1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/ConstantRange.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41                             const APInt &In2, bool IsSigned = false) {
42   bool Overflow;
43   if (IsSigned)
44     Result = In1.sadd_ov(In2, Overflow);
45   else
46     Result = In1.uadd_ov(In2, Overflow);
47 
48   return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54                             const APInt &In2, bool IsSigned = false) {
55   bool Overflow;
56   if (IsSigned)
57     Result = In1.ssub_ov(In2, Overflow);
58   else
59     Result = In1.usub_ov(In2, Overflow);
60 
61   return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
66 static bool hasBranchUse(ICmpInst &I) {
67   for (auto *U : I.users())
68     if (isa<BranchInst>(U))
69       return true;
70   return false;
71 }
72 
73 /// Given an exploded icmp instruction, return true if the comparison only
74 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
75 /// result of the comparison is true when the input value is signed.
76 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
77                            bool &TrueIfSigned) {
78   switch (Pred) {
79   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
80     TrueIfSigned = true;
81     return RHS.isNullValue();
82   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
83     TrueIfSigned = true;
84     return RHS.isAllOnesValue();
85   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
86     TrueIfSigned = false;
87     return RHS.isAllOnesValue();
88   case ICmpInst::ICMP_UGT:
89     // True if LHS u> RHS and RHS == high-bit-mask - 1
90     TrueIfSigned = true;
91     return RHS.isMaxSignedValue();
92   case ICmpInst::ICMP_UGE:
93     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
94     TrueIfSigned = true;
95     return RHS.isSignMask();
96   default:
97     return false;
98   }
99 }
100 
101 /// Returns true if the exploded icmp can be expressed as a signed comparison
102 /// to zero and updates the predicate accordingly.
103 /// The signedness of the comparison is preserved.
104 /// TODO: Refactor with decomposeBitTestICmp()?
105 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
106   if (!ICmpInst::isSigned(Pred))
107     return false;
108 
109   if (C.isNullValue())
110     return ICmpInst::isRelational(Pred);
111 
112   if (C.isOneValue()) {
113     if (Pred == ICmpInst::ICMP_SLT) {
114       Pred = ICmpInst::ICMP_SLE;
115       return true;
116     }
117   } else if (C.isAllOnesValue()) {
118     if (Pred == ICmpInst::ICMP_SGT) {
119       Pred = ICmpInst::ICMP_SGE;
120       return true;
121     }
122   }
123 
124   return false;
125 }
126 
127 /// Given a signed integer type and a set of known zero and one bits, compute
128 /// the maximum and minimum values that could have the specified known zero and
129 /// known one bits, returning them in Min/Max.
130 /// TODO: Move to method on KnownBits struct?
131 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
132                                                    APInt &Min, APInt &Max) {
133   assert(Known.getBitWidth() == Min.getBitWidth() &&
134          Known.getBitWidth() == Max.getBitWidth() &&
135          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
136   APInt UnknownBits = ~(Known.Zero|Known.One);
137 
138   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
139   // bit if it is unknown.
140   Min = Known.One;
141   Max = Known.One|UnknownBits;
142 
143   if (UnknownBits.isNegative()) { // Sign bit is unknown
144     Min.setSignBit();
145     Max.clearSignBit();
146   }
147 }
148 
149 /// Given an unsigned integer type and a set of known zero and one bits, compute
150 /// the maximum and minimum values that could have the specified known zero and
151 /// known one bits, returning them in Min/Max.
152 /// TODO: Move to method on KnownBits struct?
153 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
154                                                      APInt &Min, APInt &Max) {
155   assert(Known.getBitWidth() == Min.getBitWidth() &&
156          Known.getBitWidth() == Max.getBitWidth() &&
157          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
158   APInt UnknownBits = ~(Known.Zero|Known.One);
159 
160   // The minimum value is when the unknown bits are all zeros.
161   Min = Known.One;
162   // The maximum value is when the unknown bits are all ones.
163   Max = Known.One|UnknownBits;
164 }
165 
166 /// This is called when we see this pattern:
167 ///   cmp pred (load (gep GV, ...)), cmpcst
168 /// where GV is a global variable with a constant initializer. Try to simplify
169 /// this into some simple computation that does not need the load. For example
170 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
171 ///
172 /// If AndCst is non-null, then the loaded value is masked with that constant
173 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
174 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
175                                                         GlobalVariable *GV,
176                                                         CmpInst &ICI,
177                                                         ConstantInt *AndCst) {
178   Constant *Init = GV->getInitializer();
179   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
180     return nullptr;
181 
182   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
183   // Don't blow up on huge arrays.
184   if (ArrayElementCount > MaxArraySizeForCombine)
185     return nullptr;
186 
187   // There are many forms of this optimization we can handle, for now, just do
188   // the simple index into a single-dimensional array.
189   //
190   // Require: GEP GV, 0, i {{, constant indices}}
191   if (GEP->getNumOperands() < 3 ||
192       !isa<ConstantInt>(GEP->getOperand(1)) ||
193       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
194       isa<Constant>(GEP->getOperand(2)))
195     return nullptr;
196 
197   // Check that indices after the variable are constants and in-range for the
198   // type they index.  Collect the indices.  This is typically for arrays of
199   // structs.
200   SmallVector<unsigned, 4> LaterIndices;
201 
202   Type *EltTy = Init->getType()->getArrayElementType();
203   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
204     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
205     if (!Idx) return nullptr;  // Variable index.
206 
207     uint64_t IdxVal = Idx->getZExtValue();
208     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
209 
210     if (StructType *STy = dyn_cast<StructType>(EltTy))
211       EltTy = STy->getElementType(IdxVal);
212     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
213       if (IdxVal >= ATy->getNumElements()) return nullptr;
214       EltTy = ATy->getElementType();
215     } else {
216       return nullptr; // Unknown type.
217     }
218 
219     LaterIndices.push_back(IdxVal);
220   }
221 
222   enum { Overdefined = -3, Undefined = -2 };
223 
224   // Variables for our state machines.
225 
226   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
227   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
228   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
229   // undefined, otherwise set to the first true element.  SecondTrueElement is
230   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
231   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
232 
233   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
234   // form "i != 47 & i != 87".  Same state transitions as for true elements.
235   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
236 
237   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
238   /// define a state machine that triggers for ranges of values that the index
239   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
240   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
241   /// index in the range (inclusive).  We use -2 for undefined here because we
242   /// use relative comparisons and don't want 0-1 to match -1.
243   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
244 
245   // MagicBitvector - This is a magic bitvector where we set a bit if the
246   // comparison is true for element 'i'.  If there are 64 elements or less in
247   // the array, this will fully represent all the comparison results.
248   uint64_t MagicBitvector = 0;
249 
250   // Scan the array and see if one of our patterns matches.
251   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
252   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
253     Constant *Elt = Init->getAggregateElement(i);
254     if (!Elt) return nullptr;
255 
256     // If this is indexing an array of structures, get the structure element.
257     if (!LaterIndices.empty())
258       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
259 
260     // If the element is masked, handle it.
261     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
262 
263     // Find out if the comparison would be true or false for the i'th element.
264     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
265                                                   CompareRHS, DL, &TLI);
266     // If the result is undef for this element, ignore it.
267     if (isa<UndefValue>(C)) {
268       // Extend range state machines to cover this element in case there is an
269       // undef in the middle of the range.
270       if (TrueRangeEnd == (int)i-1)
271         TrueRangeEnd = i;
272       if (FalseRangeEnd == (int)i-1)
273         FalseRangeEnd = i;
274       continue;
275     }
276 
277     // If we can't compute the result for any of the elements, we have to give
278     // up evaluating the entire conditional.
279     if (!isa<ConstantInt>(C)) return nullptr;
280 
281     // Otherwise, we know if the comparison is true or false for this element,
282     // update our state machines.
283     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
284 
285     // State machine for single/double/range index comparison.
286     if (IsTrueForElt) {
287       // Update the TrueElement state machine.
288       if (FirstTrueElement == Undefined)
289         FirstTrueElement = TrueRangeEnd = i;  // First true element.
290       else {
291         // Update double-compare state machine.
292         if (SecondTrueElement == Undefined)
293           SecondTrueElement = i;
294         else
295           SecondTrueElement = Overdefined;
296 
297         // Update range state machine.
298         if (TrueRangeEnd == (int)i-1)
299           TrueRangeEnd = i;
300         else
301           TrueRangeEnd = Overdefined;
302       }
303     } else {
304       // Update the FalseElement state machine.
305       if (FirstFalseElement == Undefined)
306         FirstFalseElement = FalseRangeEnd = i; // First false element.
307       else {
308         // Update double-compare state machine.
309         if (SecondFalseElement == Undefined)
310           SecondFalseElement = i;
311         else
312           SecondFalseElement = Overdefined;
313 
314         // Update range state machine.
315         if (FalseRangeEnd == (int)i-1)
316           FalseRangeEnd = i;
317         else
318           FalseRangeEnd = Overdefined;
319       }
320     }
321 
322     // If this element is in range, update our magic bitvector.
323     if (i < 64 && IsTrueForElt)
324       MagicBitvector |= 1ULL << i;
325 
326     // If all of our states become overdefined, bail out early.  Since the
327     // predicate is expensive, only check it every 8 elements.  This is only
328     // really useful for really huge arrays.
329     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
330         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
331         FalseRangeEnd == Overdefined)
332       return nullptr;
333   }
334 
335   // Now that we've scanned the entire array, emit our new comparison(s).  We
336   // order the state machines in complexity of the generated code.
337   Value *Idx = GEP->getOperand(2);
338 
339   // If the index is larger than the pointer size of the target, truncate the
340   // index down like the GEP would do implicitly.  We don't have to do this for
341   // an inbounds GEP because the index can't be out of range.
342   if (!GEP->isInBounds()) {
343     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
344     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
345     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
346       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
347   }
348 
349   // If the comparison is only true for one or two elements, emit direct
350   // comparisons.
351   if (SecondTrueElement != Overdefined) {
352     // None true -> false.
353     if (FirstTrueElement == Undefined)
354       return replaceInstUsesWith(ICI, Builder.getFalse());
355 
356     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
357 
358     // True for one element -> 'i == 47'.
359     if (SecondTrueElement == Undefined)
360       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
361 
362     // True for two elements -> 'i == 47 | i == 72'.
363     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
364     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
365     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
366     return BinaryOperator::CreateOr(C1, C2);
367   }
368 
369   // If the comparison is only false for one or two elements, emit direct
370   // comparisons.
371   if (SecondFalseElement != Overdefined) {
372     // None false -> true.
373     if (FirstFalseElement == Undefined)
374       return replaceInstUsesWith(ICI, Builder.getTrue());
375 
376     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
377 
378     // False for one element -> 'i != 47'.
379     if (SecondFalseElement == Undefined)
380       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
381 
382     // False for two elements -> 'i != 47 & i != 72'.
383     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
384     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
385     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
386     return BinaryOperator::CreateAnd(C1, C2);
387   }
388 
389   // If the comparison can be replaced with a range comparison for the elements
390   // where it is true, emit the range check.
391   if (TrueRangeEnd != Overdefined) {
392     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
393 
394     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
395     if (FirstTrueElement) {
396       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
397       Idx = Builder.CreateAdd(Idx, Offs);
398     }
399 
400     Value *End = ConstantInt::get(Idx->getType(),
401                                   TrueRangeEnd-FirstTrueElement+1);
402     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
403   }
404 
405   // False range check.
406   if (FalseRangeEnd != Overdefined) {
407     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
408     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
409     if (FirstFalseElement) {
410       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
411       Idx = Builder.CreateAdd(Idx, Offs);
412     }
413 
414     Value *End = ConstantInt::get(Idx->getType(),
415                                   FalseRangeEnd-FirstFalseElement);
416     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
417   }
418 
419   // If a magic bitvector captures the entire comparison state
420   // of this load, replace it with computation that does:
421   //   ((magic_cst >> i) & 1) != 0
422   {
423     Type *Ty = nullptr;
424 
425     // Look for an appropriate type:
426     // - The type of Idx if the magic fits
427     // - The smallest fitting legal type
428     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
429       Ty = Idx->getType();
430     else
431       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
432 
433     if (Ty) {
434       Value *V = Builder.CreateIntCast(Idx, Ty, false);
435       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
436       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
437       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
438     }
439   }
440 
441   return nullptr;
442 }
443 
444 /// Return a value that can be used to compare the *offset* implied by a GEP to
445 /// zero. For example, if we have &A[i], we want to return 'i' for
446 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
447 /// are involved. The above expression would also be legal to codegen as
448 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
449 /// This latter form is less amenable to optimization though, and we are allowed
450 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
451 ///
452 /// If we can't emit an optimized form for this expression, this returns null.
453 ///
454 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
455                                           const DataLayout &DL) {
456   gep_type_iterator GTI = gep_type_begin(GEP);
457 
458   // Check to see if this gep only has a single variable index.  If so, and if
459   // any constant indices are a multiple of its scale, then we can compute this
460   // in terms of the scale of the variable index.  For example, if the GEP
461   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
462   // because the expression will cross zero at the same point.
463   unsigned i, e = GEP->getNumOperands();
464   int64_t Offset = 0;
465   for (i = 1; i != e; ++i, ++GTI) {
466     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
467       // Compute the aggregate offset of constant indices.
468       if (CI->isZero()) continue;
469 
470       // Handle a struct index, which adds its field offset to the pointer.
471       if (StructType *STy = GTI.getStructTypeOrNull()) {
472         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
473       } else {
474         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
475         Offset += Size*CI->getSExtValue();
476       }
477     } else {
478       // Found our variable index.
479       break;
480     }
481   }
482 
483   // If there are no variable indices, we must have a constant offset, just
484   // evaluate it the general way.
485   if (i == e) return nullptr;
486 
487   Value *VariableIdx = GEP->getOperand(i);
488   // Determine the scale factor of the variable element.  For example, this is
489   // 4 if the variable index is into an array of i32.
490   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
491 
492   // Verify that there are no other variable indices.  If so, emit the hard way.
493   for (++i, ++GTI; i != e; ++i, ++GTI) {
494     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
495     if (!CI) return nullptr;
496 
497     // Compute the aggregate offset of constant indices.
498     if (CI->isZero()) continue;
499 
500     // Handle a struct index, which adds its field offset to the pointer.
501     if (StructType *STy = GTI.getStructTypeOrNull()) {
502       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
503     } else {
504       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
505       Offset += Size*CI->getSExtValue();
506     }
507   }
508 
509   // Okay, we know we have a single variable index, which must be a
510   // pointer/array/vector index.  If there is no offset, life is simple, return
511   // the index.
512   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
513   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
514   if (Offset == 0) {
515     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
516     // we don't need to bother extending: the extension won't affect where the
517     // computation crosses zero.
518     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
519       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
520     }
521     return VariableIdx;
522   }
523 
524   // Otherwise, there is an index.  The computation we will do will be modulo
525   // the pointer size, so get it.
526   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
527 
528   Offset &= PtrSizeMask;
529   VariableScale &= PtrSizeMask;
530 
531   // To do this transformation, any constant index must be a multiple of the
532   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
533   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
534   // multiple of the variable scale.
535   int64_t NewOffs = Offset / (int64_t)VariableScale;
536   if (Offset != NewOffs*(int64_t)VariableScale)
537     return nullptr;
538 
539   // Okay, we can do this evaluation.  Start by converting the index to intptr.
540   if (VariableIdx->getType() != IntPtrTy)
541     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
542                                             true /*Signed*/);
543   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
544   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
545 }
546 
547 /// Returns true if we can rewrite Start as a GEP with pointer Base
548 /// and some integer offset. The nodes that need to be re-written
549 /// for this transformation will be added to Explored.
550 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
551                                   const DataLayout &DL,
552                                   SetVector<Value *> &Explored) {
553   SmallVector<Value *, 16> WorkList(1, Start);
554   Explored.insert(Base);
555 
556   // The following traversal gives us an order which can be used
557   // when doing the final transformation. Since in the final
558   // transformation we create the PHI replacement instructions first,
559   // we don't have to get them in any particular order.
560   //
561   // However, for other instructions we will have to traverse the
562   // operands of an instruction first, which means that we have to
563   // do a post-order traversal.
564   while (!WorkList.empty()) {
565     SetVector<PHINode *> PHIs;
566 
567     while (!WorkList.empty()) {
568       if (Explored.size() >= 100)
569         return false;
570 
571       Value *V = WorkList.back();
572 
573       if (Explored.count(V) != 0) {
574         WorkList.pop_back();
575         continue;
576       }
577 
578       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
579           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
580         // We've found some value that we can't explore which is different from
581         // the base. Therefore we can't do this transformation.
582         return false;
583 
584       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
585         auto *CI = dyn_cast<CastInst>(V);
586         if (!CI->isNoopCast(DL))
587           return false;
588 
589         if (Explored.count(CI->getOperand(0)) == 0)
590           WorkList.push_back(CI->getOperand(0));
591       }
592 
593       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
594         // We're limiting the GEP to having one index. This will preserve
595         // the original pointer type. We could handle more cases in the
596         // future.
597         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
598             GEP->getType() != Start->getType())
599           return false;
600 
601         if (Explored.count(GEP->getOperand(0)) == 0)
602           WorkList.push_back(GEP->getOperand(0));
603       }
604 
605       if (WorkList.back() == V) {
606         WorkList.pop_back();
607         // We've finished visiting this node, mark it as such.
608         Explored.insert(V);
609       }
610 
611       if (auto *PN = dyn_cast<PHINode>(V)) {
612         // We cannot transform PHIs on unsplittable basic blocks.
613         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
614           return false;
615         Explored.insert(PN);
616         PHIs.insert(PN);
617       }
618     }
619 
620     // Explore the PHI nodes further.
621     for (auto *PN : PHIs)
622       for (Value *Op : PN->incoming_values())
623         if (Explored.count(Op) == 0)
624           WorkList.push_back(Op);
625   }
626 
627   // Make sure that we can do this. Since we can't insert GEPs in a basic
628   // block before a PHI node, we can't easily do this transformation if
629   // we have PHI node users of transformed instructions.
630   for (Value *Val : Explored) {
631     for (Value *Use : Val->uses()) {
632 
633       auto *PHI = dyn_cast<PHINode>(Use);
634       auto *Inst = dyn_cast<Instruction>(Val);
635 
636       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
637           Explored.count(PHI) == 0)
638         continue;
639 
640       if (PHI->getParent() == Inst->getParent())
641         return false;
642     }
643   }
644   return true;
645 }
646 
647 // Sets the appropriate insert point on Builder where we can add
648 // a replacement Instruction for V (if that is possible).
649 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
650                               bool Before = true) {
651   if (auto *PHI = dyn_cast<PHINode>(V)) {
652     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
653     return;
654   }
655   if (auto *I = dyn_cast<Instruction>(V)) {
656     if (!Before)
657       I = &*std::next(I->getIterator());
658     Builder.SetInsertPoint(I);
659     return;
660   }
661   if (auto *A = dyn_cast<Argument>(V)) {
662     // Set the insertion point in the entry block.
663     BasicBlock &Entry = A->getParent()->getEntryBlock();
664     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
665     return;
666   }
667   // Otherwise, this is a constant and we don't need to set a new
668   // insertion point.
669   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
670 }
671 
672 /// Returns a re-written value of Start as an indexed GEP using Base as a
673 /// pointer.
674 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
675                                  const DataLayout &DL,
676                                  SetVector<Value *> &Explored) {
677   // Perform all the substitutions. This is a bit tricky because we can
678   // have cycles in our use-def chains.
679   // 1. Create the PHI nodes without any incoming values.
680   // 2. Create all the other values.
681   // 3. Add the edges for the PHI nodes.
682   // 4. Emit GEPs to get the original pointers.
683   // 5. Remove the original instructions.
684   Type *IndexType = IntegerType::get(
685       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
686 
687   DenseMap<Value *, Value *> NewInsts;
688   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
689 
690   // Create the new PHI nodes, without adding any incoming values.
691   for (Value *Val : Explored) {
692     if (Val == Base)
693       continue;
694     // Create empty phi nodes. This avoids cyclic dependencies when creating
695     // the remaining instructions.
