } 5991 Instruction *Op; 5992 if (match(I.getOperand(0), m_Instruction(Op)) && 5993 match(I.getOperand(1), m_Zero()) && 5994 Op->isLaunderOrStripInvariantGroup()) { 5995 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5996 Op->getOperand(0), I.getOperand(1)); 5997 } 5998 return nullptr; 5999 } 6000 6001 /// This function folds patterns produced by lowering of reduce idioms, such as 6002 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 6003 /// attempts to generate fewer number of scalar comparisons instead of vector 6004 /// comparisons when possible. 6005 static Instruction *foldReductionIdiom(ICmpInst &I, 6006 InstCombiner::BuilderTy &Builder, 6007 const DataLayout &DL) { 6008 if (I.getType()->isVectorTy()) 6009 return nullptr; 6010 ICmpInst::Predicate OuterPred, InnerPred; 6011 Value *LHS, *RHS; 6012 6013 // Match lowering of @llvm.vector.reduce.and. Turn 6014 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 6015 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 6016 /// %res = icmp <pred> i8 %scalar_ne, 0 6017 /// 6018 /// into 6019 /// 6020 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 6021 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 6022 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 6023 /// 6024 /// for <pred> in {ne, eq}. 6025 if (!match(&I, m_ICmp(OuterPred, 6026 m_OneUse(m_BitCast(m_OneUse( 6027 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 6028 m_Zero()))) 6029 return nullptr; 6030 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 6031 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 6032 return nullptr; 6033 unsigned NumBits = 6034 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 6035 // TODO: Relax this to "not wider than max legal integer type"? 6036 if (!DL.isLegalInteger(NumBits)) 6037 return nullptr; 6038 6039 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 6040 auto *ScalarTy = Builder.getIntNTy(NumBits); 6041 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 6042 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 6043 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 6044 I.getName()); 6045 } 6046 6047 return nullptr; 6048 } 6049 6050 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 6051 bool Changed = false; 6052 const SimplifyQuery Q = SQ.getWithInstruction(&I); 6053 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6054 unsigned Op0Cplxity = getComplexity(Op0); 6055 unsigned Op1Cplxity = getComplexity(Op1); 6056 6057 /// Orders the operands of the compare so that they are listed from most 6058 /// complex to least complex. This puts constants before unary operators, 6059 /// before binary operators. 6060 if (Op0Cplxity < Op1Cplxity || 6061 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 6062 I.swapOperands(); 6063 std::swap(Op0, Op1); 6064 Changed = true; 6065 } 6066 6067 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 6068 return replaceInstUsesWith(I, V); 6069 6070 // Comparing -val or val with non-zero is the same as just comparing val 6071 // ie, abs(val) != 0 -> val != 0 6072 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 6073 Value *Cond, *SelectTrue, *SelectFalse; 6074 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 6075 m_Value(SelectFalse)))) { 6076 if (Value *V = dyn_castNegVal(SelectTrue)) { 6077 if (V == SelectFalse) 6078 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6079 } 6080 else if (Value *V = dyn_castNegVal(SelectFalse)) { 6081 if (V == SelectTrue) 6082 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6083 } 6084 } 6085 } 6086 6087 if (Op0->getType()->isIntOrIntVectorTy(1)) 6088 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 6089 return Res; 6090 6091 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 6092 return Res; 6093 6094 if (Instruction *Res = canonicalizeICmpPredicate(I)) 6095 return Res; 6096 6097 if (Instruction *Res = foldICmpWithConstant(I)) 6098 return Res; 6099 6100 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 6101 return Res; 6102 6103 if (Instruction *Res = foldICmpUsingBoolRange(I, Builder)) 6104 return Res; 6105 6106 if (Instruction *Res = foldICmpUsingKnownBits(I)) 6107 return Res; 6108 6109 // Test if the ICmpInst instruction is used exclusively by a select as 6110 // part of a minimum or maximum operation. If so, refrain from doing 6111 // any other folding. This helps out other analyses which understand 6112 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6113 // and CodeGen. And in this case, at least one of the comparison 6114 // operands has at least one user besides the compare (the select), 6115 // which would often largely negate the benefit of folding anyway. 