1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41                             const APInt &In2, bool IsSigned = false) {
42   bool Overflow;
43   if (IsSigned)
44     Result = In1.sadd_ov(In2, Overflow);
45   else
46     Result = In1.uadd_ov(In2, Overflow);
47 
48   return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54                             const APInt &In2, bool IsSigned = false) {
55   bool Overflow;
56   if (IsSigned)
57     Result = In1.ssub_ov(In2, Overflow);
58   else
59     Result = In1.usub_ov(In2, Overflow);
60 
61   return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
66 static bool hasBranchUse(ICmpInst &I) {
67   for (auto *U : I.users())
68     if (isa<BranchInst>(U))
69       return true;
70   return false;
71 }
72 
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78   if (!ICmpInst::isSigned(Pred))
79     return false;
80 
81   if (C.isNullValue())
82     return ICmpInst::isRelational(Pred);
83 
84   if (C.isOneValue()) {
85     if (Pred == ICmpInst::ICMP_SLT) {
86       Pred = ICmpInst::ICMP_SLE;
87       return true;
88     }
89   } else if (C.isAllOnesValue()) {
90     if (Pred == ICmpInst::ICMP_SGT) {
91       Pred = ICmpInst::ICMP_SGE;
92       return true;
93     }
94   }
95 
96   return false;
97 }
98 
99 /// This is called when we see this pattern:
100 ///   cmp pred (load (gep GV, ...)), cmpcst
101 /// where GV is a global variable with a constant initializer. Try to simplify
102 /// this into some simple computation that does not need the load. For example
103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
104 ///
105 /// If AndCst is non-null, then the loaded value is masked with that constant
106 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
107 Instruction *
108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
109                                                GlobalVariable *GV, CmpInst &ICI,
110                                                ConstantInt *AndCst) {
111   Constant *Init = GV->getInitializer();
112   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
113     return nullptr;
114 
115   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
116   // Don't blow up on huge arrays.
117   if (ArrayElementCount > MaxArraySizeForCombine)
118     return nullptr;
119 
120   // There are many forms of this optimization we can handle, for now, just do
121   // the simple index into a single-dimensional array.
122   //
123   // Require: GEP GV, 0, i {{, constant indices}}
124   if (GEP->getNumOperands() < 3 ||
125       !isa<ConstantInt>(GEP->getOperand(1)) ||
126       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
127       isa<Constant>(GEP->getOperand(2)))
128     return nullptr;
129 
130   // Check that indices after the variable are constants and in-range for the
131   // type they index.  Collect the indices.  This is typically for arrays of
132   // structs.
133   SmallVector<unsigned, 4> LaterIndices;
134 
135   Type *EltTy = Init->getType()->getArrayElementType();
136   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
137     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
138     if (!Idx) return nullptr;  // Variable index.
139 
140     uint64_t IdxVal = Idx->getZExtValue();
141     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
142 
143     if (StructType *STy = dyn_cast<StructType>(EltTy))
144       EltTy = STy->getElementType(IdxVal);
145     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
146       if (IdxVal >= ATy->getNumElements()) return nullptr;
147       EltTy = ATy->getElementType();
148     } else {
149       return nullptr; // Unknown type.
150     }
151 
152     LaterIndices.push_back(IdxVal);
153   }
154 
155   enum { Overdefined = -3, Undefined = -2 };
156 
157   // Variables for our state machines.
158 
159   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
160   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
161   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
162   // undefined, otherwise set to the first true element.  SecondTrueElement is
163   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
164   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
165 
166   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
167   // form "i != 47 & i != 87".  Same state transitions as for true elements.
168   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
169 
170   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
171   /// define a state machine that triggers for ranges of values that the index
172   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
173   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
174   /// index in the range (inclusive).  We use -2 for undefined here because we
175   /// use relative comparisons and don't want 0-1 to match -1.
176   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
177 
178   // MagicBitvector - This is a magic bitvector where we set a bit if the
179   // comparison is true for element 'i'.  If there are 64 elements or less in
180   // the array, this will fully represent all the comparison results.
181   uint64_t MagicBitvector = 0;
182 
183   // Scan the array and see if one of our patterns matches.
184   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
185   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
186     Constant *Elt = Init->getAggregateElement(i);
187     if (!Elt) return nullptr;
188 
189     // If this is indexing an array of structures, get the structure element.
190     if (!LaterIndices.empty())
191       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
192 
193     // If the element is masked, handle it.
194     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
195 
196     // Find out if the comparison would be true or false for the i'th element.
197     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
198                                                   CompareRHS, DL, &TLI);
199     // If the result is undef for this element, ignore it.
200     if (isa<UndefValue>(C)) {
201       // Extend range state machines to cover this element in case there is an
202       // undef in the middle of the range.
203       if (TrueRangeEnd == (int)i-1)
204         TrueRangeEnd = i;
205       if (FalseRangeEnd == (int)i-1)
206         FalseRangeEnd = i;
207       continue;
208     }
209 
210     // If we can't compute the result for any of the elements, we have to give
211     // up evaluating the entire conditional.
212     if (!isa<ConstantInt>(C)) return nullptr;
213 
214     // Otherwise, we know if the comparison is true or false for this element,
215     // update our state machines.
216     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
217 
218     // State machine for single/double/range index comparison.
219     if (IsTrueForElt) {
220       // Update the TrueElement state machine.
221       if (FirstTrueElement == Undefined)
222         FirstTrueElement = TrueRangeEnd = i;  // First true element.
223       else {
224         // Update double-compare state machine.
225         if (SecondTrueElement == Undefined)
226           SecondTrueElement = i;
227         else
228           SecondTrueElement = Overdefined;
229 
230         // Update range state machine.
231         if (TrueRangeEnd == (int)i-1)
232           TrueRangeEnd = i;
233         else
234           TrueRangeEnd = Overdefined;
235       }
236     } else {
237       // Update the FalseElement state machine.
238       if (FirstFalseElement == Undefined)
239         FirstFalseElement = FalseRangeEnd = i; // First false element.
240       else {
241         // Update double-compare state machine.
242         if (SecondFalseElement == Undefined)
243           SecondFalseElement = i;
244         else
245           SecondFalseElement = Overdefined;
246 
247         // Update range state machine.
248         if (FalseRangeEnd == (int)i-1)
249           FalseRangeEnd = i;
250         else
251           FalseRangeEnd = Overdefined;
252       }
253     }
254 
255     // If this element is in range, update our magic bitvector.
256     if (i < 64 && IsTrueForElt)
257       MagicBitvector |= 1ULL << i;
258 
259     // If all of our states become overdefined, bail out early.  Since the
260     // predicate is expensive, only check it every 8 elements.  This is only
261     // really useful for really huge arrays.
262     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
263         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
264         FalseRangeEnd == Overdefined)
265       return nullptr;
266   }
267 
268   // Now that we've scanned the entire array, emit our new comparison(s).  We
269   // order the state machines in complexity of the generated code.
270   Value *Idx = GEP->getOperand(2);
271 
272   // If the index is larger than the pointer size of the target, truncate the
273   // index down like the GEP would do implicitly.  We don't have to do this for
274   // an inbounds GEP because the index can't be out of range.
275   if (!GEP->isInBounds()) {
276     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
277     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
278     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
279       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
280   }
281 
282   // If the comparison is only true for one or two elements, emit direct
283   // comparisons.
284   if (SecondTrueElement != Overdefined) {
285     // None true -> false.
286     if (FirstTrueElement == Undefined)
287       return replaceInstUsesWith(ICI, Builder.getFalse());
288 
289     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
290 
291     // True for one element -> 'i == 47'.
292     if (SecondTrueElement == Undefined)
293       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
294 
295     // True for two elements -> 'i == 47 | i == 72'.
296     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
297     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
298     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
299     return BinaryOperator::CreateOr(C1, C2);
300   }
301 
302   // If the comparison is only false for one or two elements, emit direct
303   // comparisons.
304   if (SecondFalseElement != Overdefined) {
305     // None false -> true.
306     if (FirstFalseElement == Undefined)
307       return replaceInstUsesWith(ICI, Builder.getTrue());
308 
309     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
310 
311     // False for one element -> 'i != 47'.
312     if (SecondFalseElement == Undefined)
313       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
314 
315     // False for two elements -> 'i != 47 & i != 72'.
316     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
317     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
318     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
319     return BinaryOperator::CreateAnd(C1, C2);
320   }
321 
322   // If the comparison can be replaced with a range comparison for the elements
323   // where it is true, emit the range check.
324   if (TrueRangeEnd != Overdefined) {
325     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
326 
327     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
328     if (FirstTrueElement) {
329       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
330       Idx = Builder.CreateAdd(Idx, Offs);
331     }
332 
333     Value *End = ConstantInt::get(Idx->getType(),
334                                   TrueRangeEnd-FirstTrueElement+1);
335     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
336   }
337 
338   // False range check.
339   if (FalseRangeEnd != Overdefined) {
340     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
341     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
342     if (FirstFalseElement) {
343       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
344       Idx = Builder.CreateAdd(Idx, Offs);
345     }
346 
347     Value *End = ConstantInt::get(Idx->getType(),
348                                   FalseRangeEnd-FirstFalseElement);
349     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
350   }
351 
352   // If a magic bitvector captures the entire comparison state
353   // of this load, replace it with computation that does:
354   //   ((magic_cst >> i) & 1) != 0
355   {
356     Type *Ty = nullptr;
357 
358     // Look for an appropriate type:
359     // - The type of Idx if the magic fits
360     // - The smallest fitting legal type
361     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
362       Ty = Idx->getType();
363     else
364       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
365 
366     if (Ty) {
367       Value *V = Builder.CreateIntCast(Idx, Ty, false);
368       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
369       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
370       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
371     }
372   }
373 
374   return nullptr;
375 }
376 
377 /// Return a value that can be used to compare the *offset* implied by a GEP to
378 /// zero. For example, if we have &A[i], we want to return 'i' for
379 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
380 /// are involved. The above expression would also be legal to codegen as
381 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
382 /// This latter form is less amenable to optimization though, and we are allowed
383 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
384 ///
385 /// If we can't emit an optimized form for this expression, this returns null.
386 ///
387 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
388                                           const DataLayout &DL) {
389   gep_type_iterator GTI = gep_type_begin(GEP);
390 
391   // Check to see if this gep only has a single variable index.  If so, and if
392   // any constant indices are a multiple of its scale, then we can compute this
393   // in terms of the scale of the variable index.  For example, if the GEP
394   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
395   // because the expression will cross zero at the same point.
396   unsigned i, e = GEP->getNumOperands();
397   int64_t Offset = 0;
398   for (i = 1; i != e; ++i, ++GTI) {
399     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
400       // Compute the aggregate offset of constant indices.
401       if (CI->isZero()) continue;
402 
403       // Handle a struct index, which adds its field offset to the pointer.
404       if (StructType *STy = GTI.getStructTypeOrNull()) {
405         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
406       } else {
407         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
408         Offset += Size*CI->getSExtValue();
409       }
410     } else {
411       // Found our variable index.
412       break;
413     }
414   }
415 
416   // If there are no variable indices, we must have a constant offset, just
417   // evaluate it the general way.
418   if (i == e) return nullptr;
419 
420   Value *VariableIdx = GEP->getOperand(i);
421   // Determine the scale factor of the variable element.  For example, this is
422   // 4 if the variable index is into an array of i32.
423   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
424 
425   // Verify that there are no other variable indices.  If so, emit the hard way.
426   for (++i, ++GTI; i != e; ++i, ++GTI) {
427     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
428     if (!CI) return nullptr;
429 
430     // Compute the aggregate offset of constant indices.
431     if (CI->isZero()) continue;
432 
433     // Handle a struct index, which adds its field offset to the pointer.
434     if (StructType *STy = GTI.getStructTypeOrNull()) {
435       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
436     } else {
437       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
438       Offset += Size*CI->getSExtValue();
439     }
440   }
441 
442   // Okay, we know we have a single variable index, which must be a
443   // pointer/array/vector index.  If there is no offset, life is simple, return
444   // the index.
445   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
446   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
447   if (Offset == 0) {
448     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
449     // we don't need to bother extending: the extension won't affect where the
450     // computation crosses zero.
451     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
452         IntPtrWidth) {
453       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
454     }
455     return VariableIdx;
456   }
457 
458   // Otherwise, there is an index.  The computation we will do will be modulo
459   // the pointer size.
460   Offset = SignExtend64(Offset, IntPtrWidth);
461   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
462 
463   // To do this transformation, any constant index must be a multiple of the
464   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
465   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
466   // multiple of the variable scale.
467   int64_t NewOffs = Offset / (int64_t)VariableScale;
468   if (Offset != NewOffs*(int64_t)VariableScale)
469     return nullptr;
470 
471   // Okay, we can do this evaluation.  Start by converting the index to intptr.
472   if (VariableIdx->getType() != IntPtrTy)
473     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
474                                             true /*Signed*/);
475   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
476   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
477 }
478 
479 /// Returns true if we can rewrite Start as a GEP with pointer Base
480 /// and some integer offset. The nodes that need to be re-written
481 /// for this transformation will be added to Explored.
482 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
483                                   const DataLayout &DL,
484                                   SetVector<Value *> &Explored) {
485   SmallVector<Value *, 16> WorkList(1, Start);
486   Explored.insert(Base);
487 
488   // The following traversal gives us an order which can be used
489   // when doing the final transformation. Since in the final
490   // transformation we create the PHI replacement instructions first,
491   // we don't have to get them in any particular order.
492   //
493   // However, for other instructions we will have to traverse the
494   // operands of an instruction first, which means that we have to
495   // do a post-order traversal.
496   while (!WorkList.empty()) {
497     SetVector<PHINode *> PHIs;
498 
499     while (!WorkList.empty()) {
500       if (Explored.size() >= 100)
501         return false;
502 
503       Value *V = WorkList.back();
504 
505       if (Explored.contains(V)) {
506         WorkList.pop_back();
507         continue;
508       }
509 
510       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
511           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
512         // We've found some value that we can't explore which is different from
513         // the base. Therefore we can't do this transformation.
514         return false;
515 
516       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
517         auto *CI = cast<CastInst>(V);
518         if (!CI->isNoopCast(DL))
519           return false;
520 
521         if (Explored.count(CI->getOperand(0)) == 0)
522           WorkList.push_back(CI->getOperand(0));
523       }
524 
525       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
526         // We're limiting the GEP to having one index. This will preserve
527         // the original pointer type. We could handle more cases in the
528         // future.
529         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
530             GEP->getType() != Start->getType())
531           return false;
532 
533         if (Explored.count(GEP->getOperand(0)) == 0)
534           WorkList.push_back(GEP->getOperand(0));
535       }
536 
537       if (WorkList.back() == V) {
538         WorkList.pop_back();
539         // We've finished visiting this node, mark it as such.
540         Explored.insert(V);
541       }
542 
543       if (auto *PN = dyn_cast<PHINode>(V)) {
544         // We cannot transform PHIs on unsplittable basic blocks.
545         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
546           return false;
547         Explored.insert(PN);
548         PHIs.insert(PN);
549       }
550     }
551 
552     // Explore the PHI nodes further.
553     for (auto *PN : PHIs)
554       for (Value *Op : PN->incoming_values())
555         if (Explored.count(Op) == 0)
556           WorkList.push_back(Op);
557   }
558 
559   // Make sure that we can do this. Since we can't insert GEPs in a basic
560   // block before a PHI node, we can't easily do this transformation if
561   // we have PHI node users of transformed instructions.
562   for (Value *Val : Explored) {
563     for (Value *Use : Val->uses()) {
564 
565       auto *PHI = dyn_cast<PHINode>(Use);
566       auto *Inst = dyn_cast<Instruction>(Val);
567 
568       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
569           Explored.count(PHI) == 0)
570         continue;
571 
572       if (PHI->getParent() == Inst->getParent())
573         return false;
574     }
575   }
576   return true;
577 }
578 
579 // Sets the appropriate insert point on Builder where we can add
580 // a replacement Instruction for V (if that is possible).
581 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
582                               bool Before = true) {
583   if (auto *PHI = dyn_cast<PHINode>(V)) {
584     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
585     return;
586   }
587   if (auto *I = dyn_cast<Instruction>(V)) {
588     if (!Before)
589       I = &*std::next(I->getIterator());
590     Builder.SetInsertPoint(I);
591     return;
592   }
593   if (auto *A = dyn_cast<Argument>(V)) {
594     // Set the insertion point in the entry block.
595     BasicBlock &Entry = A->getParent()->getEntryBlock();
596     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
597     return;
598   }
599   // Otherwise, this is a constant and we don't need to set a new
600   // insertion point.
601   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
602 }
603 
604 /// Returns a re-written value of Start as an indexed GEP using Base as a
605 /// pointer.
606 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
607                                  const DataLayout &DL,
608                                  SetVector<Value *> &Explored) {
609   // Perform all the substitutions. This is a bit tricky because we can
610   // have cycles in our use-def chains.
611   // 1. Create the PHI nodes without any incoming values.
612   // 2. Create all the other values.
613   // 3. Add the edges for the PHI nodes.
614   // 4. Emit GEPs to get the original pointers.
615   // 5. Remove the original instructions.
616   Type *IndexType = IntegerType::get(
617       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
618 
619   DenseMap<Value *, Value *> NewInsts;
620   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
621 
622   // Create the new PHI nodes, without adding any incoming values.
623   for (Value *Val : Explored) {
624     if (Val == Base)
625       continue;
626     // Create empty phi nodes. This avoids cyclic dependencies when creating
627     // the remaining instructions.
628     if (auto *PHI = dyn_cast<PHINode>(Val))
629       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
630                                       PHI->getName() + ".idx", PHI);
631   }
632   IRBuilder<> Builder(Base->getContext());
633 
634   // Create all the other instructions.
635   for (Value *Val : Explored) {
636 
637     if (NewInsts.find(Val) != NewInsts.end())
638       continue;
639 
640     if (auto *CI = dyn_cast<CastInst>(Val)) {
641       // Don't get rid of the intermediate variable here; the store can grow
642       // the map which will invalidate the reference to the input value.
643       Value *V = NewInsts[CI->getOperand(0)];
644       NewInsts[CI] = V;
645       continue;
646     }
647     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
648       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
649                                                   : GEP->getOperand(1);
650       setInsertionPoint(Builder, GEP);
651       // Indices might need to be sign extended. GEPs will magically do
652       // this, but we need to do it ourselves here.
653       if (Index->getType()->getScalarSizeInBits() !=
654           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
655         Index = Builder.CreateSExtOrTrunc(
656             Index, NewInsts[GEP->getOperand(0)]->getType(),
657             GEP->getOperand(0)->getName() + ".sext");
658       }
659 
660       auto *Op = NewInsts[GEP->getOperand(0)];
661       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
662         NewInsts[GEP] = Index;
663       else
664         NewInsts[GEP] = Builder.CreateNSWAdd(
665             Op, Index, GEP->getOperand(0)->getName() + ".add");
666       continue;
667     }
668     if (isa<PHINode>(Val))
669       continue;
670 
671     llvm_unreachable("Unexpected instruction type");
672   }
673 
674   // Add the incoming values to the PHI nodes.
675   for (Value *Val : Explored) {
676     if (Val == Base)
677       continue;
678     // All the instructions have been created, we can now add edges to the
679     // phi nodes.
680     if (auto *PHI = dyn_cast<PHINode>(Val)) {
681       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
682       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
683         Value *NewIncoming = PHI->getIncomingValue(I);
684 
685         if (NewInsts.find(NewIncoming) != NewInsts.end())
686           NewIncoming = NewInsts[NewIncoming];
687 
688         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
689       }
690     }
691   }
692 
693   for (Value *Val : Explored) {
694     if (Val == Base)
695       continue;
696 
697     // Depending on the type, for external users we have to emit
698     // a GEP or a GEP + ptrtoint.
699     setInsertionPoint(Builder, Val, false);
700 
701     // If required, create an inttoptr instruction for Base.
702     Value *NewBase = Base;
703     if (!Base->getType()->isPointerTy())
704       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
705                                                Start->getName() + "to.ptr");
706 
707     Value *GEP = Builder.CreateInBoundsGEP(
708         Start->getType()->getPointerElementType(), NewBase,
709         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
710 
711     if (!Val->getType()->isPointerTy()) {
712       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
713                                               Val->getName() + ".conv");
714       GEP = Cast;
715     }
716     Val->replaceAllUsesWith(GEP);
717   }
718 
719   return NewInsts[Start];
720 }
721 
722 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
723 /// the input Value as a constant indexed GEP. Returns a pair containing
724 /// the GEPs Pointer and Index.
725 static std::pair<Value *, Value *>
726 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
727   Type *IndexType = IntegerType::get(V->getContext(),
728                                      DL.getIndexTypeSizeInBits(V->getType()));
729 
730   Constant *Index = ConstantInt::getNullValue(IndexType);
731   while (true) {
732     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
733       // We accept only inbouds GEPs here to exclude the possibility of
734       // overflow.
735       if (!GEP->isInBounds())
736         break;
737       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
738           GEP->getType() == V->getType()) {
739         V = GEP->getOperand(0);
740         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
741         Index = ConstantExpr::getAdd(
742             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
743         continue;
744       }
745       break;
746     }
747     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
748       if (!CI->isNoopCast(DL))
749         break;
750       V = CI->getOperand(0);
751       continue;
752     }
753     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
754       if (!CI->isNoopCast(DL))
755         break;
756       V = CI->getOperand(0);
757       continue;
758     }
759     break;
760   }
761   return {V, Index};
762 }
763 
764 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
765 /// We can look through PHIs, GEPs and casts in order to determine a common base
766 /// between GEPLHS and RHS.
767 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
768                                               ICmpInst::Predicate Cond,
769                                               const DataLayout &DL) {
770   // FIXME: Support vector of pointers.
771   if (GEPLHS->getType()->isVectorTy())
772     return nullptr;
773 
774   if (!GEPLHS->hasAllConstantIndices())
775     return nullptr;
776 
777   // Make sure the pointers have the same type.
778   if (GEPLHS->getType() != RHS->getType())
779     return nullptr;
780 
781   Value *PtrBase, *Index;
782   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
783 
784   // The set of nodes that will take part in this transformation.
785   SetVector<Value *> Nodes;
786 
787   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
788     return nullptr;
789 
790   // We know we can re-write this as
791   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
792   // Since we've only looked through inbouds GEPs we know that we
793   // can't have overflow on either side. We can therefore re-write
794   // this as:
795   //   OFFSET1 cmp OFFSET2
796   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
797 
798   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
799   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
800   // offset. Since Index is the offset of LHS to the base pointer, we will now
801   // compare the offsets instead of comparing the pointers.
802   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
803 }
804 
805 /// Fold comparisons between a GEP instruction and something else. At this point
806 /// we know that the GEP is on the LHS of the comparison.
807 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
808                                            ICmpInst::Predicate Cond,
809                                            Instruction &I) {
810   // Don't transform signed compares of GEPs into index compares. Even if the
811   // GEP is inbounds, the final add of the base pointer can have signed overflow
812   // and would change the result of the icmp.
813   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
814   // the maximum signed value for the pointer type.
815   if (ICmpInst::isSigned(Cond))
816     return nullptr;
817 
818   // Look through bitcasts and addrspacecasts. We do not however want to remove
819   // 0 GEPs.
820   if (!isa<GetElementPtrInst>(RHS))
821     RHS = RHS->stripPointerCasts();
822 
823   Value *PtrBase = GEPLHS->getOperand(0);
824   // FIXME: Support vector pointer GEPs.