696     if (auto *PHI = dyn_cast<PHINode>(Val))
697       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
698                                       PHI->getName() + ".idx", PHI);
699   }
700   IRBuilder<> Builder(Base->getContext());
701 
702   // Create all the other instructions.
703   for (Value *Val : Explored) {
704 
705     if (NewInsts.find(Val) != NewInsts.end())
706       continue;
707 
708     if (auto *CI = dyn_cast<CastInst>(Val)) {
709       NewInsts[CI] = NewInsts[CI->getOperand(0)];
710       continue;
711     }
712     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
713       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
714                                                   : GEP->getOperand(1);
715       setInsertionPoint(Builder, GEP);
716       // Indices might need to be sign extended. GEPs will magically do
717       // this, but we need to do it ourselves here.
718       if (Index->getType()->getScalarSizeInBits() !=
719           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
720         Index = Builder.CreateSExtOrTrunc(
721             Index, NewInsts[GEP->getOperand(0)]->getType(),
722             GEP->getOperand(0)->getName() + ".sext");
723       }
724 
725       auto *Op = NewInsts[GEP->getOperand(0)];
726       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
727         NewInsts[GEP] = Index;
728       else
729         NewInsts[GEP] = Builder.CreateNSWAdd(
730             Op, Index, GEP->getOperand(0)->getName() + ".add");
731       continue;
732     }
733     if (isa<PHINode>(Val))
734       continue;
735 
736     llvm_unreachable("Unexpected instruction type");
737   }
738 
739   // Add the incoming values to the PHI nodes.
740   for (Value *Val : Explored) {
741     if (Val == Base)
742       continue;
743     // All the instructions have been created, we can now add edges to the
744     // phi nodes.
745     if (auto *PHI = dyn_cast<PHINode>(Val)) {
746       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
747       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
748         Value *NewIncoming = PHI->getIncomingValue(I);
749 
750         if (NewInsts.find(NewIncoming) != NewInsts.end())
751           NewIncoming = NewInsts[NewIncoming];
752 
753         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
754       }
755     }
756   }
757 
758   for (Value *Val : Explored) {
759     if (Val == Base)
760       continue;
761 
762     // Depending on the type, for external users we have to emit
763     // a GEP or a GEP + ptrtoint.
764     setInsertionPoint(Builder, Val, false);
765 
766     // If required, create an inttoptr instruction for Base.
767     Value *NewBase = Base;
768     if (!Base->getType()->isPointerTy())
769       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
770                                                Start->getName() + "to.ptr");
771 
772     Value *GEP = Builder.CreateInBoundsGEP(
773         Start->getType()->getPointerElementType(), NewBase,
774         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
775 
776     if (!Val->getType()->isPointerTy()) {
777       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
778                                               Val->getName() + ".conv");
779       GEP = Cast;
780     }
781     Val->replaceAllUsesWith(GEP);
782   }
783 
784   return NewInsts[Start];
785 }
786 
787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
788 /// the input Value as a constant indexed GEP. Returns a pair containing
789 /// the GEPs Pointer and Index.
790 static std::pair<Value *, Value *>
791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
792   Type *IndexType = IntegerType::get(V->getContext(),
793                                      DL.getIndexTypeSizeInBits(V->getType()));
794 
795   Constant *Index = ConstantInt::getNullValue(IndexType);
796   while (true) {
797     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
798       // We accept only inbouds GEPs here to exclude the possibility of
799       // overflow.
800       if (!GEP->isInBounds())
801         break;
802       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
803           GEP->getType() == V->getType()) {
804         V = GEP->getOperand(0);
805         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
806         Index = ConstantExpr::getAdd(
807             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
808         continue;
809       }
810       break;
811     }
812     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
813       if (!CI->isNoopCast(DL))
814         break;
815       V = CI->getOperand(0);
816       continue;
817     }
818     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
819       if (!CI->isNoopCast(DL))
820         break;
821       V = CI->getOperand(0);
822       continue;
823     }
824     break;
825   }
826   return {V, Index};
827 }
828 
829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
830 /// We can look through PHIs, GEPs and casts in order to determine a common base
831 /// between GEPLHS and RHS.
832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
833                                               ICmpInst::Predicate Cond,
834                                               const DataLayout &DL) {
835   if (!GEPLHS->hasAllConstantIndices())
836     return nullptr;
837 
838   // Make sure the pointers have the same type.
839   if (GEPLHS->getType() != RHS->getType())
840     return nullptr;
841 
842   Value *PtrBase, *Index;
843   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
844 
845   // The set of nodes that will take part in this transformation.
846   SetVector<Value *> Nodes;
847 
848   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
849     return nullptr;
850 
851   // We know we can re-write this as
852   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
853   // Since we've only looked through inbouds GEPs we know that we
854   // can't have overflow on either side. We can therefore re-write
855   // this as:
856   //   OFFSET1 cmp OFFSET2
857   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
858 
859   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
860   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
861   // offset. Since Index is the offset of LHS to the base pointer, we will now
862   // compare the offsets instead of comparing the pointers.
863   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
864 }
865 
866 /// Fold comparisons between a GEP instruction and something else. At this point
867 /// we know that the GEP is on the LHS of the comparison.
868 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
869                                        ICmpInst::Predicate Cond,
870                                        Instruction &I) {
871   // Don't transform signed compares of GEPs into index compares. Even if the
872   // GEP is inbounds, the final add of the base pointer can have signed overflow
873   // and would change the result of the icmp.
874   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
875   // the maximum signed value for the pointer type.
876   if (ICmpInst::isSigned(Cond))
877     return nullptr;
878 
879   // Look through bitcasts and addrspacecasts. We do not however want to remove
880   // 0 GEPs.
881   if (!isa<GetElementPtrInst>(RHS))
882     RHS = RHS->stripPointerCasts();
883 
884   Value *PtrBase = GEPLHS->getOperand(0);
885   if (PtrBase == RHS && GEPLHS->isInBounds()) {
886     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
887     // This transformation (ignoring the base and scales) is valid because we
888     // know pointers can't overflow since the gep is inbounds.  See if we can
889     // output an optimized form.
890     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
891 
892     // If not, synthesize the offset the hard way.
893     if (!Offset)
894       Offset = EmitGEPOffset(GEPLHS);
895     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
896                         Constant::getNullValue(Offset->getType()));
897   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
898     // If the base pointers are different, but the indices are the same, just
899     // compare the base pointer.
900     if (PtrBase != GEPRHS->getOperand(0)) {
901       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
902       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
903                         GEPRHS->getOperand(0)->getType();
904       if (IndicesTheSame)
905         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
906           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
907             IndicesTheSame = false;
908             break;
909           }
910 
911       // If all indices are the same, just compare the base pointers.
912       if (IndicesTheSame)
913         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
914 
915       // If we're comparing GEPs with two base pointers that only differ in type
916       // and both GEPs have only constant indices or just one use, then fold
917       // the compare with the adjusted indices.
918       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
919           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
920           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
921           PtrBase->stripPointerCasts() ==
922               GEPRHS->getOperand(0)->stripPointerCasts()) {
923         Value *LOffset = EmitGEPOffset(GEPLHS);
924         Value *ROffset = EmitGEPOffset(GEPRHS);
925 
926         // If we looked through an addrspacecast between different sized address
927         // spaces, the LHS and RHS pointers are different sized
928         // integers. Truncate to the smaller one.
929         Type *LHSIndexTy = LOffset->getType();
930         Type *RHSIndexTy = ROffset->getType();
931         if (LHSIndexTy != RHSIndexTy) {
932           if (LHSIndexTy->getPrimitiveSizeInBits() <
933               RHSIndexTy->getPrimitiveSizeInBits()) {
934             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
935           } else
936             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
937         }
938 
939         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
940                                         LOffset, ROffset);
941         return replaceInstUsesWith(I, Cmp);
942       }
943 
944       // Otherwise, the base pointers are different and the indices are
945       // different. Try convert this to an indexed compare by looking through
946       // PHIs/casts.
947       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
948     }
949 
950     // If one of the GEPs has all zero indices, recurse.
951     if (GEPLHS->hasAllZeroIndices())
952       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
953                          ICmpInst::getSwappedPredicate(Cond), I);
954 
955     // If the other GEP has all zero indices, recurse.
956     if (GEPRHS->hasAllZeroIndices())
957       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
958 
959     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
960     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
961       // If the GEPs only differ by one index, compare it.
962       unsigned NumDifferences = 0;  // Keep track of # differences.
963       unsigned DiffOperand = 0;     // The operand that differs.
964       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
965         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
966           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
967                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
968             // Irreconcilable differences.
969             NumDifferences = 2;
970             break;
971           } else {
972             if (NumDifferences++) break;
973             DiffOperand = i;
974           }
975         }
976 
977       if (NumDifferences == 0)   // SAME GEP?
978         return replaceInstUsesWith(I, // No comparison is needed here.
979                              Builder.getInt1(ICmpInst::isTrueWhenEqual(Cond)));
980 
981       else if (NumDifferences == 1 && GEPsInBounds) {
982         Value *LHSV = GEPLHS->getOperand(DiffOperand);
983         Value *RHSV = GEPRHS->getOperand(DiffOperand);
984         // Make sure we do a signed comparison here.
985         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
986       }
987     }
988 
989     // Only lower this if the icmp is the only user of the GEP or if we expect
990     // the result to fold to a constant!
991     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
992         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
993       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
994       Value *L = EmitGEPOffset(GEPLHS);
995       Value *R = EmitGEPOffset(GEPRHS);
996       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
997     }
998   }
999 
1000   // Try convert this to an indexed compare by looking through PHIs/casts as a
1001   // last resort.
1002   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1003 }
1004 
1005 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1006                                          const AllocaInst *Alloca,
1007                                          const Value *Other) {
1008   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1009 
1010   // It would be tempting to fold away comparisons between allocas and any
1011   // pointer not based on that alloca (e.g. an argument). However, even
1012   // though such pointers cannot alias, they can still compare equal.
1013   //
1014   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1015   // doesn't escape we can argue that it's impossible to guess its value, and we
1016   // can therefore act as if any such guesses are wrong.
1017   //
1018   // The code below checks that the alloca doesn't escape, and that it's only
1019   // used in a comparison once (the current instruction). The
1020   // single-comparison-use condition ensures that we're trivially folding all
1021   // comparisons against the alloca consistently, and avoids the risk of
1022   // erroneously folding a comparison of the pointer with itself.
1023 
1024   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1025 
1026   SmallVector<const Use *, 32> Worklist;
1027   for (const Use &U : Alloca->uses()) {
1028     if (Worklist.size() >= MaxIter)
1029       return nullptr;
1030     Worklist.push_back(&U);
1031   }
1032 
1033   unsigned NumCmps = 0;
1034   while (!Worklist.empty()) {
1035     assert(Worklist.size() <= MaxIter);
1036     const Use *U = Worklist.pop_back_val();
1037     const Value *V = U->getUser();
1038     --MaxIter;
1039 
1040     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1041         isa<SelectInst>(V)) {
1042       // Track the uses.
1043     } else if (isa<LoadInst>(V)) {
1044       // Loading from the pointer doesn't escape it.
1045       continue;
1046     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1047       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1048       if (SI->getValueOperand() == U->get())
1049         return nullptr;
1050       continue;
1051     } else if (isa<ICmpInst>(V)) {
1052       if (NumCmps++)
1053         return nullptr; // Found more than one cmp.
1054       continue;
1055     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1056       switch (Intrin->getIntrinsicID()) {
1057         // These intrinsics don't escape or compare the pointer. Memset is safe
1058         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1059         // we don't allow stores, so src cannot point to V.
1060         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1061         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1062           continue;
1063         default:
1064           return nullptr;
1065       }
1066     } else {
1067       return nullptr;
1068     }
1069     for (const Use &U : V->uses()) {
1070       if (Worklist.size() >= MaxIter)
1071         return nullptr;
1072       Worklist.push_back(&U);
1073     }
1074   }
1075 
1076   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1077   return replaceInstUsesWith(
1078       ICI,
1079       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1080 }
1081 
1082 /// Fold "icmp pred (X+CI), X".
1083 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, ConstantInt *CI,
1084                                               ICmpInst::Predicate Pred) {
1085   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1086   // so the values can never be equal.  Similarly for all other "or equals"
1087   // operators.
1088 
1089   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1090   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1091   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1092   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1093     Value *R =
1094       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
1095     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1096   }
1097 
1098   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1099   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1100   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1101   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1102     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
1103 
1104   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
1105   ConstantInt *SMax = ConstantInt::get(X->getContext(),
1106                                        APInt::getSignedMaxValue(BitWidth));
1107 
1108   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1109   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1110   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1111   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1112   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1113   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1114   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1115     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
1116 
1117   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1118   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1119   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1120   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1121   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1122   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1123 
1124   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1125   Constant *C = Builder.getInt(CI->getValue() - 1);
1126   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
1127 }
1128 
1129 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1130 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1131 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1132 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1133                                                  const APInt &AP1,
1134                                                  const APInt &AP2) {
1135   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1136 
1137   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1138     if (I.getPredicate() == I.ICMP_NE)
1139       Pred = CmpInst::getInversePredicate(Pred);
1140     return new ICmpInst(Pred, LHS, RHS);
1141   };
1142 
1143   // Don't bother doing any work for cases which InstSimplify handles.
1144   if (AP2.isNullValue())
1145     return nullptr;
1146 
1147   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1148   if (IsAShr) {
1149     if (AP2.isAllOnesValue())
1150       return nullptr;
1151     if (AP2.isNegative() != AP1.isNegative())
1152       return nullptr;
1153     if (AP2.sgt(AP1))
1154       return nullptr;
1155   }
1156 
1157   if (!AP1)
1158     // 'A' must be large enough to shift out the highest set bit.
1159     return getICmp(I.ICMP_UGT, A,
1160                    ConstantInt::get(A->getType(), AP2.logBase2()));
1161 
1162   if (AP1 == AP2)
1163     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1164 
1165   int Shift;
1166   if (IsAShr && AP1.isNegative())
1167     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1168   else
1169     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1170 
1171   if (Shift > 0) {
1172     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1173       // There are multiple solutions if we are comparing against -1 and the LHS
1174       // of the ashr is not a power of two.
1175       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1176         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1177       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1178     } else if (AP1 == AP2.lshr(Shift)) {
1179       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1180     }
1181   }
1182 
1183   // Shifting const2 will never be equal to const1.
1184   // FIXME: This should always be handled by InstSimplify?
1185   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1186   return replaceInstUsesWith(I, TorF);
1187 }
1188 
1189 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1190 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1191 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1192                                                  const APInt &AP1,
1193                                                  const APInt &AP2) {
1194   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1195 
1196   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1197     if (I.getPredicate() == I.ICMP_NE)
1198       Pred = CmpInst::getInversePredicate(Pred);
1199     return new ICmpInst(Pred, LHS, RHS);
1200   };
1201 
1202   // Don't bother doing any work for cases which InstSimplify handles.
1203   if (AP2.isNullValue())
1204     return nullptr;
1205 
1206   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1207 
1208   if (!AP1 && AP2TrailingZeros != 0)
1209     return getICmp(
1210         I.ICMP_UGE, A,
1211         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1212 
1213   if (AP1 == AP2)
1214     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1215 
1216   // Get the distance between the lowest bits that are set.
1217   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1218 
1219   if (Shift > 0 && AP2.shl(Shift) == AP1)
1220     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1221 
1222   // Shifting const2 will never be equal to const1.
1223   // FIXME: This should always be handled by InstSimplify?
1224   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1225   return replaceInstUsesWith(I, TorF);
1226 }
1227 
1228 /// The caller has matched a pattern of the form:
1229 ///   I = icmp ugt (add (add A, B), CI2), CI1
1230 /// If this is of the form:
1231 ///   sum = a + b
1232 ///   if (sum+128 >u 255)
1233 /// Then replace it with llvm.sadd.with.overflow.i8.
1234 ///
1235 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1236                                           ConstantInt *CI2, ConstantInt *CI1,
1237                                           InstCombiner &IC) {
1238   // The transformation we're trying to do here is to transform this into an
1239   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1240   // with a narrower add, and discard the add-with-constant that is part of the
1241   // range check (if we can't eliminate it, this isn't profitable).
1242 
1243   // In order to eliminate the add-with-constant, the compare can be its only
1244   // use.
1245   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1246   if (!AddWithCst->hasOneUse())
1247     return nullptr;
1248 
1249   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1250   if (!CI2->getValue().isPowerOf2())
1251     return nullptr;
1252   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1253   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1254     return nullptr;
1255 
1256   // The width of the new add formed is 1 more than the bias.
1257   ++NewWidth;
1258 
1259   // Check to see that CI1 is an all-ones value with NewWidth bits.
1260   if (CI1->getBitWidth() == NewWidth ||
1261       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1262     return nullptr;
1263 
1264   // This is only really a signed overflow check if the inputs have been
1265   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1266   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1267   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1268   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1269       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1270     return nullptr;
1271 
1272   // In order to replace the original add with a narrower
1273   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1274   // and truncates that discard the high bits of the add.  Verify that this is
1275   // the case.
1276   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1277   for (User *U : OrigAdd->users()) {
1278     if (U == AddWithCst)
1279       continue;
1280 
1281     // Only accept truncates for now.  We would really like a nice recursive
1282     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1283     // chain to see which bits of a value are actually demanded.  If the
1284     // original add had another add which was then immediately truncated, we
1285     // could still do the transformation.
1286     TruncInst *TI = dyn_cast<TruncInst>(U);
1287     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1288       return nullptr;
1289   }
1290 
1291   // If the pattern matches, truncate the inputs to the narrower type and
1292   // use the sadd_with_overflow intrinsic to efficiently compute both the
1293   // result and the overflow bit.
1294   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1295   Value *F = Intrinsic::getDeclaration(I.getModule(),
1296                                        Intrinsic::sadd_with_overflow, NewType);
1297 
1298   InstCombiner::BuilderTy &Builder = IC.Builder;
1299 
1300   // Put the new code above the original add, in case there are any uses of the
1301   // add between the add and the compare.
1302   Builder.SetInsertPoint(OrigAdd);
1303 
1304   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1305   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1306   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1307   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1308   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1309 
1310   // The inner add was the result of the narrow add, zero extended to the
1311   // wider type.  Replace it with the result computed by the intrinsic.
1312   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1313 
1314   // The original icmp gets replaced with the overflow value.
1315   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1316 }
1317 
1318 // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1319 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1320   CmpInst::Predicate Pred = Cmp.getPredicate();
1321   Value *X = Cmp.getOperand(0);
1322 
1323   if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) {
1324     Value *A, *B;
1325     SelectPatternResult SPR = matchSelectPattern(X, A, B);
1326     if (SPR.Flavor == SPF_SMIN) {
1327       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1328         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1329       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1330         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1331     }
1332   }
1333   return nullptr;
1334 }
1335 
1336 // Fold icmp Pred X, C.
1337 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1338   CmpInst::Predicate Pred = Cmp.getPredicate();
1339   Value *X = Cmp.getOperand(0);
1340 
1341   const APInt *C;
1342   if (!match(Cmp.getOperand(1), m_APInt(C)))
1343     return nullptr;
1344 
1345   Value *A = nullptr, *B = nullptr;
1346 
1347   // Match the following pattern, which is a common idiom when writing
1348   // overflow-safe integer arithmetic functions. The source performs an addition
1349   // in wider type and explicitly checks for overflow using comparisons against
1350   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1351   //
1352   // TODO: This could probably be generalized to handle other overflow-safe
1353   // operations if we worked out the formulas to compute the appropriate magic
1354   // constants.
1355   //
1356   // sum = a + b
1357   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1358   {
1359     ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1360     if (Pred == ICmpInst::ICMP_UGT &&
1361         match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1362       if (Instruction *Res = processUGT_ADDCST_ADD(
1363               Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this))
1364         return Res;
1365   }
1366 
1367   // FIXME: Use m_APInt to allow folds for splat constants.
1368   ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1));
1369   if (!CI)
1370     return nullptr;
1371 
1372   // Canonicalize icmp instructions based on dominating conditions.