6116 // 6117 // Do the same for the other patterns recognized by matchSelectPattern. 6118 if (I.hasOneUse()) 6119 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6120 Value *A, *B; 6121 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6122 if (SPR.Flavor != SPF_UNKNOWN) 6123 return nullptr; 6124 } 6125 6126 // Do this after checking for min/max to prevent infinite looping. 6127 if (Instruction *Res = foldICmpWithZero(I)) 6128 return Res; 6129 6130 // FIXME: We only do this after checking for min/max to prevent infinite 6131 // looping caused by a reverse canonicalization of these patterns for min/max. 6132 // FIXME: The organization of folds is a mess. These would naturally go into 6133 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6134 // down here after the min/max restriction. 6135 ICmpInst::Predicate Pred = I.getPredicate(); 6136 const APInt *C; 6137 if (match(Op1, m_APInt(C))) { 6138 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6139 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6140 Constant *Zero = Constant::getNullValue(Op0->getType()); 6141 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6142 } 6143 6144 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6145 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6146 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6147 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6148 } 6149 } 6150 6151 // The folds in here may rely on wrapping flags and special constants, so 6152 // they can break up min/max idioms in some cases but not seemingly similar 6153 // patterns. 6154 // FIXME: It may be possible to enhance select folding to make this 6155 // unnecessary. It may also be moot if we canonicalize to min/max 6156 // intrinsics. 6157 if (Instruction *Res = foldICmpBinOp(I, Q)) 6158 return Res; 6159 6160 if (Instruction *Res = foldICmpInstWithConstant(I)) 6161 return Res; 6162 6163 // Try to match comparison as a sign bit test. Intentionally do this after 6164 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6165 if (Instruction *New = foldSignBitTest(I)) 6166 return New; 6167 6168 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6169 return Res; 6170 6171 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6172 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6173 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6174 return NI; 6175 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6176 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6177 return NI; 6178 6179 if (auto *SI = dyn_cast<SelectInst>(Op0)) 6180 if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I)) 6181 return NI; 6182 if (auto *SI = dyn_cast<SelectInst>(Op1)) 6183 if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I)) 6184 return NI; 6185 6186 // Try to optimize equality comparisons against alloca-based pointers. 6187 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6188 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6189 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6190 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6191 return New; 6192 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6193 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6194 return New; 6195 } 6196 6197 if (Instruction *Res = foldICmpBitCast(I)) 6198 return Res; 6199 6200 // TODO: Hoist this above the min/max bailout. 6201 if (Instruction *R = foldICmpWithCastOp(I)) 6202 return R; 6203 6204 if (Instruction *Res = foldICmpWithMinMax(I)) 6205 return Res; 6206 6207 { 6208 Value *A, *B; 6209 // Transform (A & ~B) == 0 --> (A & B) != 0 6210 // and (A & ~B) != 0 --> (A & B) == 0 6211 // if A is a power of 2. 6212 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6213 match(Op1, m_Zero()) && 6214 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6215 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6216 Op1); 6217 6218 // ~X < ~Y --> Y < X 6219 // ~X < C --> X > ~C 6220 if (match(Op0, m_Not(m_Value(A)))) { 6221 if (match(Op1, m_Not(m_Value(B)))) 6222 return new ICmpInst(I.getPredicate(), B, A); 6223 6224 const APInt *C; 6225 if (match(Op1, m_APInt(C))) 6226 return new ICmpInst(I.getSwappedPredicate(), A, 6227 ConstantInt::get(Op1->getType(), ~(*C))); 6228 } 6229 6230 Instruction *AddI = nullptr; 6231 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6232 m_Instruction(AddI))) && 6233 isa<IntegerType>(A->getType())) { 6234 Value *Result; 6235 Constant *Overflow; 6236 // m_UAddWithOverflow can match patterns that do not include an explicit 6237 // "add" instruction, so check the opcode of the matched op. 6238 if (AddI->getOpcode() == Instruction::Add && 6239 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6240 Result, Overflow)) { 6241 replaceInstUsesWith(*AddI, Result); 6242 eraseInstFromFunction(*AddI); 6243 return replaceInstUsesWith(I, Overflow); 6244 } 6245 } 6246 6247 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6248 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6249 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6250 return R; 6251 } 6252 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6253 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6254 return R; 6255 } 6256 } 6257 6258 if (Instruction *Res = foldICmpEquality(I)) 6259 return Res; 6260 6261 if (Instruction *Res = foldICmpOfUAddOv(I)) 6262 return Res; 6263 6264 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6265 // an i1 which indicates whether or not we successfully did the swap. 6266 // 6267 // Replace comparisons between the old value and the expected value with the 6268 // indicator that 'cmpxchg' returns. 6269 // 6270 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6271 // spuriously fail. In those cases, the old value may equal the expected 6272 // value but it is possible for the swap to not occur. 6273 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6274 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6275 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6276 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6277 !ACXI->isWeak()) 6278 return ExtractValueInst::Create(ACXI, 1); 6279 6280 { 6281 Value *X; 6282 const APInt *C; 6283 // icmp X+Cst, X 6284 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6285 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6286 6287 // icmp X, X+Cst 6288 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6289 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6290 } 6291 6292 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6293 return Res; 6294 6295 if (I.getType()->isVectorTy()) 6296 if (Instruction *Res = foldVectorCmp(I, Builder)) 6297 return Res; 6298 6299 if (Instruction *Res = foldICmpInvariantGroup(I)) 6300 return Res; 6301 6302 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 6303 return Res; 6304 6305 return Changed ? &I : nullptr; 6306 } 6307 6308 /// Fold fcmp ([us]itofp x, cst) if possible. 6309 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6310 Instruction *LHSI, 6311 Constant *RHSC) { 6312 if (!isa<ConstantFP>(RHSC)) return nullptr; 6313 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6314 6315 // Get the width of the mantissa. We don't want to hack on conversions that 6316 // might lose information from the integer, e.g. "i64 -> float" 6317 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6318 if (MantissaWidth == -1) return nullptr; // Unknown. 6319 6320 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6321 6322 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6323 6324 if (I.isEquality()) { 6325 FCmpInst::Predicate P = I.getPredicate(); 6326 bool IsExact = false; 6327 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6328 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6329 6330 // If the floating point constant isn't an integer value, we know if we will 6331 // ever compare equal / not equal to it. 6332 if (!IsExact) { 6333 // TODO: Can never be -0.0 and other non-representable values 6334 APFloat RHSRoundInt(RHS); 6335 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6336 if (RHS != RHSRoundInt) { 6337 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6338 return replaceInstUsesWith(I, Builder.getFalse()); 6339 6340 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6341 return replaceInstUsesWith(I, Builder.getTrue()); 6342 } 6343 } 6344 6345 // TODO: If the constant is exactly representable, is it always OK to do 6346 // equality compares as integer? 6347 } 6348 6349 // Check to see that the input is converted from an integer type that is small 6350 // enough that preserves all bits. TODO: check here for "known" sign bits. 6351 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6352 unsigned InputSize = IntTy->getScalarSizeInBits(); 6353 6354 // Following test does NOT adjust InputSize downwards for signed inputs, 6355 // because the most negative value still requires all the mantissa bits 6356 // to distinguish it from one less than that value. 6357 if ((int)InputSize > MantissaWidth) { 6358 // Conversion would lose accuracy. Check if loss can impact comparison. 6359 int Exp = ilogb(RHS); 6360 if (Exp == APFloat::IEK_Inf) { 6361 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6362 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6363 // Conversion could create infinity. 