1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Given an exploded icmp instruction, return true if the comparison only 73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 74 /// result of the comparison is true when the input value is signed. 75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 76 bool &TrueIfSigned) { 77 switch (Pred) { 78 case ICmpInst::ICMP_SLT: // True if LHS s< 0 79 TrueIfSigned = true; 80 return RHS.isNullValue(); 81 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 82 TrueIfSigned = true; 83 return RHS.isAllOnesValue(); 84 case ICmpInst::ICMP_SGT: // True if LHS s> -1 85 TrueIfSigned = false; 86 return RHS.isAllOnesValue(); 87 case ICmpInst::ICMP_UGT: 88 // True if LHS u> RHS and RHS == high-bit-mask - 1 89 TrueIfSigned = true; 90 return RHS.isMaxSignedValue(); 91 case ICmpInst::ICMP_UGE: 92 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 93 TrueIfSigned = true; 94 return RHS.isSignMask(); 95 default: 96 return false; 97 } 98 } 99 100 /// Returns true if the exploded icmp can be expressed as a signed comparison 101 /// to zero and updates the predicate accordingly. 102 /// The signedness of the comparison is preserved. 103 /// TODO: Refactor with decomposeBitTestICmp()? 104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 105 if (!ICmpInst::isSigned(Pred)) 106 return false; 107 108 if (C.isNullValue()) 109 return ICmpInst::isRelational(Pred); 110 111 if (C.isOneValue()) { 112 if (Pred == ICmpInst::ICMP_SLT) { 113 Pred = ICmpInst::ICMP_SLE; 114 return true; 115 } 116 } else if (C.isAllOnesValue()) { 117 if (Pred == ICmpInst::ICMP_SGT) { 118 Pred = ICmpInst::ICMP_SGE; 119 return true; 120 } 121 } 122 123 return false; 124 } 125 126 /// Given a signed integer type and a set of known zero and one bits, compute 127 /// the maximum and minimum values that could have the specified known zero and 128 /// known one bits, returning them in Min/Max. 129 /// TODO: Move to method on KnownBits struct? 130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 131 APInt &Min, APInt &Max) { 132 assert(Known.getBitWidth() == Min.getBitWidth() && 133 Known.getBitWidth() == Max.getBitWidth() && 134 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 135 APInt UnknownBits = ~(Known.Zero|Known.One); 136 137 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 138 // bit if it is unknown. 139 Min = Known.One; 140 Max = Known.One|UnknownBits; 141 142 if (UnknownBits.isNegative()) { // Sign bit is unknown 143 Min.setSignBit(); 144 Max.clearSignBit(); 145 } 146 } 147 148 /// Given an unsigned integer type and a set of known zero and one bits, compute 149 /// the maximum and minimum values that could have the specified known zero and 150 /// known one bits, returning them in Min/Max. 151 /// TODO: Move to method on KnownBits struct? 152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 153 APInt &Min, APInt &Max) { 154 assert(Known.getBitWidth() == Min.getBitWidth() && 155 Known.getBitWidth() == Max.getBitWidth() && 156 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 157 APInt UnknownBits = ~(Known.Zero|Known.One); 158 159 // The minimum value is when the unknown bits are all zeros. 160 Min = Known.One; 161 // The maximum value is when the unknown bits are all ones. 162 Max = Known.One|UnknownBits; 163 } 164 165 /// This is called when we see this pattern: 166 /// cmp pred (load (gep GV, ...)), cmpcst 167 /// where GV is a global variable with a constant initializer. Try to simplify 168 /// this into some simple computation that does not need the load. For example 169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 170 /// 171 /// If AndCst is non-null, then the loaded value is masked with that constant 172 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 174 GlobalVariable *GV, 175 CmpInst &ICI, 176 ConstantInt *AndCst) { 177 Constant *Init = GV->getInitializer(); 178 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 179 return nullptr; 180 181 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 182 // Don't blow up on huge arrays. 183 if (ArrayElementCount > MaxArraySizeForCombine) 184 return nullptr; 185 186 // There are many forms of this optimization we can handle, for now, just do 187 // the simple index into a single-dimensional array. 188 // 189 // Require: GEP GV, 0, i {{, constant indices}} 190 if (GEP->getNumOperands() < 3 || 191 !isa<ConstantInt>(GEP->getOperand(1)) || 192 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 193 isa<Constant>(GEP->getOperand(2))) 194 return nullptr; 195 196 // Check that indices after the variable are constants and in-range for the 197 // type they index. Collect the indices. This is typically for arrays of 198 // structs. 199 SmallVector<unsigned, 4> LaterIndices; 200 201 Type *EltTy = Init->getType()->getArrayElementType(); 202 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 203 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 204 if (!Idx) return nullptr; // Variable index. 205 206 uint64_t IdxVal = Idx->getZExtValue(); 207 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 208 209 if (StructType *STy = dyn_cast<StructType>(EltTy)) 210 EltTy = STy->getElementType(IdxVal); 211 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 212 if (IdxVal >= ATy->getNumElements()) return nullptr; 213 EltTy = ATy->getElementType(); 214 } else { 215 return nullptr; // Unknown type. 216 } 217 218 LaterIndices.push_back(IdxVal); 219 } 220 221 enum { Overdefined = -3, Undefined = -2 }; 222 223 // Variables for our state machines. 224 225 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 226 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 227 // and 87 is the second (and last) index. FirstTrueElement is -2 when 228 // undefined, otherwise set to the first true element. SecondTrueElement is 229 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 230 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 231 232 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 233 // form "i != 47 & i != 87". Same state transitions as for true elements. 234 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 235 236 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 237 /// define a state machine that triggers for ranges of values that the index 238 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 239 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 240 /// index in the range (inclusive). We use -2 for undefined here because we 241 /// use relative comparisons and don't want 0-1 to match -1. 242 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 243 244 // MagicBitvector - This is a magic bitvector where we set a bit if the 245 // comparison is true for element 'i'. If there are 64 elements or less in 246 // the array, this will fully represent all the comparison results. 247 uint64_t MagicBitvector = 0; 248 249 // Scan the array and see if one of our patterns matches. 250 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 251 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 252 Constant *Elt = Init->getAggregateElement(i); 253 if (!Elt) return nullptr; 254 255 // If this is indexing an array of structures, get the structure element. 256 if (!LaterIndices.empty()) 257 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 258 259 // If the element is masked, handle it. 260 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 261 262 // Find out if the comparison would be true or false for the i'th element. 263 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 264 CompareRHS, DL, &TLI); 265 // If the result is undef for this element, ignore it. 266 if (isa<UndefValue>(C)) { 267 // Extend range state machines to cover this element in case there is an 268 // undef in the middle of the range. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 if (FalseRangeEnd == (int)i-1) 272 FalseRangeEnd = i; 273 continue; 274 } 275 276 // If we can't compute the result for any of the elements, we have to give 277 // up evaluating the entire conditional. 278 if (!isa<ConstantInt>(C)) return nullptr; 279 280 // Otherwise, we know if the comparison is true or false for this element, 281 // update our state machines. 282 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 283 284 // State machine for single/double/range index comparison. 285 if (IsTrueForElt) { 286 // Update the TrueElement state machine. 287 if (FirstTrueElement == Undefined) 288 FirstTrueElement = TrueRangeEnd = i; // First true element. 289 else { 290 // Update double-compare state machine. 291 if (SecondTrueElement == Undefined) 292 SecondTrueElement = i; 293 else 294 SecondTrueElement = Overdefined; 295 296 // Update range state machine. 297 if (TrueRangeEnd == (int)i-1) 298 TrueRangeEnd = i; 299 else 300 TrueRangeEnd = Overdefined; 301 } 302 } else { 303 // Update the FalseElement state machine. 304 if (FirstFalseElement == Undefined) 305 FirstFalseElement = FalseRangeEnd = i; // First false element. 306 else { 307 // Update double-compare state machine. 308 if (SecondFalseElement == Undefined) 309 SecondFalseElement = i; 310 else 311 SecondFalseElement = Overdefined; 312 313 // Update range state machine. 314 if (FalseRangeEnd == (int)i-1) 315 FalseRangeEnd = i; 316 else 317 FalseRangeEnd = Overdefined; 318 } 319 } 320 321 // If this element is in range, update our magic bitvector. 322 if (i < 64 && IsTrueForElt) 323 MagicBitvector |= 1ULL << i; 324 325 // If all of our states become overdefined, bail out early. Since the 326 // predicate is expensive, only check it every 8 elements. This is only 327 // really useful for really huge arrays. 328 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 329 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 330 FalseRangeEnd == Overdefined) 331 return nullptr; 332 } 333 334 // Now that we've scanned the entire array, emit our new comparison(s). We 335 // order the state machines in complexity of the generated code. 336 Value *Idx = GEP->getOperand(2); 337 338 // If the index is larger than the pointer size of the target, truncate the 339 // index down like the GEP would do implicitly. We don't have to do this for 340 // an inbounds GEP because the index can't be out of range. 341 if (!GEP->isInBounds()) { 342 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 343 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 344 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 345 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 346 } 347 348 // If the comparison is only true for one or two elements, emit direct 349 // comparisons. 350 if (SecondTrueElement != Overdefined) { 351 // None true -> false. 352 if (FirstTrueElement == Undefined) 353 return replaceInstUsesWith(ICI, Builder.getFalse()); 354 355 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 356 357 // True for one element -> 'i == 47'. 358 if (SecondTrueElement == Undefined) 359 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 360 361 // True for two elements -> 'i == 47 | i == 72'. 362 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 363 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 364 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 365 return BinaryOperator::CreateOr(C1, C2); 366 } 367 368 // If the comparison is only false for one or two elements, emit direct 369 // comparisons. 370 if (SecondFalseElement != Overdefined) { 371 // None false -> true. 372 if (FirstFalseElement == Undefined) 373 return replaceInstUsesWith(ICI, Builder.getTrue()); 374 375 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 376 377 // False for one element -> 'i != 47'. 378 if (SecondFalseElement == Undefined) 379 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 380 381 // False for two elements -> 'i != 47 & i != 72'. 382 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 383 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 384 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 385 return BinaryOperator::CreateAnd(C1, C2); 386 } 387 388 // If the comparison can be replaced with a range comparison for the elements 389 // where it is true, emit the range check. 390 if (TrueRangeEnd != Overdefined) { 391 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 392 393 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 394 if (FirstTrueElement) { 395 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 396 Idx = Builder.CreateAdd(Idx, Offs); 397 } 398 399 Value *End = ConstantInt::get(Idx->getType(), 400 TrueRangeEnd-FirstTrueElement+1); 401 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 402 } 403 404 // False range check. 405 if (FalseRangeEnd != Overdefined) { 406 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 407 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 408 if (FirstFalseElement) { 409 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 410 Idx = Builder.CreateAdd(Idx, Offs); 411 } 412 413 Value *End = ConstantInt::get(Idx->getType(), 414 FalseRangeEnd-FirstFalseElement); 415 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 416 } 417 418 // If a magic bitvector captures the entire comparison state 419 // of this load, replace it with computation that does: 420 // ((magic_cst >> i) & 1) != 0 421 { 422 Type *Ty = nullptr; 423 424 // Look for an appropriate type: 425 // - The type of Idx if the magic fits 426 // - The smallest fitting legal type 427 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 428 Ty = Idx->getType(); 429 else 430 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 431 432 if (Ty) { 433 Value *V = Builder.CreateIntCast(Idx, Ty, false); 434 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 435 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 436 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 437 } 438 } 439 440 return nullptr; 441 } 442 443 /// Return a value that can be used to compare the *offset* implied by a GEP to 444 /// zero. For example, if we have &A[i], we want to return 'i' for 445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 446 /// are involved. The above expression would also be legal to codegen as 447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 448 /// This latter form is less amenable to optimization though, and we are allowed 449 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 450 /// 451 /// If we can't emit an optimized form for this expression, this returns null. 452 /// 453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 454 const DataLayout &DL) { 455 gep_type_iterator GTI = gep_type_begin(GEP); 456 457 // Check to see if this gep only has a single variable index. If so, and if 458 // any constant indices are a multiple of its scale, then we can compute this 459 // in terms of the scale of the variable index. For example, if the GEP 460 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 461 // because the expression will cross zero at the same point. 462 unsigned i, e = GEP->getNumOperands(); 463 int64_t Offset = 0; 464 for (i = 1; i != e; ++i, ++GTI) { 465 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 466 // Compute the aggregate offset of constant indices. 467 if (CI->isZero()) continue; 468 469 // Handle a struct index, which adds its field offset to the pointer. 470 if (StructType *STy = GTI.getStructTypeOrNull()) { 471 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 472 } else { 473 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 474 Offset += Size*CI->getSExtValue(); 475 } 476 } else { 477 // Found our variable index. 478 break; 479 } 480 } 481 482 // If there are no variable indices, we must have a constant offset, just 483 // evaluate it the general way. 484 if (i == e) return nullptr; 485 486 Value *VariableIdx = GEP->getOperand(i); 487 // Determine the scale factor of the variable element. For example, this is 488 // 4 if the variable index is into an array of i32. 489 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 490 491 // Verify that there are no other variable indices. If so, emit the hard way. 492 for (++i, ++GTI; i != e; ++i, ++GTI) { 493 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 494 if (!CI) return nullptr; 495 496 // Compute the aggregate offset of constant indices. 497 if (CI->isZero()) continue; 498 499 // Handle a struct index, which adds its field offset to the pointer. 500 if (StructType *STy = GTI.getStructTypeOrNull()) { 501 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 502 } else { 503 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 504 Offset += Size*CI->getSExtValue(); 505 } 506 } 507 508 // Okay, we know we have a single variable index, which must be a 509 // pointer/array/vector index. If there is no offset, life is simple, return 510 // the index. 511 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 512 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 513 if (Offset == 0) { 514 // Cast to intptrty in case a truncation occurs. If an extension is needed, 515 // we don't need to bother extending: the extension won't affect where the 516 // computation crosses zero. 517 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 518 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 519 } 520 return VariableIdx; 521 } 522 523 // Otherwise, there is an index. The computation we will do will be modulo 524 // the pointer size. 525 Offset = SignExtend64(Offset, IntPtrWidth); 526 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 527 528 // To do this transformation, any constant index must be a multiple of the 529 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 530 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 531 // multiple of the variable scale. 532 int64_t NewOffs = Offset / (int64_t)VariableScale; 533 if (Offset != NewOffs*(int64_t)VariableScale) 534 return nullptr; 535 536 // Okay, we can do this evaluation. Start by converting the index to intptr. 537 if (VariableIdx->getType() != IntPtrTy) 538 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 539 true /*Signed*/); 540 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 541 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 542 } 543 544 /// Returns true if we can rewrite Start as a GEP with pointer Base 545 /// and some integer offset. The nodes that need to be re-written 546 /// for this transformation will be added to Explored. 547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 548 const DataLayout &DL, 549 SetVector<Value *> &Explored) { 550 SmallVector<Value *, 16> WorkList(1, Start); 551 Explored.insert(Base); 552 553 // The following traversal gives us an order which can be used 554 // when doing the final transformation. Since in the final 555 // transformation we create the PHI replacement instructions first, 556 // we don't have to get them in any particular order. 557 // 558 // However, for other instructions we will have to traverse the 559 // operands of an instruction first, which means that we have to 560 // do a post-order traversal. 561 while (!WorkList.empty()) { 562 SetVector<PHINode *> PHIs; 563 564 while (!WorkList.empty()) { 565 if (Explored.size() >= 100) 566 return false; 567 568 Value *V = WorkList.back(); 569 570 if (Explored.count(V) != 0) { 571 WorkList.pop_back(); 572 continue; 573 } 574 575 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 576 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 577 // We've found some value that we can't explore which is different from 578 // the base. Therefore we can't do this transformation. 579 return false; 580 581 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 582 auto *CI = dyn_cast<CastInst>(V); 583 if (!CI->isNoopCast(DL)) 584 return false; 585 586 if (Explored.count(CI->getOperand(0)) == 0) 587 WorkList.push_back(CI->getOperand(0)); 588 } 589 590 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 591 // We're limiting the GEP to having one index. This will preserve 592 // the original pointer type. We could handle more cases in the 593 // future. 594 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 595 GEP->getType() != Start->getType()) 596 return false; 597 598 if (Explored.count(GEP->getOperand(0)) == 0) 599 WorkList.push_back(GEP->getOperand(0)); 600 } 601 602 if (WorkList.back() == V) { 603 WorkList.pop_back(); 604 // We've finished visiting this node, mark it as such. 605 Explored.insert(V); 606 } 607 608 if (auto *PN = dyn_cast<PHINode>(V)) { 609 // We cannot transform PHIs on unsplittable basic blocks. 610 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 611 return false; 612 Explored.insert(PN); 613 PHIs.insert(PN); 614 } 615 } 616 617 // Explore the PHI nodes further. 618 for (auto *PN : PHIs) 619 for (Value *Op : PN->incoming_values()) 620 if (Explored.count(Op) == 0) 621 WorkList.push_back(Op); 622 } 623 624 // Make sure that we can do this. Since we can't insert GEPs in a basic 625 // block before a PHI node, we can't easily do this transformation if 626 // we have PHI node users of transformed instructions. 627 for (Value *Val : Explored) { 628 for (Value *Use : Val->uses()) { 629 630 auto *PHI = dyn_cast<PHINode>(Use); 631 auto *Inst = dyn_cast<Instruction>(Val); 632 633 if (Inst == Base || Inst == PHI || !Inst || !PHI || 634 Explored.count(PHI) == 0) 635 continue; 636 637 if (PHI->getParent() == Inst->getParent()) 638 return false; 639 } 640 } 641 return true; 642 } 643 644 // Sets the appropriate insert point on Builder where we can add 645 // a replacement Instruction for V (if that is possible). 646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 647 bool Before = true) { 648 if (auto *PHI = dyn_cast<PHINode>(V)) { 649 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 650 return; 651 } 652 if (auto *I = dyn_cast<Instruction>(V)) { 653 if (!Before) 654 I = &*std::next(I->getIterator()); 655 Builder.SetInsertPoint(I); 656 return; 657 } 658 if (auto *A = dyn_cast<Argument>(V)) { 659 // Set the insertion point in the entry block. 660 BasicBlock &Entry = A->getParent()->getEntryBlock(); 661 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 662 return; 663 } 664 // Otherwise, this is a constant and we don't need to set a new 665 // insertion point. 666 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 667 } 668 669 /// Returns a re-written value of Start as an indexed GEP using Base as a 670 /// pointer. 671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 672 const DataLayout &DL, 673 SetVector<Value *> &Explored) { 674 // Perform all the substitutions. This is a bit tricky because we can 675 // have cycles in our use-def chains. 676 // 1. Create the PHI nodes without any incoming values. 677 // 2. Create all the other values. 678 // 3. Add the edges for the PHI nodes. 679 // 4. Emit GEPs to get the original pointers. 680 // 5. Remove the original instructions. 681 Type *IndexType = IntegerType::get( 682 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 683 684 DenseMap<Value *, Value *> NewInsts; 685 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 686 687 // Create the new PHI nodes, without adding any incoming values. 688 for (Value *Val : Explored) { 689 if (Val == Base) 690 continue; 691 // Create empty phi nodes. This avoids cyclic dependencies when creating 692 // the remaining instructions. 693 if (auto *PHI = dyn_cast<PHINode>(Val)) 694 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 695 PHI->getName() + ".idx", PHI); 696 } 697 IRBuilder<> Builder(Base->getContext()); 698 699 // Create all the other instructions. 700 for (Value *Val : Explored) { 701 702 if (NewInsts.find(Val) != NewInsts.end()) 703 continue; 704 705 if (auto *CI = dyn_cast<CastInst>(Val)) { 706 NewInsts[CI] = NewInsts[CI->getOperand(0)]; 707 continue; 708 } 709 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 710 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 711 : GEP->getOperand(1); 712 setInsertionPoint(Builder, GEP); 713 // Indices might need to be sign extended. GEPs will magically do 714 // this, but we need to do it ourselves here. 715 if (Index->getType()->getScalarSizeInBits() != 716 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 717 Index = Builder.CreateSExtOrTrunc( 718 Index, NewInsts[GEP->getOperand(0)]->getType(), 719 GEP->getOperand(0)->getName() + ".sext"); 720 } 721 722 auto *Op = NewInsts[GEP->getOperand(0)]; 723 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 724 NewInsts[GEP] = Index; 725 else 726 NewInsts[GEP] = Builder.CreateNSWAdd( 727 Op, Index, GEP->getOperand(0)->getName() + ".add"); 728 continue; 729 } 730 if (isa<PHINode>(Val)) 731 continue; 732 733 llvm_unreachable("Unexpected instruction type"); 734 } 735 736 // Add the incoming values to the PHI nodes. 737 for (Value *Val : Explored) { 738 if (Val == Base) 739 continue; 740 // All the instructions have been created, we can now add edges to the 741 // phi nodes. 742 if (auto *PHI = dyn_cast<PHINode>(Val)) { 743 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 744 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 745 Value *NewIncoming = PHI->getIncomingValue(I); 746 747 if (NewInsts.find(NewIncoming) != NewInsts.end()) 748 NewIncoming = NewInsts[NewIncoming]; 749 750 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 751 } 752 } 753 } 754 755 for (Value *Val : Explored) { 756 if (Val == Base) 757 continue; 758 759 // Depending on the type, for external users we have to emit 760 // a GEP or a GEP + ptrtoint. 761 setInsertionPoint(Builder, Val, false); 762 763 // If required, create an inttoptr instruction for Base. 764 Value *NewBase = Base; 765 if (!Base->getType()->isPointerTy()) 766 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 767 Start->getName() + "to.ptr"); 768 769 Value *GEP = Builder.CreateInBoundsGEP( 770 Start->getType()->getPointerElementType(), NewBase, 771 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 772 773 if (!Val->getType()->isPointerTy()) { 774 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 775 Val->getName() + ".conv"); 776 GEP = Cast; 777 } 778 Val->replaceAllUsesWith(GEP); 779 } 780 781 return NewInsts[Start]; 782 } 783 784 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 785 /// the input Value as a constant indexed GEP. Returns a pair containing 786 /// the GEPs Pointer and Index. 