1373   BasicBlock *Parent = Cmp.getParent();
1374   BasicBlock *Dom = Parent->getSinglePredecessor();
1375   auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
1376   ICmpInst::Predicate Pred2;
1377   BasicBlock *TrueBB, *FalseBB;
1378   ConstantInt *CI2;
1379   if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)),
1380                            TrueBB, FalseBB)) &&
1381       TrueBB != FalseBB) {
1382     ConstantRange CR =
1383         ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue());
1384     ConstantRange DominatingCR =
1385         (Parent == TrueBB)
1386             ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue())
1387             : ConstantRange::makeExactICmpRegion(
1388                   CmpInst::getInversePredicate(Pred2), CI2->getValue());
1389     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1390     ConstantRange Difference = DominatingCR.difference(CR);
1391     if (Intersection.isEmptySet())
1392       return replaceInstUsesWith(Cmp, Builder.getFalse());
1393     if (Difference.isEmptySet())
1394       return replaceInstUsesWith(Cmp, Builder.getTrue());
1395 
1396     // If this is a normal comparison, it demands all bits. If it is a sign
1397     // bit comparison, it only demands the sign bit.
1398     bool UnusedBit;
1399     bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit);
1400 
1401     // Canonicalizing a sign bit comparison that gets used in a branch,
1402     // pessimizes codegen by generating branch on zero instruction instead
1403     // of a test and branch. So we avoid canonicalizing in such situations
1404     // because test and branch instruction has better branch displacement
1405     // than compare and branch instruction.
1406     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1407       return nullptr;
1408 
1409     if (auto *AI = Intersection.getSingleElement())
1410       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*AI));
1411     if (auto *AD = Difference.getSingleElement())
1412       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*AD));
1413   }
1414 
1415   return nullptr;
1416 }
1417 
1418 /// Fold icmp (trunc X, Y), C.
1419 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1420                                                  TruncInst *Trunc,
1421                                                  const APInt &C) {
1422   ICmpInst::Predicate Pred = Cmp.getPredicate();
1423   Value *X = Trunc->getOperand(0);
1424   if (C.isOneValue() && C.getBitWidth() > 1) {
1425     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1426     Value *V = nullptr;
1427     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1428       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1429                           ConstantInt::get(V->getType(), 1));
1430   }
1431 
1432   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1433     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1434     // of the high bits truncated out of x are known.
1435     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1436              SrcBits = X->getType()->getScalarSizeInBits();
1437     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1438 
1439     // If all the high bits are known, we can do this xform.
1440     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1441       // Pull in the high bits from known-ones set.
1442       APInt NewRHS = C.zext(SrcBits);
1443       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1444       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1445     }
1446   }
1447 
1448   return nullptr;
1449 }
1450 
1451 /// Fold icmp (xor X, Y), C.
1452 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1453                                                BinaryOperator *Xor,
1454                                                const APInt &C) {
1455   Value *X = Xor->getOperand(0);
1456   Value *Y = Xor->getOperand(1);
1457   const APInt *XorC;
1458   if (!match(Y, m_APInt(XorC)))
1459     return nullptr;
1460 
1461   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1462   // fold the xor.
1463   ICmpInst::Predicate Pred = Cmp.getPredicate();
1464   bool TrueIfSigned = false;
1465   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1466 
1467     // If the sign bit of the XorCst is not set, there is no change to
1468     // the operation, just stop using the Xor.
1469     if (!XorC->isNegative()) {
1470       Cmp.setOperand(0, X);
1471       Worklist.Add(Xor);
1472       return &Cmp;
1473     }
1474 
1475     // Emit the opposite comparison.
1476     if (TrueIfSigned)
1477       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1478                           ConstantInt::getAllOnesValue(X->getType()));
1479     else
1480       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1481                           ConstantInt::getNullValue(X->getType()));
1482   }
1483 
1484   if (Xor->hasOneUse()) {
1485     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1486     if (!Cmp.isEquality() && XorC->isSignMask()) {
1487       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1488                             : Cmp.getSignedPredicate();
1489       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1490     }
1491 
1492     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1493     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1494       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1495                             : Cmp.getSignedPredicate();
1496       Pred = Cmp.getSwappedPredicate(Pred);
1497       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1498     }
1499   }
1500 
1501   // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1502   //   iff -C is a power of 2
1503   if (Pred == ICmpInst::ICMP_UGT && *XorC == ~C && (C + 1).isPowerOf2())
1504     return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1505 
1506   // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1507   //   iff -C is a power of 2
1508   if (Pred == ICmpInst::ICMP_ULT && *XorC == -C && C.isPowerOf2())
1509     return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
1510 
1511   return nullptr;
1512 }
1513 
1514 /// Fold icmp (and (sh X, Y), C2), C1.
1515 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1516                                             const APInt &C1, const APInt &C2) {
1517   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1518   if (!Shift || !Shift->isShift())
1519     return nullptr;
1520 
1521   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1522   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1523   // code produced by the clang front-end, for bitfield access.
1524   // This seemingly simple opportunity to fold away a shift turns out to be
1525   // rather complicated. See PR17827 for details.
1526   unsigned ShiftOpcode = Shift->getOpcode();
1527   bool IsShl = ShiftOpcode == Instruction::Shl;
1528   const APInt *C3;
1529   if (match(Shift->getOperand(1), m_APInt(C3))) {
1530     bool CanFold = false;
1531     if (ShiftOpcode == Instruction::Shl) {
1532       // For a left shift, we can fold if the comparison is not signed. We can
1533       // also fold a signed comparison if the mask value and comparison value
1534       // are not negative. These constraints may not be obvious, but we can
1535       // prove that they are correct using an SMT solver.
1536       if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative()))
1537         CanFold = true;
1538     } else {
1539       bool IsAshr = ShiftOpcode == Instruction::AShr;
1540       // For a logical right shift, we can fold if the comparison is not signed.
1541       // We can also fold a signed comparison if the shifted mask value and the
1542       // shifted comparison value are not negative. These constraints may not be
1543       // obvious, but we can prove that they are correct using an SMT solver.
1544       // For an arithmetic shift right we can do the same, if we ensure
1545       // the And doesn't use any bits being shifted in. Normally these would
1546       // be turned into lshr by SimplifyDemandedBits, but not if there is an
1547       // additional user.
1548       if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) {
1549         if (!Cmp.isSigned() ||
1550             (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative()))
1551           CanFold = true;
1552       }
1553     }
1554 
1555     if (CanFold) {
1556       APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3);
1557       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1558       // Check to see if we are shifting out any of the bits being compared.
1559       if (SameAsC1 != C1) {
1560         // If we shifted bits out, the fold is not going to work out. As a
1561         // special case, check to see if this means that the result is always
1562         // true or false now.
1563         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1564           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1565         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1566           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1567       } else {
1568         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1569         APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3);
1570         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1571         And->setOperand(0, Shift->getOperand(0));
1572         Worklist.Add(Shift); // Shift is dead.
1573         return &Cmp;
1574       }
1575     }
1576   }
1577 
1578   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1579   // preferable because it allows the C2 << Y expression to be hoisted out of a
1580   // loop if Y is invariant and X is not.
1581   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1582       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1583     // Compute C2 << Y.
1584     Value *NewShift =
1585         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1586               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1587 
1588     // Compute X & (C2 << Y).
1589     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1590     Cmp.setOperand(0, NewAnd);
1591     return &Cmp;
1592   }
1593 
1594   return nullptr;
1595 }
1596 
1597 /// Fold icmp (and X, C2), C1.
1598 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1599                                                  BinaryOperator *And,
1600                                                  const APInt &C1) {
1601   const APInt *C2;
1602   if (!match(And->getOperand(1), m_APInt(C2)))
1603     return nullptr;
1604 
1605   if (!And->hasOneUse())
1606     return nullptr;
1607 
1608   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1609   // the input width without changing the value produced, eliminate the cast:
1610   //
1611   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1612   //
1613   // We can do this transformation if the constants do not have their sign bits
1614   // set or if it is an equality comparison. Extending a relational comparison
1615   // when we're checking the sign bit would not work.
1616   Value *W;
1617   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1618       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1619     // TODO: Is this a good transform for vectors? Wider types may reduce
1620     // throughput. Should this transform be limited (even for scalars) by using
1621     // shouldChangeType()?
1622     if (!Cmp.getType()->isVectorTy()) {
1623       Type *WideType = W->getType();
1624       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1625       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1626       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1627       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1628       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1629     }
1630   }
1631 
1632   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1633     return I;
1634 
1635   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1636   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1637   //
1638   // iff pred isn't signed
1639   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1640       match(And->getOperand(1), m_One())) {
1641     Constant *One = cast<Constant>(And->getOperand(1));
1642     Value *Or = And->getOperand(0);
1643     Value *A, *B, *LShr;
1644     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1645         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1646       unsigned UsesRemoved = 0;
1647       if (And->hasOneUse())
1648         ++UsesRemoved;
1649       if (Or->hasOneUse())
1650         ++UsesRemoved;
1651       if (LShr->hasOneUse())
1652         ++UsesRemoved;
1653 
1654       // Compute A & ((1 << B) | 1)
1655       Value *NewOr = nullptr;
1656       if (auto *C = dyn_cast<Constant>(B)) {
1657         if (UsesRemoved >= 1)
1658           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1659       } else {
1660         if (UsesRemoved >= 3)
1661           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1662                                                      /*HasNUW=*/true),
1663                                    One, Or->getName());
1664       }
1665       if (NewOr) {
1666         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1667         Cmp.setOperand(0, NewAnd);
1668         return &Cmp;
1669       }
1670     }
1671   }
1672 
1673   return nullptr;
1674 }
1675 
1676 /// Fold icmp (and X, Y), C.
1677 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1678                                                BinaryOperator *And,
1679                                                const APInt &C) {
1680   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1681     return I;
1682 
1683   // TODO: These all require that Y is constant too, so refactor with the above.
1684 
1685   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1686   Value *X = And->getOperand(0);
1687   Value *Y = And->getOperand(1);
1688   if (auto *LI = dyn_cast<LoadInst>(X))
1689     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1690       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1691         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1692             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1693           ConstantInt *C2 = cast<ConstantInt>(Y);
1694           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1695             return Res;
1696         }
1697 
1698   if (!Cmp.isEquality())
1699     return nullptr;
1700 
1701   // X & -C == -C -> X >  u ~C
1702   // X & -C != -C -> X <= u ~C
1703   //   iff C is a power of 2
1704   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1705     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1706                                                           : CmpInst::ICMP_ULE;
1707     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1708   }
1709 
1710   // (X & C2) == 0 -> (trunc X) >= 0
1711   // (X & C2) != 0 -> (trunc X) <  0
1712   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1713   const APInt *C2;
1714   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1715     int32_t ExactLogBase2 = C2->exactLogBase2();
1716     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1717       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1718       if (And->getType()->isVectorTy())
1719         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1720       Value *Trunc = Builder.CreateTrunc(X, NTy);
1721       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1722                                                             : CmpInst::ICMP_SLT;
1723       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1724     }
1725   }
1726 
1727   return nullptr;
1728 }
1729 
1730 /// Fold icmp (or X, Y), C.
1731 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1732                                               const APInt &C) {
1733   ICmpInst::Predicate Pred = Cmp.getPredicate();
1734   if (C.isOneValue()) {
1735     // icmp slt signum(V) 1 --> icmp slt V, 1
1736     Value *V = nullptr;
1737     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1738       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1739                           ConstantInt::get(V->getType(), 1));
1740   }
1741 
1742   // X | C == C --> X <=u C
1743   // X | C != C --> X  >u C
1744   //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1745   if (Cmp.isEquality() && Cmp.getOperand(1) == Or->getOperand(1) &&
1746       (C + 1).isPowerOf2()) {
1747     Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1748     return new ICmpInst(Pred, Or->getOperand(0), Or->getOperand(1));
1749   }
1750 
1751   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1752     return nullptr;
1753 
1754   Value *P, *Q;
1755   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1756     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1757     // -> and (icmp eq P, null), (icmp eq Q, null).
1758     Value *CmpP =
1759         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1760     Value *CmpQ =
1761         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1762     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1763     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1764   }
1765 
1766   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1767   // a shorter form that has more potential to be folded even further.
1768   Value *X1, *X2, *X3, *X4;
1769   if (match(Or->getOperand(0), m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1770       match(Or->getOperand(1), m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1771     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1772     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1773     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1774     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1775     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1776     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1777   }
1778 
1779   return nullptr;
1780 }
1781 
1782 /// Fold icmp (mul X, Y), C.
1783 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1784                                                BinaryOperator *Mul,
1785                                                const APInt &C) {
1786   const APInt *MulC;
1787   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1788     return nullptr;
1789 
1790   // If this is a test of the sign bit and the multiply is sign-preserving with
1791   // a constant operand, use the multiply LHS operand instead.
1792   ICmpInst::Predicate Pred = Cmp.getPredicate();
1793   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1794     if (MulC->isNegative())
1795       Pred = ICmpInst::getSwappedPredicate(Pred);
1796     return new ICmpInst(Pred, Mul->getOperand(0),
1797                         Constant::getNullValue(Mul->getType()));
1798   }
1799 
1800   return nullptr;
1801 }
1802 
1803 /// Fold icmp (shl 1, Y), C.
1804 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1805                                    const APInt &C) {
1806   Value *Y;
1807   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1808     return nullptr;
1809 
1810   Type *ShiftType = Shl->getType();
1811   unsigned TypeBits = C.getBitWidth();
1812   bool CIsPowerOf2 = C.isPowerOf2();
1813   ICmpInst::Predicate Pred = Cmp.getPredicate();
1814   if (Cmp.isUnsigned()) {
1815     // (1 << Y) pred C -> Y pred Log2(C)
1816     if (!CIsPowerOf2) {
1817       // (1 << Y) <  30 -> Y <= 4
1818       // (1 << Y) <= 30 -> Y <= 4
1819       // (1 << Y) >= 30 -> Y >  4
1820       // (1 << Y) >  30 -> Y >  4
1821       if (Pred == ICmpInst::ICMP_ULT)
1822         Pred = ICmpInst::ICMP_ULE;
1823       else if (Pred == ICmpInst::ICMP_UGE)
1824         Pred = ICmpInst::ICMP_UGT;
1825     }
1826 
1827     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1828     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1829     unsigned CLog2 = C.logBase2();
1830     if (CLog2 == TypeBits - 1) {
1831       if (Pred == ICmpInst::ICMP_UGE)
1832         Pred = ICmpInst::ICMP_EQ;
1833       else if (Pred == ICmpInst::ICMP_ULT)
1834         Pred = ICmpInst::ICMP_NE;
1835     }
1836     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1837   } else if (Cmp.isSigned()) {
1838     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1839     if (C.isAllOnesValue()) {
1840       // (1 << Y) <= -1 -> Y == 31
1841       if (Pred == ICmpInst::ICMP_SLE)
1842         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1843 
1844       // (1 << Y) >  -1 -> Y != 31
1845       if (Pred == ICmpInst::ICMP_SGT)
1846         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1847     } else if (!C) {
1848       // (1 << Y) <  0 -> Y == 31
1849       // (1 << Y) <= 0 -> Y == 31
1850       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1851         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1852 
1853       // (1 << Y) >= 0 -> Y != 31
1854       // (1 << Y) >  0 -> Y != 31
1855       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1856         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1857     }
1858   } else if (Cmp.isEquality() && CIsPowerOf2) {
1859     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
1860   }
1861 
1862   return nullptr;
1863 }
1864 
1865 /// Fold icmp (shl X, Y), C.
1866 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
1867                                                BinaryOperator *Shl,
1868                                                const APInt &C) {
1869   const APInt *ShiftVal;
1870   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
1871     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
1872 
1873   const APInt *ShiftAmt;
1874   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
1875     return foldICmpShlOne(Cmp, Shl, C);
1876 
1877   // Check that the shift amount is in range. If not, don't perform undefined
1878   // shifts. When the shift is visited, it will be simplified.
1879   unsigned TypeBits = C.getBitWidth();
1880   if (ShiftAmt->uge(TypeBits))
1881     return nullptr;
1882 
1883   ICmpInst::Predicate Pred = Cmp.getPredicate();
1884   Value *X = Shl->getOperand(0);
1885   Type *ShType = Shl->getType();
1886 
1887   // NSW guarantees that we are only shifting out sign bits from the high bits,
1888   // so we can ASHR the compare constant without needing a mask and eliminate
1889   // the shift.
1890   if (Shl->hasNoSignedWrap()) {
1891     if (Pred == ICmpInst::ICMP_SGT) {
1892       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
1893       APInt ShiftedC = C.ashr(*ShiftAmt);
1894       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1895     }
1896     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
1897         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
1898       APInt ShiftedC = C.ashr(*ShiftAmt);
1899       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1900     }
1901     if (Pred == ICmpInst::ICMP_SLT) {
1902       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
1903       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
1904       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
1905       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
1906       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
1907       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
1908       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1909     }
1910     // If this is a signed comparison to 0 and the shift is sign preserving,
1911     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
1912     // do that if we're sure to not continue on in this function.
1913     if (isSignTest(Pred, C))
1914       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
1915   }
1916 
1917   // NUW guarantees that we are only shifting out zero bits from the high bits,
1918   // so we can LSHR the compare constant without needing a mask and eliminate
1919   // the shift.
1920   if (Shl->hasNoUnsignedWrap()) {
1921     if (Pred == ICmpInst::ICMP_UGT) {
1922       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
1923       APInt ShiftedC = C.lshr(*ShiftAmt);
1924       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1925     }
1926     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
1927         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
1928       APInt ShiftedC = C.lshr(*ShiftAmt);
1929       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1930     }
1931     if (Pred == ICmpInst::ICMP_ULT) {
1932       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
1933       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
1934       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
1935       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
1936       assert(C.ugt(0) && "ult 0 should have been eliminated");
1937       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
1938       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1939     }
1940   }
1941 
1942   if (Cmp.isEquality() && Shl->hasOneUse()) {
1943     // Strength-reduce the shift into an 'and'.
1944     Constant *Mask = ConstantInt::get(
1945         ShType,
1946         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
1947     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
1948     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
1949     return new ICmpInst(Pred, And, LShrC);
1950   }
1951 
1952   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1953   bool TrueIfSigned = false;
1954   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
1955     // (X << 31) <s 0  --> (X & 1) != 0
1956     Constant *Mask = ConstantInt::get(
1957         ShType,
1958         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
1959     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
1960     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1961                         And, Constant::getNullValue(ShType));
1962   }
1963 
1964   // Transform (icmp pred iM (shl iM %v, N), C)
1965   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
1966   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
1967   // This enables us to get rid of the shift in favor of a trunc that may be
1968   // free on the target. It has the additional benefit of comparing to a
1969   // smaller constant that may be more target-friendly.
1970   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
1971   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
1972       DL.isLegalInteger(TypeBits - Amt)) {
1973     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
1974     if (ShType->isVectorTy())
1975       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
1976     Constant *NewC =
1977         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
1978     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
1979   }
1980 
1981   return nullptr;
1982 }
1983 
1984 /// Fold icmp ({al}shr X, Y), C.
1985 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
1986                                                BinaryOperator *Shr,
1987                                                const APInt &C) {
1988   // An exact shr only shifts out zero bits, so:
1989   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
1990   Value *X = Shr->getOperand(0);
1991   CmpInst::Predicate Pred = Cmp.getPredicate();
1992   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
1993       C.isNullValue())
1994     return new ICmpInst(Pred, X, Cmp.getOperand(1));
1995 
1996   const APInt *ShiftVal;
1997   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
1998     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
1999 
2000   const APInt *ShiftAmt;
2001   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2002     return nullptr;
2003 
2004   // Check that the shift amount is in range. If not, don't perform undefined
2005   // shifts. When the shift is visited it will be simplified.
2006   unsigned TypeBits = C.getBitWidth();
2007   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2008   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2009     return nullptr;
2010 
2011   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2012   bool IsExact = Shr->isExact();
2013   Type *ShrTy = Shr->getType();
2014   // TODO: If we could guarantee that InstSimplify would handle all of the
2015   // constant-value-based preconditions in the folds below, then we could assert
2016   // those conditions rather than checking them. This is difficult because of
2017   // undef/poison (PR34838).