6364 return nullptr; 6365 } else { 6366 // Note that if RHS is zero or NaN, then Exp is negative 6367 // and first condition is trivially false. 6368 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6369 // Conversion could affect comparison. 6370 return nullptr; 6371 } 6372 } 6373 6374 // Otherwise, we can potentially simplify the comparison. We know that it 6375 // will always come through as an integer value and we know the constant is 6376 // not a NAN (it would have been previously simplified). 6377 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6378 6379 ICmpInst::Predicate Pred; 6380 switch (I.getPredicate()) { 6381 default: llvm_unreachable("Unexpected predicate!"); 6382 case FCmpInst::FCMP_UEQ: 6383 case FCmpInst::FCMP_OEQ: 6384 Pred = ICmpInst::ICMP_EQ; 6385 break; 6386 case FCmpInst::FCMP_UGT: 6387 case FCmpInst::FCMP_OGT: 6388 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6389 break; 6390 case FCmpInst::FCMP_UGE: 6391 case FCmpInst::FCMP_OGE: 6392 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6393 break; 6394 case FCmpInst::FCMP_ULT: 6395 case FCmpInst::FCMP_OLT: 6396 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6397 break; 6398 case FCmpInst::FCMP_ULE: 6399 case FCmpInst::FCMP_OLE: 6400 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6401 break; 6402 case FCmpInst::FCMP_UNE: 6403 case FCmpInst::FCMP_ONE: 6404 Pred = ICmpInst::ICMP_NE; 6405 break; 6406 case FCmpInst::FCMP_ORD: 6407 return replaceInstUsesWith(I, Builder.getTrue()); 6408 case FCmpInst::FCMP_UNO: 6409 return replaceInstUsesWith(I, Builder.getFalse()); 6410 } 6411 6412 // Now we know that the APFloat is a normal number, zero or inf. 6413 6414 // See if the FP constant is too large for the integer. For example, 6415 // comparing an i8 to 300.0. 6416 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6417 6418 if (!LHSUnsigned) { 6419 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6420 // and large values. 6421 APFloat SMax(RHS.getSemantics()); 6422 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6423 APFloat::rmNearestTiesToEven); 6424 if (SMax < RHS) { // smax < 13123.0 6425 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6426 Pred == ICmpInst::ICMP_SLE) 6427 return replaceInstUsesWith(I, Builder.getTrue()); 6428 return replaceInstUsesWith(I, Builder.getFalse()); 6429 } 6430 } else { 6431 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6432 // +INF and large values. 6433 APFloat UMax(RHS.getSemantics()); 6434 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6435 APFloat::rmNearestTiesToEven); 6436 if (UMax < RHS) { // umax < 13123.0 6437 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6438 Pred == ICmpInst::ICMP_ULE) 6439 return replaceInstUsesWith(I, Builder.getTrue()); 6440 return replaceInstUsesWith(I, Builder.getFalse()); 6441 } 6442 } 6443 6444 if (!LHSUnsigned) { 6445 // See if the RHS value is < SignedMin. 6446 APFloat SMin(RHS.getSemantics()); 6447 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6448 APFloat::rmNearestTiesToEven); 6449 if (SMin > RHS) { // smin > 12312.0 6450 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6451 Pred == ICmpInst::ICMP_SGE) 6452 return replaceInstUsesWith(I, Builder.getTrue()); 6453 return replaceInstUsesWith(I, Builder.getFalse()); 6454 } 6455 } else { 6456 // See if the RHS value is < UnsignedMin. 6457 APFloat UMin(RHS.getSemantics()); 6458 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6459 APFloat::rmNearestTiesToEven); 6460 if (UMin > RHS) { // umin > 12312.0 6461 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6462 Pred == ICmpInst::ICMP_UGE) 6463 return replaceInstUsesWith(I, Builder.getTrue()); 6464 return replaceInstUsesWith(I, Builder.getFalse()); 6465 } 6466 } 6467 6468 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6469 // [0, UMAX], but it may still be fractional. See if it is fractional by 6470 // casting the FP value to the integer value and back, checking for equality. 6471 // Don't do this for zero, because -0.0 is not fractional. 6472 Constant *RHSInt = LHSUnsigned 6473 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6474 : ConstantExpr::getFPToSI(RHSC, IntTy); 6475 if (!RHS.isZero()) { 6476 bool Equal = LHSUnsigned 6477 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6478 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6479 if (!Equal) { 6480 // If we had a comparison against a fractional value, we have to adjust 6481 // the compare predicate and sometimes the value. RHSC is rounded towards 6482 // zero at this point. 