787 static std::pair<Value *, Value *> 788 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 789 Type *IndexType = IntegerType::get(V->getContext(), 790 DL.getIndexTypeSizeInBits(V->getType())); 791 792 Constant *Index = ConstantInt::getNullValue(IndexType); 793 while (true) { 794 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 795 // We accept only inbouds GEPs here to exclude the possibility of 796 // overflow. 797 if (!GEP->isInBounds()) 798 break; 799 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 800 GEP->getType() == V->getType()) { 801 V = GEP->getOperand(0); 802 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 803 Index = ConstantExpr::getAdd( 804 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 805 continue; 806 } 807 break; 808 } 809 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 810 if (!CI->isNoopCast(DL)) 811 break; 812 V = CI->getOperand(0); 813 continue; 814 } 815 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 816 if (!CI->isNoopCast(DL)) 817 break; 818 V = CI->getOperand(0); 819 continue; 820 } 821 break; 822 } 823 return {V, Index}; 824 } 825 826 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 827 /// We can look through PHIs, GEPs and casts in order to determine a common base 828 /// between GEPLHS and RHS. 829 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 830 ICmpInst::Predicate Cond, 831 const DataLayout &DL) { 832 if (!GEPLHS->hasAllConstantIndices()) 833 return nullptr; 834 835 // Make sure the pointers have the same type. 836 if (GEPLHS->getType() != RHS->getType()) 837 return nullptr; 838 839 Value *PtrBase, *Index; 840 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 841 842 // The set of nodes that will take part in this transformation. 843 SetVector<Value *> Nodes; 844 845 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 846 return nullptr; 847 848 // We know we can re-write this as 849 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 850 // Since we've only looked through inbouds GEPs we know that we 851 // can't have overflow on either side. We can therefore re-write 852 // this as: 853 // OFFSET1 cmp OFFSET2 854 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 855 856 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 857 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 858 // offset. Since Index is the offset of LHS to the base pointer, we will now 859 // compare the offsets instead of comparing the pointers. 860 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 861 } 862 863 /// Fold comparisons between a GEP instruction and something else. At this point 864 /// we know that the GEP is on the LHS of the comparison. 865 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 866 ICmpInst::Predicate Cond, 867 Instruction &I) { 868 // Don't transform signed compares of GEPs into index compares. Even if the 869 // GEP is inbounds, the final add of the base pointer can have signed overflow 870 // and would change the result of the icmp. 871 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 872 // the maximum signed value for the pointer type. 873 if (ICmpInst::isSigned(Cond)) 874 return nullptr; 875 876 // Look through bitcasts and addrspacecasts. We do not however want to remove 877 // 0 GEPs. 878 if (!isa<GetElementPtrInst>(RHS)) 879 RHS = RHS->stripPointerCasts(); 880 881 Value *PtrBase = GEPLHS->getOperand(0); 882 if (PtrBase == RHS && GEPLHS->isInBounds()) { 883 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 884 // This transformation (ignoring the base and scales) is valid because we 885 // know pointers can't overflow since the gep is inbounds. See if we can 886 // output an optimized form. 887 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 888 889 // If not, synthesize the offset the hard way. 890 if (!Offset) 891 Offset = EmitGEPOffset(GEPLHS); 892 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 893 Constant::getNullValue(Offset->getType())); 894 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 895 // If the base pointers are different, but the indices are the same, just 896 // compare the base pointer. 897 if (PtrBase != GEPRHS->getOperand(0)) { 898 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 899 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 900 GEPRHS->getOperand(0)->getType(); 901 if (IndicesTheSame) 902 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 903 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 904 IndicesTheSame = false; 905 break; 906 } 907 908 // If all indices are the same, just compare the base pointers. 909 Type *BaseType = GEPLHS->getOperand(0)->getType(); 910 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 911 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 912 913 // If we're comparing GEPs with two base pointers that only differ in type 914 // and both GEPs have only constant indices or just one use, then fold 915 // the compare with the adjusted indices. 916 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 917 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 918 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 919 PtrBase->stripPointerCasts() == 920 GEPRHS->getOperand(0)->stripPointerCasts()) { 921 Value *LOffset = EmitGEPOffset(GEPLHS); 922 Value *ROffset = EmitGEPOffset(GEPRHS); 923 924 // If we looked through an addrspacecast between different sized address 925 // spaces, the LHS and RHS pointers are different sized 926 // integers. Truncate to the smaller one. 927 Type *LHSIndexTy = LOffset->getType(); 928 Type *RHSIndexTy = ROffset->getType(); 929 if (LHSIndexTy != RHSIndexTy) { 930 if (LHSIndexTy->getPrimitiveSizeInBits() < 931 RHSIndexTy->getPrimitiveSizeInBits()) { 932 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 933 } else 934 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 935 } 936 937 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 938 LOffset, ROffset); 939 return replaceInstUsesWith(I, Cmp); 940 } 941 942 // Otherwise, the base pointers are different and the indices are 943 // different. Try convert this to an indexed compare by looking through 944 // PHIs/casts. 945 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 946 } 947 948 // If one of the GEPs has all zero indices, recurse. 949 if (GEPLHS->hasAllZeroIndices()) 950 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 951 ICmpInst::getSwappedPredicate(Cond), I); 952 953 // If the other GEP has all zero indices, recurse. 954 if (GEPRHS->hasAllZeroIndices()) 955 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 956 957 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 958 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 959 // If the GEPs only differ by one index, compare it. 960 unsigned NumDifferences = 0; // Keep track of # differences. 961 unsigned DiffOperand = 0; // The operand that differs. 962 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 963 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 964 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 965 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 966 // Irreconcilable differences. 967 NumDifferences = 2; 968 break; 969 } else { 970 if (NumDifferences++) break; 971 DiffOperand = i; 972 } 973 } 974 975 if (NumDifferences == 0) // SAME GEP? 976 return replaceInstUsesWith(I, // No comparison is needed here. 977 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 978 979 else if (NumDifferences == 1 && GEPsInBounds) { 980 Value *LHSV = GEPLHS->getOperand(DiffOperand); 981 Value *RHSV = GEPRHS->getOperand(DiffOperand); 982 // Make sure we do a signed comparison here. 983 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 984 } 985 } 986 987 // Only lower this if the icmp is the only user of the GEP or if we expect 988 // the result to fold to a constant! 989 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 990 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 991 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 992 Value *L = EmitGEPOffset(GEPLHS); 993 Value *R = EmitGEPOffset(GEPRHS); 994 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 995 } 996 } 997 998 // Try convert this to an indexed compare by looking through PHIs/casts as a 999 // last resort. 1000 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1001 } 1002 1003 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1004 const AllocaInst *Alloca, 1005 const Value *Other) { 1006 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1007 1008 // It would be tempting to fold away comparisons between allocas and any 1009 // pointer not based on that alloca (e.g. an argument). However, even 1010 // though such pointers cannot alias, they can still compare equal. 1011 // 1012 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1013 // doesn't escape we can argue that it's impossible to guess its value, and we 1014 // can therefore act as if any such guesses are wrong. 1015 // 1016 // The code below checks that the alloca doesn't escape, and that it's only 1017 // used in a comparison once (the current instruction). The 1018 // single-comparison-use condition ensures that we're trivially folding all 1019 // comparisons against the alloca consistently, and avoids the risk of 1020 // erroneously folding a comparison of the pointer with itself. 1021 1022 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1023 1024 SmallVector<const Use *, 32> Worklist; 1025 for (const Use &U : Alloca->uses()) { 1026 if (Worklist.size() >= MaxIter) 1027 return nullptr; 1028 Worklist.push_back(&U); 1029 } 1030 1031 unsigned NumCmps = 0; 1032 while (!Worklist.empty()) { 1033 assert(Worklist.size() <= MaxIter); 1034 const Use *U = Worklist.pop_back_val(); 1035 const Value *V = U->getUser(); 1036 --MaxIter; 1037 1038 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1039 isa<SelectInst>(V)) { 1040 // Track the uses. 1041 } else if (isa<LoadInst>(V)) { 1042 // Loading from the pointer doesn't escape it. 1043 continue; 1044 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1045 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1046 if (SI->getValueOperand() == U->get()) 1047 return nullptr; 1048 continue; 1049 } else if (isa<ICmpInst>(V)) { 1050 if (NumCmps++) 1051 return nullptr; // Found more than one cmp. 1052 continue; 1053 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1054 switch (Intrin->getIntrinsicID()) { 1055 // These intrinsics don't escape or compare the pointer. Memset is safe 1056 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1057 // we don't allow stores, so src cannot point to V. 1058 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1059 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1060 continue; 1061 default: 1062 return nullptr; 1063 } 1064 } else { 1065 return nullptr; 1066 } 1067 for (const Use &U : V->uses()) { 1068 if (Worklist.size() >= MaxIter) 1069 return nullptr; 1070 Worklist.push_back(&U); 1071 } 1072 } 1073 1074 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1075 return replaceInstUsesWith( 1076 ICI, 1077 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1078 } 1079 1080 /// Fold "icmp pred (X+C), X". 1081 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1082 ICmpInst::Predicate Pred) { 1083 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1084 // so the values can never be equal. Similarly for all other "or equals" 1085 // operators. 1086 assert(!!C && "C should not be zero!"); 1087 1088 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1089 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1090 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1091 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1092 Constant *R = ConstantInt::get(X->getType(), 1093 APInt::getMaxValue(C.getBitWidth()) - C); 1094 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1095 } 1096 1097 // (X+1) >u X --> X <u (0-1) --> X != 255 1098 // (X+2) >u X --> X <u (0-2) --> X <u 254 1099 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1100 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1101 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1102 ConstantInt::get(X->getType(), -C)); 1103 1104 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1105 1106 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1107 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1108 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1109 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1110 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1111 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1112 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1113 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1114 ConstantInt::get(X->getType(), SMax - C)); 1115 1116 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1117 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1118 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1119 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1120 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1121 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1122 1123 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1124 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1125 ConstantInt::get(X->getType(), SMax - (C - 1))); 1126 } 1127 1128 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1129 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1130 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1131 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1132 const APInt &AP1, 1133 const APInt &AP2) { 1134 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1135 1136 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1137 if (I.getPredicate() == I.ICMP_NE) 1138 Pred = CmpInst::getInversePredicate(Pred); 1139 return new ICmpInst(Pred, LHS, RHS); 1140 }; 1141 1142 // Don't bother doing any work for cases which InstSimplify handles. 1143 if (AP2.isNullValue()) 1144 return nullptr; 1145 1146 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1147 if (IsAShr) { 1148 if (AP2.isAllOnesValue()) 1149 return nullptr; 1150 if (AP2.isNegative() != AP1.isNegative()) 1151 return nullptr; 1152 if (AP2.sgt(AP1)) 1153 return nullptr; 1154 } 1155 1156 if (!AP1) 1157 // 'A' must be large enough to shift out the highest set bit. 1158 return getICmp(I.ICMP_UGT, A, 1159 ConstantInt::get(A->getType(), AP2.logBase2())); 1160 1161 if (AP1 == AP2) 1162 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1163 1164 int Shift; 1165 if (IsAShr && AP1.isNegative()) 1166 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1167 else 1168 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1169 1170 if (Shift > 0) { 1171 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1172 // There are multiple solutions if we are comparing against -1 and the LHS 1173 // of the ashr is not a power of two. 1174 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1175 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1176 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1177 } else if (AP1 == AP2.lshr(Shift)) { 1178 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1179 } 1180 } 1181 1182 // Shifting const2 will never be equal to const1. 1183 // FIXME: This should always be handled by InstSimplify? 1184 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1185 return replaceInstUsesWith(I, TorF); 1186 } 1187 1188 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1189 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1190 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1191 const APInt &AP1, 1192 const APInt &AP2) { 1193 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1194 1195 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1196 if (I.getPredicate() == I.ICMP_NE) 1197 Pred = CmpInst::getInversePredicate(Pred); 1198 return new ICmpInst(Pred, LHS, RHS); 1199 }; 1200 1201 // Don't bother doing any work for cases which InstSimplify handles. 1202 if (AP2.isNullValue()) 1203 return nullptr; 1204 1205 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1206 1207 if (!AP1 && AP2TrailingZeros != 0) 1208 return getICmp( 1209 I.ICMP_UGE, A, 1210 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1211 1212 if (AP1 == AP2) 1213 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1214 1215 // Get the distance between the lowest bits that are set. 1216 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1217 1218 if (Shift > 0 && AP2.shl(Shift) == AP1) 1219 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1220 1221 // Shifting const2 will never be equal to const1. 1222 // FIXME: This should always be handled by InstSimplify? 1223 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1224 return replaceInstUsesWith(I, TorF); 1225 } 1226 1227 /// The caller has matched a pattern of the form: 1228 /// I = icmp ugt (add (add A, B), CI2), CI1 1229 /// If this is of the form: 1230 /// sum = a + b 1231 /// if (sum+128 >u 255) 1232 /// Then replace it with llvm.sadd.with.overflow.i8. 1233 /// 1234 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1235 ConstantInt *CI2, ConstantInt *CI1, 1236 InstCombiner &IC) { 1237 // The transformation we're trying to do here is to transform this into an 1238 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1239 // with a narrower add, and discard the add-with-constant that is part of the 1240 // range check (if we can't eliminate it, this isn't profitable). 1241 1242 // In order to eliminate the add-with-constant, the compare can be its only 1243 // use. 1244 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1245 if (!AddWithCst->hasOneUse()) 1246 return nullptr; 1247 1248 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1249 if (!CI2->getValue().isPowerOf2()) 1250 return nullptr; 1251 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1252 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1253 return nullptr; 1254 1255 // The width of the new add formed is 1 more than the bias. 1256 ++NewWidth; 1257 1258 // Check to see that CI1 is an all-ones value with NewWidth bits. 1259 if (CI1->getBitWidth() == NewWidth || 1260 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1261 return nullptr; 1262 1263 // This is only really a signed overflow check if the inputs have been 1264 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1265 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1266 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1267 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1268 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1269 return nullptr; 1270 1271 // In order to replace the original add with a narrower 1272 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1273 // and truncates that discard the high bits of the add. Verify that this is 1274 // the case. 1275 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1276 for (User *U : OrigAdd->users()) { 1277 if (U == AddWithCst) 1278 continue; 1279 1280 // Only accept truncates for now. We would really like a nice recursive 1281 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1282 // chain to see which bits of a value are actually demanded. If the 1283 // original add had another add which was then immediately truncated, we 1284 // could still do the transformation. 1285 TruncInst *TI = dyn_cast<TruncInst>(U); 1286 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1287 return nullptr; 1288 } 1289 1290 // If the pattern matches, truncate the inputs to the narrower type and 1291 // use the sadd_with_overflow intrinsic to efficiently compute both the 1292 // result and the overflow bit. 1293 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1294 Function *F = Intrinsic::getDeclaration( 1295 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1296 1297 InstCombiner::BuilderTy &Builder = IC.Builder; 1298 1299 // Put the new code above the original add, in case there are any uses of the 1300 // add between the add and the compare. 1301 Builder.SetInsertPoint(OrigAdd); 1302 1303 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1304 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1305 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1306 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1307 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1308 1309 // The inner add was the result of the narrow add, zero extended to the 1310 // wider type. Replace it with the result computed by the intrinsic. 1311 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1312 1313 // The original icmp gets replaced with the overflow value. 1314 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1315 } 1316 1317 // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1318 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1319 CmpInst::Predicate Pred = Cmp.getPredicate(); 1320 Value *X = Cmp.getOperand(0); 1321 1322 if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) { 1323 Value *A, *B; 1324 SelectPatternResult SPR = matchSelectPattern(X, A, B); 1325 if (SPR.Flavor == SPF_SMIN) { 1326 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1327 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1328 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1329 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1330 } 1331 } 1332 return nullptr; 1333 } 1334 1335 /// Fold icmp Pred X, C. 1336 /// TODO: This code structure does not make sense. The saturating add fold 1337 /// should be moved to some other helper and extended as noted below (it is also 1338 /// possible that code has been made unnecessary - do we canonicalize IR to 1339 /// overflow/saturating intrinsics or not?). 1340 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1341 // Match the following pattern, which is a common idiom when writing 1342 // overflow-safe integer arithmetic functions. The source performs an addition 1343 // in wider type and explicitly checks for overflow using comparisons against 1344 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1345 // 1346 // TODO: This could probably be generalized to handle other overflow-safe 1347 // operations if we worked out the formulas to compute the appropriate magic 1348 // constants. 1349 // 1350 // sum = a + b 1351 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1352 CmpInst::Predicate Pred = Cmp.getPredicate(); 1353 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1354 Value *A, *B; 1355 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1356 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1357 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1358 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1359 return Res; 1360 1361 return nullptr; 1362 } 1363 1364 /// Canonicalize icmp instructions based on dominating conditions. 1365 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1366 // This is a cheap/incomplete check for dominance - just match a single 1367 // predecessor with a conditional branch. 1368 BasicBlock *CmpBB = Cmp.getParent(); 1369 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1370 if (!DomBB) 1371 return nullptr; 1372 1373 Value *DomCond; 1374 BasicBlock *TrueBB, *FalseBB; 1375 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1376 return nullptr; 1377 1378 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1379 "Predecessor block does not point to successor?"); 1380 1381 // The branch should get simplified. Don't bother simplifying this condition. 1382 if (TrueBB == FalseBB) 1383 return nullptr; 1384 1385 // Try to simplify this compare to T/F based on the dominating condition. 1386 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1387 if (Imp) 1388 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1389 1390 CmpInst::Predicate Pred = Cmp.getPredicate(); 1391 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1392 ICmpInst::Predicate DomPred; 1393 const APInt *C, *DomC; 1394 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1395 match(Y, m_APInt(C))) { 1396 // We have 2 compares of a variable with constants. Calculate the constant 1397 // ranges of those compares to see if we can transform the 2nd compare: 1398 // DomBB: 1399 // DomCond = icmp DomPred X, DomC 1400 // br DomCond, CmpBB, FalseBB 1401 // CmpBB: 1402 // Cmp = icmp Pred X, C 1403 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1404 ConstantRange DominatingCR = 1405 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1406 : ConstantRange::makeExactICmpRegion( 1407 CmpInst::getInversePredicate(DomPred), *DomC); 1408 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1409 ConstantRange Difference = DominatingCR.difference(CR); 1410 if (Intersection.isEmptySet()) 1411 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1412 if (Difference.isEmptySet()) 1413 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1414 1415 // Canonicalizing a sign bit comparison that gets used in a branch, 1416 // pessimizes codegen by generating branch on zero instruction instead 1417 // of a test and branch. So we avoid canonicalizing in such situations 1418 // because test and branch instruction has better branch displacement 1419 // than compare and branch instruction. 1420 bool UnusedBit; 1421 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1422 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1423 return nullptr; 1424 1425 if (const APInt *EqC = Intersection.getSingleElement()) 1426 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1427 if (const APInt *NeC = Difference.getSingleElement()) 1428 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1429 } 1430 1431 return nullptr; 1432 } 1433 1434 /// Fold icmp (trunc X, Y), C. 1435 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1436 TruncInst *Trunc, 1437 const APInt &C) { 1438 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1439 Value *X = Trunc->getOperand(0); 1440 if (C.isOneValue() && C.getBitWidth() > 1) { 1441 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1442 Value *V = nullptr; 1443 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1444 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1445 ConstantInt::get(V->getType(), 1)); 1446 } 1447 1448 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1449 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1450 // of the high bits truncated out of x are known. 