2018   if (IsAShr) {
2019     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2020       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2021       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2022       APInt ShiftedC = C.shl(ShAmtVal);
2023       if (ShiftedC.ashr(ShAmtVal) == C)
2024         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2025     }
2026     if (Pred == CmpInst::ICMP_SGT) {
2027       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2028       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2029       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2030           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2031         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2032     }
2033   } else {
2034     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2035       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2036       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2037       APInt ShiftedC = C.shl(ShAmtVal);
2038       if (ShiftedC.lshr(ShAmtVal) == C)
2039         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2040     }
2041     if (Pred == CmpInst::ICMP_UGT) {
2042       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2043       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2044       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2045         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2046     }
2047   }
2048 
2049   if (!Cmp.isEquality())
2050     return nullptr;
2051 
2052   // Handle equality comparisons of shift-by-constant.
2053 
2054   // If the comparison constant changes with the shift, the comparison cannot
2055   // succeed (bits of the comparison constant cannot match the shifted value).
2056   // This should be known by InstSimplify and already be folded to true/false.
2057   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2058           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2059          "Expected icmp+shr simplify did not occur.");
2060 
2061   // If the bits shifted out are known zero, compare the unshifted value:
2062   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2063   if (Shr->isExact())
2064     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2065 
2066   if (Shr->hasOneUse()) {
2067     // Canonicalize the shift into an 'and':
2068     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2069     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2070     Constant *Mask = ConstantInt::get(ShrTy, Val);
2071     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2072     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2073   }
2074 
2075   return nullptr;
2076 }
2077 
2078 /// Fold icmp (udiv X, Y), C.
2079 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2080                                                 BinaryOperator *UDiv,
2081                                                 const APInt &C) {
2082   const APInt *C2;
2083   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2084     return nullptr;
2085 
2086   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2087 
2088   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2089   Value *Y = UDiv->getOperand(1);
2090   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2091     assert(!C.isMaxValue() &&
2092            "icmp ugt X, UINT_MAX should have been simplified already.");
2093     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2094                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2095   }
2096 
2097   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2098   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2099     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2100     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2101                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2102   }
2103 
2104   return nullptr;
2105 }
2106 
2107 /// Fold icmp ({su}div X, Y), C.
2108 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2109                                                BinaryOperator *Div,
2110                                                const APInt &C) {
2111   // Fold: icmp pred ([us]div X, C2), C -> range test
2112   // Fold this div into the comparison, producing a range check.
2113   // Determine, based on the divide type, what the range is being
2114   // checked.  If there is an overflow on the low or high side, remember
2115   // it, otherwise compute the range [low, hi) bounding the new value.
2116   // See: InsertRangeTest above for the kinds of replacements possible.
2117   const APInt *C2;
2118   if (!match(Div->getOperand(1), m_APInt(C2)))
2119     return nullptr;
2120 
2121   // FIXME: If the operand types don't match the type of the divide
2122   // then don't attempt this transform. The code below doesn't have the
2123   // logic to deal with a signed divide and an unsigned compare (and
2124   // vice versa). This is because (x /s C2) <s C  produces different
2125   // results than (x /s C2) <u C or (x /u C2) <s C or even
2126   // (x /u C2) <u C.  Simply casting the operands and result won't
2127   // work. :(  The if statement below tests that condition and bails
2128   // if it finds it.
2129   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2130   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2131     return nullptr;
2132 
2133   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2134   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2135   // division-by-constant cases should be present, we can not assert that they
2136   // have happened before we reach this icmp instruction.
2137   if (C2->isNullValue() || C2->isOneValue() ||
2138       (DivIsSigned && C2->isAllOnesValue()))
2139     return nullptr;
2140 
2141   // Compute Prod = C * C2. We are essentially solving an equation of
2142   // form X / C2 = C. We solve for X by multiplying C2 and C.
2143   // By solving for X, we can turn this into a range check instead of computing
2144   // a divide.
2145   APInt Prod = C * *C2;
2146 
2147   // Determine if the product overflows by seeing if the product is not equal to
2148   // the divide. Make sure we do the same kind of divide as in the LHS
2149   // instruction that we're folding.
2150   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2151 
2152   ICmpInst::Predicate Pred = Cmp.getPredicate();
2153 
2154   // If the division is known to be exact, then there is no remainder from the
2155   // divide, so the covered range size is unit, otherwise it is the divisor.
2156   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2157 
2158   // Figure out the interval that is being checked.  For example, a comparison
2159   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2160   // Compute this interval based on the constants involved and the signedness of
2161   // the compare/divide.  This computes a half-open interval, keeping track of
2162   // whether either value in the interval overflows.  After analysis each
2163   // overflow variable is set to 0 if it's corresponding bound variable is valid
2164   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2165   int LoOverflow = 0, HiOverflow = 0;
2166   APInt LoBound, HiBound;
2167 
2168   if (!DivIsSigned) {  // udiv
2169     // e.g. X/5 op 3  --> [15, 20)
2170     LoBound = Prod;
2171     HiOverflow = LoOverflow = ProdOV;
2172     if (!HiOverflow) {
2173       // If this is not an exact divide, then many values in the range collapse
2174       // to the same result value.
2175       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2176     }
2177   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2178     if (C.isNullValue()) {       // (X / pos) op 0
2179       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2180       LoBound = -(RangeSize - 1);
2181       HiBound = RangeSize;
2182     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2183       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2184       HiOverflow = LoOverflow = ProdOV;
2185       if (!HiOverflow)
2186         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2187     } else {                       // (X / pos) op neg
2188       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2189       HiBound = Prod + 1;
2190       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2191       if (!LoOverflow) {
2192         APInt DivNeg = -RangeSize;
2193         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2194       }
2195     }
2196   } else if (C2->isNegative()) { // Divisor is < 0.
2197     if (Div->isExact())
2198       RangeSize.negate();
2199     if (C.isNullValue()) { // (X / neg) op 0
2200       // e.g. X/-5 op 0  --> [-4, 5)
2201       LoBound = RangeSize + 1;
2202       HiBound = -RangeSize;
2203       if (HiBound == *C2) {        // -INTMIN = INTMIN
2204         HiOverflow = 1;            // [INTMIN+1, overflow)
2205         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2206       }
2207     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2208       // e.g. X/-5 op 3  --> [-19, -14)
2209       HiBound = Prod + 1;
2210       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2211       if (!LoOverflow)
2212         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2213     } else {                       // (X / neg) op neg
2214       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2215       LoOverflow = HiOverflow = ProdOV;
2216       if (!HiOverflow)
2217         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2218     }
2219 
2220     // Dividing by a negative swaps the condition.  LT <-> GT
2221     Pred = ICmpInst::getSwappedPredicate(Pred);
2222   }
2223 
2224   Value *X = Div->getOperand(0);
2225   switch (Pred) {
2226     default: llvm_unreachable("Unhandled icmp opcode!");
2227     case ICmpInst::ICMP_EQ:
2228       if (LoOverflow && HiOverflow)
2229         return replaceInstUsesWith(Cmp, Builder.getFalse());
2230       if (HiOverflow)
2231         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2232                             ICmpInst::ICMP_UGE, X,
2233                             ConstantInt::get(Div->getType(), LoBound));
2234       if (LoOverflow)
2235         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2236                             ICmpInst::ICMP_ULT, X,
2237                             ConstantInt::get(Div->getType(), HiBound));
2238       return replaceInstUsesWith(
2239           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2240     case ICmpInst::ICMP_NE:
2241       if (LoOverflow && HiOverflow)
2242         return replaceInstUsesWith(Cmp, Builder.getTrue());
2243       if (HiOverflow)
2244         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2245                             ICmpInst::ICMP_ULT, X,
2246                             ConstantInt::get(Div->getType(), LoBound));
2247       if (LoOverflow)
2248         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2249                             ICmpInst::ICMP_UGE, X,
2250                             ConstantInt::get(Div->getType(), HiBound));
2251       return replaceInstUsesWith(Cmp,
2252                                  insertRangeTest(X, LoBound, HiBound,
2253                                                  DivIsSigned, false));
2254     case ICmpInst::ICMP_ULT:
2255     case ICmpInst::ICMP_SLT:
2256       if (LoOverflow == +1)   // Low bound is greater than input range.
2257         return replaceInstUsesWith(Cmp, Builder.getTrue());
2258       if (LoOverflow == -1)   // Low bound is less than input range.
2259         return replaceInstUsesWith(Cmp, Builder.getFalse());
2260       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2261     case ICmpInst::ICMP_UGT:
2262     case ICmpInst::ICMP_SGT:
2263       if (HiOverflow == +1)       // High bound greater than input range.
2264         return replaceInstUsesWith(Cmp, Builder.getFalse());
2265       if (HiOverflow == -1)       // High bound less than input range.
2266         return replaceInstUsesWith(Cmp, Builder.getTrue());
2267       if (Pred == ICmpInst::ICMP_UGT)
2268         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2269                             ConstantInt::get(Div->getType(), HiBound));
2270       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2271                           ConstantInt::get(Div->getType(), HiBound));
2272   }
2273 
2274   return nullptr;
2275 }
2276 
2277 /// Fold icmp (sub X, Y), C.
2278 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2279                                                BinaryOperator *Sub,
2280                                                const APInt &C) {
2281   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2282   ICmpInst::Predicate Pred = Cmp.getPredicate();
2283 
2284   // The following transforms are only worth it if the only user of the subtract
2285   // is the icmp.
2286   if (!Sub->hasOneUse())
2287     return nullptr;
2288 
2289   if (Sub->hasNoSignedWrap()) {
2290     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2291     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2292       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2293 
2294     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2295     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2296       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2297 
2298     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2299     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2300       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2301 
2302     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2303     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2304       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2305   }
2306 
2307   const APInt *C2;
2308   if (!match(X, m_APInt(C2)))
2309     return nullptr;
2310 
2311   // C2 - Y <u C -> (Y | (C - 1)) == C2
2312   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2313   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2314       (*C2 & (C - 1)) == (C - 1))
2315     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2316 
2317   // C2 - Y >u C -> (Y | C) != C2
2318   //   iff C2 & C == C and C + 1 is a power of 2
2319   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2320     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2321 
2322   return nullptr;
2323 }
2324 
2325 /// Fold icmp (add X, Y), C.
2326 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2327                                                BinaryOperator *Add,
2328                                                const APInt &C) {
2329   Value *Y = Add->getOperand(1);
2330   const APInt *C2;
2331   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2332     return nullptr;
2333 
2334   // Fold icmp pred (add X, C2), C.
2335   Value *X = Add->getOperand(0);
2336   Type *Ty = Add->getType();
2337   CmpInst::Predicate Pred = Cmp.getPredicate();
2338 
2339   // If the add does not wrap, we can always adjust the compare by subtracting
2340   // the constants. Equality comparisons are handled elsewhere. SGE/SLE are
2341   // canonicalized to SGT/SLT.
2342   if (Add->hasNoSignedWrap() &&
2343       (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) {
2344     bool Overflow;
2345     APInt NewC = C.ssub_ov(*C2, Overflow);
2346     // If there is overflow, the result must be true or false.
2347     // TODO: Can we assert there is no overflow because InstSimplify always
2348     // handles those cases?
2349     if (!Overflow)
2350       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2351       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2352   }
2353 
2354   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2355   const APInt &Upper = CR.getUpper();
2356   const APInt &Lower = CR.getLower();
2357   if (Cmp.isSigned()) {
2358     if (Lower.isSignMask())
2359       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2360     if (Upper.isSignMask())
2361       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2362   } else {
2363     if (Lower.isMinValue())
2364       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2365     if (Upper.isMinValue())
2366       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2367   }
2368 
2369   if (!Add->hasOneUse())
2370     return nullptr;
2371 
2372   // X+C <u C2 -> (X & -C2) == C
2373   //   iff C & (C2-1) == 0
2374   //       C2 is a power of 2
2375   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2376     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2377                         ConstantExpr::getNeg(cast<Constant>(Y)));
2378 
2379   // X+C >u C2 -> (X & ~C2) != C
2380   //   iff C & C2 == 0
2381   //       C2+1 is a power of 2
2382   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2383     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2384                         ConstantExpr::getNeg(cast<Constant>(Y)));
2385 
2386   return nullptr;
2387 }
2388 
2389 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2390                                            Value *&RHS, ConstantInt *&Less,
2391                                            ConstantInt *&Equal,
2392                                            ConstantInt *&Greater) {
2393   // TODO: Generalize this to work with other comparison idioms or ensure
2394   // they get canonicalized into this form.
2395 
2396   // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32
2397   // Greater), where Equal, Less and Greater are placeholders for any three
2398   // constants.
2399   ICmpInst::Predicate PredA, PredB;
2400   if (match(SI->getTrueValue(), m_ConstantInt(Equal)) &&
2401       match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) &&
2402       PredA == ICmpInst::ICMP_EQ &&
2403       match(SI->getFalseValue(),
2404             m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)),
2405                      m_ConstantInt(Less), m_ConstantInt(Greater))) &&
2406       PredB == ICmpInst::ICMP_SLT) {
2407     return true;
2408   }
2409   return false;
2410 }
2411 
2412 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2413                                                   SelectInst *Select,
2414                                                   ConstantInt *C) {
2415 
2416   assert(C && "Cmp RHS should be a constant int!");
2417   // If we're testing a constant value against the result of a three way
2418   // comparison, the result can be expressed directly in terms of the
2419   // original values being compared.  Note: We could possibly be more
2420   // aggressive here and remove the hasOneUse test. The original select is
2421   // really likely to simplify or sink when we remove a test of the result.
2422   Value *OrigLHS, *OrigRHS;
2423   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2424   if (Cmp.hasOneUse() &&
2425       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2426                               C3GreaterThan)) {
2427     assert(C1LessThan && C2Equal && C3GreaterThan);
2428 
2429     bool TrueWhenLessThan =
2430         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2431             ->isAllOnesValue();
2432     bool TrueWhenEqual =
2433         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2434             ->isAllOnesValue();
2435     bool TrueWhenGreaterThan =
2436         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2437             ->isAllOnesValue();
2438 
2439     // This generates the new instruction that will replace the original Cmp
2440     // Instruction. Instead of enumerating the various combinations when
2441     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2442     // false, we rely on chaining of ORs and future passes of InstCombine to
2443     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2444 
2445     // When none of the three constants satisfy the predicate for the RHS (C),
2446     // the entire original Cmp can be simplified to a false.
2447     Value *Cond = Builder.getFalse();
2448     if (TrueWhenLessThan)
2449       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, OrigLHS, OrigRHS));
2450     if (TrueWhenEqual)
2451       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, OrigLHS, OrigRHS));
2452     if (TrueWhenGreaterThan)
2453       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, OrigLHS, OrigRHS));
2454 
2455     return replaceInstUsesWith(Cmp, Cond);
2456   }
2457   return nullptr;
2458 }
2459 
2460 Instruction *InstCombiner::foldICmpBitCastConstant(ICmpInst &Cmp,
2461                                                    BitCastInst *Bitcast,
2462                                                    const APInt &C) {
2463   // Folding: icmp <pred> iN X, C
2464   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2465   //    and C is a splat of a K-bit pattern
2466   //    and SC is a constant vector = <C', C', C', ..., C'>
2467   // Into:
2468   //   %E = extractelement <M x iK> %vec, i32 C'
2469   //   icmp <pred> iK %E, trunc(C)
2470   if (!Bitcast->getType()->isIntegerTy() ||
2471       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2472     return nullptr;
2473 
2474   Value *BCIOp = Bitcast->getOperand(0);
2475   Value *Vec = nullptr;     // 1st vector arg of the shufflevector
2476   Constant *Mask = nullptr; // Mask arg of the shufflevector
2477   if (match(BCIOp,
2478             m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2479     // Check whether every element of Mask is the same constant
2480     if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2481       auto *VecTy = cast<VectorType>(BCIOp->getType());
2482       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2483       auto Pred = Cmp.getPredicate();
2484       if (C.isSplat(EltTy->getBitWidth())) {
2485         // Fold the icmp based on the value of C
2486         // If C is M copies of an iK sized bit pattern,
2487         // then:
2488         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2489         //       icmp <pred> iK %SplatVal, <pattern>
2490         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2491         Value *NewC = ConstantInt::get(EltTy, C.trunc(EltTy->getBitWidth()));
2492         return new ICmpInst(Pred, Extract, NewC);
2493       }
2494     }
2495   }
2496   return nullptr;
2497 }
2498 
2499 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2500 /// where X is some kind of instruction.
2501 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2502   const APInt *C;
2503   if (!match(Cmp.getOperand(1), m_APInt(C)))
2504     return nullptr;
2505 
2506   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2507     switch (BO->getOpcode()) {
2508     case Instruction::Xor:
2509       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2510         return I;
2511       break;
2512     case Instruction::And:
2513       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2514         return I;
2515       break;
2516     case Instruction::Or:
2517       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2518         return I;
2519       break;
2520     case Instruction::Mul:
2521       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2522         return I;
2523       break;
2524     case Instruction::Shl:
2525       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2526         return I;
2527       break;
2528     case Instruction::LShr:
2529     case Instruction::AShr:
2530       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2531         return I;
2532       break;
2533     case Instruction::UDiv:
2534       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2535         return I;
2536       LLVM_FALLTHROUGH;
2537     case Instruction::SDiv:
2538       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2539         return I;
2540       break;
2541     case Instruction::Sub:
2542       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2543         return I;
2544       break;
2545     case Instruction::Add:
2546       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2547         return I;
2548       break;
2549     default:
2550       break;
2551     }
2552     // TODO: These folds could be refactored to be part of the above calls.
2553     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2554       return I;
2555   }
2556 
2557   // Match against CmpInst LHS being instructions other than binary operators.
2558 
2559   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2560     // For now, we only support constant integers while folding the
2561     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2562     // similar to the cases handled by binary ops above.
2563     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2564       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2565         return I;
2566   }
2567 
2568   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2569     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2570       return I;
2571   }
2572 
2573   if (auto *BCI = dyn_cast<BitCastInst>(Cmp.getOperand(0))) {
2574     if (Instruction *I = foldICmpBitCastConstant(Cmp, BCI, *C))
2575       return I;
2576   }
2577 
2578   if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, *C))
2579     return I;
2580 
2581   return nullptr;
2582 }
2583 
2584 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2585 /// icmp eq/ne BO, C.
2586 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2587                                                              BinaryOperator *BO,
2588                                                              const APInt &C) {
2589   // TODO: Some of these folds could work with arbitrary constants, but this
2590   // function is limited to scalar and vector splat constants.
2591   if (!Cmp.isEquality())
2592     return nullptr;
2593 
2594   ICmpInst::Predicate Pred = Cmp.getPredicate();
2595   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2596   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2597   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2598 
2599   switch (BO->getOpcode()) {
2600   case Instruction::SRem:
2601     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2602     if (C.isNullValue() && BO->hasOneUse()) {
2603       const APInt *BOC;
2604       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2605         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2606         return new ICmpInst(Pred, NewRem,
2607                             Constant::getNullValue(BO->getType()));
2608       }
2609     }
2610     break;
2611   case Instruction::Add: {
2612     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2613     const APInt *BOC;
2614     if (match(BOp1, m_APInt(BOC))) {
2615       if (BO->hasOneUse()) {
2616         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2617         return new ICmpInst(Pred, BOp0, SubC);
2618       }
2619     } else if (C.isNullValue()) {
2620       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2621       // efficiently invertible, or if the add has just this one use.
2622       if (Value *NegVal = dyn_castNegVal(BOp1))
2623         return new ICmpInst(Pred, BOp0, NegVal);
2624       if (Value *NegVal = dyn_castNegVal(BOp0))
2625         return new ICmpInst(Pred, NegVal, BOp1);
2626       if (BO->hasOneUse()) {
2627         Value *Neg = Builder.CreateNeg(BOp1);
2628         Neg->takeName(BO);
2629         return new ICmpInst(Pred, BOp0, Neg);
2630       }
2631     }
2632     break;
2633   }
2634   case Instruction::Xor:
2635     if (BO->hasOneUse()) {
2636       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2637         // For the xor case, we can xor two constants together, eliminating
2638         // the explicit xor.