825   if (PtrBase == RHS && GEPLHS->isInBounds() &&
826       !GEPLHS->getType()->isVectorTy()) {
827     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
828     // This transformation (ignoring the base and scales) is valid because we
829     // know pointers can't overflow since the gep is inbounds.  See if we can
830     // output an optimized form.
831     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
832 
833     // If not, synthesize the offset the hard way.
834     if (!Offset)
835       Offset = EmitGEPOffset(GEPLHS);
836     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
837                         Constant::getNullValue(Offset->getType()));
838   }
839 
840   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
841       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
842       !NullPointerIsDefined(I.getFunction(),
843                             RHS->getType()->getPointerAddressSpace())) {
844     // For most address spaces, an allocation can't be placed at null, but null
845     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
846     // the only valid inbounds address derived from null, is null itself.
847     // Thus, we have four cases to consider:
848     // 1) Base == nullptr, Offset == 0 -> inbounds, null
849     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
850     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
851     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
852     //
853     // (Note if we're indexing a type of size 0, that simply collapses into one
854     //  of the buckets above.)
855     //
856     // In general, we're allowed to make values less poison (i.e. remove
857     //   sources of full UB), so in this case, we just select between the two
858     //   non-poison cases (1 and 4 above).
859     //
860     // For vectors, we apply the same reasoning on a per-lane basis.
861     auto *Base = GEPLHS->getPointerOperand();
862     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
863       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
864       Base = Builder.CreateVectorSplat(EC, Base);
865     }
866     return new ICmpInst(Cond, Base,
867                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
868                             cast<Constant>(RHS), Base->getType()));
869   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
870     // If the base pointers are different, but the indices are the same, just
871     // compare the base pointer.
872     if (PtrBase != GEPRHS->getOperand(0)) {
873       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
874       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
875                         GEPRHS->getOperand(0)->getType();
876       if (IndicesTheSame)
877         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
878           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
879             IndicesTheSame = false;
880             break;
881           }
882 
883       // If all indices are the same, just compare the base pointers.
884       Type *BaseType = GEPLHS->getOperand(0)->getType();
885       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
886         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
887 
888       // If we're comparing GEPs with two base pointers that only differ in type
889       // and both GEPs have only constant indices or just one use, then fold
890       // the compare with the adjusted indices.
891       // FIXME: Support vector of pointers.
892       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
893           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
894           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
895           PtrBase->stripPointerCasts() ==
896               GEPRHS->getOperand(0)->stripPointerCasts() &&
897           !GEPLHS->getType()->isVectorTy()) {
898         Value *LOffset = EmitGEPOffset(GEPLHS);
899         Value *ROffset = EmitGEPOffset(GEPRHS);
900 
901         // If we looked through an addrspacecast between different sized address
902         // spaces, the LHS and RHS pointers are different sized
903         // integers. Truncate to the smaller one.
904         Type *LHSIndexTy = LOffset->getType();
905         Type *RHSIndexTy = ROffset->getType();
906         if (LHSIndexTy != RHSIndexTy) {
907           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
908               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
909             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
910           } else
911             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
912         }
913 
914         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
915                                         LOffset, ROffset);
916         return replaceInstUsesWith(I, Cmp);
917       }
918 
919       // Otherwise, the base pointers are different and the indices are
920       // different. Try convert this to an indexed compare by looking through
921       // PHIs/casts.
922       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
923     }
924 
925     // If one of the GEPs has all zero indices, recurse.
926     // FIXME: Handle vector of pointers.
927     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
928       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
929                          ICmpInst::getSwappedPredicate(Cond), I);
930 
931     // If the other GEP has all zero indices, recurse.
932     // FIXME: Handle vector of pointers.
933     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
934       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
935 
936     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
937     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
938       // If the GEPs only differ by one index, compare it.
939       unsigned NumDifferences = 0;  // Keep track of # differences.
940       unsigned DiffOperand = 0;     // The operand that differs.
941       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
942         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
943           Type *LHSType = GEPLHS->getOperand(i)->getType();
944           Type *RHSType = GEPRHS->getOperand(i)->getType();
945           // FIXME: Better support for vector of pointers.
946           if (LHSType->getPrimitiveSizeInBits() !=
947                    RHSType->getPrimitiveSizeInBits() ||
948               (GEPLHS->getType()->isVectorTy() &&
949                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
950             // Irreconcilable differences.
951             NumDifferences = 2;
952             break;
953           }
954 
955           if (NumDifferences++) break;
956           DiffOperand = i;
957         }
958 
959       if (NumDifferences == 0)   // SAME GEP?
960         return replaceInstUsesWith(I, // No comparison is needed here.
961           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
962 
963       else if (NumDifferences == 1 && GEPsInBounds) {
964         Value *LHSV = GEPLHS->getOperand(DiffOperand);
965         Value *RHSV = GEPRHS->getOperand(DiffOperand);
966         // Make sure we do a signed comparison here.
967         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
968       }
969     }
970 
971     // Only lower this if the icmp is the only user of the GEP or if we expect
972     // the result to fold to a constant!
973     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
974         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
975       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
976       Value *L = EmitGEPOffset(GEPLHS);
977       Value *R = EmitGEPOffset(GEPRHS);
978       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
979     }
980   }
981 
982   // Try convert this to an indexed compare by looking through PHIs/casts as a
983   // last resort.
984   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
985 }
986 
987 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
988                                              const AllocaInst *Alloca,
989                                              const Value *Other) {
990   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
991 
992   // It would be tempting to fold away comparisons between allocas and any
993   // pointer not based on that alloca (e.g. an argument). However, even
994   // though such pointers cannot alias, they can still compare equal.
995   //
996   // But LLVM doesn't specify where allocas get their memory, so if the alloca
997   // doesn't escape we can argue that it's impossible to guess its value, and we
998   // can therefore act as if any such guesses are wrong.
999   //
1000   // The code below checks that the alloca doesn't escape, and that it's only
1001   // used in a comparison once (the current instruction). The
1002   // single-comparison-use condition ensures that we're trivially folding all
1003   // comparisons against the alloca consistently, and avoids the risk of
1004   // erroneously folding a comparison of the pointer with itself.
1005 
1006   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1007 
1008   SmallVector<const Use *, 32> Worklist;
1009   for (const Use &U : Alloca->uses()) {
1010     if (Worklist.size() >= MaxIter)
1011       return nullptr;
1012     Worklist.push_back(&U);
1013   }
1014 
1015   unsigned NumCmps = 0;
1016   while (!Worklist.empty()) {
1017     assert(Worklist.size() <= MaxIter);
1018     const Use *U = Worklist.pop_back_val();
1019     const Value *V = U->getUser();
1020     --MaxIter;
1021 
1022     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1023         isa<SelectInst>(V)) {
1024       // Track the uses.
1025     } else if (isa<LoadInst>(V)) {
1026       // Loading from the pointer doesn't escape it.
1027       continue;
1028     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1029       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1030       if (SI->getValueOperand() == U->get())
1031         return nullptr;
1032       continue;
1033     } else if (isa<ICmpInst>(V)) {
1034       if (NumCmps++)
1035         return nullptr; // Found more than one cmp.
1036       continue;
1037     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1038       switch (Intrin->getIntrinsicID()) {
1039         // These intrinsics don't escape or compare the pointer. Memset is safe
1040         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1041         // we don't allow stores, so src cannot point to V.
1042         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1043         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1044           continue;
1045         default:
1046           return nullptr;
1047       }
1048     } else {
1049       return nullptr;
1050     }
1051     for (const Use &U : V->uses()) {
1052       if (Worklist.size() >= MaxIter)
1053         return nullptr;
1054       Worklist.push_back(&U);
1055     }
1056   }
1057 
1058   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1059   return replaceInstUsesWith(
1060       ICI,
1061       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1062 }
1063 
1064 /// Fold "icmp pred (X+C), X".
1065 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1066                                                   ICmpInst::Predicate Pred) {
1067   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1068   // so the values can never be equal.  Similarly for all other "or equals"
1069   // operators.
1070   assert(!!C && "C should not be zero!");
1071 
1072   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1073   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1074   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1075   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1076     Constant *R = ConstantInt::get(X->getType(),
1077                                    APInt::getMaxValue(C.getBitWidth()) - C);
1078     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1079   }
1080 
1081   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1082   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1083   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1084   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1085     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1086                         ConstantInt::get(X->getType(), -C));
1087 
1088   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1089 
1090   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1091   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1092   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1093   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1094   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1095   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1096   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1097     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1098                         ConstantInt::get(X->getType(), SMax - C));
1099 
1100   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1101   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1102   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1103   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1104   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1105   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1106 
1107   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1108   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1109                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1110 }
1111 
1112 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1113 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1114 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1115 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1116                                                      const APInt &AP1,
1117                                                      const APInt &AP2) {
1118   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1119 
1120   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1121     if (I.getPredicate() == I.ICMP_NE)
1122       Pred = CmpInst::getInversePredicate(Pred);
1123     return new ICmpInst(Pred, LHS, RHS);
1124   };
1125 
1126   // Don't bother doing any work for cases which InstSimplify handles.
1127   if (AP2.isNullValue())
1128     return nullptr;
1129 
1130   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1131   if (IsAShr) {
1132     if (AP2.isAllOnesValue())
1133       return nullptr;
1134     if (AP2.isNegative() != AP1.isNegative())
1135       return nullptr;
1136     if (AP2.sgt(AP1))
1137       return nullptr;
1138   }
1139 
1140   if (!AP1)
1141     // 'A' must be large enough to shift out the highest set bit.
1142     return getICmp(I.ICMP_UGT, A,
1143                    ConstantInt::get(A->getType(), AP2.logBase2()));
1144 
1145   if (AP1 == AP2)
1146     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1147 
1148   int Shift;
1149   if (IsAShr && AP1.isNegative())
1150     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1151   else
1152     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1153 
1154   if (Shift > 0) {
1155     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1156       // There are multiple solutions if we are comparing against -1 and the LHS
1157       // of the ashr is not a power of two.
1158       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1159         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1160       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1161     } else if (AP1 == AP2.lshr(Shift)) {
1162       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1163     }
1164   }
1165 
1166   // Shifting const2 will never be equal to const1.
1167   // FIXME: This should always be handled by InstSimplify?
1168   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1169   return replaceInstUsesWith(I, TorF);
1170 }
1171 
1172 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1173 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1174 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1175                                                      const APInt &AP1,
1176                                                      const APInt &AP2) {
1177   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1178 
1179   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1180     if (I.getPredicate() == I.ICMP_NE)
1181       Pred = CmpInst::getInversePredicate(Pred);
1182     return new ICmpInst(Pred, LHS, RHS);
1183   };
1184 
1185   // Don't bother doing any work for cases which InstSimplify handles.
1186   if (AP2.isNullValue())
1187     return nullptr;
1188 
1189   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1190 
1191   if (!AP1 && AP2TrailingZeros != 0)
1192     return getICmp(
1193         I.ICMP_UGE, A,
1194         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1195 
1196   if (AP1 == AP2)
1197     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1198 
1199   // Get the distance between the lowest bits that are set.
1200   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1201 
1202   if (Shift > 0 && AP2.shl(Shift) == AP1)
1203     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1204 
1205   // Shifting const2 will never be equal to const1.
1206   // FIXME: This should always be handled by InstSimplify?
1207   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1208   return replaceInstUsesWith(I, TorF);
1209 }
1210 
1211 /// The caller has matched a pattern of the form:
1212 ///   I = icmp ugt (add (add A, B), CI2), CI1
1213 /// If this is of the form:
1214 ///   sum = a + b
1215 ///   if (sum+128 >u 255)
1216 /// Then replace it with llvm.sadd.with.overflow.i8.
1217 ///
1218 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1219                                           ConstantInt *CI2, ConstantInt *CI1,
1220                                           InstCombinerImpl &IC) {
1221   // The transformation we're trying to do here is to transform this into an
1222   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1223   // with a narrower add, and discard the add-with-constant that is part of the
1224   // range check (if we can't eliminate it, this isn't profitable).
1225 
1226   // In order to eliminate the add-with-constant, the compare can be its only
1227   // use.
1228   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1229   if (!AddWithCst->hasOneUse())
1230     return nullptr;
1231 
1232   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1233   if (!CI2->getValue().isPowerOf2())
1234     return nullptr;
1235   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1236   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1237     return nullptr;
1238 
1239   // The width of the new add formed is 1 more than the bias.
1240   ++NewWidth;
1241 
1242   // Check to see that CI1 is an all-ones value with NewWidth bits.
1243   if (CI1->getBitWidth() == NewWidth ||
1244       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1245     return nullptr;
1246 
1247   // This is only really a signed overflow check if the inputs have been
1248   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1249   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1250   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1251   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1252       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1253     return nullptr;
1254 
1255   // In order to replace the original add with a narrower
1256   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1257   // and truncates that discard the high bits of the add.  Verify that this is
1258   // the case.
1259   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1260   for (User *U : OrigAdd->users()) {
1261     if (U == AddWithCst)
1262       continue;
1263 
1264     // Only accept truncates for now.  We would really like a nice recursive
1265     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1266     // chain to see which bits of a value are actually demanded.  If the
1267     // original add had another add which was then immediately truncated, we
1268     // could still do the transformation.
1269     TruncInst *TI = dyn_cast<TruncInst>(U);
1270     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1271       return nullptr;
1272   }
1273 
1274   // If the pattern matches, truncate the inputs to the narrower type and
1275   // use the sadd_with_overflow intrinsic to efficiently compute both the
1276   // result and the overflow bit.
1277   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1278   Function *F = Intrinsic::getDeclaration(
1279       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1280 
1281   InstCombiner::BuilderTy &Builder = IC.Builder;
1282 
1283   // Put the new code above the original add, in case there are any uses of the
1284   // add between the add and the compare.
1285   Builder.SetInsertPoint(OrigAdd);
1286 
1287   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1288   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1289   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1290   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1291   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1292 
1293   // The inner add was the result of the narrow add, zero extended to the
1294   // wider type.  Replace it with the result computed by the intrinsic.
1295   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1296   IC.eraseInstFromFunction(*OrigAdd);
1297 
1298   // The original icmp gets replaced with the overflow value.
1299   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1300 }
1301 
1302 /// If we have:
1303 ///   icmp eq/ne (urem/srem %x, %y), 0
1304 /// iff %y is a power-of-two, we can replace this with a bit test:
1305 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1306 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1307   // This fold is only valid for equality predicates.
1308   if (!I.isEquality())
1309     return nullptr;
1310   ICmpInst::Predicate Pred;
1311   Value *X, *Y, *Zero;
1312   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1313                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1314     return nullptr;
1315   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1316     return nullptr;
1317   // This may increase instruction count, we don't enforce that Y is a constant.
1318   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1319   Value *Masked = Builder.CreateAnd(X, Mask);
1320   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1321 }
1322 
1323 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1324 /// by one-less-than-bitwidth into a sign test on the original value.
1325 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1326   Instruction *Val;
1327   ICmpInst::Predicate Pred;
1328   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1329     return nullptr;
1330 
1331   Value *X;
1332   Type *XTy;
1333 
1334   Constant *C;
1335   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1336     XTy = X->getType();
1337     unsigned XBitWidth = XTy->getScalarSizeInBits();
1338     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1339                                      APInt(XBitWidth, XBitWidth - 1))))
1340       return nullptr;
1341   } else if (isa<BinaryOperator>(Val) &&
1342              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1343                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1344                   /*AnalyzeForSignBitExtraction=*/true))) {
1345     XTy = X->getType();
1346   } else
1347     return nullptr;
1348 
1349   return ICmpInst::Create(Instruction::ICmp,
1350                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1351                                                     : ICmpInst::ICMP_SLT,
1352                           X, ConstantInt::getNullValue(XTy));
1353 }
1354 
1355 // Handle  icmp pred X, 0
1356 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1357   CmpInst::Predicate Pred = Cmp.getPredicate();
1358   if (!match(Cmp.getOperand(1), m_Zero()))
1359     return nullptr;
1360 
1361   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1362   if (Pred == ICmpInst::ICMP_SGT) {
1363     Value *A, *B;
1364     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1365     if (SPR.Flavor == SPF_SMIN) {
1366       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1367         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1368       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1369         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1370     }
1371   }
1372 
1373   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1374     return New;
1375 
1376   // Given:
1377   //   icmp eq/ne (urem %x, %y), 0
1378   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1379   //   icmp eq/ne %x, 0
1380   Value *X, *Y;
1381   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1382       ICmpInst::isEquality(Pred)) {
1383     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1384     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1385     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1386       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1387   }
1388 
1389   return nullptr;
1390 }
1391 
1392 /// Fold icmp Pred X, C.
1393 /// TODO: This code structure does not make sense. The saturating add fold
1394 /// should be moved to some other helper and extended as noted below (it is also
1395 /// possible that code has been made unnecessary - do we canonicalize IR to
1396 /// overflow/saturating intrinsics or not?).
1397 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1398   // Match the following pattern, which is a common idiom when writing
1399   // overflow-safe integer arithmetic functions. The source performs an addition
1400   // in wider type and explicitly checks for overflow using comparisons against
1401   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1402   //
1403   // TODO: This could probably be generalized to handle other overflow-safe
1404   // operations if we worked out the formulas to compute the appropriate magic
1405   // constants.
1406   //
1407   // sum = a + b
1408   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1409   CmpInst::Predicate Pred = Cmp.getPredicate();
1410   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1411   Value *A, *B;
1412   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1413   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1414       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1415     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1416       return Res;
1417 
1418   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1419   Constant *C = dyn_cast<Constant>(Op1);
1420   if (!C)
1421     return nullptr;
1422 
1423   if (auto *Phi = dyn_cast<PHINode>(Op0))
1424     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1425       Type *Ty = Cmp.getType();
1426       Builder.SetInsertPoint(Phi);
1427       PHINode *NewPhi =
1428           Builder.CreatePHI(Ty, Phi->getNumOperands());
1429       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1430         auto *Input =
1431             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1432         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1433         NewPhi->addIncoming(BoolInput, Predecessor);
1434       }
1435       NewPhi->takeName(&Cmp);
1436       return replaceInstUsesWith(Cmp, NewPhi);
1437     }
1438 
1439   return nullptr;
1440 }
1441 
1442 /// Canonicalize icmp instructions based on dominating conditions.
1443 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1444   // This is a cheap/incomplete check for dominance - just match a single
1445   // predecessor with a conditional branch.
1446   BasicBlock *CmpBB = Cmp.getParent();
1447   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1448   if (!DomBB)
1449     return nullptr;
1450 
1451   Value *DomCond;
1452   BasicBlock *TrueBB, *FalseBB;
1453   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1454     return nullptr;
1455 
1456   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1457          "Predecessor block does not point to successor?");
1458 
1459   // The branch should get simplified. Don't bother simplifying this condition.
1460   if (TrueBB == FalseBB)
1461     return nullptr;
1462 
1463   // Try to simplify this compare to T/F based on the dominating condition.
1464   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1465   if (Imp)
1466     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1467 
1468   CmpInst::Predicate Pred = Cmp.getPredicate();
1469   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1470   ICmpInst::Predicate DomPred;
1471   const APInt *C, *DomC;
1472   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1473       match(Y, m_APInt(C))) {
1474     // We have 2 compares of a variable with constants. Calculate the constant
1475     // ranges of those compares to see if we can transform the 2nd compare:
1476     // DomBB:
1477     //   DomCond = icmp DomPred X, DomC
1478     //   br DomCond, CmpBB, FalseBB
1479     // CmpBB:
1480     //   Cmp = icmp Pred X, C
1481     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1482     ConstantRange DominatingCR =
1483         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1484                           : ConstantRange::makeExactICmpRegion(
1485                                 CmpInst::getInversePredicate(DomPred), *DomC);
1486     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1487     ConstantRange Difference = DominatingCR.difference(CR);
1488     if (Intersection.isEmptySet())
1489       return replaceInstUsesWith(Cmp, Builder.getFalse());
1490     if (Difference.isEmptySet())
1491       return replaceInstUsesWith(Cmp, Builder.getTrue());
1492 
1493     // Canonicalizing a sign bit comparison that gets used in a branch,
1494     // pessimizes codegen by generating branch on zero instruction instead
1495     // of a test and branch. So we avoid canonicalizing in such situations
1496     // because test and branch instruction has better branch displacement
1497     // than compare and branch instruction.
1498     bool UnusedBit;
1499     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1500     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1501       return nullptr;
1502 
1503     if (const APInt *EqC = Intersection.getSingleElement())
1504       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1505     if (const APInt *NeC = Difference.getSingleElement())
1506       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1507   }
1508 
1509   return nullptr;
1510 }
1511 
1512 /// Fold icmp (trunc X, Y), C.
1513 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1514                                                      TruncInst *Trunc,
1515                                                      const APInt &C) {
1516   ICmpInst::Predicate Pred = Cmp.getPredicate();
1517   Value *X = Trunc->getOperand(0);
1518   if (C.isOneValue() && C.getBitWidth() > 1) {
1519     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1520     Value *V = nullptr;
1521     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1522       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1523                           ConstantInt::get(V->getType(), 1));
1524   }
1525 
1526   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1527            SrcBits = X->getType()->getScalarSizeInBits();
1528   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1529     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1530     // of the high bits truncated out of x are known.
1531     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1532 
1533     // If all the high bits are known, we can do this xform.
1534     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1535       // Pull in the high bits from known-ones set.
1536       APInt NewRHS = C.zext(SrcBits);
1537       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1538       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1539     }
1540   }
1541 
1542   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1543   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1544   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1545   Value *ShOp;
1546   const APInt *ShAmtC;
1547   bool TrueIfSigned;
1548   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1549       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1550       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1551     return TrueIfSigned
1552                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1553                               ConstantInt::getNullValue(X->getType()))
1554                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1555                               ConstantInt::getAllOnesValue(X->getType()));
1556   }
1557 
1558   return nullptr;
1559 }
1560 
1561 /// Fold icmp (xor X, Y), C.
1562 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1563                                                    BinaryOperator *Xor,
1564                                                    const APInt &C) {
1565   Value *X = Xor->getOperand(0);
1566   Value *Y = Xor->getOperand(1);
1567   const APInt *XorC;
1568   if (!match(Y, m_APInt(XorC)))
1569     return nullptr;
1570 
1571   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1572   // fold the xor.
1573   ICmpInst::Predicate Pred = Cmp.getPredicate();
1574   bool TrueIfSigned = false;
1575   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1576 
1577     // If the sign bit of the XorCst is not set, there is no change to
1578     // the operation, just stop using the Xor.
1579     if (!XorC->isNegative())
1580       return replaceOperand(Cmp, 0, X);
1581 
1582     // Emit the opposite comparison.
1583     if (TrueIfSigned)
1584       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1585                           ConstantInt::getAllOnesValue(X->getType()));
1586     else
1587       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1588                           ConstantInt::getNullValue(X->getType()));
1589   }
1590 
1591   if (Xor->hasOneUse()) {
1592     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1593     if (!Cmp.isEquality() && XorC->isSignMask()) {
1594       Pred = Cmp.getFlippedSignednessPredicate();
1595       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1596     }
1597 
1598     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1599     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1600       Pred = Cmp.getFlippedSignednessPredicate();
1601       Pred = Cmp.getSwappedPredicate(Pred);
1602       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1603     }
1604   }
1605 
1606   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1607   if (Pred == ICmpInst::ICMP_UGT) {
1608     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1609     if (*XorC == ~C && (C + 1).isPowerOf2())
1610       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1611     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1612     if (*XorC == C && (C + 1).isPowerOf2())
1613       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1614   }
1615   if (Pred == ICmpInst::ICMP_ULT) {
1616     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1617     if (*XorC == -C && C.isPowerOf2())
1618       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1619                           ConstantInt::get(X->getType(), ~C));
1620     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1621     if (*XorC == C && (-C).isPowerOf2())
1622       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1623                           ConstantInt::get(X->getType(), ~C));
1624   }
1625   return nullptr;
1626 }
1627 
1628 /// Fold icmp (and (sh X, Y), C2), C1.