1451 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1452 SrcBits = X->getType()->getScalarSizeInBits(); 1453 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1454 1455 // If all the high bits are known, we can do this xform. 1456 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1457 // Pull in the high bits from known-ones set. 1458 APInt NewRHS = C.zext(SrcBits); 1459 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1460 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1461 } 1462 } 1463 1464 return nullptr; 1465 } 1466 1467 /// Fold icmp (xor X, Y), C. 1468 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1469 BinaryOperator *Xor, 1470 const APInt &C) { 1471 Value *X = Xor->getOperand(0); 1472 Value *Y = Xor->getOperand(1); 1473 const APInt *XorC; 1474 if (!match(Y, m_APInt(XorC))) 1475 return nullptr; 1476 1477 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1478 // fold the xor. 1479 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1480 bool TrueIfSigned = false; 1481 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1482 1483 // If the sign bit of the XorCst is not set, there is no change to 1484 // the operation, just stop using the Xor. 1485 if (!XorC->isNegative()) { 1486 Cmp.setOperand(0, X); 1487 Worklist.Add(Xor); 1488 return &Cmp; 1489 } 1490 1491 // Emit the opposite comparison. 1492 if (TrueIfSigned) 1493 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1494 ConstantInt::getAllOnesValue(X->getType())); 1495 else 1496 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1497 ConstantInt::getNullValue(X->getType())); 1498 } 1499 1500 if (Xor->hasOneUse()) { 1501 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1502 if (!Cmp.isEquality() && XorC->isSignMask()) { 1503 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1504 : Cmp.getSignedPredicate(); 1505 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1506 } 1507 1508 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1509 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1510 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1511 : Cmp.getSignedPredicate(); 1512 Pred = Cmp.getSwappedPredicate(Pred); 1513 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1514 } 1515 } 1516 1517 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1518 if (Pred == ICmpInst::ICMP_UGT) { 1519 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1520 if (*XorC == ~C && (C + 1).isPowerOf2()) 1521 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1522 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1523 if (*XorC == C && (C + 1).isPowerOf2()) 1524 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1525 } 1526 if (Pred == ICmpInst::ICMP_ULT) { 1527 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1528 if (*XorC == -C && C.isPowerOf2()) 1529 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1530 ConstantInt::get(X->getType(), ~C)); 1531 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1532 if (*XorC == C && (-C).isPowerOf2()) 1533 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1534 ConstantInt::get(X->getType(), ~C)); 1535 } 1536 return nullptr; 1537 } 1538 1539 /// Fold icmp (and (sh X, Y), C2), C1. 1540 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1541 const APInt &C1, const APInt &C2) { 1542 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1543 if (!Shift || !Shift->isShift()) 1544 return nullptr; 1545 1546 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1547 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1548 // code produced by the clang front-end, for bitfield access. 1549 // This seemingly simple opportunity to fold away a shift turns out to be 1550 // rather complicated. See PR17827 for details. 1551 unsigned ShiftOpcode = Shift->getOpcode(); 1552 bool IsShl = ShiftOpcode == Instruction::Shl; 1553 const APInt *C3; 1554 if (match(Shift->getOperand(1), m_APInt(C3))) { 1555 bool CanFold = false; 1556 if (ShiftOpcode == Instruction::Shl) { 1557 // For a left shift, we can fold if the comparison is not signed. We can 1558 // also fold a signed comparison if the mask value and comparison value 1559 // are not negative. These constraints may not be obvious, but we can 1560 // prove that they are correct using an SMT solver. 1561 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) 1562 CanFold = true; 1563 } else { 1564 bool IsAshr = ShiftOpcode == Instruction::AShr; 1565 // For a logical right shift, we can fold if the comparison is not signed. 1566 // We can also fold a signed comparison if the shifted mask value and the 1567 // shifted comparison value are not negative. These constraints may not be 1568 // obvious, but we can prove that they are correct using an SMT solver. 1569 // For an arithmetic shift right we can do the same, if we ensure 1570 // the And doesn't use any bits being shifted in. Normally these would 1571 // be turned into lshr by SimplifyDemandedBits, but not if there is an 1572 // additional user. 1573 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { 1574 if (!Cmp.isSigned() || 1575 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) 1576 CanFold = true; 1577 } 1578 } 1579 1580 if (CanFold) { 1581 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); 1582 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1583 // Check to see if we are shifting out any of the bits being compared. 1584 if (SameAsC1 != C1) { 1585 // If we shifted bits out, the fold is not going to work out. As a 1586 // special case, check to see if this means that the result is always 1587 // true or false now. 1588 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1589 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1590 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1591 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1592 } else { 1593 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1594 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); 1595 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1596 And->setOperand(0, Shift->getOperand(0)); 1597 Worklist.Add(Shift); // Shift is dead. 1598 return &Cmp; 1599 } 1600 } 1601 } 1602 1603 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1604 // preferable because it allows the C2 << Y expression to be hoisted out of a 1605 // loop if Y is invariant and X is not. 1606 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1607 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1608 // Compute C2 << Y. 1609 Value *NewShift = 1610 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1611 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1612 1613 // Compute X & (C2 << Y). 1614 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1615 Cmp.setOperand(0, NewAnd); 1616 return &Cmp; 1617 } 1618 1619 return nullptr; 1620 } 1621 1622 /// Fold icmp (and X, C2), C1. 1623 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1624 BinaryOperator *And, 1625 const APInt &C1) { 1626 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1627 // TODO: We canonicalize to the longer form for scalars because we have 1628 // better analysis/folds for icmp, and codegen may be better with icmp. 1629 if (Cmp.getPredicate() == CmpInst::ICMP_NE && Cmp.getType()->isVectorTy() && 1630 C1.isNullValue() && match(And->getOperand(1), m_One())) 1631 return new TruncInst(And->getOperand(0), Cmp.getType()); 1632 1633 const APInt *C2; 1634 if (!match(And->getOperand(1), m_APInt(C2))) 1635 return nullptr; 1636 1637 if (!And->hasOneUse()) 1638 return nullptr; 1639 1640 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1641 // the input width without changing the value produced, eliminate the cast: 1642 // 1643 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1644 // 1645 // We can do this transformation if the constants do not have their sign bits 1646 // set or if it is an equality comparison. Extending a relational comparison 1647 // when we're checking the sign bit would not work. 1648 Value *W; 1649 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1650 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1651 // TODO: Is this a good transform for vectors? Wider types may reduce 1652 // throughput. Should this transform be limited (even for scalars) by using 1653 // shouldChangeType()? 1654 if (!Cmp.getType()->isVectorTy()) { 1655 Type *WideType = W->getType(); 1656 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1657 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1658 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1659 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1660 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1661 } 1662 } 1663 1664 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1665 return I; 1666 1667 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1668 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1669 // 1670 // iff pred isn't signed 1671 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1672 match(And->getOperand(1), m_One())) { 1673 Constant *One = cast<Constant>(And->getOperand(1)); 1674 Value *Or = And->getOperand(0); 1675 Value *A, *B, *LShr; 1676 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1677 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1678 unsigned UsesRemoved = 0; 1679 if (And->hasOneUse()) 1680 ++UsesRemoved; 1681 if (Or->hasOneUse()) 1682 ++UsesRemoved; 1683 if (LShr->hasOneUse()) 1684 ++UsesRemoved; 1685 1686 // Compute A & ((1 << B) | 1) 1687 Value *NewOr = nullptr; 1688 if (auto *C = dyn_cast<Constant>(B)) { 1689 if (UsesRemoved >= 1) 1690 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1691 } else { 1692 if (UsesRemoved >= 3) 1693 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1694 /*HasNUW=*/true), 1695 One, Or->getName()); 1696 } 1697 if (NewOr) { 1698 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1699 Cmp.setOperand(0, NewAnd); 1700 return &Cmp; 1701 } 1702 } 1703 } 1704 1705 return nullptr; 1706 } 1707 1708 /// Fold icmp (and X, Y), C. 1709 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1710 BinaryOperator *And, 1711 const APInt &C) { 1712 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1713 return I; 1714 1715 // TODO: These all require that Y is constant too, so refactor with the above. 1716 1717 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1718 Value *X = And->getOperand(0); 1719 Value *Y = And->getOperand(1); 1720 if (auto *LI = dyn_cast<LoadInst>(X)) 1721 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1722 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1723 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1724 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1725 ConstantInt *C2 = cast<ConstantInt>(Y); 1726 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1727 return Res; 1728 } 1729 1730 if (!Cmp.isEquality()) 1731 return nullptr; 1732 1733 // X & -C == -C -> X > u ~C 1734 // X & -C != -C -> X <= u ~C 1735 // iff C is a power of 2 1736 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1737 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1738 : CmpInst::ICMP_ULE; 1739 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1740 } 1741 1742 // (X & C2) == 0 -> (trunc X) >= 0 1743 // (X & C2) != 0 -> (trunc X) < 0 1744 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1745 const APInt *C2; 1746 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1747 int32_t ExactLogBase2 = C2->exactLogBase2(); 1748 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1749 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1750 if (And->getType()->isVectorTy()) 1751 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1752 Value *Trunc = Builder.CreateTrunc(X, NTy); 1753 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1754 : CmpInst::ICMP_SLT; 1755 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1756 } 1757 } 1758 1759 return nullptr; 1760 } 1761 1762 /// Fold icmp (or X, Y), C. 1763 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1764 const APInt &C) { 1765 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1766 if (C.isOneValue()) { 1767 // icmp slt signum(V) 1 --> icmp slt V, 1 1768 Value *V = nullptr; 1769 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1770 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1771 ConstantInt::get(V->getType(), 1)); 1772 } 1773 1774 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1775 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) { 1776 // X | C == C --> X <=u C 1777 // X | C != C --> X >u C 1778 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1779 if ((C + 1).isPowerOf2()) { 1780 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1781 return new ICmpInst(Pred, OrOp0, OrOp1); 1782 } 1783 // More general: are all bits outside of a mask constant set or not set? 1784 // X | C == C --> (X & ~C) == 0 1785 // X | C != C --> (X & ~C) != 0 1786 if (Or->hasOneUse()) { 1787 Value *A = Builder.CreateAnd(OrOp0, ~C); 1788 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType())); 1789 } 1790 } 1791 1792 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1793 return nullptr; 1794 1795 Value *P, *Q; 1796 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1797 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1798 // -> and (icmp eq P, null), (icmp eq Q, null). 1799 Value *CmpP = 1800 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1801 Value *CmpQ = 1802 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1803 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1804 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1805 } 1806 1807 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1808 // a shorter form that has more potential to be folded even further. 1809 Value *X1, *X2, *X3, *X4; 1810 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1811 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1812 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1813 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1814 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1815 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1816 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1817 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1818 } 1819 1820 return nullptr; 1821 } 1822 1823 /// Fold icmp (mul X, Y), C. 1824 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1825 BinaryOperator *Mul, 1826 const APInt &C) { 1827 const APInt *MulC; 1828 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1829 return nullptr; 1830 1831 // If this is a test of the sign bit and the multiply is sign-preserving with 1832 // a constant operand, use the multiply LHS operand instead. 1833 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1834 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1835 if (MulC->isNegative()) 1836 Pred = ICmpInst::getSwappedPredicate(Pred); 1837 return new ICmpInst(Pred, Mul->getOperand(0), 1838 Constant::getNullValue(Mul->getType())); 1839 } 1840 1841 return nullptr; 1842 } 1843 1844 /// Fold icmp (shl 1, Y), C. 1845 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1846 const APInt &C) { 1847 Value *Y; 1848 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1849 return nullptr; 1850 1851 Type *ShiftType = Shl->getType(); 1852 unsigned TypeBits = C.getBitWidth(); 1853 bool CIsPowerOf2 = C.isPowerOf2(); 1854 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1855 if (Cmp.isUnsigned()) { 1856 // (1 << Y) pred C -> Y pred Log2(C) 1857 if (!CIsPowerOf2) { 1858 // (1 << Y) < 30 -> Y <= 4 1859 // (1 << Y) <= 30 -> Y <= 4 1860 // (1 << Y) >= 30 -> Y > 4 1861 // (1 << Y) > 30 -> Y > 4 1862 if (Pred == ICmpInst::ICMP_ULT) 1863 Pred = ICmpInst::ICMP_ULE; 1864 else if (Pred == ICmpInst::ICMP_UGE) 1865 Pred = ICmpInst::ICMP_UGT; 1866 } 1867 1868 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1869 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1870 unsigned CLog2 = C.logBase2(); 1871 if (CLog2 == TypeBits - 1) { 1872 if (Pred == ICmpInst::ICMP_UGE) 1873 Pred = ICmpInst::ICMP_EQ; 1874 else if (Pred == ICmpInst::ICMP_ULT) 1875 Pred = ICmpInst::ICMP_NE; 1876 } 1877 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1878 } else if (Cmp.isSigned()) { 1879 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1880 if (C.isAllOnesValue()) { 1881 // (1 << Y) <= -1 -> Y == 31 1882 if (Pred == ICmpInst::ICMP_SLE) 1883 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1884 1885 // (1 << Y) > -1 -> Y != 31 1886 if (Pred == ICmpInst::ICMP_SGT) 1887 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1888 } else if (!C) { 1889 // (1 << Y) < 0 -> Y == 31 1890 // (1 << Y) <= 0 -> Y == 31 1891 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1892 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1893 1894 // (1 << Y) >= 0 -> Y != 31 1895 // (1 << Y) > 0 -> Y != 31 1896 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1897 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1898 } 1899 } else if (Cmp.isEquality() && CIsPowerOf2) { 1900 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 1901 } 1902 1903 return nullptr; 1904 } 1905 1906 /// Fold icmp (shl X, Y), C. 1907 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 1908 BinaryOperator *Shl, 1909 const APInt &C) { 1910 const APInt *ShiftVal; 1911 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 1912 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 1913 1914 const APInt *ShiftAmt; 1915 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 1916 return foldICmpShlOne(Cmp, Shl, C); 1917 1918 // Check that the shift amount is in range. If not, don't perform undefined 1919 // shifts. When the shift is visited, it will be simplified. 1920 unsigned TypeBits = C.getBitWidth(); 1921 if (ShiftAmt->uge(TypeBits)) 1922 return nullptr; 1923 1924 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1925 Value *X = Shl->getOperand(0); 1926 Type *ShType = Shl->getType(); 1927 1928 // NSW guarantees that we are only shifting out sign bits from the high bits, 1929 // so we can ASHR the compare constant without needing a mask and eliminate 1930 // the shift. 1931 if (Shl->hasNoSignedWrap()) { 1932 if (Pred == ICmpInst::ICMP_SGT) { 1933 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 1934 APInt ShiftedC = C.ashr(*ShiftAmt); 1935 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1936 } 1937 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1938 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 1939 APInt ShiftedC = C.ashr(*ShiftAmt); 1940 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1941 } 1942 if (Pred == ICmpInst::ICMP_SLT) { 1943 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 1944 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 1945 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 1946 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 1947 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 1948 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 1949 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1950 } 1951 // If this is a signed comparison to 0 and the shift is sign preserving, 1952 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 1953 // do that if we're sure to not continue on in this function. 1954 if (isSignTest(Pred, C)) 1955 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 1956 } 1957 1958 // NUW guarantees that we are only shifting out zero bits from the high bits, 1959 // so we can LSHR the compare constant without needing a mask and eliminate 1960 // the shift. 1961 if (Shl->hasNoUnsignedWrap()) { 1962 if (Pred == ICmpInst::ICMP_UGT) { 1963 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 1964 APInt ShiftedC = C.lshr(*ShiftAmt); 1965 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1966 } 1967 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1968 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 1969 APInt ShiftedC = C.lshr(*ShiftAmt); 1970 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1971 } 1972 if (Pred == ICmpInst::ICMP_ULT) { 1973 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 1974 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 1975 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 1976 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 1977 assert(C.ugt(0) && "ult 0 should have been eliminated"); 1978 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 1979 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1980 } 1981 } 1982 1983 if (Cmp.isEquality() && Shl->hasOneUse()) { 1984 // Strength-reduce the shift into an 'and'. 1985 Constant *Mask = ConstantInt::get( 1986 ShType, 1987 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 1988 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 1989 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 1990 return new ICmpInst(Pred, And, LShrC); 1991 } 1992 1993 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1994 bool TrueIfSigned = false; 1995 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 1996 // (X << 31) <s 0 --> (X & 1) != 0 1997 Constant *Mask = ConstantInt::get( 1998 ShType, 1999 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2000 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2001 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2002 And, Constant::getNullValue(ShType)); 2003 } 2004 2005 // Transform (icmp pred iM (shl iM %v, N), C) 2006 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2007 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2008 // This enables us to get rid of the shift in favor of a trunc that may be 2009 // free on the target. It has the additional benefit of comparing to a 2010 // smaller constant that may be more target-friendly. 2011 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2012 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2013 DL.isLegalInteger(TypeBits - Amt)) { 2014 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2015 if (ShType->isVectorTy()) 2016 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2017 Constant *NewC = 2018 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2019 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2020 } 2021 2022 return nullptr; 2023 } 2024 2025 /// Fold icmp ({al}shr X, Y), C. 2026 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2027 BinaryOperator *Shr, 2028 const APInt &C) { 2029 // An exact shr only shifts out zero bits, so: 2030 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2031 Value *X = Shr->getOperand(0); 2032 CmpInst::Predicate Pred = Cmp.getPredicate(); 2033 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2034 C.isNullValue()) 2035 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2036 2037 const APInt *ShiftVal; 2038 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2039 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2040 2041 const APInt *ShiftAmt; 2042 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2043 return nullptr; 2044 2045 // Check that the shift amount is in range. If not, don't perform undefined 2046 // shifts. When the shift is visited it will be simplified. 2047 unsigned TypeBits = C.getBitWidth(); 2048 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2049 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2050 return nullptr; 2051 2052 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2053 bool IsExact = Shr->isExact(); 2054 Type *ShrTy = Shr->getType(); 2055 // TODO: If we could guarantee that InstSimplify would handle all of the 2056 // constant-value-based preconditions in the folds below, then we could assert 2057 // those conditions rather than checking them. This is difficult because of 2058 // undef/poison (PR34838). 2059 if (IsAShr) { 2060 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2061 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2062 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2063 APInt ShiftedC = C.shl(ShAmtVal); 2064 if (ShiftedC.ashr(ShAmtVal) == C) 2065 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2066 } 2067 if (Pred == CmpInst::ICMP_SGT) { 2068 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2069 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2070 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2071 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2072 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2073 } 2074 } else { 2075 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2076 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2077 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2078 APInt ShiftedC = C.shl(ShAmtVal); 2079 if (ShiftedC.lshr(ShAmtVal) == C) 2080 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2081 } 2082 if (Pred == CmpInst::ICMP_UGT) { 2083 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2084 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2085 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2086 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2087 } 2088 } 2089 2090 if (!Cmp.isEquality()) 2091 return nullptr; 2092 2093 // Handle equality comparisons of shift-by-constant. 2094 2095 // If the comparison constant changes with the shift, the comparison cannot 2096 // succeed (bits of the comparison constant cannot match the shifted value). 2097 // This should be known by InstSimplify and already be folded to true/false. 