6483 switch (Pred) { 6484 default: llvm_unreachable("Unexpected integer comparison!"); 6485 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6486 return replaceInstUsesWith(I, Builder.getTrue()); 6487 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6488 return replaceInstUsesWith(I, Builder.getFalse()); 6489 case ICmpInst::ICMP_ULE: 6490 // (float)int <= 4.4 --> int <= 4 6491 // (float)int <= -4.4 --> false 6492 if (RHS.isNegative()) 6493 return replaceInstUsesWith(I, Builder.getFalse()); 6494 break; 6495 case ICmpInst::ICMP_SLE: 6496 // (float)int <= 4.4 --> int <= 4 6497 // (float)int <= -4.4 --> int < -4 6498 if (RHS.isNegative()) 6499 Pred = ICmpInst::ICMP_SLT; 6500 break; 6501 case ICmpInst::ICMP_ULT: 6502 // (float)int < -4.4 --> false 6503 // (float)int < 4.4 --> int <= 4 6504 if (RHS.isNegative()) 6505 return replaceInstUsesWith(I, Builder.getFalse()); 6506 Pred = ICmpInst::ICMP_ULE; 6507 break; 6508 case ICmpInst::ICMP_SLT: 6509 // (float)int < -4.4 --> int < -4 6510 // (float)int < 4.4 --> int <= 4 6511 if (!RHS.isNegative()) 6512 Pred = ICmpInst::ICMP_SLE; 6513 break; 6514 case ICmpInst::ICMP_UGT: 6515 // (float)int > 4.4 --> int > 4 6516 // (float)int > -4.4 --> true 6517 if (RHS.isNegative()) 6518 return replaceInstUsesWith(I, Builder.getTrue()); 6519 break; 6520 case ICmpInst::ICMP_SGT: 6521 // (float)int > 4.4 --> int > 4 6522 // (float)int > -4.4 --> int >= -4 6523 if (RHS.isNegative()) 6524 Pred = ICmpInst::ICMP_SGE; 6525 break; 6526 case ICmpInst::ICMP_UGE: 6527 // (float)int >= -4.4 --> true 6528 // (float)int >= 4.4 --> int > 4 6529 if (RHS.isNegative()) 6530 return replaceInstUsesWith(I, Builder.getTrue()); 6531 Pred = ICmpInst::ICMP_UGT; 6532 break; 6533 case ICmpInst::ICMP_SGE: 6534 // (float)int >= -4.4 --> int >= -4 6535 // (float)int >= 4.4 --> int > 4 6536 if (!RHS.isNegative()) 6537 Pred = ICmpInst::ICMP_SGT; 6538 break; 6539 } 6540 } 6541 } 6542 6543 // Lower this FP comparison into an appropriate integer version of the 6544 // comparison. 6545 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6546 } 6547 6548 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6549 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6550 Constant *RHSC) { 6551 // When C is not 0.0 and infinities are not allowed: 6552 // (C / X) < 0.0 is a sign-bit test of X 6553 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6554 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6555 // 6556 // Proof: 6557 // Multiply (C / X) < 0.0 by X * X / C. 6558 // - X is non zero, if it is the flag 'ninf' is violated. 6559 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6560 // the predicate. C is also non zero by definition. 6561 // 6562 // Thus X * X / C is non zero and the transformation is valid. [qed] 6563 6564 FCmpInst::Predicate Pred = I.getPredicate(); 6565 6566 // Check that predicates are valid. 6567 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6568 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6569 return nullptr; 6570 6571 // Check that RHS operand is zero. 6572 if (!match(RHSC, m_AnyZeroFP())) 6573 return nullptr; 6574 6575 // Check fastmath flags ('ninf'). 6576 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6577 return nullptr; 6578 6579 // Check the properties of the dividend. It must not be zero to avoid a 6580 // division by zero (see Proof). 6581 const APFloat *C; 6582 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6583 return nullptr; 6584 6585 if (C->isZero()) 6586 return nullptr; 6587 6588 // Get swapped predicate if necessary. 6589 if (C->isNegative()) 6590 Pred = I.getSwappedPredicate(); 6591 6592 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6593 } 6594 6595 /// Optimize fabs(X) compared with zero. 6596 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6597 Value *X; 6598 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6599 !match(I.getOperand(1), m_PosZeroFP())) 6600 return nullptr; 6601 6602 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6603 I->setPredicate(P); 6604 return IC.replaceOperand(*I, 0, X); 6605 }; 6606 6607 switch (I.getPredicate()) { 6608 case FCmpInst::FCMP_UGE: 6609 case FCmpInst::FCMP_OLT: 6610 // fabs(X) >= 0.0 --> true 6611 // fabs(X) < 0.0 --> false 6612 llvm_unreachable("fcmp should have simplified"); 6613 6614 case FCmpInst::FCMP_OGT: 6615 // fabs(X) > 0.0 --> X != 0.0 6616 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6617 6618 case FCmpInst::FCMP_UGT: 6619 // fabs(X) u> 0.0 --> X u!