1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41                             const APInt &In2, bool IsSigned = false) {
42   bool Overflow;
43   if (IsSigned)
44     Result = In1.sadd_ov(In2, Overflow);
45   else
46     Result = In1.uadd_ov(In2, Overflow);
47 
48   return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54                             const APInt &In2, bool IsSigned = false) {
55   bool Overflow;
56   if (IsSigned)
57     Result = In1.ssub_ov(In2, Overflow);
58   else
59     Result = In1.usub_ov(In2, Overflow);
60 
61   return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
66 static bool hasBranchUse(ICmpInst &I) {
67   for (auto *U : I.users())
68     if (isa<BranchInst>(U))
69       return true;
70   return false;
71 }
72 
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78   if (!ICmpInst::isSigned(Pred))
79     return false;
80 
81   if (C.isNullValue())
82     return ICmpInst::isRelational(Pred);
83 
84   if (C.isOneValue()) {
85     if (Pred == ICmpInst::ICMP_SLT) {
86       Pred = ICmpInst::ICMP_SLE;
87       return true;
88     }
89   } else if (C.isAllOnesValue()) {
90     if (Pred == ICmpInst::ICMP_SGT) {
91       Pred = ICmpInst::ICMP_SGE;
92       return true;
93     }
94   }
95 
96   return false;
97 }
98 
99 /// Given a signed integer type and a set of known zero and one bits, compute
100 /// the maximum and minimum values that could have the specified known zero and
101 /// known one bits, returning them in Min/Max.
102 /// TODO: Move to method on KnownBits struct?
103 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
104                                                    APInt &Min, APInt &Max) {
105   assert(Known.getBitWidth() == Min.getBitWidth() &&
106          Known.getBitWidth() == Max.getBitWidth() &&
107          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
108   APInt UnknownBits = ~(Known.Zero|Known.One);
109 
110   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
111   // bit if it is unknown.
112   Min = Known.One;
113   Max = Known.One|UnknownBits;
114 
115   if (UnknownBits.isNegative()) { // Sign bit is unknown
116     Min.setSignBit();
117     Max.clearSignBit();
118   }
119 }
120 
121 /// Given an unsigned integer type and a set of known zero and one bits, compute
122 /// the maximum and minimum values that could have the specified known zero and
123 /// known one bits, returning them in Min/Max.
124 /// TODO: Move to method on KnownBits struct?
125 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
126                                                      APInt &Min, APInt &Max) {
127   assert(Known.getBitWidth() == Min.getBitWidth() &&
128          Known.getBitWidth() == Max.getBitWidth() &&
129          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
130   APInt UnknownBits = ~(Known.Zero|Known.One);
131 
132   // The minimum value is when the unknown bits are all zeros.
133   Min = Known.One;
134   // The maximum value is when the unknown bits are all ones.
135   Max = Known.One|UnknownBits;
136 }
137 
138 /// This is called when we see this pattern:
139 ///   cmp pred (load (gep GV, ...)), cmpcst
140 /// where GV is a global variable with a constant initializer. Try to simplify
141 /// this into some simple computation that does not need the load. For example
142 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
143 ///
144 /// If AndCst is non-null, then the loaded value is masked with that constant
145 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
146 Instruction *
147 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
148                                                GlobalVariable *GV, CmpInst &ICI,
149                                                ConstantInt *AndCst) {
150   Constant *Init = GV->getInitializer();
151   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
152     return nullptr;
153 
154   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
155   // Don't blow up on huge arrays.
156   if (ArrayElementCount > MaxArraySizeForCombine)
157     return nullptr;
158 
159   // There are many forms of this optimization we can handle, for now, just do
160   // the simple index into a single-dimensional array.
161   //
162   // Require: GEP GV, 0, i {{, constant indices}}
163   if (GEP->getNumOperands() < 3 ||
164       !isa<ConstantInt>(GEP->getOperand(1)) ||
165       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
166       isa<Constant>(GEP->getOperand(2)))
167     return nullptr;
168 
169   // Check that indices after the variable are constants and in-range for the
170   // type they index.  Collect the indices.  This is typically for arrays of
171   // structs.
172   SmallVector<unsigned, 4> LaterIndices;
173 
174   Type *EltTy = Init->getType()->getArrayElementType();
175   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
176     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
177     if (!Idx) return nullptr;  // Variable index.
178 
179     uint64_t IdxVal = Idx->getZExtValue();
180     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
181 
182     if (StructType *STy = dyn_cast<StructType>(EltTy))
183       EltTy = STy->getElementType(IdxVal);
184     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
185       if (IdxVal >= ATy->getNumElements()) return nullptr;
186       EltTy = ATy->getElementType();
187     } else {
188       return nullptr; // Unknown type.
189     }
190 
191     LaterIndices.push_back(IdxVal);
192   }
193 
194   enum { Overdefined = -3, Undefined = -2 };
195 
196   // Variables for our state machines.
197 
198   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
199   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
200   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
201   // undefined, otherwise set to the first true element.  SecondTrueElement is
202   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
203   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
204 
205   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
206   // form "i != 47 & i != 87".  Same state transitions as for true elements.
207   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
208 
209   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
210   /// define a state machine that triggers for ranges of values that the index
211   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
212   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
213   /// index in the range (inclusive).  We use -2 for undefined here because we
214   /// use relative comparisons and don't want 0-1 to match -1.
215   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
216 
217   // MagicBitvector - This is a magic bitvector where we set a bit if the
218   // comparison is true for element 'i'.  If there are 64 elements or less in
219   // the array, this will fully represent all the comparison results.
220   uint64_t MagicBitvector = 0;
221 
222   // Scan the array and see if one of our patterns matches.
223   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
224   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
225     Constant *Elt = Init->getAggregateElement(i);
226     if (!Elt) return nullptr;
227 
228     // If this is indexing an array of structures, get the structure element.
229     if (!LaterIndices.empty())
230       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
231 
232     // If the element is masked, handle it.
233     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
234 
235     // Find out if the comparison would be true or false for the i'th element.
236     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
237                                                   CompareRHS, DL, &TLI);
238     // If the result is undef for this element, ignore it.
239     if (isa<UndefValue>(C)) {
240       // Extend range state machines to cover this element in case there is an
241       // undef in the middle of the range.
242       if (TrueRangeEnd == (int)i-1)
243         TrueRangeEnd = i;
244       if (FalseRangeEnd == (int)i-1)
245         FalseRangeEnd = i;
246       continue;
247     }
248 
249     // If we can't compute the result for any of the elements, we have to give
250     // up evaluating the entire conditional.
251     if (!isa<ConstantInt>(C)) return nullptr;
252 
253     // Otherwise, we know if the comparison is true or false for this element,
254     // update our state machines.
255     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
256 
257     // State machine for single/double/range index comparison.
258     if (IsTrueForElt) {
259       // Update the TrueElement state machine.
260       if (FirstTrueElement == Undefined)
261         FirstTrueElement = TrueRangeEnd = i;  // First true element.
262       else {
263         // Update double-compare state machine.
264         if (SecondTrueElement == Undefined)
265           SecondTrueElement = i;
266         else
267           SecondTrueElement = Overdefined;
268 
269         // Update range state machine.
270         if (TrueRangeEnd == (int)i-1)
271           TrueRangeEnd = i;
272         else
273           TrueRangeEnd = Overdefined;
274       }
275     } else {
276       // Update the FalseElement state machine.
277       if (FirstFalseElement == Undefined)
278         FirstFalseElement = FalseRangeEnd = i; // First false element.
279       else {
280         // Update double-compare state machine.
281         if (SecondFalseElement == Undefined)
282           SecondFalseElement = i;
283         else
284           SecondFalseElement = Overdefined;
285 
286         // Update range state machine.
287         if (FalseRangeEnd == (int)i-1)
288           FalseRangeEnd = i;
289         else
290           FalseRangeEnd = Overdefined;
291       }
292     }
293 
294     // If this element is in range, update our magic bitvector.
295     if (i < 64 && IsTrueForElt)
296       MagicBitvector |= 1ULL << i;
297 
298     // If all of our states become overdefined, bail out early.  Since the
299     // predicate is expensive, only check it every 8 elements.  This is only
300     // really useful for really huge arrays.
301     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
302         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
303         FalseRangeEnd == Overdefined)
304       return nullptr;
305   }
306 
307   // Now that we've scanned the entire array, emit our new comparison(s).  We
308   // order the state machines in complexity of the generated code.
309   Value *Idx = GEP->getOperand(2);
310 
311   // If the index is larger than the pointer size of the target, truncate the
312   // index down like the GEP would do implicitly.  We don't have to do this for
313   // an inbounds GEP because the index can't be out of range.
314   if (!GEP->isInBounds()) {
315     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
316     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
317     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
318       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
319   }
320 
321   // If the comparison is only true for one or two elements, emit direct
322   // comparisons.
323   if (SecondTrueElement != Overdefined) {
324     // None true -> false.
325     if (FirstTrueElement == Undefined)
326       return replaceInstUsesWith(ICI, Builder.getFalse());
327 
328     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
329 
330     // True for one element -> 'i == 47'.
331     if (SecondTrueElement == Undefined)
332       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
333 
334     // True for two elements -> 'i == 47 | i == 72'.
335     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
336     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
337     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
338     return BinaryOperator::CreateOr(C1, C2);
339   }
340 
341   // If the comparison is only false for one or two elements, emit direct
342   // comparisons.
343   if (SecondFalseElement != Overdefined) {
344     // None false -> true.
345     if (FirstFalseElement == Undefined)
346       return replaceInstUsesWith(ICI, Builder.getTrue());
347 
348     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
349 
350     // False for one element -> 'i != 47'.
351     if (SecondFalseElement == Undefined)
352       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
353 
354     // False for two elements -> 'i != 47 & i != 72'.
355     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
356     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
357     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
358     return BinaryOperator::CreateAnd(C1, C2);
359   }
360 
361   // If the comparison can be replaced with a range comparison for the elements
362   // where it is true, emit the range check.
363   if (TrueRangeEnd != Overdefined) {
364     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
365 
366     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
367     if (FirstTrueElement) {
368       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
369       Idx = Builder.CreateAdd(Idx, Offs);
370     }
371 
372     Value *End = ConstantInt::get(Idx->getType(),
373                                   TrueRangeEnd-FirstTrueElement+1);
374     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
375   }
376 
377   // False range check.
378   if (FalseRangeEnd != Overdefined) {
379     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
380     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
381     if (FirstFalseElement) {
382       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
383       Idx = Builder.CreateAdd(Idx, Offs);
384     }
385 
386     Value *End = ConstantInt::get(Idx->getType(),
387                                   FalseRangeEnd-FirstFalseElement);
388     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
389   }
390 
391   // If a magic bitvector captures the entire comparison state
392   // of this load, replace it with computation that does:
393   //   ((magic_cst >> i) & 1) != 0
394   {
395     Type *Ty = nullptr;
396 
397     // Look for an appropriate type:
398     // - The type of Idx if the magic fits
399     // - The smallest fitting legal type
400     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
401       Ty = Idx->getType();
402     else
403       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
404 
405     if (Ty) {
406       Value *V = Builder.CreateIntCast(Idx, Ty, false);
407       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
408       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
409       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
410     }
411   }
412 
413   return nullptr;
414 }
415 
416 /// Return a value that can be used to compare the *offset* implied by a GEP to
417 /// zero. For example, if we have &A[i], we want to return 'i' for
418 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
419 /// are involved. The above expression would also be legal to codegen as
420 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
421 /// This latter form is less amenable to optimization though, and we are allowed
422 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
423 ///
424 /// If we can't emit an optimized form for this expression, this returns null.
425 ///
426 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
427                                           const DataLayout &DL) {
428   gep_type_iterator GTI = gep_type_begin(GEP);
429 
430   // Check to see if this gep only has a single variable index.  If so, and if
431   // any constant indices are a multiple of its scale, then we can compute this
432   // in terms of the scale of the variable index.  For example, if the GEP
433   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
434   // because the expression will cross zero at the same point.
435   unsigned i, e = GEP->getNumOperands();
436   int64_t Offset = 0;
437   for (i = 1; i != e; ++i, ++GTI) {
438     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
439       // Compute the aggregate offset of constant indices.
440       if (CI->isZero()) continue;
441 
442       // Handle a struct index, which adds its field offset to the pointer.
443       if (StructType *STy = GTI.getStructTypeOrNull()) {
444         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
445       } else {
446         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
447         Offset += Size*CI->getSExtValue();
448       }
449     } else {
450       // Found our variable index.
451       break;
452     }
453   }
454 
455   // If there are no variable indices, we must have a constant offset, just
456   // evaluate it the general way.
457   if (i == e) return nullptr;
458 
459   Value *VariableIdx = GEP->getOperand(i);
460   // Determine the scale factor of the variable element.  For example, this is
461   // 4 if the variable index is into an array of i32.
462   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
463 
464   // Verify that there are no other variable indices.  If so, emit the hard way.
465   for (++i, ++GTI; i != e; ++i, ++GTI) {
466     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
467     if (!CI) return nullptr;
468 
469     // Compute the aggregate offset of constant indices.
470     if (CI->isZero()) continue;
471 
472     // Handle a struct index, which adds its field offset to the pointer.
473     if (StructType *STy = GTI.getStructTypeOrNull()) {
474       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
475     } else {
476       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
477       Offset += Size*CI->getSExtValue();
478     }
479   }
480 
481   // Okay, we know we have a single variable index, which must be a
482   // pointer/array/vector index.  If there is no offset, life is simple, return
483   // the index.
484   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
485   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
486   if (Offset == 0) {
487     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
488     // we don't need to bother extending: the extension won't affect where the
489     // computation crosses zero.
490     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
491       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
492     }
493     return VariableIdx;
494   }
495 
496   // Otherwise, there is an index.  The computation we will do will be modulo
497   // the pointer size.
498   Offset = SignExtend64(Offset, IntPtrWidth);
499   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
500 
501   // To do this transformation, any constant index must be a multiple of the
502   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
503   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
504   // multiple of the variable scale.
505   int64_t NewOffs = Offset / (int64_t)VariableScale;
506   if (Offset != NewOffs*(int64_t)VariableScale)
507     return nullptr;
508 
509   // Okay, we can do this evaluation.  Start by converting the index to intptr.
510   if (VariableIdx->getType() != IntPtrTy)
511     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
512                                             true /*Signed*/);
513   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
514   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
515 }
516 
517 /// Returns true if we can rewrite Start as a GEP with pointer Base
518 /// and some integer offset. The nodes that need to be re-written
519 /// for this transformation will be added to Explored.
520 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
521                                   const DataLayout &DL,
522                                   SetVector<Value *> &Explored) {
523   SmallVector<Value *, 16> WorkList(1, Start);
524   Explored.insert(Base);
525 
526   // The following traversal gives us an order which can be used
527   // when doing the final transformation. Since in the final
528   // transformation we create the PHI replacement instructions first,
529   // we don't have to get them in any particular order.
530   //
531   // However, for other instructions we will have to traverse the
532   // operands of an instruction first, which means that we have to
533   // do a post-order traversal.
534   while (!WorkList.empty()) {
535     SetVector<PHINode *> PHIs;
536 
537     while (!WorkList.empty()) {
538       if (Explored.size() >= 100)
539         return false;
540 
541       Value *V = WorkList.back();
542 
543       if (Explored.count(V) != 0) {
544         WorkList.pop_back();
545         continue;
546       }
547 
548       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
549           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
550         // We've found some value that we can't explore which is different from
551         // the base. Therefore we can't do this transformation.
552         return false;
553 
554       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
555         auto *CI = cast<CastInst>(V);
556         if (!CI->isNoopCast(DL))
557           return false;
558 
559         if (Explored.count(CI->getOperand(0)) == 0)
560           WorkList.push_back(CI->getOperand(0));
561       }
562 
563       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
564         // We're limiting the GEP to having one index. This will preserve
565         // the original pointer type. We could handle more cases in the
566         // future.
567         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
568             GEP->getType() != Start->getType())
569           return false;
570 
571         if (Explored.count(GEP->getOperand(0)) == 0)
572           WorkList.push_back(GEP->getOperand(0));
573       }
574 
575       if (WorkList.back() == V) {
576         WorkList.pop_back();
577         // We've finished visiting this node, mark it as such.
578         Explored.insert(V);
579       }
580 
581       if (auto *PN = dyn_cast<PHINode>(V)) {
582         // We cannot transform PHIs on unsplittable basic blocks.
583         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
584           return false;
585         Explored.insert(PN);
586         PHIs.insert(PN);
587       }
588     }
589 
590     // Explore the PHI nodes further.
591     for (auto *PN : PHIs)
592       for (Value *Op : PN->incoming_values())
593         if (Explored.count(Op) == 0)
594           WorkList.push_back(Op);
595   }
596 
597   // Make sure that we can do this. Since we can't insert GEPs in a basic
598   // block before a PHI node, we can't easily do this transformation if
599   // we have PHI node users of transformed instructions.
600   for (Value *Val : Explored) {
601     for (Value *Use : Val->uses()) {
602 
603       auto *PHI = dyn_cast<PHINode>(Use);
604       auto *Inst = dyn_cast<Instruction>(Val);
605 
606       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
607           Explored.count(PHI) == 0)
608         continue;
609 
610       if (PHI->getParent() == Inst->getParent())
611         return false;
612     }
613   }
614   return true;
615 }
616 
617 // Sets the appropriate insert point on Builder where we can add
618 // a replacement Instruction for V (if that is possible).
619 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
620                               bool Before = true) {
621   if (auto *PHI = dyn_cast<PHINode>(V)) {
622     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
623     return;
624   }
625   if (auto *I = dyn_cast<Instruction>(V)) {
626     if (!Before)
627       I = &*std::next(I->getIterator());
628     Builder.SetInsertPoint(I);
629     return;
630   }
631   if (auto *A = dyn_cast<Argument>(V)) {
632     // Set the insertion point in the entry block.
633     BasicBlock &Entry = A->getParent()->getEntryBlock();
634     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
635     return;
636   }
637   // Otherwise, this is a constant and we don't need to set a new
638   // insertion point.
639   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
640 }
641 
642 /// Returns a re-written value of Start as an indexed GEP using Base as a
643 /// pointer.
644 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
645                                  const DataLayout &DL,
646                                  SetVector<Value *> &Explored) {
647   // Perform all the substitutions. This is a bit tricky because we can
648   // have cycles in our use-def chains.
649   // 1. Create the PHI nodes without any incoming values.
650   // 2. Create all the other values.
651   // 3. Add the edges for the PHI nodes.
652   // 4. Emit GEPs to get the original pointers.
653   // 5. Remove the original instructions.
654   Type *IndexType = IntegerType::get(
655       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
656 
657   DenseMap<Value *, Value *> NewInsts;
658   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
659 
660   // Create the new PHI nodes, without adding any incoming values.
661   for (Value *Val : Explored) {
662     if (Val == Base)
663       continue;
664     // Create empty phi nodes. This avoids cyclic dependencies when creating
665     // the remaining instructions.
666     if (auto *PHI = dyn_cast<PHINode>(Val))
667       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
668                                       PHI->getName() + ".idx", PHI);
669   }
670   IRBuilder<> Builder(Base->getContext());
671 
672   // Create all the other instructions.
673   for (Value *Val : Explored) {
674 
675     if (NewInsts.find(Val) != NewInsts.end())
676       continue;
677 
678     if (auto *CI = dyn_cast<CastInst>(Val)) {
679       // Don't get rid of the intermediate variable here; the store can grow
680       // the map which will invalidate the reference to the input value.
681       Value *V = NewInsts[CI->getOperand(0)];
682       NewInsts[CI] = V;
683       continue;
684     }
685     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
686       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
687                                                   : GEP->getOperand(1);
688       setInsertionPoint(Builder, GEP);
689       // Indices might need to be sign extended. GEPs will magically do
690       // this, but we need to do it ourselves here.
691       if (Index->getType()->getScalarSizeInBits() !=
692           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
693         Index = Builder.CreateSExtOrTrunc(
694             Index, NewInsts[GEP->getOperand(0)]->getType(),
695             GEP->getOperand(0)->getName() + ".sext");
696       }
697 
698       auto *Op = NewInsts[GEP->getOperand(0)];
699       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
700         NewInsts[GEP] = Index;
701       else
702         NewInsts[GEP] = Builder.CreateNSWAdd(
703             Op, Index, GEP->getOperand(0)->getName() + ".add");
704       continue;
705     }
706     if (isa<PHINode>(Val))
707       continue;
708 
709     llvm_unreachable("Unexpected instruction type");
710   }
711 
712   // Add the incoming values to the PHI nodes.
713   for (Value *Val : Explored) {
714     if (Val == Base)
715       continue;
716     // All the instructions have been created, we can now add edges to the
717     // phi nodes.
718     if (auto *PHI = dyn_cast<PHINode>(Val)) {
719       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
720       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
721         Value *NewIncoming = PHI->getIncomingValue(I);
722 
723         if (NewInsts.find(NewIncoming) != NewInsts.end())
724           NewIncoming = NewInsts[NewIncoming];
725 
726         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
727       }
728     }
729   }
730 
731   for (Value *Val : Explored) {
732     if (Val == Base)
733       continue;
734 
735     // Depending on the type, for external users we have to emit
736     // a GEP or a GEP + ptrtoint.
737     setInsertionPoint(Builder, Val, false);
738 
739     // If required, create an inttoptr instruction for Base.
740     Value *NewBase = Base;
741     if (!Base->getType()->isPointerTy())
742       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
743                                                Start->getName() + "to.ptr");
744 
745     Value *GEP = Builder.CreateInBoundsGEP(
746         Start->getType()->getPointerElementType(), NewBase,
747         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
748 
749     if (!Val->getType()->isPointerTy()) {
750       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
751                                               Val->getName() + ".conv");
752       GEP = Cast;
753     }
754     Val->replaceAllUsesWith(GEP);
755   }
756 
757   return NewInsts[Start];
758 }
759 
760 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
761 /// the input Value as a constant indexed GEP. Returns a pair containing
762 /// the GEPs Pointer and Index.
763 static std::pair<Value *, Value *>
764 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
765   Type *IndexType = IntegerType::get(V->getContext(),
766                                      DL.getIndexTypeSizeInBits(V->getType()));
767 
768   Constant *Index = ConstantInt::getNullValue(IndexType);
769   while (true) {
770     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
771       // We accept only inbouds GEPs here to exclude the possibility of
772       // overflow.
773       if (!GEP->isInBounds())
774         break;
775       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
776           GEP->getType() == V->getType()) {
777         V = GEP->getOperand(0);
778         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
779         Index = ConstantExpr::getAdd(
780             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
781         continue;
782       }
783       break;
784     }
785     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
786       if (!CI->isNoopCast(DL))
787         break;
788       V = CI->getOperand(0);
789       continue;
790     }
791     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
792       if (!CI->isNoopCast(DL))
793         break;
794       V = CI->getOperand(0);
795       continue;
796     }
797     break;
798   }
799   return {V, Index};
800 }
801 
802 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
803 /// We can look through PHIs, GEPs and casts in order to determine a common base
804 /// between GEPLHS and RHS.
805 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
806                                               ICmpInst::Predicate Cond,
807                                               const DataLayout &DL) {
808   // FIXME: Support vector of pointers.
809   if (GEPLHS->getType()->isVectorTy())
810     return nullptr;
811 
812   if (!GEPLHS->hasAllConstantIndices())
813     return nullptr;
814 
815   // Make sure the pointers have the same type.
816   if (GEPLHS->getType() != RHS->getType())
817     return nullptr;
818 
819   Value *PtrBase, *Index;
820   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
821 
822   // The set of nodes that will take part in this transformation.