2098 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2099 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2100 "Expected icmp+shr simplify did not occur."); 2101 2102 // If the bits shifted out are known zero, compare the unshifted value: 2103 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2104 if (Shr->isExact()) 2105 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2106 2107 if (Shr->hasOneUse()) { 2108 // Canonicalize the shift into an 'and': 2109 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2110 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2111 Constant *Mask = ConstantInt::get(ShrTy, Val); 2112 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2113 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2114 } 2115 2116 return nullptr; 2117 } 2118 2119 /// Fold icmp (udiv X, Y), C. 2120 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2121 BinaryOperator *UDiv, 2122 const APInt &C) { 2123 const APInt *C2; 2124 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2125 return nullptr; 2126 2127 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2128 2129 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2130 Value *Y = UDiv->getOperand(1); 2131 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2132 assert(!C.isMaxValue() && 2133 "icmp ugt X, UINT_MAX should have been simplified already."); 2134 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2135 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2136 } 2137 2138 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2139 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2140 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2141 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2142 ConstantInt::get(Y->getType(), C2->udiv(C))); 2143 } 2144 2145 return nullptr; 2146 } 2147 2148 /// Fold icmp ({su}div X, Y), C. 2149 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2150 BinaryOperator *Div, 2151 const APInt &C) { 2152 // Fold: icmp pred ([us]div X, C2), C -> range test 2153 // Fold this div into the comparison, producing a range check. 2154 // Determine, based on the divide type, what the range is being 2155 // checked. If there is an overflow on the low or high side, remember 2156 // it, otherwise compute the range [low, hi) bounding the new value. 2157 // See: InsertRangeTest above for the kinds of replacements possible. 2158 const APInt *C2; 2159 if (!match(Div->getOperand(1), m_APInt(C2))) 2160 return nullptr; 2161 2162 // FIXME: If the operand types don't match the type of the divide 2163 // then don't attempt this transform. The code below doesn't have the 2164 // logic to deal with a signed divide and an unsigned compare (and 2165 // vice versa). This is because (x /s C2) <s C produces different 2166 // results than (x /s C2) <u C or (x /u C2) <s C or even 2167 // (x /u C2) <u C. Simply casting the operands and result won't 2168 // work. :( The if statement below tests that condition and bails 2169 // if it finds it. 2170 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2171 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2172 return nullptr; 2173 2174 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2175 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2176 // division-by-constant cases should be present, we can not assert that they 2177 // have happened before we reach this icmp instruction. 2178 if (C2->isNullValue() || C2->isOneValue() || 2179 (DivIsSigned && C2->isAllOnesValue())) 2180 return nullptr; 2181 2182 // Compute Prod = C * C2. We are essentially solving an equation of 2183 // form X / C2 = C. We solve for X by multiplying C2 and C. 2184 // By solving for X, we can turn this into a range check instead of computing 2185 // a divide. 2186 APInt Prod = C * *C2; 2187 2188 // Determine if the product overflows by seeing if the product is not equal to 2189 // the divide. Make sure we do the same kind of divide as in the LHS 2190 // instruction that we're folding. 2191 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2192 2193 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2194 2195 // If the division is known to be exact, then there is no remainder from the 2196 // divide, so the covered range size is unit, otherwise it is the divisor. 2197 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2198 2199 // Figure out the interval that is being checked. For example, a comparison 2200 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2201 // Compute this interval based on the constants involved and the signedness of 2202 // the compare/divide. This computes a half-open interval, keeping track of 2203 // whether either value in the interval overflows. After analysis each 2204 // overflow variable is set to 0 if it's corresponding bound variable is valid 2205 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2206 int LoOverflow = 0, HiOverflow = 0; 2207 APInt LoBound, HiBound; 2208 2209 if (!DivIsSigned) { // udiv 2210 // e.g. X/5 op 3 --> [15, 20) 2211 LoBound = Prod; 2212 HiOverflow = LoOverflow = ProdOV; 2213 if (!HiOverflow) { 2214 // If this is not an exact divide, then many values in the range collapse 2215 // to the same result value. 2216 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2217 } 2218 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2219 if (C.isNullValue()) { // (X / pos) op 0 2220 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2221 LoBound = -(RangeSize - 1); 2222 HiBound = RangeSize; 2223 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2224 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2225 HiOverflow = LoOverflow = ProdOV; 2226 if (!HiOverflow) 2227 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2228 } else { // (X / pos) op neg 2229 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2230 HiBound = Prod + 1; 2231 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2232 if (!LoOverflow) { 2233 APInt DivNeg = -RangeSize; 2234 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2235 } 2236 } 2237 } else if (C2->isNegative()) { // Divisor is < 0. 2238 if (Div->isExact()) 2239 RangeSize.negate(); 2240 if (C.isNullValue()) { // (X / neg) op 0 2241 // e.g. X/-5 op 0 --> [-4, 5) 2242 LoBound = RangeSize + 1; 2243 HiBound = -RangeSize; 2244 if (HiBound == *C2) { // -INTMIN = INTMIN 2245 HiOverflow = 1; // [INTMIN+1, overflow) 2246 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2247 } 2248 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2249 // e.g. X/-5 op 3 --> [-19, -14) 2250 HiBound = Prod + 1; 2251 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2252 if (!LoOverflow) 2253 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2254 } else { // (X / neg) op neg 2255 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2256 LoOverflow = HiOverflow = ProdOV; 2257 if (!HiOverflow) 2258 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2259 } 2260 2261 // Dividing by a negative swaps the condition. LT <-> GT 2262 Pred = ICmpInst::getSwappedPredicate(Pred); 2263 } 2264 2265 Value *X = Div->getOperand(0); 2266 switch (Pred) { 2267 default: llvm_unreachable("Unhandled icmp opcode!"); 2268 case ICmpInst::ICMP_EQ: 2269 if (LoOverflow && HiOverflow) 2270 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2271 if (HiOverflow) 2272 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2273 ICmpInst::ICMP_UGE, X, 2274 ConstantInt::get(Div->getType(), LoBound)); 2275 if (LoOverflow) 2276 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2277 ICmpInst::ICMP_ULT, X, 2278 ConstantInt::get(Div->getType(), HiBound)); 2279 return replaceInstUsesWith( 2280 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2281 case ICmpInst::ICMP_NE: 2282 if (LoOverflow && HiOverflow) 2283 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2284 if (HiOverflow) 2285 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2286 ICmpInst::ICMP_ULT, X, 2287 ConstantInt::get(Div->getType(), LoBound)); 2288 if (LoOverflow) 2289 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2290 ICmpInst::ICMP_UGE, X, 2291 ConstantInt::get(Div->getType(), HiBound)); 2292 return replaceInstUsesWith(Cmp, 2293 insertRangeTest(X, LoBound, HiBound, 2294 DivIsSigned, false)); 2295 case ICmpInst::ICMP_ULT: 2296 case ICmpInst::ICMP_SLT: 2297 if (LoOverflow == +1) // Low bound is greater than input range. 2298 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2299 if (LoOverflow == -1) // Low bound is less than input range. 2300 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2301 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2302 case ICmpInst::ICMP_UGT: 2303 case ICmpInst::ICMP_SGT: 2304 if (HiOverflow == +1) // High bound greater than input range. 2305 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2306 if (HiOverflow == -1) // High bound less than input range. 2307 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2308 if (Pred == ICmpInst::ICMP_UGT) 2309 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2310 ConstantInt::get(Div->getType(), HiBound)); 2311 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2312 ConstantInt::get(Div->getType(), HiBound)); 2313 } 2314 2315 return nullptr; 2316 } 2317 2318 /// Fold icmp (sub X, Y), C. 2319 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2320 BinaryOperator *Sub, 2321 const APInt &C) { 2322 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2323 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2324 2325 // The following transforms are only worth it if the only user of the subtract 2326 // is the icmp. 2327 if (!Sub->hasOneUse()) 2328 return nullptr; 2329 2330 if (Sub->hasNoSignedWrap()) { 2331 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2332 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2333 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2334 2335 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2336 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2337 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2338 2339 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2340 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2341 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2342 2343 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2344 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2345 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2346 } 2347 2348 const APInt *C2; 2349 if (!match(X, m_APInt(C2))) 2350 return nullptr; 2351 2352 // C2 - Y <u C -> (Y | (C - 1)) == C2 2353 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2354 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2355 (*C2 & (C - 1)) == (C - 1)) 2356 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2357 2358 // C2 - Y >u C -> (Y | C) != C2 2359 // iff C2 & C == C and C + 1 is a power of 2 2360 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2361 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2362 2363 return nullptr; 2364 } 2365 2366 /// Fold icmp (add X, Y), C. 2367 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2368 BinaryOperator *Add, 2369 const APInt &C) { 2370 Value *Y = Add->getOperand(1); 2371 const APInt *C2; 2372 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2373 return nullptr; 2374 2375 // Fold icmp pred (add X, C2), C. 2376 Value *X = Add->getOperand(0); 2377 Type *Ty = Add->getType(); 2378 CmpInst::Predicate Pred = Cmp.getPredicate(); 2379 2380 if (!Add->hasOneUse()) 2381 return nullptr; 2382 2383 // If the add does not wrap, we can always adjust the compare by subtracting 2384 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2385 // are canonicalized to SGT/SLT/UGT/ULT. 2386 if ((Add->hasNoSignedWrap() && 2387 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2388 (Add->hasNoUnsignedWrap() && 2389 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2390 bool Overflow; 2391 APInt NewC = 2392 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2393 // If there is overflow, the result must be true or false. 2394 // TODO: Can we assert there is no overflow because InstSimplify always 2395 // handles those cases? 2396 if (!Overflow) 2397 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2398 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2399 } 2400 2401 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2402 const APInt &Upper = CR.getUpper(); 2403 const APInt &Lower = CR.getLower(); 2404 if (Cmp.isSigned()) { 2405 if (Lower.isSignMask()) 2406 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2407 if (Upper.isSignMask()) 2408 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2409 } else { 2410 if (Lower.isMinValue()) 2411 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2412 if (Upper.isMinValue()) 2413 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2414 } 2415 2416 // X+C <u C2 -> (X & -C2) == C 2417 // iff C & (C2-1) == 0 2418 // C2 is a power of 2 2419 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2420 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2421 ConstantExpr::getNeg(cast<Constant>(Y))); 2422 2423 // X+C >u C2 -> (X & ~C2) != C 2424 // iff C & C2 == 0 2425 // C2+1 is a power of 2 2426 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2427 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2428 ConstantExpr::getNeg(cast<Constant>(Y))); 2429 2430 return nullptr; 2431 } 2432 2433 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2434 Value *&RHS, ConstantInt *&Less, 2435 ConstantInt *&Equal, 2436 ConstantInt *&Greater) { 2437 // TODO: Generalize this to work with other comparison idioms or ensure 2438 // they get canonicalized into this form. 2439 2440 // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32 2441 // Greater), where Equal, Less and Greater are placeholders for any three 2442 // constants. 2443 ICmpInst::Predicate PredA, PredB; 2444 if (match(SI->getTrueValue(), m_ConstantInt(Equal)) && 2445 match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) && 2446 PredA == ICmpInst::ICMP_EQ && 2447 match(SI->getFalseValue(), 2448 m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)), 2449 m_ConstantInt(Less), m_ConstantInt(Greater))) && 2450 PredB == ICmpInst::ICMP_SLT) { 2451 return true; 2452 } 2453 return false; 2454 } 2455 2456 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2457 SelectInst *Select, 2458 ConstantInt *C) { 2459 2460 assert(C && "Cmp RHS should be a constant int!"); 2461 // If we're testing a constant value against the result of a three way 2462 // comparison, the result can be expressed directly in terms of the 2463 // original values being compared. Note: We could possibly be more 2464 // aggressive here and remove the hasOneUse test. The original select is 2465 // really likely to simplify or sink when we remove a test of the result. 2466 Value *OrigLHS, *OrigRHS; 2467 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2468 if (Cmp.hasOneUse() && 2469 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2470 C3GreaterThan)) { 2471 assert(C1LessThan && C2Equal && C3GreaterThan); 2472 2473 bool TrueWhenLessThan = 2474 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2475 ->isAllOnesValue(); 2476 bool TrueWhenEqual = 2477 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2478 ->isAllOnesValue(); 2479 bool TrueWhenGreaterThan = 2480 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2481 ->isAllOnesValue(); 2482 2483 // This generates the new instruction that will replace the original Cmp 2484 // Instruction. Instead of enumerating the various combinations when 2485 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2486 // false, we rely on chaining of ORs and future passes of InstCombine to 2487 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2488 2489 // When none of the three constants satisfy the predicate for the RHS (C), 2490 // the entire original Cmp can be simplified to a false. 2491 Value *Cond = Builder.getFalse(); 2492 if (TrueWhenLessThan) 2493 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2494 OrigLHS, OrigRHS)); 2495 if (TrueWhenEqual) 2496 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2497 OrigLHS, OrigRHS)); 2498 if (TrueWhenGreaterThan) 2499 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2500 OrigLHS, OrigRHS)); 2501 2502 return replaceInstUsesWith(Cmp, Cond); 2503 } 2504 return nullptr; 2505 } 2506 2507 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2508 InstCombiner::BuilderTy &Builder) { 2509 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2510 if (!Bitcast) 2511 return nullptr; 2512 2513 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2514 Value *Op1 = Cmp.getOperand(1); 2515 Value *BCSrcOp = Bitcast->getOperand(0); 2516 2517 // Make sure the bitcast doesn't change the number of vector elements. 2518 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2519 Bitcast->getDestTy()->getScalarSizeInBits()) { 2520 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2521 Value *X; 2522 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2523 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2524 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2525 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2526 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2527 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2528 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2529 match(Op1, m_Zero())) 2530 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2531 2532 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2533 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2534 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2535 2536 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2537 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2538 return new ICmpInst(Pred, X, 2539 ConstantInt::getAllOnesValue(X->getType())); 2540 } 2541 2542 // Zero-equality checks are preserved through unsigned floating-point casts: 2543 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2544 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2545 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2546 if (Cmp.isEquality() && match(Op1, m_Zero())) 2547 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2548 } 2549 2550 // Test to see if the operands of the icmp are casted versions of other 2551 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2552 if (Bitcast->getType()->isPointerTy() && 2553 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2554 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2555 // so eliminate it as well. 2556 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2557 Op1 = BC2->getOperand(0); 2558 2559 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2560 return new ICmpInst(Pred, BCSrcOp, Op1); 2561 } 2562 2563 // Folding: icmp <pred> iN X, C 2564 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2565 // and C is a splat of a K-bit pattern 2566 // and SC is a constant vector = <C', C', C', ..., C'> 2567 // Into: 2568 // %E = extractelement <M x iK> %vec, i32 C' 2569 // icmp <pred> iK %E, trunc(C) 2570 const APInt *C; 2571 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2572 !Bitcast->getType()->isIntegerTy() || 2573 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2574 return nullptr; 2575 2576 Value *Vec; 2577 Constant *Mask; 2578 if (match(BCSrcOp, 2579 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { 2580 // Check whether every element of Mask is the same constant 2581 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { 2582 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2583 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2584 if (C->isSplat(EltTy->getBitWidth())) { 2585 // Fold the icmp based on the value of C 2586 // If C is M copies of an iK sized bit pattern, 2587 // then: 2588 // => %E = extractelement <N x iK> %vec, i32 Elem 2589 // icmp <pred> iK %SplatVal, <pattern> 2590 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2591 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2592 return new ICmpInst(Pred, Extract, NewC); 2593 } 2594 } 2595 } 2596 return nullptr; 2597 } 2598 2599 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2600 /// where X is some kind of instruction. 2601 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2602 const APInt *C; 2603 if (!match(Cmp.getOperand(1), m_APInt(C))) 2604 return nullptr; 2605 2606 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2607 switch (BO->getOpcode()) { 2608 case Instruction::Xor: 2609 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2610 return I; 2611 break; 2612 case Instruction::And: 2613 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2614 return I; 2615 break; 2616 case Instruction::Or: 2617 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2618 return I; 2619 break; 2620 case Instruction::Mul: 2621 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2622 return I; 2623 break; 2624 case Instruction::Shl: 2625 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2626 return I; 2627 break; 2628 case Instruction::LShr: 2629 case Instruction::AShr: 2630 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2631 return I; 2632 break; 2633 case Instruction::UDiv: 2634 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2635 return I; 2636 LLVM_FALLTHROUGH; 2637 case Instruction::SDiv: 2638 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2639 return I; 2640 break; 2641 case Instruction::Sub: 2642 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2643 return I; 2644 break; 2645 case Instruction::Add: 2646 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2647 return I; 2648 break; 2649 default: 2650 break; 2651 } 2652 // TODO: These folds could be refactored to be part of the above calls. 2653 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2654 return I; 2655 } 2656 2657 // Match against CmpInst LHS being instructions other than binary operators. 2658 2659 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2660 // For now, we only support constant integers while folding the 2661 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2662 // similar to the cases handled by binary ops above. 2663 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2664 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2665 return I; 2666 } 2667 2668 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2669 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2670 return I; 2671 } 2672 2673 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2674 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2675 return I; 2676 2677 return nullptr; 2678 } 2679 2680 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2681 /// icmp eq/ne BO, C. 2682 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2683 BinaryOperator *BO, 2684 const APInt &C) { 2685 // TODO: Some of these folds could work with arbitrary constants, but this 2686 // function is limited to scalar and vector splat constants. 2687 if (!Cmp.isEquality()) 2688 return nullptr; 2689 2690 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2691 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2692 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2693 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2694 2695 switch (BO->getOpcode()) { 2696 case Instruction::SRem: 2697 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2698 if (C.isNullValue() && BO->hasOneUse()) { 2699 const APInt *BOC; 2700 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2701 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2702 return new ICmpInst(Pred, NewRem, 2703 Constant::getNullValue(BO->getType())); 2704 } 2705 } 2706 break; 2707 case Instruction::Add: { 2708 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2709 const APInt *BOC; 2710 if (match(BOp1, m_APInt(BOC))) { 2711 if (BO->hasOneUse()) { 2712 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2713 return new ICmpInst(Pred, BOp0, SubC); 2714 } 2715 } else if (C.isNullValue()) { 2716 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2717 // efficiently invertible, or if the add has just this one use. 2718 if (Value *NegVal = dyn_castNegVal(BOp1)) 2719 return new ICmpInst(Pred, BOp0, NegVal); 2720 if (Value *NegVal = dyn_castNegVal(BOp0)) 2721 return new ICmpInst(Pred, NegVal, BOp1); 2722 if (BO->hasOneUse()) { 2723 Value *Neg = Builder.CreateNeg(BOp1); 2724 Neg->takeName(BO); 2725 return new ICmpInst(Pred, BOp0, Neg); 2726 } 2727 } 2728 break; 2729 } 2730 case Instruction::Xor: 2731 if (BO->hasOneUse()) { 2732 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2733 // For the xor case, we can xor two constants together, eliminating 2734 // the explicit xor. 2735 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2736 } else if (C.isNullValue()) { 2737 // Replace ((xor A, B) != 0) with (A != B) 2738 return new ICmpInst(Pred, BOp0, BOp1); 2739 } 2740 } 2741 break; 2742 case Instruction::Sub: 2743 if (BO->hasOneUse()) { 2744 const APInt *BOC; 2745 if (match(BOp0, m_APInt(BOC))) { 2746 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2747 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2748 return new ICmpInst(Pred, BOp1, SubC); 2749 } else if (C.isNullValue()) { 2750 // Replace ((sub A, B) != 0) with (A != B). 2751 return new ICmpInst(Pred, BOp0, BOp1); 2752 } 2753 } 2754 break; 2755 case Instruction::Or: { 2756 const APInt *BOC; 2757 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2758 // Comparing if all bits outside of a constant mask are set? 2759 // Replace (X | C) == -1 with (X & ~C) == ~C. 2760 // This removes the -1 constant. 2761 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2762 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2763 return new ICmpInst(Pred, And, NotBOC); 2764 } 2765 break; 2766 } 2767 case Instruction::And: { 2768 const APInt *BOC; 2769 if (match(BOp1, m_APInt(BOC))) { 2770 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2771 if (C == *BOC && C.isPowerOf2()) 2772 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2773 BO, Constant::getNullValue(RHS->getType())); 2774 2775 // Don't perform the following transforms if the AND has multiple uses 2776 if (!BO->hasOneUse()) 2777 break; 2778 2779 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 2780 if (BOC->isSignMask()) { 2781 Constant *Zero = Constant::getNullValue(BOp0->getType()); 2782 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 2783 return new ICmpInst(NewPred, BOp0, Zero); 2784 } 2785 2786 // ((X & ~7) == 0) --> X < 8 2787 if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) { 2788 Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1)); 2789 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2790 return new ICmpInst(NewPred, BOp0, NegBOC); 2791 } 2792 } 2793 break; 2794 } 2795 case Instruction::Mul: 2796 if (C.isNullValue() && BO->hasNoSignedWrap()) { 2797 const APInt *BOC; 2798 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 2799 // The trivial case (mul X, 0) is handled by InstSimplify. 