1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/ConstantRange.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 // How many times is a select replaced by one of its operands?
36 STATISTIC(NumSel, "Number of select opts");
37 
38 
39 /// Compute Result = In1+In2, returning true if the result overflowed for this
40 /// type.
41 static bool addWithOverflow(APInt &Result, const APInt &In1,
42                             const APInt &In2, bool IsSigned = false) {
43   bool Overflow;
44   if (IsSigned)
45     Result = In1.sadd_ov(In2, Overflow);
46   else
47     Result = In1.uadd_ov(In2, Overflow);
48 
49   return Overflow;
50 }
51 
52 /// Compute Result = In1-In2, returning true if the result overflowed for this
53 /// type.
54 static bool subWithOverflow(APInt &Result, const APInt &In1,
55                             const APInt &In2, bool IsSigned = false) {
56   bool Overflow;
57   if (IsSigned)
58     Result = In1.ssub_ov(In2, Overflow);
59   else
60     Result = In1.usub_ov(In2, Overflow);
61 
62   return Overflow;
63 }
64 
65 /// Given an icmp instruction, return true if any use of this comparison is a
66 /// branch on sign bit comparison.
67 static bool hasBranchUse(ICmpInst &I) {
68   for (auto *U : I.users())
69     if (isa<BranchInst>(U))
70       return true;
71   return false;
72 }
73 
74 /// Returns true if the exploded icmp can be expressed as a signed comparison
75 /// to zero and updates the predicate accordingly.
76 /// The signedness of the comparison is preserved.
77 /// TODO: Refactor with decomposeBitTestICmp()?
78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
79   if (!ICmpInst::isSigned(Pred))
80     return false;
81 
82   if (C.isZero())
83     return ICmpInst::isRelational(Pred);
84 
85   if (C.isOne()) {
86     if (Pred == ICmpInst::ICMP_SLT) {
87       Pred = ICmpInst::ICMP_SLE;
88       return true;
89     }
90   } else if (C.isAllOnes()) {
91     if (Pred == ICmpInst::ICMP_SGT) {
92       Pred = ICmpInst::ICMP_SGE;
93       return true;
94     }
95   }
96 
97   return false;
98 }
99 
100 /// This is called when we see this pattern:
101 ///   cmp pred (load (gep GV, ...)), cmpcst
102 /// where GV is a global variable with a constant initializer. Try to simplify
103 /// this into some simple computation that does not need the load. For example
104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
105 ///
106 /// If AndCst is non-null, then the loaded value is masked with that constant
107 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
108 Instruction *
109 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
110                                                GlobalVariable *GV, CmpInst &ICI,
111                                                ConstantInt *AndCst) {
112   Constant *Init = GV->getInitializer();
113   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
114     return nullptr;
115 
116   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
117   // Don't blow up on huge arrays.
118   if (ArrayElementCount > MaxArraySizeForCombine)
119     return nullptr;
120 
121   // There are many forms of this optimization we can handle, for now, just do
122   // the simple index into a single-dimensional array.
123   //
124   // Require: GEP GV, 0, i {{, constant indices}}
125   if (GEP->getNumOperands() < 3 ||
126       !isa<ConstantInt>(GEP->getOperand(1)) ||
127       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
128       isa<Constant>(GEP->getOperand(2)))
129     return nullptr;
130 
131   // Check that indices after the variable are constants and in-range for the
132   // type they index.  Collect the indices.  This is typically for arrays of
133   // structs.
134   SmallVector<unsigned, 4> LaterIndices;
135 
136   Type *EltTy = Init->getType()->getArrayElementType();
137   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
138     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
139     if (!Idx) return nullptr;  // Variable index.
140 
141     uint64_t IdxVal = Idx->getZExtValue();
142     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
143 
144     if (StructType *STy = dyn_cast<StructType>(EltTy))
145       EltTy = STy->getElementType(IdxVal);
146     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
147       if (IdxVal >= ATy->getNumElements()) return nullptr;
148       EltTy = ATy->getElementType();
149     } else {
150       return nullptr; // Unknown type.
151     }
152 
153     LaterIndices.push_back(IdxVal);
154   }
155 
156   enum { Overdefined = -3, Undefined = -2 };
157 
158   // Variables for our state machines.
159 
160   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
161   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
162   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
163   // undefined, otherwise set to the first true element.  SecondTrueElement is
164   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
165   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
166 
167   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
168   // form "i != 47 & i != 87".  Same state transitions as for true elements.
169   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
170 
171   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
172   /// define a state machine that triggers for ranges of values that the index
173   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
174   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
175   /// index in the range (inclusive).  We use -2 for undefined here because we
176   /// use relative comparisons and don't want 0-1 to match -1.
177   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
178 
179   // MagicBitvector - This is a magic bitvector where we set a bit if the
180   // comparison is true for element 'i'.  If there are 64 elements or less in
181   // the array, this will fully represent all the comparison results.
182   uint64_t MagicBitvector = 0;
183 
184   // Scan the array and see if one of our patterns matches.
185   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
186   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
187     Constant *Elt = Init->getAggregateElement(i);
188     if (!Elt) return nullptr;
189 
190     // If this is indexing an array of structures, get the structure element.
191     if (!LaterIndices.empty())
192       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
193 
194     // If the element is masked, handle it.
195     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
196 
197     // Find out if the comparison would be true or false for the i'th element.
198     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
199                                                   CompareRHS, DL, &TLI);
200     // If the result is undef for this element, ignore it.
201     if (isa<UndefValue>(C)) {
202       // Extend range state machines to cover this element in case there is an
203       // undef in the middle of the range.
204       if (TrueRangeEnd == (int)i-1)
205         TrueRangeEnd = i;
206       if (FalseRangeEnd == (int)i-1)
207         FalseRangeEnd = i;
208       continue;
209     }
210 
211     // If we can't compute the result for any of the elements, we have to give
212     // up evaluating the entire conditional.
213     if (!isa<ConstantInt>(C)) return nullptr;
214 
215     // Otherwise, we know if the comparison is true or false for this element,
216     // update our state machines.
217     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
218 
219     // State machine for single/double/range index comparison.
220     if (IsTrueForElt) {
221       // Update the TrueElement state machine.
222       if (FirstTrueElement == Undefined)
223         FirstTrueElement = TrueRangeEnd = i;  // First true element.
224       else {
225         // Update double-compare state machine.
226         if (SecondTrueElement == Undefined)
227           SecondTrueElement = i;
228         else
229           SecondTrueElement = Overdefined;
230 
231         // Update range state machine.
232         if (TrueRangeEnd == (int)i-1)
233           TrueRangeEnd = i;
234         else
235           TrueRangeEnd = Overdefined;
236       }
237     } else {
238       // Update the FalseElement state machine.
239       if (FirstFalseElement == Undefined)
240         FirstFalseElement = FalseRangeEnd = i; // First false element.
241       else {
242         // Update double-compare state machine.
243         if (SecondFalseElement == Undefined)
244           SecondFalseElement = i;
245         else
246           SecondFalseElement = Overdefined;
247 
248         // Update range state machine.
249         if (FalseRangeEnd == (int)i-1)
250           FalseRangeEnd = i;
251         else
252           FalseRangeEnd = Overdefined;
253       }
254     }
255 
256     // If this element is in range, update our magic bitvector.
257     if (i < 64 && IsTrueForElt)
258       MagicBitvector |= 1ULL << i;
259 
260     // If all of our states become overdefined, bail out early.  Since the
261     // predicate is expensive, only check it every 8 elements.  This is only
262     // really useful for really huge arrays.
263     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
264         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
265         FalseRangeEnd == Overdefined)
266       return nullptr;
267   }
268 
269   // Now that we've scanned the entire array, emit our new comparison(s).  We
270   // order the state machines in complexity of the generated code.
271   Value *Idx = GEP->getOperand(2);
272 
273   // If the index is larger than the pointer size of the target, truncate the
274   // index down like the GEP would do implicitly.  We don't have to do this for
275   // an inbounds GEP because the index can't be out of range.
276   if (!GEP->isInBounds()) {
277     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
278     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
279     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
280       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
281   }
282 
283   // If inbounds keyword is not present, Idx * ElementSize can overflow.
284   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
285   // Then, there are two possible values for Idx to match offset 0:
286   // 0x00..00, 0x80..00.
287   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
288   // comparison is false if Idx was 0x80..00.
289   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
290   unsigned ElementSize =
291       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
292   auto MaskIdx = [&](Value* Idx){
293     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
294       Value *Mask = ConstantInt::get(Idx->getType(), -1);
295       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
296       Idx = Builder.CreateAnd(Idx, Mask);
297     }
298     return Idx;
299   };
300 
301   // If the comparison is only true for one or two elements, emit direct
302   // comparisons.
303   if (SecondTrueElement != Overdefined) {
304     Idx = MaskIdx(Idx);
305     // None true -> false.
306     if (FirstTrueElement == Undefined)
307       return replaceInstUsesWith(ICI, Builder.getFalse());
308 
309     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
310 
311     // True for one element -> 'i == 47'.
312     if (SecondTrueElement == Undefined)
313       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
314 
315     // True for two elements -> 'i == 47 | i == 72'.
316     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
317     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
318     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
319     return BinaryOperator::CreateOr(C1, C2);
320   }
321 
322   // If the comparison is only false for one or two elements, emit direct
323   // comparisons.
324   if (SecondFalseElement != Overdefined) {
325     Idx = MaskIdx(Idx);
326     // None false -> true.
327     if (FirstFalseElement == Undefined)
328       return replaceInstUsesWith(ICI, Builder.getTrue());
329 
330     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
331 
332     // False for one element -> 'i != 47'.
333     if (SecondFalseElement == Undefined)
334       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
335 
336     // False for two elements -> 'i != 47 & i != 72'.
337     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
338     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
339     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
340     return BinaryOperator::CreateAnd(C1, C2);
341   }
342 
343   // If the comparison can be replaced with a range comparison for the elements
344   // where it is true, emit the range check.
345   if (TrueRangeEnd != Overdefined) {
346     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
347     Idx = MaskIdx(Idx);
348 
349     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
350     if (FirstTrueElement) {
351       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
352       Idx = Builder.CreateAdd(Idx, Offs);
353     }
354 
355     Value *End = ConstantInt::get(Idx->getType(),
356                                   TrueRangeEnd-FirstTrueElement+1);
357     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
358   }
359 
360   // False range check.
361   if (FalseRangeEnd != Overdefined) {
362     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
363     Idx = MaskIdx(Idx);
364     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
365     if (FirstFalseElement) {
366       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
367       Idx = Builder.CreateAdd(Idx, Offs);
368     }
369 
370     Value *End = ConstantInt::get(Idx->getType(),
371                                   FalseRangeEnd-FirstFalseElement);
372     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
373   }
374 
375   // If a magic bitvector captures the entire comparison state
376   // of this load, replace it with computation that does:
377   //   ((magic_cst >> i) & 1) != 0
378   {
379     Type *Ty = nullptr;
380 
381     // Look for an appropriate type:
382     // - The type of Idx if the magic fits
383     // - The smallest fitting legal type
384     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
385       Ty = Idx->getType();
386     else
387       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
388 
389     if (Ty) {
390       Idx = MaskIdx(Idx);
391       Value *V = Builder.CreateIntCast(Idx, Ty, false);
392       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
393       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
394       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
395     }
396   }
397 
398   return nullptr;
399 }
400 
401 /// Return a value that can be used to compare the *offset* implied by a GEP to
402 /// zero. For example, if we have &A[i], we want to return 'i' for
403 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
404 /// are involved. The above expression would also be legal to codegen as
405 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
406 /// This latter form is less amenable to optimization though, and we are allowed
407 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
408 ///
409 /// If we can't emit an optimized form for this expression, this returns null.
410 ///
411 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
412                                           const DataLayout &DL) {
413   gep_type_iterator GTI = gep_type_begin(GEP);
414 
415   // Check to see if this gep only has a single variable index.  If so, and if
416   // any constant indices are a multiple of its scale, then we can compute this
417   // in terms of the scale of the variable index.  For example, if the GEP
418   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
419   // because the expression will cross zero at the same point.
420   unsigned i, e = GEP->getNumOperands();
421   int64_t Offset = 0;
422   for (i = 1; i != e; ++i, ++GTI) {
423     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
424       // Compute the aggregate offset of constant indices.
425       if (CI->isZero()) continue;
426 
427       // Handle a struct index, which adds its field offset to the pointer.
428       if (StructType *STy = GTI.getStructTypeOrNull()) {
429         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
430       } else {
431         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
432         Offset += Size*CI->getSExtValue();
433       }
434     } else {
435       // Found our variable index.
436       break;
437     }
438   }
439 
440   // If there are no variable indices, we must have a constant offset, just
441   // evaluate it the general way.
442   if (i == e) return nullptr;
443 
444   Value *VariableIdx = GEP->getOperand(i);
445   // Determine the scale factor of the variable element.  For example, this is
446   // 4 if the variable index is into an array of i32.
447   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
448 
449   // Verify that there are no other variable indices.  If so, emit the hard way.
450   for (++i, ++GTI; i != e; ++i, ++GTI) {
451     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
452     if (!CI) return nullptr;
453 
454     // Compute the aggregate offset of constant indices.
455     if (CI->isZero()) continue;
456 
457     // Handle a struct index, which adds its field offset to the pointer.
458     if (StructType *STy = GTI.getStructTypeOrNull()) {
459       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
460     } else {
461       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
462       Offset += Size*CI->getSExtValue();
463     }
464   }
465 
466   // Okay, we know we have a single variable index, which must be a
467   // pointer/array/vector index.  If there is no offset, life is simple, return
468   // the index.
469   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
470   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
471   if (Offset == 0) {
472     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
473     // we don't need to bother extending: the extension won't affect where the
474     // computation crosses zero.
475     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
476         IntPtrWidth) {
477       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
478     }
479     return VariableIdx;
480   }
481 
482   // Otherwise, there is an index.  The computation we will do will be modulo
483   // the pointer size.
484   Offset = SignExtend64(Offset, IntPtrWidth);
485   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
486 
487   // To do this transformation, any constant index must be a multiple of the
488   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
489   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
490   // multiple of the variable scale.
491   int64_t NewOffs = Offset / (int64_t)VariableScale;
492   if (Offset != NewOffs*(int64_t)VariableScale)
493     return nullptr;
494 
495   // Okay, we can do this evaluation.  Start by converting the index to intptr.
496   if (VariableIdx->getType() != IntPtrTy)
497     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
498                                             true /*Signed*/);
499   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
500   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
501 }
502 
503 /// Returns true if we can rewrite Start as a GEP with pointer Base
504 /// and some integer offset. The nodes that need to be re-written
505 /// for this transformation will be added to Explored.
506 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
507                                   const DataLayout &DL,
508                                   SetVector<Value *> &Explored) {
509   SmallVector<Value *, 16> WorkList(1, Start);
510   Explored.insert(Base);
511 
512   // The following traversal gives us an order which can be used
513   // when doing the final transformation. Since in the final
514   // transformation we create the PHI replacement instructions first,
515   // we don't have to get them in any particular order.
516   //
517   // However, for other instructions we will have to traverse the
518   // operands of an instruction first, which means that we have to
519   // do a post-order traversal.
520   while (!WorkList.empty()) {
521     SetVector<PHINode *> PHIs;
522 
523     while (!WorkList.empty()) {
524       if (Explored.size() >= 100)
525         return false;
526 
527       Value *V = WorkList.back();
528 
529       if (Explored.contains(V)) {
530         WorkList.pop_back();
531         continue;
532       }
533 
534       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
535           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
536         // We've found some value that we can't explore which is different from
537         // the base. Therefore we can't do this transformation.
538         return false;
539 
540       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
541         auto *CI = cast<CastInst>(V);
542         if (!CI->isNoopCast(DL))
543           return false;
544 
545         if (!Explored.contains(CI->getOperand(0)))
546           WorkList.push_back(CI->getOperand(0));
547       }
548 
549       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
550         // We're limiting the GEP to having one index. This will preserve
551         // the original pointer type. We could handle more cases in the
552         // future.
553         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
554             GEP->getSourceElementType() != ElemTy)
555           return false;
556 
557         if (!Explored.contains(GEP->getOperand(0)))
558           WorkList.push_back(GEP->getOperand(0));
559       }
560 
561       if (WorkList.back() == V) {
562         WorkList.pop_back();
563         // We've finished visiting this node, mark it as such.
564         Explored.insert(V);
565       }
566 
567       if (auto *PN = dyn_cast<PHINode>(V)) {
568         // We cannot transform PHIs on unsplittable basic blocks.
569         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
570           return false;
571         Explored.insert(PN);
572         PHIs.insert(PN);
573       }
574     }
575 
576     // Explore the PHI nodes further.
577     for (auto *PN : PHIs)
578       for (Value *Op : PN->incoming_values())
579         if (!Explored.contains(Op))
580           WorkList.push_back(Op);
581   }
582 
583   // Make sure that we can do this. Since we can't insert GEPs in a basic
584   // block before a PHI node, we can't easily do this transformation if
585   // we have PHI node users of transformed instructions.
586   for (Value *Val : Explored) {
587     for (Value *Use : Val->uses()) {
588 
589       auto *PHI = dyn_cast<PHINode>(Use);
590       auto *Inst = dyn_cast<Instruction>(Val);
591 
592       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
593           !Explored.contains(PHI))
594         continue;
595 
596       if (PHI->getParent() == Inst->getParent())
597         return false;
598     }
599   }
600   return true;
601 }
602 
603 // Sets the appropriate insert point on Builder where we can add
604 // a replacement Instruction for V (if that is possible).
605 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
606                               bool Before = true) {
607   if (auto *PHI = dyn_cast<PHINode>(V)) {
608     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
609     return;
610   }
611   if (auto *I = dyn_cast<Instruction>(V)) {
612     if (!Before)
613       I = &*std::next(I->getIterator());
614     Builder.SetInsertPoint(I);
615     return;
616   }
617   if (auto *A = dyn_cast<Argument>(V)) {
618     // Set the insertion point in the entry block.
619     BasicBlock &Entry = A->getParent()->getEntryBlock();
620     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
621     return;
622   }
623   // Otherwise, this is a constant and we don't need to set a new
624   // insertion point.
625   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
626 }
627 
628 /// Returns a re-written value of Start as an indexed GEP using Base as a
629 /// pointer.
630 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
631                                  const DataLayout &DL,
632                                  SetVector<Value *> &Explored) {
633   // Perform all the substitutions. This is a bit tricky because we can
634   // have cycles in our use-def chains.
635   // 1. Create the PHI nodes without any incoming values.
636   // 2. Create all the other values.
637   // 3. Add the edges for the PHI nodes.
638   // 4. Emit GEPs to get the original pointers.
639   // 5. Remove the original instructions.
640   Type *IndexType = IntegerType::get(
641       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
642 
643   DenseMap<Value *, Value *> NewInsts;
644   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
645 
646   // Create the new PHI nodes, without adding any incoming values.
647   for (Value *Val : Explored) {
648     if (Val == Base)
649       continue;
650     // Create empty phi nodes. This avoids cyclic dependencies when creating
651     // the remaining instructions.
652     if (auto *PHI = dyn_cast<PHINode>(Val))
653       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
654                                       PHI->getName() + ".idx", PHI);
655   }
656   IRBuilder<> Builder(Base->getContext());
657 
658   // Create all the other instructions.
659   for (Value *Val : Explored) {
660 
661     if (NewInsts.find(Val) != NewInsts.end())
662       continue;
663 
664     if (auto *CI = dyn_cast<CastInst>(Val)) {
665       // Don't get rid of the intermediate variable here; the store can grow
666       // the map which will invalidate the reference to the input value.
667       Value *V = NewInsts[CI->getOperand(0)];
668       NewInsts[CI] = V;
669       continue;
670     }
671     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
672       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
673                                                   : GEP->getOperand(1);
674       setInsertionPoint(Builder, GEP);
675       // Indices might need to be sign extended. GEPs will magically do
676       // this, but we need to do it ourselves here.
677       if (Index->getType()->getScalarSizeInBits() !=
678           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
679         Index = Builder.CreateSExtOrTrunc(
680             Index, NewInsts[GEP->getOperand(0)]->getType(),
681             GEP->getOperand(0)->getName() + ".sext");
682       }
683 
684       auto *Op = NewInsts[GEP->getOperand(0)];
685       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
686         NewInsts[GEP] = Index;
687       else
688         NewInsts[GEP] = Builder.CreateNSWAdd(
689             Op, Index, GEP->getOperand(0)->getName() + ".add");
690       continue;
691     }
692     if (isa<PHINode>(Val))
693       continue;
694 
695     llvm_unreachable("Unexpected instruction type");
696   }
697 
698   // Add the incoming values to the PHI nodes.
699   for (Value *Val : Explored) {
700     if (Val == Base)
701       continue;
702     // All the instructions have been created, we can now add edges to the
703     // phi nodes.
704     if (auto *PHI = dyn_cast<PHINode>(Val)) {
705       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
706       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
707         Value *NewIncoming = PHI->getIncomingValue(I);
708 
709         if (NewInsts.find(NewIncoming) != NewInsts.end())
710           NewIncoming = NewInsts[NewIncoming];
711 
712         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
713       }
714     }
715   }
716 
717   PointerType *PtrTy =
718       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
719   for (Value *Val : Explored) {
720     if (Val == Base)
721       continue;
722 
723     // Depending on the type, for external users we have to emit
724     // a GEP or a GEP + ptrtoint.
725     setInsertionPoint(Builder, Val, false);
726 
727     // Cast base to the expected type.
728     Value *NewVal = Builder.CreateBitOrPointerCast(
729         Base, PtrTy, Start->getName() + "to.ptr");
730     NewVal = Builder.CreateInBoundsGEP(
731         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
732     NewVal = Builder.CreateBitOrPointerCast(
733         NewVal, Val->getType(), Val->getName() + ".conv");
734     Val->replaceAllUsesWith(NewVal);
735   }
736 
737   return NewInsts[Start];
738 }
739 
740 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
741 /// the input Value as a constant indexed GEP. Returns a pair containing
742 /// the GEPs Pointer and Index.