823   SetVector<Value *> Nodes;
824 
825   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
826     return nullptr;
827 
828   // We know we can re-write this as
829   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
830   // Since we've only looked through inbouds GEPs we know that we
831   // can't have overflow on either side. We can therefore re-write
832   // this as:
833   //   OFFSET1 cmp OFFSET2
834   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
835 
836   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
837   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
838   // offset. Since Index is the offset of LHS to the base pointer, we will now
839   // compare the offsets instead of comparing the pointers.
840   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
841 }
842 
843 /// Fold comparisons between a GEP instruction and something else. At this point
844 /// we know that the GEP is on the LHS of the comparison.
845 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
846                                            ICmpInst::Predicate Cond,
847                                            Instruction &I) {
848   // Don't transform signed compares of GEPs into index compares. Even if the
849   // GEP is inbounds, the final add of the base pointer can have signed overflow
850   // and would change the result of the icmp.
851   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
852   // the maximum signed value for the pointer type.
853   if (ICmpInst::isSigned(Cond))
854     return nullptr;
855 
856   // Look through bitcasts and addrspacecasts. We do not however want to remove
857   // 0 GEPs.
858   if (!isa<GetElementPtrInst>(RHS))
859     RHS = RHS->stripPointerCasts();
860 
861   Value *PtrBase = GEPLHS->getOperand(0);
862   // FIXME: Support vector pointer GEPs.
863   if (PtrBase == RHS && GEPLHS->isInBounds() &&
864       !GEPLHS->getType()->isVectorTy()) {
865     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
866     // This transformation (ignoring the base and scales) is valid because we
867     // know pointers can't overflow since the gep is inbounds.  See if we can
868     // output an optimized form.
869     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
870 
871     // If not, synthesize the offset the hard way.
872     if (!Offset)
873       Offset = EmitGEPOffset(GEPLHS);
874     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
875                         Constant::getNullValue(Offset->getType()));
876   }
877 
878   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
879       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
880       !NullPointerIsDefined(I.getFunction(),
881                             RHS->getType()->getPointerAddressSpace())) {
882     // For most address spaces, an allocation can't be placed at null, but null
883     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
884     // the only valid inbounds address derived from null, is null itself.
885     // Thus, we have four cases to consider:
886     // 1) Base == nullptr, Offset == 0 -> inbounds, null
887     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
888     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
889     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
890     //
891     // (Note if we're indexing a type of size 0, that simply collapses into one
892     //  of the buckets above.)
893     //
894     // In general, we're allowed to make values less poison (i.e. remove
895     //   sources of full UB), so in this case, we just select between the two
896     //   non-poison cases (1 and 4 above).
897     //
898     // For vectors, we apply the same reasoning on a per-lane basis.
899     auto *Base = GEPLHS->getPointerOperand();
900     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
901       int NumElts = cast<FixedVectorType>(GEPLHS->getType())->getNumElements();
902       Base = Builder.CreateVectorSplat(NumElts, Base);
903     }
904     return new ICmpInst(Cond, Base,
905                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
906                             cast<Constant>(RHS), Base->getType()));
907   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
908     // If the base pointers are different, but the indices are the same, just
909     // compare the base pointer.
910     if (PtrBase != GEPRHS->getOperand(0)) {
911       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
912       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
913                         GEPRHS->getOperand(0)->getType();
914       if (IndicesTheSame)
915         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
916           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
917             IndicesTheSame = false;
918             break;
919           }
920 
921       // If all indices are the same, just compare the base pointers.
922       Type *BaseType = GEPLHS->getOperand(0)->getType();
923       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
924         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
925 
926       // If we're comparing GEPs with two base pointers that only differ in type
927       // and both GEPs have only constant indices or just one use, then fold
928       // the compare with the adjusted indices.
929       // FIXME: Support vector of pointers.
930       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
931           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
932           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
933           PtrBase->stripPointerCasts() ==
934               GEPRHS->getOperand(0)->stripPointerCasts() &&
935           !GEPLHS->getType()->isVectorTy()) {
936         Value *LOffset = EmitGEPOffset(GEPLHS);
937         Value *ROffset = EmitGEPOffset(GEPRHS);
938 
939         // If we looked through an addrspacecast between different sized address
940         // spaces, the LHS and RHS pointers are different sized
941         // integers. Truncate to the smaller one.
942         Type *LHSIndexTy = LOffset->getType();
943         Type *RHSIndexTy = ROffset->getType();
944         if (LHSIndexTy != RHSIndexTy) {
945           if (LHSIndexTy->getPrimitiveSizeInBits() <
946               RHSIndexTy->getPrimitiveSizeInBits()) {
947             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
948           } else
949             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
950         }
951 
952         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
953                                         LOffset, ROffset);
954         return replaceInstUsesWith(I, Cmp);
955       }
956 
957       // Otherwise, the base pointers are different and the indices are
958       // different. Try convert this to an indexed compare by looking through
959       // PHIs/casts.
960       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
961     }
962 
963     // If one of the GEPs has all zero indices, recurse.
964     // FIXME: Handle vector of pointers.
965     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
966       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
967                          ICmpInst::getSwappedPredicate(Cond), I);
968 
969     // If the other GEP has all zero indices, recurse.
970     // FIXME: Handle vector of pointers.
971     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
972       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
973 
974     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
975     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
976       // If the GEPs only differ by one index, compare it.
977       unsigned NumDifferences = 0;  // Keep track of # differences.
978       unsigned DiffOperand = 0;     // The operand that differs.
979       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
980         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
981           Type *LHSType = GEPLHS->getOperand(i)->getType();
982           Type *RHSType = GEPRHS->getOperand(i)->getType();
983           // FIXME: Better support for vector of pointers.
984           if (LHSType->getPrimitiveSizeInBits() !=
985                    RHSType->getPrimitiveSizeInBits() ||
986               (GEPLHS->getType()->isVectorTy() &&
987                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
988             // Irreconcilable differences.
989             NumDifferences = 2;
990             break;
991           }
992 
993           if (NumDifferences++) break;
994           DiffOperand = i;
995         }
996 
997       if (NumDifferences == 0)   // SAME GEP?
998         return replaceInstUsesWith(I, // No comparison is needed here.
999           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
1000 
1001       else if (NumDifferences == 1 && GEPsInBounds) {
1002         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1003         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1004         // Make sure we do a signed comparison here.
1005         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1006       }
1007     }
1008 
1009     // Only lower this if the icmp is the only user of the GEP or if we expect
1010     // the result to fold to a constant!
1011     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1012         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1013       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1014       Value *L = EmitGEPOffset(GEPLHS);
1015       Value *R = EmitGEPOffset(GEPRHS);
1016       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1017     }
1018   }
1019 
1020   // Try convert this to an indexed compare by looking through PHIs/casts as a
1021   // last resort.
1022   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1023 }
1024 
1025 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1026                                              const AllocaInst *Alloca,
1027                                              const Value *Other) {
1028   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1029 
1030   // It would be tempting to fold away comparisons between allocas and any
1031   // pointer not based on that alloca (e.g. an argument). However, even
1032   // though such pointers cannot alias, they can still compare equal.
1033   //
1034   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1035   // doesn't escape we can argue that it's impossible to guess its value, and we
1036   // can therefore act as if any such guesses are wrong.
1037   //
1038   // The code below checks that the alloca doesn't escape, and that it's only
1039   // used in a comparison once (the current instruction). The
1040   // single-comparison-use condition ensures that we're trivially folding all
1041   // comparisons against the alloca consistently, and avoids the risk of
1042   // erroneously folding a comparison of the pointer with itself.
1043 
1044   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1045 
1046   SmallVector<const Use *, 32> Worklist;
1047   for (const Use &U : Alloca->uses()) {
1048     if (Worklist.size() >= MaxIter)
1049       return nullptr;
1050     Worklist.push_back(&U);
1051   }
1052 
1053   unsigned NumCmps = 0;
1054   while (!Worklist.empty()) {
1055     assert(Worklist.size() <= MaxIter);
1056     const Use *U = Worklist.pop_back_val();
1057     const Value *V = U->getUser();
1058     --MaxIter;
1059 
1060     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1061         isa<SelectInst>(V)) {
1062       // Track the uses.
1063     } else if (isa<LoadInst>(V)) {
1064       // Loading from the pointer doesn't escape it.
1065       continue;
1066     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1067       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1068       if (SI->getValueOperand() == U->get())
1069         return nullptr;
1070       continue;
1071     } else if (isa<ICmpInst>(V)) {
1072       if (NumCmps++)
1073         return nullptr; // Found more than one cmp.
1074       continue;
1075     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1076       switch (Intrin->getIntrinsicID()) {
1077         // These intrinsics don't escape or compare the pointer. Memset is safe
1078         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1079         // we don't allow stores, so src cannot point to V.
1080         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1081         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1082           continue;
1083         default:
1084           return nullptr;
1085       }
1086     } else {
1087       return nullptr;
1088     }
1089     for (const Use &U : V->uses()) {
1090       if (Worklist.size() >= MaxIter)
1091         return nullptr;
1092       Worklist.push_back(&U);
1093     }
1094   }
1095 
1096   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1097   return replaceInstUsesWith(
1098       ICI,
1099       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1100 }
1101 
1102 /// Fold "icmp pred (X+C), X".
1103 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1104                                                   ICmpInst::Predicate Pred) {
1105   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1106   // so the values can never be equal.  Similarly for all other "or equals"
1107   // operators.
1108   assert(!!C && "C should not be zero!");
1109 
1110   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1111   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1112   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1113   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1114     Constant *R = ConstantInt::get(X->getType(),
1115                                    APInt::getMaxValue(C.getBitWidth()) - C);
1116     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1117   }
1118 
1119   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1120   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1121   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1122   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1123     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1124                         ConstantInt::get(X->getType(), -C));
1125 
1126   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1127 
1128   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1129   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1130   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1131   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1132   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1133   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1134   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1135     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1136                         ConstantInt::get(X->getType(), SMax - C));
1137 
1138   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1139   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1140   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1141   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1142   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1143   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1144 
1145   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1146   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1147                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1148 }
1149 
1150 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1151 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1152 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1153 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1154                                                      const APInt &AP1,
1155                                                      const APInt &AP2) {
1156   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1157 
1158   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1159     if (I.getPredicate() == I.ICMP_NE)
1160       Pred = CmpInst::getInversePredicate(Pred);
1161     return new ICmpInst(Pred, LHS, RHS);
1162   };
1163 
1164   // Don't bother doing any work for cases which InstSimplify handles.
1165   if (AP2.isNullValue())
1166     return nullptr;
1167 
1168   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1169   if (IsAShr) {
1170     if (AP2.isAllOnesValue())
1171       return nullptr;
1172     if (AP2.isNegative() != AP1.isNegative())
1173       return nullptr;
1174     if (AP2.sgt(AP1))
1175       return nullptr;
1176   }
1177 
1178   if (!AP1)
1179     // 'A' must be large enough to shift out the highest set bit.
1180     return getICmp(I.ICMP_UGT, A,
1181                    ConstantInt::get(A->getType(), AP2.logBase2()));
1182 
1183   if (AP1 == AP2)
1184     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1185 
1186   int Shift;
1187   if (IsAShr && AP1.isNegative())
1188     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1189   else
1190     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1191 
1192   if (Shift > 0) {
1193     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1194       // There are multiple solutions if we are comparing against -1 and the LHS
1195       // of the ashr is not a power of two.
1196       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1197         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1198       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1199     } else if (AP1 == AP2.lshr(Shift)) {
1200       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1201     }
1202   }
1203 
1204   // Shifting const2 will never be equal to const1.
1205   // FIXME: This should always be handled by InstSimplify?
1206   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1207   return replaceInstUsesWith(I, TorF);
1208 }
1209 
1210 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1211 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1212 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1213                                                      const APInt &AP1,
1214                                                      const APInt &AP2) {
1215   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1216 
1217   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1218     if (I.getPredicate() == I.ICMP_NE)
1219       Pred = CmpInst::getInversePredicate(Pred);
1220     return new ICmpInst(Pred, LHS, RHS);
1221   };
1222 
1223   // Don't bother doing any work for cases which InstSimplify handles.
1224   if (AP2.isNullValue())
1225     return nullptr;
1226 
1227   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1228 
1229   if (!AP1 && AP2TrailingZeros != 0)
1230     return getICmp(
1231         I.ICMP_UGE, A,
1232         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1233 
1234   if (AP1 == AP2)
1235     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1236 
1237   // Get the distance between the lowest bits that are set.
1238   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1239 
1240   if (Shift > 0 && AP2.shl(Shift) == AP1)
1241     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1242 
1243   // Shifting const2 will never be equal to const1.
1244   // FIXME: This should always be handled by InstSimplify?
1245   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1246   return replaceInstUsesWith(I, TorF);
1247 }
1248 
1249 /// The caller has matched a pattern of the form:
1250 ///   I = icmp ugt (add (add A, B), CI2), CI1
1251 /// If this is of the form:
1252 ///   sum = a + b
1253 ///   if (sum+128 >u 255)
1254 /// Then replace it with llvm.sadd.with.overflow.i8.
1255 ///
1256 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1257                                           ConstantInt *CI2, ConstantInt *CI1,
1258                                           InstCombinerImpl &IC) {
1259   // The transformation we're trying to do here is to transform this into an
1260   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1261   // with a narrower add, and discard the add-with-constant that is part of the
1262   // range check (if we can't eliminate it, this isn't profitable).
1263 
1264   // In order to eliminate the add-with-constant, the compare can be its only
1265   // use.
1266   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1267   if (!AddWithCst->hasOneUse())
1268     return nullptr;
1269 
1270   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1271   if (!CI2->getValue().isPowerOf2())
1272     return nullptr;
1273   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1274   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1275     return nullptr;
1276 
1277   // The width of the new add formed is 1 more than the bias.
1278   ++NewWidth;
1279 
1280   // Check to see that CI1 is an all-ones value with NewWidth bits.
1281   if (CI1->getBitWidth() == NewWidth ||
1282       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1283     return nullptr;
1284 
1285   // This is only really a signed overflow check if the inputs have been
1286   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1287   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1288   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1289   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1290       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1291     return nullptr;
1292 
1293   // In order to replace the original add with a narrower
1294   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1295   // and truncates that discard the high bits of the add.  Verify that this is
1296   // the case.
1297   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1298   for (User *U : OrigAdd->users()) {
1299     if (U == AddWithCst)
1300       continue;
1301 
1302     // Only accept truncates for now.  We would really like a nice recursive
1303     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1304     // chain to see which bits of a value are actually demanded.  If the
1305     // original add had another add which was then immediately truncated, we
1306     // could still do the transformation.
1307     TruncInst *TI = dyn_cast<TruncInst>(U);
1308     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1309       return nullptr;
1310   }
1311 
1312   // If the pattern matches, truncate the inputs to the narrower type and
1313   // use the sadd_with_overflow intrinsic to efficiently compute both the
1314   // result and the overflow bit.
1315   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1316   Function *F = Intrinsic::getDeclaration(
1317       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1318 
1319   InstCombiner::BuilderTy &Builder = IC.Builder;
1320 
1321   // Put the new code above the original add, in case there are any uses of the
1322   // add between the add and the compare.
1323   Builder.SetInsertPoint(OrigAdd);
1324 
1325   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1326   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1327   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1328   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1329   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1330 
1331   // The inner add was the result of the narrow add, zero extended to the
1332   // wider type.  Replace it with the result computed by the intrinsic.
1333   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1334   IC.eraseInstFromFunction(*OrigAdd);
1335 
1336   // The original icmp gets replaced with the overflow value.
1337   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1338 }
1339 
1340 /// If we have:
1341 ///   icmp eq/ne (urem/srem %x, %y), 0
1342 /// iff %y is a power-of-two, we can replace this with a bit test:
1343 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1344 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1345   // This fold is only valid for equality predicates.
1346   if (!I.isEquality())
1347     return nullptr;
1348   ICmpInst::Predicate Pred;
1349   Value *X, *Y, *Zero;
1350   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1351                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1352     return nullptr;
1353   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1354     return nullptr;
1355   // This may increase instruction count, we don't enforce that Y is a constant.
1356   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1357   Value *Masked = Builder.CreateAnd(X, Mask);
1358   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1359 }
1360 
1361 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1362 /// by one-less-than-bitwidth into a sign test on the original value.
1363 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1364   Instruction *Val;
1365   ICmpInst::Predicate Pred;
1366   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1367     return nullptr;
1368 
1369   Value *X;
1370   Type *XTy;
1371 
1372   Constant *C;
1373   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1374     XTy = X->getType();
1375     unsigned XBitWidth = XTy->getScalarSizeInBits();
1376     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1377                                      APInt(XBitWidth, XBitWidth - 1))))
1378       return nullptr;
1379   } else if (isa<BinaryOperator>(Val) &&
1380              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1381                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1382                   /*AnalyzeForSignBitExtraction=*/true))) {
1383     XTy = X->getType();
1384   } else
1385     return nullptr;
1386 
1387   return ICmpInst::Create(Instruction::ICmp,
1388                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1389                                                     : ICmpInst::ICMP_SLT,
1390                           X, ConstantInt::getNullValue(XTy));
1391 }
1392 
1393 // Handle  icmp pred X, 0
1394 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1395   CmpInst::Predicate Pred = Cmp.getPredicate();
1396   if (!match(Cmp.getOperand(1), m_Zero()))
1397     return nullptr;
1398 
1399   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1400   if (Pred == ICmpInst::ICMP_SGT) {
1401     Value *A, *B;
1402     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1403     if (SPR.Flavor == SPF_SMIN) {
1404       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1405         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1406       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1407         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1408     }
1409   }
1410 
1411   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1412     return New;
1413 
1414   // Given:
1415   //   icmp eq/ne (urem %x, %y), 0
1416   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1417   //   icmp eq/ne %x, 0
1418   Value *X, *Y;
1419   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1420       ICmpInst::isEquality(Pred)) {
1421     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1422     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1423     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1424       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1425   }
1426 
1427   return nullptr;
1428 }
1429 
1430 /// Fold icmp Pred X, C.
1431 /// TODO: This code structure does not make sense. The saturating add fold
1432 /// should be moved to some other helper and extended as noted below (it is also
1433 /// possible that code has been made unnecessary - do we canonicalize IR to
1434 /// overflow/saturating intrinsics or not?).
1435 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1436   // Match the following pattern, which is a common idiom when writing
1437   // overflow-safe integer arithmetic functions. The source performs an addition
1438   // in wider type and explicitly checks for overflow using comparisons against
1439   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1440   //
1441   // TODO: This could probably be generalized to handle other overflow-safe
1442   // operations if we worked out the formulas to compute the appropriate magic
1443   // constants.
1444   //
1445   // sum = a + b
1446   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1447   CmpInst::Predicate Pred = Cmp.getPredicate();
1448   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1449   Value *A, *B;
1450   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1451   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1452       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1453     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1454       return Res;
1455 
1456   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1457   Constant *C = dyn_cast<Constant>(Op1);
1458   if (!C)
1459     return nullptr;
1460 
1461   if (auto *Phi = dyn_cast<PHINode>(Op0))
1462     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1463       Type *Ty = Cmp.getType();
1464       Builder.SetInsertPoint(Phi);
1465       PHINode *NewPhi =
1466           Builder.CreatePHI(Ty, Phi->getNumOperands());
1467       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1468         auto *Input =
1469             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1470         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1471         NewPhi->addIncoming(BoolInput, Predecessor);
1472       }
1473       NewPhi->takeName(&Cmp);
1474       return replaceInstUsesWith(Cmp, NewPhi);
1475     }
1476 
1477   return nullptr;
1478 }
1479 
1480 /// Canonicalize icmp instructions based on dominating conditions.
1481 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1482   // This is a cheap/incomplete check for dominance - just match a single
1483   // predecessor with a conditional branch.
1484   BasicBlock *CmpBB = Cmp.getParent();
1485   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1486   if (!DomBB)
1487     return nullptr;
1488 
1489   Value *DomCond;
1490   BasicBlock *TrueBB, *FalseBB;
1491   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1492     return nullptr;
1493 
1494   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1495          "Predecessor block does not point to successor?");
1496 
1497   // The branch should get simplified. Don't bother simplifying this condition.
1498   if (TrueBB == FalseBB)
1499     return nullptr;
1500 
1501   // Try to simplify this compare to T/F based on the dominating condition.
1502   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1503   if (Imp)
1504     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1505 
1506   CmpInst::Predicate Pred = Cmp.getPredicate();
1507   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1508   ICmpInst::Predicate DomPred;
1509   const APInt *C, *DomC;
1510   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1511       match(Y, m_APInt(C))) {
1512     // We have 2 compares of a variable with constants. Calculate the constant
1513     // ranges of those compares to see if we can transform the 2nd compare:
1514     // DomBB:
1515     //   DomCond = icmp DomPred X, DomC
1516     //   br DomCond, CmpBB, FalseBB
1517     // CmpBB:
1518     //   Cmp = icmp Pred X, C
1519     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1520     ConstantRange DominatingCR =
1521         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1522                           : ConstantRange::makeExactICmpRegion(
1523                                 CmpInst::getInversePredicate(DomPred), *DomC);
1524     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1525     ConstantRange Difference = DominatingCR.difference(CR);
1526     if (Intersection.isEmptySet())
1527       return replaceInstUsesWith(Cmp, Builder.getFalse());
1528     if (Difference.isEmptySet())
1529       return replaceInstUsesWith(Cmp, Builder.getTrue());
1530 
1531     // Canonicalizing a sign bit comparison that gets used in a branch,
1532     // pessimizes codegen by generating branch on zero instruction instead
1533     // of a test and branch. So we avoid canonicalizing in such situations
1534     // because test and branch instruction has better branch displacement
1535     // than compare and branch instruction.
1536     bool UnusedBit;
1537     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1538     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1539       return nullptr;
1540 
1541     if (const APInt *EqC = Intersection.getSingleElement())
1542       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1543     if (const APInt *NeC = Difference.getSingleElement())
1544       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1545   }
1546 
1547   return nullptr;
1548 }
1549 
1550 /// Fold icmp (trunc X, Y), C.
1551 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1552                                                      TruncInst *Trunc,
1553                                                      const APInt &C) {
1554   ICmpInst::Predicate Pred = Cmp.getPredicate();
1555   Value *X = Trunc->getOperand(0);
1556   if (C.isOneValue() && C.getBitWidth() > 1) {
1557     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1558     Value *V = nullptr;
1559     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1560       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1561                           ConstantInt::get(V->getType(), 1));
1562   }
1563 
1564   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1565     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1566     // of the high bits truncated out of x are known.
1567     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1568              SrcBits = X->getType()->getScalarSizeInBits();
1569     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1570 
1571     // If all the high bits are known, we can do this xform.
1572     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1573       // Pull in the high bits from known-ones set.
1574       APInt NewRHS = C.zext(SrcBits);
1575       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1576       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1577     }
1578   }
1579 
1580   return nullptr;
1581 }
1582 
1583 /// Fold icmp (xor X, Y), C.
1584 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1585                                                    BinaryOperator *Xor,
1586                                                    const APInt &C) {
1587   Value *X = Xor->getOperand(0);
1588   Value *Y = Xor->getOperand(1);
1589   const APInt *XorC;
1590   if (!match(Y, m_APInt(XorC)))
1591     return nullptr;
1592 
1593   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1594   // fold the xor.
1595   ICmpInst::Predicate Pred = Cmp.getPredicate();
1596   bool TrueIfSigned = false;
1597   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1598 
1599     // If the sign bit of the XorCst is not set, there is no change to
1600     // the operation, just stop using the Xor.