2800 // General case : (mul X, C) != 0 iff X != 0 2801 // (mul X, C) == 0 iff X == 0 2802 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 2803 } 2804 } 2805 break; 2806 case Instruction::UDiv: 2807 if (C.isNullValue()) { 2808 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 2809 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 2810 return new ICmpInst(NewPred, BOp1, BOp0); 2811 } 2812 break; 2813 default: 2814 break; 2815 } 2816 return nullptr; 2817 } 2818 2819 /// Fold an equality icmp with LLVM intrinsic and constant operand. 2820 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 2821 IntrinsicInst *II, 2822 const APInt &C) { 2823 Type *Ty = II->getType(); 2824 unsigned BitWidth = C.getBitWidth(); 2825 switch (II->getIntrinsicID()) { 2826 case Intrinsic::bswap: 2827 Worklist.Add(II); 2828 Cmp.setOperand(0, II->getArgOperand(0)); 2829 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); 2830 return &Cmp; 2831 2832 case Intrinsic::ctlz: 2833 case Intrinsic::cttz: { 2834 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 2835 if (C == BitWidth) { 2836 Worklist.Add(II); 2837 Cmp.setOperand(0, II->getArgOperand(0)); 2838 Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); 2839 return &Cmp; 2840 } 2841 2842 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 2843 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 2844 // Limit to one use to ensure we don't increase instruction count. 2845 unsigned Num = C.getLimitedValue(BitWidth); 2846 if (Num != BitWidth && II->hasOneUse()) { 2847 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 2848 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 2849 : APInt::getHighBitsSet(BitWidth, Num + 1); 2850 APInt Mask2 = IsTrailing 2851 ? APInt::getOneBitSet(BitWidth, Num) 2852 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2853 Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); 2854 Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); 2855 Worklist.Add(II); 2856 return &Cmp; 2857 } 2858 break; 2859 } 2860 2861 case Intrinsic::ctpop: { 2862 // popcount(A) == 0 -> A == 0 and likewise for != 2863 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 2864 bool IsZero = C.isNullValue(); 2865 if (IsZero || C == BitWidth) { 2866 Worklist.Add(II); 2867 Cmp.setOperand(0, II->getArgOperand(0)); 2868 auto *NewOp = 2869 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); 2870 Cmp.setOperand(1, NewOp); 2871 return &Cmp; 2872 } 2873 break; 2874 } 2875 default: 2876 break; 2877 } 2878 2879 return nullptr; 2880 } 2881 2882 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 2883 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 2884 IntrinsicInst *II, 2885 const APInt &C) { 2886 if (Cmp.isEquality()) 2887 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 2888 2889 Type *Ty = II->getType(); 2890 unsigned BitWidth = C.getBitWidth(); 2891 switch (II->getIntrinsicID()) { 2892 case Intrinsic::ctlz: { 2893 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 2894 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2895 unsigned Num = C.getLimitedValue(); 2896 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2897 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 2898 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2899 } 2900 2901 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 2902 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2903 C.uge(1) && C.ule(BitWidth)) { 2904 unsigned Num = C.getLimitedValue(); 2905 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 2906 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 2907 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2908 } 2909 break; 2910 } 2911 case Intrinsic::cttz: { 2912 // Limit to one use to ensure we don't increase instruction count. 2913 if (!II->hasOneUse()) 2914 return nullptr; 2915 2916 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 2917 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2918 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 2919 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 2920 Builder.CreateAnd(II->getArgOperand(0), Mask), 2921 ConstantInt::getNullValue(Ty)); 2922 } 2923 2924 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 2925 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2926 C.uge(1) && C.ule(BitWidth)) { 2927 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 2928 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 2929 Builder.CreateAnd(II->getArgOperand(0), Mask), 2930 ConstantInt::getNullValue(Ty)); 2931 } 2932 break; 2933 } 2934 default: 2935 break; 2936 } 2937 2938 return nullptr; 2939 } 2940 2941 /// Handle icmp with constant (but not simple integer constant) RHS. 2942 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 2943 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2944 Constant *RHSC = dyn_cast<Constant>(Op1); 2945 Instruction *LHSI = dyn_cast<Instruction>(Op0); 2946 if (!RHSC || !LHSI) 2947 return nullptr; 2948 2949 switch (LHSI->getOpcode()) { 2950 case Instruction::GetElementPtr: 2951 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2952 if (RHSC->isNullValue() && 2953 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2954 return new ICmpInst( 2955 I.getPredicate(), LHSI->getOperand(0), 2956 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2957 break; 2958 case Instruction::PHI: 2959 // Only fold icmp into the PHI if the phi and icmp are in the same 2960 // block. If in the same block, we're encouraging jump threading. If 2961 // not, we are just pessimizing the code by making an i1 phi. 2962 if (LHSI->getParent() == I.getParent()) 2963 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 2964 return NV; 2965 break; 2966 case Instruction::Select: { 2967 // If either operand of the select is a constant, we can fold the 2968 // comparison into the select arms, which will cause one to be 2969 // constant folded and the select turned into a bitwise or. 2970 Value *Op1 = nullptr, *Op2 = nullptr; 2971 ConstantInt *CI = nullptr; 2972 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 2973 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2974 CI = dyn_cast<ConstantInt>(Op1); 2975 } 2976 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 2977 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2978 CI = dyn_cast<ConstantInt>(Op2); 2979 } 2980 2981 // We only want to perform this transformation if it will not lead to 2982 // additional code. This is true if either both sides of the select 2983 // fold to a constant (in which case the icmp is replaced with a select 2984 // which will usually simplify) or this is the only user of the 2985 // select (in which case we are trading a select+icmp for a simpler 2986 // select+icmp) or all uses of the select can be replaced based on 2987 // dominance information ("Global cases"). 2988 bool Transform = false; 2989 if (Op1 && Op2) 2990 Transform = true; 2991 else if (Op1 || Op2) { 2992 // Local case 2993 if (LHSI->hasOneUse()) 2994 Transform = true; 2995 // Global cases 2996 else if (CI && !CI->isZero()) 2997 // When Op1 is constant try replacing select with second operand. 2998 // Otherwise Op2 is constant and try replacing select with first 2999 // operand. 3000 Transform = 3001 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3002 } 3003 if (Transform) { 3004 if (!Op1) 3005 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3006 I.getName()); 3007 if (!Op2) 3008 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3009 I.getName()); 3010 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3011 } 3012 break; 3013 } 3014 case Instruction::IntToPtr: 3015 // icmp pred inttoptr(X), null -> icmp pred X, 0 3016 if (RHSC->isNullValue() && 3017 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3018 return new ICmpInst( 3019 I.getPredicate(), LHSI->getOperand(0), 3020 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3021 break; 3022 3023 case Instruction::Load: 3024 // Try to optimize things like "A[i] > 4" to index computations. 3025 if (GetElementPtrInst *GEP = 3026 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3027 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3028 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3029 !cast<LoadInst>(LHSI)->isVolatile()) 3030 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3031 return Res; 3032 } 3033 break; 3034 } 3035 3036 return nullptr; 3037 } 3038 3039 /// Some comparisons can be simplified. 3040 /// In this case, we are looking for comparisons that look like 3041 /// a check for a lossy truncation. 3042 /// Folds: 3043 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3044 /// Where Mask is some pattern that produces all-ones in low bits: 3045 /// (-1 >> y) 3046 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3047 /// ~(-1 << y) 3048 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3049 /// The Mask can be a constant, too. 3050 /// For some predicates, the operands are commutative. 3051 /// For others, x can only be on a specific side. 3052 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3053 InstCombiner::BuilderTy &Builder) { 3054 ICmpInst::Predicate SrcPred; 3055 Value *X, *M, *Y; 3056 auto m_VariableMask = m_CombineOr( 3057 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3058 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3059 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3060 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3061 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3062 if (!match(&I, m_c_ICmp(SrcPred, 3063 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3064 m_Deferred(X)))) 3065 return nullptr; 3066 3067 ICmpInst::Predicate DstPred; 3068 switch (SrcPred) { 3069 case ICmpInst::Predicate::ICMP_EQ: 3070 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3071 DstPred = ICmpInst::Predicate::ICMP_ULE; 3072 break; 3073 case ICmpInst::Predicate::ICMP_NE: 3074 // x & (-1 >> y) != x -> x u> (-1 >> y) 3075 DstPred = ICmpInst::Predicate::ICMP_UGT; 3076 break; 3077 case ICmpInst::Predicate::ICMP_UGT: 3078 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3079 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3080 DstPred = ICmpInst::Predicate::ICMP_UGT; 3081 break; 3082 case ICmpInst::Predicate::ICMP_UGE: 3083 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3084 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3085 DstPred = ICmpInst::Predicate::ICMP_ULE; 3086 break; 3087 case ICmpInst::Predicate::ICMP_ULT: 3088 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3089 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3090 DstPred = ICmpInst::Predicate::ICMP_UGT; 3091 break; 3092 case ICmpInst::Predicate::ICMP_ULE: 3093 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3094 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3095 DstPred = ICmpInst::Predicate::ICMP_ULE; 3096 break; 3097 case ICmpInst::Predicate::ICMP_SGT: 3098 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3099 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3100 return nullptr; // Ignore the other case. 3101 DstPred = ICmpInst::Predicate::ICMP_SGT; 3102 break; 3103 case ICmpInst::Predicate::ICMP_SGE: 3104 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3105 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3106 return nullptr; // Ignore the other case. 3107 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3108 return nullptr; 3109 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3110 return nullptr; 3111 DstPred = ICmpInst::Predicate::ICMP_SLE; 3112 break; 3113 case ICmpInst::Predicate::ICMP_SLT: 3114 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3115 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3116 return nullptr; // Ignore the other case. 3117 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3118 return nullptr; 3119 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3120 return nullptr; 3121 DstPred = ICmpInst::Predicate::ICMP_SGT; 3122 break; 3123 case ICmpInst::Predicate::ICMP_SLE: 3124 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3125 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3126 return nullptr; // Ignore the other case. 3127 DstPred = ICmpInst::Predicate::ICMP_SLE; 3128 break; 3129 default: 3130 llvm_unreachable("All possible folds are handled."); 3131 } 3132 3133 return Builder.CreateICmp(DstPred, X, M); 3134 } 3135 3136 /// Some comparisons can be simplified. 3137 /// In this case, we are looking for comparisons that look like 3138 /// a check for a lossy signed truncation. 3139 /// Folds: (MaskedBits is a constant.) 3140 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3141 /// Into: 3142 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3143 /// Where KeptBits = bitwidth(%x) - MaskedBits 3144 static Value * 3145 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3146 InstCombiner::BuilderTy &Builder) { 3147 ICmpInst::Predicate SrcPred; 3148 Value *X; 3149 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3150 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3151 if (!match(&I, m_c_ICmp(SrcPred, 3152 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3153 m_APInt(C1))), 3154 m_Deferred(X)))) 3155 return nullptr; 3156 3157 // Potential handling of non-splats: for each element: 3158 // * if both are undef, replace with constant 0. 3159 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3160 // * if both are not undef, and are different, bailout. 3161 // * else, only one is undef, then pick the non-undef one. 3162 3163 // The shift amount must be equal. 3164 if (*C0 != *C1) 3165 return nullptr; 3166 const APInt &MaskedBits = *C0; 3167 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3168 3169 ICmpInst::Predicate DstPred; 3170 switch (SrcPred) { 3171 case ICmpInst::Predicate::ICMP_EQ: 3172 // ((%x << MaskedBits) a>> MaskedBits) == %x 3173 // => 3174 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3175 DstPred = ICmpInst::Predicate::ICMP_ULT; 3176 break; 3177 case ICmpInst::Predicate::ICMP_NE: 3178 // ((%x << MaskedBits) a>> MaskedBits) != %x 3179 // => 3180 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3181 DstPred = ICmpInst::Predicate::ICMP_UGE; 3182 break; 3183 // FIXME: are more folds possible? 3184 default: 3185 return nullptr; 3186 } 3187 3188 auto *XType = X->getType(); 3189 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3190 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3191 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3192 3193 // KeptBits = bitwidth(%x) - MaskedBits 3194 const APInt KeptBits = BitWidth - MaskedBits; 3195 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3196 // ICmpCst = (1 << KeptBits) 3197 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3198 assert(ICmpCst.isPowerOf2()); 3199 // AddCst = (1 << (KeptBits-1)) 3200 const APInt AddCst = ICmpCst.lshr(1); 3201 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3202 3203 // T0 = add %x, AddCst 3204 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3205 // T1 = T0 DstPred ICmpCst 3206 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3207 3208 return T1; 3209 } 3210 3211 /// Try to fold icmp (binop), X or icmp X, (binop). 3212 /// TODO: A large part of this logic is duplicated in InstSimplify's 3213 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3214 /// duplication. 3215 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 3216 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3217 3218 // Special logic for binary operators. 3219 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3220 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3221 if (!BO0 && !BO1) 3222 return nullptr; 3223 3224 const CmpInst::Predicate Pred = I.getPredicate(); 3225 Value *X; 3226 3227 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3228 // (Op1 + X) <u Op1 --> ~Op1 <u X 3229 // Op0 >u (Op0 + X) --> X >u ~Op0 3230 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3231 Pred == ICmpInst::ICMP_ULT) 3232 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3233 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3234 Pred == ICmpInst::ICMP_UGT) 3235 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3236 3237 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3238 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3239 NoOp0WrapProblem = 3240 ICmpInst::isEquality(Pred) || 3241 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3242 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3243 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3244 NoOp1WrapProblem = 3245 ICmpInst::isEquality(Pred) || 3246 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3247 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3248 3249 // Analyze the case when either Op0 or Op1 is an add instruction. 3250 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3251 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3252 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3253 A = BO0->getOperand(0); 3254 B = BO0->getOperand(1); 3255 } 3256 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3257 C = BO1->getOperand(0); 3258 D = BO1->getOperand(1); 3259 } 3260 3261 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3262 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3263 return new ICmpInst(Pred, A == Op1 ? B : A, 3264 Constant::getNullValue(Op1->getType())); 3265 3266 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3267 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3268 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3269 C == Op0 ? D : C); 3270 3271 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3272 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3273 NoOp1WrapProblem && 3274 // Try not to increase register pressure. 3275 BO0->hasOneUse() && BO1->hasOneUse()) { 3276 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3277 Value *Y, *Z; 3278 if (A == C) { 3279 // C + B == C + D -> B == D 3280 Y = B; 3281 Z = D; 3282 } else if (A == D) { 3283 // D + B == C + D -> B == C 3284 Y = B; 3285 Z = C; 3286 } else if (B == C) { 3287 // A + C == C + D -> A == D 3288 Y = A; 3289 Z = D; 3290 } else { 3291 assert(B == D); 3292 // A + D == C + D -> A == C 3293 Y = A; 3294 Z = C; 3295 } 3296 return new ICmpInst(Pred, Y, Z); 3297 } 3298 3299 // icmp slt (X + -1), Y -> icmp sle X, Y 3300 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3301 match(B, m_AllOnes())) 3302 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3303 3304 // icmp sge (X + -1), Y -> icmp sgt X, Y 3305 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3306 match(B, m_AllOnes())) 3307 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3308 3309 // icmp sle (X + 1), Y -> icmp slt X, Y 3310 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3311 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3312 3313 // icmp sgt (X + 1), Y -> icmp sge X, Y 3314 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3315 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3316 3317 // icmp sgt X, (Y + -1) -> icmp sge X, Y 3318 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3319 match(D, m_AllOnes())) 3320 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3321 3322 // icmp sle X, (Y + -1) -> icmp slt X, Y 3323 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3324 match(D, m_AllOnes())) 3325 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3326 3327 // icmp sge X, (Y + 1) -> icmp sgt X, Y 3328 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3329 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3330 3331 // icmp slt X, (Y + 1) -> icmp sle X, Y 3332 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3333 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3334 3335 // TODO: The subtraction-related identities shown below also hold, but 3336 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3337 // wouldn't happen even if they were implemented. 3338 // 3339 // icmp ult (X - 1), Y -> icmp ule X, Y 3340 // icmp uge (X - 1), Y -> icmp ugt X, Y 3341 // icmp ugt X, (Y - 1) -> icmp uge X, Y 3342 // icmp ule X, (Y - 1) -> icmp ult X, Y 3343 3344 // icmp ule (X + 1), Y -> icmp ult X, Y 3345 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3346 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3347 3348 // icmp ugt (X + 1), Y -> icmp uge X, Y 3349 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3350 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3351 3352 // icmp uge X, (Y + 1) -> icmp ugt X, Y 3353 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3354 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3355 3356 // icmp ult X, (Y + 1) -> icmp ule X, Y 3357 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3358 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3359 3360 // if C1 has greater magnitude than C2: 3361 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3362 // s.t. C3 = C1 - C2 3363 // 3364 // if C2 has greater magnitude than C1: 3365 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3366 // s.t. C3 = C2 - C1 3367 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3368 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3369 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3370 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3371 const APInt &AP1 = C1->getValue(); 3372 const APInt &AP2 = C2->getValue(); 3373 if (AP1.isNegative() == AP2.isNegative()) { 3374 APInt AP1Abs = C1->getValue().abs(); 3375 APInt AP2Abs = C2->getValue().abs(); 3376 if (AP1Abs.uge(AP2Abs)) { 3377 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3378 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3379 return new ICmpInst(Pred, NewAdd, C); 3380 } else { 3381 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3382 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3383 return new ICmpInst(Pred, A, NewAdd); 3384 } 3385 } 3386 } 3387 3388 // Analyze the case when either Op0 or Op1 is a sub instruction. 3389 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3390 A = nullptr; 3391 B = nullptr; 3392 C = nullptr; 3393 D = nullptr; 3394 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3395 A = BO0->getOperand(0); 3396 B = BO0->getOperand(1); 3397 } 3398 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3399 C = BO1->getOperand(0); 3400 D = BO1->getOperand(1); 3401 } 3402 3403 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3404 if (A == Op1 && NoOp0WrapProblem) 3405 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3406 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3407 if (C == Op0 && NoOp1WrapProblem) 3408 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3409 3410 // (A - B) >u A --> A <u B 3411 if (A == Op1 && Pred == ICmpInst::ICMP_UGT) 3412 return new ICmpInst(ICmpInst::ICMP_ULT, A, B); 3413 // C <u (C - D) --> C <u D 3414 if (C == Op0 && Pred == ICmpInst::ICMP_ULT) 3415 return new ICmpInst(ICmpInst::ICMP_ULT, C, D); 3416 3417 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3418 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3419 // Try not to increase register pressure. 3420 BO0->hasOneUse() && BO1->hasOneUse()) 3421 return new ICmpInst(Pred, A, C); 3422 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3423 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3424 // Try not to increase register pressure. 3425 BO0->hasOneUse() && BO1->hasOneUse()) 3426 return new ICmpInst(Pred, D, B); 3427 3428 // icmp (0-X) < cst --> x > -cst 3429 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3430 Value *X; 3431 if (match(BO0, m_Neg(m_Value(X)))) 3432 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3433 if (RHSC->isNotMinSignedValue()) 3434 return new ICmpInst(I.getSwappedPredicate(), X, 3435 ConstantExpr::getNeg(RHSC)); 3436 } 3437 3438 BinaryOperator *SRem = nullptr; 3439 // icmp (srem X, Y), Y 3440 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3441 SRem = BO0; 3442 // icmp Y, (srem X, Y) 3443 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3444 Op0 == BO1->getOperand(1)) 3445 SRem = BO1; 3446 if (SRem) { 3447 // We don't check hasOneUse to avoid increasing register pressure because 3448 // the value we use is the same value this instruction was already using. 3449 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3450 default: 3451 break; 3452 case ICmpInst::ICMP_EQ: 3453 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3454 case ICmpInst::ICMP_NE: 3455 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3456 case ICmpInst::ICMP_SGT: 3457 case ICmpInst::ICMP_SGE: 3458 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3459 Constant::getAllOnesValue(SRem->getType())); 3460 case ICmpInst::ICMP_SLT: 3461 case ICmpInst::ICMP_SLE: 3462 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3463 Constant::getNullValue(SRem->getType())); 3464 } 3465 } 3466 3467 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3468 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3469 switch (BO0->getOpcode()) { 3470 default: 3471 break; 3472 case Instruction::Add: 3473 case Instruction::Sub: 3474 case Instruction::Xor: { 3475 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3476 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3477 3478 const APInt *C; 3479 if (match(BO0->getOperand(1), m_APInt(C))) { 3480 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3481 if (C->isSignMask()) { 3482 ICmpInst::Predicate NewPred = 3483 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3484 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3485 } 3486 3487 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3488 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3489 ICmpInst::Predicate NewPred = 3490 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3491 NewPred = I.getSwappedPredicate(NewPred); 3492 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3493 } 3494 } 3495 break; 3496 } 3497 case Instruction::Mul: { 3498 if (!I.isEquality()) 3499 break; 3500 3501 const APInt *C; 3502 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3503 !C->isOneValue()) { 3504 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3505 // Mask = -1 >> count-trailing-zeros(C). 