743 static std::pair<Value *, Value *>
744 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
745   Type *IndexType = IntegerType::get(V->getContext(),
746                                      DL.getIndexTypeSizeInBits(V->getType()));
747 
748   Constant *Index = ConstantInt::getNullValue(IndexType);
749   while (true) {
750     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
751       // We accept only inbouds GEPs here to exclude the possibility of
752       // overflow.
753       if (!GEP->isInBounds())
754         break;
755       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
756           GEP->getSourceElementType() == ElemTy) {
757         V = GEP->getOperand(0);
758         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
759         Index = ConstantExpr::getAdd(
760             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
761         continue;
762       }
763       break;
764     }
765     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
766       if (!CI->isNoopCast(DL))
767         break;
768       V = CI->getOperand(0);
769       continue;
770     }
771     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
772       if (!CI->isNoopCast(DL))
773         break;
774       V = CI->getOperand(0);
775       continue;
776     }
777     break;
778   }
779   return {V, Index};
780 }
781 
782 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
783 /// We can look through PHIs, GEPs and casts in order to determine a common base
784 /// between GEPLHS and RHS.
785 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
786                                               ICmpInst::Predicate Cond,
787                                               const DataLayout &DL) {
788   // FIXME: Support vector of pointers.
789   if (GEPLHS->getType()->isVectorTy())
790     return nullptr;
791 
792   if (!GEPLHS->hasAllConstantIndices())
793     return nullptr;
794 
795   Type *ElemTy = GEPLHS->getSourceElementType();
796   Value *PtrBase, *Index;
797   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
798 
799   // The set of nodes that will take part in this transformation.
800   SetVector<Value *> Nodes;
801 
802   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
803     return nullptr;
804 
805   // We know we can re-write this as
806   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
807   // Since we've only looked through inbouds GEPs we know that we
808   // can't have overflow on either side. We can therefore re-write
809   // this as:
810   //   OFFSET1 cmp OFFSET2
811   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
812 
813   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
814   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
815   // offset. Since Index is the offset of LHS to the base pointer, we will now
816   // compare the offsets instead of comparing the pointers.
817   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
818 }
819 
820 /// Fold comparisons between a GEP instruction and something else. At this point
821 /// we know that the GEP is on the LHS of the comparison.
822 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
823                                            ICmpInst::Predicate Cond,
824                                            Instruction &I) {
825   // Don't transform signed compares of GEPs into index compares. Even if the
826   // GEP is inbounds, the final add of the base pointer can have signed overflow
827   // and would change the result of the icmp.
828   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
829   // the maximum signed value for the pointer type.
830   if (ICmpInst::isSigned(Cond))
831     return nullptr;
832 
833   // Look through bitcasts and addrspacecasts. We do not however want to remove
834   // 0 GEPs.
835   if (!isa<GetElementPtrInst>(RHS))
836     RHS = RHS->stripPointerCasts();
837 
838   Value *PtrBase = GEPLHS->getOperand(0);
839   // FIXME: Support vector pointer GEPs.
840   if (PtrBase == RHS && GEPLHS->isInBounds() &&
841       !GEPLHS->getType()->isVectorTy()) {
842     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
843     // This transformation (ignoring the base and scales) is valid because we
844     // know pointers can't overflow since the gep is inbounds.  See if we can
845     // output an optimized form.
846     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
847 
848     // If not, synthesize the offset the hard way.
849     if (!Offset)
850       Offset = EmitGEPOffset(GEPLHS);
851     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
852                         Constant::getNullValue(Offset->getType()));
853   }
854 
855   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
856       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
857       !NullPointerIsDefined(I.getFunction(),
858                             RHS->getType()->getPointerAddressSpace())) {
859     // For most address spaces, an allocation can't be placed at null, but null
860     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
861     // the only valid inbounds address derived from null, is null itself.
862     // Thus, we have four cases to consider:
863     // 1) Base == nullptr, Offset == 0 -> inbounds, null
864     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
865     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
866     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
867     //
868     // (Note if we're indexing a type of size 0, that simply collapses into one
869     //  of the buckets above.)
870     //
871     // In general, we're allowed to make values less poison (i.e. remove
872     //   sources of full UB), so in this case, we just select between the two
873     //   non-poison cases (1 and 4 above).
874     //
875     // For vectors, we apply the same reasoning on a per-lane basis.
876     auto *Base = GEPLHS->getPointerOperand();
877     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
878       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
879       Base = Builder.CreateVectorSplat(EC, Base);
880     }
881     return new ICmpInst(Cond, Base,
882                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
883                             cast<Constant>(RHS), Base->getType()));
884   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
885     // If the base pointers are different, but the indices are the same, just
886     // compare the base pointer.
887     if (PtrBase != GEPRHS->getOperand(0)) {
888       bool IndicesTheSame =
889           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
890           GEPLHS->getType() == GEPRHS->getType() &&
891           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
892       if (IndicesTheSame)
893         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
894           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
895             IndicesTheSame = false;
896             break;
897           }
898 
899       // If all indices are the same, just compare the base pointers.
900       Type *BaseType = GEPLHS->getOperand(0)->getType();
901       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
902         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
903 
904       // If we're comparing GEPs with two base pointers that only differ in type
905       // and both GEPs have only constant indices or just one use, then fold
906       // the compare with the adjusted indices.
907       // FIXME: Support vector of pointers.
908       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
909           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
910           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
911           PtrBase->stripPointerCasts() ==
912               GEPRHS->getOperand(0)->stripPointerCasts() &&
913           !GEPLHS->getType()->isVectorTy()) {
914         Value *LOffset = EmitGEPOffset(GEPLHS);
915         Value *ROffset = EmitGEPOffset(GEPRHS);
916 
917         // If we looked through an addrspacecast between different sized address
918         // spaces, the LHS and RHS pointers are different sized
919         // integers. Truncate to the smaller one.
920         Type *LHSIndexTy = LOffset->getType();
921         Type *RHSIndexTy = ROffset->getType();
922         if (LHSIndexTy != RHSIndexTy) {
923           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
924               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
925             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
926           } else
927             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
928         }
929 
930         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
931                                         LOffset, ROffset);
932         return replaceInstUsesWith(I, Cmp);
933       }
934 
935       // Otherwise, the base pointers are different and the indices are
936       // different. Try convert this to an indexed compare by looking through
937       // PHIs/casts.
938       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
939     }
940 
941     // If one of the GEPs has all zero indices, recurse.
942     // FIXME: Handle vector of pointers.
943     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
944       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
945                          ICmpInst::getSwappedPredicate(Cond), I);
946 
947     // If the other GEP has all zero indices, recurse.
948     // FIXME: Handle vector of pointers.
949     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
950       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
951 
952     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
953     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
954       // If the GEPs only differ by one index, compare it.
955       unsigned NumDifferences = 0;  // Keep track of # differences.
956       unsigned DiffOperand = 0;     // The operand that differs.
957       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
958         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
959           Type *LHSType = GEPLHS->getOperand(i)->getType();
960           Type *RHSType = GEPRHS->getOperand(i)->getType();
961           // FIXME: Better support for vector of pointers.
962           if (LHSType->getPrimitiveSizeInBits() !=
963                    RHSType->getPrimitiveSizeInBits() ||
964               (GEPLHS->getType()->isVectorTy() &&
965                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
966             // Irreconcilable differences.
967             NumDifferences = 2;
968             break;
969           }
970 
971           if (NumDifferences++) break;
972           DiffOperand = i;
973         }
974 
975       if (NumDifferences == 0)   // SAME GEP?
976         return replaceInstUsesWith(I, // No comparison is needed here.
977           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
978 
979       else if (NumDifferences == 1 && GEPsInBounds) {
980         Value *LHSV = GEPLHS->getOperand(DiffOperand);
981         Value *RHSV = GEPRHS->getOperand(DiffOperand);
982         // Make sure we do a signed comparison here.
983         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
984       }
985     }
986 
987     // Only lower this if the icmp is the only user of the GEP or if we expect
988     // the result to fold to a constant!
989     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
990         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
991       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
992       Value *L = EmitGEPOffset(GEPLHS);
993       Value *R = EmitGEPOffset(GEPRHS);
994       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
995     }
996   }
997 
998   // Try convert this to an indexed compare by looking through PHIs/casts as a
999   // last resort.
1000   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1001 }
1002 
1003 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1004                                              const AllocaInst *Alloca,
1005                                              const Value *Other) {
1006   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1007 
1008   // It would be tempting to fold away comparisons between allocas and any
1009   // pointer not based on that alloca (e.g. an argument). However, even
1010   // though such pointers cannot alias, they can still compare equal.
1011   //
1012   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1013   // doesn't escape we can argue that it's impossible to guess its value, and we
1014   // can therefore act as if any such guesses are wrong.
1015   //
1016   // The code below checks that the alloca doesn't escape, and that it's only
1017   // used in a comparison once (the current instruction). The
1018   // single-comparison-use condition ensures that we're trivially folding all
1019   // comparisons against the alloca consistently, and avoids the risk of
1020   // erroneously folding a comparison of the pointer with itself.
1021 
1022   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1023 
1024   SmallVector<const Use *, 32> Worklist;
1025   for (const Use &U : Alloca->uses()) {
1026     if (Worklist.size() >= MaxIter)
1027       return nullptr;
1028     Worklist.push_back(&U);
1029   }
1030 
1031   unsigned NumCmps = 0;
1032   while (!Worklist.empty()) {
1033     assert(Worklist.size() <= MaxIter);
1034     const Use *U = Worklist.pop_back_val();
1035     const Value *V = U->getUser();
1036     --MaxIter;
1037 
1038     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1039         isa<SelectInst>(V)) {
1040       // Track the uses.
1041     } else if (isa<LoadInst>(V)) {
1042       // Loading from the pointer doesn't escape it.
1043       continue;
1044     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1045       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1046       if (SI->getValueOperand() == U->get())
1047         return nullptr;
1048       continue;
1049     } else if (isa<ICmpInst>(V)) {
1050       if (NumCmps++)
1051         return nullptr; // Found more than one cmp.
1052       continue;
1053     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1054       switch (Intrin->getIntrinsicID()) {
1055         // These intrinsics don't escape or compare the pointer. Memset is safe
1056         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1057         // we don't allow stores, so src cannot point to V.
1058         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1059         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1060           continue;
1061         default:
1062           return nullptr;
1063       }
1064     } else {
1065       return nullptr;
1066     }
1067     for (const Use &U : V->uses()) {
1068       if (Worklist.size() >= MaxIter)
1069         return nullptr;
1070       Worklist.push_back(&U);
1071     }
1072   }
1073 
1074   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1075   return replaceInstUsesWith(
1076       ICI,
1077       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1078 }
1079 
1080 /// Fold "icmp pred (X+C), X".
1081 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1082                                                   ICmpInst::Predicate Pred) {
1083   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1084   // so the values can never be equal.  Similarly for all other "or equals"
1085   // operators.
1086   assert(!!C && "C should not be zero!");
1087 
1088   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1089   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1090   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1091   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1092     Constant *R = ConstantInt::get(X->getType(),
1093                                    APInt::getMaxValue(C.getBitWidth()) - C);
1094     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1095   }
1096 
1097   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1098   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1099   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1100   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1101     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1102                         ConstantInt::get(X->getType(), -C));
1103 
1104   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1105 
1106   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1107   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1108   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1109   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1110   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1111   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1112   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1113     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1114                         ConstantInt::get(X->getType(), SMax - C));
1115 
1116   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1117   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1118   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1119   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1120   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1121   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1122 
1123   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1124   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1125                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1126 }
1127 
1128 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1129 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1130 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1131 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1132                                                      const APInt &AP1,
1133                                                      const APInt &AP2) {
1134   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1135 
1136   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1137     if (I.getPredicate() == I.ICMP_NE)
1138       Pred = CmpInst::getInversePredicate(Pred);
1139     return new ICmpInst(Pred, LHS, RHS);
1140   };
1141 
1142   // Don't bother doing any work for cases which InstSimplify handles.
1143   if (AP2.isZero())
1144     return nullptr;
1145 
1146   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1147   if (IsAShr) {
1148     if (AP2.isAllOnes())
1149       return nullptr;
1150     if (AP2.isNegative() != AP1.isNegative())
1151       return nullptr;
1152     if (AP2.sgt(AP1))
1153       return nullptr;
1154   }
1155 
1156   if (!AP1)
1157     // 'A' must be large enough to shift out the highest set bit.
1158     return getICmp(I.ICMP_UGT, A,
1159                    ConstantInt::get(A->getType(), AP2.logBase2()));
1160 
1161   if (AP1 == AP2)
1162     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1163 
1164   int Shift;
1165   if (IsAShr && AP1.isNegative())
1166     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1167   else
1168     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1169 
1170   if (Shift > 0) {
1171     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1172       // There are multiple solutions if we are comparing against -1 and the LHS
1173       // of the ashr is not a power of two.
1174       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1175         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1176       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1177     } else if (AP1 == AP2.lshr(Shift)) {
1178       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1179     }
1180   }
1181 
1182   // Shifting const2 will never be equal to const1.
1183   // FIXME: This should always be handled by InstSimplify?
1184   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1185   return replaceInstUsesWith(I, TorF);
1186 }
1187 
1188 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1189 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1190 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1191                                                      const APInt &AP1,
1192                                                      const APInt &AP2) {
1193   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1194 
1195   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1196     if (I.getPredicate() == I.ICMP_NE)
1197       Pred = CmpInst::getInversePredicate(Pred);
1198     return new ICmpInst(Pred, LHS, RHS);
1199   };
1200 
1201   // Don't bother doing any work for cases which InstSimplify handles.
1202   if (AP2.isZero())
1203     return nullptr;
1204 
1205   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1206 
1207   if (!AP1 && AP2TrailingZeros != 0)
1208     return getICmp(
1209         I.ICMP_UGE, A,
1210         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1211 
1212   if (AP1 == AP2)
1213     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1214 
1215   // Get the distance between the lowest bits that are set.
1216   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1217 
1218   if (Shift > 0 && AP2.shl(Shift) == AP1)
1219     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1220 
1221   // Shifting const2 will never be equal to const1.
1222   // FIXME: This should always be handled by InstSimplify?
1223   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1224   return replaceInstUsesWith(I, TorF);
1225 }
1226 
1227 /// The caller has matched a pattern of the form:
1228 ///   I = icmp ugt (add (add A, B), CI2), CI1
1229 /// If this is of the form:
1230 ///   sum = a + b
1231 ///   if (sum+128 >u 255)
1232 /// Then replace it with llvm.sadd.with.overflow.i8.
1233 ///
1234 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1235                                           ConstantInt *CI2, ConstantInt *CI1,
1236                                           InstCombinerImpl &IC) {
1237   // The transformation we're trying to do here is to transform this into an
1238   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1239   // with a narrower add, and discard the add-with-constant that is part of the
1240   // range check (if we can't eliminate it, this isn't profitable).
1241 
1242   // In order to eliminate the add-with-constant, the compare can be its only
1243   // use.
1244   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1245   if (!AddWithCst->hasOneUse())
1246     return nullptr;
1247 
1248   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1249   if (!CI2->getValue().isPowerOf2())
1250     return nullptr;
1251   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1252   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1253     return nullptr;
1254 
1255   // The width of the new add formed is 1 more than the bias.
1256   ++NewWidth;
1257 
1258   // Check to see that CI1 is an all-ones value with NewWidth bits.
1259   if (CI1->getBitWidth() == NewWidth ||
1260       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1261     return nullptr;
1262 
1263   // This is only really a signed overflow check if the inputs have been
1264   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1265   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1266   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1267       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1268     return nullptr;
1269 
1270   // In order to replace the original add with a narrower
1271   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1272   // and truncates that discard the high bits of the add.  Verify that this is
1273   // the case.
1274   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1275   for (User *U : OrigAdd->users()) {
1276     if (U == AddWithCst)
1277       continue;
1278 
1279     // Only accept truncates for now.  We would really like a nice recursive
1280     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1281     // chain to see which bits of a value are actually demanded.  If the
1282     // original add had another add which was then immediately truncated, we
1283     // could still do the transformation.
1284     TruncInst *TI = dyn_cast<TruncInst>(U);
1285     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1286       return nullptr;
1287   }
1288 
1289   // If the pattern matches, truncate the inputs to the narrower type and
1290   // use the sadd_with_overflow intrinsic to efficiently compute both the
1291   // result and the overflow bit.
1292   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1293   Function *F = Intrinsic::getDeclaration(
1294       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1295 
1296   InstCombiner::BuilderTy &Builder = IC.Builder;
1297 
1298   // Put the new code above the original add, in case there are any uses of the
1299   // add between the add and the compare.
1300   Builder.SetInsertPoint(OrigAdd);
1301 
1302   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1303   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1304   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1305   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1306   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1307 
1308   // The inner add was the result of the narrow add, zero extended to the
1309   // wider type.  Replace it with the result computed by the intrinsic.
1310   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1311   IC.eraseInstFromFunction(*OrigAdd);
1312 
1313   // The original icmp gets replaced with the overflow value.
1314   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1315 }
1316 
1317 /// If we have:
1318 ///   icmp eq/ne (urem/srem %x, %y), 0
1319 /// iff %y is a power-of-two, we can replace this with a bit test:
1320 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1321 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1322   // This fold is only valid for equality predicates.
1323   if (!I.isEquality())
1324     return nullptr;
1325   ICmpInst::Predicate Pred;
1326   Value *X, *Y, *Zero;
1327   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1328                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1329     return nullptr;
1330   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1331     return nullptr;
1332   // This may increase instruction count, we don't enforce that Y is a constant.
1333   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1334   Value *Masked = Builder.CreateAnd(X, Mask);
1335   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1336 }
1337 
1338 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1339 /// by one-less-than-bitwidth into a sign test on the original value.
1340 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1341   Instruction *Val;
1342   ICmpInst::Predicate Pred;
1343   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1344     return nullptr;
1345 
1346   Value *X;
1347   Type *XTy;
1348 
1349   Constant *C;
1350   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1351     XTy = X->getType();
1352     unsigned XBitWidth = XTy->getScalarSizeInBits();
1353     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1354                                      APInt(XBitWidth, XBitWidth - 1))))
1355       return nullptr;
1356   } else if (isa<BinaryOperator>(Val) &&
1357              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1358                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1359                   /*AnalyzeForSignBitExtraction=*/true))) {
1360     XTy = X->getType();
1361   } else
1362     return nullptr;
1363 
1364   return ICmpInst::Create(Instruction::ICmp,
1365                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1366                                                     : ICmpInst::ICMP_SLT,
1367                           X, ConstantInt::getNullValue(XTy));
1368 }
1369 
1370 // Handle  icmp pred X, 0
1371 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1372   CmpInst::Predicate Pred = Cmp.getPredicate();
1373   if (!match(Cmp.getOperand(1), m_Zero()))
1374     return nullptr;
1375 
1376   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1377   if (Pred == ICmpInst::ICMP_SGT) {
1378     Value *A, *B;
1379     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1380     if (SPR.Flavor == SPF_SMIN) {
1381       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1382         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1383       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1384         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1385     }
1386   }
1387 
1388   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1389     return New;
1390 
1391   // Given:
1392   //   icmp eq/ne (urem %x, %y), 0
1393   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1394   //   icmp eq/ne %x, 0
1395   Value *X, *Y;
1396   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1397       ICmpInst::isEquality(Pred)) {
1398     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1399     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1400     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1401       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1402   }
1403 
1404   return nullptr;
1405 }
1406 
1407 /// Fold icmp Pred X, C.
1408 /// TODO: This code structure does not make sense. The saturating add fold
1409 /// should be moved to some other helper and extended as noted below (it is also
1410 /// possible that code has been made unnecessary - do we canonicalize IR to
1411 /// overflow/saturating intrinsics or not?).
1412 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1413   // Match the following pattern, which is a common idiom when writing
1414   // overflow-safe integer arithmetic functions. The source performs an addition
1415   // in wider type and explicitly checks for overflow using comparisons against
1416   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1417   //
1418   // TODO: This could probably be generalized to handle other overflow-safe
1419   // operations if we worked out the formulas to compute the appropriate magic
1420   // constants.
1421   //
1422   // sum = a + b
1423   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1424   CmpInst::Predicate Pred = Cmp.getPredicate();
1425   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1426   Value *A, *B;
1427   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1428   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1429       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1430     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1431       return Res;
1432 
1433   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1434   Constant *C = dyn_cast<Constant>(Op1);
1435   if (!C || C->canTrap())
1436     return nullptr;
1437 
1438   if (auto *Phi = dyn_cast<PHINode>(Op0))
1439     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1440       Type *Ty = Cmp.getType();
1441       Builder.SetInsertPoint(Phi);
1442       PHINode *NewPhi =
1443           Builder.CreatePHI(Ty, Phi->getNumOperands());
1444       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1445         auto *Input =
1446             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1447         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1448         NewPhi->addIncoming(BoolInput, Predecessor);
1449       }
1450       NewPhi->takeName(&Cmp);
1451       return replaceInstUsesWith(Cmp, NewPhi);
1452     }
1453 
1454   return nullptr;
1455 }
1456 
1457 /// Canonicalize icmp instructions based on dominating conditions.
1458 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1459   // This is a cheap/incomplete check for dominance - just match a single
1460   // predecessor with a conditional branch.
1461   BasicBlock *CmpBB = Cmp.getParent();
1462   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463   if (!DomBB)
1464     return nullptr;
1465 
1466   Value *DomCond;
1467   BasicBlock *TrueBB, *FalseBB;
1468   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1469     return nullptr;
1470 
1471   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1472          "Predecessor block does not point to successor?");
1473 
1474   // The branch should get simplified. Don't bother simplifying this condition.
1475   if (TrueBB == FalseBB)
1476     return nullptr;
1477 
1478   // Try to simplify this compare to T/F based on the dominating condition.