2639         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2640       } else if (C.isNullValue()) {
2641         // Replace ((xor A, B) != 0) with (A != B)
2642         return new ICmpInst(Pred, BOp0, BOp1);
2643       }
2644     }
2645     break;
2646   case Instruction::Sub:
2647     if (BO->hasOneUse()) {
2648       const APInt *BOC;
2649       if (match(BOp0, m_APInt(BOC))) {
2650         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2651         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2652         return new ICmpInst(Pred, BOp1, SubC);
2653       } else if (C.isNullValue()) {
2654         // Replace ((sub A, B) != 0) with (A != B).
2655         return new ICmpInst(Pred, BOp0, BOp1);
2656       }
2657     }
2658     break;
2659   case Instruction::Or: {
2660     const APInt *BOC;
2661     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2662       // Comparing if all bits outside of a constant mask are set?
2663       // Replace (X | C) == -1 with (X & ~C) == ~C.
2664       // This removes the -1 constant.
2665       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2666       Value *And = Builder.CreateAnd(BOp0, NotBOC);
2667       return new ICmpInst(Pred, And, NotBOC);
2668     }
2669     break;
2670   }
2671   case Instruction::And: {
2672     const APInt *BOC;
2673     if (match(BOp1, m_APInt(BOC))) {
2674       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2675       if (C == *BOC && C.isPowerOf2())
2676         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2677                             BO, Constant::getNullValue(RHS->getType()));
2678 
2679       // Don't perform the following transforms if the AND has multiple uses
2680       if (!BO->hasOneUse())
2681         break;
2682 
2683       // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
2684       if (BOC->isSignMask()) {
2685         Constant *Zero = Constant::getNullValue(BOp0->getType());
2686         auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
2687         return new ICmpInst(NewPred, BOp0, Zero);
2688       }
2689 
2690       // ((X & ~7) == 0) --> X < 8
2691       if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) {
2692         Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
2693         auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
2694         return new ICmpInst(NewPred, BOp0, NegBOC);
2695       }
2696     }
2697     break;
2698   }
2699   case Instruction::Mul:
2700     if (C.isNullValue() && BO->hasNoSignedWrap()) {
2701       const APInt *BOC;
2702       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
2703         // The trivial case (mul X, 0) is handled by InstSimplify.
2704         // General case : (mul X, C) != 0 iff X != 0
2705         //                (mul X, C) == 0 iff X == 0
2706         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
2707       }
2708     }
2709     break;
2710   case Instruction::UDiv:
2711     if (C.isNullValue()) {
2712       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2713       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
2714       return new ICmpInst(NewPred, BOp1, BOp0);
2715     }
2716     break;
2717   default:
2718     break;
2719   }
2720   return nullptr;
2721 }
2722 
2723 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
2724 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
2725                                                          const APInt &C) {
2726   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0));
2727   if (!II || !Cmp.isEquality())
2728     return nullptr;
2729 
2730   // Handle icmp {eq|ne} <intrinsic>, Constant.
2731   Type *Ty = II->getType();
2732   switch (II->getIntrinsicID()) {
2733   case Intrinsic::bswap:
2734     Worklist.Add(II);
2735     Cmp.setOperand(0, II->getArgOperand(0));
2736     Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap()));
2737     return &Cmp;
2738 
2739   case Intrinsic::ctlz:
2740   case Intrinsic::cttz:
2741     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
2742     if (C == C.getBitWidth()) {
2743       Worklist.Add(II);
2744       Cmp.setOperand(0, II->getArgOperand(0));
2745       Cmp.setOperand(1, ConstantInt::getNullValue(Ty));
2746       return &Cmp;
2747     }
2748     break;
2749 
2750   case Intrinsic::ctpop: {
2751     // popcount(A) == 0  ->  A == 0 and likewise for !=
2752     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
2753     bool IsZero = C.isNullValue();
2754     if (IsZero || C == C.getBitWidth()) {
2755       Worklist.Add(II);
2756       Cmp.setOperand(0, II->getArgOperand(0));
2757       auto *NewOp =
2758           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty);
2759       Cmp.setOperand(1, NewOp);
2760       return &Cmp;
2761     }
2762     break;
2763   }
2764   default:
2765     break;
2766   }
2767 
2768   return nullptr;
2769 }
2770 
2771 /// Handle icmp with constant (but not simple integer constant) RHS.
2772 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
2773   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2774   Constant *RHSC = dyn_cast<Constant>(Op1);
2775   Instruction *LHSI = dyn_cast<Instruction>(Op0);
2776   if (!RHSC || !LHSI)
2777     return nullptr;
2778 
2779   switch (LHSI->getOpcode()) {
2780   case Instruction::GetElementPtr:
2781     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2782     if (RHSC->isNullValue() &&
2783         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2784       return new ICmpInst(
2785           I.getPredicate(), LHSI->getOperand(0),
2786           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2787     break;
2788   case Instruction::PHI:
2789     // Only fold icmp into the PHI if the phi and icmp are in the same
2790     // block.  If in the same block, we're encouraging jump threading.  If
2791     // not, we are just pessimizing the code by making an i1 phi.
2792     if (LHSI->getParent() == I.getParent())
2793       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
2794         return NV;
2795     break;
2796   case Instruction::Select: {
2797     // If either operand of the select is a constant, we can fold the
2798     // comparison into the select arms, which will cause one to be
2799     // constant folded and the select turned into a bitwise or.
2800     Value *Op1 = nullptr, *Op2 = nullptr;
2801     ConstantInt *CI = nullptr;
2802     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2803       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2804       CI = dyn_cast<ConstantInt>(Op1);
2805     }
2806     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2807       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2808       CI = dyn_cast<ConstantInt>(Op2);
2809     }
2810 
2811     // We only want to perform this transformation if it will not lead to
2812     // additional code. This is true if either both sides of the select
2813     // fold to a constant (in which case the icmp is replaced with a select
2814     // which will usually simplify) or this is the only user of the
2815     // select (in which case we are trading a select+icmp for a simpler
2816     // select+icmp) or all uses of the select can be replaced based on
2817     // dominance information ("Global cases").
2818     bool Transform = false;
2819     if (Op1 && Op2)
2820       Transform = true;
2821     else if (Op1 || Op2) {
2822       // Local case
2823       if (LHSI->hasOneUse())
2824         Transform = true;
2825       // Global cases
2826       else if (CI && !CI->isZero())
2827         // When Op1 is constant try replacing select with second operand.
2828         // Otherwise Op2 is constant and try replacing select with first
2829         // operand.
2830         Transform =
2831             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
2832     }
2833     if (Transform) {
2834       if (!Op1)
2835         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
2836                                  I.getName());
2837       if (!Op2)
2838         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
2839                                  I.getName());
2840       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2841     }
2842     break;
2843   }
2844   case Instruction::IntToPtr:
2845     // icmp pred inttoptr(X), null -> icmp pred X, 0
2846     if (RHSC->isNullValue() &&
2847         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
2848       return new ICmpInst(
2849           I.getPredicate(), LHSI->getOperand(0),
2850           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2851     break;
2852 
2853   case Instruction::Load:
2854     // Try to optimize things like "A[i] > 4" to index computations.
2855     if (GetElementPtrInst *GEP =
2856             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2857       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2858         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2859             !cast<LoadInst>(LHSI)->isVolatile())
2860           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
2861             return Res;
2862     }
2863     break;
2864   }
2865 
2866   return nullptr;
2867 }
2868 
2869 /// Try to fold icmp (binop), X or icmp X, (binop).
2870 /// TODO: A large part of this logic is duplicated in InstSimplify's
2871 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
2872 /// duplication.
2873 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
2874   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2875 
2876   // Special logic for binary operators.
2877   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2878   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2879   if (!BO0 && !BO1)
2880     return nullptr;
2881 
2882   const CmpInst::Predicate Pred = I.getPredicate();
2883   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2884   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2885     NoOp0WrapProblem =
2886         ICmpInst::isEquality(Pred) ||
2887         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2888         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2889   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2890     NoOp1WrapProblem =
2891         ICmpInst::isEquality(Pred) ||
2892         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2893         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2894 
2895   // Analyze the case when either Op0 or Op1 is an add instruction.
2896   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2897   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2898   if (BO0 && BO0->getOpcode() == Instruction::Add) {
2899     A = BO0->getOperand(0);
2900     B = BO0->getOperand(1);
2901   }
2902   if (BO1 && BO1->getOpcode() == Instruction::Add) {
2903     C = BO1->getOperand(0);
2904     D = BO1->getOperand(1);
2905   }
2906 
2907   // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2908   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2909     return new ICmpInst(Pred, A == Op1 ? B : A,
2910                         Constant::getNullValue(Op1->getType()));
2911 
2912   // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2913   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2914     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2915                         C == Op0 ? D : C);
2916 
2917   // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2918   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
2919       NoOp1WrapProblem &&
2920       // Try not to increase register pressure.
2921       BO0->hasOneUse() && BO1->hasOneUse()) {
2922     // Determine Y and Z in the form icmp (X+Y), (X+Z).
2923     Value *Y, *Z;
2924     if (A == C) {
2925       // C + B == C + D  ->  B == D
2926       Y = B;
2927       Z = D;
2928     } else if (A == D) {
2929       // D + B == C + D  ->  B == C
2930       Y = B;
2931       Z = C;
2932     } else if (B == C) {
2933       // A + C == C + D  ->  A == D
2934       Y = A;
2935       Z = D;
2936     } else {
2937       assert(B == D);
2938       // A + D == C + D  ->  A == C
2939       Y = A;
2940       Z = C;
2941     }
2942     return new ICmpInst(Pred, Y, Z);
2943   }
2944 
2945   // icmp slt (X + -1), Y -> icmp sle X, Y
2946   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2947       match(B, m_AllOnes()))
2948     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2949 
2950   // icmp sge (X + -1), Y -> icmp sgt X, Y
2951   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2952       match(B, m_AllOnes()))
2953     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2954 
2955   // icmp sle (X + 1), Y -> icmp slt X, Y
2956   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
2957     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2958 
2959   // icmp sgt (X + 1), Y -> icmp sge X, Y
2960   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
2961     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2962 
2963   // icmp sgt X, (Y + -1) -> icmp sge X, Y
2964   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
2965       match(D, m_AllOnes()))
2966     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
2967 
2968   // icmp sle X, (Y + -1) -> icmp slt X, Y
2969   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
2970       match(D, m_AllOnes()))
2971     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
2972 
2973   // icmp sge X, (Y + 1) -> icmp sgt X, Y
2974   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
2975     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
2976 
2977   // icmp slt X, (Y + 1) -> icmp sle X, Y
2978   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
2979     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
2980 
2981   // TODO: The subtraction-related identities shown below also hold, but
2982   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
2983   // wouldn't happen even if they were implemented.
2984   //
2985   // icmp ult (X - 1), Y -> icmp ule X, Y
2986   // icmp uge (X - 1), Y -> icmp ugt X, Y
2987   // icmp ugt X, (Y - 1) -> icmp uge X, Y
2988   // icmp ule X, (Y - 1) -> icmp ult X, Y
2989 
2990   // icmp ule (X + 1), Y -> icmp ult X, Y
2991   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
2992     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
2993 
2994   // icmp ugt (X + 1), Y -> icmp uge X, Y
2995   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
2996     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
2997 
2998   // icmp uge X, (Y + 1) -> icmp ugt X, Y
2999   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3000     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3001 
3002   // icmp ult X, (Y + 1) -> icmp ule X, Y
3003   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3004     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3005 
3006   // if C1 has greater magnitude than C2:
3007   //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3008   //  s.t. C3 = C1 - C2
3009   //
3010   // if C2 has greater magnitude than C1:
3011   //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3012   //  s.t. C3 = C2 - C1
3013   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3014       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3015     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3016       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3017         const APInt &AP1 = C1->getValue();
3018         const APInt &AP2 = C2->getValue();
3019         if (AP1.isNegative() == AP2.isNegative()) {
3020           APInt AP1Abs = C1->getValue().abs();
3021           APInt AP2Abs = C2->getValue().abs();
3022           if (AP1Abs.uge(AP2Abs)) {
3023             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3024             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3025             return new ICmpInst(Pred, NewAdd, C);
3026           } else {
3027             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3028             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3029             return new ICmpInst(Pred, A, NewAdd);
3030           }
3031         }
3032       }
3033 
3034   // Analyze the case when either Op0 or Op1 is a sub instruction.
3035   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3036   A = nullptr;
3037   B = nullptr;
3038   C = nullptr;
3039   D = nullptr;
3040   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3041     A = BO0->getOperand(0);
3042     B = BO0->getOperand(1);
3043   }
3044   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3045     C = BO1->getOperand(0);
3046     D = BO1->getOperand(1);
3047   }
3048 
3049   // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3050   if (A == Op1 && NoOp0WrapProblem)
3051     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3052   // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3053   if (C == Op0 && NoOp1WrapProblem)
3054     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3055 
3056   // (A - B) >u A --> A <u B
3057   if (A == Op1 && Pred == ICmpInst::ICMP_UGT)
3058     return new ICmpInst(ICmpInst::ICMP_ULT, A, B);
3059   // C <u (C - D) --> C <u D
3060   if (C == Op0 && Pred == ICmpInst::ICMP_ULT)
3061     return new ICmpInst(ICmpInst::ICMP_ULT, C, D);
3062 
3063   // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3064   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3065       // Try not to increase register pressure.
3066       BO0->hasOneUse() && BO1->hasOneUse())
3067     return new ICmpInst(Pred, A, C);
3068   // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3069   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3070       // Try not to increase register pressure.
3071       BO0->hasOneUse() && BO1->hasOneUse())
3072     return new ICmpInst(Pred, D, B);
3073 
3074   // icmp (0-X) < cst --> x > -cst
3075   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3076     Value *X;
3077     if (match(BO0, m_Neg(m_Value(X))))
3078       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3079         if (!RHSC->isMinValue(/*isSigned=*/true))
3080           return new ICmpInst(I.getSwappedPredicate(), X,
3081                               ConstantExpr::getNeg(RHSC));
3082   }
3083 
3084   BinaryOperator *SRem = nullptr;
3085   // icmp (srem X, Y), Y
3086   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3087     SRem = BO0;
3088   // icmp Y, (srem X, Y)
3089   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3090            Op0 == BO1->getOperand(1))
3091     SRem = BO1;
3092   if (SRem) {
3093     // We don't check hasOneUse to avoid increasing register pressure because
3094     // the value we use is the same value this instruction was already using.
3095     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3096     default:
3097       break;
3098     case ICmpInst::ICMP_EQ:
3099       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3100     case ICmpInst::ICMP_NE:
3101       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3102     case ICmpInst::ICMP_SGT:
3103     case ICmpInst::ICMP_SGE:
3104       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3105                           Constant::getAllOnesValue(SRem->getType()));
3106     case ICmpInst::ICMP_SLT:
3107     case ICmpInst::ICMP_SLE:
3108       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3109                           Constant::getNullValue(SRem->getType()));
3110     }
3111   }
3112 
3113   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3114       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3115     switch (BO0->getOpcode()) {
3116     default:
3117       break;
3118     case Instruction::Add:
3119     case Instruction::Sub:
3120     case Instruction::Xor: {
3121       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3122         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3123 
3124       const APInt *C;
3125       if (match(BO0->getOperand(1), m_APInt(C))) {
3126         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3127         if (C->isSignMask()) {
3128           ICmpInst::Predicate NewPred =
3129               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3130           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3131         }
3132 
3133         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3134         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3135           ICmpInst::Predicate NewPred =
3136               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3137           NewPred = I.getSwappedPredicate(NewPred);
3138           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3139         }
3140       }
3141       break;
3142     }
3143     case Instruction::Mul: {
3144       if (!I.isEquality())
3145         break;
3146 
3147       const APInt *C;
3148       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3149           !C->isOneValue()) {
3150         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3151         // Mask = -1 >> count-trailing-zeros(C).
3152         if (unsigned TZs = C->countTrailingZeros()) {
3153           Constant *Mask = ConstantInt::get(
3154               BO0->getType(),
3155               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3156           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
3157           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
3158           return new ICmpInst(Pred, And1, And2);
3159         }
3160         // If there are no trailing zeros in the multiplier, just eliminate
3161         // the multiplies (no masking is needed):
3162         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3163         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3164       }
3165       break;
3166     }
3167     case Instruction::UDiv:
3168     case Instruction::LShr:
3169       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3170         break;
3171       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3172 
3173     case Instruction::SDiv:
3174       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3175         break;
3176       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3177 
3178     case Instruction::AShr:
3179       if (!BO0->isExact() || !BO1->isExact())
3180         break;
3181       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3182 
3183     case Instruction::Shl: {
3184       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3185       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3186       if (!NUW && !NSW)
3187         break;
3188       if (!NSW && I.isSigned())
3189         break;
3190       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3191     }
3192     }
3193   }
3194 
3195   if (BO0) {
3196     // Transform  A & (L - 1) `ult` L --> L != 0
3197     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3198     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
3199 
3200     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
3201       auto *Zero = Constant::getNullValue(BO0->getType());
3202       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3203     }
3204   }
3205 
3206   return nullptr;
3207 }
3208 
3209 /// Fold icmp Pred min|max(X, Y), X.
3210 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
3211   ICmpInst::Predicate Pred = Cmp.getPredicate();
3212   Value *Op0 = Cmp.getOperand(0);
3213   Value *X = Cmp.getOperand(1);
3214 
3215   // Canonicalize minimum or maximum operand to LHS of the icmp.
3216   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
3217       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
3218       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
3219       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
3220     std::swap(Op0, X);
3221     Pred = Cmp.getSwappedPredicate();
3222   }
3223 
3224   Value *Y;
3225   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
3226     // smin(X, Y)  == X --> X s<= Y
3227     // smin(X, Y) s>= X --> X s<= Y
3228     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
3229       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
3230 
3231     // smin(X, Y) != X --> X s> Y
3232     // smin(X, Y) s< X --> X s> Y
3233     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
3234       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
3235 
3236     // These cases should be handled in InstSimplify:
3237     // smin(X, Y) s<= X --> true
3238     // smin(X, Y) s> X --> false
3239     return nullptr;
3240   }
3241 
3242   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
3243     // smax(X, Y)  == X --> X s>= Y
3244     // smax(X, Y) s<= X --> X s>= Y
3245     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
3246       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
3247 
3248     // smax(X, Y) != X --> X s< Y
3249     // smax(X, Y) s> X --> X s< Y
3250     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
3251       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
3252 
3253     // These cases should be handled in InstSimplify:
3254     // smax(X, Y) s>= X --> true
3255     // smax(X, Y) s< X --> false
3256     return nullptr;
3257   }
3258 
3259   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
3260     // umin(X, Y)  == X --> X u<= Y
3261     // umin(X, Y) u>= X --> X u<= Y
3262     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
3263       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
3264 
3265     // umin(X, Y) != X --> X u> Y
3266     // umin(X, Y) u< X --> X u> Y
3267     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
3268       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
3269 
3270     // These cases should be handled in InstSimplify:
3271     // umin(X, Y) u<= X --> true
3272     // umin(X, Y) u> X --> false
3273     return nullptr;
3274   }
3275 
3276   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
3277     // umax(X, Y)  == X --> X u>= Y
3278     // umax(X, Y) u<= X --> X u>= Y
3279     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
3280       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
3281 
3282     // umax(X, Y) != X --> X u< Y
3283     // umax(X, Y) u> X --> X u< Y
3284     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
3285       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
3286 
3287     // These cases should be handled in InstSimplify:
3288     // umax(X, Y) u>= X --> true
3289     // umax(X, Y) u< X --> false
3290     return nullptr;
3291   }
3292 
3293   return nullptr;
3294 }
3295 
3296 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
3297   if (!I.isEquality())
3298     return nullptr;
3299 
3300   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3301   const CmpInst::Predicate Pred = I.getPredicate();
3302   Value *A, *B, *C, *D;
3303   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3304     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
3305       Value *OtherVal = A == Op1 ? B : A;
3306       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
3307     }
3308 
3309     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3310       // A^c1 == C^c2 --> A == C^(c1^c2)
3311       ConstantInt *C1, *C2;
3312       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
3313           Op1->hasOneUse()) {
3314         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
3315         Value *Xor = Builder.CreateXor(C, NC);
3316         return new ICmpInst(Pred, A, Xor);
3317       }
3318 
3319       // A^B == A^D -> B == D
3320       if (A == C)
3321         return new ICmpInst(Pred, B, D);
3322       if (A == D)
3323         return new ICmpInst(Pred, B, C);
3324       if (B == C)
3325         return new ICmpInst(Pred, A, D);
3326       if (B == D)
3327         return new ICmpInst(Pred, A, C);
3328     }
3329   }
3330 
3331   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
3332     // A == (A^B)  ->  B == 0
3333     Value *OtherVal = A == Op0 ? B : A;
3334     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
3335   }
3336 
3337   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3338   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3339       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3340     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3341 
3342     if (A == C) {
3343       X = B;
3344       Y = D;
3345       Z = A;
3346     } else if (A == D) {
3347       X = B;
3348       Y = C;
3349       Z = A;
3350     } else if (B == C) {
3351       X = A;
3352       Y = D;
3353       Z = B;
3354     } else if (B == D) {
3355       X = A;
3356       Y = C;
3357       Z = B;
3358     }
3359 
3360     if (X) { // Build (X^Y) & Z
3361       Op1 = Builder.CreateXor(X, Y);
3362       Op1 = Builder.CreateAnd(Op1, Z);
3363       I.setOperand(0, Op1);
3364       I.setOperand(1, Constant::getNullValue(Op1->getType()));
3365       return &I;
3366     }
3367   }
3368 
3369   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3370   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3371   ConstantInt *Cst1;
3372   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
3373        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3374       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3375        match(Op1, m_ZExt(m_Value(A))))) {
3376     APInt Pow2 = Cst1->getValue() + 1;
3377     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3378         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3379       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
3380   }
3381 
3382   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3383   // For lshr and ashr pairs.