1601     if (!XorC->isNegative())
1602       return replaceOperand(Cmp, 0, X);
1603 
1604     // Emit the opposite comparison.
1605     if (TrueIfSigned)
1606       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1607                           ConstantInt::getAllOnesValue(X->getType()));
1608     else
1609       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1610                           ConstantInt::getNullValue(X->getType()));
1611   }
1612 
1613   if (Xor->hasOneUse()) {
1614     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1615     if (!Cmp.isEquality() && XorC->isSignMask()) {
1616       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1617                             : Cmp.getSignedPredicate();
1618       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1619     }
1620 
1621     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1622     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1623       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1624                             : Cmp.getSignedPredicate();
1625       Pred = Cmp.getSwappedPredicate(Pred);
1626       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1627     }
1628   }
1629 
1630   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1631   if (Pred == ICmpInst::ICMP_UGT) {
1632     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1633     if (*XorC == ~C && (C + 1).isPowerOf2())
1634       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1635     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1636     if (*XorC == C && (C + 1).isPowerOf2())
1637       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1638   }
1639   if (Pred == ICmpInst::ICMP_ULT) {
1640     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1641     if (*XorC == -C && C.isPowerOf2())
1642       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1643                           ConstantInt::get(X->getType(), ~C));
1644     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1645     if (*XorC == C && (-C).isPowerOf2())
1646       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1647                           ConstantInt::get(X->getType(), ~C));
1648   }
1649   return nullptr;
1650 }
1651 
1652 /// Fold icmp (and (sh X, Y), C2), C1.
1653 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1654                                                 BinaryOperator *And,
1655                                                 const APInt &C1,
1656                                                 const APInt &C2) {
1657   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1658   if (!Shift || !Shift->isShift())
1659     return nullptr;
1660 
1661   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1662   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1663   // code produced by the clang front-end, for bitfield access.
1664   // This seemingly simple opportunity to fold away a shift turns out to be
1665   // rather complicated. See PR17827 for details.
1666   unsigned ShiftOpcode = Shift->getOpcode();
1667   bool IsShl = ShiftOpcode == Instruction::Shl;
1668   const APInt *C3;
1669   if (match(Shift->getOperand(1), m_APInt(C3))) {
1670     APInt NewAndCst, NewCmpCst;
1671     bool AnyCmpCstBitsShiftedOut;
1672     if (ShiftOpcode == Instruction::Shl) {
1673       // For a left shift, we can fold if the comparison is not signed. We can
1674       // also fold a signed comparison if the mask value and comparison value
1675       // are not negative. These constraints may not be obvious, but we can
1676       // prove that they are correct using an SMT solver.
1677       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1678         return nullptr;
1679 
1680       NewCmpCst = C1.lshr(*C3);
1681       NewAndCst = C2.lshr(*C3);
1682       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1683     } else if (ShiftOpcode == Instruction::LShr) {
1684       // For a logical right shift, we can fold if the comparison is not signed.
1685       // We can also fold a signed comparison if the shifted mask value and the
1686       // shifted comparison value are not negative. These constraints may not be
1687       // obvious, but we can prove that they are correct using an SMT solver.
1688       NewCmpCst = C1.shl(*C3);
1689       NewAndCst = C2.shl(*C3);
1690       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1691       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1692         return nullptr;
1693     } else {
1694       // For an arithmetic shift, check that both constants don't use (in a
1695       // signed sense) the top bits being shifted out.
1696       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1697       NewCmpCst = C1.shl(*C3);
1698       NewAndCst = C2.shl(*C3);
1699       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1700       if (NewAndCst.ashr(*C3) != C2)
1701         return nullptr;
1702     }
1703 
1704     if (AnyCmpCstBitsShiftedOut) {
1705       // If we shifted bits out, the fold is not going to work out. As a
1706       // special case, check to see if this means that the result is always
1707       // true or false now.
1708       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1709         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1710       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1711         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1712     } else {
1713       Value *NewAnd = Builder.CreateAnd(
1714           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1715       return new ICmpInst(Cmp.getPredicate(),
1716           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1717     }
1718   }
1719 
1720   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1721   // preferable because it allows the C2 << Y expression to be hoisted out of a
1722   // loop if Y is invariant and X is not.
1723   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1724       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1725     // Compute C2 << Y.
1726     Value *NewShift =
1727         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1728               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1729 
1730     // Compute X & (C2 << Y).
1731     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1732     return replaceOperand(Cmp, 0, NewAnd);
1733   }
1734 
1735   return nullptr;
1736 }
1737 
1738 /// Fold icmp (and X, C2), C1.
1739 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1740                                                      BinaryOperator *And,
1741                                                      const APInt &C1) {
1742   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1743 
1744   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1745   // TODO: We canonicalize to the longer form for scalars because we have
1746   // better analysis/folds for icmp, and codegen may be better with icmp.
1747   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1748       match(And->getOperand(1), m_One()))
1749     return new TruncInst(And->getOperand(0), Cmp.getType());
1750 
1751   const APInt *C2;
1752   Value *X;
1753   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1754     return nullptr;
1755 
1756   // Don't perform the following transforms if the AND has multiple uses
1757   if (!And->hasOneUse())
1758     return nullptr;
1759 
1760   if (Cmp.isEquality() && C1.isNullValue()) {
1761     // Restrict this fold to single-use 'and' (PR10267).
1762     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1763     if (C2->isSignMask()) {
1764       Constant *Zero = Constant::getNullValue(X->getType());
1765       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1766       return new ICmpInst(NewPred, X, Zero);
1767     }
1768 
1769     // Restrict this fold only for single-use 'and' (PR10267).
1770     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1771     if ((~(*C2) + 1).isPowerOf2()) {
1772       Constant *NegBOC =
1773           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1774       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1775       return new ICmpInst(NewPred, X, NegBOC);
1776     }
1777   }
1778 
1779   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1780   // the input width without changing the value produced, eliminate the cast:
1781   //
1782   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1783   //
1784   // We can do this transformation if the constants do not have their sign bits
1785   // set or if it is an equality comparison. Extending a relational comparison
1786   // when we're checking the sign bit would not work.
1787   Value *W;
1788   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1789       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1790     // TODO: Is this a good transform for vectors? Wider types may reduce
1791     // throughput. Should this transform be limited (even for scalars) by using
1792     // shouldChangeType()?
1793     if (!Cmp.getType()->isVectorTy()) {
1794       Type *WideType = W->getType();
1795       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1796       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1797       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1798       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1799       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1800     }
1801   }
1802 
1803   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1804     return I;
1805 
1806   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1807   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1808   //
1809   // iff pred isn't signed
1810   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1811       match(And->getOperand(1), m_One())) {
1812     Constant *One = cast<Constant>(And->getOperand(1));
1813     Value *Or = And->getOperand(0);
1814     Value *A, *B, *LShr;
1815     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1816         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1817       unsigned UsesRemoved = 0;
1818       if (And->hasOneUse())
1819         ++UsesRemoved;
1820       if (Or->hasOneUse())
1821         ++UsesRemoved;
1822       if (LShr->hasOneUse())
1823         ++UsesRemoved;
1824 
1825       // Compute A & ((1 << B) | 1)
1826       Value *NewOr = nullptr;
1827       if (auto *C = dyn_cast<Constant>(B)) {
1828         if (UsesRemoved >= 1)
1829           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1830       } else {
1831         if (UsesRemoved >= 3)
1832           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1833                                                      /*HasNUW=*/true),
1834                                    One, Or->getName());
1835       }
1836       if (NewOr) {
1837         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1838         return replaceOperand(Cmp, 0, NewAnd);
1839       }
1840     }
1841   }
1842 
1843   return nullptr;
1844 }
1845 
1846 /// Fold icmp (and X, Y), C.
1847 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1848                                                    BinaryOperator *And,
1849                                                    const APInt &C) {
1850   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1851     return I;
1852 
1853   // TODO: These all require that Y is constant too, so refactor with the above.
1854 
1855   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1856   Value *X = And->getOperand(0);
1857   Value *Y = And->getOperand(1);
1858   if (auto *LI = dyn_cast<LoadInst>(X))
1859     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1860       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1861         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1862             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1863           ConstantInt *C2 = cast<ConstantInt>(Y);
1864           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1865             return Res;
1866         }
1867 
1868   if (!Cmp.isEquality())
1869     return nullptr;
1870 
1871   // X & -C == -C -> X >  u ~C
1872   // X & -C != -C -> X <= u ~C
1873   //   iff C is a power of 2
1874   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1875     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1876                                                           : CmpInst::ICMP_ULE;
1877     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1878   }
1879 
1880   // (X & C2) == 0 -> (trunc X) >= 0
1881   // (X & C2) != 0 -> (trunc X) <  0
1882   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1883   const APInt *C2;
1884   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1885     int32_t ExactLogBase2 = C2->exactLogBase2();
1886     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1887       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1888       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1889         NTy = FixedVectorType::get(
1890             NTy, cast<FixedVectorType>(AndVTy)->getNumElements());
1891       Value *Trunc = Builder.CreateTrunc(X, NTy);
1892       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1893                                                             : CmpInst::ICMP_SLT;
1894       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1895     }
1896   }
1897 
1898   return nullptr;
1899 }
1900 
1901 /// Fold icmp (or X, Y), C.
1902 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1903                                                   BinaryOperator *Or,
1904                                                   const APInt &C) {
1905   ICmpInst::Predicate Pred = Cmp.getPredicate();
1906   if (C.isOneValue()) {
1907     // icmp slt signum(V) 1 --> icmp slt V, 1
1908     Value *V = nullptr;
1909     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1910       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1911                           ConstantInt::get(V->getType(), 1));
1912   }
1913 
1914   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1915   const APInt *MaskC;
1916   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1917     if (*MaskC == C && (C + 1).isPowerOf2()) {
1918       // X | C == C --> X <=u C
1919       // X | C != C --> X  >u C
1920       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1921       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1922       return new ICmpInst(Pred, OrOp0, OrOp1);
1923     }
1924 
1925     // More general: canonicalize 'equality with set bits mask' to
1926     // 'equality with clear bits mask'.
1927     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1928     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1929     if (Or->hasOneUse()) {
1930       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1931       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1932       return new ICmpInst(Pred, And, NewC);
1933     }
1934   }
1935 
1936   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1937     return nullptr;
1938 
1939   Value *P, *Q;
1940   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1941     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1942     // -> and (icmp eq P, null), (icmp eq Q, null).
1943     Value *CmpP =
1944         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1945     Value *CmpQ =
1946         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1947     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1948     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1949   }
1950 
1951   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1952   // a shorter form that has more potential to be folded even further.
1953   Value *X1, *X2, *X3, *X4;
1954   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1955       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1956     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1957     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1958     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1959     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1960     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1961     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1962   }
1963 
1964   return nullptr;
1965 }
1966 
1967 /// Fold icmp (mul X, Y), C.
1968 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1969                                                    BinaryOperator *Mul,
1970                                                    const APInt &C) {
1971   const APInt *MulC;
1972   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1973     return nullptr;
1974 
1975   // If this is a test of the sign bit and the multiply is sign-preserving with
1976   // a constant operand, use the multiply LHS operand instead.
1977   ICmpInst::Predicate Pred = Cmp.getPredicate();
1978   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1979     if (MulC->isNegative())
1980       Pred = ICmpInst::getSwappedPredicate(Pred);
1981     return new ICmpInst(Pred, Mul->getOperand(0),
1982                         Constant::getNullValue(Mul->getType()));
1983   }
1984 
1985   // If the multiply does not wrap, try to divide the compare constant by the
1986   // multiplication factor.
1987   if (Cmp.isEquality() && !MulC->isNullValue()) {
1988     // (mul nsw X, MulC) == C --> X == C /s MulC
1989     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
1990       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1991       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1992     }
1993     // (mul nuw X, MulC) == C --> X == C /u MulC
1994     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
1995       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1996       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1997     }
1998   }
1999 
2000   return nullptr;
2001 }
2002 
2003 /// Fold icmp (shl 1, Y), C.
2004 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2005                                    const APInt &C) {
2006   Value *Y;
2007   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2008     return nullptr;
2009 
2010   Type *ShiftType = Shl->getType();
2011   unsigned TypeBits = C.getBitWidth();
2012   bool CIsPowerOf2 = C.isPowerOf2();
2013   ICmpInst::Predicate Pred = Cmp.getPredicate();
2014   if (Cmp.isUnsigned()) {
2015     // (1 << Y) pred C -> Y pred Log2(C)
2016     if (!CIsPowerOf2) {
2017       // (1 << Y) <  30 -> Y <= 4
2018       // (1 << Y) <= 30 -> Y <= 4
2019       // (1 << Y) >= 30 -> Y >  4
2020       // (1 << Y) >  30 -> Y >  4
2021       if (Pred == ICmpInst::ICMP_ULT)
2022         Pred = ICmpInst::ICMP_ULE;
2023       else if (Pred == ICmpInst::ICMP_UGE)
2024         Pred = ICmpInst::ICMP_UGT;
2025     }
2026 
2027     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2028     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2029     unsigned CLog2 = C.logBase2();
2030     if (CLog2 == TypeBits - 1) {
2031       if (Pred == ICmpInst::ICMP_UGE)
2032         Pred = ICmpInst::ICMP_EQ;
2033       else if (Pred == ICmpInst::ICMP_ULT)
2034         Pred = ICmpInst::ICMP_NE;
2035     }
2036     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2037   } else if (Cmp.isSigned()) {
2038     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2039     if (C.isAllOnesValue()) {
2040       // (1 << Y) <= -1 -> Y == 31
2041       if (Pred == ICmpInst::ICMP_SLE)
2042         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2043 
2044       // (1 << Y) >  -1 -> Y != 31
2045       if (Pred == ICmpInst::ICMP_SGT)
2046         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2047     } else if (!C) {
2048       // (1 << Y) <  0 -> Y == 31
2049       // (1 << Y) <= 0 -> Y == 31
2050       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2051         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2052 
2053       // (1 << Y) >= 0 -> Y != 31
2054       // (1 << Y) >  0 -> Y != 31
2055       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2056         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2057     }
2058   } else if (Cmp.isEquality() && CIsPowerOf2) {
2059     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2060   }
2061 
2062   return nullptr;
2063 }
2064 
2065 /// Fold icmp (shl X, Y), C.
2066 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2067                                                    BinaryOperator *Shl,
2068                                                    const APInt &C) {
2069   const APInt *ShiftVal;
2070   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2071     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2072 
2073   const APInt *ShiftAmt;
2074   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2075     return foldICmpShlOne(Cmp, Shl, C);
2076 
2077   // Check that the shift amount is in range. If not, don't perform undefined
2078   // shifts. When the shift is visited, it will be simplified.
2079   unsigned TypeBits = C.getBitWidth();
2080   if (ShiftAmt->uge(TypeBits))
2081     return nullptr;
2082 
2083   ICmpInst::Predicate Pred = Cmp.getPredicate();
2084   Value *X = Shl->getOperand(0);
2085   Type *ShType = Shl->getType();
2086 
2087   // NSW guarantees that we are only shifting out sign bits from the high bits,
2088   // so we can ASHR the compare constant without needing a mask and eliminate
2089   // the shift.
2090   if (Shl->hasNoSignedWrap()) {
2091     if (Pred == ICmpInst::ICMP_SGT) {
2092       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2093       APInt ShiftedC = C.ashr(*ShiftAmt);
2094       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2095     }
2096     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2097         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2098       APInt ShiftedC = C.ashr(*ShiftAmt);
2099       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2100     }
2101     if (Pred == ICmpInst::ICMP_SLT) {
2102       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2103       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2104       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2105       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2106       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2107       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2108       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2109     }
2110     // If this is a signed comparison to 0 and the shift is sign preserving,
2111     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2112     // do that if we're sure to not continue on in this function.
2113     if (isSignTest(Pred, C))
2114       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2115   }
2116 
2117   // NUW guarantees that we are only shifting out zero bits from the high bits,
2118   // so we can LSHR the compare constant without needing a mask and eliminate
2119   // the shift.
2120   if (Shl->hasNoUnsignedWrap()) {
2121     if (Pred == ICmpInst::ICMP_UGT) {
2122       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2123       APInt ShiftedC = C.lshr(*ShiftAmt);
2124       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2125     }
2126     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2127         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2128       APInt ShiftedC = C.lshr(*ShiftAmt);
2129       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2130     }
2131     if (Pred == ICmpInst::ICMP_ULT) {
2132       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2133       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2134       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2135       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2136       assert(C.ugt(0) && "ult 0 should have been eliminated");
2137       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2138       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2139     }
2140   }
2141 
2142   if (Cmp.isEquality() && Shl->hasOneUse()) {
2143     // Strength-reduce the shift into an 'and'.
2144     Constant *Mask = ConstantInt::get(
2145         ShType,
2146         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2147     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2148     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2149     return new ICmpInst(Pred, And, LShrC);
2150   }
2151 
2152   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2153   bool TrueIfSigned = false;
2154   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2155     // (X << 31) <s 0  --> (X & 1) != 0
2156     Constant *Mask = ConstantInt::get(
2157         ShType,
2158         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2159     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2160     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2161                         And, Constant::getNullValue(ShType));
2162   }
2163 
2164   // Simplify 'shl' inequality test into 'and' equality test.
2165   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2166     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2167     if ((C + 1).isPowerOf2() &&
2168         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2169       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2170       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2171                                                      : ICmpInst::ICMP_NE,
2172                           And, Constant::getNullValue(ShType));
2173     }
2174     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2175     if (C.isPowerOf2() &&
2176         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2177       Value *And =
2178           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2179       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2180                                                      : ICmpInst::ICMP_NE,
2181                           And, Constant::getNullValue(ShType));
2182     }
2183   }
2184 
2185   // Transform (icmp pred iM (shl iM %v, N), C)
2186   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2187   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2188   // This enables us to get rid of the shift in favor of a trunc that may be
2189   // free on the target. It has the additional benefit of comparing to a
2190   // smaller constant that may be more target-friendly.
2191   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2192   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2193       DL.isLegalInteger(TypeBits - Amt)) {
2194     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2195     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2196       TruncTy = FixedVectorType::get(
2197           TruncTy, cast<FixedVectorType>(ShVTy)->getNumElements());
2198     Constant *NewC =
2199         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2200     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2201   }
2202 
2203   return nullptr;
2204 }
2205 
2206 /// Fold icmp ({al}shr X, Y), C.
2207 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2208                                                    BinaryOperator *Shr,
2209                                                    const APInt &C) {
2210   // An exact shr only shifts out zero bits, so:
2211   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2212   Value *X = Shr->getOperand(0);
2213   CmpInst::Predicate Pred = Cmp.getPredicate();
2214   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2215       C.isNullValue())
2216     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2217 
2218   const APInt *ShiftVal;
2219   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2220     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2221 
2222   const APInt *ShiftAmt;
2223   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2224     return nullptr;
2225 
2226   // Check that the shift amount is in range. If not, don't perform undefined
2227   // shifts. When the shift is visited it will be simplified.
2228   unsigned TypeBits = C.getBitWidth();
2229   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2230   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2231     return nullptr;
2232 
2233   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2234   bool IsExact = Shr->isExact();
2235   Type *ShrTy = Shr->getType();
2236   // TODO: If we could guarantee that InstSimplify would handle all of the
2237   // constant-value-based preconditions in the folds below, then we could assert
2238   // those conditions rather than checking them. This is difficult because of
2239   // undef/poison (PR34838).
2240   if (IsAShr) {
2241     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2242       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2243       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2244       APInt ShiftedC = C.shl(ShAmtVal);
2245       if (ShiftedC.ashr(ShAmtVal) == C)
2246         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2247     }
2248     if (Pred == CmpInst::ICMP_SGT) {
2249       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2250       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2251       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2252           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2253         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2254     }
2255   } else {
2256     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2257       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2258       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2259       APInt ShiftedC = C.shl(ShAmtVal);
2260       if (ShiftedC.lshr(ShAmtVal) == C)
2261         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2262     }
2263     if (Pred == CmpInst::ICMP_UGT) {
2264       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2265       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2266       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2267         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2268     }
2269   }
2270 
2271   if (!Cmp.isEquality())
2272     return nullptr;
2273 
2274   // Handle equality comparisons of shift-by-constant.
2275 
2276   // If the comparison constant changes with the shift, the comparison cannot
2277   // succeed (bits of the comparison constant cannot match the shifted value).
2278   // This should be known by InstSimplify and already be folded to true/false.
2279   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2280           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2281          "Expected icmp+shr simplify did not occur.");
2282 
2283   // If the bits shifted out are known zero, compare the unshifted value:
2284   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2285   if (Shr->isExact())
2286     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2287 
2288   if (Shr->hasOneUse()) {
2289     // Canonicalize the shift into an 'and':
2290     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2291     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2292     Constant *Mask = ConstantInt::get(ShrTy, Val);
2293     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2294     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2295   }
2296 
2297   return nullptr;
2298 }
2299 
2300 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2301                                                     BinaryOperator *SRem,
2302                                                     const APInt &C) {
2303   // Match an 'is positive' or 'is negative' comparison of remainder by a
2304   // constant power-of-2 value:
2305   // (X % pow2C) sgt/slt 0
2306   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2307   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2308     return nullptr;
2309 
2310   // TODO: The one-use check is standard because we do not typically want to
2311   //       create longer instruction sequences, but this might be a special-case
2312   //       because srem is not good for analysis or codegen.
2313   if (!SRem->hasOneUse())
2314     return nullptr;
2315 
2316   const APInt *DivisorC;
2317   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2318     return nullptr;
2319 
2320   // Mask off the sign bit and the modulo bits (low-bits).
2321   Type *Ty = SRem->getType();
2322   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2323   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2324   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2325 
2326   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2327   // bit is set. Example:
2328   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2329   if (Pred == ICmpInst::ICMP_SGT)
2330     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2331 
2332   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2333   // bit is set. Example:
2334   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2335   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2336 }
2337 
2338 /// Fold icmp (udiv X, Y), C.
2339 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2340                                                     BinaryOperator *UDiv,
2341                                                     const APInt &C) {
2342   const APInt *C2;
2343   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2344     return nullptr;
2345 
2346   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2347 
2348   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2349   Value *Y = UDiv->getOperand(1);
2350   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2351     assert(!C.isMaxValue() &&
2352            "icmp ugt X, UINT_MAX should have been simplified already.");
2353     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2354                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2355   }
2356 
2357   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2358   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2359     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2360     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2361                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2362   }
2363 
2364   return nullptr;
2365 }
2366 
2367 /// Fold icmp ({su}div X, Y), C.
2368 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2369                                                    BinaryOperator *Div,
2370                                                    const APInt &C) {
2371   // Fold: icmp pred ([us]div X, C2), C -> range test
2372   // Fold this div into the comparison, producing a range check.
2373   // Determine, based on the divide type, what the range is being
2374   // checked.  If there is an overflow on the low or high side, remember
2375   // it, otherwise compute the range [low, hi) bounding the new value.
2376   // See: InsertRangeTest above for the kinds of replacements possible.
2377   const APInt *C2;
2378   if (!match(Div->getOperand(1), m_APInt(C2)))
2379     return nullptr;
2380 
2381   // FIXME: If the operand types don't match the type of the divide
2382   // then don't attempt this transform. The code below doesn't have the
2383   // logic to deal with a signed divide and an unsigned compare (and
2384   // vice versa). This is because (x /s C2) <s C  produces different
2385   // results than (x /s C2) <u C or (x /u C2) <s C or even
2386   // (x /u C2) <u C.  Simply casting the operands and result won't
2387   // work. :(  The if statement below tests that condition and bails
2388   // if it finds it.