1479   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1480   if (Imp)
1481     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1482 
1483   CmpInst::Predicate Pred = Cmp.getPredicate();
1484   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1485   ICmpInst::Predicate DomPred;
1486   const APInt *C, *DomC;
1487   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1488       match(Y, m_APInt(C))) {
1489     // We have 2 compares of a variable with constants. Calculate the constant
1490     // ranges of those compares to see if we can transform the 2nd compare:
1491     // DomBB:
1492     //   DomCond = icmp DomPred X, DomC
1493     //   br DomCond, CmpBB, FalseBB
1494     // CmpBB:
1495     //   Cmp = icmp Pred X, C
1496     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1497     ConstantRange DominatingCR =
1498         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1499                           : ConstantRange::makeExactICmpRegion(
1500                                 CmpInst::getInversePredicate(DomPred), *DomC);
1501     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1502     ConstantRange Difference = DominatingCR.difference(CR);
1503     if (Intersection.isEmptySet())
1504       return replaceInstUsesWith(Cmp, Builder.getFalse());
1505     if (Difference.isEmptySet())
1506       return replaceInstUsesWith(Cmp, Builder.getTrue());
1507 
1508     // Canonicalizing a sign bit comparison that gets used in a branch,
1509     // pessimizes codegen by generating branch on zero instruction instead
1510     // of a test and branch. So we avoid canonicalizing in such situations
1511     // because test and branch instruction has better branch displacement
1512     // than compare and branch instruction.
1513     bool UnusedBit;
1514     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1515     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1516       return nullptr;
1517 
1518     // Avoid an infinite loop with min/max canonicalization.
1519     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1520     if (Cmp.hasOneUse() &&
1521         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1522       return nullptr;
1523 
1524     if (const APInt *EqC = Intersection.getSingleElement())
1525       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1526     if (const APInt *NeC = Difference.getSingleElement())
1527       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1528   }
1529 
1530   return nullptr;
1531 }
1532 
1533 /// Fold icmp (trunc X, Y), C.
1534 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1535                                                      TruncInst *Trunc,
1536                                                      const APInt &C) {
1537   ICmpInst::Predicate Pred = Cmp.getPredicate();
1538   Value *X = Trunc->getOperand(0);
1539   if (C.isOne() && C.getBitWidth() > 1) {
1540     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1541     Value *V = nullptr;
1542     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1543       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1544                           ConstantInt::get(V->getType(), 1));
1545   }
1546 
1547   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1548            SrcBits = X->getType()->getScalarSizeInBits();
1549   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1550     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1551     // of the high bits truncated out of x are known.
1552     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1553 
1554     // If all the high bits are known, we can do this xform.
1555     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1556       // Pull in the high bits from known-ones set.
1557       APInt NewRHS = C.zext(SrcBits);
1558       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1559       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1560     }
1561   }
1562 
1563   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1564   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1565   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1566   Value *ShOp;
1567   const APInt *ShAmtC;
1568   bool TrueIfSigned;
1569   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1570       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1571       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1572     return TrueIfSigned
1573                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1574                               ConstantInt::getNullValue(X->getType()))
1575                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1576                               ConstantInt::getAllOnesValue(X->getType()));
1577   }
1578 
1579   return nullptr;
1580 }
1581 
1582 /// Fold icmp (xor X, Y), C.
1583 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1584                                                    BinaryOperator *Xor,
1585                                                    const APInt &C) {
1586   Value *X = Xor->getOperand(0);
1587   Value *Y = Xor->getOperand(1);
1588   const APInt *XorC;
1589   if (!match(Y, m_APInt(XorC)))
1590     return nullptr;
1591 
1592   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1593   // fold the xor.
1594   ICmpInst::Predicate Pred = Cmp.getPredicate();
1595   bool TrueIfSigned = false;
1596   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1597 
1598     // If the sign bit of the XorCst is not set, there is no change to
1599     // the operation, just stop using the Xor.
1600     if (!XorC->isNegative())
1601       return replaceOperand(Cmp, 0, X);
1602 
1603     // Emit the opposite comparison.
1604     if (TrueIfSigned)
1605       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1606                           ConstantInt::getAllOnesValue(X->getType()));
1607     else
1608       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1609                           ConstantInt::getNullValue(X->getType()));
1610   }
1611 
1612   if (Xor->hasOneUse()) {
1613     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1614     if (!Cmp.isEquality() && XorC->isSignMask()) {
1615       Pred = Cmp.getFlippedSignednessPredicate();
1616       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1617     }
1618 
1619     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1620     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1621       Pred = Cmp.getFlippedSignednessPredicate();
1622       Pred = Cmp.getSwappedPredicate(Pred);
1623       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1624     }
1625   }
1626 
1627   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1628   if (Pred == ICmpInst::ICMP_UGT) {
1629     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1630     if (*XorC == ~C && (C + 1).isPowerOf2())
1631       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1632     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1633     if (*XorC == C && (C + 1).isPowerOf2())
1634       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1635   }
1636   if (Pred == ICmpInst::ICMP_ULT) {
1637     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1638     if (*XorC == -C && C.isPowerOf2())
1639       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1640                           ConstantInt::get(X->getType(), ~C));
1641     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1642     if (*XorC == C && (-C).isPowerOf2())
1643       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1644                           ConstantInt::get(X->getType(), ~C));
1645   }
1646   return nullptr;
1647 }
1648 
1649 /// Fold icmp (and (sh X, Y), C2), C1.
1650 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1651                                                 BinaryOperator *And,
1652                                                 const APInt &C1,
1653                                                 const APInt &C2) {
1654   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1655   if (!Shift || !Shift->isShift())
1656     return nullptr;
1657 
1658   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1659   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1660   // code produced by the clang front-end, for bitfield access.
1661   // This seemingly simple opportunity to fold away a shift turns out to be
1662   // rather complicated. See PR17827 for details.
1663   unsigned ShiftOpcode = Shift->getOpcode();
1664   bool IsShl = ShiftOpcode == Instruction::Shl;
1665   const APInt *C3;
1666   if (match(Shift->getOperand(1), m_APInt(C3))) {
1667     APInt NewAndCst, NewCmpCst;
1668     bool AnyCmpCstBitsShiftedOut;
1669     if (ShiftOpcode == Instruction::Shl) {
1670       // For a left shift, we can fold if the comparison is not signed. We can
1671       // also fold a signed comparison if the mask value and comparison value
1672       // are not negative. These constraints may not be obvious, but we can
1673       // prove that they are correct using an SMT solver.
1674       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1675         return nullptr;
1676 
1677       NewCmpCst = C1.lshr(*C3);
1678       NewAndCst = C2.lshr(*C3);
1679       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1680     } else if (ShiftOpcode == Instruction::LShr) {
1681       // For a logical right shift, we can fold if the comparison is not signed.
1682       // We can also fold a signed comparison if the shifted mask value and the
1683       // shifted comparison value are not negative. These constraints may not be
1684       // obvious, but we can prove that they are correct using an SMT solver.
1685       NewCmpCst = C1.shl(*C3);
1686       NewAndCst = C2.shl(*C3);
1687       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1688       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1689         return nullptr;
1690     } else {
1691       // For an arithmetic shift, check that both constants don't use (in a
1692       // signed sense) the top bits being shifted out.
1693       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1694       NewCmpCst = C1.shl(*C3);
1695       NewAndCst = C2.shl(*C3);
1696       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1697       if (NewAndCst.ashr(*C3) != C2)
1698         return nullptr;
1699     }
1700 
1701     if (AnyCmpCstBitsShiftedOut) {
1702       // If we shifted bits out, the fold is not going to work out. As a
1703       // special case, check to see if this means that the result is always
1704       // true or false now.
1705       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1706         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1707       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1708         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1709     } else {
1710       Value *NewAnd = Builder.CreateAnd(
1711           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1712       return new ICmpInst(Cmp.getPredicate(),
1713           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1714     }
1715   }
1716 
1717   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1718   // preferable because it allows the C2 << Y expression to be hoisted out of a
1719   // loop if Y is invariant and X is not.
1720   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1721       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1722     // Compute C2 << Y.
1723     Value *NewShift =
1724         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1725               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1726 
1727     // Compute X & (C2 << Y).
1728     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1729     return replaceOperand(Cmp, 0, NewAnd);
1730   }
1731 
1732   return nullptr;
1733 }
1734 
1735 /// Fold icmp (and X, C2), C1.
1736 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1737                                                      BinaryOperator *And,
1738                                                      const APInt &C1) {
1739   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1740 
1741   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1742   // TODO: We canonicalize to the longer form for scalars because we have
1743   // better analysis/folds for icmp, and codegen may be better with icmp.
1744   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1745       match(And->getOperand(1), m_One()))
1746     return new TruncInst(And->getOperand(0), Cmp.getType());
1747 
1748   const APInt *C2;
1749   Value *X;
1750   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1751     return nullptr;
1752 
1753   // Don't perform the following transforms if the AND has multiple uses
1754   if (!And->hasOneUse())
1755     return nullptr;
1756 
1757   if (Cmp.isEquality() && C1.isZero()) {
1758     // Restrict this fold to single-use 'and' (PR10267).
1759     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1760     if (C2->isSignMask()) {
1761       Constant *Zero = Constant::getNullValue(X->getType());
1762       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1763       return new ICmpInst(NewPred, X, Zero);
1764     }
1765 
1766     // Restrict this fold only for single-use 'and' (PR10267).
1767     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1768     if ((~(*C2) + 1).isPowerOf2()) {
1769       Constant *NegBOC =
1770           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1771       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1772       return new ICmpInst(NewPred, X, NegBOC);
1773     }
1774   }
1775 
1776   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1777   // the input width without changing the value produced, eliminate the cast:
1778   //
1779   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1780   //
1781   // We can do this transformation if the constants do not have their sign bits
1782   // set or if it is an equality comparison. Extending a relational comparison
1783   // when we're checking the sign bit would not work.
1784   Value *W;
1785   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1786       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1787     // TODO: Is this a good transform for vectors? Wider types may reduce
1788     // throughput. Should this transform be limited (even for scalars) by using
1789     // shouldChangeType()?
1790     if (!Cmp.getType()->isVectorTy()) {
1791       Type *WideType = W->getType();
1792       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1793       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1794       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1795       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1796       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1797     }
1798   }
1799 
1800   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1801     return I;
1802 
1803   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1804   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1805   //
1806   // iff pred isn't signed
1807   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1808       match(And->getOperand(1), m_One())) {
1809     Constant *One = cast<Constant>(And->getOperand(1));
1810     Value *Or = And->getOperand(0);
1811     Value *A, *B, *LShr;
1812     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1813         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1814       unsigned UsesRemoved = 0;
1815       if (And->hasOneUse())
1816         ++UsesRemoved;
1817       if (Or->hasOneUse())
1818         ++UsesRemoved;
1819       if (LShr->hasOneUse())
1820         ++UsesRemoved;
1821 
1822       // Compute A & ((1 << B) | 1)
1823       Value *NewOr = nullptr;
1824       if (auto *C = dyn_cast<Constant>(B)) {
1825         if (UsesRemoved >= 1)
1826           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1827       } else {
1828         if (UsesRemoved >= 3)
1829           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1830                                                      /*HasNUW=*/true),
1831                                    One, Or->getName());
1832       }
1833       if (NewOr) {
1834         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1835         return replaceOperand(Cmp, 0, NewAnd);
1836       }
1837     }
1838   }
1839 
1840   return nullptr;
1841 }
1842 
1843 /// Fold icmp (and X, Y), C.
1844 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1845                                                    BinaryOperator *And,
1846                                                    const APInt &C) {
1847   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1848     return I;
1849 
1850   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1851   bool TrueIfNeg;
1852   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1853     // ((X - 1) & ~X) <  0 --> X == 0
1854     // ((X - 1) & ~X) >= 0 --> X != 0
1855     Value *X;
1856     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1857         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1858       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1859       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1860     }
1861   }
1862 
1863   // TODO: These all require that Y is constant too, so refactor with the above.
1864 
1865   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1866   Value *X = And->getOperand(0);
1867   Value *Y = And->getOperand(1);
1868   if (auto *LI = dyn_cast<LoadInst>(X))
1869     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1870       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1871         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1872             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1873           ConstantInt *C2 = cast<ConstantInt>(Y);
1874           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1875             return Res;
1876         }
1877 
1878   if (!Cmp.isEquality())
1879     return nullptr;
1880 
1881   // X & -C == -C -> X >  u ~C
1882   // X & -C != -C -> X <= u ~C
1883   //   iff C is a power of 2
1884   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1885     auto NewPred =
1886         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1887     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1888   }
1889 
1890   return nullptr;
1891 }
1892 
1893 /// Fold icmp (or X, Y), C.
1894 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1895                                                   BinaryOperator *Or,
1896                                                   const APInt &C) {
1897   ICmpInst::Predicate Pred = Cmp.getPredicate();
1898   if (C.isOne()) {
1899     // icmp slt signum(V) 1 --> icmp slt V, 1
1900     Value *V = nullptr;
1901     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1902       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1903                           ConstantInt::get(V->getType(), 1));
1904   }
1905 
1906   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1907   const APInt *MaskC;
1908   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1909     if (*MaskC == C && (C + 1).isPowerOf2()) {
1910       // X | C == C --> X <=u C
1911       // X | C != C --> X  >u C
1912       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1913       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1914       return new ICmpInst(Pred, OrOp0, OrOp1);
1915     }
1916 
1917     // More general: canonicalize 'equality with set bits mask' to
1918     // 'equality with clear bits mask'.
1919     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1920     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1921     if (Or->hasOneUse()) {
1922       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1923       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1924       return new ICmpInst(Pred, And, NewC);
1925     }
1926   }
1927 
1928   // (X | (X-1)) s<  0 --> X s< 1
1929   // (X | (X-1)) s> -1 --> X s> 0
1930   Value *X;
1931   bool TrueIfSigned;
1932   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1933       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1934     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1935     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1936     return new ICmpInst(NewPred, X, NewC);
1937   }
1938 
1939   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1940     return nullptr;
1941 
1942   Value *P, *Q;
1943   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1944     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1945     // -> and (icmp eq P, null), (icmp eq Q, null).
1946     Value *CmpP =
1947         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1948     Value *CmpQ =
1949         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1950     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1951     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1952   }
1953 
1954   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1955   // a shorter form that has more potential to be folded even further.
1956   Value *X1, *X2, *X3, *X4;
1957   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1958       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1959     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1960     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1961     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1962     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1963     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1964     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1965   }
1966 
1967   return nullptr;
1968 }
1969 
1970 /// Fold icmp (mul X, Y), C.
1971 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1972                                                    BinaryOperator *Mul,
1973                                                    const APInt &C) {
1974   const APInt *MulC;
1975   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1976     return nullptr;
1977 
1978   // If this is a test of the sign bit and the multiply is sign-preserving with
1979   // a constant operand, use the multiply LHS operand instead.
1980   ICmpInst::Predicate Pred = Cmp.getPredicate();
1981   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1982     if (MulC->isNegative())
1983       Pred = ICmpInst::getSwappedPredicate(Pred);
1984     return new ICmpInst(Pred, Mul->getOperand(0),
1985                         Constant::getNullValue(Mul->getType()));
1986   }
1987 
1988   // If the multiply does not wrap, try to divide the compare constant by the
1989   // multiplication factor.
1990   if (Cmp.isEquality() && !MulC->isZero()) {
1991     // (mul nsw X, MulC) == C --> X == C /s MulC
1992     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
1993       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1994       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1995     }
1996     // (mul nuw X, MulC) == C --> X == C /u MulC
1997     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
1998       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1999       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2000     }
2001   }
2002 
2003   return nullptr;
2004 }
2005 
2006 /// Fold icmp (shl 1, Y), C.
2007 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2008                                    const APInt &C) {
2009   Value *Y;
2010   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2011     return nullptr;
2012 
2013   Type *ShiftType = Shl->getType();
2014   unsigned TypeBits = C.getBitWidth();
2015   bool CIsPowerOf2 = C.isPowerOf2();
2016   ICmpInst::Predicate Pred = Cmp.getPredicate();
2017   if (Cmp.isUnsigned()) {
2018     // (1 << Y) pred C -> Y pred Log2(C)
2019     if (!CIsPowerOf2) {
2020       // (1 << Y) <  30 -> Y <= 4
2021       // (1 << Y) <= 30 -> Y <= 4
2022       // (1 << Y) >= 30 -> Y >  4
2023       // (1 << Y) >  30 -> Y >  4
2024       if (Pred == ICmpInst::ICMP_ULT)
2025         Pred = ICmpInst::ICMP_ULE;
2026       else if (Pred == ICmpInst::ICMP_UGE)
2027         Pred = ICmpInst::ICMP_UGT;
2028     }
2029 
2030     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2031     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2032     unsigned CLog2 = C.logBase2();
2033     if (CLog2 == TypeBits - 1) {
2034       if (Pred == ICmpInst::ICMP_UGE)
2035         Pred = ICmpInst::ICMP_EQ;
2036       else if (Pred == ICmpInst::ICMP_ULT)
2037         Pred = ICmpInst::ICMP_NE;
2038     }
2039     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2040   } else if (Cmp.isSigned()) {
2041     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2042     if (C.isAllOnes()) {
2043       // (1 << Y) <= -1 -> Y == 31
2044       if (Pred == ICmpInst::ICMP_SLE)
2045         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2046 
2047       // (1 << Y) >  -1 -> Y != 31
2048       if (Pred == ICmpInst::ICMP_SGT)
2049         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2050     } else if (!C) {
2051       // (1 << Y) <  0 -> Y == 31
2052       // (1 << Y) <= 0 -> Y == 31
2053       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2054         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2055 
2056       // (1 << Y) >= 0 -> Y != 31
2057       // (1 << Y) >  0 -> Y != 31
2058       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2059         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2060     }
2061   } else if (Cmp.isEquality() && CIsPowerOf2) {
2062     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2063   }
2064 
2065   return nullptr;
2066 }
2067 
2068 /// Fold icmp (shl X, Y), C.
2069 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2070                                                    BinaryOperator *Shl,
2071                                                    const APInt &C) {
2072   const APInt *ShiftVal;
2073   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2074     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2075 
2076   const APInt *ShiftAmt;
2077   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2078     return foldICmpShlOne(Cmp, Shl, C);
2079 
2080   // Check that the shift amount is in range. If not, don't perform undefined
2081   // shifts. When the shift is visited, it will be simplified.
2082   unsigned TypeBits = C.getBitWidth();
2083   if (ShiftAmt->uge(TypeBits))
2084     return nullptr;
2085 
2086   ICmpInst::Predicate Pred = Cmp.getPredicate();
2087   Value *X = Shl->getOperand(0);
2088   Type *ShType = Shl->getType();
2089 
2090   // NSW guarantees that we are only shifting out sign bits from the high bits,
2091   // so we can ASHR the compare constant without needing a mask and eliminate
2092   // the shift.
2093   if (Shl->hasNoSignedWrap()) {
2094     if (Pred == ICmpInst::ICMP_SGT) {
2095       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2096       APInt ShiftedC = C.ashr(*ShiftAmt);
2097       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2098     }
2099     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2100         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2101       APInt ShiftedC = C.ashr(*ShiftAmt);
2102       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2103     }
2104     if (Pred == ICmpInst::ICMP_SLT) {
2105       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2106       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2107       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2108       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2109       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2110       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2111       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2112     }
2113     // If this is a signed comparison to 0 and the shift is sign preserving,
2114     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2115     // do that if we're sure to not continue on in this function.
2116     if (isSignTest(Pred, C))
2117       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2118   }
2119 
2120   // NUW guarantees that we are only shifting out zero bits from the high bits,
2121   // so we can LSHR the compare constant without needing a mask and eliminate
2122   // the shift.
2123   if (Shl->hasNoUnsignedWrap()) {
2124     if (Pred == ICmpInst::ICMP_UGT) {
2125       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2126       APInt ShiftedC = C.lshr(*ShiftAmt);
2127       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2128     }
2129     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2130         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2131       APInt ShiftedC = C.lshr(*ShiftAmt);
2132       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2133     }
2134     if (Pred == ICmpInst::ICMP_ULT) {
2135       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2136       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2137       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2138       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2139       assert(C.ugt(0) && "ult 0 should have been eliminated");
2140       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2141       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2142     }
2143   }
2144 
2145   if (Cmp.isEquality() && Shl->hasOneUse()) {
2146     // Strength-reduce the shift into an 'and'.
2147     Constant *Mask = ConstantInt::get(
2148         ShType,
2149         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2150     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2151     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2152     return new ICmpInst(Pred, And, LShrC);
2153   }
2154 
2155   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2156   bool TrueIfSigned = false;
2157   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2158     // (X << 31) <s 0  --> (X & 1) != 0
2159     Constant *Mask = ConstantInt::get(
2160         ShType,
2161         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2162     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2163     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2164                         And, Constant::getNullValue(ShType));
2165   }
2166 
2167   // Simplify 'shl' inequality test into 'and' equality test.
2168   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2169     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2170     if ((C + 1).isPowerOf2() &&
2171         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2172       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2173       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2174                                                      : ICmpInst::ICMP_NE,
2175                           And, Constant::getNullValue(ShType));
2176     }
2177     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2178     if (C.isPowerOf2() &&
2179         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2180       Value *And =
2181           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2182       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2183                                                      : ICmpInst::ICMP_NE,
2184                           And, Constant::getNullValue(ShType));
2185     }
2186   }
2187 
2188   // Transform (icmp pred iM (shl iM %v, N), C)
2189   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2190   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2191   // This enables us to get rid of the shift in favor of a trunc that may be
2192   // free on the target. It has the additional benefit of comparing to a
2193   // smaller constant that may be more target-friendly.
2194   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2195   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2196       DL.isLegalInteger(TypeBits - Amt)) {
2197     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2198     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2199       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2200     Constant *NewC =
2201         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2202     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2203   }
2204 
2205   return nullptr;
2206 }
2207 
2208 /// Fold icmp ({al}shr X, Y), C.
2209 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2210                                                    BinaryOperator *Shr,
2211                                                    const APInt &C) {
2212   // An exact shr only shifts out zero bits, so:
2213   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2214   Value *X = Shr->getOperand(0);
2215   CmpInst::Predicate Pred = Cmp.getPredicate();
2216   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2217     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2218 
2219   const APInt *ShiftVal;
2220   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2221     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2222 
2223   const APInt *ShiftAmt;
2224   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2225     return nullptr;
2226 
2227   // Check that the shift amount is in range. If not, don't perform undefined
2228   // shifts. When the shift is visited it will be simplified.
2229   unsigned TypeBits = C.getBitWidth();
2230   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2231   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2232     return nullptr;
2233 
2234   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2235   bool IsExact = Shr->isExact();
2236   Type *ShrTy = Shr->getType();
2237   // TODO: If we could guarantee that InstSimplify would handle all of the
2238   // constant-value-based preconditions in the folds below, then we could assert
2239   // those conditions rather than checking them. This is difficult because of
2240   // undef/poison (PR34838).