3506 if (unsigned TZs = C->countTrailingZeros()) { 3507 Constant *Mask = ConstantInt::get( 3508 BO0->getType(), 3509 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 3510 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 3511 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 3512 return new ICmpInst(Pred, And1, And2); 3513 } 3514 // If there are no trailing zeros in the multiplier, just eliminate 3515 // the multiplies (no masking is needed): 3516 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 3517 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3518 } 3519 break; 3520 } 3521 case Instruction::UDiv: 3522 case Instruction::LShr: 3523 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 3524 break; 3525 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3526 3527 case Instruction::SDiv: 3528 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 3529 break; 3530 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3531 3532 case Instruction::AShr: 3533 if (!BO0->isExact() || !BO1->isExact()) 3534 break; 3535 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3536 3537 case Instruction::Shl: { 3538 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3539 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3540 if (!NUW && !NSW) 3541 break; 3542 if (!NSW && I.isSigned()) 3543 break; 3544 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3545 } 3546 } 3547 } 3548 3549 if (BO0) { 3550 // Transform A & (L - 1) `ult` L --> L != 0 3551 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3552 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 3553 3554 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 3555 auto *Zero = Constant::getNullValue(BO0->getType()); 3556 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3557 } 3558 } 3559 3560 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 3561 return replaceInstUsesWith(I, V); 3562 3563 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 3564 return replaceInstUsesWith(I, V); 3565 3566 return nullptr; 3567 } 3568 3569 /// Fold icmp Pred min|max(X, Y), X. 3570 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 3571 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3572 Value *Op0 = Cmp.getOperand(0); 3573 Value *X = Cmp.getOperand(1); 3574 3575 // Canonicalize minimum or maximum operand to LHS of the icmp. 3576 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 3577 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 3578 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 3579 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 3580 std::swap(Op0, X); 3581 Pred = Cmp.getSwappedPredicate(); 3582 } 3583 3584 Value *Y; 3585 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 3586 // smin(X, Y) == X --> X s<= Y 3587 // smin(X, Y) s>= X --> X s<= Y 3588 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 3589 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 3590 3591 // smin(X, Y) != X --> X s> Y 3592 // smin(X, Y) s< X --> X s> Y 3593 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 3594 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 3595 3596 // These cases should be handled in InstSimplify: 3597 // smin(X, Y) s<= X --> true 3598 // smin(X, Y) s> X --> false 3599 return nullptr; 3600 } 3601 3602 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 3603 // smax(X, Y) == X --> X s>= Y 3604 // smax(X, Y) s<= X --> X s>= Y 3605 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 3606 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 3607 3608 // smax(X, Y) != X --> X s< Y 3609 // smax(X, Y) s> X --> X s< Y 3610 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 3611 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 3612 3613 // These cases should be handled in InstSimplify: 3614 // smax(X, Y) s>= X --> true 3615 // smax(X, Y) s< X --> false 3616 return nullptr; 3617 } 3618 3619 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 3620 // umin(X, Y) == X --> X u<= Y 3621 // umin(X, Y) u>= X --> X u<= Y 3622 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 3623 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 3624 3625 // umin(X, Y) != X --> X u> Y 3626 // umin(X, Y) u< X --> X u> Y 3627 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 3628 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 3629 3630 // These cases should be handled in InstSimplify: 3631 // umin(X, Y) u<= X --> true 3632 // umin(X, Y) u> X --> false 3633 return nullptr; 3634 } 3635 3636 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 3637 // umax(X, Y) == X --> X u>= Y 3638 // umax(X, Y) u<= X --> X u>= Y 3639 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 3640 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 3641 3642 // umax(X, Y) != X --> X u< Y 3643 // umax(X, Y) u> X --> X u< Y 3644 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 3645 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 3646 3647 // These cases should be handled in InstSimplify: 3648 // umax(X, Y) u>= X --> true 3649 // umax(X, Y) u< X --> false 3650 return nullptr; 3651 } 3652 3653 return nullptr; 3654 } 3655 3656 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 3657 if (!I.isEquality()) 3658 return nullptr; 3659 3660 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3661 const CmpInst::Predicate Pred = I.getPredicate(); 3662 Value *A, *B, *C, *D; 3663 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3664 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3665 Value *OtherVal = A == Op1 ? B : A; 3666 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3667 } 3668 3669 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3670 // A^c1 == C^c2 --> A == C^(c1^c2) 3671 ConstantInt *C1, *C2; 3672 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 3673 Op1->hasOneUse()) { 3674 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 3675 Value *Xor = Builder.CreateXor(C, NC); 3676 return new ICmpInst(Pred, A, Xor); 3677 } 3678 3679 // A^B == A^D -> B == D 3680 if (A == C) 3681 return new ICmpInst(Pred, B, D); 3682 if (A == D) 3683 return new ICmpInst(Pred, B, C); 3684 if (B == C) 3685 return new ICmpInst(Pred, A, D); 3686 if (B == D) 3687 return new ICmpInst(Pred, A, C); 3688 } 3689 } 3690 3691 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 3692 // A == (A^B) -> B == 0 3693 Value *OtherVal = A == Op0 ? B : A; 3694 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3695 } 3696 3697 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3698 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3699 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3700 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3701 3702 if (A == C) { 3703 X = B; 3704 Y = D; 3705 Z = A; 3706 } else if (A == D) { 3707 X = B; 3708 Y = C; 3709 Z = A; 3710 } else if (B == C) { 3711 X = A; 3712 Y = D; 3713 Z = B; 3714 } else if (B == D) { 3715 X = A; 3716 Y = C; 3717 Z = B; 3718 } 3719 3720 if (X) { // Build (X^Y) & Z 3721 Op1 = Builder.CreateXor(X, Y); 3722 Op1 = Builder.CreateAnd(Op1, Z); 3723 I.setOperand(0, Op1); 3724 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3725 return &I; 3726 } 3727 } 3728 3729 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3730 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3731 ConstantInt *Cst1; 3732 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 3733 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3734 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3735 match(Op1, m_ZExt(m_Value(A))))) { 3736 APInt Pow2 = Cst1->getValue() + 1; 3737 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3738 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3739 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 3740 } 3741 3742 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3743 // For lshr and ashr pairs. 3744 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3745 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3746 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3747 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3748 unsigned TypeBits = Cst1->getBitWidth(); 3749 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3750 if (ShAmt < TypeBits && ShAmt != 0) { 3751 ICmpInst::Predicate NewPred = 3752 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 3753 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3754 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3755 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 3756 } 3757 } 3758 3759 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3760 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3761 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3762 unsigned TypeBits = Cst1->getBitWidth(); 3763 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3764 if (ShAmt < TypeBits && ShAmt != 0) { 3765 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3766 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3767 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 3768 I.getName() + ".mask"); 3769 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 3770 } 3771 } 3772 3773 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3774 // "icmp (and X, mask), cst" 3775 uint64_t ShAmt = 0; 3776 if (Op0->hasOneUse() && 3777 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 3778 match(Op1, m_ConstantInt(Cst1)) && 3779 // Only do this when A has multiple uses. This is most important to do 3780 // when it exposes other optimizations. 3781 !A->hasOneUse()) { 3782 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3783 3784 if (ShAmt < ASize) { 3785 APInt MaskV = 3786 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3787 MaskV <<= ShAmt; 3788 3789 APInt CmpV = Cst1->getValue().zext(ASize); 3790 CmpV <<= ShAmt; 3791 3792 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 3793 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 3794 } 3795 } 3796 3797 // If both operands are byte-swapped or bit-reversed, just compare the 3798 // original values. 3799 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 3800 // and handle more intrinsics. 3801 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 3802 (match(Op0, m_BitReverse(m_Value(A))) && 3803 match(Op1, m_BitReverse(m_Value(B))))) 3804 return new ICmpInst(Pred, A, B); 3805 3806 return nullptr; 3807 } 3808 3809 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 3810 /// far. 3811 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { 3812 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 3813 Value *LHSCIOp = LHSCI->getOperand(0); 3814 Type *SrcTy = LHSCIOp->getType(); 3815 Type *DestTy = LHSCI->getType(); 3816 Value *RHSCIOp; 3817 3818 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 3819 // integer type is the same size as the pointer type. 3820 const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool { 3821 if (isa<VectorType>(SrcTy)) { 3822 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 3823 DestTy = cast<VectorType>(DestTy)->getElementType(); 3824 } 3825 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 3826 }; 3827 if (LHSCI->getOpcode() == Instruction::PtrToInt && 3828 CompatibleSizes(SrcTy, DestTy)) { 3829 Value *RHSOp = nullptr; 3830 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 3831 Value *RHSCIOp = RHSC->getOperand(0); 3832 if (RHSCIOp->getType()->getPointerAddressSpace() == 3833 LHSCIOp->getType()->getPointerAddressSpace()) { 3834 RHSOp = RHSC->getOperand(0); 3835 // If the pointer types don't match, insert a bitcast. 3836 if (LHSCIOp->getType() != RHSOp->getType()) 3837 RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType()); 3838 } 3839 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 3840 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 3841 } 3842 3843 if (RHSOp) 3844 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 3845 } 3846 3847 // The code below only handles extension cast instructions, so far. 3848 // Enforce this. 3849 if (LHSCI->getOpcode() != Instruction::ZExt && 3850 LHSCI->getOpcode() != Instruction::SExt) 3851 return nullptr; 3852 3853 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 3854 bool isSignedCmp = ICmp.isSigned(); 3855 3856 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 3857 // Not an extension from the same type? 3858 RHSCIOp = CI->getOperand(0); 3859 if (RHSCIOp->getType() != LHSCIOp->getType()) 3860 return nullptr; 3861 3862 // If the signedness of the two casts doesn't agree (i.e. one is a sext 3863 // and the other is a zext), then we can't handle this. 3864 if (CI->getOpcode() != LHSCI->getOpcode()) 3865 return nullptr; 3866 3867 // Deal with equality cases early. 3868 if (ICmp.isEquality()) 3869 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3870 3871 // A signed comparison of sign extended values simplifies into a 3872 // signed comparison. 3873 if (isSignedCmp && isSignedExt) 3874 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3875 3876 // The other three cases all fold into an unsigned comparison. 3877 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 3878 } 3879 3880 // If we aren't dealing with a constant on the RHS, exit early. 3881 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 3882 if (!C) 3883 return nullptr; 3884 3885 // Compute the constant that would happen if we truncated to SrcTy then 3886 // re-extended to DestTy. 3887 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 3888 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 3889 3890 // If the re-extended constant didn't change... 3891 if (Res2 == C) { 3892 // Deal with equality cases early. 3893 if (ICmp.isEquality()) 3894 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3895 3896 // A signed comparison of sign extended values simplifies into a 3897 // signed comparison. 3898 if (isSignedExt && isSignedCmp) 3899 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3900 3901 // The other three cases all fold into an unsigned comparison. 3902 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 3903 } 3904 3905 // The re-extended constant changed, partly changed (in the case of a vector), 3906 // or could not be determined to be equal (in the case of a constant 3907 // expression), so the constant cannot be represented in the shorter type. 3908 // Consequently, we cannot emit a simple comparison. 3909 // All the cases that fold to true or false will have already been handled 3910 // by SimplifyICmpInst, so only deal with the tricky case. 3911 3912 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 3913 return nullptr; 3914 3915 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 3916 // should have been folded away previously and not enter in here. 3917 3918 // We're performing an unsigned comp with a sign extended value. 3919 // This is true if the input is >= 0. [aka >s -1] 3920 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 3921 Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 3922 3923 // Finally, return the value computed. 3924 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 3925 return replaceInstUsesWith(ICmp, Result); 3926 3927 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 3928 return BinaryOperator::CreateNot(Result); 3929 } 3930 3931 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, 3932 Value *RHS, Instruction &OrigI, 3933 Value *&Result, Constant *&Overflow) { 3934 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 3935 std::swap(LHS, RHS); 3936 3937 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { 3938 Result = OpResult; 3939 Overflow = OverflowVal; 3940 if (ReuseName) 3941 Result->takeName(&OrigI); 3942 return true; 3943 }; 3944 3945 // If the overflow check was an add followed by a compare, the insertion point 3946 // may be pointing to the compare. We want to insert the new instructions 3947 // before the add in case there are uses of the add between the add and the 3948 // compare. 3949 Builder.SetInsertPoint(&OrigI); 3950 3951 switch (OCF) { 3952 case OCF_INVALID: 3953 llvm_unreachable("bad overflow check kind!"); 3954 3955 case OCF_UNSIGNED_ADD: { 3956 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); 3957 if (OR == OverflowResult::NeverOverflows) 3958 return SetResult(Builder.CreateNUWAdd(LHS, RHS), Builder.getFalse(), 3959 true); 3960 3961 if (OR == OverflowResult::AlwaysOverflows) 3962 return SetResult(Builder.CreateAdd(LHS, RHS), Builder.getTrue(), true); 3963 3964 // Fall through uadd into sadd 3965 LLVM_FALLTHROUGH; 3966 } 3967 case OCF_SIGNED_ADD: { 3968 // X + 0 -> {X, false} 3969 if (match(RHS, m_Zero())) 3970 return SetResult(LHS, Builder.getFalse(), false); 3971 3972 // We can strength reduce this signed add into a regular add if we can prove 3973 // that it will never overflow. 3974 if (OCF == OCF_SIGNED_ADD) 3975 if (willNotOverflowSignedAdd(LHS, RHS, OrigI)) 3976 return SetResult(Builder.CreateNSWAdd(LHS, RHS), Builder.getFalse(), 3977 true); 3978 break; 3979 } 3980 3981 case OCF_UNSIGNED_SUB: 3982 case OCF_SIGNED_SUB: { 3983 // X - 0 -> {X, false} 3984 if (match(RHS, m_Zero())) 3985 return SetResult(LHS, Builder.getFalse(), false); 3986 3987 if (OCF == OCF_SIGNED_SUB) { 3988 if (willNotOverflowSignedSub(LHS, RHS, OrigI)) 3989 return SetResult(Builder.CreateNSWSub(LHS, RHS), Builder.getFalse(), 3990 true); 3991 } else { 3992 if (willNotOverflowUnsignedSub(LHS, RHS, OrigI)) 3993 return SetResult(Builder.CreateNUWSub(LHS, RHS), Builder.getFalse(), 3994 true); 3995 } 3996 break; 3997 } 3998 3999 case OCF_UNSIGNED_MUL: { 4000 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); 4001 if (OR == OverflowResult::NeverOverflows) 4002 return SetResult(Builder.CreateNUWMul(LHS, RHS), Builder.getFalse(), 4003 true); 4004 if (OR == OverflowResult::AlwaysOverflows) 4005 return SetResult(Builder.CreateMul(LHS, RHS), Builder.getTrue(), true); 4006 LLVM_FALLTHROUGH; 4007 } 4008 case OCF_SIGNED_MUL: 4009 // X * undef -> undef 4010 if (isa<UndefValue>(RHS)) 4011 return SetResult(RHS, UndefValue::get(Builder.getInt1Ty()), false); 4012 4013 // X * 0 -> {0, false} 4014 if (match(RHS, m_Zero())) 4015 return SetResult(RHS, Builder.getFalse(), false); 4016 4017 // X * 1 -> {X, false} 4018 if (match(RHS, m_One())) 4019 return SetResult(LHS, Builder.getFalse(), false); 4020 4021 if (OCF == OCF_SIGNED_MUL) 4022 if (willNotOverflowSignedMul(LHS, RHS, OrigI)) 4023 return SetResult(Builder.CreateNSWMul(LHS, RHS), Builder.getFalse(), 4024 true); 4025 break; 4026 } 4027 4028 return false; 4029 } 4030 4031 /// Recognize and process idiom involving test for multiplication 4032 /// overflow. 4033 /// 4034 /// The caller has matched a pattern of the form: 4035 /// I = cmp u (mul(zext A, zext B), V 4036 /// The function checks if this is a test for overflow and if so replaces 4037 /// multiplication with call to 'mul.with.overflow' intrinsic. 4038 /// 4039 /// \param I Compare instruction. 4040 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4041 /// the compare instruction. Must be of integer type. 4042 /// \param OtherVal The other argument of compare instruction. 4043 /// \returns Instruction which must replace the compare instruction, NULL if no 4044 /// replacement required. 4045 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4046 Value *OtherVal, InstCombiner &IC) { 4047 // Don't bother doing this transformation for pointers, don't do it for 4048 // vectors. 4049 if (!isa<IntegerType>(MulVal->getType())) 4050 return nullptr; 4051 4052 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4053 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4054 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4055 if (!MulInstr) 4056 return nullptr; 4057 assert(MulInstr->getOpcode() == Instruction::Mul); 4058 4059 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4060 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4061 assert(LHS->getOpcode() == Instruction::ZExt); 4062 assert(RHS->getOpcode() == Instruction::ZExt); 4063 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4064 4065 // Calculate type and width of the result produced by mul.with.overflow. 4066 Type *TyA = A->getType(), *TyB = B->getType(); 4067 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4068 WidthB = TyB->getPrimitiveSizeInBits(); 4069 unsigned MulWidth; 4070 Type *MulType; 4071 if (WidthB > WidthA) { 4072 MulWidth = WidthB; 4073 MulType = TyB; 4074 } else { 4075 MulWidth = WidthA; 4076 MulType = TyA; 4077 } 4078 4079 // In order to replace the original mul with a narrower mul.with.overflow, 4080 // all uses must ignore upper bits of the product. The number of used low 4081 // bits must be not greater than the width of mul.with.overflow. 4082 if (MulVal->hasNUsesOrMore(2)) 4083 for (User *U : MulVal->users()) { 4084 if (U == &I) 4085 continue; 4086 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4087 // Check if truncation ignores bits above MulWidth. 4088 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4089 if (TruncWidth > MulWidth) 4090 return nullptr; 4091 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4092 // Check if AND ignores bits above MulWidth. 4093 if (BO->getOpcode() != Instruction::And) 4094 return nullptr; 4095 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4096 const APInt &CVal = CI->getValue(); 4097 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4098 return nullptr; 4099 } else { 4100 // In this case we could have the operand of the binary operation 4101 // being defined in another block, and performing the replacement 4102 // could break the dominance relation. 4103 return nullptr; 4104 } 4105 } else { 4106 // Other uses prohibit this transformation. 4107 return nullptr; 4108 } 4109 } 4110 4111 // Recognize patterns 4112 switch (I.getPredicate()) { 4113 case ICmpInst::ICMP_EQ: 4114 case ICmpInst::ICMP_NE: 4115 // Recognize pattern: 4116 // mulval = mul(zext A, zext B) 4117 // cmp eq/neq mulval, zext trunc mulval 4118 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4119 if (Zext->hasOneUse()) { 4120 Value *ZextArg = Zext->getOperand(0); 4121 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4122 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4123 break; //Recognized 4124 } 4125 4126 // Recognize pattern: 4127 // mulval = mul(zext A, zext B) 4128 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4129 ConstantInt *CI; 4130 Value *ValToMask; 4131 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4132 if (ValToMask != MulVal) 4133 return nullptr; 4134 const APInt &CVal = CI->getValue() + 1; 4135 if (CVal.isPowerOf2()) { 4136 unsigned MaskWidth = CVal.logBase2(); 4137 if (MaskWidth == MulWidth) 4138 break; // Recognized 4139 } 4140 } 4141 return nullptr; 4142 4143 case ICmpInst::ICMP_UGT: 4144 // Recognize pattern: 4145 // mulval = mul(zext A, zext B) 4146 // cmp ugt mulval, max 4147 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4148 APInt MaxVal = APInt::getMaxValue(MulWidth); 4149 MaxVal = MaxVal.zext(CI->getBitWidth()); 4150 if (MaxVal.eq(CI->getValue())) 4151 break; // Recognized 4152 } 4153 return nullptr; 4154 4155 case ICmpInst::ICMP_UGE: 4156 // Recognize pattern: 4157 // mulval = mul(zext A, zext B) 4158 // cmp uge mulval, max+1 4159 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4160 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4161 if (MaxVal.eq(CI->getValue())) 4162 break; // Recognized 4163 } 4164 return nullptr; 4165 4166 case ICmpInst::ICMP_ULE: 4167 // Recognize pattern: 4168 // mulval = mul(zext A, zext B) 4169 // cmp ule mulval, max 4170 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4171 APInt MaxVal = APInt::getMaxValue(MulWidth); 4172 MaxVal = MaxVal.zext(CI->getBitWidth()); 4173 if (MaxVal.eq(CI->getValue())) 4174 break; // Recognized 4175 } 4176 return nullptr; 4177 4178 case ICmpInst::ICMP_ULT: 4179 // Recognize pattern: 4180 // mulval = mul(zext A, zext B) 4181 // cmp ule mulval, max + 1 4182 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4183 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4184 if (MaxVal.eq(CI->getValue())) 4185 break; // Recognized 4186 } 4187 return nullptr; 4188 4189 default: 4190 return nullptr; 4191 } 4192 4193 InstCombiner::BuilderTy &Builder = IC.Builder; 4194 Builder.SetInsertPoint(MulInstr); 4195 4196 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4197 Value *MulA = A, *MulB = B; 4198 if (WidthA < MulWidth) 4199 MulA = Builder.CreateZExt(A, MulType); 4200 if (WidthB < MulWidth) 4201 MulB = Builder.CreateZExt(B, MulType); 4202 Function *F = Intrinsic::getDeclaration( 4203 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4204 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4205 IC.Worklist.Add(MulInstr); 4206 4207 // If there are uses of mul result other than the comparison, we know that 4208 // they are truncation or binary AND. Change them to use result of 4209 // mul.with.overflow and adjust properly mask/size. 4210 if (MulVal->hasNUsesOrMore(2)) { 4211 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4212 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4213 User *U = *UI++; 4214 if (U == &I || U == OtherVal) 4215 continue; 4216 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4217 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4218 IC.replaceInstUsesWith(*TI, Mul); 4219 else 4220 TI->setOperand(0, Mul); 4221 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4222 assert(BO->getOpcode() == Instruction::And); 4223 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4224 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4225 APInt ShortMask = CI->getValue().trunc(MulWidth); 4226 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4227 Instruction *Zext = 4228 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); 4229 IC.Worklist.Add(Zext); 4230 IC.replaceInstUsesWith(*BO, Zext); 4231 } else { 4232 llvm_unreachable("Unexpected Binary operation"); 4233 } 4234 IC.Worklist.Add(cast<Instruction>(U)); 4235 } 4236 } 4237 if (isa<Instruction>(OtherVal)) 4238 IC.Worklist.Add(cast<Instruction>(OtherVal)); 4239 4240 // The original icmp gets replaced with the overflow value, maybe inverted 4241 // depending on predicate. 