1629 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1630                                                 BinaryOperator *And,
1631                                                 const APInt &C1,
1632                                                 const APInt &C2) {
1633   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1634   if (!Shift || !Shift->isShift())
1635     return nullptr;
1636 
1637   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1638   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1639   // code produced by the clang front-end, for bitfield access.
1640   // This seemingly simple opportunity to fold away a shift turns out to be
1641   // rather complicated. See PR17827 for details.
1642   unsigned ShiftOpcode = Shift->getOpcode();
1643   bool IsShl = ShiftOpcode == Instruction::Shl;
1644   const APInt *C3;
1645   if (match(Shift->getOperand(1), m_APInt(C3))) {
1646     APInt NewAndCst, NewCmpCst;
1647     bool AnyCmpCstBitsShiftedOut;
1648     if (ShiftOpcode == Instruction::Shl) {
1649       // For a left shift, we can fold if the comparison is not signed. We can
1650       // also fold a signed comparison if the mask value and comparison value
1651       // are not negative. These constraints may not be obvious, but we can
1652       // prove that they are correct using an SMT solver.
1653       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1654         return nullptr;
1655 
1656       NewCmpCst = C1.lshr(*C3);
1657       NewAndCst = C2.lshr(*C3);
1658       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1659     } else if (ShiftOpcode == Instruction::LShr) {
1660       // For a logical right shift, we can fold if the comparison is not signed.
1661       // We can also fold a signed comparison if the shifted mask value and the
1662       // shifted comparison value are not negative. These constraints may not be
1663       // obvious, but we can prove that they are correct using an SMT solver.
1664       NewCmpCst = C1.shl(*C3);
1665       NewAndCst = C2.shl(*C3);
1666       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1667       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1668         return nullptr;
1669     } else {
1670       // For an arithmetic shift, check that both constants don't use (in a
1671       // signed sense) the top bits being shifted out.
1672       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1673       NewCmpCst = C1.shl(*C3);
1674       NewAndCst = C2.shl(*C3);
1675       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1676       if (NewAndCst.ashr(*C3) != C2)
1677         return nullptr;
1678     }
1679 
1680     if (AnyCmpCstBitsShiftedOut) {
1681       // If we shifted bits out, the fold is not going to work out. As a
1682       // special case, check to see if this means that the result is always
1683       // true or false now.
1684       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1685         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1686       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1687         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1688     } else {
1689       Value *NewAnd = Builder.CreateAnd(
1690           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1691       return new ICmpInst(Cmp.getPredicate(),
1692           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1693     }
1694   }
1695 
1696   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1697   // preferable because it allows the C2 << Y expression to be hoisted out of a
1698   // loop if Y is invariant and X is not.
1699   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1700       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1701     // Compute C2 << Y.
1702     Value *NewShift =
1703         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1704               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1705 
1706     // Compute X & (C2 << Y).
1707     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1708     return replaceOperand(Cmp, 0, NewAnd);
1709   }
1710 
1711   return nullptr;
1712 }
1713 
1714 /// Fold icmp (and X, C2), C1.
1715 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1716                                                      BinaryOperator *And,
1717                                                      const APInt &C1) {
1718   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1719 
1720   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1721   // TODO: We canonicalize to the longer form for scalars because we have
1722   // better analysis/folds for icmp, and codegen may be better with icmp.
1723   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1724       match(And->getOperand(1), m_One()))
1725     return new TruncInst(And->getOperand(0), Cmp.getType());
1726 
1727   const APInt *C2;
1728   Value *X;
1729   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1730     return nullptr;
1731 
1732   // Don't perform the following transforms if the AND has multiple uses
1733   if (!And->hasOneUse())
1734     return nullptr;
1735 
1736   if (Cmp.isEquality() && C1.isNullValue()) {
1737     // Restrict this fold to single-use 'and' (PR10267).
1738     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1739     if (C2->isSignMask()) {
1740       Constant *Zero = Constant::getNullValue(X->getType());
1741       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1742       return new ICmpInst(NewPred, X, Zero);
1743     }
1744 
1745     // Restrict this fold only for single-use 'and' (PR10267).
1746     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1747     if ((~(*C2) + 1).isPowerOf2()) {
1748       Constant *NegBOC =
1749           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1750       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1751       return new ICmpInst(NewPred, X, NegBOC);
1752     }
1753   }
1754 
1755   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1756   // the input width without changing the value produced, eliminate the cast:
1757   //
1758   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1759   //
1760   // We can do this transformation if the constants do not have their sign bits
1761   // set or if it is an equality comparison. Extending a relational comparison
1762   // when we're checking the sign bit would not work.
1763   Value *W;
1764   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1765       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1766     // TODO: Is this a good transform for vectors? Wider types may reduce
1767     // throughput. Should this transform be limited (even for scalars) by using
1768     // shouldChangeType()?
1769     if (!Cmp.getType()->isVectorTy()) {
1770       Type *WideType = W->getType();
1771       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1772       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1773       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1774       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1775       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1776     }
1777   }
1778 
1779   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1780     return I;
1781 
1782   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1783   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1784   //
1785   // iff pred isn't signed
1786   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1787       match(And->getOperand(1), m_One())) {
1788     Constant *One = cast<Constant>(And->getOperand(1));
1789     Value *Or = And->getOperand(0);
1790     Value *A, *B, *LShr;
1791     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1792         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1793       unsigned UsesRemoved = 0;
1794       if (And->hasOneUse())
1795         ++UsesRemoved;
1796       if (Or->hasOneUse())
1797         ++UsesRemoved;
1798       if (LShr->hasOneUse())
1799         ++UsesRemoved;
1800 
1801       // Compute A & ((1 << B) | 1)
1802       Value *NewOr = nullptr;
1803       if (auto *C = dyn_cast<Constant>(B)) {
1804         if (UsesRemoved >= 1)
1805           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1806       } else {
1807         if (UsesRemoved >= 3)
1808           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1809                                                      /*HasNUW=*/true),
1810                                    One, Or->getName());
1811       }
1812       if (NewOr) {
1813         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1814         return replaceOperand(Cmp, 0, NewAnd);
1815       }
1816     }
1817   }
1818 
1819   return nullptr;
1820 }
1821 
1822 /// Fold icmp (and X, Y), C.
1823 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1824                                                    BinaryOperator *And,
1825                                                    const APInt &C) {
1826   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1827     return I;
1828 
1829   // TODO: These all require that Y is constant too, so refactor with the above.
1830 
1831   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1832   Value *X = And->getOperand(0);
1833   Value *Y = And->getOperand(1);
1834   if (auto *LI = dyn_cast<LoadInst>(X))
1835     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1836       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1837         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1838             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1839           ConstantInt *C2 = cast<ConstantInt>(Y);
1840           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1841             return Res;
1842         }
1843 
1844   if (!Cmp.isEquality())
1845     return nullptr;
1846 
1847   // X & -C == -C -> X >  u ~C
1848   // X & -C != -C -> X <= u ~C
1849   //   iff C is a power of 2
1850   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1851     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1852                                                           : CmpInst::ICMP_ULE;
1853     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1854   }
1855 
1856   // (X & C2) == 0 -> (trunc X) >= 0
1857   // (X & C2) != 0 -> (trunc X) <  0
1858   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1859   const APInt *C2;
1860   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1861     int32_t ExactLogBase2 = C2->exactLogBase2();
1862     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1863       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1864       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1865         NTy = VectorType::get(NTy, AndVTy->getElementCount());
1866       Value *Trunc = Builder.CreateTrunc(X, NTy);
1867       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1868                                                             : CmpInst::ICMP_SLT;
1869       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1870     }
1871   }
1872 
1873   return nullptr;
1874 }
1875 
1876 /// Fold icmp (or X, Y), C.
1877 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1878                                                   BinaryOperator *Or,
1879                                                   const APInt &C) {
1880   ICmpInst::Predicate Pred = Cmp.getPredicate();
1881   if (C.isOneValue()) {
1882     // icmp slt signum(V) 1 --> icmp slt V, 1
1883     Value *V = nullptr;
1884     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1885       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1886                           ConstantInt::get(V->getType(), 1));
1887   }
1888 
1889   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1890   const APInt *MaskC;
1891   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1892     if (*MaskC == C && (C + 1).isPowerOf2()) {
1893       // X | C == C --> X <=u C
1894       // X | C != C --> X  >u C
1895       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1896       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1897       return new ICmpInst(Pred, OrOp0, OrOp1);
1898     }
1899 
1900     // More general: canonicalize 'equality with set bits mask' to
1901     // 'equality with clear bits mask'.
1902     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1903     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1904     if (Or->hasOneUse()) {
1905       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1906       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1907       return new ICmpInst(Pred, And, NewC);
1908     }
1909   }
1910 
1911   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1912     return nullptr;
1913 
1914   Value *P, *Q;
1915   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1916     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1917     // -> and (icmp eq P, null), (icmp eq Q, null).
1918     Value *CmpP =
1919         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1920     Value *CmpQ =
1921         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1922     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1923     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1924   }
1925 
1926   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1927   // a shorter form that has more potential to be folded even further.
1928   Value *X1, *X2, *X3, *X4;
1929   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1930       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1931     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1932     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1933     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1934     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1935     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1936     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1937   }
1938 
1939   return nullptr;
1940 }
1941 
1942 /// Fold icmp (mul X, Y), C.
1943 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1944                                                    BinaryOperator *Mul,
1945                                                    const APInt &C) {
1946   const APInt *MulC;
1947   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1948     return nullptr;
1949 
1950   // If this is a test of the sign bit and the multiply is sign-preserving with
1951   // a constant operand, use the multiply LHS operand instead.
1952   ICmpInst::Predicate Pred = Cmp.getPredicate();
1953   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1954     if (MulC->isNegative())
1955       Pred = ICmpInst::getSwappedPredicate(Pred);
1956     return new ICmpInst(Pred, Mul->getOperand(0),
1957                         Constant::getNullValue(Mul->getType()));
1958   }
1959 
1960   // If the multiply does not wrap, try to divide the compare constant by the
1961   // multiplication factor.
1962   if (Cmp.isEquality() && !MulC->isNullValue()) {
1963     // (mul nsw X, MulC) == C --> X == C /s MulC
1964     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
1965       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1966       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1967     }
1968     // (mul nuw X, MulC) == C --> X == C /u MulC
1969     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
1970       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1971       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1972     }
1973   }
1974 
1975   return nullptr;
1976 }
1977 
1978 /// Fold icmp (shl 1, Y), C.
1979 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1980                                    const APInt &C) {
1981   Value *Y;
1982   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1983     return nullptr;
1984 
1985   Type *ShiftType = Shl->getType();
1986   unsigned TypeBits = C.getBitWidth();
1987   bool CIsPowerOf2 = C.isPowerOf2();
1988   ICmpInst::Predicate Pred = Cmp.getPredicate();
1989   if (Cmp.isUnsigned()) {
1990     // (1 << Y) pred C -> Y pred Log2(C)
1991     if (!CIsPowerOf2) {
1992       // (1 << Y) <  30 -> Y <= 4
1993       // (1 << Y) <= 30 -> Y <= 4
1994       // (1 << Y) >= 30 -> Y >  4
1995       // (1 << Y) >  30 -> Y >  4
1996       if (Pred == ICmpInst::ICMP_ULT)
1997         Pred = ICmpInst::ICMP_ULE;
1998       else if (Pred == ICmpInst::ICMP_UGE)
1999         Pred = ICmpInst::ICMP_UGT;
2000     }
2001 
2002     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2003     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2004     unsigned CLog2 = C.logBase2();
2005     if (CLog2 == TypeBits - 1) {
2006       if (Pred == ICmpInst::ICMP_UGE)
2007         Pred = ICmpInst::ICMP_EQ;
2008       else if (Pred == ICmpInst::ICMP_ULT)
2009         Pred = ICmpInst::ICMP_NE;
2010     }
2011     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2012   } else if (Cmp.isSigned()) {
2013     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2014     if (C.isAllOnesValue()) {
2015       // (1 << Y) <= -1 -> Y == 31
2016       if (Pred == ICmpInst::ICMP_SLE)
2017         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2018 
2019       // (1 << Y) >  -1 -> Y != 31
2020       if (Pred == ICmpInst::ICMP_SGT)
2021         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2022     } else if (!C) {
2023       // (1 << Y) <  0 -> Y == 31
2024       // (1 << Y) <= 0 -> Y == 31
2025       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2026         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2027 
2028       // (1 << Y) >= 0 -> Y != 31
2029       // (1 << Y) >  0 -> Y != 31
2030       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2031         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2032     }
2033   } else if (Cmp.isEquality() && CIsPowerOf2) {
2034     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2035   }
2036 
2037   return nullptr;
2038 }
2039 
2040 /// Fold icmp (shl X, Y), C.
2041 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2042                                                    BinaryOperator *Shl,
2043                                                    const APInt &C) {
2044   const APInt *ShiftVal;
2045   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2046     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2047 
2048   const APInt *ShiftAmt;
2049   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2050     return foldICmpShlOne(Cmp, Shl, C);
2051 
2052   // Check that the shift amount is in range. If not, don't perform undefined
2053   // shifts. When the shift is visited, it will be simplified.
2054   unsigned TypeBits = C.getBitWidth();
2055   if (ShiftAmt->uge(TypeBits))
2056     return nullptr;
2057 
2058   ICmpInst::Predicate Pred = Cmp.getPredicate();
2059   Value *X = Shl->getOperand(0);
2060   Type *ShType = Shl->getType();
2061 
2062   // NSW guarantees that we are only shifting out sign bits from the high bits,
2063   // so we can ASHR the compare constant without needing a mask and eliminate
2064   // the shift.
2065   if (Shl->hasNoSignedWrap()) {
2066     if (Pred == ICmpInst::ICMP_SGT) {
2067       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2068       APInt ShiftedC = C.ashr(*ShiftAmt);
2069       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2070     }
2071     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2072         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2073       APInt ShiftedC = C.ashr(*ShiftAmt);
2074       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2075     }
2076     if (Pred == ICmpInst::ICMP_SLT) {
2077       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2078       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2079       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2080       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2081       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2082       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2083       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2084     }
2085     // If this is a signed comparison to 0 and the shift is sign preserving,
2086     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2087     // do that if we're sure to not continue on in this function.
2088     if (isSignTest(Pred, C))
2089       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2090   }
2091 
2092   // NUW guarantees that we are only shifting out zero bits from the high bits,
2093   // so we can LSHR the compare constant without needing a mask and eliminate
2094   // the shift.
2095   if (Shl->hasNoUnsignedWrap()) {
2096     if (Pred == ICmpInst::ICMP_UGT) {
2097       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2098       APInt ShiftedC = C.lshr(*ShiftAmt);
2099       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2100     }
2101     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2102         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2103       APInt ShiftedC = C.lshr(*ShiftAmt);
2104       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2105     }
2106     if (Pred == ICmpInst::ICMP_ULT) {
2107       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2108       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2109       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2110       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2111       assert(C.ugt(0) && "ult 0 should have been eliminated");
2112       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2113       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2114     }
2115   }
2116 
2117   if (Cmp.isEquality() && Shl->hasOneUse()) {
2118     // Strength-reduce the shift into an 'and'.
2119     Constant *Mask = ConstantInt::get(
2120         ShType,
2121         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2122     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2123     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2124     return new ICmpInst(Pred, And, LShrC);
2125   }
2126 
2127   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2128   bool TrueIfSigned = false;
2129   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2130     // (X << 31) <s 0  --> (X & 1) != 0
2131     Constant *Mask = ConstantInt::get(
2132         ShType,
2133         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2134     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2135     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2136                         And, Constant::getNullValue(ShType));
2137   }
2138 
2139   // Simplify 'shl' inequality test into 'and' equality test.
2140   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2141     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2142     if ((C + 1).isPowerOf2() &&
2143         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2144       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2145       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2146                                                      : ICmpInst::ICMP_NE,
2147                           And, Constant::getNullValue(ShType));
2148     }
2149     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2150     if (C.isPowerOf2() &&
2151         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2152       Value *And =
2153           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2154       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2155                                                      : ICmpInst::ICMP_NE,
2156                           And, Constant::getNullValue(ShType));
2157     }
2158   }
2159 
2160   // Transform (icmp pred iM (shl iM %v, N), C)
2161   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2162   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2163   // This enables us to get rid of the shift in favor of a trunc that may be
2164   // free on the target. It has the additional benefit of comparing to a
2165   // smaller constant that may be more target-friendly.
2166   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2167   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2168       DL.isLegalInteger(TypeBits - Amt)) {
2169     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2170     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2171       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2172     Constant *NewC =
2173         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2174     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2175   }
2176 
2177   return nullptr;
2178 }
2179 
2180 /// Fold icmp ({al}shr X, Y), C.
2181 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2182                                                    BinaryOperator *Shr,
2183                                                    const APInt &C) {
2184   // An exact shr only shifts out zero bits, so:
2185   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2186   Value *X = Shr->getOperand(0);
2187   CmpInst::Predicate Pred = Cmp.getPredicate();
2188   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2189       C.isNullValue())
2190     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2191 
2192   const APInt *ShiftVal;
2193   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2194     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2195 
2196   const APInt *ShiftAmt;
2197   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2198     return nullptr;
2199 
2200   // Check that the shift amount is in range. If not, don't perform undefined
2201   // shifts. When the shift is visited it will be simplified.
2202   unsigned TypeBits = C.getBitWidth();
2203   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2204   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2205     return nullptr;
2206 
2207   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2208   bool IsExact = Shr->isExact();
2209   Type *ShrTy = Shr->getType();
2210   // TODO: If we could guarantee that InstSimplify would handle all of the
2211   // constant-value-based preconditions in the folds below, then we could assert
2212   // those conditions rather than checking them. This is difficult because of
2213   // undef/poison (PR34838).
2214   if (IsAShr) {
2215     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2216       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2217       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2218       APInt ShiftedC = C.shl(ShAmtVal);
2219       if (ShiftedC.ashr(ShAmtVal) == C)
2220         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2221     }
2222     if (Pred == CmpInst::ICMP_SGT) {
2223       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2224       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2225       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2226           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2227         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2228     }
2229 
2230     // If the compare constant has significant bits above the lowest sign-bit,
2231     // then convert an unsigned cmp to a test of the sign-bit:
2232     // (ashr X, ShiftC) u> C --> X s< 0
2233     // (ashr X, ShiftC) u< C --> X s> -1
2234     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2235       if (Pred == CmpInst::ICMP_UGT) {
2236         return new ICmpInst(CmpInst::ICMP_SLT, X,
2237                             ConstantInt::getNullValue(ShrTy));
2238       }
2239       if (Pred == CmpInst::ICMP_ULT) {
2240         return new ICmpInst(CmpInst::ICMP_SGT, X,
2241                             ConstantInt::getAllOnesValue(ShrTy));
2242       }
2243     }
2244   } else {
2245     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2246       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2247       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2248       APInt ShiftedC = C.shl(ShAmtVal);
2249       if (ShiftedC.lshr(ShAmtVal) == C)
2250         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2251     }
2252     if (Pred == CmpInst::ICMP_UGT) {
2253       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2254       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2255       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2256         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2257     }
2258   }
2259 
2260   if (!Cmp.isEquality())
2261     return nullptr;
2262 
2263   // Handle equality comparisons of shift-by-constant.
2264 
2265   // If the comparison constant changes with the shift, the comparison cannot
2266   // succeed (bits of the comparison constant cannot match the shifted value).
2267   // This should be known by InstSimplify and already be folded to true/false.
2268   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2269           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2270          "Expected icmp+shr simplify did not occur.");
2271 
2272   // If the bits shifted out are known zero, compare the unshifted value:
2273   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2274   if (Shr->isExact())
2275     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2276 
2277   if (C.isNullValue()) {
2278     // == 0 is u< 1.
2279     if (Pred == CmpInst::ICMP_EQ)
2280       return new ICmpInst(CmpInst::ICMP_ULT, X,
2281                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2282     else
2283       return new ICmpInst(CmpInst::ICMP_UGT, X,
2284                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2285   }
2286 
2287   if (Shr->hasOneUse()) {
2288     // Canonicalize the shift into an 'and':
2289     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2290     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2291     Constant *Mask = ConstantInt::get(ShrTy, Val);
2292     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2293     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2294   }
2295 
2296   return nullptr;
2297 }
2298 
2299 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2300                                                     BinaryOperator *SRem,
2301                                                     const APInt &C) {
2302   // Match an 'is positive' or 'is negative' comparison of remainder by a
2303   // constant power-of-2 value:
2304   // (X % pow2C) sgt/slt 0
2305   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2306   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2307     return nullptr;
2308 
2309   // TODO: The one-use check is standard because we do not typically want to
2310   //       create longer instruction sequences, but this might be a special-case
2311   //       because srem is not good for analysis or codegen.
2312   if (!SRem->hasOneUse())
2313     return nullptr;
2314 
2315   const APInt *DivisorC;
2316   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2317     return nullptr;
2318 
2319   // Mask off the sign bit and the modulo bits (low-bits).
2320   Type *Ty = SRem->getType();
2321   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2322   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2323   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2324 
2325   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2326   // bit is set. Example:
2327   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2328   if (Pred == ICmpInst::ICMP_SGT)
2329     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2330 
2331   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2332   // bit is set. Example:
2333   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2334   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2335 }
2336 
2337 /// Fold icmp (udiv X, Y), C.
2338 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2339                                                     BinaryOperator *UDiv,
2340                                                     const APInt &C) {
2341   const APInt *C2;
2342   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2343     return nullptr;
2344 
2345   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2346 
2347   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2348   Value *Y = UDiv->getOperand(1);
2349   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2350     assert(!C.isMaxValue() &&
2351            "icmp ugt X, UINT_MAX should have been simplified already.");
2352     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2353                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2354   }
2355 
2356   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2357   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2358     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2359     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2360                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2361   }
2362 
2363   return nullptr;
2364 }
2365 
2366 /// Fold icmp ({su}div X, Y), C.
2367 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2368                                                    BinaryOperator *Div,
2369                                                    const APInt &C) {
2370   // Fold: icmp pred ([us]div X, C2), C -> range test
2371   // Fold this div into the comparison, producing a range check.
2372   // Determine, based on the divide type, what the range is being
2373   // checked.  If there is an overflow on the low or high side, remember
2374   // it, otherwise compute the range [low, hi) bounding the new value.
2375   // See: InsertRangeTest above for the kinds of replacements possible.
2376   const APInt *C2;
2377   if (!match(Div->getOperand(1), m_APInt(C2)))
2378     return nullptr;
2379 
2380   // FIXME: If the operand types don't match the type of the divide
2381   // then don't attempt this transform. The code below doesn't have the
2382   // logic to deal with a signed divide and an unsigned compare (and
2383   // vice versa). This is because (x /s C2) <s C  produces different
2384   // results than (x /s C2) <u C or (x /u C2) <s C or even
2385   // (x /u C2) <u C.  Simply casting the operands and result won't
2386   // work. :(  The if statement below tests that condition and bails
2387   // if it finds it.
2388   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2389   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2390     return nullptr;
2391 
2392   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2393   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2394   // division-by-constant cases should be present, we can not assert that they
2395   // have happened before we reach this icmp instruction.
2396   if (C2->isNullValue() || C2->isOneValue() ||
2397       (DivIsSigned && C2->isAllOnesValue()))
2398     return nullptr;
2399 
2400   // Compute Prod = C * C2. We are essentially solving an equation of
2401   // form X / C2 = C. We solve for X by multiplying C2 and C.