2241   if (IsAShr) {
2242     if (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT || IsExact) {
2243       // When ShAmtC can be shifted losslessly:
2244       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2245       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2246       APInt ShiftedC = C.shl(ShAmtVal);
2247       if (ShiftedC.ashr(ShAmtVal) == C)
2248         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2249     }
2250     if (Pred == CmpInst::ICMP_SGT) {
2251       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2252       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2253       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2254           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2255         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2256     }
2257 
2258     // If the compare constant has significant bits above the lowest sign-bit,
2259     // then convert an unsigned cmp to a test of the sign-bit:
2260     // (ashr X, ShiftC) u> C --> X s< 0
2261     // (ashr X, ShiftC) u< C --> X s> -1
2262     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2263       if (Pred == CmpInst::ICMP_UGT) {
2264         return new ICmpInst(CmpInst::ICMP_SLT, X,
2265                             ConstantInt::getNullValue(ShrTy));
2266       }
2267       if (Pred == CmpInst::ICMP_ULT) {
2268         return new ICmpInst(CmpInst::ICMP_SGT, X,
2269                             ConstantInt::getAllOnesValue(ShrTy));
2270       }
2271     }
2272   } else {
2273     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2274       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2275       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2276       APInt ShiftedC = C.shl(ShAmtVal);
2277       if (ShiftedC.lshr(ShAmtVal) == C)
2278         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2279     }
2280     if (Pred == CmpInst::ICMP_UGT) {
2281       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2282       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2283       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2284         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2285     }
2286   }
2287 
2288   if (!Cmp.isEquality())
2289     return nullptr;
2290 
2291   // Handle equality comparisons of shift-by-constant.
2292 
2293   // If the comparison constant changes with the shift, the comparison cannot
2294   // succeed (bits of the comparison constant cannot match the shifted value).
2295   // This should be known by InstSimplify and already be folded to true/false.
2296   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2297           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2298          "Expected icmp+shr simplify did not occur.");
2299 
2300   // If the bits shifted out are known zero, compare the unshifted value:
2301   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2302   if (Shr->isExact())
2303     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2304 
2305   if (C.isZero()) {
2306     // == 0 is u< 1.
2307     if (Pred == CmpInst::ICMP_EQ)
2308       return new ICmpInst(CmpInst::ICMP_ULT, X,
2309                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2310     else
2311       return new ICmpInst(CmpInst::ICMP_UGT, X,
2312                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2313   }
2314 
2315   if (Shr->hasOneUse()) {
2316     // Canonicalize the shift into an 'and':
2317     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2318     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2319     Constant *Mask = ConstantInt::get(ShrTy, Val);
2320     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2321     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2322   }
2323 
2324   return nullptr;
2325 }
2326 
2327 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2328                                                     BinaryOperator *SRem,
2329                                                     const APInt &C) {
2330   // Match an 'is positive' or 'is negative' comparison of remainder by a
2331   // constant power-of-2 value:
2332   // (X % pow2C) sgt/slt 0
2333   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2334   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2335     return nullptr;
2336 
2337   // TODO: The one-use check is standard because we do not typically want to
2338   //       create longer instruction sequences, but this might be a special-case
2339   //       because srem is not good for analysis or codegen.
2340   if (!SRem->hasOneUse())
2341     return nullptr;
2342 
2343   const APInt *DivisorC;
2344   if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2345     return nullptr;
2346 
2347   // Mask off the sign bit and the modulo bits (low-bits).
2348   Type *Ty = SRem->getType();
2349   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2350   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2351   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2352 
2353   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2354   // bit is set. Example:
2355   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2356   if (Pred == ICmpInst::ICMP_SGT)
2357     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2358 
2359   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2360   // bit is set. Example:
2361   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2362   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2363 }
2364 
2365 /// Fold icmp (udiv X, Y), C.
2366 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2367                                                     BinaryOperator *UDiv,
2368                                                     const APInt &C) {
2369   const APInt *C2;
2370   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2371     return nullptr;
2372 
2373   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2374 
2375   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2376   Value *Y = UDiv->getOperand(1);
2377   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2378     assert(!C.isMaxValue() &&
2379            "icmp ugt X, UINT_MAX should have been simplified already.");
2380     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2381                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2382   }
2383 
2384   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2385   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2386     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2387     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2388                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2389   }
2390 
2391   return nullptr;
2392 }
2393 
2394 /// Fold icmp ({su}div X, Y), C.
2395 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2396                                                    BinaryOperator *Div,
2397                                                    const APInt &C) {
2398   // Fold: icmp pred ([us]div X, C2), C -> range test
2399   // Fold this div into the comparison, producing a range check.
2400   // Determine, based on the divide type, what the range is being
2401   // checked.  If there is an overflow on the low or high side, remember
2402   // it, otherwise compute the range [low, hi) bounding the new value.
2403   // See: InsertRangeTest above for the kinds of replacements possible.
2404   const APInt *C2;
2405   if (!match(Div->getOperand(1), m_APInt(C2)))
2406     return nullptr;
2407 
2408   // FIXME: If the operand types don't match the type of the divide
2409   // then don't attempt this transform. The code below doesn't have the
2410   // logic to deal with a signed divide and an unsigned compare (and
2411   // vice versa). This is because (x /s C2) <s C  produces different
2412   // results than (x /s C2) <u C or (x /u C2) <s C or even
2413   // (x /u C2) <u C.  Simply casting the operands and result won't
2414   // work. :(  The if statement below tests that condition and bails
2415   // if it finds it.
2416   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2417   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2418     return nullptr;
2419 
2420   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2421   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2422   // division-by-constant cases should be present, we can not assert that they
2423   // have happened before we reach this icmp instruction.
2424   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2425     return nullptr;
2426 
2427   // Compute Prod = C * C2. We are essentially solving an equation of
2428   // form X / C2 = C. We solve for X by multiplying C2 and C.
2429   // By solving for X, we can turn this into a range check instead of computing
2430   // a divide.
2431   APInt Prod = C * *C2;
2432 
2433   // Determine if the product overflows by seeing if the product is not equal to
2434   // the divide. Make sure we do the same kind of divide as in the LHS
2435   // instruction that we're folding.
2436   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2437 
2438   ICmpInst::Predicate Pred = Cmp.getPredicate();
2439 
2440   // If the division is known to be exact, then there is no remainder from the
2441   // divide, so the covered range size is unit, otherwise it is the divisor.
2442   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2443 
2444   // Figure out the interval that is being checked.  For example, a comparison
2445   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2446   // Compute this interval based on the constants involved and the signedness of
2447   // the compare/divide.  This computes a half-open interval, keeping track of
2448   // whether either value in the interval overflows.  After analysis each
2449   // overflow variable is set to 0 if it's corresponding bound variable is valid
2450   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2451   int LoOverflow = 0, HiOverflow = 0;
2452   APInt LoBound, HiBound;
2453 
2454   if (!DivIsSigned) {  // udiv
2455     // e.g. X/5 op 3  --> [15, 20)
2456     LoBound = Prod;
2457     HiOverflow = LoOverflow = ProdOV;
2458     if (!HiOverflow) {
2459       // If this is not an exact divide, then many values in the range collapse
2460       // to the same result value.
2461       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2462     }
2463   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2464     if (C.isZero()) {                    // (X / pos) op 0
2465       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2466       LoBound = -(RangeSize - 1);
2467       HiBound = RangeSize;
2468     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2469       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2470       HiOverflow = LoOverflow = ProdOV;
2471       if (!HiOverflow)
2472         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2473     } else { // (X / pos) op neg
2474       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2475       HiBound = Prod + 1;
2476       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2477       if (!LoOverflow) {
2478         APInt DivNeg = -RangeSize;
2479         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2480       }
2481     }
2482   } else if (C2->isNegative()) { // Divisor is < 0.
2483     if (Div->isExact())
2484       RangeSize.negate();
2485     if (C.isZero()) { // (X / neg) op 0
2486       // e.g. X/-5 op 0  --> [-4, 5)
2487       LoBound = RangeSize + 1;
2488       HiBound = -RangeSize;
2489       if (HiBound == *C2) {        // -INTMIN = INTMIN
2490         HiOverflow = 1;            // [INTMIN+1, overflow)
2491         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2492       }
2493     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2494       // e.g. X/-5 op 3  --> [-19, -14)
2495       HiBound = Prod + 1;
2496       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2497       if (!LoOverflow)
2498         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2499     } else {                // (X / neg) op neg
2500       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2501       LoOverflow = HiOverflow = ProdOV;
2502       if (!HiOverflow)
2503         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2504     }
2505 
2506     // Dividing by a negative swaps the condition.  LT <-> GT
2507     Pred = ICmpInst::getSwappedPredicate(Pred);
2508   }
2509 
2510   Value *X = Div->getOperand(0);
2511   switch (Pred) {
2512     default: llvm_unreachable("Unhandled icmp opcode!");
2513     case ICmpInst::ICMP_EQ:
2514       if (LoOverflow && HiOverflow)
2515         return replaceInstUsesWith(Cmp, Builder.getFalse());
2516       if (HiOverflow)
2517         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2518                             ICmpInst::ICMP_UGE, X,
2519                             ConstantInt::get(Div->getType(), LoBound));
2520       if (LoOverflow)
2521         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2522                             ICmpInst::ICMP_ULT, X,
2523                             ConstantInt::get(Div->getType(), HiBound));
2524       return replaceInstUsesWith(
2525           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2526     case ICmpInst::ICMP_NE:
2527       if (LoOverflow && HiOverflow)
2528         return replaceInstUsesWith(Cmp, Builder.getTrue());
2529       if (HiOverflow)
2530         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2531                             ICmpInst::ICMP_ULT, X,
2532                             ConstantInt::get(Div->getType(), LoBound));
2533       if (LoOverflow)
2534         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2535                             ICmpInst::ICMP_UGE, X,
2536                             ConstantInt::get(Div->getType(), HiBound));
2537       return replaceInstUsesWith(Cmp,
2538                                  insertRangeTest(X, LoBound, HiBound,
2539                                                  DivIsSigned, false));
2540     case ICmpInst::ICMP_ULT:
2541     case ICmpInst::ICMP_SLT:
2542       if (LoOverflow == +1)   // Low bound is greater than input range.
2543         return replaceInstUsesWith(Cmp, Builder.getTrue());
2544       if (LoOverflow == -1)   // Low bound is less than input range.
2545         return replaceInstUsesWith(Cmp, Builder.getFalse());
2546       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2547     case ICmpInst::ICMP_UGT:
2548     case ICmpInst::ICMP_SGT:
2549       if (HiOverflow == +1)       // High bound greater than input range.
2550         return replaceInstUsesWith(Cmp, Builder.getFalse());
2551       if (HiOverflow == -1)       // High bound less than input range.
2552         return replaceInstUsesWith(Cmp, Builder.getTrue());
2553       if (Pred == ICmpInst::ICMP_UGT)
2554         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2555                             ConstantInt::get(Div->getType(), HiBound));
2556       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2557                           ConstantInt::get(Div->getType(), HiBound));
2558   }
2559 
2560   return nullptr;
2561 }
2562 
2563 /// Fold icmp (sub X, Y), C.
2564 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2565                                                    BinaryOperator *Sub,
2566                                                    const APInt &C) {
2567   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2568   ICmpInst::Predicate Pred = Cmp.getPredicate();
2569   Type *Ty = Sub->getType();
2570 
2571   // (SubC - Y) == C) --> Y == (SubC - C)
2572   // (SubC - Y) != C) --> Y != (SubC - C)
2573   Constant *SubC;
2574   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2575     return new ICmpInst(Pred, Y,
2576                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2577   }
2578 
2579   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2580   const APInt *C2;
2581   APInt SubResult;
2582   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2583   bool HasNSW = Sub->hasNoSignedWrap();
2584   bool HasNUW = Sub->hasNoUnsignedWrap();
2585   if (match(X, m_APInt(C2)) &&
2586       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2587       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2588     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2589 
2590   // The following transforms are only worth it if the only user of the subtract
2591   // is the icmp.
2592   // TODO: This is an artificial restriction for all of the transforms below
2593   //       that only need a single replacement icmp.
2594   if (!Sub->hasOneUse())
2595     return nullptr;
2596 
2597   // X - Y == 0 --> X == Y.
2598   // X - Y != 0 --> X != Y.
2599   if (Cmp.isEquality() && C.isZero())
2600     return new ICmpInst(Pred, X, Y);
2601 
2602   if (Sub->hasNoSignedWrap()) {
2603     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2604     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2605       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2606 
2607     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2608     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2609       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2610 
2611     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2612     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2613       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2614 
2615     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2616     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2617       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2618   }
2619 
2620   if (!match(X, m_APInt(C2)))
2621     return nullptr;
2622 
2623   // C2 - Y <u C -> (Y | (C - 1)) == C2
2624   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2625   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2626       (*C2 & (C - 1)) == (C - 1))
2627     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2628 
2629   // C2 - Y >u C -> (Y | C) != C2
2630   //   iff C2 & C == C and C + 1 is a power of 2
2631   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2632     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2633 
2634   // We have handled special cases that reduce.
2635   // Canonicalize any remaining sub to add as:
2636   // (C2 - Y) > C --> (Y + ~C2) < ~C
2637   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2638                                  HasNUW, HasNSW);
2639   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2640 }
2641 
2642 /// Fold icmp (add X, Y), C.
2643 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2644                                                    BinaryOperator *Add,
2645                                                    const APInt &C) {
2646   Value *Y = Add->getOperand(1);
2647   const APInt *C2;
2648   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2649     return nullptr;
2650 
2651   // Fold icmp pred (add X, C2), C.
2652   Value *X = Add->getOperand(0);
2653   Type *Ty = Add->getType();
2654   const CmpInst::Predicate Pred = Cmp.getPredicate();
2655 
2656   // If the add does not wrap, we can always adjust the compare by subtracting
2657   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2658   // are canonicalized to SGT/SLT/UGT/ULT.
2659   if ((Add->hasNoSignedWrap() &&
2660        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2661       (Add->hasNoUnsignedWrap() &&
2662        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2663     bool Overflow;
2664     APInt NewC =
2665         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2666     // If there is overflow, the result must be true or false.
2667     // TODO: Can we assert there is no overflow because InstSimplify always
2668     // handles those cases?
2669     if (!Overflow)
2670       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2671       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2672   }
2673 
2674   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2675   const APInt &Upper = CR.getUpper();
2676   const APInt &Lower = CR.getLower();
2677   if (Cmp.isSigned()) {
2678     if (Lower.isSignMask())
2679       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2680     if (Upper.isSignMask())
2681       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2682   } else {
2683     if (Lower.isMinValue())
2684       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2685     if (Upper.isMinValue())
2686       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2687   }
2688 
2689   // This set of folds is intentionally placed after folds that use no-wrapping
2690   // flags because those folds are likely better for later analysis/codegen.
2691   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2692   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2693 
2694   // Fold compare with offset to opposite sign compare if it eliminates offset:
2695   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2696   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2697     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2698 
2699   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2700   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2701     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2702 
2703   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2704   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2705     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2706 
2707   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2708   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2709     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2710 
2711   if (!Add->hasOneUse())
2712     return nullptr;
2713 
2714   // X+C <u C2 -> (X & -C2) == C
2715   //   iff C & (C2-1) == 0
2716   //       C2 is a power of 2
2717   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2718     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2719                         ConstantExpr::getNeg(cast<Constant>(Y)));
2720 
2721   // X+C >u C2 -> (X & ~C2) != C
2722   //   iff C & C2 == 0
2723   //       C2+1 is a power of 2
2724   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2725     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2726                         ConstantExpr::getNeg(cast<Constant>(Y)));
2727 
2728   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2729   // to the ult form.
2730   // X+C2 >u C -> X+(C2-C-1) <u ~C
2731   if (Pred == ICmpInst::ICMP_UGT)
2732     return new ICmpInst(ICmpInst::ICMP_ULT,
2733                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2734                         ConstantInt::get(Ty, ~C));
2735 
2736   return nullptr;
2737 }
2738 
2739 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2740                                                Value *&RHS, ConstantInt *&Less,
2741                                                ConstantInt *&Equal,
2742                                                ConstantInt *&Greater) {
2743   // TODO: Generalize this to work with other comparison idioms or ensure
2744   // they get canonicalized into this form.
2745 
2746   // select i1 (a == b),
2747   //        i32 Equal,
2748   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2749   // where Equal, Less and Greater are placeholders for any three constants.
2750   ICmpInst::Predicate PredA;
2751   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2752       !ICmpInst::isEquality(PredA))
2753     return false;
2754   Value *EqualVal = SI->getTrueValue();
2755   Value *UnequalVal = SI->getFalseValue();
2756   // We still can get non-canonical predicate here, so canonicalize.
2757   if (PredA == ICmpInst::ICMP_NE)
2758     std::swap(EqualVal, UnequalVal);
2759   if (!match(EqualVal, m_ConstantInt(Equal)))
2760     return false;
2761   ICmpInst::Predicate PredB;
2762   Value *LHS2, *RHS2;
2763   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2764                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2765     return false;
2766   // We can get predicate mismatch here, so canonicalize if possible:
2767   // First, ensure that 'LHS' match.
2768   if (LHS2 != LHS) {
2769     // x sgt y <--> y slt x
2770     std::swap(LHS2, RHS2);
2771     PredB = ICmpInst::getSwappedPredicate(PredB);
2772   }
2773   if (LHS2 != LHS)
2774     return false;
2775   // We also need to canonicalize 'RHS'.
2776   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2777     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2778     auto FlippedStrictness =
2779         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2780             PredB, cast<Constant>(RHS2));
2781     if (!FlippedStrictness)
2782       return false;
2783     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2784            "basic correctness failure");
2785     RHS2 = FlippedStrictness->second;
2786     // And kind-of perform the result swap.
2787     std::swap(Less, Greater);
2788     PredB = ICmpInst::ICMP_SLT;
2789   }
2790   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2791 }
2792 
2793 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2794                                                       SelectInst *Select,
2795                                                       ConstantInt *C) {
2796 
2797   assert(C && "Cmp RHS should be a constant int!");
2798   // If we're testing a constant value against the result of a three way
2799   // comparison, the result can be expressed directly in terms of the
2800   // original values being compared.  Note: We could possibly be more
2801   // aggressive here and remove the hasOneUse test. The original select is
2802   // really likely to simplify or sink when we remove a test of the result.
2803   Value *OrigLHS, *OrigRHS;
2804   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2805   if (Cmp.hasOneUse() &&
2806       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2807                               C3GreaterThan)) {
2808     assert(C1LessThan && C2Equal && C3GreaterThan);
2809 
2810     bool TrueWhenLessThan =
2811         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2812             ->isAllOnesValue();
2813     bool TrueWhenEqual =
2814         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2815             ->isAllOnesValue();
2816     bool TrueWhenGreaterThan =
2817         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2818             ->isAllOnesValue();
2819 
2820     // This generates the new instruction that will replace the original Cmp
2821     // Instruction. Instead of enumerating the various combinations when
2822     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2823     // false, we rely on chaining of ORs and future passes of InstCombine to
2824     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2825 
2826     // When none of the three constants satisfy the predicate for the RHS (C),
2827     // the entire original Cmp can be simplified to a false.
2828     Value *Cond = Builder.getFalse();
2829     if (TrueWhenLessThan)
2830       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2831                                                        OrigLHS, OrigRHS));
2832     if (TrueWhenEqual)
2833       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2834                                                        OrigLHS, OrigRHS));
2835     if (TrueWhenGreaterThan)
2836       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2837                                                        OrigLHS, OrigRHS));
2838 
2839     return replaceInstUsesWith(Cmp, Cond);
2840   }
2841   return nullptr;
2842 }
2843 
2844 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2845   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2846   if (!Bitcast)
2847     return nullptr;
2848 
2849   ICmpInst::Predicate Pred = Cmp.getPredicate();
2850   Value *Op1 = Cmp.getOperand(1);
2851   Value *BCSrcOp = Bitcast->getOperand(0);
2852 
2853   // Make sure the bitcast doesn't change the number of vector elements.
2854   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2855           Bitcast->getDestTy()->getScalarSizeInBits()) {
2856     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2857     Value *X;
2858     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2859       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2860       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2861       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2862       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2863       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2864            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2865           match(Op1, m_Zero()))
2866         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2867 
2868       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2869       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2870         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2871 
2872       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2873       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2874         return new ICmpInst(Pred, X,
2875                             ConstantInt::getAllOnesValue(X->getType()));
2876     }
2877 
2878     // Zero-equality checks are preserved through unsigned floating-point casts:
2879     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2880     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2881     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2882       if (Cmp.isEquality() && match(Op1, m_Zero()))
2883         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2884 
2885     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2886     // the FP extend/truncate because that cast does not change the sign-bit.
2887     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2888     // The sign-bit is always the most significant bit in those types.
2889     const APInt *C;
2890     bool TrueIfSigned;
2891     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2892         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2893       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2894           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2895         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2896         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2897         Type *XType = X->getType();
2898 
2899         // We can't currently handle Power style floating point operations here.
2900         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2901 
2902           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2903           if (auto *XVTy = dyn_cast<VectorType>(XType))
2904             NewType = VectorType::get(NewType, XVTy->getElementCount());
2905           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2906           if (TrueIfSigned)
2907             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2908                                 ConstantInt::getNullValue(NewType));
2909           else
2910             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2911                                 ConstantInt::getAllOnesValue(NewType));
2912         }
2913       }
2914     }
2915   }
2916 
2917   // Test to see if the operands of the icmp are casted versions of other
2918   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2919   if (Bitcast->getType()->isPointerTy() &&
2920       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2921     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2922     // so eliminate it as well.
2923     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2924       Op1 = BC2->getOperand(0);
2925 
2926     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2927     return new ICmpInst(Pred, BCSrcOp, Op1);
2928   }
2929 
2930   const APInt *C;
2931   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2932       !Bitcast->getType()->isIntegerTy() ||
2933       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2934     return nullptr;
2935 
2936   // If this is checking if all elements of a vector compare are set or not,
2937   // invert the casted vector equality compare and test if all compare
2938   // elements are clear or not. Compare against zero is generally easier for
2939   // analysis and codegen.