2389   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2390   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2391     return nullptr;
2392 
2393   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2394   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2395   // division-by-constant cases should be present, we can not assert that they
2396   // have happened before we reach this icmp instruction.
2397   if (C2->isNullValue() || C2->isOneValue() ||
2398       (DivIsSigned && C2->isAllOnesValue()))
2399     return nullptr;
2400 
2401   // Compute Prod = C * C2. We are essentially solving an equation of
2402   // form X / C2 = C. We solve for X by multiplying C2 and C.
2403   // By solving for X, we can turn this into a range check instead of computing
2404   // a divide.
2405   APInt Prod = C * *C2;
2406 
2407   // Determine if the product overflows by seeing if the product is not equal to
2408   // the divide. Make sure we do the same kind of divide as in the LHS
2409   // instruction that we're folding.
2410   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2411 
2412   ICmpInst::Predicate Pred = Cmp.getPredicate();
2413 
2414   // If the division is known to be exact, then there is no remainder from the
2415   // divide, so the covered range size is unit, otherwise it is the divisor.
2416   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2417 
2418   // Figure out the interval that is being checked.  For example, a comparison
2419   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2420   // Compute this interval based on the constants involved and the signedness of
2421   // the compare/divide.  This computes a half-open interval, keeping track of
2422   // whether either value in the interval overflows.  After analysis each
2423   // overflow variable is set to 0 if it's corresponding bound variable is valid
2424   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2425   int LoOverflow = 0, HiOverflow = 0;
2426   APInt LoBound, HiBound;
2427 
2428   if (!DivIsSigned) {  // udiv
2429     // e.g. X/5 op 3  --> [15, 20)
2430     LoBound = Prod;
2431     HiOverflow = LoOverflow = ProdOV;
2432     if (!HiOverflow) {
2433       // If this is not an exact divide, then many values in the range collapse
2434       // to the same result value.
2435       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2436     }
2437   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2438     if (C.isNullValue()) {       // (X / pos) op 0
2439       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2440       LoBound = -(RangeSize - 1);
2441       HiBound = RangeSize;
2442     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2443       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2444       HiOverflow = LoOverflow = ProdOV;
2445       if (!HiOverflow)
2446         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2447     } else {                       // (X / pos) op neg
2448       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2449       HiBound = Prod + 1;
2450       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2451       if (!LoOverflow) {
2452         APInt DivNeg = -RangeSize;
2453         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2454       }
2455     }
2456   } else if (C2->isNegative()) { // Divisor is < 0.
2457     if (Div->isExact())
2458       RangeSize.negate();
2459     if (C.isNullValue()) { // (X / neg) op 0
2460       // e.g. X/-5 op 0  --> [-4, 5)
2461       LoBound = RangeSize + 1;
2462       HiBound = -RangeSize;
2463       if (HiBound == *C2) {        // -INTMIN = INTMIN
2464         HiOverflow = 1;            // [INTMIN+1, overflow)
2465         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2466       }
2467     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2468       // e.g. X/-5 op 3  --> [-19, -14)
2469       HiBound = Prod + 1;
2470       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2471       if (!LoOverflow)
2472         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2473     } else {                       // (X / neg) op neg
2474       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2475       LoOverflow = HiOverflow = ProdOV;
2476       if (!HiOverflow)
2477         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2478     }
2479 
2480     // Dividing by a negative swaps the condition.  LT <-> GT
2481     Pred = ICmpInst::getSwappedPredicate(Pred);
2482   }
2483 
2484   Value *X = Div->getOperand(0);
2485   switch (Pred) {
2486     default: llvm_unreachable("Unhandled icmp opcode!");
2487     case ICmpInst::ICMP_EQ:
2488       if (LoOverflow && HiOverflow)
2489         return replaceInstUsesWith(Cmp, Builder.getFalse());
2490       if (HiOverflow)
2491         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2492                             ICmpInst::ICMP_UGE, X,
2493                             ConstantInt::get(Div->getType(), LoBound));
2494       if (LoOverflow)
2495         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2496                             ICmpInst::ICMP_ULT, X,
2497                             ConstantInt::get(Div->getType(), HiBound));
2498       return replaceInstUsesWith(
2499           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2500     case ICmpInst::ICMP_NE:
2501       if (LoOverflow && HiOverflow)
2502         return replaceInstUsesWith(Cmp, Builder.getTrue());
2503       if (HiOverflow)
2504         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2505                             ICmpInst::ICMP_ULT, X,
2506                             ConstantInt::get(Div->getType(), LoBound));
2507       if (LoOverflow)
2508         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2509                             ICmpInst::ICMP_UGE, X,
2510                             ConstantInt::get(Div->getType(), HiBound));
2511       return replaceInstUsesWith(Cmp,
2512                                  insertRangeTest(X, LoBound, HiBound,
2513                                                  DivIsSigned, false));
2514     case ICmpInst::ICMP_ULT:
2515     case ICmpInst::ICMP_SLT:
2516       if (LoOverflow == +1)   // Low bound is greater than input range.
2517         return replaceInstUsesWith(Cmp, Builder.getTrue());
2518       if (LoOverflow == -1)   // Low bound is less than input range.
2519         return replaceInstUsesWith(Cmp, Builder.getFalse());
2520       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2521     case ICmpInst::ICMP_UGT:
2522     case ICmpInst::ICMP_SGT:
2523       if (HiOverflow == +1)       // High bound greater than input range.
2524         return replaceInstUsesWith(Cmp, Builder.getFalse());
2525       if (HiOverflow == -1)       // High bound less than input range.
2526         return replaceInstUsesWith(Cmp, Builder.getTrue());
2527       if (Pred == ICmpInst::ICMP_UGT)
2528         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2529                             ConstantInt::get(Div->getType(), HiBound));
2530       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2531                           ConstantInt::get(Div->getType(), HiBound));
2532   }
2533 
2534   return nullptr;
2535 }
2536 
2537 /// Fold icmp (sub X, Y), C.
2538 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2539                                                    BinaryOperator *Sub,
2540                                                    const APInt &C) {
2541   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2542   ICmpInst::Predicate Pred = Cmp.getPredicate();
2543   const APInt *C2;
2544   APInt SubResult;
2545 
2546   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2547   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2548     return new ICmpInst(Cmp.getPredicate(), Y,
2549                         ConstantInt::get(Y->getType(), 0));
2550 
2551   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2552   if (match(X, m_APInt(C2)) &&
2553       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2554        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2555       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2556     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2557                         ConstantInt::get(Y->getType(), SubResult));
2558 
2559   // The following transforms are only worth it if the only user of the subtract
2560   // is the icmp.
2561   if (!Sub->hasOneUse())
2562     return nullptr;
2563 
2564   if (Sub->hasNoSignedWrap()) {
2565     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2566     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2567       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2568 
2569     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2570     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2571       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2572 
2573     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2574     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2575       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2576 
2577     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2578     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2579       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2580   }
2581 
2582   if (!match(X, m_APInt(C2)))
2583     return nullptr;
2584 
2585   // C2 - Y <u C -> (Y | (C - 1)) == C2
2586   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2587   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2588       (*C2 & (C - 1)) == (C - 1))
2589     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2590 
2591   // C2 - Y >u C -> (Y | C) != C2
2592   //   iff C2 & C == C and C + 1 is a power of 2
2593   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2594     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2595 
2596   return nullptr;
2597 }
2598 
2599 /// Fold icmp (add X, Y), C.
2600 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2601                                                    BinaryOperator *Add,
2602                                                    const APInt &C) {
2603   Value *Y = Add->getOperand(1);
2604   const APInt *C2;
2605   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2606     return nullptr;
2607 
2608   // Fold icmp pred (add X, C2), C.
2609   Value *X = Add->getOperand(0);
2610   Type *Ty = Add->getType();
2611   CmpInst::Predicate Pred = Cmp.getPredicate();
2612 
2613   // If the add does not wrap, we can always adjust the compare by subtracting
2614   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2615   // are canonicalized to SGT/SLT/UGT/ULT.
2616   if ((Add->hasNoSignedWrap() &&
2617        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2618       (Add->hasNoUnsignedWrap() &&
2619        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2620     bool Overflow;
2621     APInt NewC =
2622         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2623     // If there is overflow, the result must be true or false.
2624     // TODO: Can we assert there is no overflow because InstSimplify always
2625     // handles those cases?
2626     if (!Overflow)
2627       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2628       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2629   }
2630 
2631   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2632   const APInt &Upper = CR.getUpper();
2633   const APInt &Lower = CR.getLower();
2634   if (Cmp.isSigned()) {
2635     if (Lower.isSignMask())
2636       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2637     if (Upper.isSignMask())
2638       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2639   } else {
2640     if (Lower.isMinValue())
2641       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2642     if (Upper.isMinValue())
2643       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2644   }
2645 
2646   if (!Add->hasOneUse())
2647     return nullptr;
2648 
2649   // X+C <u C2 -> (X & -C2) == C
2650   //   iff C & (C2-1) == 0
2651   //       C2 is a power of 2
2652   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2653     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2654                         ConstantExpr::getNeg(cast<Constant>(Y)));
2655 
2656   // X+C >u C2 -> (X & ~C2) != C
2657   //   iff C & C2 == 0
2658   //       C2+1 is a power of 2
2659   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2660     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2661                         ConstantExpr::getNeg(cast<Constant>(Y)));
2662 
2663   return nullptr;
2664 }
2665 
2666 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2667                                                Value *&RHS, ConstantInt *&Less,
2668                                                ConstantInt *&Equal,
2669                                                ConstantInt *&Greater) {
2670   // TODO: Generalize this to work with other comparison idioms or ensure
2671   // they get canonicalized into this form.
2672 
2673   // select i1 (a == b),
2674   //        i32 Equal,
2675   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2676   // where Equal, Less and Greater are placeholders for any three constants.
2677   ICmpInst::Predicate PredA;
2678   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2679       !ICmpInst::isEquality(PredA))
2680     return false;
2681   Value *EqualVal = SI->getTrueValue();
2682   Value *UnequalVal = SI->getFalseValue();
2683   // We still can get non-canonical predicate here, so canonicalize.
2684   if (PredA == ICmpInst::ICMP_NE)
2685     std::swap(EqualVal, UnequalVal);
2686   if (!match(EqualVal, m_ConstantInt(Equal)))
2687     return false;
2688   ICmpInst::Predicate PredB;
2689   Value *LHS2, *RHS2;
2690   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2691                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2692     return false;
2693   // We can get predicate mismatch here, so canonicalize if possible:
2694   // First, ensure that 'LHS' match.
2695   if (LHS2 != LHS) {
2696     // x sgt y <--> y slt x
2697     std::swap(LHS2, RHS2);
2698     PredB = ICmpInst::getSwappedPredicate(PredB);
2699   }
2700   if (LHS2 != LHS)
2701     return false;
2702   // We also need to canonicalize 'RHS'.
2703   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2704     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2705     auto FlippedStrictness =
2706         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2707             PredB, cast<Constant>(RHS2));
2708     if (!FlippedStrictness)
2709       return false;
2710     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2711     RHS2 = FlippedStrictness->second;
2712     // And kind-of perform the result swap.
2713     std::swap(Less, Greater);
2714     PredB = ICmpInst::ICMP_SLT;
2715   }
2716   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2717 }
2718 
2719 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2720                                                       SelectInst *Select,
2721                                                       ConstantInt *C) {
2722 
2723   assert(C && "Cmp RHS should be a constant int!");
2724   // If we're testing a constant value against the result of a three way
2725   // comparison, the result can be expressed directly in terms of the
2726   // original values being compared.  Note: We could possibly be more
2727   // aggressive here and remove the hasOneUse test. The original select is
2728   // really likely to simplify or sink when we remove a test of the result.
2729   Value *OrigLHS, *OrigRHS;
2730   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2731   if (Cmp.hasOneUse() &&
2732       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2733                               C3GreaterThan)) {
2734     assert(C1LessThan && C2Equal && C3GreaterThan);
2735 
2736     bool TrueWhenLessThan =
2737         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2738             ->isAllOnesValue();
2739     bool TrueWhenEqual =
2740         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2741             ->isAllOnesValue();
2742     bool TrueWhenGreaterThan =
2743         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2744             ->isAllOnesValue();
2745 
2746     // This generates the new instruction that will replace the original Cmp
2747     // Instruction. Instead of enumerating the various combinations when
2748     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2749     // false, we rely on chaining of ORs and future passes of InstCombine to
2750     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2751 
2752     // When none of the three constants satisfy the predicate for the RHS (C),
2753     // the entire original Cmp can be simplified to a false.
2754     Value *Cond = Builder.getFalse();
2755     if (TrueWhenLessThan)
2756       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2757                                                        OrigLHS, OrigRHS));
2758     if (TrueWhenEqual)
2759       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2760                                                        OrigLHS, OrigRHS));
2761     if (TrueWhenGreaterThan)
2762       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2763                                                        OrigLHS, OrigRHS));
2764 
2765     return replaceInstUsesWith(Cmp, Cond);
2766   }
2767   return nullptr;
2768 }
2769 
2770 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2771                                     InstCombiner::BuilderTy &Builder) {
2772   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2773   if (!Bitcast)
2774     return nullptr;
2775 
2776   ICmpInst::Predicate Pred = Cmp.getPredicate();
2777   Value *Op1 = Cmp.getOperand(1);
2778   Value *BCSrcOp = Bitcast->getOperand(0);
2779 
2780   // Make sure the bitcast doesn't change the number of vector elements.
2781   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2782           Bitcast->getDestTy()->getScalarSizeInBits()) {
2783     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2784     Value *X;
2785     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2786       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2787       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2788       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2789       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2790       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2791            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2792           match(Op1, m_Zero()))
2793         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2794 
2795       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2796       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2797         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2798 
2799       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2800       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2801         return new ICmpInst(Pred, X,
2802                             ConstantInt::getAllOnesValue(X->getType()));
2803     }
2804 
2805     // Zero-equality checks are preserved through unsigned floating-point casts:
2806     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2807     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2808     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2809       if (Cmp.isEquality() && match(Op1, m_Zero()))
2810         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2811 
2812     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2813     // the FP extend/truncate because that cast does not change the sign-bit.
2814     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2815     // The sign-bit is always the most significant bit in those types.
2816     const APInt *C;
2817     bool TrueIfSigned;
2818     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2819         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2820       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2821           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2822         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2823         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2824         Type *XType = X->getType();
2825 
2826         // We can't currently handle Power style floating point operations here.
2827         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2828 
2829           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2830           if (auto *XVTy = dyn_cast<VectorType>(XType))
2831             NewType = FixedVectorType::get(
2832                 NewType, cast<FixedVectorType>(XVTy)->getNumElements());
2833           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2834           if (TrueIfSigned)
2835             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2836                                 ConstantInt::getNullValue(NewType));
2837           else
2838             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2839                                 ConstantInt::getAllOnesValue(NewType));
2840         }
2841       }
2842     }
2843   }
2844 
2845   // Test to see if the operands of the icmp are casted versions of other
2846   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2847   if (Bitcast->getType()->isPointerTy() &&
2848       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2849     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2850     // so eliminate it as well.
2851     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2852       Op1 = BC2->getOperand(0);
2853 
2854     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2855     return new ICmpInst(Pred, BCSrcOp, Op1);
2856   }
2857 
2858   // Folding: icmp <pred> iN X, C
2859   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2860   //    and C is a splat of a K-bit pattern
2861   //    and SC is a constant vector = <C', C', C', ..., C'>
2862   // Into:
2863   //   %E = extractelement <M x iK> %vec, i32 C'
2864   //   icmp <pred> iK %E, trunc(C)
2865   const APInt *C;
2866   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2867       !Bitcast->getType()->isIntegerTy() ||
2868       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2869     return nullptr;
2870 
2871   Value *Vec;
2872   ArrayRef<int> Mask;
2873   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2874     // Check whether every element of Mask is the same constant
2875     if (is_splat(Mask)) {
2876       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2877       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2878       if (C->isSplat(EltTy->getBitWidth())) {
2879         // Fold the icmp based on the value of C
2880         // If C is M copies of an iK sized bit pattern,
2881         // then:
2882         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2883         //       icmp <pred> iK %SplatVal, <pattern>
2884         Value *Elem = Builder.getInt32(Mask[0]);
2885         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2886         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2887         return new ICmpInst(Pred, Extract, NewC);
2888       }
2889     }
2890   }
2891   return nullptr;
2892 }
2893 
2894 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2895 /// where X is some kind of instruction.
2896 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2897   const APInt *C;
2898   if (!match(Cmp.getOperand(1), m_APInt(C)))
2899     return nullptr;
2900 
2901   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2902     switch (BO->getOpcode()) {
2903     case Instruction::Xor:
2904       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2905         return I;
2906       break;
2907     case Instruction::And:
2908       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2909         return I;
2910       break;
2911     case Instruction::Or:
2912       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2913         return I;
2914       break;
2915     case Instruction::Mul:
2916       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2917         return I;
2918       break;
2919     case Instruction::Shl:
2920       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2921         return I;
2922       break;
2923     case Instruction::LShr:
2924     case Instruction::AShr:
2925       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2926         return I;
2927       break;
2928     case Instruction::SRem:
2929       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2930         return I;
2931       break;
2932     case Instruction::UDiv:
2933       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2934         return I;
2935       LLVM_FALLTHROUGH;
2936     case Instruction::SDiv:
2937       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2938         return I;
2939       break;
2940     case Instruction::Sub:
2941       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2942         return I;
2943       break;
2944     case Instruction::Add:
2945       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2946         return I;
2947       break;
2948     default:
2949       break;
2950     }
2951     // TODO: These folds could be refactored to be part of the above calls.
2952     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2953       return I;
2954   }
2955 
2956   // Match against CmpInst LHS being instructions other than binary operators.
2957 
2958   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2959     // For now, we only support constant integers while folding the
2960     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2961     // similar to the cases handled by binary ops above.
2962     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2963       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2964         return I;
2965   }
2966 
2967   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2968     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2969       return I;
2970   }
2971 
2972   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2973     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2974       return I;
2975 
2976   return nullptr;
2977 }
2978 
2979 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2980 /// icmp eq/ne BO, C.
2981 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
2982     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
2983   // TODO: Some of these folds could work with arbitrary constants, but this
2984   // function is limited to scalar and vector splat constants.
2985   if (!Cmp.isEquality())
2986     return nullptr;
2987 
2988   ICmpInst::Predicate Pred = Cmp.getPredicate();
2989   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2990   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2991   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2992 
2993   switch (BO->getOpcode()) {
2994   case Instruction::SRem:
2995     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2996     if (C.isNullValue() && BO->hasOneUse()) {
2997       const APInt *BOC;
2998       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2999         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3000         return new ICmpInst(Pred, NewRem,
3001                             Constant::getNullValue(BO->getType()));
3002       }
3003     }
3004     break;
3005   case Instruction::Add: {
3006     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3007     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3008       if (BO->hasOneUse())
3009         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3010     } else if (C.isNullValue()) {
3011       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3012       // efficiently invertible, or if the add has just this one use.
3013       if (Value *NegVal = dyn_castNegVal(BOp1))
3014         return new ICmpInst(Pred, BOp0, NegVal);
3015       if (Value *NegVal = dyn_castNegVal(BOp0))
3016         return new ICmpInst(Pred, NegVal, BOp1);
3017       if (BO->hasOneUse()) {
3018         Value *Neg = Builder.CreateNeg(BOp1);
3019         Neg->takeName(BO);
3020         return new ICmpInst(Pred, BOp0, Neg);
3021       }
3022     }
3023     break;
3024   }
3025   case Instruction::Xor:
3026     if (BO->hasOneUse()) {
3027       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3028         // For the xor case, we can xor two constants together, eliminating
3029         // the explicit xor.
3030         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3031       } else if (C.isNullValue()) {
3032         // Replace ((xor A, B) != 0) with (A != B)
3033         return new ICmpInst(Pred, BOp0, BOp1);
3034       }
3035     }
3036     break;
3037   case Instruction::Sub:
3038     if (BO->hasOneUse()) {
3039       // Only check for constant LHS here, as constant RHS will be canonicalized
3040       // to add and use the fold above.
3041       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3042         // Replace ((sub BOC, B) != C) with (B != BOC-C).
3043         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3044       } else if (C.isNullValue()) {
3045         // Replace ((sub A, B) != 0) with (A != B).
3046         return new ICmpInst(Pred, BOp0, BOp1);
3047       }
3048     }
3049     break;
3050   case Instruction::Or: {
3051     const APInt *BOC;
3052     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3053       // Comparing if all bits outside of a constant mask are set?
3054       // Replace (X | C) == -1 with (X & ~C) == ~C.
3055       // This removes the -1 constant.
3056       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3057       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3058       return new ICmpInst(Pred, And, NotBOC);
3059     }
3060     break;
3061   }
3062   case Instruction::And: {
3063     const APInt *BOC;
3064     if (match(BOp1, m_APInt(BOC))) {
3065       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3066       if (C == *BOC && C.isPowerOf2())
3067         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3068                             BO, Constant::getNullValue(RHS->getType()));
3069     }
3070     break;
3071   }
3072   case Instruction::UDiv:
3073     if (C.isNullValue()) {
3074       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3075       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3076       return new ICmpInst(NewPred, BOp1, BOp0);
3077     }
3078     break;
3079   default:
3080     break;
3081   }
3082   return nullptr;
3083 }
3084 
3085 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3086 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3087     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3088   Type *Ty = II->getType();
3089   unsigned BitWidth = C.getBitWidth();
3090   switch (II->getIntrinsicID()) {
3091   case Intrinsic::abs:
3092     // abs(A) == 0  ->  A == 0
3093     // abs(A) == INT_MIN  ->  A == INT_MIN
3094     if (C.isNullValue() || C.isMinSignedValue())
3095       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3096                           ConstantInt::get(Ty, C));
3097     break;
3098 
3099   case Intrinsic::bswap:
3100     // bswap(A) == C  ->  A == bswap(C)
3101     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3102                         ConstantInt::get(Ty, C.byteSwap()));
3103 
3104   case Intrinsic::ctlz:
3105   case Intrinsic::cttz: {
3106     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3107     if (C == BitWidth)
3108       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3109                           ConstantInt::getNullValue(Ty));
3110 
3111     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3112     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3113     // Limit to one use to ensure we don't increase instruction count.
3114     unsigned Num = C.getLimitedValue(BitWidth);
3115     if (Num != BitWidth && II->hasOneUse()) {
3116       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3117       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3118                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3119       APInt Mask2 = IsTrailing
3120         ? APInt::getOneBitSet(BitWidth, Num)
3121         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3122       return new ICmpInst(Cmp.getPredicate(),
3123           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3124           ConstantInt::get(Ty, Mask2));
3125     }
3126     break;
3127   }
3128 
3129   case Intrinsic::ctpop: {
3130     // popcount(A) == 0  ->  A == 0 and likewise for !=
3131     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3132     bool IsZero = C.isNullValue();
3133     if (IsZero || C == BitWidth)
3134       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3135           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3136 
3137     break;
3138   }
3139 
3140   case Intrinsic::uadd_sat: {
3141     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3142     if (C.isNullValue()) {
3143       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3144       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3145     }
3146     break;
3147   }
3148 
3149   case Intrinsic::usub_sat: {
3150     // usub.sat(a, b) == 0  ->  a <= b
3151     if (C.isNullValue()) {
3152       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3153           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3154       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3155     }
3156     break;
3157   }
3158   default:
3159     break;
3160   }
3161 
3162   return nullptr;
3163 }
3164 
3165 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3166 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3167                                                              IntrinsicInst *II,
3168                                                              const APInt &C) {
3169   if (Cmp.isEquality())
3170     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3171 
3172   Type *Ty = II->getType();
3173   unsigned BitWidth = C.getBitWidth();
3174   switch (II->getIntrinsicID()) {
3175   case Intrinsic::ctlz: {
3176     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3177     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3178       unsigned Num = C.getLimitedValue();
3179       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3180       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3181                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3182     }
3183 
3184     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3185     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3186         C.uge(1) && C.ule(BitWidth)) {
3187       unsigned Num = C.getLimitedValue();
3188       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3189       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3190                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3191     }
3192     break;
3193   }
3194   case Intrinsic::cttz: {
3195     // Limit to one use to ensure we don't increase instruction count.