2402   // By solving for X, we can turn this into a range check instead of computing
2403   // a divide.
2404   APInt Prod = C * *C2;
2405 
2406   // Determine if the product overflows by seeing if the product is not equal to
2407   // the divide. Make sure we do the same kind of divide as in the LHS
2408   // instruction that we're folding.
2409   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2410 
2411   ICmpInst::Predicate Pred = Cmp.getPredicate();
2412 
2413   // If the division is known to be exact, then there is no remainder from the
2414   // divide, so the covered range size is unit, otherwise it is the divisor.
2415   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2416 
2417   // Figure out the interval that is being checked.  For example, a comparison
2418   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2419   // Compute this interval based on the constants involved and the signedness of
2420   // the compare/divide.  This computes a half-open interval, keeping track of
2421   // whether either value in the interval overflows.  After analysis each
2422   // overflow variable is set to 0 if it's corresponding bound variable is valid
2423   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2424   int LoOverflow = 0, HiOverflow = 0;
2425   APInt LoBound, HiBound;
2426 
2427   if (!DivIsSigned) {  // udiv
2428     // e.g. X/5 op 3  --> [15, 20)
2429     LoBound = Prod;
2430     HiOverflow = LoOverflow = ProdOV;
2431     if (!HiOverflow) {
2432       // If this is not an exact divide, then many values in the range collapse
2433       // to the same result value.
2434       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2435     }
2436   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2437     if (C.isNullValue()) {       // (X / pos) op 0
2438       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2439       LoBound = -(RangeSize - 1);
2440       HiBound = RangeSize;
2441     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2442       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2443       HiOverflow = LoOverflow = ProdOV;
2444       if (!HiOverflow)
2445         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2446     } else {                       // (X / pos) op neg
2447       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2448       HiBound = Prod + 1;
2449       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2450       if (!LoOverflow) {
2451         APInt DivNeg = -RangeSize;
2452         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2453       }
2454     }
2455   } else if (C2->isNegative()) { // Divisor is < 0.
2456     if (Div->isExact())
2457       RangeSize.negate();
2458     if (C.isNullValue()) { // (X / neg) op 0
2459       // e.g. X/-5 op 0  --> [-4, 5)
2460       LoBound = RangeSize + 1;
2461       HiBound = -RangeSize;
2462       if (HiBound == *C2) {        // -INTMIN = INTMIN
2463         HiOverflow = 1;            // [INTMIN+1, overflow)
2464         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2465       }
2466     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2467       // e.g. X/-5 op 3  --> [-19, -14)
2468       HiBound = Prod + 1;
2469       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2470       if (!LoOverflow)
2471         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2472     } else {                       // (X / neg) op neg
2473       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2474       LoOverflow = HiOverflow = ProdOV;
2475       if (!HiOverflow)
2476         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2477     }
2478 
2479     // Dividing by a negative swaps the condition.  LT <-> GT
2480     Pred = ICmpInst::getSwappedPredicate(Pred);
2481   }
2482 
2483   Value *X = Div->getOperand(0);
2484   switch (Pred) {
2485     default: llvm_unreachable("Unhandled icmp opcode!");
2486     case ICmpInst::ICMP_EQ:
2487       if (LoOverflow && HiOverflow)
2488         return replaceInstUsesWith(Cmp, Builder.getFalse());
2489       if (HiOverflow)
2490         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2491                             ICmpInst::ICMP_UGE, X,
2492                             ConstantInt::get(Div->getType(), LoBound));
2493       if (LoOverflow)
2494         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2495                             ICmpInst::ICMP_ULT, X,
2496                             ConstantInt::get(Div->getType(), HiBound));
2497       return replaceInstUsesWith(
2498           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2499     case ICmpInst::ICMP_NE:
2500       if (LoOverflow && HiOverflow)
2501         return replaceInstUsesWith(Cmp, Builder.getTrue());
2502       if (HiOverflow)
2503         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2504                             ICmpInst::ICMP_ULT, X,
2505                             ConstantInt::get(Div->getType(), LoBound));
2506       if (LoOverflow)
2507         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2508                             ICmpInst::ICMP_UGE, X,
2509                             ConstantInt::get(Div->getType(), HiBound));
2510       return replaceInstUsesWith(Cmp,
2511                                  insertRangeTest(X, LoBound, HiBound,
2512                                                  DivIsSigned, false));
2513     case ICmpInst::ICMP_ULT:
2514     case ICmpInst::ICMP_SLT:
2515       if (LoOverflow == +1)   // Low bound is greater than input range.
2516         return replaceInstUsesWith(Cmp, Builder.getTrue());
2517       if (LoOverflow == -1)   // Low bound is less than input range.
2518         return replaceInstUsesWith(Cmp, Builder.getFalse());
2519       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2520     case ICmpInst::ICMP_UGT:
2521     case ICmpInst::ICMP_SGT:
2522       if (HiOverflow == +1)       // High bound greater than input range.
2523         return replaceInstUsesWith(Cmp, Builder.getFalse());
2524       if (HiOverflow == -1)       // High bound less than input range.
2525         return replaceInstUsesWith(Cmp, Builder.getTrue());
2526       if (Pred == ICmpInst::ICMP_UGT)
2527         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2528                             ConstantInt::get(Div->getType(), HiBound));
2529       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2530                           ConstantInt::get(Div->getType(), HiBound));
2531   }
2532 
2533   return nullptr;
2534 }
2535 
2536 /// Fold icmp (sub X, Y), C.
2537 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2538                                                    BinaryOperator *Sub,
2539                                                    const APInt &C) {
2540   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2541   ICmpInst::Predicate Pred = Cmp.getPredicate();
2542   const APInt *C2;
2543   APInt SubResult;
2544 
2545   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2546   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2547     return new ICmpInst(Cmp.getPredicate(), Y,
2548                         ConstantInt::get(Y->getType(), 0));
2549 
2550   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2551   if (match(X, m_APInt(C2)) &&
2552       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2553        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2554       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2555     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2556                         ConstantInt::get(Y->getType(), SubResult));
2557 
2558   // The following transforms are only worth it if the only user of the subtract
2559   // is the icmp.
2560   if (!Sub->hasOneUse())
2561     return nullptr;
2562 
2563   if (Sub->hasNoSignedWrap()) {
2564     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2565     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2566       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2567 
2568     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2569     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2570       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2571 
2572     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2573     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2574       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2575 
2576     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2577     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2578       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2579   }
2580 
2581   if (!match(X, m_APInt(C2)))
2582     return nullptr;
2583 
2584   // C2 - Y <u C -> (Y | (C - 1)) == C2
2585   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2586   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2587       (*C2 & (C - 1)) == (C - 1))
2588     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2589 
2590   // C2 - Y >u C -> (Y | C) != C2
2591   //   iff C2 & C == C and C + 1 is a power of 2
2592   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2593     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2594 
2595   return nullptr;
2596 }
2597 
2598 /// Fold icmp (add X, Y), C.
2599 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2600                                                    BinaryOperator *Add,
2601                                                    const APInt &C) {
2602   Value *Y = Add->getOperand(1);
2603   const APInt *C2;
2604   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2605     return nullptr;
2606 
2607   // Fold icmp pred (add X, C2), C.
2608   Value *X = Add->getOperand(0);
2609   Type *Ty = Add->getType();
2610   CmpInst::Predicate Pred = Cmp.getPredicate();
2611 
2612   // If the add does not wrap, we can always adjust the compare by subtracting
2613   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2614   // are canonicalized to SGT/SLT/UGT/ULT.
2615   if ((Add->hasNoSignedWrap() &&
2616        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2617       (Add->hasNoUnsignedWrap() &&
2618        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2619     bool Overflow;
2620     APInt NewC =
2621         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2622     // If there is overflow, the result must be true or false.
2623     // TODO: Can we assert there is no overflow because InstSimplify always
2624     // handles those cases?
2625     if (!Overflow)
2626       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2627       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2628   }
2629 
2630   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2631   const APInt &Upper = CR.getUpper();
2632   const APInt &Lower = CR.getLower();
2633   if (Cmp.isSigned()) {
2634     if (Lower.isSignMask())
2635       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2636     if (Upper.isSignMask())
2637       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2638   } else {
2639     if (Lower.isMinValue())
2640       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2641     if (Upper.isMinValue())
2642       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2643   }
2644 
2645   if (!Add->hasOneUse())
2646     return nullptr;
2647 
2648   // X+C <u C2 -> (X & -C2) == C
2649   //   iff C & (C2-1) == 0
2650   //       C2 is a power of 2
2651   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2652     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2653                         ConstantExpr::getNeg(cast<Constant>(Y)));
2654 
2655   // X+C >u C2 -> (X & ~C2) != C
2656   //   iff C & C2 == 0
2657   //       C2+1 is a power of 2
2658   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2659     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2660                         ConstantExpr::getNeg(cast<Constant>(Y)));
2661 
2662   return nullptr;
2663 }
2664 
2665 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2666                                                Value *&RHS, ConstantInt *&Less,
2667                                                ConstantInt *&Equal,
2668                                                ConstantInt *&Greater) {
2669   // TODO: Generalize this to work with other comparison idioms or ensure
2670   // they get canonicalized into this form.
2671 
2672   // select i1 (a == b),
2673   //        i32 Equal,
2674   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2675   // where Equal, Less and Greater are placeholders for any three constants.
2676   ICmpInst::Predicate PredA;
2677   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2678       !ICmpInst::isEquality(PredA))
2679     return false;
2680   Value *EqualVal = SI->getTrueValue();
2681   Value *UnequalVal = SI->getFalseValue();
2682   // We still can get non-canonical predicate here, so canonicalize.
2683   if (PredA == ICmpInst::ICMP_NE)
2684     std::swap(EqualVal, UnequalVal);
2685   if (!match(EqualVal, m_ConstantInt(Equal)))
2686     return false;
2687   ICmpInst::Predicate PredB;
2688   Value *LHS2, *RHS2;
2689   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2690                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2691     return false;
2692   // We can get predicate mismatch here, so canonicalize if possible:
2693   // First, ensure that 'LHS' match.
2694   if (LHS2 != LHS) {
2695     // x sgt y <--> y slt x
2696     std::swap(LHS2, RHS2);
2697     PredB = ICmpInst::getSwappedPredicate(PredB);
2698   }
2699   if (LHS2 != LHS)
2700     return false;
2701   // We also need to canonicalize 'RHS'.
2702   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2703     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2704     auto FlippedStrictness =
2705         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2706             PredB, cast<Constant>(RHS2));
2707     if (!FlippedStrictness)
2708       return false;
2709     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2710     RHS2 = FlippedStrictness->second;
2711     // And kind-of perform the result swap.
2712     std::swap(Less, Greater);
2713     PredB = ICmpInst::ICMP_SLT;
2714   }
2715   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2716 }
2717 
2718 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2719                                                       SelectInst *Select,
2720                                                       ConstantInt *C) {
2721 
2722   assert(C && "Cmp RHS should be a constant int!");
2723   // If we're testing a constant value against the result of a three way
2724   // comparison, the result can be expressed directly in terms of the
2725   // original values being compared.  Note: We could possibly be more
2726   // aggressive here and remove the hasOneUse test. The original select is
2727   // really likely to simplify or sink when we remove a test of the result.
2728   Value *OrigLHS, *OrigRHS;
2729   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2730   if (Cmp.hasOneUse() &&
2731       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2732                               C3GreaterThan)) {
2733     assert(C1LessThan && C2Equal && C3GreaterThan);
2734 
2735     bool TrueWhenLessThan =
2736         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2737             ->isAllOnesValue();
2738     bool TrueWhenEqual =
2739         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2740             ->isAllOnesValue();
2741     bool TrueWhenGreaterThan =
2742         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2743             ->isAllOnesValue();
2744 
2745     // This generates the new instruction that will replace the original Cmp
2746     // Instruction. Instead of enumerating the various combinations when
2747     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2748     // false, we rely on chaining of ORs and future passes of InstCombine to
2749     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2750 
2751     // When none of the three constants satisfy the predicate for the RHS (C),
2752     // the entire original Cmp can be simplified to a false.
2753     Value *Cond = Builder.getFalse();
2754     if (TrueWhenLessThan)
2755       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2756                                                        OrigLHS, OrigRHS));
2757     if (TrueWhenEqual)
2758       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2759                                                        OrigLHS, OrigRHS));
2760     if (TrueWhenGreaterThan)
2761       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2762                                                        OrigLHS, OrigRHS));
2763 
2764     return replaceInstUsesWith(Cmp, Cond);
2765   }
2766   return nullptr;
2767 }
2768 
2769 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2770                                     InstCombiner::BuilderTy &Builder) {
2771   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2772   if (!Bitcast)
2773     return nullptr;
2774 
2775   ICmpInst::Predicate Pred = Cmp.getPredicate();
2776   Value *Op1 = Cmp.getOperand(1);
2777   Value *BCSrcOp = Bitcast->getOperand(0);
2778 
2779   // Make sure the bitcast doesn't change the number of vector elements.
2780   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2781           Bitcast->getDestTy()->getScalarSizeInBits()) {
2782     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2783     Value *X;
2784     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2785       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2786       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2787       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2788       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2789       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2790            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2791           match(Op1, m_Zero()))
2792         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2793 
2794       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2795       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2796         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2797 
2798       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2799       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2800         return new ICmpInst(Pred, X,
2801                             ConstantInt::getAllOnesValue(X->getType()));
2802     }
2803 
2804     // Zero-equality checks are preserved through unsigned floating-point casts:
2805     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2806     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2807     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2808       if (Cmp.isEquality() && match(Op1, m_Zero()))
2809         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2810 
2811     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2812     // the FP extend/truncate because that cast does not change the sign-bit.
2813     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2814     // The sign-bit is always the most significant bit in those types.
2815     const APInt *C;
2816     bool TrueIfSigned;
2817     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2818         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2819       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2820           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2821         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2822         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2823         Type *XType = X->getType();
2824 
2825         // We can't currently handle Power style floating point operations here.
2826         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2827 
2828           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2829           if (auto *XVTy = dyn_cast<VectorType>(XType))
2830             NewType = VectorType::get(NewType, XVTy->getElementCount());
2831           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2832           if (TrueIfSigned)
2833             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2834                                 ConstantInt::getNullValue(NewType));
2835           else
2836             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2837                                 ConstantInt::getAllOnesValue(NewType));
2838         }
2839       }
2840     }
2841   }
2842 
2843   // Test to see if the operands of the icmp are casted versions of other
2844   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2845   if (Bitcast->getType()->isPointerTy() &&
2846       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2847     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2848     // so eliminate it as well.
2849     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2850       Op1 = BC2->getOperand(0);
2851 
2852     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2853     return new ICmpInst(Pred, BCSrcOp, Op1);
2854   }
2855 
2856   // Folding: icmp <pred> iN X, C
2857   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2858   //    and C is a splat of a K-bit pattern
2859   //    and SC is a constant vector = <C', C', C', ..., C'>
2860   // Into:
2861   //   %E = extractelement <M x iK> %vec, i32 C'
2862   //   icmp <pred> iK %E, trunc(C)
2863   const APInt *C;
2864   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2865       !Bitcast->getType()->isIntegerTy() ||
2866       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2867     return nullptr;
2868 
2869   Value *Vec;
2870   ArrayRef<int> Mask;
2871   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2872     // Check whether every element of Mask is the same constant
2873     if (is_splat(Mask)) {
2874       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2875       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2876       if (C->isSplat(EltTy->getBitWidth())) {
2877         // Fold the icmp based on the value of C
2878         // If C is M copies of an iK sized bit pattern,
2879         // then:
2880         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2881         //       icmp <pred> iK %SplatVal, <pattern>
2882         Value *Elem = Builder.getInt32(Mask[0]);
2883         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2884         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2885         return new ICmpInst(Pred, Extract, NewC);
2886       }
2887     }
2888   }
2889   return nullptr;
2890 }
2891 
2892 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2893 /// where X is some kind of instruction.
2894 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2895   const APInt *C;
2896   if (!match(Cmp.getOperand(1), m_APInt(C)))
2897     return nullptr;
2898 
2899   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2900     switch (BO->getOpcode()) {
2901     case Instruction::Xor:
2902       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2903         return I;
2904       break;
2905     case Instruction::And:
2906       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2907         return I;
2908       break;
2909     case Instruction::Or:
2910       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2911         return I;
2912       break;
2913     case Instruction::Mul:
2914       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2915         return I;
2916       break;
2917     case Instruction::Shl:
2918       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2919         return I;
2920       break;
2921     case Instruction::LShr:
2922     case Instruction::AShr:
2923       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2924         return I;
2925       break;
2926     case Instruction::SRem:
2927       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2928         return I;
2929       break;
2930     case Instruction::UDiv:
2931       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2932         return I;
2933       LLVM_FALLTHROUGH;
2934     case Instruction::SDiv:
2935       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2936         return I;
2937       break;
2938     case Instruction::Sub:
2939       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2940         return I;
2941       break;
2942     case Instruction::Add:
2943       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2944         return I;
2945       break;
2946     default:
2947       break;
2948     }
2949     // TODO: These folds could be refactored to be part of the above calls.
2950     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2951       return I;
2952   }
2953 
2954   // Match against CmpInst LHS being instructions other than binary operators.
2955 
2956   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2957     // For now, we only support constant integers while folding the
2958     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2959     // similar to the cases handled by binary ops above.
2960     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2961       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2962         return I;
2963   }
2964 
2965   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2966     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2967       return I;
2968   }
2969 
2970   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2971     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2972       return I;
2973 
2974   return nullptr;
2975 }
2976 
2977 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2978 /// icmp eq/ne BO, C.
2979 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
2980     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
2981   // TODO: Some of these folds could work with arbitrary constants, but this
2982   // function is limited to scalar and vector splat constants.
2983   if (!Cmp.isEquality())
2984     return nullptr;
2985 
2986   ICmpInst::Predicate Pred = Cmp.getPredicate();
2987   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2988   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2989   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2990 
2991   switch (BO->getOpcode()) {
2992   case Instruction::SRem:
2993     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2994     if (C.isNullValue() && BO->hasOneUse()) {
2995       const APInt *BOC;
2996       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2997         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2998         return new ICmpInst(Pred, NewRem,
2999                             Constant::getNullValue(BO->getType()));
3000       }
3001     }
3002     break;
3003   case Instruction::Add: {
3004     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3005     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3006       if (BO->hasOneUse())
3007         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3008     } else if (C.isNullValue()) {
3009       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3010       // efficiently invertible, or if the add has just this one use.
3011       if (Value *NegVal = dyn_castNegVal(BOp1))
3012         return new ICmpInst(Pred, BOp0, NegVal);
3013       if (Value *NegVal = dyn_castNegVal(BOp0))
3014         return new ICmpInst(Pred, NegVal, BOp1);
3015       if (BO->hasOneUse()) {
3016         Value *Neg = Builder.CreateNeg(BOp1);
3017         Neg->takeName(BO);
3018         return new ICmpInst(Pred, BOp0, Neg);
3019       }
3020     }
3021     break;
3022   }
3023   case Instruction::Xor:
3024     if (BO->hasOneUse()) {
3025       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3026         // For the xor case, we can xor two constants together, eliminating
3027         // the explicit xor.
3028         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3029       } else if (C.isNullValue()) {
3030         // Replace ((xor A, B) != 0) with (A != B)
3031         return new ICmpInst(Pred, BOp0, BOp1);
3032       }
3033     }
3034     break;
3035   case Instruction::Sub:
3036     if (BO->hasOneUse()) {
3037       // Only check for constant LHS here, as constant RHS will be canonicalized
3038       // to add and use the fold above.
3039       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3040         // Replace ((sub BOC, B) != C) with (B != BOC-C).
3041         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3042       } else if (C.isNullValue()) {
3043         // Replace ((sub A, B) != 0) with (A != B).
3044         return new ICmpInst(Pred, BOp0, BOp1);
3045       }
3046     }
3047     break;
3048   case Instruction::Or: {
3049     const APInt *BOC;
3050     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3051       // Comparing if all bits outside of a constant mask are set?
3052       // Replace (X | C) == -1 with (X & ~C) == ~C.
3053       // This removes the -1 constant.
3054       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3055       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3056       return new ICmpInst(Pred, And, NotBOC);
3057     }
3058     break;
3059   }
3060   case Instruction::And: {
3061     const APInt *BOC;
3062     if (match(BOp1, m_APInt(BOC))) {
3063       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3064       if (C == *BOC && C.isPowerOf2())
3065         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3066                             BO, Constant::getNullValue(RHS->getType()));
3067     }
3068     break;
3069   }
3070   case Instruction::UDiv:
3071     if (C.isNullValue()) {
3072       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3073       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3074       return new ICmpInst(NewPred, BOp1, BOp0);
3075     }
3076     break;
3077   default:
3078     break;
3079   }
3080   return nullptr;
3081 }
3082 
3083 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3084 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3085     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3086   Type *Ty = II->getType();
3087   unsigned BitWidth = C.getBitWidth();
3088   switch (II->getIntrinsicID()) {
3089   case Intrinsic::abs:
3090     // abs(A) == 0  ->  A == 0
3091     // abs(A) == INT_MIN  ->  A == INT_MIN
3092     if (C.isNullValue() || C.isMinSignedValue())
3093       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3094                           ConstantInt::get(Ty, C));
3095     break;
3096 
3097   case Intrinsic::bswap:
3098     // bswap(A) == C  ->  A == bswap(C)
3099     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3100                         ConstantInt::get(Ty, C.byteSwap()));
3101 
3102   case Intrinsic::ctlz:
3103   case Intrinsic::cttz: {
3104     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3105     if (C == BitWidth)
3106       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3107                           ConstantInt::getNullValue(Ty));
3108 
3109     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3110     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3111     // Limit to one use to ensure we don't increase instruction count.
3112     unsigned Num = C.getLimitedValue(BitWidth);
3113     if (Num != BitWidth && II->hasOneUse()) {
3114       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3115       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3116                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3117       APInt Mask2 = IsTrailing
3118         ? APInt::getOneBitSet(BitWidth, Num)
3119         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3120       return new ICmpInst(Cmp.getPredicate(),
3121           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3122           ConstantInt::get(Ty, Mask2));
3123     }
3124     break;
3125   }
3126 
3127   case Intrinsic::ctpop: {
3128     // popcount(A) == 0  ->  A == 0 and likewise for !=
3129     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3130     bool IsZero = C.isNullValue();
3131     if (IsZero || C == BitWidth)
3132       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3133           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3134 
3135     break;
3136   }
3137 
3138   case Intrinsic::uadd_sat: {
3139     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3140     if (C.isNullValue()) {
3141       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3142       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3143     }
3144     break;
3145   }
3146 
3147   case Intrinsic::usub_sat: {
3148     // usub.sat(a, b) == 0  ->  a <= b
3149     if (C.isNullValue()) {
3150       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3151           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3152       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3153     }
3154     break;
3155   }
3156   default:
3157     break;
3158   }
3159 
3160   return nullptr;
3161 }
3162 
3163 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3164 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3165                                                              IntrinsicInst *II,
3166                                                              const APInt &C) {
3167   if (Cmp.isEquality())
3168     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3169 
3170   Type *Ty = II->getType();
3171   unsigned BitWidth = C.getBitWidth();
3172   ICmpInst::Predicate Pred = Cmp.getPredicate();
3173   switch (II->getIntrinsicID()) {
3174   case Intrinsic::ctpop: {
3175     // (ctpop X > BitWidth - 1) --> X == -1
3176     Value *X = II->getArgOperand(0);
3177     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3178       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3179                              ConstantInt::getAllOnesValue(Ty));
3180     // (ctpop X < BitWidth) --> X != -1
3181     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3182       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3183                              ConstantInt::getAllOnesValue(Ty));
3184     break;
3185   }
3186   case Intrinsic::ctlz: {
3187     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3188     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3189       unsigned Num = C.getLimitedValue();
3190       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3191       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3192                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3193     }
3194 
3195     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3196     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3197       unsigned Num = C.getLimitedValue();
3198       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3199       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3200                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3201     }
3202     break;
3203   }
3204   case Intrinsic::cttz: {
3205     // Limit to one use to ensure we don't increase instruction count.