2940   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2941   // Example: are all elements equal? --> are zero elements not equal?
2942   // TODO: Try harder to reduce compare of 2 freely invertible operands?
2943   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
2944       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
2945     Type *ScalarTy = Bitcast->getType();
2946     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy);
2947     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy));
2948   }
2949 
2950   // If this is checking if all elements of an extended vector are clear or not,
2951   // compare in a narrow type to eliminate the extend:
2952   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
2953   Value *X;
2954   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
2955       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
2956     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
2957       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
2958       Value *NewCast = Builder.CreateBitCast(X, NewType);
2959       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
2960     }
2961   }
2962 
2963   // Folding: icmp <pred> iN X, C
2964   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2965   //    and C is a splat of a K-bit pattern
2966   //    and SC is a constant vector = <C', C', C', ..., C'>
2967   // Into:
2968   //   %E = extractelement <M x iK> %vec, i32 C'
2969   //   icmp <pred> iK %E, trunc(C)
2970   Value *Vec;
2971   ArrayRef<int> Mask;
2972   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2973     // Check whether every element of Mask is the same constant
2974     if (is_splat(Mask)) {
2975       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2976       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2977       if (C->isSplat(EltTy->getBitWidth())) {
2978         // Fold the icmp based on the value of C
2979         // If C is M copies of an iK sized bit pattern,
2980         // then:
2981         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2982         //       icmp <pred> iK %SplatVal, <pattern>
2983         Value *Elem = Builder.getInt32(Mask[0]);
2984         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2985         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2986         return new ICmpInst(Pred, Extract, NewC);
2987       }
2988     }
2989   }
2990   return nullptr;
2991 }
2992 
2993 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2994 /// where X is some kind of instruction.
2995 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2996   const APInt *C;
2997   if (!match(Cmp.getOperand(1), m_APInt(C)))
2998     return nullptr;
2999 
3000   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
3001     switch (BO->getOpcode()) {
3002     case Instruction::Xor:
3003       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
3004         return I;
3005       break;
3006     case Instruction::And:
3007       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
3008         return I;
3009       break;
3010     case Instruction::Or:
3011       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
3012         return I;
3013       break;
3014     case Instruction::Mul:
3015       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
3016         return I;
3017       break;
3018     case Instruction::Shl:
3019       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
3020         return I;
3021       break;
3022     case Instruction::LShr:
3023     case Instruction::AShr:
3024       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
3025         return I;
3026       break;
3027     case Instruction::SRem:
3028       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
3029         return I;
3030       break;
3031     case Instruction::UDiv:
3032       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
3033         return I;
3034       LLVM_FALLTHROUGH;
3035     case Instruction::SDiv:
3036       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
3037         return I;
3038       break;
3039     case Instruction::Sub:
3040       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
3041         return I;
3042       break;
3043     case Instruction::Add:
3044       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
3045         return I;
3046       break;
3047     default:
3048       break;
3049     }
3050     // TODO: These folds could be refactored to be part of the above calls.
3051     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
3052       return I;
3053   }
3054 
3055   // Match against CmpInst LHS being instructions other than binary operators.
3056 
3057   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
3058     // For now, we only support constant integers while folding the
3059     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3060     // similar to the cases handled by binary ops above.
3061     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3062       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3063         return I;
3064   }
3065 
3066   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
3067     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3068       return I;
3069   }
3070 
3071   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3072     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3073       return I;
3074 
3075   return nullptr;
3076 }
3077 
3078 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3079 /// icmp eq/ne BO, C.
3080 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3081     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3082   // TODO: Some of these folds could work with arbitrary constants, but this
3083   // function is limited to scalar and vector splat constants.
3084   if (!Cmp.isEquality())
3085     return nullptr;
3086 
3087   ICmpInst::Predicate Pred = Cmp.getPredicate();
3088   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3089   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3090   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3091 
3092   switch (BO->getOpcode()) {
3093   case Instruction::SRem:
3094     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3095     if (C.isZero() && BO->hasOneUse()) {
3096       const APInt *BOC;
3097       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3098         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3099         return new ICmpInst(Pred, NewRem,
3100                             Constant::getNullValue(BO->getType()));
3101       }
3102     }
3103     break;
3104   case Instruction::Add: {
3105     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3106     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3107       if (BO->hasOneUse())
3108         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3109     } else if (C.isZero()) {
3110       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3111       // efficiently invertible, or if the add has just this one use.
3112       if (Value *NegVal = dyn_castNegVal(BOp1))
3113         return new ICmpInst(Pred, BOp0, NegVal);
3114       if (Value *NegVal = dyn_castNegVal(BOp0))
3115         return new ICmpInst(Pred, NegVal, BOp1);
3116       if (BO->hasOneUse()) {
3117         Value *Neg = Builder.CreateNeg(BOp1);
3118         Neg->takeName(BO);
3119         return new ICmpInst(Pred, BOp0, Neg);
3120       }
3121     }
3122     break;
3123   }
3124   case Instruction::Xor:
3125     if (BO->hasOneUse()) {
3126       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3127         // For the xor case, we can xor two constants together, eliminating
3128         // the explicit xor.
3129         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3130       } else if (C.isZero()) {
3131         // Replace ((xor A, B) != 0) with (A != B)
3132         return new ICmpInst(Pred, BOp0, BOp1);
3133       }
3134     }
3135     break;
3136   case Instruction::Or: {
3137     const APInt *BOC;
3138     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3139       // Comparing if all bits outside of a constant mask are set?
3140       // Replace (X | C) == -1 with (X & ~C) == ~C.
3141       // This removes the -1 constant.
3142       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3143       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3144       return new ICmpInst(Pred, And, NotBOC);
3145     }
3146     break;
3147   }
3148   case Instruction::And: {
3149     const APInt *BOC;
3150     if (match(BOp1, m_APInt(BOC))) {
3151       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3152       if (C == *BOC && C.isPowerOf2())
3153         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3154                             BO, Constant::getNullValue(RHS->getType()));
3155     }
3156     break;
3157   }
3158   case Instruction::UDiv:
3159     if (C.isZero()) {
3160       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3161       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3162       return new ICmpInst(NewPred, BOp1, BOp0);
3163     }
3164     break;
3165   default:
3166     break;
3167   }
3168   return nullptr;
3169 }
3170 
3171 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3172 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3173     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3174   Type *Ty = II->getType();
3175   unsigned BitWidth = C.getBitWidth();
3176   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3177 
3178   switch (II->getIntrinsicID()) {
3179   case Intrinsic::abs:
3180     // abs(A) == 0  ->  A == 0
3181     // abs(A) == INT_MIN  ->  A == INT_MIN
3182     if (C.isZero() || C.isMinSignedValue())
3183       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3184     break;
3185 
3186   case Intrinsic::bswap:
3187     // bswap(A) == C  ->  A == bswap(C)
3188     return new ICmpInst(Pred, II->getArgOperand(0),
3189                         ConstantInt::get(Ty, C.byteSwap()));
3190 
3191   case Intrinsic::ctlz:
3192   case Intrinsic::cttz: {
3193     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3194     if (C == BitWidth)
3195       return new ICmpInst(Pred, II->getArgOperand(0),
3196                           ConstantInt::getNullValue(Ty));
3197 
3198     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3199     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3200     // Limit to one use to ensure we don't increase instruction count.
3201     unsigned Num = C.getLimitedValue(BitWidth);
3202     if (Num != BitWidth && II->hasOneUse()) {
3203       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3204       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3205                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3206       APInt Mask2 = IsTrailing
3207         ? APInt::getOneBitSet(BitWidth, Num)
3208         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3209       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3210                           ConstantInt::get(Ty, Mask2));
3211     }
3212     break;
3213   }
3214 
3215   case Intrinsic::ctpop: {
3216     // popcount(A) == 0  ->  A == 0 and likewise for !=
3217     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3218     bool IsZero = C.isZero();
3219     if (IsZero || C == BitWidth)
3220       return new ICmpInst(Pred, II->getArgOperand(0),
3221                           IsZero ? Constant::getNullValue(Ty)
3222                                  : Constant::getAllOnesValue(Ty));
3223 
3224     break;
3225   }
3226 
3227   case Intrinsic::fshl:
3228   case Intrinsic::fshr:
3229     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3230       // (rot X, ?) == 0/-1 --> X == 0/-1
3231       // TODO: This transform is safe to re-use undef elts in a vector, but
3232       //       the constant value passed in by the caller doesn't allow that.
3233       if (C.isZero() || C.isAllOnes())
3234         return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3235 
3236       const APInt *RotAmtC;
3237       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3238       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3239       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3240         return new ICmpInst(Pred, II->getArgOperand(0),
3241                             II->getIntrinsicID() == Intrinsic::fshl
3242                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3243                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3244     }
3245     break;
3246 
3247   case Intrinsic::uadd_sat: {
3248     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3249     if (C.isZero()) {
3250       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3251       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3252     }
3253     break;
3254   }
3255 
3256   case Intrinsic::usub_sat: {
3257     // usub.sat(a, b) == 0  ->  a <= b
3258     if (C.isZero()) {
3259       ICmpInst::Predicate NewPred =
3260           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3261       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3262     }
3263     break;
3264   }
3265   default:
3266     break;
3267   }
3268 
3269   return nullptr;
3270 }
3271 
3272 /// Fold an icmp with LLVM intrinsics
3273 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3274   assert(Cmp.isEquality());
3275 
3276   ICmpInst::Predicate Pred = Cmp.getPredicate();
3277   Value *Op0 = Cmp.getOperand(0);
3278   Value *Op1 = Cmp.getOperand(1);
3279   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3280   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3281   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3282     return nullptr;
3283 
3284   switch (IIOp0->getIntrinsicID()) {
3285   case Intrinsic::bswap:
3286   case Intrinsic::bitreverse:
3287     // If both operands are byte-swapped or bit-reversed, just compare the
3288     // original values.
3289     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3290   case Intrinsic::fshl:
3291   case Intrinsic::fshr:
3292     // If both operands are rotated by same amount, just compare the
3293     // original values.
3294     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3295       break;
3296     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3297       break;
3298     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3299       break;
3300     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3301   default:
3302     break;
3303   }
3304 
3305   return nullptr;
3306 }
3307 
3308 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3309 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3310                                                              IntrinsicInst *II,
3311                                                              const APInt &C) {
3312   if (Cmp.isEquality())
3313     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3314 
3315   Type *Ty = II->getType();
3316   unsigned BitWidth = C.getBitWidth();
3317   ICmpInst::Predicate Pred = Cmp.getPredicate();
3318   switch (II->getIntrinsicID()) {
3319   case Intrinsic::ctpop: {
3320     // (ctpop X > BitWidth - 1) --> X == -1
3321     Value *X = II->getArgOperand(0);
3322     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3323       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3324                              ConstantInt::getAllOnesValue(Ty));
3325     // (ctpop X < BitWidth) --> X != -1
3326     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3327       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3328                              ConstantInt::getAllOnesValue(Ty));
3329     break;
3330   }
3331   case Intrinsic::ctlz: {
3332     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3333     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3334       unsigned Num = C.getLimitedValue();
3335       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3336       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3337                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3338     }
3339 
3340     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3341     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3342       unsigned Num = C.getLimitedValue();
3343       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3344       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3345                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3346     }
3347     break;
3348   }
3349   case Intrinsic::cttz: {
3350     // Limit to one use to ensure we don't increase instruction count.
3351     if (!II->hasOneUse())
3352       return nullptr;
3353 
3354     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3355     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3356       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3357       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3358                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3359                              ConstantInt::getNullValue(Ty));
3360     }
3361 
3362     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3363     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3364       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3365       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3366                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3367                              ConstantInt::getNullValue(Ty));
3368     }
3369     break;
3370   }
3371   default:
3372     break;
3373   }
3374 
3375   return nullptr;
3376 }
3377 
3378 /// Handle icmp with constant (but not simple integer constant) RHS.
3379 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3380   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3381   Constant *RHSC = dyn_cast<Constant>(Op1);
3382   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3383   if (!RHSC || !LHSI)
3384     return nullptr;
3385 
3386   switch (LHSI->getOpcode()) {
3387   case Instruction::GetElementPtr:
3388     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3389     if (RHSC->isNullValue() &&
3390         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3391       return new ICmpInst(
3392           I.getPredicate(), LHSI->getOperand(0),
3393           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3394     break;
3395   case Instruction::PHI:
3396     // Only fold icmp into the PHI if the phi and icmp are in the same
3397     // block.  If in the same block, we're encouraging jump threading.  If
3398     // not, we are just pessimizing the code by making an i1 phi.
3399     if (LHSI->getParent() == I.getParent())
3400       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3401         return NV;
3402     break;
3403   case Instruction::Select: {
3404     // If either operand of the select is a constant, we can fold the
3405     // comparison into the select arms, which will cause one to be
3406     // constant folded and the select turned into a bitwise or.
3407     Value *Op1 = nullptr, *Op2 = nullptr;
3408     ConstantInt *CI = nullptr;
3409 
3410     auto SimplifyOp = [&](Value *V) {
3411       Value *Op = nullptr;
3412       if (Constant *C = dyn_cast<Constant>(V)) {
3413         Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3414       } else if (RHSC->isNullValue()) {
3415         // If null is being compared, check if it can be further simplified.
3416         Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ);
3417       }
3418       return Op;
3419     };
3420     Op1 = SimplifyOp(LHSI->getOperand(1));
3421     if (Op1)
3422       CI = dyn_cast<ConstantInt>(Op1);
3423 
3424     Op2 = SimplifyOp(LHSI->getOperand(2));
3425     if (Op2)
3426       CI = dyn_cast<ConstantInt>(Op2);
3427 
3428     // We only want to perform this transformation if it will not lead to
3429     // additional code. This is true if either both sides of the select
3430     // fold to a constant (in which case the icmp is replaced with a select
3431     // which will usually simplify) or this is the only user of the
3432     // select (in which case we are trading a select+icmp for a simpler
3433     // select+icmp) or all uses of the select can be replaced based on
3434     // dominance information ("Global cases").
3435     bool Transform = false;
3436     if (Op1 && Op2)
3437       Transform = true;
3438     else if (Op1 || Op2) {
3439       // Local case
3440       if (LHSI->hasOneUse())
3441         Transform = true;
3442       // Global cases
3443       else if (CI && !CI->isZero())
3444         // When Op1 is constant try replacing select with second operand.
3445         // Otherwise Op2 is constant and try replacing select with first
3446         // operand.
3447         Transform =
3448             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3449     }
3450     if (Transform) {
3451       if (!Op1)
3452         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3453                                  I.getName());
3454       if (!Op2)
3455         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3456                                  I.getName());
3457       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3458     }
3459     break;
3460   }
3461   case Instruction::IntToPtr:
3462     // icmp pred inttoptr(X), null -> icmp pred X, 0
3463     if (RHSC->isNullValue() &&
3464         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3465       return new ICmpInst(
3466           I.getPredicate(), LHSI->getOperand(0),
3467           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3468     break;
3469 
3470   case Instruction::Load:
3471     // Try to optimize things like "A[i] > 4" to index computations.
3472     if (GetElementPtrInst *GEP =
3473             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3474       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3475         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3476             !cast<LoadInst>(LHSI)->isVolatile())
3477           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3478             return Res;
3479     }
3480     break;
3481   }
3482 
3483   return nullptr;
3484 }
3485 
3486 /// Some comparisons can be simplified.
3487 /// In this case, we are looking for comparisons that look like
3488 /// a check for a lossy truncation.
3489 /// Folds:
3490 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3491 /// Where Mask is some pattern that produces all-ones in low bits:
3492 ///    (-1 >> y)
3493 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3494 ///   ~(-1 << y)
3495 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3496 /// The Mask can be a constant, too.
3497 /// For some predicates, the operands are commutative.
3498 /// For others, x can only be on a specific side.
3499 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3500                                           InstCombiner::BuilderTy &Builder) {
3501   ICmpInst::Predicate SrcPred;
3502   Value *X, *M, *Y;
3503   auto m_VariableMask = m_CombineOr(
3504       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3505                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3506       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3507                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3508   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3509   if (!match(&I, m_c_ICmp(SrcPred,
3510                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3511                           m_Deferred(X))))
3512     return nullptr;
3513 
3514   ICmpInst::Predicate DstPred;
3515   switch (SrcPred) {
3516   case ICmpInst::Predicate::ICMP_EQ:
3517     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3518     DstPred = ICmpInst::Predicate::ICMP_ULE;
3519     break;
3520   case ICmpInst::Predicate::ICMP_NE:
3521     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3522     DstPred = ICmpInst::Predicate::ICMP_UGT;
3523     break;
3524   case ICmpInst::Predicate::ICMP_ULT:
3525     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3526     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3527     DstPred = ICmpInst::Predicate::ICMP_UGT;
3528     break;
3529   case ICmpInst::Predicate::ICMP_UGE:
3530     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3531     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3532     DstPred = ICmpInst::Predicate::ICMP_ULE;
3533     break;
3534   case ICmpInst::Predicate::ICMP_SLT:
3535     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3536     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3537     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3538       return nullptr;
3539     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3540       return nullptr;
3541     DstPred = ICmpInst::Predicate::ICMP_SGT;
3542     break;
3543   case ICmpInst::Predicate::ICMP_SGE:
3544     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3545     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3546     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3547       return nullptr;
3548     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3549       return nullptr;
3550     DstPred = ICmpInst::Predicate::ICMP_SLE;
3551     break;
3552   case ICmpInst::Predicate::ICMP_SGT:
3553   case ICmpInst::Predicate::ICMP_SLE:
3554     return nullptr;
3555   case ICmpInst::Predicate::ICMP_UGT:
3556   case ICmpInst::Predicate::ICMP_ULE:
3557     llvm_unreachable("Instsimplify took care of commut. variant");
3558     break;
3559   default:
3560     llvm_unreachable("All possible folds are handled.");
3561   }
3562 
3563   // The mask value may be a vector constant that has undefined elements. But it
3564   // may not be safe to propagate those undefs into the new compare, so replace
3565   // those elements by copying an existing, defined, and safe scalar constant.
3566   Type *OpTy = M->getType();
3567   auto *VecC = dyn_cast<Constant>(M);
3568   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3569   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3570     Constant *SafeReplacementConstant = nullptr;
3571     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3572       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3573         SafeReplacementConstant = VecC->getAggregateElement(i);
3574         break;
3575       }
3576     }
3577     assert(SafeReplacementConstant && "Failed to find undef replacement");
3578     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3579   }
3580 
3581   return Builder.CreateICmp(DstPred, X, M);
3582 }
3583 
3584 /// Some comparisons can be simplified.
3585 /// In this case, we are looking for comparisons that look like
3586 /// a check for a lossy signed truncation.
3587 /// Folds:   (MaskedBits is a constant.)
3588 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3589 /// Into:
3590 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3591 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3592 static Value *
3593 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3594                                  InstCombiner::BuilderTy &Builder) {
3595   ICmpInst::Predicate SrcPred;
3596   Value *X;
3597   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3598   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3599   if (!match(&I, m_c_ICmp(SrcPred,
3600                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3601                                           m_APInt(C1))),
3602                           m_Deferred(X))))
3603     return nullptr;
3604 
3605   // Potential handling of non-splats: for each element:
3606   //  * if both are undef, replace with constant 0.
3607   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3608   //  * if both are not undef, and are different, bailout.
3609   //  * else, only one is undef, then pick the non-undef one.
3610 
3611   // The shift amount must be equal.
3612   if (*C0 != *C1)
3613     return nullptr;
3614   const APInt &MaskedBits = *C0;
3615   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3616 
3617   ICmpInst::Predicate DstPred;
3618   switch (SrcPred) {
3619   case ICmpInst::Predicate::ICMP_EQ:
3620     // ((%x << MaskedBits) a>> MaskedBits) == %x
3621     //   =>
3622     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3623     DstPred = ICmpInst::Predicate::ICMP_ULT;
3624     break;
3625   case ICmpInst::Predicate::ICMP_NE:
3626     // ((%x << MaskedBits) a>> MaskedBits) != %x
3627     //   =>
3628     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3629     DstPred = ICmpInst::Predicate::ICMP_UGE;
3630     break;
3631   // FIXME: are more folds possible?
3632   default:
3633     return nullptr;
3634   }
3635 
3636   auto *XType = X->getType();
3637   const unsigned XBitWidth = XType->getScalarSizeInBits();
3638   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3639   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3640 
3641   // KeptBits = bitwidth(%x) - MaskedBits
3642   const APInt KeptBits = BitWidth - MaskedBits;
3643   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3644   // ICmpCst = (1 << KeptBits)
3645   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3646   assert(ICmpCst.isPowerOf2());
3647   // AddCst = (1 << (KeptBits-1))
3648   const APInt AddCst = ICmpCst.lshr(1);
3649   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3650 
3651   // T0 = add %x, AddCst
3652   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3653   // T1 = T0 DstPred ICmpCst
3654   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3655 
3656   return T1;
3657 }
3658 
3659 // Given pattern:
3660 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3661 // we should move shifts to the same hand of 'and', i.e. rewrite as
3662 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3663 // We are only interested in opposite logical shifts here.
3664 // One of the shifts can be truncated.
3665 // If we can, we want to end up creating 'lshr' shift.
3666 static Value *
3667 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3668                                            InstCombiner::BuilderTy &Builder) {
3669   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3670       !I.getOperand(0)->hasOneUse())
3671     return nullptr;
3672 
3673   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3674 
3675   // Look for an 'and' of two logical shifts, one of which may be truncated.
3676   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3677   Instruction *XShift, *MaybeTruncation, *YShift;
3678   if (!match(
3679           I.getOperand(0),
3680           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3681                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3682                                    m_AnyLogicalShift, m_Instruction(YShift))),
3683                                m_Instruction(MaybeTruncation)))))
3684     return nullptr;
3685 
3686   // We potentially looked past 'trunc', but only when matching YShift,
3687   // therefore YShift must have the widest type.
3688   Instruction *WidestShift = YShift;
3689   // Therefore XShift must have the shallowest type.
3690   // Or they both have identical types if there was no truncation.