3196     if (!II->hasOneUse())
3197       return nullptr;
3198 
3199     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3200     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3201       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3202       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3203                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3204                              ConstantInt::getNullValue(Ty));
3205     }
3206 
3207     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3208     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3209         C.uge(1) && C.ule(BitWidth)) {
3210       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3211       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3212                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3213                              ConstantInt::getNullValue(Ty));
3214     }
3215     break;
3216   }
3217   default:
3218     break;
3219   }
3220 
3221   return nullptr;
3222 }
3223 
3224 /// Handle icmp with constant (but not simple integer constant) RHS.
3225 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3226   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3227   Constant *RHSC = dyn_cast<Constant>(Op1);
3228   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3229   if (!RHSC || !LHSI)
3230     return nullptr;
3231 
3232   switch (LHSI->getOpcode()) {
3233   case Instruction::GetElementPtr:
3234     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3235     if (RHSC->isNullValue() &&
3236         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3237       return new ICmpInst(
3238           I.getPredicate(), LHSI->getOperand(0),
3239           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3240     break;
3241   case Instruction::PHI:
3242     // Only fold icmp into the PHI if the phi and icmp are in the same
3243     // block.  If in the same block, we're encouraging jump threading.  If
3244     // not, we are just pessimizing the code by making an i1 phi.
3245     if (LHSI->getParent() == I.getParent())
3246       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3247         return NV;
3248     break;
3249   case Instruction::Select: {
3250     // If either operand of the select is a constant, we can fold the
3251     // comparison into the select arms, which will cause one to be
3252     // constant folded and the select turned into a bitwise or.
3253     Value *Op1 = nullptr, *Op2 = nullptr;
3254     ConstantInt *CI = nullptr;
3255     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3256       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3257       CI = dyn_cast<ConstantInt>(Op1);
3258     }
3259     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3260       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3261       CI = dyn_cast<ConstantInt>(Op2);
3262     }
3263 
3264     // We only want to perform this transformation if it will not lead to
3265     // additional code. This is true if either both sides of the select
3266     // fold to a constant (in which case the icmp is replaced with a select
3267     // which will usually simplify) or this is the only user of the
3268     // select (in which case we are trading a select+icmp for a simpler
3269     // select+icmp) or all uses of the select can be replaced based on
3270     // dominance information ("Global cases").
3271     bool Transform = false;
3272     if (Op1 && Op2)
3273       Transform = true;
3274     else if (Op1 || Op2) {
3275       // Local case
3276       if (LHSI->hasOneUse())
3277         Transform = true;
3278       // Global cases
3279       else if (CI && !CI->isZero())
3280         // When Op1 is constant try replacing select with second operand.
3281         // Otherwise Op2 is constant and try replacing select with first
3282         // operand.
3283         Transform =
3284             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3285     }
3286     if (Transform) {
3287       if (!Op1)
3288         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3289                                  I.getName());
3290       if (!Op2)
3291         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3292                                  I.getName());
3293       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3294     }
3295     break;
3296   }
3297   case Instruction::IntToPtr:
3298     // icmp pred inttoptr(X), null -> icmp pred X, 0
3299     if (RHSC->isNullValue() &&
3300         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3301       return new ICmpInst(
3302           I.getPredicate(), LHSI->getOperand(0),
3303           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3304     break;
3305 
3306   case Instruction::Load:
3307     // Try to optimize things like "A[i] > 4" to index computations.
3308     if (GetElementPtrInst *GEP =
3309             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3310       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3311         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3312             !cast<LoadInst>(LHSI)->isVolatile())
3313           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3314             return Res;
3315     }
3316     break;
3317   }
3318 
3319   return nullptr;
3320 }
3321 
3322 /// Some comparisons can be simplified.
3323 /// In this case, we are looking for comparisons that look like
3324 /// a check for a lossy truncation.
3325 /// Folds:
3326 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3327 /// Where Mask is some pattern that produces all-ones in low bits:
3328 ///    (-1 >> y)
3329 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3330 ///   ~(-1 << y)
3331 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3332 /// The Mask can be a constant, too.
3333 /// For some predicates, the operands are commutative.
3334 /// For others, x can only be on a specific side.
3335 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3336                                           InstCombiner::BuilderTy &Builder) {
3337   ICmpInst::Predicate SrcPred;
3338   Value *X, *M, *Y;
3339   auto m_VariableMask = m_CombineOr(
3340       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3341                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3342       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3343                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3344   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3345   if (!match(&I, m_c_ICmp(SrcPred,
3346                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3347                           m_Deferred(X))))
3348     return nullptr;
3349 
3350   ICmpInst::Predicate DstPred;
3351   switch (SrcPred) {
3352   case ICmpInst::Predicate::ICMP_EQ:
3353     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3354     DstPred = ICmpInst::Predicate::ICMP_ULE;
3355     break;
3356   case ICmpInst::Predicate::ICMP_NE:
3357     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3358     DstPred = ICmpInst::Predicate::ICMP_UGT;
3359     break;
3360   case ICmpInst::Predicate::ICMP_ULT:
3361     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3362     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3363     DstPred = ICmpInst::Predicate::ICMP_UGT;
3364     break;
3365   case ICmpInst::Predicate::ICMP_UGE:
3366     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3367     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3368     DstPred = ICmpInst::Predicate::ICMP_ULE;
3369     break;
3370   case ICmpInst::Predicate::ICMP_SLT:
3371     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3372     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3373     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3374       return nullptr;
3375     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3376       return nullptr;
3377     DstPred = ICmpInst::Predicate::ICMP_SGT;
3378     break;
3379   case ICmpInst::Predicate::ICMP_SGE:
3380     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3381     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3382     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3383       return nullptr;
3384     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3385       return nullptr;
3386     DstPred = ICmpInst::Predicate::ICMP_SLE;
3387     break;
3388   case ICmpInst::Predicate::ICMP_SGT:
3389   case ICmpInst::Predicate::ICMP_SLE:
3390     return nullptr;
3391   case ICmpInst::Predicate::ICMP_UGT:
3392   case ICmpInst::Predicate::ICMP_ULE:
3393     llvm_unreachable("Instsimplify took care of commut. variant");
3394     break;
3395   default:
3396     llvm_unreachable("All possible folds are handled.");
3397   }
3398 
3399   // The mask value may be a vector constant that has undefined elements. But it
3400   // may not be safe to propagate those undefs into the new compare, so replace
3401   // those elements by copying an existing, defined, and safe scalar constant.
3402   Type *OpTy = M->getType();
3403   auto *VecC = dyn_cast<Constant>(M);
3404   if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3405     auto *OpVTy = cast<FixedVectorType>(OpTy);
3406     Constant *SafeReplacementConstant = nullptr;
3407     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3408       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3409         SafeReplacementConstant = VecC->getAggregateElement(i);
3410         break;
3411       }
3412     }
3413     assert(SafeReplacementConstant && "Failed to find undef replacement");
3414     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3415   }
3416 
3417   return Builder.CreateICmp(DstPred, X, M);
3418 }
3419 
3420 /// Some comparisons can be simplified.
3421 /// In this case, we are looking for comparisons that look like
3422 /// a check for a lossy signed truncation.
3423 /// Folds:   (MaskedBits is a constant.)
3424 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3425 /// Into:
3426 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3427 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3428 static Value *
3429 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3430                                  InstCombiner::BuilderTy &Builder) {
3431   ICmpInst::Predicate SrcPred;
3432   Value *X;
3433   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3434   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3435   if (!match(&I, m_c_ICmp(SrcPred,
3436                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3437                                           m_APInt(C1))),
3438                           m_Deferred(X))))
3439     return nullptr;
3440 
3441   // Potential handling of non-splats: for each element:
3442   //  * if both are undef, replace with constant 0.
3443   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3444   //  * if both are not undef, and are different, bailout.
3445   //  * else, only one is undef, then pick the non-undef one.
3446 
3447   // The shift amount must be equal.
3448   if (*C0 != *C1)
3449     return nullptr;
3450   const APInt &MaskedBits = *C0;
3451   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3452 
3453   ICmpInst::Predicate DstPred;
3454   switch (SrcPred) {
3455   case ICmpInst::Predicate::ICMP_EQ:
3456     // ((%x << MaskedBits) a>> MaskedBits) == %x
3457     //   =>
3458     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3459     DstPred = ICmpInst::Predicate::ICMP_ULT;
3460     break;
3461   case ICmpInst::Predicate::ICMP_NE:
3462     // ((%x << MaskedBits) a>> MaskedBits) != %x
3463     //   =>
3464     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3465     DstPred = ICmpInst::Predicate::ICMP_UGE;
3466     break;
3467   // FIXME: are more folds possible?
3468   default:
3469     return nullptr;
3470   }
3471 
3472   auto *XType = X->getType();
3473   const unsigned XBitWidth = XType->getScalarSizeInBits();
3474   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3475   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3476 
3477   // KeptBits = bitwidth(%x) - MaskedBits
3478   const APInt KeptBits = BitWidth - MaskedBits;
3479   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3480   // ICmpCst = (1 << KeptBits)
3481   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3482   assert(ICmpCst.isPowerOf2());
3483   // AddCst = (1 << (KeptBits-1))
3484   const APInt AddCst = ICmpCst.lshr(1);
3485   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3486 
3487   // T0 = add %x, AddCst
3488   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3489   // T1 = T0 DstPred ICmpCst
3490   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3491 
3492   return T1;
3493 }
3494 
3495 // Given pattern:
3496 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3497 // we should move shifts to the same hand of 'and', i.e. rewrite as
3498 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3499 // We are only interested in opposite logical shifts here.
3500 // One of the shifts can be truncated.
3501 // If we can, we want to end up creating 'lshr' shift.
3502 static Value *
3503 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3504                                            InstCombiner::BuilderTy &Builder) {
3505   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3506       !I.getOperand(0)->hasOneUse())
3507     return nullptr;
3508 
3509   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3510 
3511   // Look for an 'and' of two logical shifts, one of which may be truncated.
3512   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3513   Instruction *XShift, *MaybeTruncation, *YShift;
3514   if (!match(
3515           I.getOperand(0),
3516           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3517                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3518                                    m_AnyLogicalShift, m_Instruction(YShift))),
3519                                m_Instruction(MaybeTruncation)))))
3520     return nullptr;
3521 
3522   // We potentially looked past 'trunc', but only when matching YShift,
3523   // therefore YShift must have the widest type.
3524   Instruction *WidestShift = YShift;
3525   // Therefore XShift must have the shallowest type.
3526   // Or they both have identical types if there was no truncation.
3527   Instruction *NarrowestShift = XShift;
3528 
3529   Type *WidestTy = WidestShift->getType();
3530   Type *NarrowestTy = NarrowestShift->getType();
3531   assert(NarrowestTy == I.getOperand(0)->getType() &&
3532          "We did not look past any shifts while matching XShift though.");
3533   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3534 
3535   // If YShift is a 'lshr', swap the shifts around.
3536   if (match(YShift, m_LShr(m_Value(), m_Value())))
3537     std::swap(XShift, YShift);
3538 
3539   // The shifts must be in opposite directions.
3540   auto XShiftOpcode = XShift->getOpcode();
3541   if (XShiftOpcode == YShift->getOpcode())
3542     return nullptr; // Do not care about same-direction shifts here.
3543 
3544   Value *X, *XShAmt, *Y, *YShAmt;
3545   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3546   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3547 
3548   // If one of the values being shifted is a constant, then we will end with
3549   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3550   // however, we will need to ensure that we won't increase instruction count.
3551   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3552     // At least one of the hands of the 'and' should be one-use shift.
3553     if (!match(I.getOperand(0),
3554                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3555       return nullptr;
3556     if (HadTrunc) {
3557       // Due to the 'trunc', we will need to widen X. For that either the old
3558       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3559       if (!MaybeTruncation->hasOneUse() &&
3560           !NarrowestShift->getOperand(1)->hasOneUse())
3561         return nullptr;
3562     }
3563   }
3564 
3565   // We have two shift amounts from two different shifts. The types of those
3566   // shift amounts may not match. If that's the case let's bailout now.
3567   if (XShAmt->getType() != YShAmt->getType())
3568     return nullptr;
3569 
3570   // As input, we have the following pattern:
3571   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3572   // We want to rewrite that as:
3573   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3574   // While we know that originally (Q+K) would not overflow
3575   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3576   // shift amounts. so it may now overflow in smaller bitwidth.
3577   // To ensure that does not happen, we need to ensure that the total maximal
3578   // shift amount is still representable in that smaller bit width.
3579   unsigned MaximalPossibleTotalShiftAmount =
3580       (WidestTy->getScalarSizeInBits() - 1) +
3581       (NarrowestTy->getScalarSizeInBits() - 1);
3582   APInt MaximalRepresentableShiftAmount =
3583       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3584   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3585     return nullptr;
3586 
3587   // Can we fold (XShAmt+YShAmt) ?
3588   auto *NewShAmt = dyn_cast_or_null<Constant>(
3589       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3590                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3591   if (!NewShAmt)
3592     return nullptr;
3593   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3594   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3595 
3596   // Is the new shift amount smaller than the bit width?
3597   // FIXME: could also rely on ConstantRange.
3598   if (!match(NewShAmt,
3599              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3600                                 APInt(WidestBitWidth, WidestBitWidth))))
3601     return nullptr;
3602 
3603   // An extra legality check is needed if we had trunc-of-lshr.
3604   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3605     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3606                     WidestShift]() {
3607       // It isn't obvious whether it's worth it to analyze non-constants here.
3608       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3609       // If *any* of these preconditions matches we can perform the fold.
3610       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3611                                     ? NewShAmt->getSplatValue()
3612                                     : NewShAmt;
3613       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3614       if (NewShAmtSplat &&
3615           (NewShAmtSplat->isNullValue() ||
3616            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3617         return true;
3618       // We consider *min* leading zeros so a single outlier
3619       // blocks the transform as opposed to allowing it.
3620       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3621         KnownBits Known = computeKnownBits(C, SQ.DL);
3622         unsigned MinLeadZero = Known.countMinLeadingZeros();
3623         // If the value being shifted has at most lowest bit set we can fold.
3624         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3625         if (MaxActiveBits <= 1)
3626           return true;
3627         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3628         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3629           return true;
3630       }
3631       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3632         KnownBits Known = computeKnownBits(C, SQ.DL);
3633         unsigned MinLeadZero = Known.countMinLeadingZeros();
3634         // If the value being shifted has at most lowest bit set we can fold.
3635         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3636         if (MaxActiveBits <= 1)
3637           return true;
3638         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3639         if (NewShAmtSplat) {
3640           APInt AdjNewShAmt =
3641               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3642           if (AdjNewShAmt.ule(MinLeadZero))
3643             return true;
3644         }
3645       }
3646       return false; // Can't tell if it's ok.
3647     };
3648     if (!CanFold())
3649       return nullptr;
3650   }
3651 
3652   // All good, we can do this fold.
3653   X = Builder.CreateZExt(X, WidestTy);
3654   Y = Builder.CreateZExt(Y, WidestTy);
3655   // The shift is the same that was for X.
3656   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3657                   ? Builder.CreateLShr(X, NewShAmt)
3658                   : Builder.CreateShl(X, NewShAmt);
3659   Value *T1 = Builder.CreateAnd(T0, Y);
3660   return Builder.CreateICmp(I.getPredicate(), T1,
3661                             Constant::getNullValue(WidestTy));
3662 }
3663 
3664 /// Fold
3665 ///   (-1 u/ x) u< y
3666 ///   ((x * y) u/ x) != y
3667 /// to
3668 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3669 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3670 /// will mean that we are looking for the opposite answer.
3671 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3672   ICmpInst::Predicate Pred;
3673   Value *X, *Y;
3674   Instruction *Mul;
3675   bool NeedNegation;
3676   // Look for: (-1 u/ x) u</u>= y
3677   if (!I.isEquality() &&
3678       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3679                          m_Value(Y)))) {
3680     Mul = nullptr;
3681 
3682     // Are we checking that overflow does not happen, or does happen?
3683     switch (Pred) {
3684     case ICmpInst::Predicate::ICMP_ULT:
3685       NeedNegation = false;
3686       break; // OK
3687     case ICmpInst::Predicate::ICMP_UGE:
3688       NeedNegation = true;
3689       break; // OK
3690     default:
3691       return nullptr; // Wrong predicate.
3692     }
3693   } else // Look for: ((x * y) u/ x) !=/== y
3694       if (I.isEquality() &&
3695           match(&I, m_c_ICmp(Pred, m_Value(Y),
3696                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3697                                                                   m_Value(X)),
3698                                                           m_Instruction(Mul)),
3699                                              m_Deferred(X)))))) {
3700     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3701   } else
3702     return nullptr;
3703 
3704   BuilderTy::InsertPointGuard Guard(Builder);
3705   // If the pattern included (x * y), we'll want to insert new instructions
3706   // right before that original multiplication so that we can replace it.
3707   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3708   if (MulHadOtherUses)
3709     Builder.SetInsertPoint(Mul);
3710 
3711   Function *F = Intrinsic::getDeclaration(
3712       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3713   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3714 
3715   // If the multiplication was used elsewhere, to ensure that we don't leave
3716   // "duplicate" instructions, replace uses of that original multiplication
3717   // with the multiplication result from the with.overflow intrinsic.
3718   if (MulHadOtherUses)
3719     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3720 
3721   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3722   if (NeedNegation) // This technically increases instruction count.
3723     Res = Builder.CreateNot(Res, "umul.not.ov");
3724 
3725   // If we replaced the mul, erase it. Do this after all uses of Builder,
3726   // as the mul is used as insertion point.
3727   if (MulHadOtherUses)
3728     eraseInstFromFunction(*Mul);
3729 
3730   return Res;
3731 }
3732 
3733 static Instruction *foldICmpXNegX(ICmpInst &I) {
3734   CmpInst::Predicate Pred;
3735   Value *X;
3736   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3737     return nullptr;
3738 
3739   if (ICmpInst::isSigned(Pred))
3740     Pred = ICmpInst::getSwappedPredicate(Pred);
3741   else if (ICmpInst::isUnsigned(Pred))
3742     Pred = ICmpInst::getSignedPredicate(Pred);
3743   // else for equality-comparisons just keep the predicate.
3744 
3745   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3746                           Constant::getNullValue(X->getType()), I.getName());
3747 }
3748 
3749 /// Try to fold icmp (binop), X or icmp X, (binop).
3750 /// TODO: A large part of this logic is duplicated in InstSimplify's
3751 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3752 /// duplication.
3753 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3754                                              const SimplifyQuery &SQ) {
3755   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3756   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3757 
3758   // Special logic for binary operators.
3759   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3760   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3761   if (!BO0 && !BO1)
3762     return nullptr;
3763 
3764   if (Instruction *NewICmp = foldICmpXNegX(I))
3765     return NewICmp;
3766 
3767   const CmpInst::Predicate Pred = I.getPredicate();
3768   Value *X;
3769 
3770   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3771   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3772   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3773       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3774     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3775   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3776   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3777       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3778     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3779 
3780   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3781   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3782     NoOp0WrapProblem =
3783         ICmpInst::isEquality(Pred) ||
3784         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3785         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3786   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3787     NoOp1WrapProblem =
3788         ICmpInst::isEquality(Pred) ||
3789         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3790         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3791 
3792   // Analyze the case when either Op0 or Op1 is an add instruction.
3793   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3794   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3795   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3796     A = BO0->getOperand(0);
3797     B = BO0->getOperand(1);
3798   }
3799   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3800     C = BO1->getOperand(0);
3801     D = BO1->getOperand(1);
3802   }
3803 
3804   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3805   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3806   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3807     return new ICmpInst(Pred, A == Op1 ? B : A,
3808                         Constant::getNullValue(Op1->getType()));
3809 
3810   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3811   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3812   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3813     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3814                         C == Op0 ? D : C);
3815 
3816   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3817   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3818       NoOp1WrapProblem) {
3819     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3820     Value *Y, *Z;
3821     if (A == C) {
3822       // C + B == C + D  ->  B == D
3823       Y = B;
3824       Z = D;
3825     } else if (A == D) {
3826       // D + B == C + D  ->  B == C
3827       Y = B;
3828       Z = C;
3829     } else if (B == C) {
3830       // A + C == C + D  ->  A == D
3831       Y = A;
3832       Z = D;
3833     } else {
3834       assert(B == D);
3835       // A + D == C + D  ->  A == C
3836       Y = A;
3837       Z = C;
3838     }
3839     return new ICmpInst(Pred, Y, Z);
3840   }
3841 
3842   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3843   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3844       match(B, m_AllOnes()))
3845     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3846 
3847   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3848   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3849       match(B, m_AllOnes()))
3850     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3851 
3852   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3853   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3854     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3855 
3856   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3857   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3858     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3859 
3860   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3861   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3862       match(D, m_AllOnes()))
3863     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3864 
3865   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3866   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3867       match(D, m_AllOnes()))
3868     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3869 
3870   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3871   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3872     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3873 
3874   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3875   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3876     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3877 
3878   // TODO: The subtraction-related identities shown below also hold, but
3879   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3880   // wouldn't happen even if they were implemented.
3881   //
3882   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3883   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3884   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3885   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3886 
3887   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3888   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3889     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3890 
3891   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3892   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3893     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3894 
3895   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3896   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3897     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3898 
3899   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3900   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3901     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3902 
3903   // if C1 has greater magnitude than C2:
3904   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3905   //  s.t. C3 = C1 - C2
3906   //
3907   // if C2 has greater magnitude than C1:
3908   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3909   //  s.t. C3 = C2 - C1
3910   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3911       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3912     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3913       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3914         const APInt &AP1 = C1->getValue();
3915         const APInt &AP2 = C2->getValue();
3916         if (AP1.isNegative() == AP2.isNegative()) {
3917           APInt AP1Abs = C1->getValue().abs();
3918           APInt AP2Abs = C2->getValue().abs();
3919           if (AP1Abs.uge(AP2Abs)) {
3920             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3921             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3922             return new ICmpInst(Pred, NewAdd, C);
3923           } else {
3924             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3925             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3926             return new ICmpInst(Pred, A, NewAdd);
3927           }
3928         }
3929       }
3930 
3931   // Analyze the case when either Op0 or Op1 is a sub instruction.