3206     if (!II->hasOneUse())
3207       return nullptr;
3208 
3209     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3210     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3211       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3212       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3213                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3214                              ConstantInt::getNullValue(Ty));
3215     }
3216 
3217     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3218     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3219       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3220       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3221                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3222                              ConstantInt::getNullValue(Ty));
3223     }
3224     break;
3225   }
3226   default:
3227     break;
3228   }
3229 
3230   return nullptr;
3231 }
3232 
3233 /// Handle icmp with constant (but not simple integer constant) RHS.
3234 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3235   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3236   Constant *RHSC = dyn_cast<Constant>(Op1);
3237   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3238   if (!RHSC || !LHSI)
3239     return nullptr;
3240 
3241   switch (LHSI->getOpcode()) {
3242   case Instruction::GetElementPtr:
3243     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3244     if (RHSC->isNullValue() &&
3245         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3246       return new ICmpInst(
3247           I.getPredicate(), LHSI->getOperand(0),
3248           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3249     break;
3250   case Instruction::PHI:
3251     // Only fold icmp into the PHI if the phi and icmp are in the same
3252     // block.  If in the same block, we're encouraging jump threading.  If
3253     // not, we are just pessimizing the code by making an i1 phi.
3254     if (LHSI->getParent() == I.getParent())
3255       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3256         return NV;
3257     break;
3258   case Instruction::Select: {
3259     // If either operand of the select is a constant, we can fold the
3260     // comparison into the select arms, which will cause one to be
3261     // constant folded and the select turned into a bitwise or.
3262     Value *Op1 = nullptr, *Op2 = nullptr;
3263     ConstantInt *CI = nullptr;
3264     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3265       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3266       CI = dyn_cast<ConstantInt>(Op1);
3267     }
3268     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3269       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3270       CI = dyn_cast<ConstantInt>(Op2);
3271     }
3272 
3273     // We only want to perform this transformation if it will not lead to
3274     // additional code. This is true if either both sides of the select
3275     // fold to a constant (in which case the icmp is replaced with a select
3276     // which will usually simplify) or this is the only user of the
3277     // select (in which case we are trading a select+icmp for a simpler
3278     // select+icmp) or all uses of the select can be replaced based on
3279     // dominance information ("Global cases").
3280     bool Transform = false;
3281     if (Op1 && Op2)
3282       Transform = true;
3283     else if (Op1 || Op2) {
3284       // Local case
3285       if (LHSI->hasOneUse())
3286         Transform = true;
3287       // Global cases
3288       else if (CI && !CI->isZero())
3289         // When Op1 is constant try replacing select with second operand.
3290         // Otherwise Op2 is constant and try replacing select with first
3291         // operand.
3292         Transform =
3293             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3294     }
3295     if (Transform) {
3296       if (!Op1)
3297         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3298                                  I.getName());
3299       if (!Op2)
3300         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3301                                  I.getName());
3302       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3303     }
3304     break;
3305   }
3306   case Instruction::IntToPtr:
3307     // icmp pred inttoptr(X), null -> icmp pred X, 0
3308     if (RHSC->isNullValue() &&
3309         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3310       return new ICmpInst(
3311           I.getPredicate(), LHSI->getOperand(0),
3312           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3313     break;
3314 
3315   case Instruction::Load:
3316     // Try to optimize things like "A[i] > 4" to index computations.
3317     if (GetElementPtrInst *GEP =
3318             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3319       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3320         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3321             !cast<LoadInst>(LHSI)->isVolatile())
3322           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3323             return Res;
3324     }
3325     break;
3326   }
3327 
3328   return nullptr;
3329 }
3330 
3331 /// Some comparisons can be simplified.
3332 /// In this case, we are looking for comparisons that look like
3333 /// a check for a lossy truncation.
3334 /// Folds:
3335 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3336 /// Where Mask is some pattern that produces all-ones in low bits:
3337 ///    (-1 >> y)
3338 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3339 ///   ~(-1 << y)
3340 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3341 /// The Mask can be a constant, too.
3342 /// For some predicates, the operands are commutative.
3343 /// For others, x can only be on a specific side.
3344 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3345                                           InstCombiner::BuilderTy &Builder) {
3346   ICmpInst::Predicate SrcPred;
3347   Value *X, *M, *Y;
3348   auto m_VariableMask = m_CombineOr(
3349       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3350                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3351       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3352                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3353   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3354   if (!match(&I, m_c_ICmp(SrcPred,
3355                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3356                           m_Deferred(X))))
3357     return nullptr;
3358 
3359   ICmpInst::Predicate DstPred;
3360   switch (SrcPred) {
3361   case ICmpInst::Predicate::ICMP_EQ:
3362     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3363     DstPred = ICmpInst::Predicate::ICMP_ULE;
3364     break;
3365   case ICmpInst::Predicate::ICMP_NE:
3366     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3367     DstPred = ICmpInst::Predicate::ICMP_UGT;
3368     break;
3369   case ICmpInst::Predicate::ICMP_ULT:
3370     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3371     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3372     DstPred = ICmpInst::Predicate::ICMP_UGT;
3373     break;
3374   case ICmpInst::Predicate::ICMP_UGE:
3375     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3376     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3377     DstPred = ICmpInst::Predicate::ICMP_ULE;
3378     break;
3379   case ICmpInst::Predicate::ICMP_SLT:
3380     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3381     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3382     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3383       return nullptr;
3384     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3385       return nullptr;
3386     DstPred = ICmpInst::Predicate::ICMP_SGT;
3387     break;
3388   case ICmpInst::Predicate::ICMP_SGE:
3389     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3390     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3391     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3392       return nullptr;
3393     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3394       return nullptr;
3395     DstPred = ICmpInst::Predicate::ICMP_SLE;
3396     break;
3397   case ICmpInst::Predicate::ICMP_SGT:
3398   case ICmpInst::Predicate::ICMP_SLE:
3399     return nullptr;
3400   case ICmpInst::Predicate::ICMP_UGT:
3401   case ICmpInst::Predicate::ICMP_ULE:
3402     llvm_unreachable("Instsimplify took care of commut. variant");
3403     break;
3404   default:
3405     llvm_unreachable("All possible folds are handled.");
3406   }
3407 
3408   // The mask value may be a vector constant that has undefined elements. But it
3409   // may not be safe to propagate those undefs into the new compare, so replace
3410   // those elements by copying an existing, defined, and safe scalar constant.
3411   Type *OpTy = M->getType();
3412   auto *VecC = dyn_cast<Constant>(M);
3413   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3414   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3415     Constant *SafeReplacementConstant = nullptr;
3416     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3417       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3418         SafeReplacementConstant = VecC->getAggregateElement(i);
3419         break;
3420       }
3421     }
3422     assert(SafeReplacementConstant && "Failed to find undef replacement");
3423     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3424   }
3425 
3426   return Builder.CreateICmp(DstPred, X, M);
3427 }
3428 
3429 /// Some comparisons can be simplified.
3430 /// In this case, we are looking for comparisons that look like
3431 /// a check for a lossy signed truncation.
3432 /// Folds:   (MaskedBits is a constant.)
3433 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3434 /// Into:
3435 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3436 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3437 static Value *
3438 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3439                                  InstCombiner::BuilderTy &Builder) {
3440   ICmpInst::Predicate SrcPred;
3441   Value *X;
3442   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3443   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3444   if (!match(&I, m_c_ICmp(SrcPred,
3445                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3446                                           m_APInt(C1))),
3447                           m_Deferred(X))))
3448     return nullptr;
3449 
3450   // Potential handling of non-splats: for each element:
3451   //  * if both are undef, replace with constant 0.
3452   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3453   //  * if both are not undef, and are different, bailout.
3454   //  * else, only one is undef, then pick the non-undef one.
3455 
3456   // The shift amount must be equal.
3457   if (*C0 != *C1)
3458     return nullptr;
3459   const APInt &MaskedBits = *C0;
3460   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3461 
3462   ICmpInst::Predicate DstPred;
3463   switch (SrcPred) {
3464   case ICmpInst::Predicate::ICMP_EQ:
3465     // ((%x << MaskedBits) a>> MaskedBits) == %x
3466     //   =>
3467     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3468     DstPred = ICmpInst::Predicate::ICMP_ULT;
3469     break;
3470   case ICmpInst::Predicate::ICMP_NE:
3471     // ((%x << MaskedBits) a>> MaskedBits) != %x
3472     //   =>
3473     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3474     DstPred = ICmpInst::Predicate::ICMP_UGE;
3475     break;
3476   // FIXME: are more folds possible?
3477   default:
3478     return nullptr;
3479   }
3480 
3481   auto *XType = X->getType();
3482   const unsigned XBitWidth = XType->getScalarSizeInBits();
3483   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3484   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3485 
3486   // KeptBits = bitwidth(%x) - MaskedBits
3487   const APInt KeptBits = BitWidth - MaskedBits;
3488   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3489   // ICmpCst = (1 << KeptBits)
3490   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3491   assert(ICmpCst.isPowerOf2());
3492   // AddCst = (1 << (KeptBits-1))
3493   const APInt AddCst = ICmpCst.lshr(1);
3494   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3495 
3496   // T0 = add %x, AddCst
3497   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3498   // T1 = T0 DstPred ICmpCst
3499   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3500 
3501   return T1;
3502 }
3503 
3504 // Given pattern:
3505 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3506 // we should move shifts to the same hand of 'and', i.e. rewrite as
3507 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3508 // We are only interested in opposite logical shifts here.
3509 // One of the shifts can be truncated.
3510 // If we can, we want to end up creating 'lshr' shift.
3511 static Value *
3512 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3513                                            InstCombiner::BuilderTy &Builder) {
3514   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3515       !I.getOperand(0)->hasOneUse())
3516     return nullptr;
3517 
3518   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3519 
3520   // Look for an 'and' of two logical shifts, one of which may be truncated.
3521   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3522   Instruction *XShift, *MaybeTruncation, *YShift;
3523   if (!match(
3524           I.getOperand(0),
3525           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3526                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3527                                    m_AnyLogicalShift, m_Instruction(YShift))),
3528                                m_Instruction(MaybeTruncation)))))
3529     return nullptr;
3530 
3531   // We potentially looked past 'trunc', but only when matching YShift,
3532   // therefore YShift must have the widest type.
3533   Instruction *WidestShift = YShift;
3534   // Therefore XShift must have the shallowest type.
3535   // Or they both have identical types if there was no truncation.
3536   Instruction *NarrowestShift = XShift;
3537 
3538   Type *WidestTy = WidestShift->getType();
3539   Type *NarrowestTy = NarrowestShift->getType();
3540   assert(NarrowestTy == I.getOperand(0)->getType() &&
3541          "We did not look past any shifts while matching XShift though.");
3542   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3543 
3544   // If YShift is a 'lshr', swap the shifts around.
3545   if (match(YShift, m_LShr(m_Value(), m_Value())))
3546     std::swap(XShift, YShift);
3547 
3548   // The shifts must be in opposite directions.
3549   auto XShiftOpcode = XShift->getOpcode();
3550   if (XShiftOpcode == YShift->getOpcode())
3551     return nullptr; // Do not care about same-direction shifts here.
3552 
3553   Value *X, *XShAmt, *Y, *YShAmt;
3554   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3555   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3556 
3557   // If one of the values being shifted is a constant, then we will end with
3558   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3559   // however, we will need to ensure that we won't increase instruction count.
3560   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3561     // At least one of the hands of the 'and' should be one-use shift.
3562     if (!match(I.getOperand(0),
3563                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3564       return nullptr;
3565     if (HadTrunc) {
3566       // Due to the 'trunc', we will need to widen X. For that either the old
3567       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3568       if (!MaybeTruncation->hasOneUse() &&
3569           !NarrowestShift->getOperand(1)->hasOneUse())
3570         return nullptr;
3571     }
3572   }
3573 
3574   // We have two shift amounts from two different shifts. The types of those
3575   // shift amounts may not match. If that's the case let's bailout now.
3576   if (XShAmt->getType() != YShAmt->getType())
3577     return nullptr;
3578 
3579   // As input, we have the following pattern:
3580   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3581   // We want to rewrite that as:
3582   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3583   // While we know that originally (Q+K) would not overflow
3584   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3585   // shift amounts. so it may now overflow in smaller bitwidth.
3586   // To ensure that does not happen, we need to ensure that the total maximal
3587   // shift amount is still representable in that smaller bit width.
3588   unsigned MaximalPossibleTotalShiftAmount =
3589       (WidestTy->getScalarSizeInBits() - 1) +
3590       (NarrowestTy->getScalarSizeInBits() - 1);
3591   APInt MaximalRepresentableShiftAmount =
3592       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3593   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3594     return nullptr;
3595 
3596   // Can we fold (XShAmt+YShAmt) ?
3597   auto *NewShAmt = dyn_cast_or_null<Constant>(
3598       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3599                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3600   if (!NewShAmt)
3601     return nullptr;
3602   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3603   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3604 
3605   // Is the new shift amount smaller than the bit width?
3606   // FIXME: could also rely on ConstantRange.
3607   if (!match(NewShAmt,
3608              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3609                                 APInt(WidestBitWidth, WidestBitWidth))))
3610     return nullptr;
3611 
3612   // An extra legality check is needed if we had trunc-of-lshr.
3613   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3614     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3615                     WidestShift]() {
3616       // It isn't obvious whether it's worth it to analyze non-constants here.
3617       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3618       // If *any* of these preconditions matches we can perform the fold.
3619       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3620                                     ? NewShAmt->getSplatValue()
3621                                     : NewShAmt;
3622       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3623       if (NewShAmtSplat &&
3624           (NewShAmtSplat->isNullValue() ||
3625            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3626         return true;
3627       // We consider *min* leading zeros so a single outlier
3628       // blocks the transform as opposed to allowing it.
3629       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3630         KnownBits Known = computeKnownBits(C, SQ.DL);
3631         unsigned MinLeadZero = Known.countMinLeadingZeros();
3632         // If the value being shifted has at most lowest bit set we can fold.
3633         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3634         if (MaxActiveBits <= 1)
3635           return true;
3636         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3637         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3638           return true;
3639       }
3640       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3641         KnownBits Known = computeKnownBits(C, SQ.DL);
3642         unsigned MinLeadZero = Known.countMinLeadingZeros();
3643         // If the value being shifted has at most lowest bit set we can fold.
3644         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3645         if (MaxActiveBits <= 1)
3646           return true;
3647         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3648         if (NewShAmtSplat) {
3649           APInt AdjNewShAmt =
3650               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3651           if (AdjNewShAmt.ule(MinLeadZero))
3652             return true;
3653         }
3654       }
3655       return false; // Can't tell if it's ok.
3656     };
3657     if (!CanFold())
3658       return nullptr;
3659   }
3660 
3661   // All good, we can do this fold.
3662   X = Builder.CreateZExt(X, WidestTy);
3663   Y = Builder.CreateZExt(Y, WidestTy);
3664   // The shift is the same that was for X.
3665   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3666                   ? Builder.CreateLShr(X, NewShAmt)
3667                   : Builder.CreateShl(X, NewShAmt);
3668   Value *T1 = Builder.CreateAnd(T0, Y);
3669   return Builder.CreateICmp(I.getPredicate(), T1,
3670                             Constant::getNullValue(WidestTy));
3671 }
3672 
3673 /// Fold
3674 ///   (-1 u/ x) u< y
3675 ///   ((x * y) u/ x) != y
3676 /// to
3677 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3678 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3679 /// will mean that we are looking for the opposite answer.
3680 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3681   ICmpInst::Predicate Pred;
3682   Value *X, *Y;
3683   Instruction *Mul;
3684   bool NeedNegation;
3685   // Look for: (-1 u/ x) u</u>= y
3686   if (!I.isEquality() &&
3687       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3688                          m_Value(Y)))) {
3689     Mul = nullptr;
3690 
3691     // Are we checking that overflow does not happen, or does happen?
3692     switch (Pred) {
3693     case ICmpInst::Predicate::ICMP_ULT:
3694       NeedNegation = false;
3695       break; // OK
3696     case ICmpInst::Predicate::ICMP_UGE:
3697       NeedNegation = true;
3698       break; // OK
3699     default:
3700       return nullptr; // Wrong predicate.
3701     }
3702   } else // Look for: ((x * y) u/ x) !=/== y
3703       if (I.isEquality() &&
3704           match(&I, m_c_ICmp(Pred, m_Value(Y),
3705                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3706                                                                   m_Value(X)),
3707                                                           m_Instruction(Mul)),
3708                                              m_Deferred(X)))))) {
3709     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3710   } else
3711     return nullptr;
3712 
3713   BuilderTy::InsertPointGuard Guard(Builder);
3714   // If the pattern included (x * y), we'll want to insert new instructions
3715   // right before that original multiplication so that we can replace it.
3716   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3717   if (MulHadOtherUses)
3718     Builder.SetInsertPoint(Mul);
3719 
3720   Function *F = Intrinsic::getDeclaration(
3721       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3722   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3723 
3724   // If the multiplication was used elsewhere, to ensure that we don't leave
3725   // "duplicate" instructions, replace uses of that original multiplication
3726   // with the multiplication result from the with.overflow intrinsic.
3727   if (MulHadOtherUses)
3728     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3729 
3730   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3731   if (NeedNegation) // This technically increases instruction count.
3732     Res = Builder.CreateNot(Res, "umul.not.ov");
3733 
3734   // If we replaced the mul, erase it. Do this after all uses of Builder,
3735   // as the mul is used as insertion point.
3736   if (MulHadOtherUses)
3737     eraseInstFromFunction(*Mul);
3738 
3739   return Res;
3740 }
3741 
3742 static Instruction *foldICmpXNegX(ICmpInst &I) {
3743   CmpInst::Predicate Pred;
3744   Value *X;
3745   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3746     return nullptr;
3747 
3748   if (ICmpInst::isSigned(Pred))
3749     Pred = ICmpInst::getSwappedPredicate(Pred);
3750   else if (ICmpInst::isUnsigned(Pred))
3751     Pred = ICmpInst::getSignedPredicate(Pred);
3752   // else for equality-comparisons just keep the predicate.
3753 
3754   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3755                           Constant::getNullValue(X->getType()), I.getName());
3756 }
3757 
3758 /// Try to fold icmp (binop), X or icmp X, (binop).
3759 /// TODO: A large part of this logic is duplicated in InstSimplify's
3760 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3761 /// duplication.
3762 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3763                                              const SimplifyQuery &SQ) {
3764   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3765   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3766 
3767   // Special logic for binary operators.
3768   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3769   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3770   if (!BO0 && !BO1)
3771     return nullptr;
3772 
3773   if (Instruction *NewICmp = foldICmpXNegX(I))
3774     return NewICmp;
3775 
3776   const CmpInst::Predicate Pred = I.getPredicate();
3777   Value *X;
3778 
3779   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3780   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3781   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3782       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3783     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3784   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3785   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3786       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3787     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3788 
3789   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3790   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3791     NoOp0WrapProblem =
3792         ICmpInst::isEquality(Pred) ||
3793         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3794         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3795   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3796     NoOp1WrapProblem =
3797         ICmpInst::isEquality(Pred) ||
3798         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3799         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3800 
3801   // Analyze the case when either Op0 or Op1 is an add instruction.
3802   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3803   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3804   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3805     A = BO0->getOperand(0);
3806     B = BO0->getOperand(1);
3807   }
3808   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3809     C = BO1->getOperand(0);
3810     D = BO1->getOperand(1);
3811   }
3812 
3813   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3814   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3815   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3816     return new ICmpInst(Pred, A == Op1 ? B : A,
3817                         Constant::getNullValue(Op1->getType()));
3818 
3819   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3820   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3821   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3822     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3823                         C == Op0 ? D : C);
3824 
3825   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3826   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3827       NoOp1WrapProblem) {
3828     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3829     Value *Y, *Z;
3830     if (A == C) {
3831       // C + B == C + D  ->  B == D
3832       Y = B;
3833       Z = D;
3834     } else if (A == D) {
3835       // D + B == C + D  ->  B == C
3836       Y = B;
3837       Z = C;
3838     } else if (B == C) {
3839       // A + C == C + D  ->  A == D
3840       Y = A;
3841       Z = D;
3842     } else {
3843       assert(B == D);
3844       // A + D == C + D  ->  A == C
3845       Y = A;
3846       Z = C;
3847     }
3848     return new ICmpInst(Pred, Y, Z);
3849   }
3850 
3851   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3852   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3853       match(B, m_AllOnes()))
3854     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3855 
3856   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3857   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3858       match(B, m_AllOnes()))
3859     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3860 
3861   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3862   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3863     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3864 
3865   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3866   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3867     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3868 
3869   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3870   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3871       match(D, m_AllOnes()))
3872     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3873 
3874   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3875   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3876       match(D, m_AllOnes()))
3877     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3878 
3879   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3880   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3881     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3882 
3883   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3884   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3885     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3886 
3887   // TODO: The subtraction-related identities shown below also hold, but
3888   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3889   // wouldn't happen even if they were implemented.
3890   //
3891   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3892   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3893   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3894   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3895 
3896   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3897   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3898     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3899 
3900   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3901   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3902     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3903 
3904   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3905   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3906     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3907 
3908   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3909   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3910     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3911 
3912   // if C1 has greater magnitude than C2:
3913   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3914   //  s.t. C3 = C1 - C2
3915   //
3916   // if C2 has greater magnitude than C1:
3917   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3918   //  s.t. C3 = C2 - C1
3919   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3920       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3921     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3922       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3923         const APInt &AP1 = C1->getValue();
3924         const APInt &AP2 = C2->getValue();
3925         if (AP1.isNegative() == AP2.isNegative()) {
3926           APInt AP1Abs = C1->getValue().abs();
3927           APInt AP2Abs = C2->getValue().abs();
3928           if (AP1Abs.uge(AP2Abs)) {
3929             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3930             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
3931             bool HasNSW = BO0->hasNoSignedWrap();
3932             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
3933             return new ICmpInst(Pred, NewAdd, C);
3934           } else {
3935             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3936             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
3937             bool HasNSW = BO1->hasNoSignedWrap();
3938             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
3939             return new ICmpInst(Pred, A, NewAdd);
3940           }
3941         }
3942       }
3943 
3944   // Analyze the case when either Op0 or Op1 is a sub instruction.