3384   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3385        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3386       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3387        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3388     unsigned TypeBits = Cst1->getBitWidth();
3389     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3390     if (ShAmt < TypeBits && ShAmt != 0) {
3391       ICmpInst::Predicate NewPred =
3392           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
3393       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
3394       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3395       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
3396     }
3397   }
3398 
3399   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3400   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3401       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3402     unsigned TypeBits = Cst1->getBitWidth();
3403     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3404     if (ShAmt < TypeBits && ShAmt != 0) {
3405       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
3406       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3407       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
3408                                       I.getName() + ".mask");
3409       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
3410     }
3411   }
3412 
3413   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3414   // "icmp (and X, mask), cst"
3415   uint64_t ShAmt = 0;
3416   if (Op0->hasOneUse() &&
3417       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
3418       match(Op1, m_ConstantInt(Cst1)) &&
3419       // Only do this when A has multiple uses.  This is most important to do
3420       // when it exposes other optimizations.
3421       !A->hasOneUse()) {
3422     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3423 
3424     if (ShAmt < ASize) {
3425       APInt MaskV =
3426           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3427       MaskV <<= ShAmt;
3428 
3429       APInt CmpV = Cst1->getValue().zext(ASize);
3430       CmpV <<= ShAmt;
3431 
3432       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
3433       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
3434     }
3435   }
3436 
3437   // If both operands are byte-swapped or bit-reversed, just compare the
3438   // original values.
3439   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
3440   // and handle more intrinsics.
3441   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
3442       (match(Op0, m_BitReverse(m_Value(A))) &&
3443        match(Op1, m_BitReverse(m_Value(B)))))
3444     return new ICmpInst(Pred, A, B);
3445 
3446   return nullptr;
3447 }
3448 
3449 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
3450 /// far.
3451 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
3452   const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
3453   Value *LHSCIOp        = LHSCI->getOperand(0);
3454   Type *SrcTy     = LHSCIOp->getType();
3455   Type *DestTy    = LHSCI->getType();
3456   Value *RHSCIOp;
3457 
3458   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
3459   // integer type is the same size as the pointer type.
3460   const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool {
3461     if (isa<VectorType>(SrcTy)) {
3462       SrcTy = cast<VectorType>(SrcTy)->getElementType();
3463       DestTy = cast<VectorType>(DestTy)->getElementType();
3464     }
3465     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
3466   };
3467   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
3468       CompatibleSizes(SrcTy, DestTy)) {
3469     Value *RHSOp = nullptr;
3470     if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
3471       Value *RHSCIOp = RHSC->getOperand(0);
3472       if (RHSCIOp->getType()->getPointerAddressSpace() ==
3473           LHSCIOp->getType()->getPointerAddressSpace()) {
3474         RHSOp = RHSC->getOperand(0);
3475         // If the pointer types don't match, insert a bitcast.
3476         if (LHSCIOp->getType() != RHSOp->getType())
3477           RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType());
3478       }
3479     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
3480       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
3481     }
3482 
3483     if (RHSOp)
3484       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
3485   }
3486 
3487   // The code below only handles extension cast instructions, so far.
3488   // Enforce this.
3489   if (LHSCI->getOpcode() != Instruction::ZExt &&
3490       LHSCI->getOpcode() != Instruction::SExt)
3491     return nullptr;
3492 
3493   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
3494   bool isSignedCmp = ICmp.isSigned();
3495 
3496   if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
3497     // Not an extension from the same type?
3498     RHSCIOp = CI->getOperand(0);
3499     if (RHSCIOp->getType() != LHSCIOp->getType())
3500       return nullptr;
3501 
3502     // If the signedness of the two casts doesn't agree (i.e. one is a sext
3503     // and the other is a zext), then we can't handle this.
3504     if (CI->getOpcode() != LHSCI->getOpcode())
3505       return nullptr;
3506 
3507     // Deal with equality cases early.
3508     if (ICmp.isEquality())
3509       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3510 
3511     // A signed comparison of sign extended values simplifies into a
3512     // signed comparison.
3513     if (isSignedCmp && isSignedExt)
3514       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3515 
3516     // The other three cases all fold into an unsigned comparison.
3517     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
3518   }
3519 
3520   // If we aren't dealing with a constant on the RHS, exit early.
3521   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
3522   if (!C)
3523     return nullptr;
3524 
3525   // Compute the constant that would happen if we truncated to SrcTy then
3526   // re-extended to DestTy.
3527   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
3528   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
3529 
3530   // If the re-extended constant didn't change...
3531   if (Res2 == C) {
3532     // Deal with equality cases early.
3533     if (ICmp.isEquality())
3534       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3535 
3536     // A signed comparison of sign extended values simplifies into a
3537     // signed comparison.
3538     if (isSignedExt && isSignedCmp)
3539       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3540 
3541     // The other three cases all fold into an unsigned comparison.
3542     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
3543   }
3544 
3545   // The re-extended constant changed, partly changed (in the case of a vector),
3546   // or could not be determined to be equal (in the case of a constant
3547   // expression), so the constant cannot be represented in the shorter type.
3548   // Consequently, we cannot emit a simple comparison.
3549   // All the cases that fold to true or false will have already been handled
3550   // by SimplifyICmpInst, so only deal with the tricky case.
3551 
3552   if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
3553     return nullptr;
3554 
3555   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
3556   // should have been folded away previously and not enter in here.
3557 
3558   // We're performing an unsigned comp with a sign extended value.
3559   // This is true if the input is >= 0. [aka >s -1]
3560   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
3561   Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
3562 
3563   // Finally, return the value computed.
3564   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
3565     return replaceInstUsesWith(ICmp, Result);
3566 
3567   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
3568   return BinaryOperator::CreateNot(Result);
3569 }
3570 
3571 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
3572                                          Value *RHS, Instruction &OrigI,
3573                                          Value *&Result, Constant *&Overflow) {
3574   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
3575     std::swap(LHS, RHS);
3576 
3577   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
3578     Result = OpResult;
3579     Overflow = OverflowVal;
3580     if (ReuseName)
3581       Result->takeName(&OrigI);
3582     return true;
3583   };
3584 
3585   // If the overflow check was an add followed by a compare, the insertion point
3586   // may be pointing to the compare.  We want to insert the new instructions
3587   // before the add in case there are uses of the add between the add and the
3588   // compare.
3589   Builder.SetInsertPoint(&OrigI);
3590 
3591   switch (OCF) {
3592   case OCF_INVALID:
3593     llvm_unreachable("bad overflow check kind!");
3594 
3595   case OCF_UNSIGNED_ADD: {
3596     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
3597     if (OR == OverflowResult::NeverOverflows)
3598       return SetResult(Builder.CreateNUWAdd(LHS, RHS), Builder.getFalse(),
3599                        true);
3600 
3601     if (OR == OverflowResult::AlwaysOverflows)
3602       return SetResult(Builder.CreateAdd(LHS, RHS), Builder.getTrue(), true);
3603 
3604     // Fall through uadd into sadd
3605     LLVM_FALLTHROUGH;
3606   }
3607   case OCF_SIGNED_ADD: {
3608     // X + 0 -> {X, false}
3609     if (match(RHS, m_Zero()))
3610       return SetResult(LHS, Builder.getFalse(), false);
3611 
3612     // We can strength reduce this signed add into a regular add if we can prove
3613     // that it will never overflow.
3614     if (OCF == OCF_SIGNED_ADD)
3615       if (willNotOverflowSignedAdd(LHS, RHS, OrigI))
3616         return SetResult(Builder.CreateNSWAdd(LHS, RHS), Builder.getFalse(),
3617                          true);
3618     break;
3619   }
3620 
3621   case OCF_UNSIGNED_SUB:
3622   case OCF_SIGNED_SUB: {
3623     // X - 0 -> {X, false}
3624     if (match(RHS, m_Zero()))
3625       return SetResult(LHS, Builder.getFalse(), false);
3626 
3627     if (OCF == OCF_SIGNED_SUB) {
3628       if (willNotOverflowSignedSub(LHS, RHS, OrigI))
3629         return SetResult(Builder.CreateNSWSub(LHS, RHS), Builder.getFalse(),
3630                          true);
3631     } else {
3632       if (willNotOverflowUnsignedSub(LHS, RHS, OrigI))
3633         return SetResult(Builder.CreateNUWSub(LHS, RHS), Builder.getFalse(),
3634                          true);
3635     }
3636     break;
3637   }
3638 
3639   case OCF_UNSIGNED_MUL: {
3640     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
3641     if (OR == OverflowResult::NeverOverflows)
3642       return SetResult(Builder.CreateNUWMul(LHS, RHS), Builder.getFalse(),
3643                        true);
3644     if (OR == OverflowResult::AlwaysOverflows)
3645       return SetResult(Builder.CreateMul(LHS, RHS), Builder.getTrue(), true);
3646     LLVM_FALLTHROUGH;
3647   }
3648   case OCF_SIGNED_MUL:
3649     // X * undef -> undef
3650     if (isa<UndefValue>(RHS))
3651       return SetResult(RHS, UndefValue::get(Builder.getInt1Ty()), false);
3652 
3653     // X * 0 -> {0, false}
3654     if (match(RHS, m_Zero()))
3655       return SetResult(RHS, Builder.getFalse(), false);
3656 
3657     // X * 1 -> {X, false}
3658     if (match(RHS, m_One()))
3659       return SetResult(LHS, Builder.getFalse(), false);
3660 
3661     if (OCF == OCF_SIGNED_MUL)
3662       if (willNotOverflowSignedMul(LHS, RHS, OrigI))
3663         return SetResult(Builder.CreateNSWMul(LHS, RHS), Builder.getFalse(),
3664                          true);
3665     break;
3666   }
3667 
3668   return false;
3669 }
3670 
3671 /// Recognize and process idiom involving test for multiplication
3672 /// overflow.
3673 ///
3674 /// The caller has matched a pattern of the form:
3675 ///   I = cmp u (mul(zext A, zext B), V
3676 /// The function checks if this is a test for overflow and if so replaces
3677 /// multiplication with call to 'mul.with.overflow' intrinsic.
3678 ///
3679 /// \param I Compare instruction.
3680 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
3681 ///               the compare instruction.  Must be of integer type.
3682 /// \param OtherVal The other argument of compare instruction.
3683 /// \returns Instruction which must replace the compare instruction, NULL if no
3684 ///          replacement required.
3685 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
3686                                          Value *OtherVal, InstCombiner &IC) {
3687   // Don't bother doing this transformation for pointers, don't do it for
3688   // vectors.
3689   if (!isa<IntegerType>(MulVal->getType()))
3690     return nullptr;
3691 
3692   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
3693   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
3694   auto *MulInstr = dyn_cast<Instruction>(MulVal);
3695   if (!MulInstr)
3696     return nullptr;
3697   assert(MulInstr->getOpcode() == Instruction::Mul);
3698 
3699   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
3700        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
3701   assert(LHS->getOpcode() == Instruction::ZExt);
3702   assert(RHS->getOpcode() == Instruction::ZExt);
3703   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
3704 
3705   // Calculate type and width of the result produced by mul.with.overflow.
3706   Type *TyA = A->getType(), *TyB = B->getType();
3707   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
3708            WidthB = TyB->getPrimitiveSizeInBits();
3709   unsigned MulWidth;
3710   Type *MulType;
3711   if (WidthB > WidthA) {
3712     MulWidth = WidthB;
3713     MulType = TyB;
3714   } else {
3715     MulWidth = WidthA;
3716     MulType = TyA;
3717   }
3718 
3719   // In order to replace the original mul with a narrower mul.with.overflow,
3720   // all uses must ignore upper bits of the product.  The number of used low
3721   // bits must be not greater than the width of mul.with.overflow.
3722   if (MulVal->hasNUsesOrMore(2))
3723     for (User *U : MulVal->users()) {
3724       if (U == &I)
3725         continue;
3726       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3727         // Check if truncation ignores bits above MulWidth.
3728         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
3729         if (TruncWidth > MulWidth)
3730           return nullptr;
3731       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3732         // Check if AND ignores bits above MulWidth.
3733         if (BO->getOpcode() != Instruction::And)
3734           return nullptr;
3735         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
3736           const APInt &CVal = CI->getValue();
3737           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
3738             return nullptr;
3739         } else {
3740           // In this case we could have the operand of the binary operation
3741           // being defined in another block, and performing the replacement
3742           // could break the dominance relation.
3743           return nullptr;
3744         }
3745       } else {
3746         // Other uses prohibit this transformation.
3747         return nullptr;
3748       }
3749     }
3750 
3751   // Recognize patterns
3752   switch (I.getPredicate()) {
3753   case ICmpInst::ICMP_EQ:
3754   case ICmpInst::ICMP_NE:
3755     // Recognize pattern:
3756     //   mulval = mul(zext A, zext B)
3757     //   cmp eq/neq mulval, zext trunc mulval
3758     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
3759       if (Zext->hasOneUse()) {
3760         Value *ZextArg = Zext->getOperand(0);
3761         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
3762           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
3763             break; //Recognized
3764       }
3765 
3766     // Recognize pattern:
3767     //   mulval = mul(zext A, zext B)
3768     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
3769     ConstantInt *CI;
3770     Value *ValToMask;
3771     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
3772       if (ValToMask != MulVal)
3773         return nullptr;
3774       const APInt &CVal = CI->getValue() + 1;
3775       if (CVal.isPowerOf2()) {
3776         unsigned MaskWidth = CVal.logBase2();
3777         if (MaskWidth == MulWidth)
3778           break; // Recognized
3779       }
3780     }
3781     return nullptr;
3782 
3783   case ICmpInst::ICMP_UGT:
3784     // Recognize pattern:
3785     //   mulval = mul(zext A, zext B)
3786     //   cmp ugt mulval, max
3787     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3788       APInt MaxVal = APInt::getMaxValue(MulWidth);
3789       MaxVal = MaxVal.zext(CI->getBitWidth());
3790       if (MaxVal.eq(CI->getValue()))
3791         break; // Recognized
3792     }
3793     return nullptr;
3794 
3795   case ICmpInst::ICMP_UGE:
3796     // Recognize pattern:
3797     //   mulval = mul(zext A, zext B)
3798     //   cmp uge mulval, max+1
3799     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3800       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3801       if (MaxVal.eq(CI->getValue()))
3802         break; // Recognized
3803     }
3804     return nullptr;
3805 
3806   case ICmpInst::ICMP_ULE:
3807     // Recognize pattern:
3808     //   mulval = mul(zext A, zext B)
3809     //   cmp ule mulval, max
3810     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3811       APInt MaxVal = APInt::getMaxValue(MulWidth);
3812       MaxVal = MaxVal.zext(CI->getBitWidth());
3813       if (MaxVal.eq(CI->getValue()))
3814         break; // Recognized
3815     }
3816     return nullptr;
3817 
3818   case ICmpInst::ICMP_ULT:
3819     // Recognize pattern:
3820     //   mulval = mul(zext A, zext B)
3821     //   cmp ule mulval, max + 1
3822     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3823       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3824       if (MaxVal.eq(CI->getValue()))
3825         break; // Recognized
3826     }
3827     return nullptr;
3828 
3829   default:
3830     return nullptr;
3831   }
3832 
3833   InstCombiner::BuilderTy &Builder = IC.Builder;
3834   Builder.SetInsertPoint(MulInstr);
3835 
3836   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
3837   Value *MulA = A, *MulB = B;
3838   if (WidthA < MulWidth)
3839     MulA = Builder.CreateZExt(A, MulType);
3840   if (WidthB < MulWidth)
3841     MulB = Builder.CreateZExt(B, MulType);
3842   Value *F = Intrinsic::getDeclaration(I.getModule(),
3843                                        Intrinsic::umul_with_overflow, MulType);
3844   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
3845   IC.Worklist.Add(MulInstr);
3846 
3847   // If there are uses of mul result other than the comparison, we know that
3848   // they are truncation or binary AND. Change them to use result of
3849   // mul.with.overflow and adjust properly mask/size.
3850   if (MulVal->hasNUsesOrMore(2)) {
3851     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
3852     for (User *U : MulVal->users()) {
3853       if (U == &I || U == OtherVal)
3854         continue;
3855       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3856         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
3857           IC.replaceInstUsesWith(*TI, Mul);
3858         else
3859           TI->setOperand(0, Mul);
3860       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3861         assert(BO->getOpcode() == Instruction::And);
3862         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
3863         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
3864         APInt ShortMask = CI->getValue().trunc(MulWidth);
3865         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
3866         Instruction *Zext =
3867             cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType()));
3868         IC.Worklist.Add(Zext);
3869         IC.replaceInstUsesWith(*BO, Zext);
3870       } else {
3871         llvm_unreachable("Unexpected Binary operation");
3872       }
3873       IC.Worklist.Add(cast<Instruction>(U));
3874     }
3875   }
3876   if (isa<Instruction>(OtherVal))
3877     IC.Worklist.Add(cast<Instruction>(OtherVal));
3878 
3879   // The original icmp gets replaced with the overflow value, maybe inverted
3880   // depending on predicate.
3881   bool Inverse = false;
3882   switch (I.getPredicate()) {
3883   case ICmpInst::ICMP_NE:
3884     break;
3885   case ICmpInst::ICMP_EQ:
3886     Inverse = true;
3887     break;
3888   case ICmpInst::ICMP_UGT:
3889   case ICmpInst::ICMP_UGE:
3890     if (I.getOperand(0) == MulVal)
3891       break;
3892     Inverse = true;
3893     break;
3894   case ICmpInst::ICMP_ULT:
3895   case ICmpInst::ICMP_ULE:
3896     if (I.getOperand(1) == MulVal)
3897       break;
3898     Inverse = true;
3899     break;
3900   default:
3901     llvm_unreachable("Unexpected predicate");
3902   }
3903   if (Inverse) {
3904     Value *Res = Builder.CreateExtractValue(Call, 1);
3905     return BinaryOperator::CreateNot(Res);
3906   }
3907 
3908   return ExtractValueInst::Create(Call, 1);
3909 }
3910 
3911 /// When performing a comparison against a constant, it is possible that not all
3912 /// the bits in the LHS are demanded. This helper method computes the mask that
3913 /// IS demanded.
3914 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
3915   const APInt *RHS;
3916   if (!match(I.getOperand(1), m_APInt(RHS)))
3917     return APInt::getAllOnesValue(BitWidth);
3918 
3919   // If this is a normal comparison, it demands all bits. If it is a sign bit
3920   // comparison, it only demands the sign bit.