3691   Instruction *NarrowestShift = XShift;
3692 
3693   Type *WidestTy = WidestShift->getType();
3694   Type *NarrowestTy = NarrowestShift->getType();
3695   assert(NarrowestTy == I.getOperand(0)->getType() &&
3696          "We did not look past any shifts while matching XShift though.");
3697   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3698 
3699   // If YShift is a 'lshr', swap the shifts around.
3700   if (match(YShift, m_LShr(m_Value(), m_Value())))
3701     std::swap(XShift, YShift);
3702 
3703   // The shifts must be in opposite directions.
3704   auto XShiftOpcode = XShift->getOpcode();
3705   if (XShiftOpcode == YShift->getOpcode())
3706     return nullptr; // Do not care about same-direction shifts here.
3707 
3708   Value *X, *XShAmt, *Y, *YShAmt;
3709   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3710   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3711 
3712   // If one of the values being shifted is a constant, then we will end with
3713   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3714   // however, we will need to ensure that we won't increase instruction count.
3715   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3716     // At least one of the hands of the 'and' should be one-use shift.
3717     if (!match(I.getOperand(0),
3718                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3719       return nullptr;
3720     if (HadTrunc) {
3721       // Due to the 'trunc', we will need to widen X. For that either the old
3722       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3723       if (!MaybeTruncation->hasOneUse() &&
3724           !NarrowestShift->getOperand(1)->hasOneUse())
3725         return nullptr;
3726     }
3727   }
3728 
3729   // We have two shift amounts from two different shifts. The types of those
3730   // shift amounts may not match. If that's the case let's bailout now.
3731   if (XShAmt->getType() != YShAmt->getType())
3732     return nullptr;
3733 
3734   // As input, we have the following pattern:
3735   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3736   // We want to rewrite that as:
3737   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3738   // While we know that originally (Q+K) would not overflow
3739   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3740   // shift amounts. so it may now overflow in smaller bitwidth.
3741   // To ensure that does not happen, we need to ensure that the total maximal
3742   // shift amount is still representable in that smaller bit width.
3743   unsigned MaximalPossibleTotalShiftAmount =
3744       (WidestTy->getScalarSizeInBits() - 1) +
3745       (NarrowestTy->getScalarSizeInBits() - 1);
3746   APInt MaximalRepresentableShiftAmount =
3747       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3748   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3749     return nullptr;
3750 
3751   // Can we fold (XShAmt+YShAmt) ?
3752   auto *NewShAmt = dyn_cast_or_null<Constant>(
3753       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3754                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3755   if (!NewShAmt)
3756     return nullptr;
3757   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3758   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3759 
3760   // Is the new shift amount smaller than the bit width?
3761   // FIXME: could also rely on ConstantRange.
3762   if (!match(NewShAmt,
3763              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3764                                 APInt(WidestBitWidth, WidestBitWidth))))
3765     return nullptr;
3766 
3767   // An extra legality check is needed if we had trunc-of-lshr.
3768   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3769     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3770                     WidestShift]() {
3771       // It isn't obvious whether it's worth it to analyze non-constants here.
3772       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3773       // If *any* of these preconditions matches we can perform the fold.
3774       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3775                                     ? NewShAmt->getSplatValue()
3776                                     : NewShAmt;
3777       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3778       if (NewShAmtSplat &&
3779           (NewShAmtSplat->isNullValue() ||
3780            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3781         return true;
3782       // We consider *min* leading zeros so a single outlier
3783       // blocks the transform as opposed to allowing it.
3784       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3785         KnownBits Known = computeKnownBits(C, SQ.DL);
3786         unsigned MinLeadZero = Known.countMinLeadingZeros();
3787         // If the value being shifted has at most lowest bit set we can fold.
3788         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3789         if (MaxActiveBits <= 1)
3790           return true;
3791         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3792         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3793           return true;
3794       }
3795       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3796         KnownBits Known = computeKnownBits(C, SQ.DL);
3797         unsigned MinLeadZero = Known.countMinLeadingZeros();
3798         // If the value being shifted has at most lowest bit set we can fold.
3799         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3800         if (MaxActiveBits <= 1)
3801           return true;
3802         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3803         if (NewShAmtSplat) {
3804           APInt AdjNewShAmt =
3805               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3806           if (AdjNewShAmt.ule(MinLeadZero))
3807             return true;
3808         }
3809       }
3810       return false; // Can't tell if it's ok.
3811     };
3812     if (!CanFold())
3813       return nullptr;
3814   }
3815 
3816   // All good, we can do this fold.
3817   X = Builder.CreateZExt(X, WidestTy);
3818   Y = Builder.CreateZExt(Y, WidestTy);
3819   // The shift is the same that was for X.
3820   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3821                   ? Builder.CreateLShr(X, NewShAmt)
3822                   : Builder.CreateShl(X, NewShAmt);
3823   Value *T1 = Builder.CreateAnd(T0, Y);
3824   return Builder.CreateICmp(I.getPredicate(), T1,
3825                             Constant::getNullValue(WidestTy));
3826 }
3827 
3828 /// Fold
3829 ///   (-1 u/ x) u< y
3830 ///   ((x * y) ?/ x) != y
3831 /// to
3832 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3833 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3834 /// will mean that we are looking for the opposite answer.
3835 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3836   ICmpInst::Predicate Pred;
3837   Value *X, *Y;
3838   Instruction *Mul;
3839   Instruction *Div;
3840   bool NeedNegation;
3841   // Look for: (-1 u/ x) u</u>= y
3842   if (!I.isEquality() &&
3843       match(&I, m_c_ICmp(Pred,
3844                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3845                                       m_Instruction(Div)),
3846                          m_Value(Y)))) {
3847     Mul = nullptr;
3848 
3849     // Are we checking that overflow does not happen, or does happen?
3850     switch (Pred) {
3851     case ICmpInst::Predicate::ICMP_ULT:
3852       NeedNegation = false;
3853       break; // OK
3854     case ICmpInst::Predicate::ICMP_UGE:
3855       NeedNegation = true;
3856       break; // OK
3857     default:
3858       return nullptr; // Wrong predicate.
3859     }
3860   } else // Look for: ((x * y) / x) !=/== y
3861       if (I.isEquality() &&
3862           match(&I,
3863                 m_c_ICmp(Pred, m_Value(Y),
3864                          m_CombineAnd(
3865                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3866                                                                   m_Value(X)),
3867                                                           m_Instruction(Mul)),
3868                                              m_Deferred(X))),
3869                              m_Instruction(Div))))) {
3870     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3871   } else
3872     return nullptr;
3873 
3874   BuilderTy::InsertPointGuard Guard(Builder);
3875   // If the pattern included (x * y), we'll want to insert new instructions
3876   // right before that original multiplication so that we can replace it.
3877   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3878   if (MulHadOtherUses)
3879     Builder.SetInsertPoint(Mul);
3880 
3881   Function *F = Intrinsic::getDeclaration(I.getModule(),
3882                                           Div->getOpcode() == Instruction::UDiv
3883                                               ? Intrinsic::umul_with_overflow
3884                                               : Intrinsic::smul_with_overflow,
3885                                           X->getType());
3886   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3887 
3888   // If the multiplication was used elsewhere, to ensure that we don't leave
3889   // "duplicate" instructions, replace uses of that original multiplication
3890   // with the multiplication result from the with.overflow intrinsic.
3891   if (MulHadOtherUses)
3892     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3893 
3894   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3895   if (NeedNegation) // This technically increases instruction count.
3896     Res = Builder.CreateNot(Res, "mul.not.ov");
3897 
3898   // If we replaced the mul, erase it. Do this after all uses of Builder,
3899   // as the mul is used as insertion point.
3900   if (MulHadOtherUses)
3901     eraseInstFromFunction(*Mul);
3902 
3903   return Res;
3904 }
3905 
3906 static Instruction *foldICmpXNegX(ICmpInst &I) {
3907   CmpInst::Predicate Pred;
3908   Value *X;
3909   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3910     return nullptr;
3911 
3912   if (ICmpInst::isSigned(Pred))
3913     Pred = ICmpInst::getSwappedPredicate(Pred);
3914   else if (ICmpInst::isUnsigned(Pred))
3915     Pred = ICmpInst::getSignedPredicate(Pred);
3916   // else for equality-comparisons just keep the predicate.
3917 
3918   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3919                           Constant::getNullValue(X->getType()), I.getName());
3920 }
3921 
3922 /// Try to fold icmp (binop), X or icmp X, (binop).
3923 /// TODO: A large part of this logic is duplicated in InstSimplify's
3924 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3925 /// duplication.
3926 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3927                                              const SimplifyQuery &SQ) {
3928   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3929   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3930 
3931   // Special logic for binary operators.
3932   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3933   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3934   if (!BO0 && !BO1)
3935     return nullptr;
3936 
3937   if (Instruction *NewICmp = foldICmpXNegX(I))
3938     return NewICmp;
3939 
3940   const CmpInst::Predicate Pred = I.getPredicate();
3941   Value *X;
3942 
3943   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3944   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3945   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3946       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3947     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3948   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3949   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3950       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3951     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3952 
3953   {
3954     // Similar to above: an unsigned overflow comparison may use offset + mask:
3955     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
3956     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
3957     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
3958     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
3959     BinaryOperator *BO;
3960     const APInt *C;
3961     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
3962         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3963         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
3964       CmpInst::Predicate NewPred =
3965           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
3966       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
3967       return new ICmpInst(NewPred, Op1, Zero);
3968     }
3969 
3970     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
3971         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3972         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
3973       CmpInst::Predicate NewPred =
3974           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
3975       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
3976       return new ICmpInst(NewPred, Op0, Zero);
3977     }
3978   }
3979 
3980   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3981   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3982     NoOp0WrapProblem =
3983         ICmpInst::isEquality(Pred) ||
3984         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3985         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3986   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3987     NoOp1WrapProblem =
3988         ICmpInst::isEquality(Pred) ||
3989         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3990         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3991 
3992   // Analyze the case when either Op0 or Op1 is an add instruction.
3993   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3994   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3995   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3996     A = BO0->getOperand(0);
3997     B = BO0->getOperand(1);
3998   }
3999   if (BO1 && BO1->getOpcode() == Instruction::Add) {
4000     C = BO1->getOperand(0);
4001     D = BO1->getOperand(1);
4002   }
4003 
4004   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4005   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4006   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4007     return new ICmpInst(Pred, A == Op1 ? B : A,
4008                         Constant::getNullValue(Op1->getType()));
4009 
4010   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4011   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4012   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4013     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4014                         C == Op0 ? D : C);
4015 
4016   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4017   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4018       NoOp1WrapProblem) {
4019     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4020     Value *Y, *Z;
4021     if (A == C) {
4022       // C + B == C + D  ->  B == D
4023       Y = B;
4024       Z = D;
4025     } else if (A == D) {
4026       // D + B == C + D  ->  B == C
4027       Y = B;
4028       Z = C;
4029     } else if (B == C) {
4030       // A + C == C + D  ->  A == D
4031       Y = A;
4032       Z = D;
4033     } else {
4034       assert(B == D);
4035       // A + D == C + D  ->  A == C
4036       Y = A;
4037       Z = C;
4038     }
4039     return new ICmpInst(Pred, Y, Z);
4040   }
4041 
4042   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4043   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4044       match(B, m_AllOnes()))
4045     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4046 
4047   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4048   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4049       match(B, m_AllOnes()))
4050     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4051 
4052   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4053   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4054     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4055 
4056   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4057   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4058     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4059 
4060   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4061   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4062       match(D, m_AllOnes()))
4063     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4064 
4065   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4066   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4067       match(D, m_AllOnes()))
4068     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4069 
4070   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4071   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4072     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4073 
4074   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4075   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4076     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4077 
4078   // TODO: The subtraction-related identities shown below also hold, but
4079   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4080   // wouldn't happen even if they were implemented.
4081   //
4082   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4083   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4084   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4085   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4086 
4087   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4088   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4089     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4090 
4091   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4092   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4093     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4094 
4095   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4096   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4097     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4098 
4099   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4100   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4101     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4102 
4103   // if C1 has greater magnitude than C2:
4104   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4105   //  s.t. C3 = C1 - C2
4106   //
4107   // if C2 has greater magnitude than C1:
4108   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4109   //  s.t. C3 = C2 - C1
4110   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4111       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
4112     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
4113       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
4114         const APInt &AP1 = C1->getValue();
4115         const APInt &AP2 = C2->getValue();
4116         if (AP1.isNegative() == AP2.isNegative()) {
4117           APInt AP1Abs = C1->getValue().abs();
4118           APInt AP2Abs = C2->getValue().abs();
4119           if (AP1Abs.uge(AP2Abs)) {
4120             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
4121             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
4122             bool HasNSW = BO0->hasNoSignedWrap();
4123             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4124             return new ICmpInst(Pred, NewAdd, C);
4125           } else {
4126             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
4127             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
4128             bool HasNSW = BO1->hasNoSignedWrap();
4129             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4130             return new ICmpInst(Pred, A, NewAdd);
4131           }
4132         }
4133       }
4134 
4135   // Analyze the case when either Op0 or Op1 is a sub instruction.
4136   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4137   A = nullptr;
4138   B = nullptr;
4139   C = nullptr;
4140   D = nullptr;
4141   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4142     A = BO0->getOperand(0);
4143     B = BO0->getOperand(1);
4144   }
4145   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4146     C = BO1->getOperand(0);
4147     D = BO1->getOperand(1);
4148   }
4149 
4150   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4151   if (A == Op1 && NoOp0WrapProblem)
4152     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4153   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4154   if (C == Op0 && NoOp1WrapProblem)
4155     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4156 
4157   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4158   // (A - B) u>/u<= A --> B u>/u<= A
4159   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4160     return new ICmpInst(Pred, B, A);
4161   // C u</u>= (C - D) --> C u</u>= D
4162   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4163     return new ICmpInst(Pred, C, D);
4164   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4165   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4166       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4167     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4168   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4169   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4170       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4171     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4172 
4173   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4174   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4175     return new ICmpInst(Pred, A, C);
4176 
4177   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4178   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4179     return new ICmpInst(Pred, D, B);
4180 
4181   // icmp (0-X) < cst --> x > -cst
4182   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4183     Value *X;
4184     if (match(BO0, m_Neg(m_Value(X))))
4185       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4186         if (RHSC->isNotMinSignedValue())
4187           return new ICmpInst(I.getSwappedPredicate(), X,
4188                               ConstantExpr::getNeg(RHSC));
4189   }
4190 
4191   {
4192     // Try to remove shared constant multiplier from equality comparison:
4193     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4194     Value *X, *Y;
4195     const APInt *C;
4196     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4197         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4198       if (!C->countTrailingZeros() ||
4199           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4200           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4201       return new ICmpInst(Pred, X, Y);
4202   }
4203 
4204   BinaryOperator *SRem = nullptr;
4205   // icmp (srem X, Y), Y
4206   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4207     SRem = BO0;
4208   // icmp Y, (srem X, Y)
4209   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4210            Op0 == BO1->getOperand(1))
4211     SRem = BO1;
4212   if (SRem) {
4213     // We don't check hasOneUse to avoid increasing register pressure because
4214     // the value we use is the same value this instruction was already using.
4215     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4216     default:
4217       break;
4218     case ICmpInst::ICMP_EQ:
4219       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4220     case ICmpInst::ICMP_NE:
4221       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4222     case ICmpInst::ICMP_SGT:
4223     case ICmpInst::ICMP_SGE:
4224       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4225                           Constant::getAllOnesValue(SRem->getType()));
4226     case ICmpInst::ICMP_SLT:
4227     case ICmpInst::ICMP_SLE:
4228       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4229                           Constant::getNullValue(SRem->getType()));
4230     }
4231   }
4232 
4233   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4234       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4235     switch (BO0->getOpcode()) {
4236     default:
4237       break;
4238     case Instruction::Add:
4239     case Instruction::Sub:
4240     case Instruction::Xor: {
4241       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4242         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4243 
4244       const APInt *C;
4245       if (match(BO0->getOperand(1), m_APInt(C))) {
4246         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4247         if (C->isSignMask()) {
4248           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4249           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4250         }
4251 
4252         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4253         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4254           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4255           NewPred = I.getSwappedPredicate(NewPred);
4256           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4257         }
4258       }
4259       break;
4260     }
4261     case Instruction::Mul: {
4262       if (!I.isEquality())
4263         break;
4264 
4265       const APInt *C;
4266       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4267           !C->isOne()) {
4268         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4269         // Mask = -1 >> count-trailing-zeros(C).
4270         if (unsigned TZs = C->countTrailingZeros()) {
4271           Constant *Mask = ConstantInt::get(
4272               BO0->getType(),
4273               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4274           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4275           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4276           return new ICmpInst(Pred, And1, And2);
4277         }
4278       }
4279       break;
4280     }
4281     case Instruction::UDiv:
4282     case Instruction::LShr:
4283       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4284         break;
4285       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4286 
4287     case Instruction::SDiv:
4288       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4289         break;
4290       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4291 
4292     case Instruction::AShr:
4293       if (!BO0->isExact() || !BO1->isExact())
4294         break;
4295       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4296 
4297     case Instruction::Shl: {
4298       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4299       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4300       if (!NUW && !NSW)
4301         break;
4302       if (!NSW && I.isSigned())
4303         break;
4304       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4305     }
4306     }
4307   }
4308 
4309   if (BO0) {
4310     // Transform  A & (L - 1) `ult` L --> L != 0
4311     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4312     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4313 
4314     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4315       auto *Zero = Constant::getNullValue(BO0->getType());
4316       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4317     }
4318   }
4319 
4320   if (Value *V = foldMultiplicationOverflowCheck(I))
4321     return replaceInstUsesWith(I, V);
4322 
4323   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4324     return replaceInstUsesWith(I, V);
4325 
4326   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4327     return replaceInstUsesWith(I, V);
4328 
4329   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4330     return replaceInstUsesWith(I, V);
4331 
4332   return nullptr;
4333 }
4334 
4335 /// Fold icmp Pred min|max(X, Y), X.
4336 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4337   ICmpInst::Predicate Pred = Cmp.getPredicate();
4338   Value *Op0 = Cmp.getOperand(0);
4339   Value *X = Cmp.getOperand(1);
4340 
4341   // Canonicalize minimum or maximum operand to LHS of the icmp.
4342   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4343       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4344       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4345       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4346     std::swap(Op0, X);
4347     Pred = Cmp.getSwappedPredicate();
4348   }
4349 
4350   Value *Y;
4351   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4352     // smin(X, Y)  == X --> X s<= Y
4353     // smin(X, Y) s>= X --> X s<= Y
4354     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4355       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4356 
4357     // smin(X, Y) != X --> X s> Y
4358     // smin(X, Y) s< X --> X s> Y
4359     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4360       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4361 
4362     // These cases should be handled in InstSimplify:
4363     // smin(X, Y) s<= X --> true
4364     // smin(X, Y) s> X --> false
4365     return nullptr;
4366   }
4367 
4368   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4369     // smax(X, Y)  == X --> X s>= Y
4370     // smax(X, Y) s<= X --> X s>= Y
4371     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4372       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4373 
4374     // smax(X, Y) != X --> X s< Y
4375     // smax(X, Y) s> X --> X s< Y
4376     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4377       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4378 
4379     // These cases should be handled in InstSimplify:
4380     // smax(X, Y) s>= X --> true
4381     // smax(X, Y) s< X --> false
4382     return nullptr;
4383   }
4384 
4385   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4386     // umin(X, Y)  == X --> X u<= Y
4387     // umin(X, Y) u>= X --> X u<= Y
4388     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4389       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4390 
4391     // umin(X, Y) != X --> X u> Y
4392     // umin(X, Y) u< X --> X u> Y
4393     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4394       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4395 
4396     // These cases should be handled in InstSimplify:
4397     // umin(X, Y) u<= X --> true
4398     // umin(X, Y) u> X --> false
4399     return nullptr;
4400   }
4401 
4402   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4403     // umax(X, Y)  == X --> X u>= Y
4404     // umax(X, Y) u<= X --> X u>= Y
4405     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4406       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4407 
4408     // umax(X, Y) != X --> X u< Y
4409     // umax(X, Y) u> X --> X u< Y
4410     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4411       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4412 
4413     // These cases should be handled in InstSimplify:
4414     // umax(X, Y) u>= X --> true
4415     // umax(X, Y) u< X --> false
4416     return nullptr;
4417   }
4418 
4419   return nullptr;
4420 }
4421 
4422 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4423   if (!I.isEquality())
4424     return nullptr;
4425 
4426   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4427   const CmpInst::Predicate Pred = I.getPredicate();
4428   Value *A, *B, *C, *D;
4429   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4430     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4431       Value *OtherVal = A == Op1 ? B : A;
4432       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4433     }
4434 
4435     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4436       // A^c1 == C^c2 --> A == C^(c1^c2)
4437       ConstantInt *C1, *C2;
4438       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4439           Op1->hasOneUse()) {
4440         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4441         Value *Xor = Builder.CreateXor(C, NC);
4442         return new ICmpInst(Pred, A, Xor);
4443       }
4444 
4445       // A^B == A^D -> B == D
4446       if (A == C)
4447         return new ICmpInst(Pred, B, D);
4448       if (A == D)
4449         return new ICmpInst(Pred, B, C);
4450       if (B == C)
4451         return new ICmpInst(Pred, A, D);
4452       if (B == D)
4453         return new ICmpInst(Pred, A, C);
4454     }
4455   }
4456 
4457   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4458     // A == (A^B)  ->  B == 0
4459     Value *OtherVal = A == Op0 ? B : A;
4460     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4461   }
4462 
4463   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4464   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4465       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4466     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4467 
4468     if (A == C) {
4469       X = B;
4470       Y = D;
4471       Z = A;
4472     } else if (A == D) {
4473       X = B;
4474       Y = C;
4475       Z = A;
4476     } else if (B == C) {
4477       X = A;
4478       Y = D;
4479       Z = B;
4480     } else if (B == D) {
4481       X = A;
4482       Y = C;
4483       Z = B;
4484     }
4485 
4486     if (X) { // Build (X^Y) & Z
4487       Op1 = Builder.CreateXor(X, Y);
4488       Op1 = Builder.CreateAnd(Op1, Z);
4489       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4490     }
4491   }
4492 
4493   {
4494     // Similar to above, but specialized for constant because invert is needed:
4495     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4496     Value *X, *Y;
4497     Constant *C;
4498     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4499         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4500       Value *Xor = Builder.CreateXor(X, Y);
4501       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4502       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4503     }
4504   }
4505 
4506   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4507   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4508   ConstantInt *Cst1;
4509   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4510        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4511       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4512        match(Op1, m_ZExt(m_Value(A))))) {
4513     APInt Pow2 = Cst1->getValue() + 1;
4514     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4515         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4516       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4517   }
4518 
4519   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4520   // For lshr and ashr pairs.