3945   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3946   A = nullptr;
3947   B = nullptr;
3948   C = nullptr;
3949   D = nullptr;
3950   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3951     A = BO0->getOperand(0);
3952     B = BO0->getOperand(1);
3953   }
3954   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3955     C = BO1->getOperand(0);
3956     D = BO1->getOperand(1);
3957   }
3958 
3959   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3960   if (A == Op1 && NoOp0WrapProblem)
3961     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3962   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3963   if (C == Op0 && NoOp1WrapProblem)
3964     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3965 
3966   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3967   // (A - B) u>/u<= A --> B u>/u<= A
3968   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3969     return new ICmpInst(Pred, B, A);
3970   // C u</u>= (C - D) --> C u</u>= D
3971   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3972     return new ICmpInst(Pred, C, D);
3973   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3974   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3975       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3976     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3977   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3978   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3979       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3980     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3981 
3982   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3983   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3984     return new ICmpInst(Pred, A, C);
3985 
3986   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3987   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3988     return new ICmpInst(Pred, D, B);
3989 
3990   // icmp (0-X) < cst --> x > -cst
3991   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3992     Value *X;
3993     if (match(BO0, m_Neg(m_Value(X))))
3994       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3995         if (RHSC->isNotMinSignedValue())
3996           return new ICmpInst(I.getSwappedPredicate(), X,
3997                               ConstantExpr::getNeg(RHSC));
3998   }
3999 
4000   {
4001     // Try to remove shared constant multiplier from equality comparison:
4002     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4003     Value *X, *Y;
4004     const APInt *C;
4005     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4006         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4007       if (!C->countTrailingZeros() ||
4008           (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4009           (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4010       return new ICmpInst(Pred, X, Y);
4011   }
4012 
4013   BinaryOperator *SRem = nullptr;
4014   // icmp (srem X, Y), Y
4015   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4016     SRem = BO0;
4017   // icmp Y, (srem X, Y)
4018   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4019            Op0 == BO1->getOperand(1))
4020     SRem = BO1;
4021   if (SRem) {
4022     // We don't check hasOneUse to avoid increasing register pressure because
4023     // the value we use is the same value this instruction was already using.
4024     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4025     default:
4026       break;
4027     case ICmpInst::ICMP_EQ:
4028       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4029     case ICmpInst::ICMP_NE:
4030       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4031     case ICmpInst::ICMP_SGT:
4032     case ICmpInst::ICMP_SGE:
4033       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4034                           Constant::getAllOnesValue(SRem->getType()));
4035     case ICmpInst::ICMP_SLT:
4036     case ICmpInst::ICMP_SLE:
4037       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4038                           Constant::getNullValue(SRem->getType()));
4039     }
4040   }
4041 
4042   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4043       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4044     switch (BO0->getOpcode()) {
4045     default:
4046       break;
4047     case Instruction::Add:
4048     case Instruction::Sub:
4049     case Instruction::Xor: {
4050       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4051         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4052 
4053       const APInt *C;
4054       if (match(BO0->getOperand(1), m_APInt(C))) {
4055         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4056         if (C->isSignMask()) {
4057           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4058           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4059         }
4060 
4061         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4062         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4063           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4064           NewPred = I.getSwappedPredicate(NewPred);
4065           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4066         }
4067       }
4068       break;
4069     }
4070     case Instruction::Mul: {
4071       if (!I.isEquality())
4072         break;
4073 
4074       const APInt *C;
4075       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4076           !C->isOneValue()) {
4077         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4078         // Mask = -1 >> count-trailing-zeros(C).
4079         if (unsigned TZs = C->countTrailingZeros()) {
4080           Constant *Mask = ConstantInt::get(
4081               BO0->getType(),
4082               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4083           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4084           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4085           return new ICmpInst(Pred, And1, And2);
4086         }
4087       }
4088       break;
4089     }
4090     case Instruction::UDiv:
4091     case Instruction::LShr:
4092       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4093         break;
4094       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4095 
4096     case Instruction::SDiv:
4097       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4098         break;
4099       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4100 
4101     case Instruction::AShr:
4102       if (!BO0->isExact() || !BO1->isExact())
4103         break;
4104       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4105 
4106     case Instruction::Shl: {
4107       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4108       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4109       if (!NUW && !NSW)
4110         break;
4111       if (!NSW && I.isSigned())
4112         break;
4113       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4114     }
4115     }
4116   }
4117 
4118   if (BO0) {
4119     // Transform  A & (L - 1) `ult` L --> L != 0
4120     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4121     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4122 
4123     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4124       auto *Zero = Constant::getNullValue(BO0->getType());
4125       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4126     }
4127   }
4128 
4129   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4130     return replaceInstUsesWith(I, V);
4131 
4132   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4133     return replaceInstUsesWith(I, V);
4134 
4135   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4136     return replaceInstUsesWith(I, V);
4137 
4138   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4139     return replaceInstUsesWith(I, V);
4140 
4141   return nullptr;
4142 }
4143 
4144 /// Fold icmp Pred min|max(X, Y), X.
4145 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4146   ICmpInst::Predicate Pred = Cmp.getPredicate();
4147   Value *Op0 = Cmp.getOperand(0);
4148   Value *X = Cmp.getOperand(1);
4149 
4150   // Canonicalize minimum or maximum operand to LHS of the icmp.
4151   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4152       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4153       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4154       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4155     std::swap(Op0, X);
4156     Pred = Cmp.getSwappedPredicate();
4157   }
4158 
4159   Value *Y;
4160   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4161     // smin(X, Y)  == X --> X s<= Y
4162     // smin(X, Y) s>= X --> X s<= Y
4163     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4164       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4165 
4166     // smin(X, Y) != X --> X s> Y
4167     // smin(X, Y) s< X --> X s> Y
4168     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4169       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4170 
4171     // These cases should be handled in InstSimplify:
4172     // smin(X, Y) s<= X --> true
4173     // smin(X, Y) s> X --> false
4174     return nullptr;
4175   }
4176 
4177   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4178     // smax(X, Y)  == X --> X s>= Y
4179     // smax(X, Y) s<= X --> X s>= Y
4180     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4181       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4182 
4183     // smax(X, Y) != X --> X s< Y
4184     // smax(X, Y) s> X --> X s< Y
4185     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4186       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4187 
4188     // These cases should be handled in InstSimplify:
4189     // smax(X, Y) s>= X --> true
4190     // smax(X, Y) s< X --> false
4191     return nullptr;
4192   }
4193 
4194   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4195     // umin(X, Y)  == X --> X u<= Y
4196     // umin(X, Y) u>= X --> X u<= Y
4197     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4198       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4199 
4200     // umin(X, Y) != X --> X u> Y
4201     // umin(X, Y) u< X --> X u> Y
4202     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4203       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4204 
4205     // These cases should be handled in InstSimplify:
4206     // umin(X, Y) u<= X --> true
4207     // umin(X, Y) u> X --> false
4208     return nullptr;
4209   }
4210 
4211   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4212     // umax(X, Y)  == X --> X u>= Y
4213     // umax(X, Y) u<= X --> X u>= Y
4214     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4215       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4216 
4217     // umax(X, Y) != X --> X u< Y
4218     // umax(X, Y) u> X --> X u< Y
4219     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4220       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4221 
4222     // These cases should be handled in InstSimplify:
4223     // umax(X, Y) u>= X --> true
4224     // umax(X, Y) u< X --> false
4225     return nullptr;
4226   }
4227 
4228   return nullptr;
4229 }
4230 
4231 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4232   if (!I.isEquality())
4233     return nullptr;
4234 
4235   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4236   const CmpInst::Predicate Pred = I.getPredicate();
4237   Value *A, *B, *C, *D;
4238   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4239     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4240       Value *OtherVal = A == Op1 ? B : A;
4241       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4242     }
4243 
4244     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4245       // A^c1 == C^c2 --> A == C^(c1^c2)
4246       ConstantInt *C1, *C2;
4247       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4248           Op1->hasOneUse()) {
4249         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4250         Value *Xor = Builder.CreateXor(C, NC);
4251         return new ICmpInst(Pred, A, Xor);
4252       }
4253 
4254       // A^B == A^D -> B == D
4255       if (A == C)
4256         return new ICmpInst(Pred, B, D);
4257       if (A == D)
4258         return new ICmpInst(Pred, B, C);
4259       if (B == C)
4260         return new ICmpInst(Pred, A, D);
4261       if (B == D)
4262         return new ICmpInst(Pred, A, C);
4263     }
4264   }
4265 
4266   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4267     // A == (A^B)  ->  B == 0
4268     Value *OtherVal = A == Op0 ? B : A;
4269     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4270   }
4271 
4272   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4273   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4274       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4275     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4276 
4277     if (A == C) {
4278       X = B;
4279       Y = D;
4280       Z = A;
4281     } else if (A == D) {
4282       X = B;
4283       Y = C;
4284       Z = A;
4285     } else if (B == C) {
4286       X = A;
4287       Y = D;
4288       Z = B;
4289     } else if (B == D) {
4290       X = A;
4291       Y = C;
4292       Z = B;
4293     }
4294 
4295     if (X) { // Build (X^Y) & Z
4296       Op1 = Builder.CreateXor(X, Y);
4297       Op1 = Builder.CreateAnd(Op1, Z);
4298       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4299     }
4300   }
4301 
4302   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4303   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4304   ConstantInt *Cst1;
4305   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4306        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4307       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4308        match(Op1, m_ZExt(m_Value(A))))) {
4309     APInt Pow2 = Cst1->getValue() + 1;
4310     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4311         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4312       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4313   }
4314 
4315   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4316   // For lshr and ashr pairs.
4317   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4318        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4319       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4320        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4321     unsigned TypeBits = Cst1->getBitWidth();
4322     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4323     if (ShAmt < TypeBits && ShAmt != 0) {
4324       ICmpInst::Predicate NewPred =
4325           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4326       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4327       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4328       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4329     }
4330   }
4331 
4332   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4333   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4334       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4335     unsigned TypeBits = Cst1->getBitWidth();
4336     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4337     if (ShAmt < TypeBits && ShAmt != 0) {
4338       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4339       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4340       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4341                                       I.getName() + ".mask");
4342       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4343     }
4344   }
4345 
4346   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4347   // "icmp (and X, mask), cst"
4348   uint64_t ShAmt = 0;
4349   if (Op0->hasOneUse() &&
4350       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4351       match(Op1, m_ConstantInt(Cst1)) &&
4352       // Only do this when A has multiple uses.  This is most important to do
4353       // when it exposes other optimizations.
4354       !A->hasOneUse()) {
4355     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4356 
4357     if (ShAmt < ASize) {
4358       APInt MaskV =
4359           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4360       MaskV <<= ShAmt;
4361 
4362       APInt CmpV = Cst1->getValue().zext(ASize);
4363       CmpV <<= ShAmt;
4364 
4365       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4366       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4367     }
4368   }
4369 
4370   // If both operands are byte-swapped or bit-reversed, just compare the
4371   // original values.
4372   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4373   // and handle more intrinsics.
4374   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4375       (match(Op0, m_BitReverse(m_Value(A))) &&
4376        match(Op1, m_BitReverse(m_Value(B)))))
4377     return new ICmpInst(Pred, A, B);
4378 
4379   // Canonicalize checking for a power-of-2-or-zero value:
4380   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4381   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4382   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4383                                    m_Deferred(A)))) ||
4384       !match(Op1, m_ZeroInt()))
4385     A = nullptr;
4386 
4387   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4388   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4389   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4390     A = Op1;
4391   else if (match(Op1,
4392                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4393     A = Op0;
4394 
4395   if (A) {
4396     Type *Ty = A->getType();
4397     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4398     return Pred == ICmpInst::ICMP_EQ
4399         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4400         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4401   }
4402 
4403   return nullptr;
4404 }
4405 
4406 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4407                                            InstCombiner::BuilderTy &Builder) {
4408   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4409   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4410   Value *X;
4411   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4412     return nullptr;
4413 
4414   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4415   bool IsSignedCmp = ICmp.isSigned();
4416   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4417     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4418     // and the other is a zext), then we can't handle this.
4419     // TODO: This is too strict. We can handle some predicates (equality?).
4420     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4421       return nullptr;
4422 
4423     // Not an extension from the same type?
4424     Value *Y = CastOp1->getOperand(0);
4425     Type *XTy = X->getType(), *YTy = Y->getType();
4426     if (XTy != YTy) {
4427       // One of the casts must have one use because we are creating a new cast.
4428       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4429         return nullptr;
4430       // Extend the narrower operand to the type of the wider operand.
4431       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4432         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4433       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4434         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4435       else
4436         return nullptr;
4437     }
4438 
4439     // (zext X) == (zext Y) --> X == Y
4440     // (sext X) == (sext Y) --> X == Y
4441     if (ICmp.isEquality())
4442       return new ICmpInst(ICmp.getPredicate(), X, Y);
4443 
4444     // A signed comparison of sign extended values simplifies into a
4445     // signed comparison.
4446     if (IsSignedCmp && IsSignedExt)
4447       return new ICmpInst(ICmp.getPredicate(), X, Y);
4448 
4449     // The other three cases all fold into an unsigned comparison.
4450     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4451   }
4452 
4453   // Below here, we are only folding a compare with constant.
4454   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4455   if (!C)
4456     return nullptr;
4457 
4458   // Compute the constant that would happen if we truncated to SrcTy then
4459   // re-extended to DestTy.
4460   Type *SrcTy = CastOp0->getSrcTy();
4461   Type *DestTy = CastOp0->getDestTy();
4462   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4463   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4464 
4465   // If the re-extended constant didn't change...
4466   if (Res2 == C) {
4467     if (ICmp.isEquality())
4468       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4469 
4470     // A signed comparison of sign extended values simplifies into a
4471     // signed comparison.
4472     if (IsSignedExt && IsSignedCmp)
4473       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4474 
4475     // The other three cases all fold into an unsigned comparison.
4476     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4477   }
4478 
4479   // The re-extended constant changed, partly changed (in the case of a vector),
4480   // or could not be determined to be equal (in the case of a constant
4481   // expression), so the constant cannot be represented in the shorter type.
4482   // All the cases that fold to true or false will have already been handled
4483   // by SimplifyICmpInst, so only deal with the tricky case.
4484   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4485     return nullptr;
4486 
4487   // Is source op positive?
4488   // icmp ult (sext X), C --> icmp sgt X, -1
4489   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4490     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4491 
4492   // Is source op negative?
4493   // icmp ugt (sext X), C --> icmp slt X, 0
4494   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4495   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4496 }
4497 
4498 /// Handle icmp (cast x), (cast or constant).
4499 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4500   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4501   if (!CastOp0)
4502     return nullptr;
4503   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4504     return nullptr;
4505 
4506   Value *Op0Src = CastOp0->getOperand(0);
4507   Type *SrcTy = CastOp0->getSrcTy();
4508   Type *DestTy = CastOp0->getDestTy();
4509 
4510   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4511   // integer type is the same size as the pointer type.
4512   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4513     if (isa<VectorType>(SrcTy)) {
4514       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4515       DestTy = cast<VectorType>(DestTy)->getElementType();
4516     }
4517     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4518   };
4519   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4520       CompatibleSizes(SrcTy, DestTy)) {
4521     Value *NewOp1 = nullptr;
4522     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4523       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4524       if (PtrSrc->getType()->getPointerAddressSpace() ==
4525           Op0Src->getType()->getPointerAddressSpace()) {
4526         NewOp1 = PtrToIntOp1->getOperand(0);
4527         // If the pointer types don't match, insert a bitcast.
4528         if (Op0Src->getType() != NewOp1->getType())
4529           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4530       }
4531     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4532       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4533     }
4534 
4535     if (NewOp1)
4536       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4537   }
4538 
4539   return foldICmpWithZextOrSext(ICmp, Builder);
4540 }
4541 
4542 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4543   switch (BinaryOp) {
4544     default:
4545       llvm_unreachable("Unsupported binary op");
4546     case Instruction::Add:
4547     case Instruction::Sub:
4548       return match(RHS, m_Zero());
4549     case Instruction::Mul:
4550       return match(RHS, m_One());
4551   }
4552 }
4553 
4554 OverflowResult
4555 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4556                                   bool IsSigned, Value *LHS, Value *RHS,
4557                                   Instruction *CxtI) const {
4558   switch (BinaryOp) {
4559     default:
4560       llvm_unreachable("Unsupported binary op");
4561     case Instruction::Add:
4562       if (IsSigned)
4563         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4564       else
4565         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4566     case Instruction::Sub:
4567       if (IsSigned)
4568         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4569       else
4570         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4571     case Instruction::Mul:
4572       if (IsSigned)
4573         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4574       else
4575         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4576   }
4577 }
4578 
4579 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4580                                              bool IsSigned, Value *LHS,
4581                                              Value *RHS, Instruction &OrigI,
4582                                              Value *&Result,
4583                                              Constant *&Overflow) {
4584   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4585     std::swap(LHS, RHS);
4586 
4587   // If the overflow check was an add followed by a compare, the insertion point
4588   // may be pointing to the compare.  We want to insert the new instructions
4589   // before the add in case there are uses of the add between the add and the
4590   // compare.
4591   Builder.SetInsertPoint(&OrigI);
4592 
4593   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4594   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4595     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4596 
4597   if (isNeutralValue(BinaryOp, RHS)) {
4598     Result = LHS;
4599     Overflow = ConstantInt::getFalse(OverflowTy);
4600     return true;
4601   }
4602 
4603   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4604     case OverflowResult::MayOverflow:
4605       return false;
4606     case OverflowResult::AlwaysOverflowsLow:
4607     case OverflowResult::AlwaysOverflowsHigh:
4608       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4609       Result->takeName(&OrigI);
4610       Overflow = ConstantInt::getTrue(OverflowTy);
4611       return true;
4612     case OverflowResult::NeverOverflows:
4613       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4614       Result->takeName(&OrigI);
4615       Overflow = ConstantInt::getFalse(OverflowTy);
4616       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4617         if (IsSigned)
4618           Inst->setHasNoSignedWrap();
4619         else
4620           Inst->setHasNoUnsignedWrap();
4621       }
4622       return true;
4623   }
4624 
4625   llvm_unreachable("Unexpected overflow result");
4626 }
4627 
4628 /// Recognize and process idiom involving test for multiplication
4629 /// overflow.
4630 ///
4631 /// The caller has matched a pattern of the form:
4632 ///   I = cmp u (mul(zext A, zext B), V
4633 /// The function checks if this is a test for overflow and if so replaces
4634 /// multiplication with call to 'mul.with.overflow' intrinsic.
4635 ///
4636 /// \param I Compare instruction.
4637 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4638 ///               the compare instruction.  Must be of integer type.
4639 /// \param OtherVal The other argument of compare instruction.
4640 /// \returns Instruction which must replace the compare instruction, NULL if no
4641 ///          replacement required.
4642 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4643                                          Value *OtherVal,
4644                                          InstCombinerImpl &IC) {
4645   // Don't bother doing this transformation for pointers, don't do it for
4646   // vectors.
4647   if (!isa<IntegerType>(MulVal->getType()))
4648     return nullptr;
4649 
4650   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4651   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4652   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4653   if (!MulInstr)
4654     return nullptr;
4655   assert(MulInstr->getOpcode() == Instruction::Mul);
4656 
4657   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4658        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4659   assert(LHS->getOpcode() == Instruction::ZExt);
4660   assert(RHS->getOpcode() == Instruction::ZExt);
4661   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4662 
4663   // Calculate type and width of the result produced by mul.with.overflow.
4664   Type *TyA = A->getType(), *TyB = B->getType();
4665   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4666            WidthB = TyB->getPrimitiveSizeInBits();
4667   unsigned MulWidth;
4668   Type *MulType;
4669   if (WidthB > WidthA) {
4670     MulWidth = WidthB;
4671     MulType = TyB;
4672   } else {
4673     MulWidth = WidthA;
4674     MulType = TyA;
4675   }
4676 
4677   // In order to replace the original mul with a narrower mul.with.overflow,
4678   // all uses must ignore upper bits of the product.  The number of used low
4679   // bits must be not greater than the width of mul.with.overflow.
4680   if (MulVal->hasNUsesOrMore(2))
4681     for (User *U : MulVal->users()) {
4682       if (U == &I)
4683         continue;
4684       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4685         // Check if truncation ignores bits above MulWidth.
4686         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4687         if (TruncWidth > MulWidth)
4688           return nullptr;
4689       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4690         // Check if AND ignores bits above MulWidth.
4691         if (BO->getOpcode() != Instruction::And)
4692           return nullptr;
4693         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4694           const APInt &CVal = CI->getValue();
4695           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4696             return nullptr;
4697         } else {
4698           // In this case we could have the operand of the binary operation
4699           // being defined in another block, and performing the replacement
4700           // could break the dominance relation.
4701           return nullptr;
4702         }
4703       } else {
4704         // Other uses prohibit this transformation.
4705         return nullptr;
4706       }
4707     }
4708 
4709   // Recognize patterns
4710   switch (I.getPredicate()) {
4711   case ICmpInst::ICMP_EQ:
4712   case ICmpInst::ICMP_NE:
4713     // Recognize pattern:
4714     //   mulval = mul(zext A, zext B)
4715     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4716     ConstantInt *CI;
4717     Value *ValToMask;
4718     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4719       if (ValToMask != MulVal)
4720         return nullptr;
4721       const APInt &CVal = CI->getValue() + 1;
4722       if (CVal.isPowerOf2()) {
4723         unsigned MaskWidth = CVal.logBase2();
4724         if (MaskWidth == MulWidth)
4725           break; // Recognized
4726       }
4727     }
4728     return nullptr;
4729 
4730   case ICmpInst::ICMP_UGT:
4731     // Recognize pattern:
4732     //   mulval = mul(zext A, zext B)
4733     //   cmp ugt mulval, max
4734     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4735       APInt MaxVal = APInt::getMaxValue(MulWidth);
4736       MaxVal = MaxVal.zext(CI->getBitWidth());
4737       if (MaxVal.eq(CI->getValue()))
4738         break; // Recognized
4739     }
4740     return nullptr;
4741 
4742   case ICmpInst::ICMP_UGE:
4743     // Recognize pattern:
4744     //   mulval = mul(zext A, zext B)
4745     //   cmp uge mulval, max+1
4746     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4747       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4748       if (MaxVal.eq(CI->getValue()))
4749         break; // Recognized
4750     }
4751     return nullptr;
4752 
4753   case ICmpInst::ICMP_ULE:
4754     // Recognize pattern:
4755     //   mulval = mul(zext A, zext B)
4756     //   cmp ule mulval, max
4757     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4758       APInt MaxVal = APInt::getMaxValue(MulWidth);
4759       MaxVal = MaxVal.zext(CI->getBitWidth());
4760       if (MaxVal.eq(CI->getValue()))
4761         break; // Recognized
4762     }
4763     return nullptr;
4764 
4765   case ICmpInst::ICMP_ULT:
4766     // Recognize pattern:
4767     //   mulval = mul(zext A, zext B)
4768     //   cmp ule mulval, max + 1
4769     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4770       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4771       if (MaxVal.eq(CI->getValue()))
4772         break; // Recognized
4773     }
4774     return nullptr;
4775 
4776   default:
4777     return nullptr;
4778   }
4779 
4780   InstCombiner::BuilderTy &Builder = IC.Builder;
4781   Builder.SetInsertPoint(MulInstr);
4782 
4783   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4784   Value *MulA = A, *MulB = B;
4785   if (WidthA < MulWidth)
4786     MulA = Builder.CreateZExt(A, MulType);
4787   if (WidthB < MulWidth)
4788     MulB = Builder.CreateZExt(B, MulType);
4789   Function *F = Intrinsic::getDeclaration(
4790       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4791   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4792   IC.addToWorklist(MulInstr);
4793 
4794   // If there are uses of mul result other than the comparison, we know that
4795   // they are truncation or binary AND. Change them to use result of
4796   // mul.with.overflow and adjust properly mask/size.
4797   if (MulVal->hasNUsesOrMore(2)) {
4798     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4799     for (User *U : make_early_inc_range(MulVal->users())) {
4800       if (U == &I || U == OtherVal)
4801         continue;
4802       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4803         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4804           IC.replaceInstUsesWith(*TI, Mul);
4805         else
4806           TI->setOperand(0, Mul);
4807       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4808         assert(BO->getOpcode() == Instruction::And);
4809         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4810         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4811         APInt ShortMask = CI->getValue().trunc(MulWidth);
4812         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4813         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4814         IC.replaceInstUsesWith(*BO, Zext);
4815       } else {
4816         llvm_unreachable("Unexpected Binary operation");
4817       }
4818       IC.addToWorklist(cast<Instruction>(U));
4819     }
4820   }
4821   if (isa<Instruction>(OtherVal))
4822     IC.addToWorklist(cast<Instruction>(OtherVal));
4823 
4824   // The original icmp gets replaced with the overflow value, maybe inverted
4825   // depending on predicate.