3921   bool UnusedBit;
3922   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
3923     return APInt::getSignMask(BitWidth);
3924 
3925   switch (I.getPredicate()) {
3926   // For a UGT comparison, we don't care about any bits that
3927   // correspond to the trailing ones of the comparand.  The value of these
3928   // bits doesn't impact the outcome of the comparison, because any value
3929   // greater than the RHS must differ in a bit higher than these due to carry.
3930   case ICmpInst::ICMP_UGT:
3931     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
3932 
3933   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
3934   // Any value less than the RHS must differ in a higher bit because of carries.
3935   case ICmpInst::ICMP_ULT:
3936     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
3937 
3938   default:
3939     return APInt::getAllOnesValue(BitWidth);
3940   }
3941 }
3942 
3943 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
3944 /// should be swapped.
3945 /// The decision is based on how many times these two operands are reused
3946 /// as subtract operands and their positions in those instructions.
3947 /// The rationale is that several architectures use the same instruction for
3948 /// both subtract and cmp. Thus, it is better if the order of those operands
3949 /// match.
3950 /// \return true if Op0 and Op1 should be swapped.
3951 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
3952   // Filter out pointer values as those cannot appear directly in subtract.
3953   // FIXME: we may want to go through inttoptrs or bitcasts.
3954   if (Op0->getType()->isPointerTy())
3955     return false;
3956   // If a subtract already has the same operands as a compare, swapping would be
3957   // bad. If a subtract has the same operands as a compare but in reverse order,
3958   // then swapping is good.
3959   int GoodToSwap = 0;
3960   for (const User *U : Op0->users()) {
3961     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
3962       GoodToSwap++;
3963     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
3964       GoodToSwap--;
3965   }
3966   return GoodToSwap > 0;
3967 }
3968 
3969 /// Check that one use is in the same block as the definition and all
3970 /// other uses are in blocks dominated by a given block.
3971 ///
3972 /// \param DI Definition
3973 /// \param UI Use
3974 /// \param DB Block that must dominate all uses of \p DI outside
3975 ///           the parent block
3976 /// \return true when \p UI is the only use of \p DI in the parent block
3977 /// and all other uses of \p DI are in blocks dominated by \p DB.
3978 ///
3979 bool InstCombiner::dominatesAllUses(const Instruction *DI,
3980                                     const Instruction *UI,
3981                                     const BasicBlock *DB) const {
3982   assert(DI && UI && "Instruction not defined\n");
3983   // Ignore incomplete definitions.
3984   if (!DI->getParent())
3985     return false;
3986   // DI and UI must be in the same block.
3987   if (DI->getParent() != UI->getParent())
3988     return false;
3989   // Protect from self-referencing blocks.
3990   if (DI->getParent() == DB)
3991     return false;
3992   for (const User *U : DI->users()) {
3993     auto *Usr = cast<Instruction>(U);
3994     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
3995       return false;
3996   }
3997   return true;
3998 }
3999 
4000 /// Return true when the instruction sequence within a block is select-cmp-br.
4001 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4002   const BasicBlock *BB = SI->getParent();
4003   if (!BB)
4004     return false;
4005   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4006   if (!BI || BI->getNumSuccessors() != 2)
4007     return false;
4008   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4009   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4010     return false;
4011   return true;
4012 }
4013 
4014 /// True when a select result is replaced by one of its operands
4015 /// in select-icmp sequence. This will eventually result in the elimination
4016 /// of the select.
4017 ///
4018 /// \param SI    Select instruction
4019 /// \param Icmp  Compare instruction
4020 /// \param SIOpd Operand that replaces the select
4021 ///
4022 /// Notes:
4023 /// - The replacement is global and requires dominator information
4024 /// - The caller is responsible for the actual replacement
4025 ///
4026 /// Example:
4027 ///
4028 /// entry:
4029 ///  %4 = select i1 %3, %C* %0, %C* null
4030 ///  %5 = icmp eq %C* %4, null
4031 ///  br i1 %5, label %9, label %7
4032 ///  ...
4033 ///  ; <label>:7                                       ; preds = %entry
4034 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4035 ///  ...
4036 ///
4037 /// can be transformed to
4038 ///
4039 ///  %5 = icmp eq %C* %0, null
4040 ///  %6 = select i1 %3, i1 %5, i1 true
4041 ///  br i1 %6, label %9, label %7
4042 ///  ...
4043 ///  ; <label>:7                                       ; preds = %entry
4044 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4045 ///
4046 /// Similar when the first operand of the select is a constant or/and
4047 /// the compare is for not equal rather than equal.
4048 ///
4049 /// NOTE: The function is only called when the select and compare constants
4050 /// are equal, the optimization can work only for EQ predicates. This is not a
4051 /// major restriction since a NE compare should be 'normalized' to an equal
4052 /// compare, which usually happens in the combiner and test case
4053 /// select-cmp-br.ll checks for it.
4054 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4055                                              const ICmpInst *Icmp,
4056                                              const unsigned SIOpd) {
4057   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4058   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4059     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4060     // The check for the single predecessor is not the best that can be
4061     // done. But it protects efficiently against cases like when SI's
4062     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4063     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4064     // replaced can be reached on either path. So the uniqueness check
4065     // guarantees that the path all uses of SI (outside SI's parent) are on
4066     // is disjoint from all other paths out of SI. But that information
4067     // is more expensive to compute, and the trade-off here is in favor
4068     // of compile-time. It should also be noticed that we check for a single
4069     // predecessor and not only uniqueness. This to handle the situation when
4070     // Succ and Succ1 points to the same basic block.
4071     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4072       NumSel++;
4073       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4074       return true;
4075     }
4076   }
4077   return false;
4078 }
4079 
4080 /// Try to fold the comparison based on range information we can get by checking
4081 /// whether bits are known to be zero or one in the inputs.
4082 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4083   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4084   Type *Ty = Op0->getType();
4085   ICmpInst::Predicate Pred = I.getPredicate();
4086 
4087   // Get scalar or pointer size.
4088   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4089                           ? Ty->getScalarSizeInBits()
4090                           : DL.getIndexTypeSizeInBits(Ty->getScalarType());
4091 
4092   if (!BitWidth)
4093     return nullptr;
4094 
4095   KnownBits Op0Known(BitWidth);
4096   KnownBits Op1Known(BitWidth);
4097 
4098   if (SimplifyDemandedBits(&I, 0,
4099                            getDemandedBitsLHSMask(I, BitWidth),
4100                            Op0Known, 0))
4101     return &I;
4102 
4103   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4104                            Op1Known, 0))
4105     return &I;
4106 
4107   // Given the known and unknown bits, compute a range that the LHS could be
4108   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4109   // EQ and NE we use unsigned values.
4110   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4111   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4112   if (I.isSigned()) {
4113     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4114     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4115   } else {
4116     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4117     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4118   }
4119 
4120   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4121   // out that the LHS or RHS is a constant. Constant fold this now, so that
4122   // code below can assume that Min != Max.
4123   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4124     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4125   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4126     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4127 
4128   // Based on the range information we know about the LHS, see if we can
4129   // simplify this comparison.  For example, (x&4) < 8 is always true.
4130   switch (Pred) {
4131   default:
4132     llvm_unreachable("Unknown icmp opcode!");
4133   case ICmpInst::ICMP_EQ:
4134   case ICmpInst::ICMP_NE: {
4135     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4136       return Pred == CmpInst::ICMP_EQ
4137                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4138                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4139     }
4140 
4141     // If all bits are known zero except for one, then we know at most one bit
4142     // is set. If the comparison is against zero, then this is a check to see if
4143     // *that* bit is set.
4144     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4145     if (Op1Known.isZero()) {
4146       // If the LHS is an AND with the same constant, look through it.
4147       Value *LHS = nullptr;
4148       const APInt *LHSC;
4149       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4150           *LHSC != Op0KnownZeroInverted)
4151         LHS = Op0;
4152 
4153       Value *X;
4154       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4155         APInt ValToCheck = Op0KnownZeroInverted;
4156         Type *XTy = X->getType();
4157         if (ValToCheck.isPowerOf2()) {
4158           // ((1 << X) & 8) == 0 -> X != 3
4159           // ((1 << X) & 8) != 0 -> X == 3
4160           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4161           auto NewPred = ICmpInst::getInversePredicate(Pred);
4162           return new ICmpInst(NewPred, X, CmpC);
4163         } else if ((++ValToCheck).isPowerOf2()) {
4164           // ((1 << X) & 7) == 0 -> X >= 3
4165           // ((1 << X) & 7) != 0 -> X  < 3
4166           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4167           auto NewPred =
4168               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4169           return new ICmpInst(NewPred, X, CmpC);
4170         }
4171       }
4172 
4173       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4174       const APInt *CI;
4175       if (Op0KnownZeroInverted.isOneValue() &&
4176           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4177         // ((8 >>u X) & 1) == 0 -> X != 3
4178         // ((8 >>u X) & 1) != 0 -> X == 3
4179         unsigned CmpVal = CI->countTrailingZeros();
4180         auto NewPred = ICmpInst::getInversePredicate(Pred);
4181         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4182       }
4183     }
4184     break;
4185   }
4186   case ICmpInst::ICMP_ULT: {
4187     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4188       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4189     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
4190       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4191     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
4192       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4193 
4194     const APInt *CmpC;
4195     if (match(Op1, m_APInt(CmpC))) {
4196       // A <u C -> A == C-1 if min(A)+1 == C
4197       if (*CmpC == Op0Min + 1)
4198         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4199                             ConstantInt::get(Op1->getType(), *CmpC - 1));
4200       // X <u C --> X == 0, if the number of zero bits in the bottom of X
4201       // exceeds the log2 of C.
4202       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
4203         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4204                             Constant::getNullValue(Op1->getType()));
4205     }
4206     break;
4207   }
4208   case ICmpInst::ICMP_UGT: {
4209     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
4210       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4211     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
4212       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4213     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
4214       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4215 
4216     const APInt *CmpC;
4217     if (match(Op1, m_APInt(CmpC))) {
4218       // A >u C -> A == C+1 if max(a)-1 == C
4219       if (*CmpC == Op0Max - 1)
4220         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4221                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4222       // X >u C --> X != 0, if the number of zero bits in the bottom of X
4223       // exceeds the log2 of C.
4224       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
4225         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
4226                             Constant::getNullValue(Op1->getType()));
4227     }
4228     break;
4229   }
4230   case ICmpInst::ICMP_SLT: {
4231     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
4232       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4233     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
4234       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4235     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
4236       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4237     const APInt *CmpC;
4238     if (match(Op1, m_APInt(CmpC))) {
4239       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
4240         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4241                             ConstantInt::get(Op1->getType(), *CmpC - 1));
4242     }
4243     break;
4244   }
4245   case ICmpInst::ICMP_SGT: {
4246     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
4247       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4248     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
4249       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4250     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
4251       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4252     const APInt *CmpC;
4253     if (match(Op1, m_APInt(CmpC))) {
4254       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
4255         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4256                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4257     }
4258     break;
4259   }
4260   case ICmpInst::ICMP_SGE:
4261     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
4262     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
4263       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4264     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
4265       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4266     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
4267       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4268     break;
4269   case ICmpInst::ICMP_SLE:
4270     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
4271     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
4272       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4273     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
4274       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4275     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
4276       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4277     break;
4278   case ICmpInst::ICMP_UGE:
4279     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
4280     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
4281       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4282     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
4283       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4284     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
4285       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4286     break;
4287   case ICmpInst::ICMP_ULE:
4288     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
4289     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
4290       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4291     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
4292       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4293     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
4294       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4295     break;
4296   }
4297 
4298   // Turn a signed comparison into an unsigned one if both operands are known to
4299   // have the same sign.
4300   if (I.isSigned() &&
4301       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
4302        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
4303     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
4304 
4305   return nullptr;
4306 }
4307 
4308 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
4309 /// it into the appropriate icmp lt or icmp gt instruction. This transform
4310 /// allows them to be folded in visitICmpInst.
4311 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
4312   ICmpInst::Predicate Pred = I.getPredicate();
4313   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
4314       Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
4315     return nullptr;
4316 
4317   Value *Op0 = I.getOperand(0);
4318   Value *Op1 = I.getOperand(1);
4319   auto *Op1C = dyn_cast<Constant>(Op1);
4320   if (!Op1C)
4321     return nullptr;
4322 
4323   // Check if the constant operand can be safely incremented/decremented without
4324   // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
4325   // the edge cases for us, so we just assert on them. For vectors, we must
4326   // handle the edge cases.
4327   Type *Op1Type = Op1->getType();
4328   bool IsSigned = I.isSigned();
4329   bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
4330   auto *CI = dyn_cast<ConstantInt>(Op1C);
4331   if (CI) {
4332     // A <= MAX -> TRUE ; A >= MIN -> TRUE
4333     assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
4334   } else if (Op1Type->isVectorTy()) {
4335     // TODO? If the edge cases for vectors were guaranteed to be handled as they
4336     // are for scalar, we could remove the min/max checks. However, to do that,
4337     // we would have to use insertelement/shufflevector to replace edge values.
4338     unsigned NumElts = Op1Type->getVectorNumElements();
4339     for (unsigned i = 0; i != NumElts; ++i) {
4340       Constant *Elt = Op1C->getAggregateElement(i);
4341       if (!Elt)
4342         return nullptr;
4343 
4344       if (isa<UndefValue>(Elt))
4345         continue;
4346 
4347       // Bail out if we can't determine if this constant is min/max or if we
4348       // know that this constant is min/max.
4349       auto *CI = dyn_cast<ConstantInt>(Elt);
4350       if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
4351         return nullptr;
4352     }
4353   } else {
4354     // ConstantExpr?
4355     return nullptr;
4356   }
4357 
4358   // Increment or decrement the constant and set the new comparison predicate:
4359   // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
4360   Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
4361   CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
4362   NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
4363   return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
4364 }
4365 
4366 /// Integer compare with boolean values can always be turned into bitwise ops.
4367 static Instruction *canonicalizeICmpBool(ICmpInst &I,
4368                                          InstCombiner::BuilderTy &Builder) {
4369   Value *A = I.getOperand(0), *B = I.getOperand(1);
4370   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
4371 
4372   // A boolean compared to true/false can be simplified to Op0/true/false in
4373   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
4374   // Cases not handled by InstSimplify are always 'not' of Op0.
4375   if (match(B, m_Zero())) {
4376     switch (I.getPredicate()) {
4377       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
4378       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
4379       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
4380         return BinaryOperator::CreateNot(A);
4381       default:
4382         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4383     }
4384   } else if (match(B, m_One())) {
4385     switch (I.getPredicate()) {
4386       case CmpInst::ICMP_NE:  // A !=  1 -> !A
4387       case CmpInst::ICMP_ULT: // A <u  1 -> !A
4388       case CmpInst::ICMP_SGT: // A >s -1 -> !A
4389         return BinaryOperator::CreateNot(A);
4390       default:
4391         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4392     }
4393   }
4394 
4395   switch (I.getPredicate()) {
4396   default:
4397     llvm_unreachable("Invalid icmp instruction!");
4398   case ICmpInst::ICMP_EQ:
4399     // icmp eq i1 A, B -> ~(A ^ B)
4400     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
4401 
4402   case ICmpInst::ICMP_NE:
4403     // icmp ne i1 A, B -> A ^ B
4404     return BinaryOperator::CreateXor(A, B);
4405 
4406   case ICmpInst::ICMP_UGT:
4407     // icmp ugt -> icmp ult
4408     std::swap(A, B);
4409     LLVM_FALLTHROUGH;
4410   case ICmpInst::ICMP_ULT:
4411     // icmp ult i1 A, B -> ~A & B
4412     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
4413 
4414   case ICmpInst::ICMP_SGT:
4415     // icmp sgt -> icmp slt
4416     std::swap(A, B);
4417     LLVM_FALLTHROUGH;
4418   case ICmpInst::ICMP_SLT:
4419     // icmp slt i1 A, B -> A & ~B
4420     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
4421 
4422   case ICmpInst::ICMP_UGE:
4423     // icmp uge -> icmp ule
4424     std::swap(A, B);
4425     LLVM_FALLTHROUGH;
4426   case ICmpInst::ICMP_ULE:
4427     // icmp ule i1 A, B -> ~A | B
4428     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
4429 
4430   case ICmpInst::ICMP_SGE:
4431     // icmp sge -> icmp sle
4432     std::swap(A, B);
4433     LLVM_FALLTHROUGH;
4434   case ICmpInst::ICMP_SLE:
4435     // icmp sle i1 A, B -> A | ~B
4436     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
4437   }
4438 }
4439 
4440 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4441   bool Changed = false;
4442   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4443   unsigned Op0Cplxity = getComplexity(Op0);
4444   unsigned Op1Cplxity = getComplexity(Op1);
4445 
4446   /// Orders the operands of the compare so that they are listed from most
4447   /// complex to least complex.  This puts constants before unary operators,
4448   /// before binary operators.
4449   if (Op0Cplxity < Op1Cplxity ||
4450       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
4451     I.swapOperands();
4452     std::swap(Op0, Op1);
4453     Changed = true;
4454   }
4455 
4456   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1,
4457                                   SQ.getWithInstruction(&I)))
4458     return replaceInstUsesWith(I, V);
4459 
4460   // Comparing -val or val with non-zero is the same as just comparing val
4461   // ie, abs(val) != 0 -> val != 0
4462   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
4463     Value *Cond, *SelectTrue, *SelectFalse;
4464     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
4465                             m_Value(SelectFalse)))) {
4466       if (Value *V = dyn_castNegVal(SelectTrue)) {
4467         if (V == SelectFalse)
4468           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4469       }
4470       else if (Value *V = dyn_castNegVal(SelectFalse)) {
4471         if (V == SelectTrue)
4472           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4473       }
4474     }
4475   }
4476 
4477   if (Op0->getType()->isIntOrIntVectorTy(1))
4478     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
4479       return Res;
4480 
4481   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
4482     return NewICmp;
4483 
4484   if (Instruction *Res = foldICmpWithConstant(I))
4485     return Res;
4486 
4487   if (Instruction *Res = foldICmpUsingKnownBits(I))
4488     return Res;
4489 
4490   // Test if the ICmpInst instruction is used exclusively by a select as
4491   // part of a minimum or maximum operation. If so, refrain from doing
4492   // any other folding. This helps out other analyses which understand
4493   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4494   // and CodeGen. And in this case, at least one of the comparison
4495   // operands has at least one user besides the compare (the select),
4496   // which would often largely negate the benefit of folding anyway.
4497   //
4498   // Do the same for the other patterns recognized by matchSelectPattern.
4499   if (I.hasOneUse())
4500     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
4501       Value *A, *B;
4502       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
4503       if (SPR.Flavor != SPF_UNKNOWN)
4504         return nullptr;
4505     }
4506 
4507   // Do this after checking for min/max to prevent infinite looping.
4508   if (Instruction *Res = foldICmpWithZero(I))
4509     return Res;
4510 
4511   // FIXME: We only do this after checking for min/max to prevent infinite
4512   // looping caused by a reverse canonicalization of these patterns for min/max.
4513   // FIXME: The organization of folds is a mess. These would naturally go into
4514   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
4515   // down here after the min/max restriction.
4516   ICmpInst::Predicate Pred = I.getPredicate();
4517   const APInt *C;
4518   if (match(Op1, m_APInt(C))) {
4519     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
4520     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
4521       Constant *Zero = Constant::getNullValue(Op0->getType());
4522       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
4523     }
4524 
4525     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
4526     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
4527       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
4528       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
4529     }
4530   }
4531 
4532   if (Instruction *Res = foldICmpInstWithConstant(I))
4533     return Res;
4534 
4535   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
4536     return Res;
4537 
4538   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
4539   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
4540     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
4541       return NI;
4542   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
4543     if (Instruction *NI = foldGEPICmp(GEP, Op0,
4544                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
4545       return NI;
4546 
4547   // Try to optimize equality comparisons against alloca-based pointers.