4521   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4522        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4523       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4524        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4525     unsigned TypeBits = Cst1->getBitWidth();
4526     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4527     if (ShAmt < TypeBits && ShAmt != 0) {
4528       ICmpInst::Predicate NewPred =
4529           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4530       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4531       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4532       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4533     }
4534   }
4535 
4536   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4537   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4538       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4539     unsigned TypeBits = Cst1->getBitWidth();
4540     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4541     if (ShAmt < TypeBits && ShAmt != 0) {
4542       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4543       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4544       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4545                                       I.getName() + ".mask");
4546       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4547     }
4548   }
4549 
4550   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4551   // "icmp (and X, mask), cst"
4552   uint64_t ShAmt = 0;
4553   if (Op0->hasOneUse() &&
4554       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4555       match(Op1, m_ConstantInt(Cst1)) &&
4556       // Only do this when A has multiple uses.  This is most important to do
4557       // when it exposes other optimizations.
4558       !A->hasOneUse()) {
4559     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4560 
4561     if (ShAmt < ASize) {
4562       APInt MaskV =
4563           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4564       MaskV <<= ShAmt;
4565 
4566       APInt CmpV = Cst1->getValue().zext(ASize);
4567       CmpV <<= ShAmt;
4568 
4569       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4570       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4571     }
4572   }
4573 
4574   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4575     return ICmp;
4576 
4577   // Canonicalize checking for a power-of-2-or-zero value:
4578   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4579   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4580   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4581                                    m_Deferred(A)))) ||
4582       !match(Op1, m_ZeroInt()))
4583     A = nullptr;
4584 
4585   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4586   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4587   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4588     A = Op1;
4589   else if (match(Op1,
4590                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4591     A = Op0;
4592 
4593   if (A) {
4594     Type *Ty = A->getType();
4595     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4596     return Pred == ICmpInst::ICMP_EQ
4597         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4598         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4599   }
4600 
4601   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4602   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4603   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4604   // of instcombine.
4605   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4606   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4607       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4608       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4609       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4610     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4611     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4612     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4613                                                   : ICmpInst::ICMP_UGE,
4614                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4615   }
4616 
4617   return nullptr;
4618 }
4619 
4620 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4621                                       InstCombiner::BuilderTy &Builder) {
4622   ICmpInst::Predicate Pred = ICmp.getPredicate();
4623   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4624 
4625   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4626   // The trunc masks high bits while the compare may effectively mask low bits.
4627   Value *X;
4628   const APInt *C;
4629   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4630     return nullptr;
4631 
4632   // This matches patterns corresponding to tests of the signbit as well as:
4633   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4634   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4635   APInt Mask;
4636   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4637     Value *And = Builder.CreateAnd(X, Mask);
4638     Constant *Zero = ConstantInt::getNullValue(X->getType());
4639     return new ICmpInst(Pred, And, Zero);
4640   }
4641 
4642   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4643   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4644     // If C is a negative power-of-2 (high-bit mask):
4645     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4646     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4647     Value *And = Builder.CreateAnd(X, MaskC);
4648     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4649   }
4650 
4651   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4652     // If C is not-of-power-of-2 (one clear bit):
4653     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4654     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4655     Value *And = Builder.CreateAnd(X, MaskC);
4656     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4657   }
4658 
4659   return nullptr;
4660 }
4661 
4662 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4663                                            InstCombiner::BuilderTy &Builder) {
4664   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4665   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4666   Value *X;
4667   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4668     return nullptr;
4669 
4670   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4671   bool IsSignedCmp = ICmp.isSigned();
4672   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4673     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4674     // and the other is a zext), then we can't handle this.
4675     // TODO: This is too strict. We can handle some predicates (equality?).
4676     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4677       return nullptr;
4678 
4679     // Not an extension from the same type?
4680     Value *Y = CastOp1->getOperand(0);
4681     Type *XTy = X->getType(), *YTy = Y->getType();
4682     if (XTy != YTy) {
4683       // One of the casts must have one use because we are creating a new cast.
4684       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4685         return nullptr;
4686       // Extend the narrower operand to the type of the wider operand.
4687       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4688         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4689       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4690         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4691       else
4692         return nullptr;
4693     }
4694 
4695     // (zext X) == (zext Y) --> X == Y
4696     // (sext X) == (sext Y) --> X == Y
4697     if (ICmp.isEquality())
4698       return new ICmpInst(ICmp.getPredicate(), X, Y);
4699 
4700     // A signed comparison of sign extended values simplifies into a
4701     // signed comparison.
4702     if (IsSignedCmp && IsSignedExt)
4703       return new ICmpInst(ICmp.getPredicate(), X, Y);
4704 
4705     // The other three cases all fold into an unsigned comparison.
4706     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4707   }
4708 
4709   // Below here, we are only folding a compare with constant.
4710   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4711   if (!C)
4712     return nullptr;
4713 
4714   // Compute the constant that would happen if we truncated to SrcTy then
4715   // re-extended to DestTy.
4716   Type *SrcTy = CastOp0->getSrcTy();
4717   Type *DestTy = CastOp0->getDestTy();
4718   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4719   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4720 
4721   // If the re-extended constant didn't change...
4722   if (Res2 == C) {
4723     if (ICmp.isEquality())
4724       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4725 
4726     // A signed comparison of sign extended values simplifies into a
4727     // signed comparison.
4728     if (IsSignedExt && IsSignedCmp)
4729       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4730 
4731     // The other three cases all fold into an unsigned comparison.
4732     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4733   }
4734 
4735   // The re-extended constant changed, partly changed (in the case of a vector),
4736   // or could not be determined to be equal (in the case of a constant
4737   // expression), so the constant cannot be represented in the shorter type.
4738   // All the cases that fold to true or false will have already been handled
4739   // by SimplifyICmpInst, so only deal with the tricky case.
4740   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4741     return nullptr;
4742 
4743   // Is source op positive?
4744   // icmp ult (sext X), C --> icmp sgt X, -1
4745   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4746     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4747 
4748   // Is source op negative?
4749   // icmp ugt (sext X), C --> icmp slt X, 0
4750   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4751   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4752 }
4753 
4754 /// Handle icmp (cast x), (cast or constant).
4755 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4756   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4757   // icmp compares only pointer's value.
4758   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4759   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4760   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4761   if (SimplifiedOp0 || SimplifiedOp1)
4762     return new ICmpInst(ICmp.getPredicate(),
4763                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4764                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4765 
4766   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4767   if (!CastOp0)
4768     return nullptr;
4769   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4770     return nullptr;
4771 
4772   Value *Op0Src = CastOp0->getOperand(0);
4773   Type *SrcTy = CastOp0->getSrcTy();
4774   Type *DestTy = CastOp0->getDestTy();
4775 
4776   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4777   // integer type is the same size as the pointer type.
4778   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4779     if (isa<VectorType>(SrcTy)) {
4780       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4781       DestTy = cast<VectorType>(DestTy)->getElementType();
4782     }
4783     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4784   };
4785   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4786       CompatibleSizes(SrcTy, DestTy)) {
4787     Value *NewOp1 = nullptr;
4788     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4789       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4790       if (PtrSrc->getType()->getPointerAddressSpace() ==
4791           Op0Src->getType()->getPointerAddressSpace()) {
4792         NewOp1 = PtrToIntOp1->getOperand(0);
4793         // If the pointer types don't match, insert a bitcast.
4794         if (Op0Src->getType() != NewOp1->getType())
4795           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4796       }
4797     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4798       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4799     }
4800 
4801     if (NewOp1)
4802       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4803   }
4804 
4805   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4806     return R;
4807 
4808   return foldICmpWithZextOrSext(ICmp, Builder);
4809 }
4810 
4811 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4812   switch (BinaryOp) {
4813     default:
4814       llvm_unreachable("Unsupported binary op");
4815     case Instruction::Add:
4816     case Instruction::Sub:
4817       return match(RHS, m_Zero());
4818     case Instruction::Mul:
4819       return match(RHS, m_One());
4820   }
4821 }
4822 
4823 OverflowResult
4824 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4825                                   bool IsSigned, Value *LHS, Value *RHS,
4826                                   Instruction *CxtI) const {
4827   switch (BinaryOp) {
4828     default:
4829       llvm_unreachable("Unsupported binary op");
4830     case Instruction::Add:
4831       if (IsSigned)
4832         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4833       else
4834         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4835     case Instruction::Sub:
4836       if (IsSigned)
4837         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4838       else
4839         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4840     case Instruction::Mul:
4841       if (IsSigned)
4842         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4843       else
4844         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4845   }
4846 }
4847 
4848 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4849                                              bool IsSigned, Value *LHS,
4850                                              Value *RHS, Instruction &OrigI,
4851                                              Value *&Result,
4852                                              Constant *&Overflow) {
4853   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4854     std::swap(LHS, RHS);
4855 
4856   // If the overflow check was an add followed by a compare, the insertion point
4857   // may be pointing to the compare.  We want to insert the new instructions
4858   // before the add in case there are uses of the add between the add and the
4859   // compare.
4860   Builder.SetInsertPoint(&OrigI);
4861 
4862   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4863   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4864     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4865 
4866   if (isNeutralValue(BinaryOp, RHS)) {
4867     Result = LHS;
4868     Overflow = ConstantInt::getFalse(OverflowTy);
4869     return true;
4870   }
4871 
4872   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4873     case OverflowResult::MayOverflow:
4874       return false;
4875     case OverflowResult::AlwaysOverflowsLow:
4876     case OverflowResult::AlwaysOverflowsHigh:
4877       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4878       Result->takeName(&OrigI);
4879       Overflow = ConstantInt::getTrue(OverflowTy);
4880       return true;
4881     case OverflowResult::NeverOverflows:
4882       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4883       Result->takeName(&OrigI);
4884       Overflow = ConstantInt::getFalse(OverflowTy);
4885       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4886         if (IsSigned)
4887           Inst->setHasNoSignedWrap();
4888         else
4889           Inst->setHasNoUnsignedWrap();
4890       }
4891       return true;
4892   }
4893 
4894   llvm_unreachable("Unexpected overflow result");
4895 }
4896 
4897 /// Recognize and process idiom involving test for multiplication
4898 /// overflow.
4899 ///
4900 /// The caller has matched a pattern of the form:
4901 ///   I = cmp u (mul(zext A, zext B), V
4902 /// The function checks if this is a test for overflow and if so replaces
4903 /// multiplication with call to 'mul.with.overflow' intrinsic.
4904 ///
4905 /// \param I Compare instruction.
4906 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4907 ///               the compare instruction.  Must be of integer type.
4908 /// \param OtherVal The other argument of compare instruction.
4909 /// \returns Instruction which must replace the compare instruction, NULL if no
4910 ///          replacement required.
4911 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4912                                          Value *OtherVal,
4913                                          InstCombinerImpl &IC) {
4914   // Don't bother doing this transformation for pointers, don't do it for
4915   // vectors.
4916   if (!isa<IntegerType>(MulVal->getType()))
4917     return nullptr;
4918 
4919   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4920   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4921   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4922   if (!MulInstr)
4923     return nullptr;
4924   assert(MulInstr->getOpcode() == Instruction::Mul);
4925 
4926   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4927        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4928   assert(LHS->getOpcode() == Instruction::ZExt);
4929   assert(RHS->getOpcode() == Instruction::ZExt);
4930   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4931 
4932   // Calculate type and width of the result produced by mul.with.overflow.
4933   Type *TyA = A->getType(), *TyB = B->getType();
4934   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4935            WidthB = TyB->getPrimitiveSizeInBits();
4936   unsigned MulWidth;
4937   Type *MulType;
4938   if (WidthB > WidthA) {
4939     MulWidth = WidthB;
4940     MulType = TyB;
4941   } else {
4942     MulWidth = WidthA;
4943     MulType = TyA;
4944   }
4945 
4946   // In order to replace the original mul with a narrower mul.with.overflow,
4947   // all uses must ignore upper bits of the product.  The number of used low
4948   // bits must be not greater than the width of mul.with.overflow.
4949   if (MulVal->hasNUsesOrMore(2))
4950     for (User *U : MulVal->users()) {
4951       if (U == &I)
4952         continue;
4953       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4954         // Check if truncation ignores bits above MulWidth.
4955         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4956         if (TruncWidth > MulWidth)
4957           return nullptr;
4958       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4959         // Check if AND ignores bits above MulWidth.
4960         if (BO->getOpcode() != Instruction::And)
4961           return nullptr;
4962         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4963           const APInt &CVal = CI->getValue();
4964           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4965             return nullptr;
4966         } else {
4967           // In this case we could have the operand of the binary operation
4968           // being defined in another block, and performing the replacement
4969           // could break the dominance relation.
4970           return nullptr;
4971         }
4972       } else {
4973         // Other uses prohibit this transformation.
4974         return nullptr;
4975       }
4976     }
4977 
4978   // Recognize patterns
4979   switch (I.getPredicate()) {
4980   case ICmpInst::ICMP_EQ:
4981   case ICmpInst::ICMP_NE:
4982     // Recognize pattern:
4983     //   mulval = mul(zext A, zext B)
4984     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4985     ConstantInt *CI;
4986     Value *ValToMask;
4987     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4988       if (ValToMask != MulVal)
4989         return nullptr;
4990       const APInt &CVal = CI->getValue() + 1;
4991       if (CVal.isPowerOf2()) {
4992         unsigned MaskWidth = CVal.logBase2();
4993         if (MaskWidth == MulWidth)
4994           break; // Recognized
4995       }
4996     }
4997     return nullptr;
4998 
4999   case ICmpInst::ICMP_UGT:
5000     // Recognize pattern:
5001     //   mulval = mul(zext A, zext B)
5002     //   cmp ugt mulval, max
5003     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5004       APInt MaxVal = APInt::getMaxValue(MulWidth);
5005       MaxVal = MaxVal.zext(CI->getBitWidth());
5006       if (MaxVal.eq(CI->getValue()))
5007         break; // Recognized
5008     }
5009     return nullptr;
5010 
5011   case ICmpInst::ICMP_UGE:
5012     // Recognize pattern:
5013     //   mulval = mul(zext A, zext B)
5014     //   cmp uge mulval, max+1
5015     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5016       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5017       if (MaxVal.eq(CI->getValue()))
5018         break; // Recognized
5019     }
5020     return nullptr;
5021 
5022   case ICmpInst::ICMP_ULE:
5023     // Recognize pattern:
5024     //   mulval = mul(zext A, zext B)
5025     //   cmp ule mulval, max
5026     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5027       APInt MaxVal = APInt::getMaxValue(MulWidth);
5028       MaxVal = MaxVal.zext(CI->getBitWidth());
5029       if (MaxVal.eq(CI->getValue()))
5030         break; // Recognized
5031     }
5032     return nullptr;
5033 
5034   case ICmpInst::ICMP_ULT:
5035     // Recognize pattern:
5036     //   mulval = mul(zext A, zext B)
5037     //   cmp ule mulval, max + 1
5038     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5039       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5040       if (MaxVal.eq(CI->getValue()))
5041         break; // Recognized
5042     }
5043     return nullptr;
5044 
5045   default:
5046     return nullptr;
5047   }
5048 
5049   InstCombiner::BuilderTy &Builder = IC.Builder;
5050   Builder.SetInsertPoint(MulInstr);
5051 
5052   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5053   Value *MulA = A, *MulB = B;
5054   if (WidthA < MulWidth)
5055     MulA = Builder.CreateZExt(A, MulType);
5056   if (WidthB < MulWidth)
5057     MulB = Builder.CreateZExt(B, MulType);
5058   Function *F = Intrinsic::getDeclaration(
5059       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5060   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5061   IC.addToWorklist(MulInstr);
5062 
5063   // If there are uses of mul result other than the comparison, we know that
5064   // they are truncation or binary AND. Change them to use result of
5065   // mul.with.overflow and adjust properly mask/size.
5066   if (MulVal->hasNUsesOrMore(2)) {
5067     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5068     for (User *U : make_early_inc_range(MulVal->users())) {
5069       if (U == &I || U == OtherVal)
5070         continue;
5071       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5072         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5073           IC.replaceInstUsesWith(*TI, Mul);
5074         else
5075           TI->setOperand(0, Mul);
5076       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5077         assert(BO->getOpcode() == Instruction::And);
5078         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5079         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5080         APInt ShortMask = CI->getValue().trunc(MulWidth);
5081         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5082         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5083         IC.replaceInstUsesWith(*BO, Zext);
5084       } else {
5085         llvm_unreachable("Unexpected Binary operation");
5086       }
5087       IC.addToWorklist(cast<Instruction>(U));
5088     }
5089   }
5090   if (isa<Instruction>(OtherVal))
5091     IC.addToWorklist(cast<Instruction>(OtherVal));
5092 
5093   // The original icmp gets replaced with the overflow value, maybe inverted
5094   // depending on predicate.
5095   bool Inverse = false;
5096   switch (I.getPredicate()) {
5097   case ICmpInst::ICMP_NE:
5098     break;
5099   case ICmpInst::ICMP_EQ:
5100     Inverse = true;
5101     break;
5102   case ICmpInst::ICMP_UGT:
5103   case ICmpInst::ICMP_UGE:
5104     if (I.getOperand(0) == MulVal)
5105       break;
5106     Inverse = true;
5107     break;
5108   case ICmpInst::ICMP_ULT:
5109   case ICmpInst::ICMP_ULE:
5110     if (I.getOperand(1) == MulVal)
5111       break;
5112     Inverse = true;
5113     break;
5114   default:
5115     llvm_unreachable("Unexpected predicate");
5116   }
5117   if (Inverse) {
5118     Value *Res = Builder.CreateExtractValue(Call, 1);
5119     return BinaryOperator::CreateNot(Res);
5120   }
5121 
5122   return ExtractValueInst::Create(Call, 1);
5123 }
5124 
5125 /// When performing a comparison against a constant, it is possible that not all
5126 /// the bits in the LHS are demanded. This helper method computes the mask that
5127 /// IS demanded.
5128 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5129   const APInt *RHS;
5130   if (!match(I.getOperand(1), m_APInt(RHS)))
5131     return APInt::getAllOnes(BitWidth);
5132 
5133   // If this is a normal comparison, it demands all bits. If it is a sign bit
5134   // comparison, it only demands the sign bit.
5135   bool UnusedBit;
5136   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5137     return APInt::getSignMask(BitWidth);
5138 
5139   switch (I.getPredicate()) {
5140   // For a UGT comparison, we don't care about any bits that
5141   // correspond to the trailing ones of the comparand.  The value of these
5142   // bits doesn't impact the outcome of the comparison, because any value
5143   // greater than the RHS must differ in a bit higher than these due to carry.
5144   case ICmpInst::ICMP_UGT:
5145     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5146 
5147   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5148   // Any value less than the RHS must differ in a higher bit because of carries.
5149   case ICmpInst::ICMP_ULT:
5150     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5151 
5152   default:
5153     return APInt::getAllOnes(BitWidth);
5154   }
5155 }
5156 
5157 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5158 /// should be swapped.
5159 /// The decision is based on how many times these two operands are reused
5160 /// as subtract operands and their positions in those instructions.
5161 /// The rationale is that several architectures use the same instruction for
5162 /// both subtract and cmp. Thus, it is better if the order of those operands
5163 /// match.
5164 /// \return true if Op0 and Op1 should be swapped.
5165 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5166   // Filter out pointer values as those cannot appear directly in subtract.
5167   // FIXME: we may want to go through inttoptrs or bitcasts.
5168   if (Op0->getType()->isPointerTy())
5169     return false;
5170   // If a subtract already has the same operands as a compare, swapping would be
5171   // bad. If a subtract has the same operands as a compare but in reverse order,
5172   // then swapping is good.
5173   int GoodToSwap = 0;
5174   for (const User *U : Op0->users()) {
5175     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5176       GoodToSwap++;
5177     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5178       GoodToSwap--;
5179   }
5180   return GoodToSwap > 0;
5181 }
5182 
5183 /// Check that one use is in the same block as the definition and all
5184 /// other uses are in blocks dominated by a given block.
5185 ///
5186 /// \param DI Definition
5187 /// \param UI Use
5188 /// \param DB Block that must dominate all uses of \p DI outside
5189 ///           the parent block
5190 /// \return true when \p UI is the only use of \p DI in the parent block
5191 /// and all other uses of \p DI are in blocks dominated by \p DB.
5192 ///
5193 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5194                                         const Instruction *UI,
5195                                         const BasicBlock *DB) const {
5196   assert(DI && UI && "Instruction not defined\n");
5197   // Ignore incomplete definitions.
5198   if (!DI->getParent())
5199     return false;
5200   // DI and UI must be in the same block.
5201   if (DI->getParent() != UI->getParent())
5202     return false;
5203   // Protect from self-referencing blocks.
5204   if (DI->getParent() == DB)
5205     return false;
5206   for (const User *U : DI->users()) {
5207     auto *Usr = cast<Instruction>(U);
5208     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5209       return false;
5210   }
5211   return true;
5212 }
5213 
5214 /// Return true when the instruction sequence within a block is select-cmp-br.
5215 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5216   const BasicBlock *BB = SI->getParent();
5217   if (!BB)
5218     return false;
5219   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5220   if (!BI || BI->getNumSuccessors() != 2)
5221     return false;
5222   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5223   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5224     return false;
5225   return true;
5226 }
5227 
5228 /// True when a select result is replaced by one of its operands
5229 /// in select-icmp sequence. This will eventually result in the elimination
5230 /// of the select.
5231 ///
5232 /// \param SI    Select instruction
5233 /// \param Icmp  Compare instruction
5234 /// \param SIOpd Operand that replaces the select
5235 ///
5236 /// Notes:
5237 /// - The replacement is global and requires dominator information
5238 /// - The caller is responsible for the actual replacement
5239 ///
5240 /// Example:
5241 ///
5242 /// entry:
5243 ///  %4 = select i1 %3, %C* %0, %C* null
5244 ///  %5 = icmp eq %C* %4, null
5245 ///  br i1 %5, label %9, label %7
5246 ///  ...