4826   bool Inverse = false;
4827   switch (I.getPredicate()) {
4828   case ICmpInst::ICMP_NE:
4829     break;
4830   case ICmpInst::ICMP_EQ:
4831     Inverse = true;
4832     break;
4833   case ICmpInst::ICMP_UGT:
4834   case ICmpInst::ICMP_UGE:
4835     if (I.getOperand(0) == MulVal)
4836       break;
4837     Inverse = true;
4838     break;
4839   case ICmpInst::ICMP_ULT:
4840   case ICmpInst::ICMP_ULE:
4841     if (I.getOperand(1) == MulVal)
4842       break;
4843     Inverse = true;
4844     break;
4845   default:
4846     llvm_unreachable("Unexpected predicate");
4847   }
4848   if (Inverse) {
4849     Value *Res = Builder.CreateExtractValue(Call, 1);
4850     return BinaryOperator::CreateNot(Res);
4851   }
4852 
4853   return ExtractValueInst::Create(Call, 1);
4854 }
4855 
4856 /// When performing a comparison against a constant, it is possible that not all
4857 /// the bits in the LHS are demanded. This helper method computes the mask that
4858 /// IS demanded.
4859 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4860   const APInt *RHS;
4861   if (!match(I.getOperand(1), m_APInt(RHS)))
4862     return APInt::getAllOnesValue(BitWidth);
4863 
4864   // If this is a normal comparison, it demands all bits. If it is a sign bit
4865   // comparison, it only demands the sign bit.
4866   bool UnusedBit;
4867   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4868     return APInt::getSignMask(BitWidth);
4869 
4870   switch (I.getPredicate()) {
4871   // For a UGT comparison, we don't care about any bits that
4872   // correspond to the trailing ones of the comparand.  The value of these
4873   // bits doesn't impact the outcome of the comparison, because any value
4874   // greater than the RHS must differ in a bit higher than these due to carry.
4875   case ICmpInst::ICMP_UGT:
4876     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4877 
4878   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4879   // Any value less than the RHS must differ in a higher bit because of carries.
4880   case ICmpInst::ICMP_ULT:
4881     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4882 
4883   default:
4884     return APInt::getAllOnesValue(BitWidth);
4885   }
4886 }
4887 
4888 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4889 /// should be swapped.
4890 /// The decision is based on how many times these two operands are reused
4891 /// as subtract operands and their positions in those instructions.
4892 /// The rationale is that several architectures use the same instruction for
4893 /// both subtract and cmp. Thus, it is better if the order of those operands
4894 /// match.
4895 /// \return true if Op0 and Op1 should be swapped.
4896 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4897   // Filter out pointer values as those cannot appear directly in subtract.
4898   // FIXME: we may want to go through inttoptrs or bitcasts.
4899   if (Op0->getType()->isPointerTy())
4900     return false;
4901   // If a subtract already has the same operands as a compare, swapping would be
4902   // bad. If a subtract has the same operands as a compare but in reverse order,
4903   // then swapping is good.
4904   int GoodToSwap = 0;
4905   for (const User *U : Op0->users()) {
4906     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4907       GoodToSwap++;
4908     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4909       GoodToSwap--;
4910   }
4911   return GoodToSwap > 0;
4912 }
4913 
4914 /// Check that one use is in the same block as the definition and all
4915 /// other uses are in blocks dominated by a given block.
4916 ///
4917 /// \param DI Definition
4918 /// \param UI Use
4919 /// \param DB Block that must dominate all uses of \p DI outside
4920 ///           the parent block
4921 /// \return true when \p UI is the only use of \p DI in the parent block
4922 /// and all other uses of \p DI are in blocks dominated by \p DB.
4923 ///
4924 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
4925                                         const Instruction *UI,
4926                                         const BasicBlock *DB) const {
4927   assert(DI && UI && "Instruction not defined\n");
4928   // Ignore incomplete definitions.
4929   if (!DI->getParent())
4930     return false;
4931   // DI and UI must be in the same block.
4932   if (DI->getParent() != UI->getParent())
4933     return false;
4934   // Protect from self-referencing blocks.
4935   if (DI->getParent() == DB)
4936     return false;
4937   for (const User *U : DI->users()) {
4938     auto *Usr = cast<Instruction>(U);
4939     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4940       return false;
4941   }
4942   return true;
4943 }
4944 
4945 /// Return true when the instruction sequence within a block is select-cmp-br.
4946 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4947   const BasicBlock *BB = SI->getParent();
4948   if (!BB)
4949     return false;
4950   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4951   if (!BI || BI->getNumSuccessors() != 2)
4952     return false;
4953   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4954   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4955     return false;
4956   return true;
4957 }
4958 
4959 /// True when a select result is replaced by one of its operands
4960 /// in select-icmp sequence. This will eventually result in the elimination
4961 /// of the select.
4962 ///
4963 /// \param SI    Select instruction
4964 /// \param Icmp  Compare instruction
4965 /// \param SIOpd Operand that replaces the select
4966 ///
4967 /// Notes:
4968 /// - The replacement is global and requires dominator information
4969 /// - The caller is responsible for the actual replacement
4970 ///
4971 /// Example:
4972 ///
4973 /// entry:
4974 ///  %4 = select i1 %3, %C* %0, %C* null
4975 ///  %5 = icmp eq %C* %4, null
4976 ///  br i1 %5, label %9, label %7
4977 ///  ...
4978 ///  ; <label>:7                                       ; preds = %entry
4979 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4980 ///  ...
4981 ///
4982 /// can be transformed to
4983 ///
4984 ///  %5 = icmp eq %C* %0, null
4985 ///  %6 = select i1 %3, i1 %5, i1 true
4986 ///  br i1 %6, label %9, label %7
4987 ///  ...
4988 ///  ; <label>:7                                       ; preds = %entry
4989 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4990 ///
4991 /// Similar when the first operand of the select is a constant or/and
4992 /// the compare is for not equal rather than equal.
4993 ///
4994 /// NOTE: The function is only called when the select and compare constants
4995 /// are equal, the optimization can work only for EQ predicates. This is not a
4996 /// major restriction since a NE compare should be 'normalized' to an equal
4997 /// compare, which usually happens in the combiner and test case
4998 /// select-cmp-br.ll checks for it.
4999 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5000                                                  const ICmpInst *Icmp,
5001                                                  const unsigned SIOpd) {
5002   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5003   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5004     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5005     // The check for the single predecessor is not the best that can be
5006     // done. But it protects efficiently against cases like when SI's
5007     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5008     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5009     // replaced can be reached on either path. So the uniqueness check
5010     // guarantees that the path all uses of SI (outside SI's parent) are on
5011     // is disjoint from all other paths out of SI. But that information
5012     // is more expensive to compute, and the trade-off here is in favor
5013     // of compile-time. It should also be noticed that we check for a single
5014     // predecessor and not only uniqueness. This to handle the situation when
5015     // Succ and Succ1 points to the same basic block.
5016     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5017       NumSel++;
5018       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5019       return true;
5020     }
5021   }
5022   return false;
5023 }
5024 
5025 /// Try to fold the comparison based on range information we can get by checking
5026 /// whether bits are known to be zero or one in the inputs.
5027 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5028   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5029   Type *Ty = Op0->getType();
5030   ICmpInst::Predicate Pred = I.getPredicate();
5031 
5032   // Get scalar or pointer size.
5033   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5034                           ? Ty->getScalarSizeInBits()
5035                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5036 
5037   if (!BitWidth)
5038     return nullptr;
5039 
5040   KnownBits Op0Known(BitWidth);
5041   KnownBits Op1Known(BitWidth);
5042 
5043   if (SimplifyDemandedBits(&I, 0,
5044                            getDemandedBitsLHSMask(I, BitWidth),
5045                            Op0Known, 0))
5046     return &I;
5047 
5048   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5049                            Op1Known, 0))
5050     return &I;
5051 
5052   // Given the known and unknown bits, compute a range that the LHS could be
5053   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5054   // EQ and NE we use unsigned values.
5055   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5056   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5057   if (I.isSigned()) {
5058     Op0Min = Op0Known.getSignedMinValue();
5059     Op0Max = Op0Known.getSignedMaxValue();
5060     Op1Min = Op1Known.getSignedMinValue();
5061     Op1Max = Op1Known.getSignedMaxValue();
5062   } else {
5063     Op0Min = Op0Known.getMinValue();
5064     Op0Max = Op0Known.getMaxValue();
5065     Op1Min = Op1Known.getMinValue();
5066     Op1Max = Op1Known.getMaxValue();
5067   }
5068 
5069   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5070   // out that the LHS or RHS is a constant. Constant fold this now, so that
5071   // code below can assume that Min != Max.
5072   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5073     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5074   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5075     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5076 
5077   // Based on the range information we know about the LHS, see if we can
5078   // simplify this comparison.  For example, (x&4) < 8 is always true.
5079   switch (Pred) {
5080   default:
5081     llvm_unreachable("Unknown icmp opcode!");
5082   case ICmpInst::ICMP_EQ:
5083   case ICmpInst::ICMP_NE: {
5084     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5085       return replaceInstUsesWith(
5086           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5087 
5088     // If all bits are known zero except for one, then we know at most one bit
5089     // is set. If the comparison is against zero, then this is a check to see if
5090     // *that* bit is set.
5091     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5092     if (Op1Known.isZero()) {
5093       // If the LHS is an AND with the same constant, look through it.
5094       Value *LHS = nullptr;
5095       const APInt *LHSC;
5096       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5097           *LHSC != Op0KnownZeroInverted)
5098         LHS = Op0;
5099 
5100       Value *X;
5101       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5102         APInt ValToCheck = Op0KnownZeroInverted;
5103         Type *XTy = X->getType();
5104         if (ValToCheck.isPowerOf2()) {
5105           // ((1 << X) & 8) == 0 -> X != 3
5106           // ((1 << X) & 8) != 0 -> X == 3
5107           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5108           auto NewPred = ICmpInst::getInversePredicate(Pred);
5109           return new ICmpInst(NewPred, X, CmpC);
5110         } else if ((++ValToCheck).isPowerOf2()) {
5111           // ((1 << X) & 7) == 0 -> X >= 3
5112           // ((1 << X) & 7) != 0 -> X  < 3
5113           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5114           auto NewPred =
5115               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5116           return new ICmpInst(NewPred, X, CmpC);
5117         }
5118       }
5119 
5120       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5121       const APInt *CI;
5122       if (Op0KnownZeroInverted.isOneValue() &&
5123           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5124         // ((8 >>u X) & 1) == 0 -> X != 3
5125         // ((8 >>u X) & 1) != 0 -> X == 3
5126         unsigned CmpVal = CI->countTrailingZeros();
5127         auto NewPred = ICmpInst::getInversePredicate(Pred);
5128         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5129       }
5130     }
5131     break;
5132   }
5133   case ICmpInst::ICMP_ULT: {
5134     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5135       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5136     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5137       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5138     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5139       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5140 
5141     const APInt *CmpC;
5142     if (match(Op1, m_APInt(CmpC))) {
5143       // A <u C -> A == C-1 if min(A)+1 == C
5144       if (*CmpC == Op0Min + 1)
5145         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5146                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5147       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5148       // exceeds the log2 of C.
5149       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5150         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5151                             Constant::getNullValue(Op1->getType()));
5152     }
5153     break;
5154   }
5155   case ICmpInst::ICMP_UGT: {
5156     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5157       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5158     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5159       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5160     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5161       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5162 
5163     const APInt *CmpC;
5164     if (match(Op1, m_APInt(CmpC))) {
5165       // A >u C -> A == C+1 if max(a)-1 == C
5166       if (*CmpC == Op0Max - 1)
5167         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5168                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5169       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5170       // exceeds the log2 of C.
5171       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5172         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5173                             Constant::getNullValue(Op1->getType()));
5174     }
5175     break;
5176   }
5177   case ICmpInst::ICMP_SLT: {
5178     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5179       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5180     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5181       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5182     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5183       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5184     const APInt *CmpC;
5185     if (match(Op1, m_APInt(CmpC))) {
5186       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5187         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5188                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5189     }
5190     break;
5191   }
5192   case ICmpInst::ICMP_SGT: {
5193     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5194       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5195     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5196       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5197     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5198       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5199     const APInt *CmpC;
5200     if (match(Op1, m_APInt(CmpC))) {
5201       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5202         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5203                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5204     }
5205     break;
5206   }
5207   case ICmpInst::ICMP_SGE:
5208     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5209     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5210       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5211     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5212       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5213     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5214       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5215     break;
5216   case ICmpInst::ICMP_SLE:
5217     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5218     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5219       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5220     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5221       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5222     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5223       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5224     break;
5225   case ICmpInst::ICMP_UGE:
5226     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5227     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5228       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5229     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5230       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5231     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5232       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5233     break;
5234   case ICmpInst::ICMP_ULE:
5235     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5236     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5237       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5238     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5239       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5240     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5241       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5242     break;
5243   }
5244 
5245   // Turn a signed comparison into an unsigned one if both operands are known to
5246   // have the same sign.
5247   if (I.isSigned() &&
5248       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5249        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5250     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5251 
5252   return nullptr;
5253 }
5254 
5255 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5256 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5257                                                        Constant *C) {
5258   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5259          "Only for relational integer predicates.");
5260 
5261   Type *Type = C->getType();
5262   bool IsSigned = ICmpInst::isSigned(Pred);
5263 
5264   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5265   bool WillIncrement =
5266       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5267 
5268   // Check if the constant operand can be safely incremented/decremented
5269   // without overflowing/underflowing.
5270   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5271     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5272   };
5273 
5274   Constant *SafeReplacementConstant = nullptr;
5275   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5276     // Bail out if the constant can't be safely incremented/decremented.
5277     if (!ConstantIsOk(CI))
5278       return llvm::None;
5279   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5280     unsigned NumElts = FVTy->getNumElements();
5281     for (unsigned i = 0; i != NumElts; ++i) {
5282       Constant *Elt = C->getAggregateElement(i);
5283       if (!Elt)
5284         return llvm::None;
5285 
5286       if (isa<UndefValue>(Elt))
5287         continue;
5288 
5289       // Bail out if we can't determine if this constant is min/max or if we
5290       // know that this constant is min/max.
5291       auto *CI = dyn_cast<ConstantInt>(Elt);
5292       if (!CI || !ConstantIsOk(CI))
5293         return llvm::None;
5294 
5295       if (!SafeReplacementConstant)
5296         SafeReplacementConstant = CI;
5297     }
5298   } else {
5299     // ConstantExpr?
5300     return llvm::None;
5301   }
5302 
5303   // It may not be safe to change a compare predicate in the presence of
5304   // undefined elements, so replace those elements with the first safe constant
5305   // that we found.
5306   // TODO: in case of poison, it is safe; let's replace undefs only.
5307   if (C->containsUndefOrPoisonElement()) {
5308     assert(SafeReplacementConstant && "Replacement constant not set");
5309     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5310   }
5311 
5312   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5313 
5314   // Increment or decrement the constant.
5315   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5316   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5317 
5318   return std::make_pair(NewPred, NewC);
5319 }
5320 
5321 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5322 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5323 /// allows them to be folded in visitICmpInst.
5324 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5325   ICmpInst::Predicate Pred = I.getPredicate();
5326   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5327       InstCombiner::isCanonicalPredicate(Pred))
5328     return nullptr;
5329 
5330   Value *Op0 = I.getOperand(0);
5331   Value *Op1 = I.getOperand(1);
5332   auto *Op1C = dyn_cast<Constant>(Op1);
5333   if (!Op1C)
5334     return nullptr;
5335 
5336   auto FlippedStrictness =
5337       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5338   if (!FlippedStrictness)
5339     return nullptr;
5340 
5341   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5342 }
5343 
5344 /// If we have a comparison with a non-canonical predicate, if we can update
5345 /// all the users, invert the predicate and adjust all the users.
5346 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5347   // Is the predicate already canonical?
5348   CmpInst::Predicate Pred = I.getPredicate();
5349   if (InstCombiner::isCanonicalPredicate(Pred))
5350     return nullptr;
5351 
5352   // Can all users be adjusted to predicate inversion?
5353   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5354     return nullptr;
5355 
5356   // Ok, we can canonicalize comparison!
5357   // Let's first invert the comparison's predicate.
5358   I.setPredicate(CmpInst::getInversePredicate(Pred));
5359   I.setName(I.getName() + ".not");
5360 
5361   // And, adapt users.
5362   freelyInvertAllUsersOf(&I);
5363 
5364   return &I;
5365 }
5366 
5367 /// Integer compare with boolean values can always be turned into bitwise ops.
5368 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5369                                          InstCombiner::BuilderTy &Builder) {
5370   Value *A = I.getOperand(0), *B = I.getOperand(1);
5371   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5372 
5373   // A boolean compared to true/false can be simplified to Op0/true/false in
5374   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5375   // Cases not handled by InstSimplify are always 'not' of Op0.
5376   if (match(B, m_Zero())) {
5377     switch (I.getPredicate()) {
5378       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5379       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5380       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5381         return BinaryOperator::CreateNot(A);
5382       default:
5383         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5384     }
5385   } else if (match(B, m_One())) {
5386     switch (I.getPredicate()) {
5387       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5388       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5389       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5390         return BinaryOperator::CreateNot(A);
5391       default:
5392         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5393     }
5394   }
5395 
5396   switch (I.getPredicate()) {
5397   default:
5398     llvm_unreachable("Invalid icmp instruction!");
5399   case ICmpInst::ICMP_EQ:
5400     // icmp eq i1 A, B -> ~(A ^ B)
5401     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5402 
5403   case ICmpInst::ICMP_NE:
5404     // icmp ne i1 A, B -> A ^ B
5405     return BinaryOperator::CreateXor(A, B);
5406 
5407   case ICmpInst::ICMP_UGT:
5408     // icmp ugt -> icmp ult
5409     std::swap(A, B);
5410     LLVM_FALLTHROUGH;
5411   case ICmpInst::ICMP_ULT:
5412     // icmp ult i1 A, B -> ~A & B
5413     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5414 
5415   case ICmpInst::ICMP_SGT:
5416     // icmp sgt -> icmp slt
5417     std::swap(A, B);
5418     LLVM_FALLTHROUGH;
5419   case ICmpInst::ICMP_SLT:
5420     // icmp slt i1 A, B -> A & ~B
5421     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5422 
5423   case ICmpInst::ICMP_UGE:
5424     // icmp uge -> icmp ule
5425     std::swap(A, B);
5426     LLVM_FALLTHROUGH;
5427   case ICmpInst::ICMP_ULE:
5428     // icmp ule i1 A, B -> ~A | B
5429     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5430 
5431   case ICmpInst::ICMP_SGE:
5432     // icmp sge -> icmp sle
5433     std::swap(A, B);
5434     LLVM_FALLTHROUGH;
5435   case ICmpInst::ICMP_SLE:
5436     // icmp sle i1 A, B -> A | ~B
5437     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5438   }
5439 }
5440 
5441 // Transform pattern like:
5442 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5443 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5444 // Into:
5445 //   (X l>> Y) != 0
5446 //   (X l>> Y) == 0
5447 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5448                                             InstCombiner::BuilderTy &Builder) {
5449   ICmpInst::Predicate Pred, NewPred;
5450   Value *X, *Y;
5451   if (match(&Cmp,
5452             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5453     switch (Pred) {
5454     case ICmpInst::ICMP_ULE:
5455       NewPred = ICmpInst::ICMP_NE;
5456       break;
5457     case ICmpInst::ICMP_UGT:
5458       NewPred = ICmpInst::ICMP_EQ;
5459       break;
5460     default:
5461       return nullptr;
5462     }
5463   } else if (match(&Cmp, m_c_ICmp(Pred,
5464                                   m_OneUse(m_CombineOr(
5465                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5466                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5467                                             m_AllOnes()))),
5468                                   m_Value(X)))) {
5469     // The variant with 'add' is not canonical, (the variant with 'not' is)
5470     // we only get it because it has extra uses, and can't be canonicalized,
5471 
5472     switch (Pred) {
5473     case ICmpInst::ICMP_ULT:
5474       NewPred = ICmpInst::ICMP_NE;
5475       break;
5476     case ICmpInst::ICMP_UGE:
5477       NewPred = ICmpInst::ICMP_EQ;
5478       break;
5479     default:
5480       return nullptr;
5481     }
5482   } else
5483     return nullptr;
5484 
5485   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5486   Constant *Zero = Constant::getNullValue(NewX->getType());
5487   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5488 }
5489 
5490 static Instruction *foldVectorCmp(CmpInst &Cmp,
5491                                   InstCombiner::BuilderTy &Builder) {
5492   const CmpInst::Predicate Pred = Cmp.getPredicate();
5493   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5494   Value *V1, *V2;
5495   ArrayRef<int> M;
5496   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5497     return nullptr;
5498 
5499   // If both arguments of the cmp are shuffles that use the same mask and
5500   // shuffle within a single vector, move the shuffle after the cmp:
5501   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5502   Type *V1Ty = V1->getType();
5503   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5504       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5505     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5506     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5507   }
5508 
5509   // Try to canonicalize compare with splatted operand and splat constant.
5510   // TODO: We could generalize this for more than splats. See/use the code in
5511   //       InstCombiner::foldVectorBinop().
5512   Constant *C;
5513   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5514     return nullptr;
5515 
5516   // Length-changing splats are ok, so adjust the constants as needed:
5517   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5518   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5519   int MaskSplatIndex;
5520   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5521     // We allow undefs in matching, but this transform removes those for safety.
5522     // Demanded elements analysis should be able to recover some/all of that.
5523     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5524                                  ScalarC);
5525     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5526     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5527     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5528                                  NewM);
5529   }
5530 
5531   return nullptr;
5532 }
5533 
5534 // extract(uadd.with.overflow(A, B), 0) ult A
5535 //  -> extract(uadd.with.overflow(A, B), 1)
5536 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5537   CmpInst::Predicate Pred = I.getPredicate();
5538   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5539 
5540   Value *UAddOv;
5541   Value *A, *B;
5542   auto UAddOvResultPat = m_ExtractValue<0>(
5543       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5544   if (match(Op0, UAddOvResultPat) &&
5545       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5546        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5547         (match(A, m_One()) || match(B, m_One()))) ||
5548        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5549         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5550     // extract(uadd.with.overflow(A, B), 0) < A
5551     // extract(uadd.with.overflow(A, 1), 0) == 0
5552     // extract(uadd.with.overflow(A, -1), 0) != -1
5553     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5554   else if (match(Op1, UAddOvResultPat) &&
5555            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5556     // A > extract(uadd.with.overflow(A, B), 0)
5557     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5558   else
5559     return nullptr;
5560 
5561   return ExtractValueInst::Create(UAddOv, 1);
5562 }
5563 
5564 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5565   bool Changed = false;
5566   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5567   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5568   unsigned Op0Cplxity = getComplexity(Op0);
5569   unsigned Op1Cplxity = getComplexity(Op1);
5570 
5571   /// Orders the operands of the compare so that they are listed from most
5572   /// complex to least complex.  This puts constants before unary operators,
5573   /// before binary operators.