3932   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3933   A = nullptr;
3934   B = nullptr;
3935   C = nullptr;
3936   D = nullptr;
3937   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3938     A = BO0->getOperand(0);
3939     B = BO0->getOperand(1);
3940   }
3941   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3942     C = BO1->getOperand(0);
3943     D = BO1->getOperand(1);
3944   }
3945 
3946   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3947   if (A == Op1 && NoOp0WrapProblem)
3948     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3949   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3950   if (C == Op0 && NoOp1WrapProblem)
3951     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3952 
3953   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3954   // (A - B) u>/u<= A --> B u>/u<= A
3955   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3956     return new ICmpInst(Pred, B, A);
3957   // C u</u>= (C - D) --> C u</u>= D
3958   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3959     return new ICmpInst(Pred, C, D);
3960   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3961   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3962       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3963     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3964   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3965   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3966       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3967     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3968 
3969   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3970   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3971     return new ICmpInst(Pred, A, C);
3972 
3973   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3974   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3975     return new ICmpInst(Pred, D, B);
3976 
3977   // icmp (0-X) < cst --> x > -cst
3978   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3979     Value *X;
3980     if (match(BO0, m_Neg(m_Value(X))))
3981       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3982         if (RHSC->isNotMinSignedValue())
3983           return new ICmpInst(I.getSwappedPredicate(), X,
3984                               ConstantExpr::getNeg(RHSC));
3985   }
3986 
3987   {
3988     // Try to remove shared constant multiplier from equality comparison:
3989     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
3990     Value *X, *Y;
3991     const APInt *C;
3992     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
3993         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
3994       if (!C->countTrailingZeros() ||
3995           (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
3996           (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
3997       return new ICmpInst(Pred, X, Y);
3998   }
3999 
4000   BinaryOperator *SRem = nullptr;
4001   // icmp (srem X, Y), Y
4002   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4003     SRem = BO0;
4004   // icmp Y, (srem X, Y)
4005   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4006            Op0 == BO1->getOperand(1))
4007     SRem = BO1;
4008   if (SRem) {
4009     // We don't check hasOneUse to avoid increasing register pressure because
4010     // the value we use is the same value this instruction was already using.
4011     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4012     default:
4013       break;
4014     case ICmpInst::ICMP_EQ:
4015       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4016     case ICmpInst::ICMP_NE:
4017       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4018     case ICmpInst::ICMP_SGT:
4019     case ICmpInst::ICMP_SGE:
4020       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4021                           Constant::getAllOnesValue(SRem->getType()));
4022     case ICmpInst::ICMP_SLT:
4023     case ICmpInst::ICMP_SLE:
4024       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4025                           Constant::getNullValue(SRem->getType()));
4026     }
4027   }
4028 
4029   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4030       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4031     switch (BO0->getOpcode()) {
4032     default:
4033       break;
4034     case Instruction::Add:
4035     case Instruction::Sub:
4036     case Instruction::Xor: {
4037       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4038         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4039 
4040       const APInt *C;
4041       if (match(BO0->getOperand(1), m_APInt(C))) {
4042         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4043         if (C->isSignMask()) {
4044           ICmpInst::Predicate NewPred =
4045               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
4046           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4047         }
4048 
4049         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4050         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4051           ICmpInst::Predicate NewPred =
4052               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
4053           NewPred = I.getSwappedPredicate(NewPred);
4054           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4055         }
4056       }
4057       break;
4058     }
4059     case Instruction::Mul: {
4060       if (!I.isEquality())
4061         break;
4062 
4063       const APInt *C;
4064       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4065           !C->isOneValue()) {
4066         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4067         // Mask = -1 >> count-trailing-zeros(C).
4068         if (unsigned TZs = C->countTrailingZeros()) {
4069           Constant *Mask = ConstantInt::get(
4070               BO0->getType(),
4071               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4072           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4073           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4074           return new ICmpInst(Pred, And1, And2);
4075         }
4076       }
4077       break;
4078     }
4079     case Instruction::UDiv:
4080     case Instruction::LShr:
4081       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4082         break;
4083       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4084 
4085     case Instruction::SDiv:
4086       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4087         break;
4088       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4089 
4090     case Instruction::AShr:
4091       if (!BO0->isExact() || !BO1->isExact())
4092         break;
4093       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4094 
4095     case Instruction::Shl: {
4096       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4097       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4098       if (!NUW && !NSW)
4099         break;
4100       if (!NSW && I.isSigned())
4101         break;
4102       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4103     }
4104     }
4105   }
4106 
4107   if (BO0) {
4108     // Transform  A & (L - 1) `ult` L --> L != 0
4109     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4110     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4111 
4112     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4113       auto *Zero = Constant::getNullValue(BO0->getType());
4114       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4115     }
4116   }
4117 
4118   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4119     return replaceInstUsesWith(I, V);
4120 
4121   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4122     return replaceInstUsesWith(I, V);
4123 
4124   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4125     return replaceInstUsesWith(I, V);
4126 
4127   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4128     return replaceInstUsesWith(I, V);
4129 
4130   return nullptr;
4131 }
4132 
4133 /// Fold icmp Pred min|max(X, Y), X.
4134 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4135   ICmpInst::Predicate Pred = Cmp.getPredicate();
4136   Value *Op0 = Cmp.getOperand(0);
4137   Value *X = Cmp.getOperand(1);
4138 
4139   // Canonicalize minimum or maximum operand to LHS of the icmp.
4140   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4141       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4142       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4143       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4144     std::swap(Op0, X);
4145     Pred = Cmp.getSwappedPredicate();
4146   }
4147 
4148   Value *Y;
4149   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4150     // smin(X, Y)  == X --> X s<= Y
4151     // smin(X, Y) s>= X --> X s<= Y
4152     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4153       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4154 
4155     // smin(X, Y) != X --> X s> Y
4156     // smin(X, Y) s< X --> X s> Y
4157     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4158       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4159 
4160     // These cases should be handled in InstSimplify:
4161     // smin(X, Y) s<= X --> true
4162     // smin(X, Y) s> X --> false
4163     return nullptr;
4164   }
4165 
4166   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4167     // smax(X, Y)  == X --> X s>= Y
4168     // smax(X, Y) s<= X --> X s>= Y
4169     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4170       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4171 
4172     // smax(X, Y) != X --> X s< Y
4173     // smax(X, Y) s> X --> X s< Y
4174     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4175       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4176 
4177     // These cases should be handled in InstSimplify:
4178     // smax(X, Y) s>= X --> true
4179     // smax(X, Y) s< X --> false
4180     return nullptr;
4181   }
4182 
4183   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4184     // umin(X, Y)  == X --> X u<= Y
4185     // umin(X, Y) u>= X --> X u<= Y
4186     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4187       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4188 
4189     // umin(X, Y) != X --> X u> Y
4190     // umin(X, Y) u< X --> X u> Y
4191     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4192       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4193 
4194     // These cases should be handled in InstSimplify:
4195     // umin(X, Y) u<= X --> true
4196     // umin(X, Y) u> X --> false
4197     return nullptr;
4198   }
4199 
4200   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4201     // umax(X, Y)  == X --> X u>= Y
4202     // umax(X, Y) u<= X --> X u>= Y
4203     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4204       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4205 
4206     // umax(X, Y) != X --> X u< Y
4207     // umax(X, Y) u> X --> X u< Y
4208     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4209       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4210 
4211     // These cases should be handled in InstSimplify:
4212     // umax(X, Y) u>= X --> true
4213     // umax(X, Y) u< X --> false
4214     return nullptr;
4215   }
4216 
4217   return nullptr;
4218 }
4219 
4220 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4221   if (!I.isEquality())
4222     return nullptr;
4223 
4224   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4225   const CmpInst::Predicate Pred = I.getPredicate();
4226   Value *A, *B, *C, *D;
4227   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4228     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4229       Value *OtherVal = A == Op1 ? B : A;
4230       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4231     }
4232 
4233     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4234       // A^c1 == C^c2 --> A == C^(c1^c2)
4235       ConstantInt *C1, *C2;
4236       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4237           Op1->hasOneUse()) {
4238         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4239         Value *Xor = Builder.CreateXor(C, NC);
4240         return new ICmpInst(Pred, A, Xor);
4241       }
4242 
4243       // A^B == A^D -> B == D
4244       if (A == C)
4245         return new ICmpInst(Pred, B, D);
4246       if (A == D)
4247         return new ICmpInst(Pred, B, C);
4248       if (B == C)
4249         return new ICmpInst(Pred, A, D);
4250       if (B == D)
4251         return new ICmpInst(Pred, A, C);
4252     }
4253   }
4254 
4255   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4256     // A == (A^B)  ->  B == 0
4257     Value *OtherVal = A == Op0 ? B : A;
4258     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4259   }
4260 
4261   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4262   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4263       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4264     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4265 
4266     if (A == C) {
4267       X = B;
4268       Y = D;
4269       Z = A;
4270     } else if (A == D) {
4271       X = B;
4272       Y = C;
4273       Z = A;
4274     } else if (B == C) {
4275       X = A;
4276       Y = D;
4277       Z = B;
4278     } else if (B == D) {
4279       X = A;
4280       Y = C;
4281       Z = B;
4282     }
4283 
4284     if (X) { // Build (X^Y) & Z
4285       Op1 = Builder.CreateXor(X, Y);
4286       Op1 = Builder.CreateAnd(Op1, Z);
4287       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4288     }
4289   }
4290 
4291   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4292   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4293   ConstantInt *Cst1;
4294   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4295        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4296       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4297        match(Op1, m_ZExt(m_Value(A))))) {
4298     APInt Pow2 = Cst1->getValue() + 1;
4299     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4300         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4301       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4302   }
4303 
4304   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4305   // For lshr and ashr pairs.
4306   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4307        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4308       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4309        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4310     unsigned TypeBits = Cst1->getBitWidth();
4311     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4312     if (ShAmt < TypeBits && ShAmt != 0) {
4313       ICmpInst::Predicate NewPred =
4314           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4315       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4316       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4317       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4318     }
4319   }
4320 
4321   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4322   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4323       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4324     unsigned TypeBits = Cst1->getBitWidth();
4325     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4326     if (ShAmt < TypeBits && ShAmt != 0) {
4327       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4328       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4329       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4330                                       I.getName() + ".mask");
4331       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4332     }
4333   }
4334 
4335   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4336   // "icmp (and X, mask), cst"
4337   uint64_t ShAmt = 0;
4338   if (Op0->hasOneUse() &&
4339       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4340       match(Op1, m_ConstantInt(Cst1)) &&
4341       // Only do this when A has multiple uses.  This is most important to do
4342       // when it exposes other optimizations.
4343       !A->hasOneUse()) {
4344     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4345 
4346     if (ShAmt < ASize) {
4347       APInt MaskV =
4348           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4349       MaskV <<= ShAmt;
4350 
4351       APInt CmpV = Cst1->getValue().zext(ASize);
4352       CmpV <<= ShAmt;
4353 
4354       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4355       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4356     }
4357   }
4358 
4359   // If both operands are byte-swapped or bit-reversed, just compare the
4360   // original values.
4361   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4362   // and handle more intrinsics.
4363   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4364       (match(Op0, m_BitReverse(m_Value(A))) &&
4365        match(Op1, m_BitReverse(m_Value(B)))))
4366     return new ICmpInst(Pred, A, B);
4367 
4368   // Canonicalize checking for a power-of-2-or-zero value:
4369   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4370   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4371   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4372                                    m_Deferred(A)))) ||
4373       !match(Op1, m_ZeroInt()))
4374     A = nullptr;
4375 
4376   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4377   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4378   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4379     A = Op1;
4380   else if (match(Op1,
4381                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4382     A = Op0;
4383 
4384   if (A) {
4385     Type *Ty = A->getType();
4386     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4387     return Pred == ICmpInst::ICMP_EQ
4388         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4389         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4390   }
4391 
4392   return nullptr;
4393 }
4394 
4395 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4396                                            InstCombiner::BuilderTy &Builder) {
4397   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4398   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4399   Value *X;
4400   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4401     return nullptr;
4402 
4403   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4404   bool IsSignedCmp = ICmp.isSigned();
4405   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4406     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4407     // and the other is a zext), then we can't handle this.
4408     // TODO: This is too strict. We can handle some predicates (equality?).
4409     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4410       return nullptr;
4411 
4412     // Not an extension from the same type?
4413     Value *Y = CastOp1->getOperand(0);
4414     Type *XTy = X->getType(), *YTy = Y->getType();
4415     if (XTy != YTy) {
4416       // One of the casts must have one use because we are creating a new cast.
4417       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4418         return nullptr;
4419       // Extend the narrower operand to the type of the wider operand.
4420       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4421         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4422       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4423         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4424       else
4425         return nullptr;
4426     }
4427 
4428     // (zext X) == (zext Y) --> X == Y
4429     // (sext X) == (sext Y) --> X == Y
4430     if (ICmp.isEquality())
4431       return new ICmpInst(ICmp.getPredicate(), X, Y);
4432 
4433     // A signed comparison of sign extended values simplifies into a
4434     // signed comparison.
4435     if (IsSignedCmp && IsSignedExt)
4436       return new ICmpInst(ICmp.getPredicate(), X, Y);
4437 
4438     // The other three cases all fold into an unsigned comparison.
4439     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4440   }
4441 
4442   // Below here, we are only folding a compare with constant.
4443   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4444   if (!C)
4445     return nullptr;
4446 
4447   // Compute the constant that would happen if we truncated to SrcTy then
4448   // re-extended to DestTy.
4449   Type *SrcTy = CastOp0->getSrcTy();
4450   Type *DestTy = CastOp0->getDestTy();
4451   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4452   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4453 
4454   // If the re-extended constant didn't change...
4455   if (Res2 == C) {
4456     if (ICmp.isEquality())
4457       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4458 
4459     // A signed comparison of sign extended values simplifies into a
4460     // signed comparison.
4461     if (IsSignedExt && IsSignedCmp)
4462       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4463 
4464     // The other three cases all fold into an unsigned comparison.
4465     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4466   }
4467 
4468   // The re-extended constant changed, partly changed (in the case of a vector),
4469   // or could not be determined to be equal (in the case of a constant
4470   // expression), so the constant cannot be represented in the shorter type.
4471   // All the cases that fold to true or false will have already been handled
4472   // by SimplifyICmpInst, so only deal with the tricky case.
4473   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4474     return nullptr;
4475 
4476   // Is source op positive?
4477   // icmp ult (sext X), C --> icmp sgt X, -1
4478   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4479     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4480 
4481   // Is source op negative?
4482   // icmp ugt (sext X), C --> icmp slt X, 0
4483   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4484   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4485 }
4486 
4487 /// Handle icmp (cast x), (cast or constant).
4488 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4489   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4490   if (!CastOp0)
4491     return nullptr;
4492   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4493     return nullptr;
4494 
4495   Value *Op0Src = CastOp0->getOperand(0);
4496   Type *SrcTy = CastOp0->getSrcTy();
4497   Type *DestTy = CastOp0->getDestTy();
4498 
4499   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4500   // integer type is the same size as the pointer type.
4501   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4502     if (isa<VectorType>(SrcTy)) {
4503       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4504       DestTy = cast<VectorType>(DestTy)->getElementType();
4505     }
4506     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4507   };
4508   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4509       CompatibleSizes(SrcTy, DestTy)) {
4510     Value *NewOp1 = nullptr;
4511     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4512       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4513       if (PtrSrc->getType()->getPointerAddressSpace() ==
4514           Op0Src->getType()->getPointerAddressSpace()) {
4515         NewOp1 = PtrToIntOp1->getOperand(0);
4516         // If the pointer types don't match, insert a bitcast.
4517         if (Op0Src->getType() != NewOp1->getType())
4518           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4519       }
4520     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4521       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4522     }
4523 
4524     if (NewOp1)
4525       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4526   }
4527 
4528   return foldICmpWithZextOrSext(ICmp, Builder);
4529 }
4530 
4531 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4532   switch (BinaryOp) {
4533     default:
4534       llvm_unreachable("Unsupported binary op");
4535     case Instruction::Add:
4536     case Instruction::Sub:
4537       return match(RHS, m_Zero());
4538     case Instruction::Mul:
4539       return match(RHS, m_One());
4540   }
4541 }
4542 
4543 OverflowResult
4544 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4545                                   bool IsSigned, Value *LHS, Value *RHS,
4546                                   Instruction *CxtI) const {
4547   switch (BinaryOp) {
4548     default:
4549       llvm_unreachable("Unsupported binary op");
4550     case Instruction::Add:
4551       if (IsSigned)
4552         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4553       else
4554         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4555     case Instruction::Sub:
4556       if (IsSigned)
4557         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4558       else
4559         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4560     case Instruction::Mul:
4561       if (IsSigned)
4562         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4563       else
4564         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4565   }
4566 }
4567 
4568 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4569                                              bool IsSigned, Value *LHS,
4570                                              Value *RHS, Instruction &OrigI,
4571                                              Value *&Result,
4572                                              Constant *&Overflow) {
4573   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4574     std::swap(LHS, RHS);
4575 
4576   // If the overflow check was an add followed by a compare, the insertion point
4577   // may be pointing to the compare.  We want to insert the new instructions
4578   // before the add in case there are uses of the add between the add and the
4579   // compare.
4580   Builder.SetInsertPoint(&OrigI);
4581 
4582   if (isNeutralValue(BinaryOp, RHS)) {
4583     Result = LHS;
4584     Overflow = Builder.getFalse();
4585     return true;
4586   }
4587 
4588   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4589     case OverflowResult::MayOverflow:
4590       return false;
4591     case OverflowResult::AlwaysOverflowsLow:
4592     case OverflowResult::AlwaysOverflowsHigh:
4593       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4594       Result->takeName(&OrigI);
4595       Overflow = Builder.getTrue();
4596       return true;
4597     case OverflowResult::NeverOverflows:
4598       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4599       Result->takeName(&OrigI);
4600       Overflow = Builder.getFalse();
4601       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4602         if (IsSigned)
4603           Inst->setHasNoSignedWrap();
4604         else
4605           Inst->setHasNoUnsignedWrap();
4606       }
4607       return true;
4608   }
4609 
4610   llvm_unreachable("Unexpected overflow result");
4611 }
4612 
4613 /// Recognize and process idiom involving test for multiplication
4614 /// overflow.
4615 ///
4616 /// The caller has matched a pattern of the form:
4617 ///   I = cmp u (mul(zext A, zext B), V
4618 /// The function checks if this is a test for overflow and if so replaces
4619 /// multiplication with call to 'mul.with.overflow' intrinsic.
4620 ///
4621 /// \param I Compare instruction.
4622 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4623 ///               the compare instruction.  Must be of integer type.
4624 /// \param OtherVal The other argument of compare instruction.
4625 /// \returns Instruction which must replace the compare instruction, NULL if no
4626 ///          replacement required.
4627 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4628                                          Value *OtherVal,
4629                                          InstCombinerImpl &IC) {
4630   // Don't bother doing this transformation for pointers, don't do it for
4631   // vectors.
4632   if (!isa<IntegerType>(MulVal->getType()))
4633     return nullptr;
4634 
4635   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4636   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4637   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4638   if (!MulInstr)
4639     return nullptr;
4640   assert(MulInstr->getOpcode() == Instruction::Mul);
4641 
4642   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4643        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4644   assert(LHS->getOpcode() == Instruction::ZExt);
4645   assert(RHS->getOpcode() == Instruction::ZExt);
4646   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4647 
4648   // Calculate type and width of the result produced by mul.with.overflow.
4649   Type *TyA = A->getType(), *TyB = B->getType();
4650   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4651            WidthB = TyB->getPrimitiveSizeInBits();
4652   unsigned MulWidth;
4653   Type *MulType;
4654   if (WidthB > WidthA) {
4655     MulWidth = WidthB;
4656     MulType = TyB;
4657   } else {
4658     MulWidth = WidthA;
4659     MulType = TyA;
4660   }
4661 
4662   // In order to replace the original mul with a narrower mul.with.overflow,
4663   // all uses must ignore upper bits of the product.  The number of used low
4664   // bits must be not greater than the width of mul.with.overflow.
4665   if (MulVal->hasNUsesOrMore(2))
4666     for (User *U : MulVal->users()) {
4667       if (U == &I)
4668         continue;
4669       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4670         // Check if truncation ignores bits above MulWidth.
4671         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4672         if (TruncWidth > MulWidth)
4673           return nullptr;
4674       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4675         // Check if AND ignores bits above MulWidth.
4676         if (BO->getOpcode() != Instruction::And)
4677           return nullptr;
4678         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4679           const APInt &CVal = CI->getValue();
4680           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4681             return nullptr;
4682         } else {
4683           // In this case we could have the operand of the binary operation
4684           // being defined in another block, and performing the replacement
4685           // could break the dominance relation.
4686           return nullptr;
4687         }
4688       } else {
4689         // Other uses prohibit this transformation.
4690         return nullptr;
4691       }
4692     }
4693 
4694   // Recognize patterns
4695   switch (I.getPredicate()) {
4696   case ICmpInst::ICMP_EQ:
4697   case ICmpInst::ICMP_NE:
4698     // Recognize pattern:
4699     //   mulval = mul(zext A, zext B)
4700     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4701     ConstantInt *CI;
4702     Value *ValToMask;
4703     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4704       if (ValToMask != MulVal)
4705         return nullptr;
4706       const APInt &CVal = CI->getValue() + 1;
4707       if (CVal.isPowerOf2()) {
4708         unsigned MaskWidth = CVal.logBase2();
4709         if (MaskWidth == MulWidth)
4710           break; // Recognized
4711       }
4712     }
4713     return nullptr;
4714 
4715   case ICmpInst::ICMP_UGT:
4716     // Recognize pattern:
4717     //   mulval = mul(zext A, zext B)
4718     //   cmp ugt mulval, max
4719     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4720       APInt MaxVal = APInt::getMaxValue(MulWidth);
4721       MaxVal = MaxVal.zext(CI->getBitWidth());
4722       if (MaxVal.eq(CI->getValue()))
4723         break; // Recognized
4724     }
4725     return nullptr;
4726 
4727   case ICmpInst::ICMP_UGE:
4728     // Recognize pattern:
4729     //   mulval = mul(zext A, zext B)
4730     //   cmp uge mulval, max+1
4731     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4732       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4733       if (MaxVal.eq(CI->getValue()))
4734         break; // Recognized
4735     }
4736     return nullptr;
4737 
4738   case ICmpInst::ICMP_ULE:
4739     // Recognize pattern:
4740     //   mulval = mul(zext A, zext B)
4741     //   cmp ule mulval, max
4742     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4743       APInt MaxVal = APInt::getMaxValue(MulWidth);
4744       MaxVal = MaxVal.zext(CI->getBitWidth());
4745       if (MaxVal.eq(CI->getValue()))
4746         break; // Recognized
4747     }
4748     return nullptr;
4749 
4750   case ICmpInst::ICMP_ULT:
4751     // Recognize pattern:
4752     //   mulval = mul(zext A, zext B)
4753     //   cmp ule mulval, max + 1
4754     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4755       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4756       if (MaxVal.eq(CI->getValue()))
4757         break; // Recognized
4758     }
4759     return nullptr;
4760 
4761   default:
4762     return nullptr;
4763   }
4764 
4765   InstCombiner::BuilderTy &Builder = IC.Builder;
4766   Builder.SetInsertPoint(MulInstr);
4767 
4768   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4769   Value *MulA = A, *MulB = B;
4770   if (WidthA < MulWidth)
4771     MulA = Builder.CreateZExt(A, MulType);
4772   if (WidthB < MulWidth)
4773     MulB = Builder.CreateZExt(B, MulType);
4774   Function *F = Intrinsic::getDeclaration(
4775       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4776   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4777   IC.addToWorklist(MulInstr);
4778 
4779   // If there are uses of mul result other than the comparison, we know that
4780   // they are truncation or binary AND. Change them to use result of
4781   // mul.with.overflow and adjust properly mask/size.