= 0.0 6620 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6621 6622 case FCmpInst::FCMP_OLE: 6623 // fabs(X) <= 0.0 --> X == 0.0 6624 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6625 6626 case FCmpInst::FCMP_ULE: 6627 // fabs(X) u<= 0.0 --> X u== 0.0 6628 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6629 6630 case FCmpInst::FCMP_OGE: 6631 // fabs(X) >= 0.0 --> !isnan(X) 6632 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6633 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6634 6635 case FCmpInst::FCMP_ULT: 6636 // fabs(X) u< 0.0 --> isnan(X) 6637 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6638 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6639 6640 case FCmpInst::FCMP_OEQ: 6641 case FCmpInst::FCMP_UEQ: 6642 case FCmpInst::FCMP_ONE: 6643 case FCmpInst::FCMP_UNE: 6644 case FCmpInst::FCMP_ORD: 6645 case FCmpInst::FCMP_UNO: 6646 // Look through the fabs() because it doesn't change anything but the sign. 6647 // fabs(X) == 0.0 --> X == 0.0, 6648 // fabs(X) != 0.0 --> X != 0.0 6649 // isnan(fabs(X)) --> isnan(X) 6650 // !isnan(fabs(X) --> !isnan(X) 6651 return replacePredAndOp0(&I, I.getPredicate(), X); 6652 6653 default: 6654 return nullptr; 6655 } 6656 } 6657 6658 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 6659 CmpInst::Predicate Pred = I.getPredicate(); 6660 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6661 6662 // Canonicalize fneg as Op1. 6663 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 6664 std::swap(Op0, Op1); 6665 Pred = I.getSwappedPredicate(); 6666 } 6667 6668 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 6669 return nullptr; 6670 6671 // Replace the negated operand with 0.0: 6672 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 6673 Constant *Zero = ConstantFP::getNullValue(Op0->getType()); 6674 return new FCmpInst(Pred, Op0, Zero, "", &I); 6675 } 6676 6677 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6678 bool Changed = false; 6679 6680 /// Orders the operands of the compare so that they are listed from most 6681 /// complex to least complex. This puts constants before unary operators, 6682 /// before binary operators. 6683 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6684 I.swapOperands(); 6685 Changed = true; 6686 } 6687 6688 const CmpInst::Predicate Pred = I.getPredicate(); 6689 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6690 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6691 SQ.getWithInstruction(&I))) 6692 return replaceInstUsesWith(I, V); 6693 6694 // Simplify 'fcmp pred X, X' 6695 Type *OpType = Op0->getType(); 6696 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6697 if (Op0 == Op1) { 6698 switch (Pred) { 6699 default: break; 6700 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6701 case FCmpInst::FCMP_ULT: // True if unordered or less than 6702 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6703 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6704 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6705 I.setPredicate(FCmpInst::FCMP_UNO); 6706 I.setOperand(1, Constant::getNullValue(OpType)); 6707 return &I; 6708 6709 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6710 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6711 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6712 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6713 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6714 I.setPredicate(FCmpInst::FCMP_ORD); 6715 I.setOperand(1, Constant::getNullValue(OpType)); 6716 return &I; 6717 } 6718 } 6719 6720 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6721 // then canonicalize the operand to 0.0. 6722 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6723 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6724 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6725 6726 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6727 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6728 } 6729 6730 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6731 Value *X, *Y; 6732 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6733 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6734 6735 if (Instruction *R = foldFCmpFNegCommonOp(I)) 6736 return R; 6737 6738 // Test if the FCmpInst instruction is used exclusively by a select as 6739 // part of a minimum or maximum operation. If so, refrain from doing 6740 // any other folding. This helps out other analyses which understand 6741 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6742 // and CodeGen. And in this case, at least one of the comparison 6743 // operands has at least one user besides the compare (the select), 6744 // which would often largely negate the benefit of folding anyway. 