4242 bool Inverse = false; 4243 switch (I.getPredicate()) { 4244 case ICmpInst::ICMP_NE: 4245 break; 4246 case ICmpInst::ICMP_EQ: 4247 Inverse = true; 4248 break; 4249 case ICmpInst::ICMP_UGT: 4250 case ICmpInst::ICMP_UGE: 4251 if (I.getOperand(0) == MulVal) 4252 break; 4253 Inverse = true; 4254 break; 4255 case ICmpInst::ICMP_ULT: 4256 case ICmpInst::ICMP_ULE: 4257 if (I.getOperand(1) == MulVal) 4258 break; 4259 Inverse = true; 4260 break; 4261 default: 4262 llvm_unreachable("Unexpected predicate"); 4263 } 4264 if (Inverse) { 4265 Value *Res = Builder.CreateExtractValue(Call, 1); 4266 return BinaryOperator::CreateNot(Res); 4267 } 4268 4269 return ExtractValueInst::Create(Call, 1); 4270 } 4271 4272 /// When performing a comparison against a constant, it is possible that not all 4273 /// the bits in the LHS are demanded. This helper method computes the mask that 4274 /// IS demanded. 4275 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4276 const APInt *RHS; 4277 if (!match(I.getOperand(1), m_APInt(RHS))) 4278 return APInt::getAllOnesValue(BitWidth); 4279 4280 // If this is a normal comparison, it demands all bits. If it is a sign bit 4281 // comparison, it only demands the sign bit. 4282 bool UnusedBit; 4283 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4284 return APInt::getSignMask(BitWidth); 4285 4286 switch (I.getPredicate()) { 4287 // For a UGT comparison, we don't care about any bits that 4288 // correspond to the trailing ones of the comparand. The value of these 4289 // bits doesn't impact the outcome of the comparison, because any value 4290 // greater than the RHS must differ in a bit higher than these due to carry. 4291 case ICmpInst::ICMP_UGT: 4292 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4293 4294 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4295 // Any value less than the RHS must differ in a higher bit because of carries. 4296 case ICmpInst::ICMP_ULT: 4297 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4298 4299 default: 4300 return APInt::getAllOnesValue(BitWidth); 4301 } 4302 } 4303 4304 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4305 /// should be swapped. 4306 /// The decision is based on how many times these two operands are reused 4307 /// as subtract operands and their positions in those instructions. 4308 /// The rationale is that several architectures use the same instruction for 4309 /// both subtract and cmp. Thus, it is better if the order of those operands 4310 /// match. 4311 /// \return true if Op0 and Op1 should be swapped. 4312 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4313 // Filter out pointer values as those cannot appear directly in subtract. 4314 // FIXME: we may want to go through inttoptrs or bitcasts. 4315 if (Op0->getType()->isPointerTy()) 4316 return false; 4317 // If a subtract already has the same operands as a compare, swapping would be 4318 // bad. If a subtract has the same operands as a compare but in reverse order, 4319 // then swapping is good. 4320 int GoodToSwap = 0; 4321 for (const User *U : Op0->users()) { 4322 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4323 GoodToSwap++; 4324 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4325 GoodToSwap--; 4326 } 4327 return GoodToSwap > 0; 4328 } 4329 4330 /// Check that one use is in the same block as the definition and all 4331 /// other uses are in blocks dominated by a given block. 4332 /// 4333 /// \param DI Definition 4334 /// \param UI Use 4335 /// \param DB Block that must dominate all uses of \p DI outside 4336 /// the parent block 4337 /// \return true when \p UI is the only use of \p DI in the parent block 4338 /// and all other uses of \p DI are in blocks dominated by \p DB. 4339 /// 4340 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4341 const Instruction *UI, 4342 const BasicBlock *DB) const { 4343 assert(DI && UI && "Instruction not defined\n"); 4344 // Ignore incomplete definitions. 4345 if (!DI->getParent()) 4346 return false; 4347 // DI and UI must be in the same block. 4348 if (DI->getParent() != UI->getParent()) 4349 return false; 4350 // Protect from self-referencing blocks. 4351 if (DI->getParent() == DB) 4352 return false; 4353 for (const User *U : DI->users()) { 4354 auto *Usr = cast<Instruction>(U); 4355 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4356 return false; 4357 } 4358 return true; 4359 } 4360 4361 /// Return true when the instruction sequence within a block is select-cmp-br. 4362 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4363 const BasicBlock *BB = SI->getParent(); 4364 if (!BB) 4365 return false; 4366 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4367 if (!BI || BI->getNumSuccessors() != 2) 4368 return false; 4369 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4370 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4371 return false; 4372 return true; 4373 } 4374 4375 /// True when a select result is replaced by one of its operands 4376 /// in select-icmp sequence. This will eventually result in the elimination 4377 /// of the select. 4378 /// 4379 /// \param SI Select instruction 4380 /// \param Icmp Compare instruction 4381 /// \param SIOpd Operand that replaces the select 4382 /// 4383 /// Notes: 4384 /// - The replacement is global and requires dominator information 4385 /// - The caller is responsible for the actual replacement 4386 /// 4387 /// Example: 4388 /// 4389 /// entry: 4390 /// %4 = select i1 %3, %C* %0, %C* null 4391 /// %5 = icmp eq %C* %4, null 4392 /// br i1 %5, label %9, label %7 4393 /// ... 4394 /// ; <label>:7 ; preds = %entry 4395 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4396 /// ... 4397 /// 4398 /// can be transformed to 4399 /// 4400 /// %5 = icmp eq %C* %0, null 4401 /// %6 = select i1 %3, i1 %5, i1 true 4402 /// br i1 %6, label %9, label %7 4403 /// ... 4404 /// ; <label>:7 ; preds = %entry 4405 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4406 /// 4407 /// Similar when the first operand of the select is a constant or/and 4408 /// the compare is for not equal rather than equal. 4409 /// 4410 /// NOTE: The function is only called when the select and compare constants 4411 /// are equal, the optimization can work only for EQ predicates. This is not a 4412 /// major restriction since a NE compare should be 'normalized' to an equal 4413 /// compare, which usually happens in the combiner and test case 4414 /// select-cmp-br.ll checks for it. 4415 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4416 const ICmpInst *Icmp, 4417 const unsigned SIOpd) { 4418 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4419 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4420 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4421 // The check for the single predecessor is not the best that can be 4422 // done. But it protects efficiently against cases like when SI's 4423 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4424 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4425 // replaced can be reached on either path. So the uniqueness check 4426 // guarantees that the path all uses of SI (outside SI's parent) are on 4427 // is disjoint from all other paths out of SI. But that information 4428 // is more expensive to compute, and the trade-off here is in favor 4429 // of compile-time. It should also be noticed that we check for a single 4430 // predecessor and not only uniqueness. This to handle the situation when 4431 // Succ and Succ1 points to the same basic block. 4432 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4433 NumSel++; 4434 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4435 return true; 4436 } 4437 } 4438 return false; 4439 } 4440 4441 /// Try to fold the comparison based on range information we can get by checking 4442 /// whether bits are known to be zero or one in the inputs. 4443 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4444 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4445 Type *Ty = Op0->getType(); 4446 ICmpInst::Predicate Pred = I.getPredicate(); 4447 4448 // Get scalar or pointer size. 4449 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4450 ? Ty->getScalarSizeInBits() 4451 : DL.getIndexTypeSizeInBits(Ty->getScalarType()); 4452 4453 if (!BitWidth) 4454 return nullptr; 4455 4456 KnownBits Op0Known(BitWidth); 4457 KnownBits Op1Known(BitWidth); 4458 4459 if (SimplifyDemandedBits(&I, 0, 4460 getDemandedBitsLHSMask(I, BitWidth), 4461 Op0Known, 0)) 4462 return &I; 4463 4464 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4465 Op1Known, 0)) 4466 return &I; 4467 4468 // Given the known and unknown bits, compute a range that the LHS could be 4469 // in. Compute the Min, Max and RHS values based on the known bits. For the 4470 // EQ and NE we use unsigned values. 4471 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4472 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4473 if (I.isSigned()) { 4474 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4475 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4476 } else { 4477 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4478 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4479 } 4480 4481 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4482 // out that the LHS or RHS is a constant. Constant fold this now, so that 4483 // code below can assume that Min != Max. 4484 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4485 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4486 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4487 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4488 4489 // Based on the range information we know about the LHS, see if we can 4490 // simplify this comparison. For example, (x&4) < 8 is always true. 4491 switch (Pred) { 4492 default: 4493 llvm_unreachable("Unknown icmp opcode!"); 4494 case ICmpInst::ICMP_EQ: 4495 case ICmpInst::ICMP_NE: { 4496 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4497 return Pred == CmpInst::ICMP_EQ 4498 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4499 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4500 } 4501 4502 // If all bits are known zero except for one, then we know at most one bit 4503 // is set. If the comparison is against zero, then this is a check to see if 4504 // *that* bit is set. 4505 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 4506 if (Op1Known.isZero()) { 4507 // If the LHS is an AND with the same constant, look through it. 4508 Value *LHS = nullptr; 4509 const APInt *LHSC; 4510 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4511 *LHSC != Op0KnownZeroInverted) 4512 LHS = Op0; 4513 4514 Value *X; 4515 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4516 APInt ValToCheck = Op0KnownZeroInverted; 4517 Type *XTy = X->getType(); 4518 if (ValToCheck.isPowerOf2()) { 4519 // ((1 << X) & 8) == 0 -> X != 3 4520 // ((1 << X) & 8) != 0 -> X == 3 4521 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4522 auto NewPred = ICmpInst::getInversePredicate(Pred); 4523 return new ICmpInst(NewPred, X, CmpC); 4524 } else if ((++ValToCheck).isPowerOf2()) { 4525 // ((1 << X) & 7) == 0 -> X >= 3 4526 // ((1 << X) & 7) != 0 -> X < 3 4527 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4528 auto NewPred = 4529 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4530 return new ICmpInst(NewPred, X, CmpC); 4531 } 4532 } 4533 4534 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 4535 const APInt *CI; 4536 if (Op0KnownZeroInverted.isOneValue() && 4537 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 4538 // ((8 >>u X) & 1) == 0 -> X != 3 4539 // ((8 >>u X) & 1) != 0 -> X == 3 4540 unsigned CmpVal = CI->countTrailingZeros(); 4541 auto NewPred = ICmpInst::getInversePredicate(Pred); 4542 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 4543 } 4544 } 4545 break; 4546 } 4547 case ICmpInst::ICMP_ULT: { 4548 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 4549 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4550 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 4551 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4552 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 4553 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4554 4555 const APInt *CmpC; 4556 if (match(Op1, m_APInt(CmpC))) { 4557 // A <u C -> A == C-1 if min(A)+1 == C 4558 if (*CmpC == Op0Min + 1) 4559 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4560 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4561 // X <u C --> X == 0, if the number of zero bits in the bottom of X 4562 // exceeds the log2 of C. 4563 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 4564 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4565 Constant::getNullValue(Op1->getType())); 4566 } 4567 break; 4568 } 4569 case ICmpInst::ICMP_UGT: { 4570 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 4571 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4572 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 4573 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4574 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 4575 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4576 4577 const APInt *CmpC; 4578 if (match(Op1, m_APInt(CmpC))) { 4579 // A >u C -> A == C+1 if max(a)-1 == C 4580 if (*CmpC == Op0Max - 1) 4581 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4582 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4583 // X >u C --> X != 0, if the number of zero bits in the bottom of X 4584 // exceeds the log2 of C. 4585 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 4586 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 4587 Constant::getNullValue(Op1->getType())); 4588 } 4589 break; 4590 } 4591 case ICmpInst::ICMP_SLT: { 4592 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 4593 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4594 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 4595 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4596 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 4597 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4598 const APInt *CmpC; 4599 if (match(Op1, m_APInt(CmpC))) { 4600 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 4601 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4602 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4603 } 4604 break; 4605 } 4606 case ICmpInst::ICMP_SGT: { 4607 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 4608 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4609 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 4610 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4611 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 4612 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4613 const APInt *CmpC; 4614 if (match(Op1, m_APInt(CmpC))) { 4615 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 4616 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4617 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4618 } 4619 break; 4620 } 4621 case ICmpInst::ICMP_SGE: 4622 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 4623 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 4624 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4625 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 4626 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4627 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 4628 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4629 break; 4630 case ICmpInst::ICMP_SLE: 4631 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 4632 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 4633 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4634 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 4635 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4636 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 4637 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4638 break; 4639 case ICmpInst::ICMP_UGE: 4640 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 4641 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 4642 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4643 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 4644 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4645 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 4646 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4647 break; 4648 case ICmpInst::ICMP_ULE: 4649 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 4650 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 4651 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4652 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 4653 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4654 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 4655 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4656 break; 4657 } 4658 4659 // Turn a signed comparison into an unsigned one if both operands are known to 4660 // have the same sign. 4661 if (I.isSigned() && 4662 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 4663 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 4664 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 4665 4666 return nullptr; 4667 } 4668 4669 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 4670 /// it into the appropriate icmp lt or icmp gt instruction. This transform 4671 /// allows them to be folded in visitICmpInst. 4672 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 4673 ICmpInst::Predicate Pred = I.getPredicate(); 4674 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 4675 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 4676 return nullptr; 4677 4678 Value *Op0 = I.getOperand(0); 4679 Value *Op1 = I.getOperand(1); 4680 auto *Op1C = dyn_cast<Constant>(Op1); 4681 if (!Op1C) 4682 return nullptr; 4683 4684 // Check if the constant operand can be safely incremented/decremented without 4685 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 4686 // the edge cases for us, so we just assert on them. For vectors, we must 4687 // handle the edge cases. 4688 Type *Op1Type = Op1->getType(); 4689 bool IsSigned = I.isSigned(); 4690 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 4691 auto *CI = dyn_cast<ConstantInt>(Op1C); 4692 if (CI) { 4693 // A <= MAX -> TRUE ; A >= MIN -> TRUE 4694 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 4695 } else if (Op1Type->isVectorTy()) { 4696 // TODO? If the edge cases for vectors were guaranteed to be handled as they 4697 // are for scalar, we could remove the min/max checks. However, to do that, 4698 // we would have to use insertelement/shufflevector to replace edge values. 4699 unsigned NumElts = Op1Type->getVectorNumElements(); 4700 for (unsigned i = 0; i != NumElts; ++i) { 4701 Constant *Elt = Op1C->getAggregateElement(i); 4702 if (!Elt) 4703 return nullptr; 4704 4705 if (isa<UndefValue>(Elt)) 4706 continue; 4707 4708 // Bail out if we can't determine if this constant is min/max or if we 4709 // know that this constant is min/max. 4710 auto *CI = dyn_cast<ConstantInt>(Elt); 4711 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 4712 return nullptr; 4713 } 4714 } else { 4715 // ConstantExpr? 4716 return nullptr; 4717 } 4718 4719 // Increment or decrement the constant and set the new comparison predicate: 4720 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 4721 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 4722 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 4723 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 4724 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 4725 } 4726 4727 /// Integer compare with boolean values can always be turned into bitwise ops. 4728 static Instruction *canonicalizeICmpBool(ICmpInst &I, 4729 InstCombiner::BuilderTy &Builder) { 4730 Value *A = I.getOperand(0), *B = I.getOperand(1); 4731 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 4732 4733 // A boolean compared to true/false can be simplified to Op0/true/false in 4734 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 4735 // Cases not handled by InstSimplify are always 'not' of Op0. 4736 if (match(B, m_Zero())) { 4737 switch (I.getPredicate()) { 4738 case CmpInst::ICMP_EQ: // A == 0 -> !A 4739 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 4740 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 4741 return BinaryOperator::CreateNot(A); 4742 default: 4743 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4744 } 4745 } else if (match(B, m_One())) { 4746 switch (I.getPredicate()) { 4747 case CmpInst::ICMP_NE: // A != 1 -> !A 4748 case CmpInst::ICMP_ULT: // A <u 1 -> !A 4749 case CmpInst::ICMP_SGT: // A >s -1 -> !A 4750 return BinaryOperator::CreateNot(A); 4751 default: 4752 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4753 } 4754 } 4755 4756 switch (I.getPredicate()) { 4757 default: 4758 llvm_unreachable("Invalid icmp instruction!"); 4759 case ICmpInst::ICMP_EQ: 4760 // icmp eq i1 A, B -> ~(A ^ B) 4761 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 4762 4763 case ICmpInst::ICMP_NE: 4764 // icmp ne i1 A, B -> A ^ B 4765 return BinaryOperator::CreateXor(A, B); 4766 4767 case ICmpInst::ICMP_UGT: 4768 // icmp ugt -> icmp ult 4769 std::swap(A, B); 4770 LLVM_FALLTHROUGH; 4771 case ICmpInst::ICMP_ULT: 4772 // icmp ult i1 A, B -> ~A & B 4773 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 4774 4775 case ICmpInst::ICMP_SGT: 4776 // icmp sgt -> icmp slt 4777 std::swap(A, B); 4778 LLVM_FALLTHROUGH; 4779 case ICmpInst::ICMP_SLT: 4780 // icmp slt i1 A, B -> A & ~B 4781 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 4782 4783 case ICmpInst::ICMP_UGE: 4784 // icmp uge -> icmp ule 4785 std::swap(A, B); 4786 LLVM_FALLTHROUGH; 4787 case ICmpInst::ICMP_ULE: 4788 // icmp ule i1 A, B -> ~A | B 4789 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 4790 4791 case ICmpInst::ICMP_SGE: 4792 // icmp sge -> icmp sle 4793 std::swap(A, B); 4794 LLVM_FALLTHROUGH; 4795 case ICmpInst::ICMP_SLE: 4796 // icmp sle i1 A, B -> A | ~B 4797 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 4798 } 4799 } 4800 4801 // Transform pattern like: 4802 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 4803 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 4804 // Into: 4805 // (X l>> Y) != 0 4806 // (X l>> Y) == 0 4807 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 4808 InstCombiner::BuilderTy &Builder) { 4809 ICmpInst::Predicate Pred, NewPred; 4810 Value *X, *Y; 4811 if (match(&Cmp, 4812 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 4813 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4814 if (Cmp.getOperand(0) == X) 4815 Pred = Cmp.getSwappedPredicate(); 4816 4817 switch (Pred) { 4818 case ICmpInst::ICMP_ULE: 4819 NewPred = ICmpInst::ICMP_NE; 4820 break; 4821 case ICmpInst::ICMP_UGT: 4822 NewPred = ICmpInst::ICMP_EQ; 4823 break; 4824 default: 4825 return nullptr; 4826 } 4827 } else if (match(&Cmp, m_c_ICmp(Pred, 4828 m_OneUse(m_CombineOr( 4829 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 4830 m_Add(m_Shl(m_One(), m_Value(Y)), 4831 m_AllOnes()))), 4832 m_Value(X)))) { 4833 // The variant with 'add' is not canonical, (the variant with 'not' is) 4834 // we only get it because it has extra uses, and can't be canonicalized, 4835 4836 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4837 if (Cmp.getOperand(0) == X) 4838 Pred = Cmp.getSwappedPredicate(); 4839 4840 switch (Pred) { 4841 case ICmpInst::ICMP_ULT: 4842 NewPred = ICmpInst::ICMP_NE; 4843 break; 4844 case ICmpInst::ICMP_UGE: 4845 NewPred = ICmpInst::ICMP_EQ; 4846 break; 4847 default: 4848 return nullptr; 4849 } 4850 } else 4851 return nullptr; 4852 4853 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 4854 Constant *Zero = Constant::getNullValue(NewX->getType()); 4855 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 4856 } 4857 4858 static Instruction *foldVectorCmp(CmpInst &Cmp, 4859 InstCombiner::BuilderTy &Builder) { 4860 // If both arguments of the cmp are shuffles that use the same mask and 4861 // shuffle within a single vector, move the shuffle after the cmp. 4862 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 4863 Value *V1, *V2; 4864 Constant *M; 4865 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && 4866 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && 4867 V1->getType() == V2->getType() && 4868 (LHS->hasOneUse() || RHS->hasOneUse())) { 4869 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 4870 CmpInst::Predicate P = Cmp.getPredicate(); 4871 Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) 4872 : Builder.CreateFCmp(P, V1, V2); 4873 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 4874 } 4875 return nullptr; 4876 } 4877 4878 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 4879 bool Changed = false; 4880 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4881 unsigned Op0Cplxity = getComplexity(Op0); 4882 unsigned Op1Cplxity = getComplexity(Op1); 4883 4884 /// Orders the operands of the compare so that they are listed from most 4885 /// complex to least complex. This puts constants before unary operators, 4886 /// before binary operators. 