5574   if (Op0Cplxity < Op1Cplxity ||
5575       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5576     I.swapOperands();
5577     std::swap(Op0, Op1);
5578     Changed = true;
5579   }
5580 
5581   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5582     return replaceInstUsesWith(I, V);
5583 
5584   // Comparing -val or val with non-zero is the same as just comparing val
5585   // ie, abs(val) != 0 -> val != 0
5586   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5587     Value *Cond, *SelectTrue, *SelectFalse;
5588     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5589                             m_Value(SelectFalse)))) {
5590       if (Value *V = dyn_castNegVal(SelectTrue)) {
5591         if (V == SelectFalse)
5592           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5593       }
5594       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5595         if (V == SelectTrue)
5596           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5597       }
5598     }
5599   }
5600 
5601   if (Op0->getType()->isIntOrIntVectorTy(1))
5602     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5603       return Res;
5604 
5605   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5606     return Res;
5607 
5608   if (Instruction *Res = canonicalizeICmpPredicate(I))
5609     return Res;
5610 
5611   if (Instruction *Res = foldICmpWithConstant(I))
5612     return Res;
5613 
5614   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5615     return Res;
5616 
5617   if (Instruction *Res = foldICmpBinOp(I, Q))
5618     return Res;
5619 
5620   if (Instruction *Res = foldICmpUsingKnownBits(I))
5621     return Res;
5622 
5623   // Test if the ICmpInst instruction is used exclusively by a select as
5624   // part of a minimum or maximum operation. If so, refrain from doing
5625   // any other folding. This helps out other analyses which understand
5626   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5627   // and CodeGen. And in this case, at least one of the comparison
5628   // operands has at least one user besides the compare (the select),
5629   // which would often largely negate the benefit of folding anyway.
5630   //
5631   // Do the same for the other patterns recognized by matchSelectPattern.
5632   if (I.hasOneUse())
5633     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5634       Value *A, *B;
5635       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5636       if (SPR.Flavor != SPF_UNKNOWN)
5637         return nullptr;
5638     }
5639 
5640   // Do this after checking for min/max to prevent infinite looping.
5641   if (Instruction *Res = foldICmpWithZero(I))
5642     return Res;
5643 
5644   // FIXME: We only do this after checking for min/max to prevent infinite
5645   // looping caused by a reverse canonicalization of these patterns for min/max.
5646   // FIXME: The organization of folds is a mess. These would naturally go into
5647   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5648   // down here after the min/max restriction.
5649   ICmpInst::Predicate Pred = I.getPredicate();
5650   const APInt *C;
5651   if (match(Op1, m_APInt(C))) {
5652     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5653     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5654       Constant *Zero = Constant::getNullValue(Op0->getType());
5655       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5656     }
5657 
5658     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5659     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5660       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5661       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5662     }
5663   }
5664 
5665   if (Instruction *Res = foldICmpInstWithConstant(I))
5666     return Res;
5667 
5668   // Try to match comparison as a sign bit test. Intentionally do this after
5669   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5670   if (Instruction *New = foldSignBitTest(I))
5671     return New;
5672 
5673   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5674     return Res;
5675 
5676   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5677   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5678     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5679       return NI;
5680   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5681     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5682                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5683       return NI;
5684 
5685   // Try to optimize equality comparisons against alloca-based pointers.
5686   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5687     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5688     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5689       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5690         return New;
5691     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5692       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5693         return New;
5694   }
5695 
5696   if (Instruction *Res = foldICmpBitCast(I, Builder))
5697     return Res;
5698 
5699   // TODO: Hoist this above the min/max bailout.
5700   if (Instruction *R = foldICmpWithCastOp(I))
5701     return R;
5702 
5703   if (Instruction *Res = foldICmpWithMinMax(I))
5704     return Res;
5705 
5706   {
5707     Value *A, *B;
5708     // Transform (A & ~B) == 0 --> (A & B) != 0
5709     // and       (A & ~B) != 0 --> (A & B) == 0
5710     // if A is a power of 2.
5711     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5712         match(Op1, m_Zero()) &&
5713         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5714       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5715                           Op1);
5716 
5717     // ~X < ~Y --> Y < X
5718     // ~X < C -->  X > ~C
5719     if (match(Op0, m_Not(m_Value(A)))) {
5720       if (match(Op1, m_Not(m_Value(B))))
5721         return new ICmpInst(I.getPredicate(), B, A);
5722 
5723       const APInt *C;
5724       if (match(Op1, m_APInt(C)))
5725         return new ICmpInst(I.getSwappedPredicate(), A,
5726                             ConstantInt::get(Op1->getType(), ~(*C)));
5727     }
5728 
5729     Instruction *AddI = nullptr;
5730     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5731                                      m_Instruction(AddI))) &&
5732         isa<IntegerType>(A->getType())) {
5733       Value *Result;
5734       Constant *Overflow;
5735       // m_UAddWithOverflow can match patterns that do not include  an explicit
5736       // "add" instruction, so check the opcode of the matched op.
5737       if (AddI->getOpcode() == Instruction::Add &&
5738           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5739                                 Result, Overflow)) {
5740         replaceInstUsesWith(*AddI, Result);
5741         eraseInstFromFunction(*AddI);
5742         return replaceInstUsesWith(I, Overflow);
5743       }
5744     }
5745 
5746     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5747     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5748       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5749         return R;
5750     }
5751     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5752       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5753         return R;
5754     }
5755   }
5756 
5757   if (Instruction *Res = foldICmpEquality(I))
5758     return Res;
5759 
5760   if (Instruction *Res = foldICmpOfUAddOv(I))
5761     return Res;
5762 
5763   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5764   // an i1 which indicates whether or not we successfully did the swap.
5765   //
5766   // Replace comparisons between the old value and the expected value with the
5767   // indicator that 'cmpxchg' returns.
5768   //
5769   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5770   // spuriously fail.  In those cases, the old value may equal the expected
5771   // value but it is possible for the swap to not occur.
5772   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5773     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5774       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5775         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5776             !ACXI->isWeak())
5777           return ExtractValueInst::Create(ACXI, 1);
5778 
5779   {
5780     Value *X;
5781     const APInt *C;
5782     // icmp X+Cst, X
5783     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5784       return foldICmpAddOpConst(X, *C, I.getPredicate());
5785 
5786     // icmp X, X+Cst
5787     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5788       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5789   }
5790 
5791   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5792     return Res;
5793 
5794   if (I.getType()->isVectorTy())
5795     if (Instruction *Res = foldVectorCmp(I, Builder))
5796       return Res;
5797 
5798   return Changed ? &I : nullptr;
5799 }
5800 
5801 /// Fold fcmp ([us]itofp x, cst) if possible.
5802 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5803                                                     Instruction *LHSI,
5804                                                     Constant *RHSC) {
5805   if (!isa<ConstantFP>(RHSC)) return nullptr;
5806   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5807 
5808   // Get the width of the mantissa.  We don't want to hack on conversions that
5809   // might lose information from the integer, e.g. "i64 -> float"
5810   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5811   if (MantissaWidth == -1) return nullptr;  // Unknown.
5812 
5813   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5814 
5815   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5816 
5817   if (I.isEquality()) {
5818     FCmpInst::Predicate P = I.getPredicate();
5819     bool IsExact = false;
5820     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5821     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5822 
5823     // If the floating point constant isn't an integer value, we know if we will
5824     // ever compare equal / not equal to it.
5825     if (!IsExact) {
5826       // TODO: Can never be -0.0 and other non-representable values
5827       APFloat RHSRoundInt(RHS);
5828       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5829       if (RHS != RHSRoundInt) {
5830         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5831           return replaceInstUsesWith(I, Builder.getFalse());
5832 
5833         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5834         return replaceInstUsesWith(I, Builder.getTrue());
5835       }
5836     }
5837 
5838     // TODO: If the constant is exactly representable, is it always OK to do
5839     // equality compares as integer?
5840   }
5841 
5842   // Check to see that the input is converted from an integer type that is small
5843   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5844   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5845   unsigned InputSize = IntTy->getScalarSizeInBits();
5846 
5847   // Following test does NOT adjust InputSize downwards for signed inputs,
5848   // because the most negative value still requires all the mantissa bits
5849   // to distinguish it from one less than that value.
5850   if ((int)InputSize > MantissaWidth) {
5851     // Conversion would lose accuracy. Check if loss can impact comparison.
5852     int Exp = ilogb(RHS);
5853     if (Exp == APFloat::IEK_Inf) {
5854       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5855       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5856         // Conversion could create infinity.
5857         return nullptr;
5858     } else {
5859       // Note that if RHS is zero or NaN, then Exp is negative
5860       // and first condition is trivially false.
5861       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5862         // Conversion could affect comparison.
5863         return nullptr;
5864     }
5865   }
5866 
5867   // Otherwise, we can potentially simplify the comparison.  We know that it
5868   // will always come through as an integer value and we know the constant is
5869   // not a NAN (it would have been previously simplified).
5870   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5871 
5872   ICmpInst::Predicate Pred;
5873   switch (I.getPredicate()) {
5874   default: llvm_unreachable("Unexpected predicate!");
5875   case FCmpInst::FCMP_UEQ:
5876   case FCmpInst::FCMP_OEQ:
5877     Pred = ICmpInst::ICMP_EQ;
5878     break;
5879   case FCmpInst::FCMP_UGT:
5880   case FCmpInst::FCMP_OGT:
5881     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5882     break;
5883   case FCmpInst::FCMP_UGE:
5884   case FCmpInst::FCMP_OGE:
5885     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5886     break;
5887   case FCmpInst::FCMP_ULT:
5888   case FCmpInst::FCMP_OLT:
5889     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5890     break;
5891   case FCmpInst::FCMP_ULE:
5892   case FCmpInst::FCMP_OLE:
5893     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5894     break;
5895   case FCmpInst::FCMP_UNE:
5896   case FCmpInst::FCMP_ONE:
5897     Pred = ICmpInst::ICMP_NE;
5898     break;
5899   case FCmpInst::FCMP_ORD:
5900     return replaceInstUsesWith(I, Builder.getTrue());
5901   case FCmpInst::FCMP_UNO:
5902     return replaceInstUsesWith(I, Builder.getFalse());
5903   }
5904 
5905   // Now we know that the APFloat is a normal number, zero or inf.
5906 
5907   // See if the FP constant is too large for the integer.  For example,
5908   // comparing an i8 to 300.0.
5909   unsigned IntWidth = IntTy->getScalarSizeInBits();
5910 
5911   if (!LHSUnsigned) {
5912     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5913     // and large values.
5914     APFloat SMax(RHS.getSemantics());
5915     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5916                           APFloat::rmNearestTiesToEven);
5917     if (SMax < RHS) { // smax < 13123.0
5918       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5919           Pred == ICmpInst::ICMP_SLE)
5920         return replaceInstUsesWith(I, Builder.getTrue());
5921       return replaceInstUsesWith(I, Builder.getFalse());
5922     }
5923   } else {
5924     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5925     // +INF and large values.
5926     APFloat UMax(RHS.getSemantics());
5927     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5928                           APFloat::rmNearestTiesToEven);
5929     if (UMax < RHS) { // umax < 13123.0
5930       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5931           Pred == ICmpInst::ICMP_ULE)
5932         return replaceInstUsesWith(I, Builder.getTrue());
5933       return replaceInstUsesWith(I, Builder.getFalse());
5934     }
5935   }
5936 
5937   if (!LHSUnsigned) {
5938     // See if the RHS value is < SignedMin.
5939     APFloat SMin(RHS.getSemantics());
5940     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5941                           APFloat::rmNearestTiesToEven);
5942     if (SMin > RHS) { // smin > 12312.0
5943       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5944           Pred == ICmpInst::ICMP_SGE)
5945         return replaceInstUsesWith(I, Builder.getTrue());
5946       return replaceInstUsesWith(I, Builder.getFalse());
5947     }
5948   } else {
5949     // See if the RHS value is < UnsignedMin.
5950     APFloat UMin(RHS.getSemantics());
5951     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5952                           APFloat::rmNearestTiesToEven);
5953     if (UMin > RHS) { // umin > 12312.0
5954       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5955           Pred == ICmpInst::ICMP_UGE)
5956         return replaceInstUsesWith(I, Builder.getTrue());
5957       return replaceInstUsesWith(I, Builder.getFalse());
5958     }
5959   }
5960 
5961   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5962   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5963   // casting the FP value to the integer value and back, checking for equality.
5964   // Don't do this for zero, because -0.0 is not fractional.
5965   Constant *RHSInt = LHSUnsigned
5966     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5967     : ConstantExpr::getFPToSI(RHSC, IntTy);
5968   if (!RHS.isZero()) {
5969     bool Equal = LHSUnsigned
5970       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5971       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5972     if (!Equal) {
5973       // If we had a comparison against a fractional value, we have to adjust
5974       // the compare predicate and sometimes the value.  RHSC is rounded towards
5975       // zero at this point.
5976       switch (Pred) {
5977       default: llvm_unreachable("Unexpected integer comparison!");
5978       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5979         return replaceInstUsesWith(I, Builder.getTrue());
5980       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5981         return replaceInstUsesWith(I, Builder.getFalse());
5982       case ICmpInst::ICMP_ULE:
5983         // (float)int <= 4.4   --> int <= 4
5984         // (float)int <= -4.4  --> false
5985         if (RHS.isNegative())
5986           return replaceInstUsesWith(I, Builder.getFalse());
5987         break;
5988       case ICmpInst::ICMP_SLE:
5989         // (float)int <= 4.4   --> int <= 4
5990         // (float)int <= -4.4  --> int < -4
5991         if (RHS.isNegative())
5992           Pred = ICmpInst::ICMP_SLT;
5993         break;
5994       case ICmpInst::ICMP_ULT:
5995         // (float)int < -4.4   --> false
5996         // (float)int < 4.4    --> int <= 4
5997         if (RHS.isNegative())
5998           return replaceInstUsesWith(I, Builder.getFalse());
5999         Pred = ICmpInst::ICMP_ULE;
6000         break;
6001       case ICmpInst::ICMP_SLT:
6002         // (float)int < -4.4   --> int < -4
6003         // (float)int < 4.4    --> int <= 4
6004         if (!RHS.isNegative())
6005           Pred = ICmpInst::ICMP_SLE;
6006         break;
6007       case ICmpInst::ICMP_UGT:
6008         // (float)int > 4.4    --> int > 4
6009         // (float)int > -4.4   --> true
6010         if (RHS.isNegative())
6011           return replaceInstUsesWith(I, Builder.getTrue());
6012         break;
6013       case ICmpInst::ICMP_SGT:
6014         // (float)int > 4.4    --> int > 4
6015         // (float)int > -4.4   --> int >= -4
6016         if (RHS.isNegative())
6017           Pred = ICmpInst::ICMP_SGE;
6018         break;
6019       case ICmpInst::ICMP_UGE:
6020         // (float)int >= -4.4   --> true
6021         // (float)int >= 4.4    --> int > 4
6022         if (RHS.isNegative())
6023           return replaceInstUsesWith(I, Builder.getTrue());
6024         Pred = ICmpInst::ICMP_UGT;
6025         break;
6026       case ICmpInst::ICMP_SGE:
6027         // (float)int >= -4.4   --> int >= -4
6028         // (float)int >= 4.4    --> int > 4
6029         if (!RHS.isNegative())
6030           Pred = ICmpInst::ICMP_SGT;
6031         break;
6032       }
6033     }
6034   }
6035 
6036   // Lower this FP comparison into an appropriate integer version of the
6037   // comparison.
6038   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6039 }
6040 
6041 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6042 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6043                                               Constant *RHSC) {
6044   // When C is not 0.0 and infinities are not allowed:
6045   // (C / X) < 0.0 is a sign-bit test of X
6046   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6047   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6048   //
6049   // Proof:
6050   // Multiply (C / X) < 0.0 by X * X / C.
6051   // - X is non zero, if it is the flag 'ninf' is violated.
6052   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6053   //   the predicate. C is also non zero by definition.
6054   //
6055   // Thus X * X / C is non zero and the transformation is valid. [qed]
6056 
6057   FCmpInst::Predicate Pred = I.getPredicate();
6058 
6059   // Check that predicates are valid.
6060   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6061       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6062     return nullptr;
6063 
6064   // Check that RHS operand is zero.
6065   if (!match(RHSC, m_AnyZeroFP()))
6066     return nullptr;
6067 
6068   // Check fastmath flags ('ninf').
6069   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6070     return nullptr;
6071 
6072   // Check the properties of the dividend. It must not be zero to avoid a
6073   // division by zero (see Proof).
6074   const APFloat *C;
6075   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6076     return nullptr;
6077 
6078   if (C->isZero())
6079     return nullptr;
6080 
6081   // Get swapped predicate if necessary.
6082   if (C->isNegative())
6083     Pred = I.getSwappedPredicate();
6084 
6085   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6086 }
6087 
6088 /// Optimize fabs(X) compared with zero.
6089 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6090   Value *X;
6091   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6092       !match(I.getOperand(1), m_PosZeroFP()))
6093     return nullptr;
6094 
6095   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6096     I->setPredicate(P);
6097     return IC.replaceOperand(*I, 0, X);
6098   };
6099 
6100   switch (I.getPredicate()) {
6101   case FCmpInst::FCMP_UGE:
6102   case FCmpInst::FCMP_OLT:
6103     // fabs(X) >= 0.0 --> true
6104     // fabs(X) <  0.0 --> false
6105     llvm_unreachable("fcmp should have simplified");
6106 
6107   case FCmpInst::FCMP_OGT:
6108     // fabs(X) > 0.0 --> X != 0.0
6109     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6110 
6111   case FCmpInst::FCMP_UGT:
6112     // fabs(X) u> 0.0 --> X u!= 0.0
6113     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6114 
6115   case FCmpInst::FCMP_OLE:
6116     // fabs(X) <= 0.0 --> X == 0.0
6117     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6118 
6119   case FCmpInst::FCMP_ULE:
6120     // fabs(X) u<= 0.0 --> X u== 0.0
6121     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6122 
6123   case FCmpInst::FCMP_OGE:
6124     // fabs(X) >= 0.0 --> !isnan(X)
6125     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6126     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6127 
6128   case FCmpInst::FCMP_ULT:
6129     // fabs(X) u< 0.0 --> isnan(X)
6130     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6131     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6132 
6133   case FCmpInst::FCMP_OEQ:
6134   case FCmpInst::FCMP_UEQ:
6135   case FCmpInst::FCMP_ONE:
6136   case FCmpInst::FCMP_UNE:
6137   case FCmpInst::FCMP_ORD:
6138   case FCmpInst::FCMP_UNO:
6139     // Look through the fabs() because it doesn't change anything but the sign.
6140     // fabs(X) == 0.0 --> X == 0.0,
6141     // fabs(X) != 0.0 --> X != 0.0
6142     // isnan(fabs(X)) --> isnan(X)
6143     // !isnan(fabs(X) --> !isnan(X)
6144     return replacePredAndOp0(&I, I.getPredicate(), X);
6145 
6146   default:
6147     return nullptr;
6148   }
6149 }
6150 
6151 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6152   bool Changed = false;
6153 
6154   /// Orders the operands of the compare so that they are listed from most
6155   /// complex to least complex.  This puts constants before unary operators,
6156   /// before binary operators.
6157   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6158     I.swapOperands();
6159     Changed = true;
6160   }
6161 
6162   const CmpInst::Predicate Pred = I.getPredicate();
6163   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6164   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6165                                   SQ.getWithInstruction(&I)))
6166     return replaceInstUsesWith(I, V);
6167 
6168   // Simplify 'fcmp pred X, X'
6169   Type *OpType = Op0->getType();
6170   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6171   if (Op0 == Op1) {
6172     switch (Pred) {
6173       default: break;
6174     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6175     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6176     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6177     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6178       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6179       I.setPredicate(FCmpInst::FCMP_UNO);
6180       I.setOperand(1, Constant::getNullValue(OpType));
6181       return &I;
6182 
6183     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6184     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6185     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6186     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6187       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6188       I.setPredicate(FCmpInst::FCMP_ORD);
6189       I.setOperand(1, Constant::getNullValue(OpType));
6190       return &I;
6191     }
6192   }
6193 
6194   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6195   // then canonicalize the operand to 0.0.
6196   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6197     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6198       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6199 
6200     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6201       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6202   }
6203 
6204   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6205   Value *X, *Y;
6206   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6207     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6208 
6209   // Test if the FCmpInst instruction is used exclusively by a select as
6210   // part of a minimum or maximum operation. If so, refrain from doing
6211   // any other folding. This helps out other analyses which understand
6212   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6213   // and CodeGen. And in this case, at least one of the comparison
6214   // operands has at least one user besides the compare (the select),
6215   // which would often largely negate the benefit of folding anyway.
6216   if (I.hasOneUse())
6217     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6218       Value *A, *B;
6219       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6220       if (SPR.Flavor != SPF_UNKNOWN)
6221         return nullptr;
6222     }
6223 
6224   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6225   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6226   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6227     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6228 
6229   // Handle fcmp with instruction LHS and constant RHS.
6230   Instruction *LHSI;
6231   Constant *RHSC;
6232   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6233     switch (LHSI->getOpcode()) {
6234     case Instruction::PHI:
6235       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6236       // block.  If in the same block, we're encouraging jump threading.  If
6237       // not, we are just pessimizing the code by making an i1 phi.
6238       if (LHSI->getParent() == I.getParent())
6239         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6240           return NV;
6241       break;
6242     case Instruction::SIToFP:
6243     case Instruction::UIToFP:
6244       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6245         return NV;
6246       break;
6247     case Instruction::FDiv:
6248       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6249         return NV;
6250       break;
6251     case Instruction::Load:
6252       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6253         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6254           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6255               !cast<LoadInst>(LHSI)->isVolatile())
6256             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6257               return Res;
6258       break;
6259   }
6260   }
6261 
6262   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6263     return R;
6264 
6265   if (match(Op0, m_FNeg(m_Value(X)))) {
6266     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6267     Constant *C;
6268     if (match(Op1, m_Constant(C))) {
6269       Constant *NegC = ConstantExpr::getFNeg(C);
6270       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6271     }
6272   }
6273 
6274   if (match(Op0, m_FPExt(m_Value(X)))) {
6275     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6276     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6277       return new FCmpInst(Pred, X, Y, "", &I);
6278 
6279     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6280     const APFloat *C;
6281     if (match(Op1, m_APFloat(C))) {
6282       const fltSemantics &FPSem =
6283           X->getType()->getScalarType()->getFltSemantics();
6284       bool Lossy;
6285       APFloat TruncC = *C;
6286       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6287 
6288       // Avoid lossy conversions and denormals.
6289       // Zero is a special case that's OK to convert.
6290       APFloat Fabs = TruncC;
6291       Fabs.clearSign();
6292       if (!Lossy &&
6293           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6294         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6295         return new FCmpInst(Pred, X, NewC, "", &I);
6296       }
6297     }
6298   }
6299 
6300   // Convert a sign-bit test of an FP value into a cast and integer compare.
6301   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6302   // TODO: Handle non-zero compare constants.
6303   // TODO: Handle other predicates.
6304   const APFloat *C;
6305   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6306                                                            m_Value(X)))) &&
6307       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6308     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6309     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6310       IntType = VectorType::get(IntType, VecTy->getElementCount());
6311 
6312     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6313     if (Pred == FCmpInst::FCMP_OLT) {
6314       Value *IntX = Builder.CreateBitCast(X, IntType);
6315       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6316                           ConstantInt::getNullValue(IntType));
6317     }
6318   }
6319 
6320   if (I.getType()->isVectorTy())
6321     if (Instruction *Res = foldVectorCmp(I, Builder))
6322       return Res;
6323 
6324   return Changed ? &I : nullptr;
6325 }
6326