6745 if (I.hasOneUse()) 6746 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6747 Value *A, *B; 6748 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6749 if (SPR.Flavor != SPF_UNKNOWN) 6750 return nullptr; 6751 } 6752 6753 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6754 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6755 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6756 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6757 6758 // Handle fcmp with instruction LHS and constant RHS. 6759 Instruction *LHSI; 6760 Constant *RHSC; 6761 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6762 switch (LHSI->getOpcode()) { 6763 case Instruction::PHI: 6764 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6765 // block. If in the same block, we're encouraging jump threading. If 6766 // not, we are just pessimizing the code by making an i1 phi. 6767 if (LHSI->getParent() == I.getParent()) 6768 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6769 return NV; 6770 break; 6771 case Instruction::SIToFP: 6772 case Instruction::UIToFP: 6773 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6774 return NV; 6775 break; 6776 case Instruction::FDiv: 6777 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6778 return NV; 6779 break; 6780 case Instruction::Load: 6781 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6782 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6783 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 6784 cast<LoadInst>(LHSI), GEP, GV, I)) 6785 return Res; 6786 break; 6787 } 6788 } 6789 6790 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6791 return R; 6792 6793 if (match(Op0, m_FNeg(m_Value(X)))) { 6794 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6795 Constant *C; 6796 if (match(Op1, m_Constant(C))) { 6797 Constant *NegC = ConstantExpr::getFNeg(C); 6798 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6799 } 6800 } 6801 6802 if (match(Op0, m_FPExt(m_Value(X)))) { 6803 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6804 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6805 return new FCmpInst(Pred, X, Y, "", &I); 6806 6807 const APFloat *C; 6808 if (match(Op1, m_APFloat(C))) { 6809 const fltSemantics &FPSem = 6810 X->getType()->getScalarType()->getFltSemantics(); 6811 bool Lossy; 6812 APFloat TruncC = *C; 6813 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6814 6815 if (Lossy) { 6816 // X can't possibly equal the higher-precision constant, so reduce any 6817 // equality comparison. 6818 // TODO: Other predicates can be handled via getFCmpCode(). 6819 switch (Pred) { 6820 case FCmpInst::FCMP_OEQ: 6821 // X is ordered and equal to an impossible constant --> false 6822 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6823 case FCmpInst::FCMP_ONE: 6824 // X is ordered and not equal to an impossible constant --> ordered 6825 return new FCmpInst(FCmpInst::FCMP_ORD, X, 6826 ConstantFP::getNullValue(X->getType())); 6827 case FCmpInst::FCMP_UEQ: 6828 // X is unordered or equal to an impossible constant --> unordered 6829 return new FCmpInst(FCmpInst::FCMP_UNO, X, 6830 ConstantFP::getNullValue(X->getType())); 6831 case FCmpInst::FCMP_UNE: 6832 // X is unordered or not equal to an impossible constant --> true 6833 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6834 default: 6835 break; 6836 } 6837 } 6838 6839 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6840 // Avoid lossy conversions and denormals. 6841 // Zero is a special case that's OK to convert. 6842 APFloat Fabs = TruncC; 6843 Fabs.clearSign(); 6844 if (!Lossy && 6845 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6846 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6847 return new FCmpInst(Pred, X, NewC, "", &I); 6848 } 6849 } 6850 } 6851 6852 // Convert a sign-bit test of an FP value into a cast and integer compare. 6853 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6854 // TODO: Handle non-zero compare constants. 6855 // TODO: Handle other predicates. 6856 const APFloat *C; 6857 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6858 m_Value(X)))) && 6859 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6860 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6861 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6862 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6863 6864 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6865 if (Pred == FCmpInst::FCMP_OLT) { 6866 Value *IntX = Builder.CreateBitCast(X, IntType); 6867 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6868 ConstantInt::getNullValue(IntType)); 6869 } 6870 } 6871 6872 if (I.getType()->isVectorTy()) 6873 if (Instruction *Res = foldVectorCmp(I, Builder)) 6874 return Res; 6875 6876 return Changed ? &I : nullptr; 6877 } 6878