4782   if (MulVal->hasNUsesOrMore(2)) {
4783     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4784     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4785       User *U = *UI++;
4786       if (U == &I || U == OtherVal)
4787         continue;
4788       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4789         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4790           IC.replaceInstUsesWith(*TI, Mul);
4791         else
4792           TI->setOperand(0, Mul);
4793       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4794         assert(BO->getOpcode() == Instruction::And);
4795         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4796         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4797         APInt ShortMask = CI->getValue().trunc(MulWidth);
4798         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4799         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4800         IC.replaceInstUsesWith(*BO, Zext);
4801       } else {
4802         llvm_unreachable("Unexpected Binary operation");
4803       }
4804       IC.addToWorklist(cast<Instruction>(U));
4805     }
4806   }
4807   if (isa<Instruction>(OtherVal))
4808     IC.addToWorklist(cast<Instruction>(OtherVal));
4809 
4810   // The original icmp gets replaced with the overflow value, maybe inverted
4811   // depending on predicate.
4812   bool Inverse = false;
4813   switch (I.getPredicate()) {
4814   case ICmpInst::ICMP_NE:
4815     break;
4816   case ICmpInst::ICMP_EQ:
4817     Inverse = true;
4818     break;
4819   case ICmpInst::ICMP_UGT:
4820   case ICmpInst::ICMP_UGE:
4821     if (I.getOperand(0) == MulVal)
4822       break;
4823     Inverse = true;
4824     break;
4825   case ICmpInst::ICMP_ULT:
4826   case ICmpInst::ICMP_ULE:
4827     if (I.getOperand(1) == MulVal)
4828       break;
4829     Inverse = true;
4830     break;
4831   default:
4832     llvm_unreachable("Unexpected predicate");
4833   }
4834   if (Inverse) {
4835     Value *Res = Builder.CreateExtractValue(Call, 1);
4836     return BinaryOperator::CreateNot(Res);
4837   }
4838 
4839   return ExtractValueInst::Create(Call, 1);
4840 }
4841 
4842 /// When performing a comparison against a constant, it is possible that not all
4843 /// the bits in the LHS are demanded. This helper method computes the mask that
4844 /// IS demanded.
4845 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4846   const APInt *RHS;
4847   if (!match(I.getOperand(1), m_APInt(RHS)))
4848     return APInt::getAllOnesValue(BitWidth);
4849 
4850   // If this is a normal comparison, it demands all bits. If it is a sign bit
4851   // comparison, it only demands the sign bit.
4852   bool UnusedBit;
4853   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4854     return APInt::getSignMask(BitWidth);
4855 
4856   switch (I.getPredicate()) {
4857   // For a UGT comparison, we don't care about any bits that
4858   // correspond to the trailing ones of the comparand.  The value of these
4859   // bits doesn't impact the outcome of the comparison, because any value
4860   // greater than the RHS must differ in a bit higher than these due to carry.
4861   case ICmpInst::ICMP_UGT:
4862     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4863 
4864   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4865   // Any value less than the RHS must differ in a higher bit because of carries.
4866   case ICmpInst::ICMP_ULT:
4867     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4868 
4869   default:
4870     return APInt::getAllOnesValue(BitWidth);
4871   }
4872 }
4873 
4874 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4875 /// should be swapped.
4876 /// The decision is based on how many times these two operands are reused
4877 /// as subtract operands and their positions in those instructions.
4878 /// The rationale is that several architectures use the same instruction for
4879 /// both subtract and cmp. Thus, it is better if the order of those operands
4880 /// match.
4881 /// \return true if Op0 and Op1 should be swapped.
4882 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4883   // Filter out pointer values as those cannot appear directly in subtract.
4884   // FIXME: we may want to go through inttoptrs or bitcasts.
4885   if (Op0->getType()->isPointerTy())
4886     return false;
4887   // If a subtract already has the same operands as a compare, swapping would be
4888   // bad. If a subtract has the same operands as a compare but in reverse order,
4889   // then swapping is good.
4890   int GoodToSwap = 0;
4891   for (const User *U : Op0->users()) {
4892     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4893       GoodToSwap++;
4894     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4895       GoodToSwap--;
4896   }
4897   return GoodToSwap > 0;
4898 }
4899 
4900 /// Check that one use is in the same block as the definition and all
4901 /// other uses are in blocks dominated by a given block.
4902 ///
4903 /// \param DI Definition
4904 /// \param UI Use
4905 /// \param DB Block that must dominate all uses of \p DI outside
4906 ///           the parent block
4907 /// \return true when \p UI is the only use of \p DI in the parent block
4908 /// and all other uses of \p DI are in blocks dominated by \p DB.
4909 ///
4910 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
4911                                         const Instruction *UI,
4912                                         const BasicBlock *DB) const {
4913   assert(DI && UI && "Instruction not defined\n");
4914   // Ignore incomplete definitions.
4915   if (!DI->getParent())
4916     return false;
4917   // DI and UI must be in the same block.
4918   if (DI->getParent() != UI->getParent())
4919     return false;
4920   // Protect from self-referencing blocks.
4921   if (DI->getParent() == DB)
4922     return false;
4923   for (const User *U : DI->users()) {
4924     auto *Usr = cast<Instruction>(U);
4925     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4926       return false;
4927   }
4928   return true;
4929 }
4930 
4931 /// Return true when the instruction sequence within a block is select-cmp-br.
4932 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4933   const BasicBlock *BB = SI->getParent();
4934   if (!BB)
4935     return false;
4936   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4937   if (!BI || BI->getNumSuccessors() != 2)
4938     return false;
4939   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4940   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4941     return false;
4942   return true;
4943 }
4944 
4945 /// True when a select result is replaced by one of its operands
4946 /// in select-icmp sequence. This will eventually result in the elimination
4947 /// of the select.
4948 ///
4949 /// \param SI    Select instruction
4950 /// \param Icmp  Compare instruction
4951 /// \param SIOpd Operand that replaces the select
4952 ///
4953 /// Notes:
4954 /// - The replacement is global and requires dominator information
4955 /// - The caller is responsible for the actual replacement
4956 ///
4957 /// Example:
4958 ///
4959 /// entry:
4960 ///  %4 = select i1 %3, %C* %0, %C* null
4961 ///  %5 = icmp eq %C* %4, null
4962 ///  br i1 %5, label %9, label %7
4963 ///  ...
4964 ///  ; <label>:7                                       ; preds = %entry
4965 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4966 ///  ...
4967 ///
4968 /// can be transformed to
4969 ///
4970 ///  %5 = icmp eq %C* %0, null
4971 ///  %6 = select i1 %3, i1 %5, i1 true
4972 ///  br i1 %6, label %9, label %7
4973 ///  ...
4974 ///  ; <label>:7                                       ; preds = %entry
4975 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4976 ///
4977 /// Similar when the first operand of the select is a constant or/and
4978 /// the compare is for not equal rather than equal.
4979 ///
4980 /// NOTE: The function is only called when the select and compare constants
4981 /// are equal, the optimization can work only for EQ predicates. This is not a
4982 /// major restriction since a NE compare should be 'normalized' to an equal
4983 /// compare, which usually happens in the combiner and test case
4984 /// select-cmp-br.ll checks for it.
4985 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
4986                                                  const ICmpInst *Icmp,
4987                                                  const unsigned SIOpd) {
4988   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4989   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4990     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4991     // The check for the single predecessor is not the best that can be
4992     // done. But it protects efficiently against cases like when SI's
4993     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4994     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4995     // replaced can be reached on either path. So the uniqueness check
4996     // guarantees that the path all uses of SI (outside SI's parent) are on
4997     // is disjoint from all other paths out of SI. But that information
4998     // is more expensive to compute, and the trade-off here is in favor
4999     // of compile-time. It should also be noticed that we check for a single
5000     // predecessor and not only uniqueness. This to handle the situation when
5001     // Succ and Succ1 points to the same basic block.
5002     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5003       NumSel++;
5004       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5005       return true;
5006     }
5007   }
5008   return false;
5009 }
5010 
5011 /// Try to fold the comparison based on range information we can get by checking
5012 /// whether bits are known to be zero or one in the inputs.
5013 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5014   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5015   Type *Ty = Op0->getType();
5016   ICmpInst::Predicate Pred = I.getPredicate();
5017 
5018   // Get scalar or pointer size.
5019   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5020                           ? Ty->getScalarSizeInBits()
5021                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5022 
5023   if (!BitWidth)
5024     return nullptr;
5025 
5026   KnownBits Op0Known(BitWidth);
5027   KnownBits Op1Known(BitWidth);
5028 
5029   if (SimplifyDemandedBits(&I, 0,
5030                            getDemandedBitsLHSMask(I, BitWidth),
5031                            Op0Known, 0))
5032     return &I;
5033 
5034   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5035                            Op1Known, 0))
5036     return &I;
5037 
5038   // Given the known and unknown bits, compute a range that the LHS could be
5039   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5040   // EQ and NE we use unsigned values.
5041   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5042   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5043   if (I.isSigned()) {
5044     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
5045     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
5046   } else {
5047     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
5048     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
5049   }
5050 
5051   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5052   // out that the LHS or RHS is a constant. Constant fold this now, so that
5053   // code below can assume that Min != Max.
5054   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5055     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5056   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5057     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5058 
5059   // Based on the range information we know about the LHS, see if we can
5060   // simplify this comparison.  For example, (x&4) < 8 is always true.
5061   switch (Pred) {
5062   default:
5063     llvm_unreachable("Unknown icmp opcode!");
5064   case ICmpInst::ICMP_EQ:
5065   case ICmpInst::ICMP_NE: {
5066     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
5067       return Pred == CmpInst::ICMP_EQ
5068                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
5069                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5070     }
5071 
5072     // If all bits are known zero except for one, then we know at most one bit
5073     // is set. If the comparison is against zero, then this is a check to see if
5074     // *that* bit is set.
5075     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5076     if (Op1Known.isZero()) {
5077       // If the LHS is an AND with the same constant, look through it.
5078       Value *LHS = nullptr;
5079       const APInt *LHSC;
5080       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5081           *LHSC != Op0KnownZeroInverted)
5082         LHS = Op0;
5083 
5084       Value *X;
5085       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5086         APInt ValToCheck = Op0KnownZeroInverted;
5087         Type *XTy = X->getType();
5088         if (ValToCheck.isPowerOf2()) {
5089           // ((1 << X) & 8) == 0 -> X != 3
5090           // ((1 << X) & 8) != 0 -> X == 3
5091           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5092           auto NewPred = ICmpInst::getInversePredicate(Pred);
5093           return new ICmpInst(NewPred, X, CmpC);
5094         } else if ((++ValToCheck).isPowerOf2()) {
5095           // ((1 << X) & 7) == 0 -> X >= 3
5096           // ((1 << X) & 7) != 0 -> X  < 3
5097           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5098           auto NewPred =
5099               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5100           return new ICmpInst(NewPred, X, CmpC);
5101         }
5102       }
5103 
5104       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5105       const APInt *CI;
5106       if (Op0KnownZeroInverted.isOneValue() &&
5107           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5108         // ((8 >>u X) & 1) == 0 -> X != 3
5109         // ((8 >>u X) & 1) != 0 -> X == 3
5110         unsigned CmpVal = CI->countTrailingZeros();
5111         auto NewPred = ICmpInst::getInversePredicate(Pred);
5112         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5113       }
5114     }
5115     break;
5116   }
5117   case ICmpInst::ICMP_ULT: {
5118     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5119       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5120     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5121       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5122     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5123       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5124 
5125     const APInt *CmpC;
5126     if (match(Op1, m_APInt(CmpC))) {
5127       // A <u C -> A == C-1 if min(A)+1 == C
5128       if (*CmpC == Op0Min + 1)
5129         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5130                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5131       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5132       // exceeds the log2 of C.
5133       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5134         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5135                             Constant::getNullValue(Op1->getType()));
5136     }
5137     break;
5138   }
5139   case ICmpInst::ICMP_UGT: {
5140     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5141       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5142     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5143       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5144     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5145       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5146 
5147     const APInt *CmpC;
5148     if (match(Op1, m_APInt(CmpC))) {
5149       // A >u C -> A == C+1 if max(a)-1 == C
5150       if (*CmpC == Op0Max - 1)
5151         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5152                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5153       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5154       // exceeds the log2 of C.
5155       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5156         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5157                             Constant::getNullValue(Op1->getType()));
5158     }
5159     break;
5160   }
5161   case ICmpInst::ICMP_SLT: {
5162     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5163       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5164     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5165       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5166     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5167       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5168     const APInt *CmpC;
5169     if (match(Op1, m_APInt(CmpC))) {
5170       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5171         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5172                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5173     }
5174     break;
5175   }
5176   case ICmpInst::ICMP_SGT: {
5177     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5178       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5179     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5180       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5181     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5182       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5183     const APInt *CmpC;
5184     if (match(Op1, m_APInt(CmpC))) {
5185       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5186         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5187                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5188     }
5189     break;
5190   }
5191   case ICmpInst::ICMP_SGE:
5192     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5193     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5194       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5195     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5196       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5197     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5198       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5199     break;
5200   case ICmpInst::ICMP_SLE:
5201     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5202     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5203       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5204     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5205       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5206     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5207       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5208     break;
5209   case ICmpInst::ICMP_UGE:
5210     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5211     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5212       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5213     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5214       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5215     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5216       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5217     break;
5218   case ICmpInst::ICMP_ULE:
5219     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5220     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5221       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5222     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5223       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5224     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5225       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5226     break;
5227   }
5228 
5229   // Turn a signed comparison into an unsigned one if both operands are known to
5230   // have the same sign.
5231   if (I.isSigned() &&
5232       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5233        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5234     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5235 
5236   return nullptr;
5237 }
5238 
5239 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5240 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5241                                                        Constant *C) {
5242   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5243          "Only for relational integer predicates.");
5244 
5245   Type *Type = C->getType();
5246   bool IsSigned = ICmpInst::isSigned(Pred);
5247 
5248   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5249   bool WillIncrement =
5250       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5251 
5252   // Check if the constant operand can be safely incremented/decremented
5253   // without overflowing/underflowing.
5254   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5255     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5256   };
5257 
5258   Constant *SafeReplacementConstant = nullptr;
5259   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5260     // Bail out if the constant can't be safely incremented/decremented.
5261     if (!ConstantIsOk(CI))
5262       return llvm::None;
5263   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5264     unsigned NumElts = FVTy->getNumElements();
5265     for (unsigned i = 0; i != NumElts; ++i) {
5266       Constant *Elt = C->getAggregateElement(i);
5267       if (!Elt)
5268         return llvm::None;
5269 
5270       if (isa<UndefValue>(Elt))
5271         continue;
5272 
5273       // Bail out if we can't determine if this constant is min/max or if we
5274       // know that this constant is min/max.
5275       auto *CI = dyn_cast<ConstantInt>(Elt);
5276       if (!CI || !ConstantIsOk(CI))
5277         return llvm::None;
5278 
5279       if (!SafeReplacementConstant)
5280         SafeReplacementConstant = CI;
5281     }
5282   } else {
5283     // ConstantExpr?
5284     return llvm::None;
5285   }
5286 
5287   // It may not be safe to change a compare predicate in the presence of
5288   // undefined elements, so replace those elements with the first safe constant
5289   // that we found.
5290   if (C->containsUndefElement()) {
5291     assert(SafeReplacementConstant && "Replacement constant not set");
5292     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5293   }
5294 
5295   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5296 
5297   // Increment or decrement the constant.
5298   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5299   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5300 
5301   return std::make_pair(NewPred, NewC);
5302 }
5303 
5304 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5305 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5306 /// allows them to be folded in visitICmpInst.
5307 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5308   ICmpInst::Predicate Pred = I.getPredicate();
5309   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5310       InstCombiner::isCanonicalPredicate(Pred))
5311     return nullptr;
5312 
5313   Value *Op0 = I.getOperand(0);
5314   Value *Op1 = I.getOperand(1);
5315   auto *Op1C = dyn_cast<Constant>(Op1);
5316   if (!Op1C)
5317     return nullptr;
5318 
5319   auto FlippedStrictness =
5320       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5321   if (!FlippedStrictness)
5322     return nullptr;
5323 
5324   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5325 }
5326 
5327 /// If we have a comparison with a non-canonical predicate, if we can update
5328 /// all the users, invert the predicate and adjust all the users.
5329 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5330   // Is the predicate already canonical?
5331   CmpInst::Predicate Pred = I.getPredicate();
5332   if (InstCombiner::isCanonicalPredicate(Pred))
5333     return nullptr;
5334 
5335   // Can all users be adjusted to predicate inversion?
5336   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5337     return nullptr;
5338 
5339   // Ok, we can canonicalize comparison!
5340   // Let's first invert the comparison's predicate.
5341   I.setPredicate(CmpInst::getInversePredicate(Pred));
5342   I.setName(I.getName() + ".not");
5343 
5344   // And now let's adjust every user.
5345   for (User *U : I.users()) {
5346     switch (cast<Instruction>(U)->getOpcode()) {
5347     case Instruction::Select: {
5348       auto *SI = cast<SelectInst>(U);
5349       SI->swapValues();
5350       SI->swapProfMetadata();
5351       break;
5352     }
5353     case Instruction::Br:
5354       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
5355       break;
5356     case Instruction::Xor:
5357       replaceInstUsesWith(cast<Instruction>(*U), &I);
5358       break;
5359     default:
5360       llvm_unreachable("Got unexpected user - out of sync with "
5361                        "canFreelyInvertAllUsersOf() ?");
5362     }
5363   }
5364 
5365   return &I;
5366 }
5367 
5368 /// Integer compare with boolean values can always be turned into bitwise ops.
5369 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5370                                          InstCombiner::BuilderTy &Builder) {
5371   Value *A = I.getOperand(0), *B = I.getOperand(1);
5372   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5373 
5374   // A boolean compared to true/false can be simplified to Op0/true/false in
5375   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5376   // Cases not handled by InstSimplify are always 'not' of Op0.
5377   if (match(B, m_Zero())) {
5378     switch (I.getPredicate()) {
5379       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5380       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5381       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5382         return BinaryOperator::CreateNot(A);
5383       default:
5384         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5385     }
5386   } else if (match(B, m_One())) {
5387     switch (I.getPredicate()) {
5388       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5389       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5390       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5391         return BinaryOperator::CreateNot(A);
5392       default:
5393         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5394     }
5395   }
5396 
5397   switch (I.getPredicate()) {
5398   default:
5399     llvm_unreachable("Invalid icmp instruction!");
5400   case ICmpInst::ICMP_EQ:
5401     // icmp eq i1 A, B -> ~(A ^ B)
5402     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5403 
5404   case ICmpInst::ICMP_NE:
5405     // icmp ne i1 A, B -> A ^ B
5406     return BinaryOperator::CreateXor(A, B);
5407 
5408   case ICmpInst::ICMP_UGT:
5409     // icmp ugt -> icmp ult
5410     std::swap(A, B);
5411     LLVM_FALLTHROUGH;
5412   case ICmpInst::ICMP_ULT:
5413     // icmp ult i1 A, B -> ~A & B
5414     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5415 
5416   case ICmpInst::ICMP_SGT:
5417     // icmp sgt -> icmp slt
5418     std::swap(A, B);
5419     LLVM_FALLTHROUGH;
5420   case ICmpInst::ICMP_SLT:
5421     // icmp slt i1 A, B -> A & ~B
5422     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5423 
5424   case ICmpInst::ICMP_UGE:
5425     // icmp uge -> icmp ule
5426     std::swap(A, B);
5427     LLVM_FALLTHROUGH;
5428   case ICmpInst::ICMP_ULE:
5429     // icmp ule i1 A, B -> ~A | B
5430     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5431 
5432   case ICmpInst::ICMP_SGE:
5433     // icmp sge -> icmp sle
5434     std::swap(A, B);
5435     LLVM_FALLTHROUGH;
5436   case ICmpInst::ICMP_SLE:
5437     // icmp sle i1 A, B -> A | ~B
5438     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5439   }
5440 }
5441 
5442 // Transform pattern like:
5443 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5444 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5445 // Into:
5446 //   (X l>> Y) != 0
5447 //   (X l>> Y) == 0
5448 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5449                                             InstCombiner::BuilderTy &Builder) {
5450   ICmpInst::Predicate Pred, NewPred;
5451   Value *X, *Y;
5452   if (match(&Cmp,
5453             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5454     switch (Pred) {
5455     case ICmpInst::ICMP_ULE:
5456       NewPred = ICmpInst::ICMP_NE;
5457       break;
5458     case ICmpInst::ICMP_UGT:
5459       NewPred = ICmpInst::ICMP_EQ;
5460       break;
5461     default:
5462       return nullptr;
5463     }
5464   } else if (match(&Cmp, m_c_ICmp(Pred,
5465                                   m_OneUse(m_CombineOr(
5466                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5467                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5468                                             m_AllOnes()))),
5469                                   m_Value(X)))) {
5470     // The variant with 'add' is not canonical, (the variant with 'not' is)
5471     // we only get it because it has extra uses, and can't be canonicalized,
5472 
5473     switch (Pred) {
5474     case ICmpInst::ICMP_ULT:
5475       NewPred = ICmpInst::ICMP_NE;
5476       break;
5477     case ICmpInst::ICMP_UGE:
5478       NewPred = ICmpInst::ICMP_EQ;
5479       break;
5480     default:
5481       return nullptr;
5482     }
5483   } else
5484     return nullptr;
5485 
5486   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5487   Constant *Zero = Constant::getNullValue(NewX->getType());
5488   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5489 }
5490 
5491 static Instruction *foldVectorCmp(CmpInst &Cmp,
5492                                   InstCombiner::BuilderTy &Builder) {
5493   const CmpInst::Predicate Pred = Cmp.getPredicate();
5494   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5495   Value *V1, *V2;
5496   ArrayRef<int> M;
5497   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5498     return nullptr;
5499 
5500   // If both arguments of the cmp are shuffles that use the same mask and
5501   // shuffle within a single vector, move the shuffle after the cmp:
5502   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5503   Type *V1Ty = V1->getType();
5504   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5505       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5506     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5507     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5508   }
5509 
5510   // Try to canonicalize compare with splatted operand and splat constant.
5511   // TODO: We could generalize this for more than splats. See/use the code in
5512   //       InstCombiner::foldVectorBinop().
5513   Constant *C;
5514   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5515     return nullptr;
5516 
5517   // Length-changing splats are ok, so adjust the constants as needed:
5518   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5519   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5520   int MaskSplatIndex;
5521   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5522     // We allow undefs in matching, but this transform removes those for safety.
5523     // Demanded elements analysis should be able to recover some/all of that.
5524     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5525                                  ScalarC);
5526     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5527     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5528     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5529                                  NewM);
5530   }
5531 
5532   return nullptr;
5533 }
5534 
5535 // extract(uadd.with.overflow(A, B), 0) ult A
5536 //  -> extract(uadd.with.overflow(A, B), 1)
5537 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5538   CmpInst::Predicate Pred = I.getPredicate();
5539   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5540 
5541   Value *UAddOv;
5542   Value *A, *B;
5543   auto UAddOvResultPat = m_ExtractValue<0>(
5544       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5545   if (match(Op0, UAddOvResultPat) &&
5546       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5547        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5548         (match(A, m_One()) || match(B, m_One()))) ||
5549        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5550         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5551     // extract(uadd.with.overflow(A, B), 0) < A
5552     // extract(uadd.with.overflow(A, 1), 0) == 0
5553     // extract(uadd.with.overflow(A, -1), 0) != -1
5554     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5555   else if (match(Op1, UAddOvResultPat) &&
5556            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5557     // A > extract(uadd.with.overflow(A, B), 0)
5558     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5559   else
5560     return nullptr;
5561 
5562   return ExtractValueInst::Create(UAddOv, 1);
5563 }
5564 
5565 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5566   bool Changed = false;
5567   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5568   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5569   unsigned Op0Cplxity = getComplexity(Op0);
5570   unsigned Op1Cplxity = getComplexity(Op1);
5571 
5572   /// Orders the operands of the compare so that they are listed from most
5573   /// complex to least complex.  This puts constants before unary operators,
5574   /// before binary operators.