4887 if (Op0Cplxity < Op1Cplxity || 4888 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 4889 I.swapOperands(); 4890 std::swap(Op0, Op1); 4891 Changed = true; 4892 } 4893 4894 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, 4895 SQ.getWithInstruction(&I))) 4896 return replaceInstUsesWith(I, V); 4897 4898 // Comparing -val or val with non-zero is the same as just comparing val 4899 // ie, abs(val) != 0 -> val != 0 4900 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 4901 Value *Cond, *SelectTrue, *SelectFalse; 4902 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 4903 m_Value(SelectFalse)))) { 4904 if (Value *V = dyn_castNegVal(SelectTrue)) { 4905 if (V == SelectFalse) 4906 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4907 } 4908 else if (Value *V = dyn_castNegVal(SelectFalse)) { 4909 if (V == SelectTrue) 4910 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4911 } 4912 } 4913 } 4914 4915 if (Op0->getType()->isIntOrIntVectorTy(1)) 4916 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 4917 return Res; 4918 4919 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 4920 return NewICmp; 4921 4922 if (Instruction *Res = foldICmpWithConstant(I)) 4923 return Res; 4924 4925 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 4926 return Res; 4927 4928 if (Instruction *Res = foldICmpUsingKnownBits(I)) 4929 return Res; 4930 4931 // Test if the ICmpInst instruction is used exclusively by a select as 4932 // part of a minimum or maximum operation. If so, refrain from doing 4933 // any other folding. This helps out other analyses which understand 4934 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4935 // and CodeGen. And in this case, at least one of the comparison 4936 // operands has at least one user besides the compare (the select), 4937 // which would often largely negate the benefit of folding anyway. 4938 // 4939 // Do the same for the other patterns recognized by matchSelectPattern. 4940 if (I.hasOneUse()) 4941 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 4942 Value *A, *B; 4943 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 4944 if (SPR.Flavor != SPF_UNKNOWN) 4945 return nullptr; 4946 } 4947 4948 // Do this after checking for min/max to prevent infinite looping. 4949 if (Instruction *Res = foldICmpWithZero(I)) 4950 return Res; 4951 4952 // FIXME: We only do this after checking for min/max to prevent infinite 4953 // looping caused by a reverse canonicalization of these patterns for min/max. 4954 // FIXME: The organization of folds is a mess. These would naturally go into 4955 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 4956 // down here after the min/max restriction. 4957 ICmpInst::Predicate Pred = I.getPredicate(); 4958 const APInt *C; 4959 if (match(Op1, m_APInt(C))) { 4960 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 4961 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 4962 Constant *Zero = Constant::getNullValue(Op0->getType()); 4963 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 4964 } 4965 4966 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 4967 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 4968 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 4969 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 4970 } 4971 } 4972 4973 if (Instruction *Res = foldICmpInstWithConstant(I)) 4974 return Res; 4975 4976 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 4977 return Res; 4978 4979 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 4980 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 4981 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 4982 return NI; 4983 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 4984 if (Instruction *NI = foldGEPICmp(GEP, Op0, 4985 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 4986 return NI; 4987 4988 // Try to optimize equality comparisons against alloca-based pointers. 4989 if (Op0->getType()->isPointerTy() && I.isEquality()) { 4990 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 4991 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 4992 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 4993 return New; 4994 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 4995 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 4996 return New; 4997 } 4998 4999 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5000 return Res; 5001 5002 if (isa<CastInst>(Op0)) { 5003 // Handle the special case of: icmp (cast bool to X), <cst> 5004 // This comes up when you have code like 5005 // int X = A < B; 5006 // if (X) ... 5007 // For generality, we handle any zero-extension of any operand comparison 5008 // with a constant or another cast from the same type. 5009 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 5010 if (Instruction *R = foldICmpWithCastAndCast(I)) 5011 return R; 5012 } 5013 5014 if (Instruction *Res = foldICmpBinOp(I)) 5015 return Res; 5016 5017 if (Instruction *Res = foldICmpWithMinMax(I)) 5018 return Res; 5019 5020 { 5021 Value *A, *B; 5022 // Transform (A & ~B) == 0 --> (A & B) != 0 5023 // and (A & ~B) != 0 --> (A & B) == 0 5024 // if A is a power of 2. 5025 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5026 match(Op1, m_Zero()) && 5027 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5028 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5029 Op1); 5030 5031 // ~X < ~Y --> Y < X 5032 // ~X < C --> X > ~C 5033 if (match(Op0, m_Not(m_Value(A)))) { 5034 if (match(Op1, m_Not(m_Value(B)))) 5035 return new ICmpInst(I.getPredicate(), B, A); 5036 5037 const APInt *C; 5038 if (match(Op1, m_APInt(C))) 5039 return new ICmpInst(I.getSwappedPredicate(), A, 5040 ConstantInt::get(Op1->getType(), ~(*C))); 5041 } 5042 5043 Instruction *AddI = nullptr; 5044 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5045 m_Instruction(AddI))) && 5046 isa<IntegerType>(A->getType())) { 5047 Value *Result; 5048 Constant *Overflow; 5049 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, 5050 Overflow)) { 5051 replaceInstUsesWith(*AddI, Result); 5052 return replaceInstUsesWith(I, Overflow); 5053 } 5054 } 5055 5056 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5057 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5058 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5059 return R; 5060 } 5061 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5062 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5063 return R; 5064 } 5065 } 5066 5067 if (Instruction *Res = foldICmpEquality(I)) 5068 return Res; 5069 5070 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5071 // an i1 which indicates whether or not we successfully did the swap. 5072 // 5073 // Replace comparisons between the old value and the expected value with the 5074 // indicator that 'cmpxchg' returns. 5075 // 5076 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5077 // spuriously fail. In those cases, the old value may equal the expected 5078 // value but it is possible for the swap to not occur. 5079 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5080 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5081 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5082 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5083 !ACXI->isWeak()) 5084 return ExtractValueInst::Create(ACXI, 1); 5085 5086 { 5087 Value *X; 5088 const APInt *C; 5089 // icmp X+Cst, X 5090 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5091 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5092 5093 // icmp X, X+Cst 5094 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5095 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5096 } 5097 5098 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5099 return Res; 5100 5101 if (I.getType()->isVectorTy()) 5102 if (Instruction *Res = foldVectorCmp(I, Builder)) 5103 return Res; 5104 5105 return Changed ? &I : nullptr; 5106 } 5107 5108 /// Fold fcmp ([us]itofp x, cst) if possible. 5109 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5110 Constant *RHSC) { 5111 if (!isa<ConstantFP>(RHSC)) return nullptr; 5112 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5113 5114 // Get the width of the mantissa. We don't want to hack on conversions that 5115 // might lose information from the integer, e.g. "i64 -> float" 5116 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5117 if (MantissaWidth == -1) return nullptr; // Unknown. 5118 5119 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5120 5121 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5122 5123 if (I.isEquality()) { 5124 FCmpInst::Predicate P = I.getPredicate(); 5125 bool IsExact = false; 5126 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5127 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5128 5129 // If the floating point constant isn't an integer value, we know if we will 5130 // ever compare equal / not equal to it. 5131 if (!IsExact) { 5132 // TODO: Can never be -0.0 and other non-representable values 5133 APFloat RHSRoundInt(RHS); 5134 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5135 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 5136 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5137 return replaceInstUsesWith(I, Builder.getFalse()); 5138 5139 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5140 return replaceInstUsesWith(I, Builder.getTrue()); 5141 } 5142 } 5143 5144 // TODO: If the constant is exactly representable, is it always OK to do 5145 // equality compares as integer? 5146 } 5147 5148 // Check to see that the input is converted from an integer type that is small 5149 // enough that preserves all bits. TODO: check here for "known" sign bits. 5150 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5151 unsigned InputSize = IntTy->getScalarSizeInBits(); 5152 5153 // Following test does NOT adjust InputSize downwards for signed inputs, 5154 // because the most negative value still requires all the mantissa bits 5155 // to distinguish it from one less than that value. 5156 if ((int)InputSize > MantissaWidth) { 5157 // Conversion would lose accuracy. Check if loss can impact comparison. 5158 int Exp = ilogb(RHS); 5159 if (Exp == APFloat::IEK_Inf) { 5160 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5161 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5162 // Conversion could create infinity. 5163 return nullptr; 5164 } else { 5165 // Note that if RHS is zero or NaN, then Exp is negative 5166 // and first condition is trivially false. 5167 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5168 // Conversion could affect comparison. 5169 return nullptr; 5170 } 5171 } 5172 5173 // Otherwise, we can potentially simplify the comparison. We know that it 5174 // will always come through as an integer value and we know the constant is 5175 // not a NAN (it would have been previously simplified). 5176 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5177 5178 ICmpInst::Predicate Pred; 5179 switch (I.getPredicate()) { 5180 default: llvm_unreachable("Unexpected predicate!"); 5181 case FCmpInst::FCMP_UEQ: 5182 case FCmpInst::FCMP_OEQ: 5183 Pred = ICmpInst::ICMP_EQ; 5184 break; 5185 case FCmpInst::FCMP_UGT: 5186 case FCmpInst::FCMP_OGT: 5187 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5188 break; 5189 case FCmpInst::FCMP_UGE: 5190 case FCmpInst::FCMP_OGE: 5191 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5192 break; 5193 case FCmpInst::FCMP_ULT: 5194 case FCmpInst::FCMP_OLT: 5195 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5196 break; 5197 case FCmpInst::FCMP_ULE: 5198 case FCmpInst::FCMP_OLE: 5199 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5200 break; 5201 case FCmpInst::FCMP_UNE: 5202 case FCmpInst::FCMP_ONE: 5203 Pred = ICmpInst::ICMP_NE; 5204 break; 5205 case FCmpInst::FCMP_ORD: 5206 return replaceInstUsesWith(I, Builder.getTrue()); 5207 case FCmpInst::FCMP_UNO: 5208 return replaceInstUsesWith(I, Builder.getFalse()); 5209 } 5210 5211 // Now we know that the APFloat is a normal number, zero or inf. 5212 5213 // See if the FP constant is too large for the integer. For example, 5214 // comparing an i8 to 300.0. 5215 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5216 5217 if (!LHSUnsigned) { 5218 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5219 // and large values. 5220 APFloat SMax(RHS.getSemantics()); 5221 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5222 APFloat::rmNearestTiesToEven); 5223 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 5224 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5225 Pred == ICmpInst::ICMP_SLE) 5226 return replaceInstUsesWith(I, Builder.getTrue()); 5227 return replaceInstUsesWith(I, Builder.getFalse()); 5228 } 5229 } else { 5230 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5231 // +INF and large values. 5232 APFloat UMax(RHS.getSemantics()); 5233 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5234 APFloat::rmNearestTiesToEven); 5235 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 5236 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5237 Pred == ICmpInst::ICMP_ULE) 5238 return replaceInstUsesWith(I, Builder.getTrue()); 5239 return replaceInstUsesWith(I, Builder.getFalse()); 5240 } 5241 } 5242 5243 if (!LHSUnsigned) { 5244 // See if the RHS value is < SignedMin. 5245 APFloat SMin(RHS.getSemantics()); 5246 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5247 APFloat::rmNearestTiesToEven); 5248 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 5249 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5250 Pred == ICmpInst::ICMP_SGE) 5251 return replaceInstUsesWith(I, Builder.getTrue()); 5252 return replaceInstUsesWith(I, Builder.getFalse()); 5253 } 5254 } else { 5255 // See if the RHS value is < UnsignedMin. 5256 APFloat SMin(RHS.getSemantics()); 5257 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 5258 APFloat::rmNearestTiesToEven); 5259 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 5260 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5261 Pred == ICmpInst::ICMP_UGE) 5262 return replaceInstUsesWith(I, Builder.getTrue()); 5263 return replaceInstUsesWith(I, Builder.getFalse()); 5264 } 5265 } 5266 5267 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5268 // [0, UMAX], but it may still be fractional. See if it is fractional by 5269 // casting the FP value to the integer value and back, checking for equality. 5270 // Don't do this for zero, because -0.0 is not fractional. 5271 Constant *RHSInt = LHSUnsigned 5272 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5273 : ConstantExpr::getFPToSI(RHSC, IntTy); 5274 if (!RHS.isZero()) { 5275 bool Equal = LHSUnsigned 5276 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5277 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5278 if (!Equal) { 5279 // If we had a comparison against a fractional value, we have to adjust 5280 // the compare predicate and sometimes the value. RHSC is rounded towards 5281 // zero at this point. 5282 switch (Pred) { 5283 default: llvm_unreachable("Unexpected integer comparison!"); 5284 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5285 return replaceInstUsesWith(I, Builder.getTrue()); 5286 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5287 return replaceInstUsesWith(I, Builder.getFalse()); 5288 case ICmpInst::ICMP_ULE: 5289 // (float)int <= 4.4 --> int <= 4 5290 // (float)int <= -4.4 --> false 5291 if (RHS.isNegative()) 5292 return replaceInstUsesWith(I, Builder.getFalse()); 5293 break; 5294 case ICmpInst::ICMP_SLE: 5295 // (float)int <= 4.4 --> int <= 4 5296 // (float)int <= -4.4 --> int < -4 5297 if (RHS.isNegative()) 5298 Pred = ICmpInst::ICMP_SLT; 5299 break; 5300 case ICmpInst::ICMP_ULT: 5301 // (float)int < -4.4 --> false 5302 // (float)int < 4.4 --> int <= 4 5303 if (RHS.isNegative()) 5304 return replaceInstUsesWith(I, Builder.getFalse()); 5305 Pred = ICmpInst::ICMP_ULE; 5306 break; 5307 case ICmpInst::ICMP_SLT: 5308 // (float)int < -4.4 --> int < -4 5309 // (float)int < 4.4 --> int <= 4 5310 if (!RHS.isNegative()) 5311 Pred = ICmpInst::ICMP_SLE; 5312 break; 5313 case ICmpInst::ICMP_UGT: 5314 // (float)int > 4.4 --> int > 4 5315 // (float)int > -4.4 --> true 5316 if (RHS.isNegative()) 5317 return replaceInstUsesWith(I, Builder.getTrue()); 5318 break; 5319 case ICmpInst::ICMP_SGT: 5320 // (float)int > 4.4 --> int > 4 5321 // (float)int > -4.4 --> int >= -4 5322 if (RHS.isNegative()) 5323 Pred = ICmpInst::ICMP_SGE; 5324 break; 5325 case ICmpInst::ICMP_UGE: 5326 // (float)int >= -4.4 --> true 5327 // (float)int >= 4.4 --> int > 4 5328 if (RHS.isNegative()) 5329 return replaceInstUsesWith(I, Builder.getTrue()); 5330 Pred = ICmpInst::ICMP_UGT; 5331 break; 5332 case ICmpInst::ICMP_SGE: 5333 // (float)int >= -4.4 --> int >= -4 5334 // (float)int >= 4.4 --> int > 4 5335 if (!RHS.isNegative()) 5336 Pred = ICmpInst::ICMP_SGT; 5337 break; 5338 } 5339 } 5340 } 5341 5342 // Lower this FP comparison into an appropriate integer version of the 5343 // comparison. 5344 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5345 } 5346 5347 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5348 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5349 Constant *RHSC) { 5350 // When C is not 0.0 and infinities are not allowed: 5351 // (C / X) < 0.0 is a sign-bit test of X 5352 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5353 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5354 // 5355 // Proof: 5356 // Multiply (C / X) < 0.0 by X * X / C. 5357 // - X is non zero, if it is the flag 'ninf' is violated. 5358 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5359 // the predicate. C is also non zero by definition. 5360 // 5361 // Thus X * X / C is non zero and the transformation is valid. [qed] 5362 5363 FCmpInst::Predicate Pred = I.getPredicate(); 5364 5365 // Check that predicates are valid. 5366 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5367 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5368 return nullptr; 5369 5370 // Check that RHS operand is zero. 5371 if (!match(RHSC, m_AnyZeroFP())) 5372 return nullptr; 5373 5374 // Check fastmath flags ('ninf'). 5375 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5376 return nullptr; 5377 5378 // Check the properties of the dividend. It must not be zero to avoid a 5379 // division by zero (see Proof). 5380 const APFloat *C; 5381 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5382 return nullptr; 5383 5384 if (C->isZero()) 5385 return nullptr; 5386 5387 // Get swapped predicate if necessary. 5388 if (C->isNegative()) 5389 Pred = I.getSwappedPredicate(); 5390 5391 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5392 } 5393 5394 /// Optimize fabs(X) compared with zero. 5395 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { 5396 Value *X; 5397 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5398 !match(I.getOperand(1), m_PosZeroFP())) 5399 return nullptr; 5400 5401 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5402 I->setPredicate(P); 5403 I->setOperand(0, X); 5404 return I; 5405 }; 5406 5407 switch (I.getPredicate()) { 5408 case FCmpInst::FCMP_UGE: 5409 case FCmpInst::FCMP_OLT: 5410 // fabs(X) >= 0.0 --> true 5411 // fabs(X) < 0.0 --> false 5412 llvm_unreachable("fcmp should have simplified"); 5413 5414 case FCmpInst::FCMP_OGT: 5415 // fabs(X) > 0.0 --> X != 0.0 5416 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 5417 5418 case FCmpInst::FCMP_UGT: 5419 // fabs(X) u> 0.0 --> X u!= 0.0 5420 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 5421 5422 case FCmpInst::FCMP_OLE: 5423 // fabs(X) <= 0.0 --> X == 0.0 5424 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 5425 5426 case FCmpInst::FCMP_ULE: 5427 // fabs(X) u<= 0.0 --> X u== 0.0 5428 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 5429 5430 case FCmpInst::FCMP_OGE: 5431 // fabs(X) >= 0.0 --> !isnan(X) 5432 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5433 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 5434 5435 case FCmpInst::FCMP_ULT: 5436 // fabs(X) u< 0.0 --> isnan(X) 5437 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5438 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 5439 5440 case FCmpInst::FCMP_OEQ: 5441 case FCmpInst::FCMP_UEQ: 5442 case FCmpInst::FCMP_ONE: 5443 case FCmpInst::FCMP_UNE: 5444 case FCmpInst::FCMP_ORD: 5445 case FCmpInst::FCMP_UNO: 5446 // Look through the fabs() because it doesn't change anything but the sign. 5447 // fabs(X) == 0.0 --> X == 0.0, 5448 // fabs(X) != 0.0 --> X != 0.0 5449 // isnan(fabs(X)) --> isnan(X) 5450 // !isnan(fabs(X) --> !isnan(X) 5451 return replacePredAndOp0(&I, I.getPredicate(), X); 5452 5453 default: 5454 return nullptr; 5455 } 5456 } 5457 5458 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 5459 bool Changed = false; 5460 5461 /// Orders the operands of the compare so that they are listed from most 5462 /// complex to least complex. This puts constants before unary operators, 5463 /// before binary operators. 5464 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 5465 I.swapOperands(); 5466 Changed = true; 5467 } 5468 5469 const CmpInst::Predicate Pred = I.getPredicate(); 5470 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5471 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 5472 SQ.getWithInstruction(&I))) 5473 return replaceInstUsesWith(I, V); 5474 5475 // Simplify 'fcmp pred X, X' 5476 if (Op0 == Op1) { 5477 switch (Pred) { 5478 default: break; 5479 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 5480 case FCmpInst::FCMP_ULT: // True if unordered or less than 5481 case FCmpInst::FCMP_UGT: // True if unordered or greater than 5482 case FCmpInst::FCMP_UNE: // True if unordered or not equal 5483 // Canonicalize these to be 'fcmp uno %X, 0.0'. 5484 I.setPredicate(FCmpInst::FCMP_UNO); 5485 I.setOperand(1, Constant::getNullValue(Op0->getType())); 5486 return &I; 5487 5488 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 5489 case FCmpInst::FCMP_OEQ: // True if ordered and equal 5490 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 5491 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 5492 // Canonicalize these to be 'fcmp ord %X, 0.0'. 5493 I.setPredicate(FCmpInst::FCMP_ORD); 5494 I.setOperand(1, Constant::getNullValue(Op0->getType())); 5495 return &I; 5496 } 5497 } 5498 5499 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 5500 // then canonicalize the operand to 0.0. 5501 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 5502 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { 5503 I.setOperand(0, ConstantFP::getNullValue(Op0->getType())); 5504 return &I; 5505 } 5506 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { 5507 I.setOperand(1, ConstantFP::getNullValue(Op0->getType())); 5508 return &I; 5509 } 5510 } 5511 5512 // Test if the FCmpInst instruction is used exclusively by a select as 5513 // part of a minimum or maximum operation. If so, refrain from doing 5514 // any other folding. This helps out other analyses which understand 5515 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5516 // and CodeGen. And in this case, at least one of the comparison 5517 // operands has at least one user besides the compare (the select), 5518 // which would often largely negate the benefit of folding anyway. 5519 if (I.hasOneUse()) 5520 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5521 Value *A, *B; 5522 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5523 if (SPR.Flavor != SPF_UNKNOWN) 5524 return nullptr; 5525 } 5526 5527 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 5528 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 5529 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { 5530 I.setOperand(1, ConstantFP::getNullValue(Op1->getType())); 5531 return &I; 5532 } 5533 5534 // Handle fcmp with instruction LHS and constant RHS. 5535 Instruction *LHSI; 5536 Constant *RHSC; 5537 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 5538 switch (LHSI->getOpcode()) { 5539 case Instruction::PHI: 5540 // Only fold fcmp into the PHI if the phi and fcmp are in the same 5541 // block. If in the same block, we're encouraging jump threading. If 5542 // not, we are just pessimizing the code by making an i1 phi. 5543 if (LHSI->getParent() == I.getParent()) 5544 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 5545 return NV; 5546 break; 5547 case Instruction::SIToFP: 5548 case Instruction::UIToFP: 5549 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 5550 return NV; 5551 break; 5552 case Instruction::FDiv: 5553 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 5554 return NV; 5555 break; 5556 case Instruction::Load: 5557 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 5558 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 5559 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 5560 !cast<LoadInst>(LHSI)->isVolatile()) 5561 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 5562 return Res; 5563 break; 5564 } 5565 } 5566 5567 if (Instruction *R = foldFabsWithFcmpZero(I)) 5568 return R; 5569 5570 Value *X, *Y; 5571 if (match(Op0, m_FNeg(m_Value(X)))) { 5572 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 5573 if (match(Op1, m_FNeg(m_Value(Y)))) 5574 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 5575 5576 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 5577 Constant *C; 5578 if (match(Op1, m_Constant(C))) { 5579 Constant *NegC = ConstantExpr::getFNeg(C); 5580 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 5581 } 5582 } 5583 5584 if (match(Op0, m_FPExt(m_Value(X)))) { 5585 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 5586 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 5587 return new FCmpInst(Pred, X, Y, "", &I); 5588 5589 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 5590 const APFloat *C; 5591 if (match(Op1, m_APFloat(C))) { 5592 const fltSemantics &FPSem = 5593 X->getType()->getScalarType()->getFltSemantics(); 5594 bool Lossy; 5595 APFloat TruncC = *C; 5596 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 5597 5598 // Avoid lossy conversions and denormals. 5599 // Zero is a special case that's OK to convert. 5600 APFloat Fabs = TruncC; 5601 Fabs.clearSign(); 5602 if (!Lossy && 5603 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != 5604 APFloat::cmpLessThan) || Fabs.isZero())) { 5605 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 5606 return new FCmpInst(Pred, X, NewC, "", &I); 5607 } 5608 } 5609 } 5610 5611 if (I.getType()->isVectorTy()) 5612 if (Instruction *Res = foldVectorCmp(I, Builder)) 5613 return Res; 5614 5615 return Changed ? &I : nullptr; 5616 } 5617