4548   if (Op0->getType()->isPointerTy() && I.isEquality()) {
4549     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
4550     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
4551       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
4552         return New;
4553     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
4554       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
4555         return New;
4556   }
4557 
4558   // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
4559   Value *X;
4560   if (match(Op0, m_BitCast(m_SIToFP(m_Value(X))))) {
4561     // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
4562     // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
4563     // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
4564     // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
4565     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
4566          Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
4567         match(Op1, m_Zero()))
4568       return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
4569 
4570     // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
4571     if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
4572       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
4573 
4574     // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
4575     if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
4576       return new ICmpInst(Pred, X, ConstantInt::getAllOnesValue(X->getType()));
4577   }
4578 
4579   // Zero-equality checks are preserved through unsigned floating-point casts:
4580   // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
4581   // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
4582   if (match(Op0, m_BitCast(m_UIToFP(m_Value(X)))))
4583     if (I.isEquality() && match(Op1, m_Zero()))
4584       return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
4585 
4586   // Test to see if the operands of the icmp are casted versions of other
4587   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
4588   // now.
4589   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
4590     if (Op0->getType()->isPointerTy() &&
4591         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
4592       // We keep moving the cast from the left operand over to the right
4593       // operand, where it can often be eliminated completely.
4594       Op0 = CI->getOperand(0);
4595 
4596       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
4597       // so eliminate it as well.
4598       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
4599         Op1 = CI2->getOperand(0);
4600 
4601       // If Op1 is a constant, we can fold the cast into the constant.
4602       if (Op0->getType() != Op1->getType()) {
4603         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
4604           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
4605         } else {
4606           // Otherwise, cast the RHS right before the icmp
4607           Op1 = Builder.CreateBitCast(Op1, Op0->getType());
4608         }
4609       }
4610       return new ICmpInst(I.getPredicate(), Op0, Op1);
4611     }
4612   }
4613 
4614   if (isa<CastInst>(Op0)) {
4615     // Handle the special case of: icmp (cast bool to X), <cst>
4616     // This comes up when you have code like
4617     //   int X = A < B;
4618     //   if (X) ...
4619     // For generality, we handle any zero-extension of any operand comparison
4620     // with a constant or another cast from the same type.
4621     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
4622       if (Instruction *R = foldICmpWithCastAndCast(I))
4623         return R;
4624   }
4625 
4626   if (Instruction *Res = foldICmpBinOp(I))
4627     return Res;
4628 
4629   if (Instruction *Res = foldICmpWithMinMax(I))
4630     return Res;
4631 
4632   {
4633     Value *A, *B;
4634     // Transform (A & ~B) == 0 --> (A & B) != 0
4635     // and       (A & ~B) != 0 --> (A & B) == 0
4636     // if A is a power of 2.
4637     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
4638         match(Op1, m_Zero()) &&
4639         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
4640       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
4641                           Op1);
4642 
4643     // ~X < ~Y --> Y < X
4644     // ~X < C -->  X > ~C
4645     if (match(Op0, m_Not(m_Value(A)))) {
4646       if (match(Op1, m_Not(m_Value(B))))
4647         return new ICmpInst(I.getPredicate(), B, A);
4648 
4649       const APInt *C;
4650       if (match(Op1, m_APInt(C)))
4651         return new ICmpInst(I.getSwappedPredicate(), A,
4652                             ConstantInt::get(Op1->getType(), ~(*C)));
4653     }
4654 
4655     Instruction *AddI = nullptr;
4656     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
4657                                      m_Instruction(AddI))) &&
4658         isa<IntegerType>(A->getType())) {
4659       Value *Result;
4660       Constant *Overflow;
4661       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
4662                                 Overflow)) {
4663         replaceInstUsesWith(*AddI, Result);
4664         return replaceInstUsesWith(I, Overflow);
4665       }
4666     }
4667 
4668     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
4669     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4670       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
4671         return R;
4672     }
4673     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4674       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
4675         return R;
4676     }
4677   }
4678 
4679   if (Instruction *Res = foldICmpEquality(I))
4680     return Res;
4681 
4682   // The 'cmpxchg' instruction returns an aggregate containing the old value and
4683   // an i1 which indicates whether or not we successfully did the swap.
4684   //
4685   // Replace comparisons between the old value and the expected value with the
4686   // indicator that 'cmpxchg' returns.
4687   //
4688   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
4689   // spuriously fail.  In those cases, the old value may equal the expected
4690   // value but it is possible for the swap to not occur.
4691   if (I.getPredicate() == ICmpInst::ICMP_EQ)
4692     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
4693       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
4694         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
4695             !ACXI->isWeak())
4696           return ExtractValueInst::Create(ACXI, 1);
4697 
4698   {
4699     Value *X; ConstantInt *Cst;
4700     // icmp X+Cst, X
4701     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
4702       return foldICmpAddOpConst(X, Cst, I.getPredicate());
4703 
4704     // icmp X, X+Cst
4705     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
4706       return foldICmpAddOpConst(X, Cst, I.getSwappedPredicate());
4707   }
4708   return Changed ? &I : nullptr;
4709 }
4710 
4711 /// Fold fcmp ([us]itofp x, cst) if possible.
4712 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
4713                                                 Constant *RHSC) {
4714   if (!isa<ConstantFP>(RHSC)) return nullptr;
4715   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
4716 
4717   // Get the width of the mantissa.  We don't want to hack on conversions that
4718   // might lose information from the integer, e.g. "i64 -> float"
4719   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
4720   if (MantissaWidth == -1) return nullptr;  // Unknown.
4721 
4722   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
4723 
4724   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
4725 
4726   if (I.isEquality()) {
4727     FCmpInst::Predicate P = I.getPredicate();
4728     bool IsExact = false;
4729     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
4730     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
4731 
4732     // If the floating point constant isn't an integer value, we know if we will
4733     // ever compare equal / not equal to it.
4734     if (!IsExact) {
4735       // TODO: Can never be -0.0 and other non-representable values
4736       APFloat RHSRoundInt(RHS);
4737       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
4738       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
4739         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
4740           return replaceInstUsesWith(I, Builder.getFalse());
4741 
4742         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
4743         return replaceInstUsesWith(I, Builder.getTrue());
4744       }
4745     }
4746 
4747     // TODO: If the constant is exactly representable, is it always OK to do
4748     // equality compares as integer?
4749   }
4750 
4751   // Check to see that the input is converted from an integer type that is small
4752   // enough that preserves all bits.  TODO: check here for "known" sign bits.
4753   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
4754   unsigned InputSize = IntTy->getScalarSizeInBits();
4755 
4756   // Following test does NOT adjust InputSize downwards for signed inputs,
4757   // because the most negative value still requires all the mantissa bits
4758   // to distinguish it from one less than that value.
4759   if ((int)InputSize > MantissaWidth) {
4760     // Conversion would lose accuracy. Check if loss can impact comparison.
4761     int Exp = ilogb(RHS);
4762     if (Exp == APFloat::IEK_Inf) {
4763       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
4764       if (MaxExponent < (int)InputSize - !LHSUnsigned)
4765         // Conversion could create infinity.
4766         return nullptr;
4767     } else {
4768       // Note that if RHS is zero or NaN, then Exp is negative
4769       // and first condition is trivially false.
4770       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
4771         // Conversion could affect comparison.
4772         return nullptr;
4773     }
4774   }
4775 
4776   // Otherwise, we can potentially simplify the comparison.  We know that it
4777   // will always come through as an integer value and we know the constant is
4778   // not a NAN (it would have been previously simplified).
4779   assert(!RHS.isNaN() && "NaN comparison not already folded!");
4780 
4781   ICmpInst::Predicate Pred;
4782   switch (I.getPredicate()) {
4783   default: llvm_unreachable("Unexpected predicate!");
4784   case FCmpInst::FCMP_UEQ:
4785   case FCmpInst::FCMP_OEQ:
4786     Pred = ICmpInst::ICMP_EQ;
4787     break;
4788   case FCmpInst::FCMP_UGT:
4789   case FCmpInst::FCMP_OGT:
4790     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
4791     break;
4792   case FCmpInst::FCMP_UGE:
4793   case FCmpInst::FCMP_OGE:
4794     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
4795     break;
4796   case FCmpInst::FCMP_ULT:
4797   case FCmpInst::FCMP_OLT:
4798     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
4799     break;
4800   case FCmpInst::FCMP_ULE:
4801   case FCmpInst::FCMP_OLE:
4802     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
4803     break;
4804   case FCmpInst::FCMP_UNE:
4805   case FCmpInst::FCMP_ONE:
4806     Pred = ICmpInst::ICMP_NE;
4807     break;
4808   case FCmpInst::FCMP_ORD:
4809     return replaceInstUsesWith(I, Builder.getTrue());
4810   case FCmpInst::FCMP_UNO:
4811     return replaceInstUsesWith(I, Builder.getFalse());
4812   }
4813 
4814   // Now we know that the APFloat is a normal number, zero or inf.
4815 
4816   // See if the FP constant is too large for the integer.  For example,
4817   // comparing an i8 to 300.0.
4818   unsigned IntWidth = IntTy->getScalarSizeInBits();
4819 
4820   if (!LHSUnsigned) {
4821     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
4822     // and large values.
4823     APFloat SMax(RHS.getSemantics());
4824     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
4825                           APFloat::rmNearestTiesToEven);
4826     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
4827       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
4828           Pred == ICmpInst::ICMP_SLE)
4829         return replaceInstUsesWith(I, Builder.getTrue());
4830       return replaceInstUsesWith(I, Builder.getFalse());
4831     }
4832   } else {
4833     // If the RHS value is > UnsignedMax, fold the comparison. This handles
4834     // +INF and large values.
4835     APFloat UMax(RHS.getSemantics());
4836     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
4837                           APFloat::rmNearestTiesToEven);
4838     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
4839       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
4840           Pred == ICmpInst::ICMP_ULE)
4841         return replaceInstUsesWith(I, Builder.getTrue());
4842       return replaceInstUsesWith(I, Builder.getFalse());
4843     }
4844   }
4845 
4846   if (!LHSUnsigned) {
4847     // See if the RHS value is < SignedMin.
4848     APFloat SMin(RHS.getSemantics());
4849     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
4850                           APFloat::rmNearestTiesToEven);
4851     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
4852       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
4853           Pred == ICmpInst::ICMP_SGE)
4854         return replaceInstUsesWith(I, Builder.getTrue());
4855       return replaceInstUsesWith(I, Builder.getFalse());
4856     }
4857   } else {
4858     // See if the RHS value is < UnsignedMin.
4859     APFloat SMin(RHS.getSemantics());
4860     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
4861                           APFloat::rmNearestTiesToEven);
4862     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
4863       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
4864           Pred == ICmpInst::ICMP_UGE)
4865         return replaceInstUsesWith(I, Builder.getTrue());
4866       return replaceInstUsesWith(I, Builder.getFalse());
4867     }
4868   }
4869 
4870   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
4871   // [0, UMAX], but it may still be fractional.  See if it is fractional by
4872   // casting the FP value to the integer value and back, checking for equality.
4873   // Don't do this for zero, because -0.0 is not fractional.
4874   Constant *RHSInt = LHSUnsigned
4875     ? ConstantExpr::getFPToUI(RHSC, IntTy)
4876     : ConstantExpr::getFPToSI(RHSC, IntTy);
4877   if (!RHS.isZero()) {
4878     bool Equal = LHSUnsigned
4879       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
4880       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
4881     if (!Equal) {
4882       // If we had a comparison against a fractional value, we have to adjust
4883       // the compare predicate and sometimes the value.  RHSC is rounded towards
4884       // zero at this point.
4885       switch (Pred) {
4886       default: llvm_unreachable("Unexpected integer comparison!");
4887       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
4888         return replaceInstUsesWith(I, Builder.getTrue());
4889       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
4890         return replaceInstUsesWith(I, Builder.getFalse());
4891       case ICmpInst::ICMP_ULE:
4892         // (float)int <= 4.4   --> int <= 4
4893         // (float)int <= -4.4  --> false
4894         if (RHS.isNegative())
4895           return replaceInstUsesWith(I, Builder.getFalse());
4896         break;
4897       case ICmpInst::ICMP_SLE:
4898         // (float)int <= 4.4   --> int <= 4
4899         // (float)int <= -4.4  --> int < -4
4900         if (RHS.isNegative())
4901           Pred = ICmpInst::ICMP_SLT;
4902         break;
4903       case ICmpInst::ICMP_ULT:
4904         // (float)int < -4.4   --> false
4905         // (float)int < 4.4    --> int <= 4
4906         if (RHS.isNegative())
4907           return replaceInstUsesWith(I, Builder.getFalse());
4908         Pred = ICmpInst::ICMP_ULE;
4909         break;
4910       case ICmpInst::ICMP_SLT:
4911         // (float)int < -4.4   --> int < -4
4912         // (float)int < 4.4    --> int <= 4
4913         if (!RHS.isNegative())
4914           Pred = ICmpInst::ICMP_SLE;
4915         break;
4916       case ICmpInst::ICMP_UGT:
4917         // (float)int > 4.4    --> int > 4
4918         // (float)int > -4.4   --> true
4919         if (RHS.isNegative())
4920           return replaceInstUsesWith(I, Builder.getTrue());
4921         break;
4922       case ICmpInst::ICMP_SGT:
4923         // (float)int > 4.4    --> int > 4
4924         // (float)int > -4.4   --> int >= -4
4925         if (RHS.isNegative())
4926           Pred = ICmpInst::ICMP_SGE;
4927         break;
4928       case ICmpInst::ICMP_UGE:
4929         // (float)int >= -4.4   --> true
4930         // (float)int >= 4.4    --> int > 4
4931         if (RHS.isNegative())
4932           return replaceInstUsesWith(I, Builder.getTrue());
4933         Pred = ICmpInst::ICMP_UGT;
4934         break;
4935       case ICmpInst::ICMP_SGE:
4936         // (float)int >= -4.4   --> int >= -4
4937         // (float)int >= 4.4    --> int > 4
4938         if (!RHS.isNegative())
4939           Pred = ICmpInst::ICMP_SGT;
4940         break;
4941       }
4942     }
4943   }
4944 
4945   // Lower this FP comparison into an appropriate integer version of the
4946   // comparison.
4947   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
4948 }
4949 
4950 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4951   bool Changed = false;
4952 
4953   /// Orders the operands of the compare so that they are listed from most
4954   /// complex to least complex.  This puts constants before unary operators,
4955   /// before binary operators.
4956   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
4957     I.swapOperands();
4958     Changed = true;
4959   }
4960 
4961   const CmpInst::Predicate Pred = I.getPredicate();
4962   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4963   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
4964                                   SQ.getWithInstruction(&I)))
4965     return replaceInstUsesWith(I, V);
4966 
4967   // Simplify 'fcmp pred X, X'
4968   if (Op0 == Op1) {
4969     switch (Pred) {
4970       default: break;
4971     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
4972     case FCmpInst::FCMP_ULT:    // True if unordered or less than
4973     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
4974     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
4975       // Canonicalize these to be 'fcmp uno %X, 0.0'.
4976       I.setPredicate(FCmpInst::FCMP_UNO);
4977       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4978       return &I;
4979 
4980     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
4981     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
4982     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
4983     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
4984       // Canonicalize these to be 'fcmp ord %X, 0.0'.
4985       I.setPredicate(FCmpInst::FCMP_ORD);
4986       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4987       return &I;
4988     }
4989   }
4990 
4991   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
4992   // then canonicalize the operand to 0.0.
4993   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
4994     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0)) {
4995       I.setOperand(0, ConstantFP::getNullValue(Op0->getType()));
4996       return &I;
4997     }
4998     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1)) {
4999       I.setOperand(1, ConstantFP::getNullValue(Op0->getType()));
5000       return &I;
5001     }
5002   }
5003 
5004   // Test if the FCmpInst instruction is used exclusively by a select as
5005   // part of a minimum or maximum operation. If so, refrain from doing
5006   // any other folding. This helps out other analyses which understand
5007   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5008   // and CodeGen. And in this case, at least one of the comparison
5009   // operands has at least one user besides the compare (the select),
5010   // which would often largely negate the benefit of folding anyway.
5011   if (I.hasOneUse())
5012     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5013       Value *A, *B;
5014       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5015       if (SPR.Flavor != SPF_UNKNOWN)
5016         return nullptr;
5017     }
5018 
5019   // Handle fcmp with constant RHS
5020   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5021     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5022       switch (LHSI->getOpcode()) {
5023       case Instruction::FPExt: {
5024         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
5025         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
5026         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
5027         if (!RHSF)
5028           break;
5029 
5030         const fltSemantics *Sem;
5031         // FIXME: This shouldn't be here.
5032         if (LHSExt->getSrcTy()->isHalfTy())
5033           Sem = &APFloat::IEEEhalf();
5034         else if (LHSExt->getSrcTy()->isFloatTy())
5035           Sem = &APFloat::IEEEsingle();
5036         else if (LHSExt->getSrcTy()->isDoubleTy())
5037           Sem = &APFloat::IEEEdouble();
5038         else if (LHSExt->getSrcTy()->isFP128Ty())
5039           Sem = &APFloat::IEEEquad();
5040         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
5041           Sem = &APFloat::x87DoubleExtended();
5042         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
5043           Sem = &APFloat::PPCDoubleDouble();
5044         else
5045           break;
5046 
5047         bool Lossy;
5048         APFloat F = RHSF->getValueAPF();
5049         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
5050 
5051         // Avoid lossy conversions and denormals. Zero is a special case
5052         // that's OK to convert.
5053         APFloat Fabs = F;
5054         Fabs.clearSign();
5055         if (!Lossy &&
5056             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
5057                  APFloat::cmpLessThan) || Fabs.isZero()))
5058 
5059           return new FCmpInst(Pred, LHSExt->getOperand(0),
5060                               ConstantFP::get(RHSC->getContext(), F));
5061         break;
5062       }
5063       case Instruction::PHI:
5064         // Only fold fcmp into the PHI if the phi and fcmp are in the same
5065         // block.  If in the same block, we're encouraging jump threading.  If
5066         // not, we are just pessimizing the code by making an i1 phi.
5067         if (LHSI->getParent() == I.getParent())
5068           if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
5069             return NV;
5070         break;
5071       case Instruction::SIToFP:
5072       case Instruction::UIToFP:
5073         if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
5074           return NV;
5075         break;
5076       case Instruction::FSub: {
5077         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
5078         Value *Op;
5079         if (match(LHSI, m_FNeg(m_Value(Op))))
5080           return new FCmpInst(I.getSwappedPredicate(), Op,
5081                               ConstantExpr::getFNeg(RHSC));
5082         break;
5083       }
5084       case Instruction::Load:
5085         if (GetElementPtrInst *GEP =
5086             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
5087           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
5088             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
5089                 !cast<LoadInst>(LHSI)->isVolatile())
5090               if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
5091                 return Res;
5092         }
5093         break;
5094       case Instruction::Call: {
5095         if (!RHSC->isNullValue())
5096           break;
5097 
5098         CallInst *CI = cast<CallInst>(LHSI);
5099         Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI);
5100         if (IID != Intrinsic::fabs)
5101           break;
5102 
5103         // Various optimization for fabs compared with zero.
5104         switch (Pred) {
5105         default:
5106           break;
5107         // fabs(x) < 0 --> false
5108         case FCmpInst::FCMP_OLT:
5109           llvm_unreachable("handled by SimplifyFCmpInst");
5110         // fabs(x) > 0 --> x != 0
5111         case FCmpInst::FCMP_OGT:
5112           return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
5113         // fabs(x) <= 0 --> x == 0
5114         case FCmpInst::FCMP_OLE:
5115           return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
5116         // fabs(x) >= 0 --> !isnan(x)
5117         case FCmpInst::FCMP_OGE:
5118           return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
5119         // fabs(x) == 0 --> x == 0
5120         // fabs(x) != 0 --> x != 0
5121         case FCmpInst::FCMP_OEQ:
5122         case FCmpInst::FCMP_UEQ:
5123         case FCmpInst::FCMP_ONE:
5124         case FCmpInst::FCMP_UNE:
5125           return new FCmpInst(Pred, CI->getArgOperand(0), RHSC);
5126         }
5127       }
5128       }
5129   }
5130 
5131   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
5132   Value *X, *Y;
5133   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
5134     return new FCmpInst(I.getSwappedPredicate(), X, Y);
5135 
5136   // fcmp (fpext x), (fpext y) -> fcmp x, y
5137   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
5138     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
5139       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
5140         return new FCmpInst(Pred, LHSExt->getOperand(0), RHSExt->getOperand(0));
5141 
5142   return Changed ? &I : nullptr;
5143 }
5144