5575   if (Op0Cplxity < Op1Cplxity ||
5576       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5577     I.swapOperands();
5578     std::swap(Op0, Op1);
5579     Changed = true;
5580   }
5581 
5582   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5583     return replaceInstUsesWith(I, V);
5584 
5585   // Comparing -val or val with non-zero is the same as just comparing val
5586   // ie, abs(val) != 0 -> val != 0
5587   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5588     Value *Cond, *SelectTrue, *SelectFalse;
5589     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5590                             m_Value(SelectFalse)))) {
5591       if (Value *V = dyn_castNegVal(SelectTrue)) {
5592         if (V == SelectFalse)
5593           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5594       }
5595       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5596         if (V == SelectTrue)
5597           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5598       }
5599     }
5600   }
5601 
5602   if (Op0->getType()->isIntOrIntVectorTy(1))
5603     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5604       return Res;
5605 
5606   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5607     return Res;
5608 
5609   if (Instruction *Res = canonicalizeICmpPredicate(I))
5610     return Res;
5611 
5612   if (Instruction *Res = foldICmpWithConstant(I))
5613     return Res;
5614 
5615   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5616     return Res;
5617 
5618   if (Instruction *Res = foldICmpBinOp(I, Q))
5619     return Res;
5620 
5621   if (Instruction *Res = foldICmpUsingKnownBits(I))
5622     return Res;
5623 
5624   // Test if the ICmpInst instruction is used exclusively by a select as
5625   // part of a minimum or maximum operation. If so, refrain from doing
5626   // any other folding. This helps out other analyses which understand
5627   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5628   // and CodeGen. And in this case, at least one of the comparison
5629   // operands has at least one user besides the compare (the select),
5630   // which would often largely negate the benefit of folding anyway.
5631   //
5632   // Do the same for the other patterns recognized by matchSelectPattern.
5633   if (I.hasOneUse())
5634     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5635       Value *A, *B;
5636       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5637       if (SPR.Flavor != SPF_UNKNOWN)
5638         return nullptr;
5639     }
5640 
5641   // Do this after checking for min/max to prevent infinite looping.
5642   if (Instruction *Res = foldICmpWithZero(I))
5643     return Res;
5644 
5645   // FIXME: We only do this after checking for min/max to prevent infinite
5646   // looping caused by a reverse canonicalization of these patterns for min/max.
5647   // FIXME: The organization of folds is a mess. These would naturally go into
5648   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5649   // down here after the min/max restriction.
5650   ICmpInst::Predicate Pred = I.getPredicate();
5651   const APInt *C;
5652   if (match(Op1, m_APInt(C))) {
5653     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5654     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5655       Constant *Zero = Constant::getNullValue(Op0->getType());
5656       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5657     }
5658 
5659     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5660     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5661       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5662       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5663     }
5664   }
5665 
5666   if (Instruction *Res = foldICmpInstWithConstant(I))
5667     return Res;
5668 
5669   // Try to match comparison as a sign bit test. Intentionally do this after
5670   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5671   if (Instruction *New = foldSignBitTest(I))
5672     return New;
5673 
5674   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5675     return Res;
5676 
5677   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5678   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5679     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5680       return NI;
5681   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5682     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5683                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5684       return NI;
5685 
5686   // Try to optimize equality comparisons against alloca-based pointers.
5687   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5688     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5689     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5690       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5691         return New;
5692     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5693       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5694         return New;
5695   }
5696 
5697   if (Instruction *Res = foldICmpBitCast(I, Builder))
5698     return Res;
5699 
5700   // TODO: Hoist this above the min/max bailout.
5701   if (Instruction *R = foldICmpWithCastOp(I))
5702     return R;
5703 
5704   if (Instruction *Res = foldICmpWithMinMax(I))
5705     return Res;
5706 
5707   {
5708     Value *A, *B;
5709     // Transform (A & ~B) == 0 --> (A & B) != 0
5710     // and       (A & ~B) != 0 --> (A & B) == 0
5711     // if A is a power of 2.
5712     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5713         match(Op1, m_Zero()) &&
5714         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5715       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5716                           Op1);
5717 
5718     // ~X < ~Y --> Y < X
5719     // ~X < C -->  X > ~C
5720     if (match(Op0, m_Not(m_Value(A)))) {
5721       if (match(Op1, m_Not(m_Value(B))))
5722         return new ICmpInst(I.getPredicate(), B, A);
5723 
5724       const APInt *C;
5725       if (match(Op1, m_APInt(C)))
5726         return new ICmpInst(I.getSwappedPredicate(), A,
5727                             ConstantInt::get(Op1->getType(), ~(*C)));
5728     }
5729 
5730     Instruction *AddI = nullptr;
5731     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5732                                      m_Instruction(AddI))) &&
5733         isa<IntegerType>(A->getType())) {
5734       Value *Result;
5735       Constant *Overflow;
5736       // m_UAddWithOverflow can match patterns that do not include  an explicit
5737       // "add" instruction, so check the opcode of the matched op.
5738       if (AddI->getOpcode() == Instruction::Add &&
5739           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5740                                 Result, Overflow)) {
5741         replaceInstUsesWith(*AddI, Result);
5742         eraseInstFromFunction(*AddI);
5743         return replaceInstUsesWith(I, Overflow);
5744       }
5745     }
5746 
5747     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5748     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5749       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5750         return R;
5751     }
5752     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5753       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5754         return R;
5755     }
5756   }
5757 
5758   if (Instruction *Res = foldICmpEquality(I))
5759     return Res;
5760 
5761   if (Instruction *Res = foldICmpOfUAddOv(I))
5762     return Res;
5763 
5764   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5765   // an i1 which indicates whether or not we successfully did the swap.
5766   //
5767   // Replace comparisons between the old value and the expected value with the
5768   // indicator that 'cmpxchg' returns.
5769   //
5770   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5771   // spuriously fail.  In those cases, the old value may equal the expected
5772   // value but it is possible for the swap to not occur.
5773   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5774     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5775       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5776         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5777             !ACXI->isWeak())
5778           return ExtractValueInst::Create(ACXI, 1);
5779 
5780   {
5781     Value *X;
5782     const APInt *C;
5783     // icmp X+Cst, X
5784     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5785       return foldICmpAddOpConst(X, *C, I.getPredicate());
5786 
5787     // icmp X, X+Cst
5788     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5789       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5790   }
5791 
5792   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5793     return Res;
5794 
5795   if (I.getType()->isVectorTy())
5796     if (Instruction *Res = foldVectorCmp(I, Builder))
5797       return Res;
5798 
5799   return Changed ? &I : nullptr;
5800 }
5801 
5802 /// Fold fcmp ([us]itofp x, cst) if possible.
5803 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5804                                                     Instruction *LHSI,
5805                                                     Constant *RHSC) {
5806   if (!isa<ConstantFP>(RHSC)) return nullptr;
5807   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5808 
5809   // Get the width of the mantissa.  We don't want to hack on conversions that
5810   // might lose information from the integer, e.g. "i64 -> float"
5811   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5812   if (MantissaWidth == -1) return nullptr;  // Unknown.
5813 
5814   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5815 
5816   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5817 
5818   if (I.isEquality()) {
5819     FCmpInst::Predicate P = I.getPredicate();
5820     bool IsExact = false;
5821     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5822     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5823 
5824     // If the floating point constant isn't an integer value, we know if we will
5825     // ever compare equal / not equal to it.
5826     if (!IsExact) {
5827       // TODO: Can never be -0.0 and other non-representable values
5828       APFloat RHSRoundInt(RHS);
5829       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5830       if (RHS != RHSRoundInt) {
5831         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5832           return replaceInstUsesWith(I, Builder.getFalse());
5833 
5834         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5835         return replaceInstUsesWith(I, Builder.getTrue());
5836       }
5837     }
5838 
5839     // TODO: If the constant is exactly representable, is it always OK to do
5840     // equality compares as integer?
5841   }
5842 
5843   // Check to see that the input is converted from an integer type that is small
5844   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5845   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5846   unsigned InputSize = IntTy->getScalarSizeInBits();
5847 
5848   // Following test does NOT adjust InputSize downwards for signed inputs,
5849   // because the most negative value still requires all the mantissa bits
5850   // to distinguish it from one less than that value.
5851   if ((int)InputSize > MantissaWidth) {
5852     // Conversion would lose accuracy. Check if loss can impact comparison.
5853     int Exp = ilogb(RHS);
5854     if (Exp == APFloat::IEK_Inf) {
5855       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5856       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5857         // Conversion could create infinity.
5858         return nullptr;
5859     } else {
5860       // Note that if RHS is zero or NaN, then Exp is negative
5861       // and first condition is trivially false.
5862       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5863         // Conversion could affect comparison.
5864         return nullptr;
5865     }
5866   }
5867 
5868   // Otherwise, we can potentially simplify the comparison.  We know that it
5869   // will always come through as an integer value and we know the constant is
5870   // not a NAN (it would have been previously simplified).
5871   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5872 
5873   ICmpInst::Predicate Pred;
5874   switch (I.getPredicate()) {
5875   default: llvm_unreachable("Unexpected predicate!");
5876   case FCmpInst::FCMP_UEQ:
5877   case FCmpInst::FCMP_OEQ:
5878     Pred = ICmpInst::ICMP_EQ;
5879     break;
5880   case FCmpInst::FCMP_UGT:
5881   case FCmpInst::FCMP_OGT:
5882     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5883     break;
5884   case FCmpInst::FCMP_UGE:
5885   case FCmpInst::FCMP_OGE:
5886     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5887     break;
5888   case FCmpInst::FCMP_ULT:
5889   case FCmpInst::FCMP_OLT:
5890     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5891     break;
5892   case FCmpInst::FCMP_ULE:
5893   case FCmpInst::FCMP_OLE:
5894     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5895     break;
5896   case FCmpInst::FCMP_UNE:
5897   case FCmpInst::FCMP_ONE:
5898     Pred = ICmpInst::ICMP_NE;
5899     break;
5900   case FCmpInst::FCMP_ORD:
5901     return replaceInstUsesWith(I, Builder.getTrue());
5902   case FCmpInst::FCMP_UNO:
5903     return replaceInstUsesWith(I, Builder.getFalse());
5904   }
5905 
5906   // Now we know that the APFloat is a normal number, zero or inf.
5907 
5908   // See if the FP constant is too large for the integer.  For example,
5909   // comparing an i8 to 300.0.
5910   unsigned IntWidth = IntTy->getScalarSizeInBits();
5911 
5912   if (!LHSUnsigned) {
5913     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5914     // and large values.
5915     APFloat SMax(RHS.getSemantics());
5916     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5917                           APFloat::rmNearestTiesToEven);
5918     if (SMax < RHS) { // smax < 13123.0
5919       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5920           Pred == ICmpInst::ICMP_SLE)
5921         return replaceInstUsesWith(I, Builder.getTrue());
5922       return replaceInstUsesWith(I, Builder.getFalse());
5923     }
5924   } else {
5925     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5926     // +INF and large values.
5927     APFloat UMax(RHS.getSemantics());
5928     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5929                           APFloat::rmNearestTiesToEven);
5930     if (UMax < RHS) { // umax < 13123.0
5931       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5932           Pred == ICmpInst::ICMP_ULE)
5933         return replaceInstUsesWith(I, Builder.getTrue());
5934       return replaceInstUsesWith(I, Builder.getFalse());
5935     }
5936   }
5937 
5938   if (!LHSUnsigned) {
5939     // See if the RHS value is < SignedMin.
5940     APFloat SMin(RHS.getSemantics());
5941     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5942                           APFloat::rmNearestTiesToEven);
5943     if (SMin > RHS) { // smin > 12312.0
5944       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5945           Pred == ICmpInst::ICMP_SGE)
5946         return replaceInstUsesWith(I, Builder.getTrue());
5947       return replaceInstUsesWith(I, Builder.getFalse());
5948     }
5949   } else {
5950     // See if the RHS value is < UnsignedMin.
5951     APFloat UMin(RHS.getSemantics());
5952     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5953                           APFloat::rmNearestTiesToEven);
5954     if (UMin > RHS) { // umin > 12312.0
5955       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5956           Pred == ICmpInst::ICMP_UGE)
5957         return replaceInstUsesWith(I, Builder.getTrue());
5958       return replaceInstUsesWith(I, Builder.getFalse());
5959     }
5960   }
5961 
5962   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5963   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5964   // casting the FP value to the integer value and back, checking for equality.
5965   // Don't do this for zero, because -0.0 is not fractional.
5966   Constant *RHSInt = LHSUnsigned
5967     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5968     : ConstantExpr::getFPToSI(RHSC, IntTy);
5969   if (!RHS.isZero()) {
5970     bool Equal = LHSUnsigned
5971       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5972       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5973     if (!Equal) {
5974       // If we had a comparison against a fractional value, we have to adjust
5975       // the compare predicate and sometimes the value.  RHSC is rounded towards
5976       // zero at this point.
5977       switch (Pred) {
5978       default: llvm_unreachable("Unexpected integer comparison!");
5979       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5980         return replaceInstUsesWith(I, Builder.getTrue());
5981       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5982         return replaceInstUsesWith(I, Builder.getFalse());
5983       case ICmpInst::ICMP_ULE:
5984         // (float)int <= 4.4   --> int <= 4
5985         // (float)int <= -4.4  --> false
5986         if (RHS.isNegative())
5987           return replaceInstUsesWith(I, Builder.getFalse());
5988         break;
5989       case ICmpInst::ICMP_SLE:
5990         // (float)int <= 4.4   --> int <= 4
5991         // (float)int <= -4.4  --> int < -4
5992         if (RHS.isNegative())
5993           Pred = ICmpInst::ICMP_SLT;
5994         break;
5995       case ICmpInst::ICMP_ULT:
5996         // (float)int < -4.4   --> false
5997         // (float)int < 4.4    --> int <= 4
5998         if (RHS.isNegative())
5999           return replaceInstUsesWith(I, Builder.getFalse());
6000         Pred = ICmpInst::ICMP_ULE;
6001         break;
6002       case ICmpInst::ICMP_SLT:
6003         // (float)int < -4.4   --> int < -4
6004         // (float)int < 4.4    --> int <= 4
6005         if (!RHS.isNegative())
6006           Pred = ICmpInst::ICMP_SLE;
6007         break;
6008       case ICmpInst::ICMP_UGT:
6009         // (float)int > 4.4    --> int > 4
6010         // (float)int > -4.4   --> true
6011         if (RHS.isNegative())
6012           return replaceInstUsesWith(I, Builder.getTrue());
6013         break;
6014       case ICmpInst::ICMP_SGT:
6015         // (float)int > 4.4    --> int > 4
6016         // (float)int > -4.4   --> int >= -4
6017         if (RHS.isNegative())
6018           Pred = ICmpInst::ICMP_SGE;
6019         break;
6020       case ICmpInst::ICMP_UGE:
6021         // (float)int >= -4.4   --> true
6022         // (float)int >= 4.4    --> int > 4
6023         if (RHS.isNegative())
6024           return replaceInstUsesWith(I, Builder.getTrue());
6025         Pred = ICmpInst::ICMP_UGT;
6026         break;
6027       case ICmpInst::ICMP_SGE:
6028         // (float)int >= -4.4   --> int >= -4
6029         // (float)int >= 4.4    --> int > 4
6030         if (!RHS.isNegative())
6031           Pred = ICmpInst::ICMP_SGT;
6032         break;
6033       }
6034     }
6035   }
6036 
6037   // Lower this FP comparison into an appropriate integer version of the
6038   // comparison.
6039   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6040 }
6041 
6042 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6043 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6044                                               Constant *RHSC) {
6045   // When C is not 0.0 and infinities are not allowed:
6046   // (C / X) < 0.0 is a sign-bit test of X
6047   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6048   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6049   //
6050   // Proof:
6051   // Multiply (C / X) < 0.0 by X * X / C.
6052   // - X is non zero, if it is the flag 'ninf' is violated.
6053   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6054   //   the predicate. C is also non zero by definition.
6055   //
6056   // Thus X * X / C is non zero and the transformation is valid. [qed]
6057 
6058   FCmpInst::Predicate Pred = I.getPredicate();
6059 
6060   // Check that predicates are valid.
6061   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6062       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6063     return nullptr;
6064 
6065   // Check that RHS operand is zero.
6066   if (!match(RHSC, m_AnyZeroFP()))
6067     return nullptr;
6068 
6069   // Check fastmath flags ('ninf').
6070   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6071     return nullptr;
6072 
6073   // Check the properties of the dividend. It must not be zero to avoid a
6074   // division by zero (see Proof).
6075   const APFloat *C;
6076   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6077     return nullptr;
6078 
6079   if (C->isZero())
6080     return nullptr;
6081 
6082   // Get swapped predicate if necessary.
6083   if (C->isNegative())
6084     Pred = I.getSwappedPredicate();
6085 
6086   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6087 }
6088 
6089 /// Optimize fabs(X) compared with zero.
6090 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6091   Value *X;
6092   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6093       !match(I.getOperand(1), m_PosZeroFP()))
6094     return nullptr;
6095 
6096   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6097     I->setPredicate(P);
6098     return IC.replaceOperand(*I, 0, X);
6099   };
6100 
6101   switch (I.getPredicate()) {
6102   case FCmpInst::FCMP_UGE:
6103   case FCmpInst::FCMP_OLT:
6104     // fabs(X) >= 0.0 --> true
6105     // fabs(X) <  0.0 --> false
6106     llvm_unreachable("fcmp should have simplified");
6107 
6108   case FCmpInst::FCMP_OGT:
6109     // fabs(X) > 0.0 --> X != 0.0
6110     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6111 
6112   case FCmpInst::FCMP_UGT:
6113     // fabs(X) u> 0.0 --> X u!= 0.0
6114     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6115 
6116   case FCmpInst::FCMP_OLE:
6117     // fabs(X) <= 0.0 --> X == 0.0
6118     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6119 
6120   case FCmpInst::FCMP_ULE:
6121     // fabs(X) u<= 0.0 --> X u== 0.0
6122     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6123 
6124   case FCmpInst::FCMP_OGE:
6125     // fabs(X) >= 0.0 --> !isnan(X)
6126     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6127     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6128 
6129   case FCmpInst::FCMP_ULT:
6130     // fabs(X) u< 0.0 --> isnan(X)
6131     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6132     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6133 
6134   case FCmpInst::FCMP_OEQ:
6135   case FCmpInst::FCMP_UEQ:
6136   case FCmpInst::FCMP_ONE:
6137   case FCmpInst::FCMP_UNE:
6138   case FCmpInst::FCMP_ORD:
6139   case FCmpInst::FCMP_UNO:
6140     // Look through the fabs() because it doesn't change anything but the sign.
6141     // fabs(X) == 0.0 --> X == 0.0,
6142     // fabs(X) != 0.0 --> X != 0.0
6143     // isnan(fabs(X)) --> isnan(X)
6144     // !isnan(fabs(X) --> !isnan(X)
6145     return replacePredAndOp0(&I, I.getPredicate(), X);
6146 
6147   default:
6148     return nullptr;
6149   }
6150 }
6151 
6152 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6153   bool Changed = false;
6154 
6155   /// Orders the operands of the compare so that they are listed from most
6156   /// complex to least complex.  This puts constants before unary operators,
6157   /// before binary operators.
6158   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6159     I.swapOperands();
6160     Changed = true;
6161   }
6162 
6163   const CmpInst::Predicate Pred = I.getPredicate();
6164   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6165   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6166                                   SQ.getWithInstruction(&I)))
6167     return replaceInstUsesWith(I, V);
6168 
6169   // Simplify 'fcmp pred X, X'
6170   Type *OpType = Op0->getType();
6171   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6172   if (Op0 == Op1) {
6173     switch (Pred) {
6174       default: break;
6175     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6176     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6177     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6178     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6179       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6180       I.setPredicate(FCmpInst::FCMP_UNO);
6181       I.setOperand(1, Constant::getNullValue(OpType));
6182       return &I;
6183 
6184     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6185     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6186     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6187     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6188       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6189       I.setPredicate(FCmpInst::FCMP_ORD);
6190       I.setOperand(1, Constant::getNullValue(OpType));
6191       return &I;
6192     }
6193   }
6194 
6195   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6196   // then canonicalize the operand to 0.0.
6197   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6198     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6199       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6200 
6201     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6202       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6203   }
6204 
6205   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6206   Value *X, *Y;
6207   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6208     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6209 
6210   // Test if the FCmpInst instruction is used exclusively by a select as
6211   // part of a minimum or maximum operation. If so, refrain from doing
6212   // any other folding. This helps out other analyses which understand
6213   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6214   // and CodeGen. And in this case, at least one of the comparison
6215   // operands has at least one user besides the compare (the select),
6216   // which would often largely negate the benefit of folding anyway.
6217   if (I.hasOneUse())
6218     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6219       Value *A, *B;
6220       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6221       if (SPR.Flavor != SPF_UNKNOWN)
6222         return nullptr;
6223     }
6224 
6225   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6226   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6227   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6228     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6229 
6230   // Handle fcmp with instruction LHS and constant RHS.
6231   Instruction *LHSI;
6232   Constant *RHSC;
6233   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6234     switch (LHSI->getOpcode()) {
6235     case Instruction::PHI:
6236       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6237       // block.  If in the same block, we're encouraging jump threading.  If
6238       // not, we are just pessimizing the code by making an i1 phi.
6239       if (LHSI->getParent() == I.getParent())
6240         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6241           return NV;
6242       break;
6243     case Instruction::SIToFP:
6244     case Instruction::UIToFP:
6245       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6246         return NV;
6247       break;
6248     case Instruction::FDiv:
6249       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6250         return NV;
6251       break;
6252     case Instruction::Load:
6253       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6254         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6255           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6256               !cast<LoadInst>(LHSI)->isVolatile())
6257             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6258               return Res;
6259       break;
6260   }
6261   }
6262 
6263   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6264     return R;
6265 
6266   if (match(Op0, m_FNeg(m_Value(X)))) {
6267     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6268     Constant *C;
6269     if (match(Op1, m_Constant(C))) {
6270       Constant *NegC = ConstantExpr::getFNeg(C);
6271       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6272     }
6273   }
6274 
6275   if (match(Op0, m_FPExt(m_Value(X)))) {
6276     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6277     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6278       return new FCmpInst(Pred, X, Y, "", &I);
6279 
6280     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6281     const APFloat *C;
6282     if (match(Op1, m_APFloat(C))) {
6283       const fltSemantics &FPSem =
6284           X->getType()->getScalarType()->getFltSemantics();
6285       bool Lossy;
6286       APFloat TruncC = *C;
6287       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6288 
6289       // Avoid lossy conversions and denormals.
6290       // Zero is a special case that's OK to convert.
6291       APFloat Fabs = TruncC;
6292       Fabs.clearSign();
6293       if (!Lossy &&
6294           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6295         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6296         return new FCmpInst(Pred, X, NewC, "", &I);
6297       }
6298     }
6299   }
6300 
6301   if (I.getType()->isVectorTy())
6302     if (Instruction *Res = foldVectorCmp(I, Builder))
6303       return Res;
6304 
6305   return Changed ? &I : nullptr;
6306 }
6307