5247 ///  ; <label>:7                                       ; preds = %entry
5248 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5249 ///  ...
5250 ///
5251 /// can be transformed to
5252 ///
5253 ///  %5 = icmp eq %C* %0, null
5254 ///  %6 = select i1 %3, i1 %5, i1 true
5255 ///  br i1 %6, label %9, label %7
5256 ///  ...
5257 ///  ; <label>:7                                       ; preds = %entry
5258 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5259 ///
5260 /// Similar when the first operand of the select is a constant or/and
5261 /// the compare is for not equal rather than equal.
5262 ///
5263 /// NOTE: The function is only called when the select and compare constants
5264 /// are equal, the optimization can work only for EQ predicates. This is not a
5265 /// major restriction since a NE compare should be 'normalized' to an equal
5266 /// compare, which usually happens in the combiner and test case
5267 /// select-cmp-br.ll checks for it.
5268 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5269                                                  const ICmpInst *Icmp,
5270                                                  const unsigned SIOpd) {
5271   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5272   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5273     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5274     // The check for the single predecessor is not the best that can be
5275     // done. But it protects efficiently against cases like when SI's
5276     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5277     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5278     // replaced can be reached on either path. So the uniqueness check
5279     // guarantees that the path all uses of SI (outside SI's parent) are on
5280     // is disjoint from all other paths out of SI. But that information
5281     // is more expensive to compute, and the trade-off here is in favor
5282     // of compile-time. It should also be noticed that we check for a single
5283     // predecessor and not only uniqueness. This to handle the situation when
5284     // Succ and Succ1 points to the same basic block.
5285     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5286       NumSel++;
5287       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5288       return true;
5289     }
5290   }
5291   return false;
5292 }
5293 
5294 /// Try to fold the comparison based on range information we can get by checking
5295 /// whether bits are known to be zero or one in the inputs.
5296 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5297   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5298   Type *Ty = Op0->getType();
5299   ICmpInst::Predicate Pred = I.getPredicate();
5300 
5301   // Get scalar or pointer size.
5302   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5303                           ? Ty->getScalarSizeInBits()
5304                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5305 
5306   if (!BitWidth)
5307     return nullptr;
5308 
5309   KnownBits Op0Known(BitWidth);
5310   KnownBits Op1Known(BitWidth);
5311 
5312   if (SimplifyDemandedBits(&I, 0,
5313                            getDemandedBitsLHSMask(I, BitWidth),
5314                            Op0Known, 0))
5315     return &I;
5316 
5317   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5318     return &I;
5319 
5320   // Given the known and unknown bits, compute a range that the LHS could be
5321   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5322   // EQ and NE we use unsigned values.
5323   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5324   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5325   if (I.isSigned()) {
5326     Op0Min = Op0Known.getSignedMinValue();
5327     Op0Max = Op0Known.getSignedMaxValue();
5328     Op1Min = Op1Known.getSignedMinValue();
5329     Op1Max = Op1Known.getSignedMaxValue();
5330   } else {
5331     Op0Min = Op0Known.getMinValue();
5332     Op0Max = Op0Known.getMaxValue();
5333     Op1Min = Op1Known.getMinValue();
5334     Op1Max = Op1Known.getMaxValue();
5335   }
5336 
5337   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5338   // out that the LHS or RHS is a constant. Constant fold this now, so that
5339   // code below can assume that Min != Max.
5340   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5341     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5342   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5343     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5344 
5345   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5346   // min/max canonical compare with some other compare. That could lead to
5347   // conflict with select canonicalization and infinite looping.
5348   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5349   auto isMinMaxCmp = [&](Instruction &Cmp) {
5350     if (!Cmp.hasOneUse())
5351       return false;
5352     Value *A, *B;
5353     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5354     if (!SelectPatternResult::isMinOrMax(SPF))
5355       return false;
5356     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5357            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5358   };
5359   if (!isMinMaxCmp(I)) {
5360     switch (Pred) {
5361     default:
5362       break;
5363     case ICmpInst::ICMP_ULT: {
5364       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5365         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5366       const APInt *CmpC;
5367       if (match(Op1, m_APInt(CmpC))) {
5368         // A <u C -> A == C-1 if min(A)+1 == C
5369         if (*CmpC == Op0Min + 1)
5370           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5371                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5372         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5373         // exceeds the log2 of C.
5374         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5375           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5376                               Constant::getNullValue(Op1->getType()));
5377       }
5378       break;
5379     }
5380     case ICmpInst::ICMP_UGT: {
5381       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5382         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5383       const APInt *CmpC;
5384       if (match(Op1, m_APInt(CmpC))) {
5385         // A >u C -> A == C+1 if max(a)-1 == C
5386         if (*CmpC == Op0Max - 1)
5387           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5388                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5389         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5390         // exceeds the log2 of C.
5391         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5392           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5393                               Constant::getNullValue(Op1->getType()));
5394       }
5395       break;
5396     }
5397     case ICmpInst::ICMP_SLT: {
5398       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5399         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5400       const APInt *CmpC;
5401       if (match(Op1, m_APInt(CmpC))) {
5402         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5403           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5404                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5405       }
5406       break;
5407     }
5408     case ICmpInst::ICMP_SGT: {
5409       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5410         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5411       const APInt *CmpC;
5412       if (match(Op1, m_APInt(CmpC))) {
5413         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5414           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5415                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5416       }
5417       break;
5418     }
5419     }
5420   }
5421 
5422   // Based on the range information we know about the LHS, see if we can
5423   // simplify this comparison.  For example, (x&4) < 8 is always true.
5424   switch (Pred) {
5425   default:
5426     llvm_unreachable("Unknown icmp opcode!");
5427   case ICmpInst::ICMP_EQ:
5428   case ICmpInst::ICMP_NE: {
5429     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5430       return replaceInstUsesWith(
5431           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5432 
5433     // If all bits are known zero except for one, then we know at most one bit
5434     // is set. If the comparison is against zero, then this is a check to see if
5435     // *that* bit is set.
5436     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5437     if (Op1Known.isZero()) {
5438       // If the LHS is an AND with the same constant, look through it.
5439       Value *LHS = nullptr;
5440       const APInt *LHSC;
5441       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5442           *LHSC != Op0KnownZeroInverted)
5443         LHS = Op0;
5444 
5445       Value *X;
5446       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5447         APInt ValToCheck = Op0KnownZeroInverted;
5448         Type *XTy = X->getType();
5449         if (ValToCheck.isPowerOf2()) {
5450           // ((1 << X) & 8) == 0 -> X != 3
5451           // ((1 << X) & 8) != 0 -> X == 3
5452           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5453           auto NewPred = ICmpInst::getInversePredicate(Pred);
5454           return new ICmpInst(NewPred, X, CmpC);
5455         } else if ((++ValToCheck).isPowerOf2()) {
5456           // ((1 << X) & 7) == 0 -> X >= 3
5457           // ((1 << X) & 7) != 0 -> X  < 3
5458           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5459           auto NewPred =
5460               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5461           return new ICmpInst(NewPred, X, CmpC);
5462         }
5463       }
5464 
5465       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5466       const APInt *CI;
5467       if (Op0KnownZeroInverted.isOne() &&
5468           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5469         // ((8 >>u X) & 1) == 0 -> X != 3
5470         // ((8 >>u X) & 1) != 0 -> X == 3
5471         unsigned CmpVal = CI->countTrailingZeros();
5472         auto NewPred = ICmpInst::getInversePredicate(Pred);
5473         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5474       }
5475     }
5476     break;
5477   }
5478   case ICmpInst::ICMP_ULT: {
5479     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5480       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5481     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5482       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5483     break;
5484   }
5485   case ICmpInst::ICMP_UGT: {
5486     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5487       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5488     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5489       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5490     break;
5491   }
5492   case ICmpInst::ICMP_SLT: {
5493     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5494       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5495     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5496       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5497     break;
5498   }
5499   case ICmpInst::ICMP_SGT: {
5500     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5501       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5502     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5503       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5504     break;
5505   }
5506   case ICmpInst::ICMP_SGE:
5507     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5508     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5509       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5510     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5511       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5512     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5513       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5514     break;
5515   case ICmpInst::ICMP_SLE:
5516     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5517     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5518       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5519     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5520       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5521     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5522       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5523     break;
5524   case ICmpInst::ICMP_UGE:
5525     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5526     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5527       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5528     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5529       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5530     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5531       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5532     break;
5533   case ICmpInst::ICMP_ULE:
5534     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5535     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5536       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5537     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5538       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5539     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5540       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5541     break;
5542   }
5543 
5544   // Turn a signed comparison into an unsigned one if both operands are known to
5545   // have the same sign.
5546   if (I.isSigned() &&
5547       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5548        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5549     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5550 
5551   return nullptr;
5552 }
5553 
5554 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5555 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5556                                                        Constant *C) {
5557   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5558          "Only for relational integer predicates.");
5559 
5560   Type *Type = C->getType();
5561   bool IsSigned = ICmpInst::isSigned(Pred);
5562 
5563   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5564   bool WillIncrement =
5565       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5566 
5567   // Check if the constant operand can be safely incremented/decremented
5568   // without overflowing/underflowing.
5569   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5570     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5571   };
5572 
5573   Constant *SafeReplacementConstant = nullptr;
5574   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5575     // Bail out if the constant can't be safely incremented/decremented.
5576     if (!ConstantIsOk(CI))
5577       return llvm::None;
5578   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5579     unsigned NumElts = FVTy->getNumElements();
5580     for (unsigned i = 0; i != NumElts; ++i) {
5581       Constant *Elt = C->getAggregateElement(i);
5582       if (!Elt)
5583         return llvm::None;
5584 
5585       if (isa<UndefValue>(Elt))
5586         continue;
5587 
5588       // Bail out if we can't determine if this constant is min/max or if we
5589       // know that this constant is min/max.
5590       auto *CI = dyn_cast<ConstantInt>(Elt);
5591       if (!CI || !ConstantIsOk(CI))
5592         return llvm::None;
5593 
5594       if (!SafeReplacementConstant)
5595         SafeReplacementConstant = CI;
5596     }
5597   } else {
5598     // ConstantExpr?
5599     return llvm::None;
5600   }
5601 
5602   // It may not be safe to change a compare predicate in the presence of
5603   // undefined elements, so replace those elements with the first safe constant
5604   // that we found.
5605   // TODO: in case of poison, it is safe; let's replace undefs only.
5606   if (C->containsUndefOrPoisonElement()) {
5607     assert(SafeReplacementConstant && "Replacement constant not set");
5608     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5609   }
5610 
5611   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5612 
5613   // Increment or decrement the constant.
5614   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5615   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5616 
5617   return std::make_pair(NewPred, NewC);
5618 }
5619 
5620 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5621 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5622 /// allows them to be folded in visitICmpInst.
5623 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5624   ICmpInst::Predicate Pred = I.getPredicate();
5625   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5626       InstCombiner::isCanonicalPredicate(Pred))
5627     return nullptr;
5628 
5629   Value *Op0 = I.getOperand(0);
5630   Value *Op1 = I.getOperand(1);
5631   auto *Op1C = dyn_cast<Constant>(Op1);
5632   if (!Op1C)
5633     return nullptr;
5634 
5635   auto FlippedStrictness =
5636       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5637   if (!FlippedStrictness)
5638     return nullptr;
5639 
5640   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5641 }
5642 
5643 /// If we have a comparison with a non-canonical predicate, if we can update
5644 /// all the users, invert the predicate and adjust all the users.
5645 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5646   // Is the predicate already canonical?
5647   CmpInst::Predicate Pred = I.getPredicate();
5648   if (InstCombiner::isCanonicalPredicate(Pred))
5649     return nullptr;
5650 
5651   // Can all users be adjusted to predicate inversion?
5652   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5653     return nullptr;
5654 
5655   // Ok, we can canonicalize comparison!
5656   // Let's first invert the comparison's predicate.
5657   I.setPredicate(CmpInst::getInversePredicate(Pred));
5658   I.setName(I.getName() + ".not");
5659 
5660   // And, adapt users.
5661   freelyInvertAllUsersOf(&I);
5662 
5663   return &I;
5664 }
5665 
5666 /// Integer compare with boolean values can always be turned into bitwise ops.
5667 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5668                                          InstCombiner::BuilderTy &Builder) {
5669   Value *A = I.getOperand(0), *B = I.getOperand(1);
5670   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5671 
5672   // A boolean compared to true/false can be simplified to Op0/true/false in
5673   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5674   // Cases not handled by InstSimplify are always 'not' of Op0.
5675   if (match(B, m_Zero())) {
5676     switch (I.getPredicate()) {
5677       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5678       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5679       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5680         return BinaryOperator::CreateNot(A);
5681       default:
5682         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5683     }
5684   } else if (match(B, m_One())) {
5685     switch (I.getPredicate()) {
5686       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5687       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5688       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5689         return BinaryOperator::CreateNot(A);
5690       default:
5691         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5692     }
5693   }
5694 
5695   switch (I.getPredicate()) {
5696   default:
5697     llvm_unreachable("Invalid icmp instruction!");
5698   case ICmpInst::ICMP_EQ:
5699     // icmp eq i1 A, B -> ~(A ^ B)
5700     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5701 
5702   case ICmpInst::ICMP_NE:
5703     // icmp ne i1 A, B -> A ^ B
5704     return BinaryOperator::CreateXor(A, B);
5705 
5706   case ICmpInst::ICMP_UGT:
5707     // icmp ugt -> icmp ult
5708     std::swap(A, B);
5709     LLVM_FALLTHROUGH;
5710   case ICmpInst::ICMP_ULT:
5711     // icmp ult i1 A, B -> ~A & B
5712     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5713 
5714   case ICmpInst::ICMP_SGT:
5715     // icmp sgt -> icmp slt
5716     std::swap(A, B);
5717     LLVM_FALLTHROUGH;
5718   case ICmpInst::ICMP_SLT:
5719     // icmp slt i1 A, B -> A & ~B
5720     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5721 
5722   case ICmpInst::ICMP_UGE:
5723     // icmp uge -> icmp ule
5724     std::swap(A, B);
5725     LLVM_FALLTHROUGH;
5726   case ICmpInst::ICMP_ULE:
5727     // icmp ule i1 A, B -> ~A | B
5728     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5729 
5730   case ICmpInst::ICMP_SGE:
5731     // icmp sge -> icmp sle
5732     std::swap(A, B);
5733     LLVM_FALLTHROUGH;
5734   case ICmpInst::ICMP_SLE:
5735     // icmp sle i1 A, B -> A | ~B
5736     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5737   }
5738 }
5739 
5740 // Transform pattern like:
5741 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5742 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5743 // Into:
5744 //   (X l>> Y) != 0
5745 //   (X l>> Y) == 0
5746 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5747                                             InstCombiner::BuilderTy &Builder) {
5748   ICmpInst::Predicate Pred, NewPred;
5749   Value *X, *Y;
5750   if (match(&Cmp,
5751             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5752     switch (Pred) {
5753     case ICmpInst::ICMP_ULE:
5754       NewPred = ICmpInst::ICMP_NE;
5755       break;
5756     case ICmpInst::ICMP_UGT:
5757       NewPred = ICmpInst::ICMP_EQ;
5758       break;
5759     default:
5760       return nullptr;
5761     }
5762   } else if (match(&Cmp, m_c_ICmp(Pred,
5763                                   m_OneUse(m_CombineOr(
5764                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5765                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5766                                             m_AllOnes()))),
5767                                   m_Value(X)))) {
5768     // The variant with 'add' is not canonical, (the variant with 'not' is)
5769     // we only get it because it has extra uses, and can't be canonicalized,
5770 
5771     switch (Pred) {
5772     case ICmpInst::ICMP_ULT:
5773       NewPred = ICmpInst::ICMP_NE;
5774       break;
5775     case ICmpInst::ICMP_UGE:
5776       NewPred = ICmpInst::ICMP_EQ;
5777       break;
5778     default:
5779       return nullptr;
5780     }
5781   } else
5782     return nullptr;
5783 
5784   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5785   Constant *Zero = Constant::getNullValue(NewX->getType());
5786   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5787 }
5788 
5789 static Instruction *foldVectorCmp(CmpInst &Cmp,
5790                                   InstCombiner::BuilderTy &Builder) {
5791   const CmpInst::Predicate Pred = Cmp.getPredicate();
5792   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5793   Value *V1, *V2;
5794   ArrayRef<int> M;
5795   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5796     return nullptr;
5797 
5798   // If both arguments of the cmp are shuffles that use the same mask and
5799   // shuffle within a single vector, move the shuffle after the cmp:
5800   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5801   Type *V1Ty = V1->getType();
5802   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5803       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5804     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5805     return new ShuffleVectorInst(NewCmp, M);
5806   }
5807 
5808   // Try to canonicalize compare with splatted operand and splat constant.
5809   // TODO: We could generalize this for more than splats. See/use the code in
5810   //       InstCombiner::foldVectorBinop().
5811   Constant *C;
5812   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5813     return nullptr;
5814 
5815   // Length-changing splats are ok, so adjust the constants as needed:
5816   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5817   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5818   int MaskSplatIndex;
5819   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5820     // We allow undefs in matching, but this transform removes those for safety.
5821     // Demanded elements analysis should be able to recover some/all of that.
5822     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5823                                  ScalarC);
5824     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5825     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5826     return new ShuffleVectorInst(NewCmp, NewM);
5827   }
5828 
5829   return nullptr;
5830 }
5831 
5832 // extract(uadd.with.overflow(A, B), 0) ult A
5833 //  -> extract(uadd.with.overflow(A, B), 1)
5834 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5835   CmpInst::Predicate Pred = I.getPredicate();
5836   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5837 
5838   Value *UAddOv;
5839   Value *A, *B;
5840   auto UAddOvResultPat = m_ExtractValue<0>(
5841       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5842   if (match(Op0, UAddOvResultPat) &&
5843       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5844        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5845         (match(A, m_One()) || match(B, m_One()))) ||
5846        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5847         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5848     // extract(uadd.with.overflow(A, B), 0) < A
5849     // extract(uadd.with.overflow(A, 1), 0) == 0
5850     // extract(uadd.with.overflow(A, -1), 0) != -1
5851     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5852   else if (match(Op1, UAddOvResultPat) &&
5853            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5854     // A > extract(uadd.with.overflow(A, B), 0)
5855     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5856   else
5857     return nullptr;
5858 
5859   return ExtractValueInst::Create(UAddOv, 1);
5860 }
5861 
5862 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5863   if (!I.getOperand(0)->getType()->isPointerTy() ||
5864       NullPointerIsDefined(
5865           I.getParent()->getParent(),
5866           I.getOperand(0)->getType()->getPointerAddressSpace())) {
5867     return nullptr;
5868   }
5869   Instruction *Op;
5870   if (match(I.getOperand(0), m_Instruction(Op)) &&
5871       match(I.getOperand(1), m_Zero()) &&
5872       Op->isLaunderOrStripInvariantGroup()) {
5873     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
5874                             Op->getOperand(0), I.getOperand(1));
5875   }
5876   return nullptr;
5877 }
5878 
5879 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5880   bool Changed = false;
5881   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5882   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5883   unsigned Op0Cplxity = getComplexity(Op0);
5884   unsigned Op1Cplxity = getComplexity(Op1);
5885 
5886   /// Orders the operands of the compare so that they are listed from most
5887   /// complex to least complex.  This puts constants before unary operators,
5888   /// before binary operators.
5889   if (Op0Cplxity < Op1Cplxity ||
5890       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5891     I.swapOperands();
5892     std::swap(Op0, Op1);
5893     Changed = true;
5894   }
5895 
5896   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5897     return replaceInstUsesWith(I, V);
5898 
5899   // Comparing -val or val with non-zero is the same as just comparing val
5900   // ie, abs(val) != 0 -> val != 0
5901   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5902     Value *Cond, *SelectTrue, *SelectFalse;
5903     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5904                             m_Value(SelectFalse)))) {
5905       if (Value *V = dyn_castNegVal(SelectTrue)) {
5906         if (V == SelectFalse)
5907           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5908       }
5909       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5910         if (V == SelectTrue)
5911           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5912       }
5913     }
5914   }
5915 
5916   if (Op0->getType()->isIntOrIntVectorTy(1))
5917     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5918       return Res;
5919 
5920   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5921     return Res;
5922 
5923   if (Instruction *Res = canonicalizeICmpPredicate(I))
5924     return Res;
5925 
5926   if (Instruction *Res = foldICmpWithConstant(I))
5927     return Res;
5928 
5929   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5930     return Res;
5931 
5932   if (Instruction *Res = foldICmpUsingKnownBits(I))
5933     return Res;
5934 
5935   // Test if the ICmpInst instruction is used exclusively by a select as
5936   // part of a minimum or maximum operation. If so, refrain from doing
5937   // any other folding. This helps out other analyses which understand
5938   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5939   // and CodeGen. And in this case, at least one of the comparison
5940   // operands has at least one user besides the compare (the select),
5941   // which would often largely negate the benefit of folding anyway.
5942   //
5943   // Do the same for the other patterns recognized by matchSelectPattern.
5944   if (I.hasOneUse())
5945     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5946       Value *A, *B;
5947       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5948       if (SPR.Flavor != SPF_UNKNOWN)
5949         return nullptr;
5950     }
5951 
5952   // Do this after checking for min/max to prevent infinite looping.
5953   if (Instruction *Res = foldICmpWithZero(I))
5954     return Res;
5955 
5956   // FIXME: We only do this after checking for min/max to prevent infinite
5957   // looping caused by a reverse canonicalization of these patterns for min/max.
5958   // FIXME: The organization of folds is a mess. These would naturally go into
5959   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5960   // down here after the min/max restriction.
5961   ICmpInst::Predicate Pred = I.getPredicate();
5962   const APInt *C;
5963   if (match(Op1, m_APInt(C))) {
5964     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5965     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5966       Constant *Zero = Constant::getNullValue(Op0->getType());
5967       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5968     }
5969 
5970     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5971     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5972       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5973       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5974     }
5975   }
5976 
5977   // The folds in here may rely on wrapping flags and special constants, so
5978   // they can break up min/max idioms in some cases but not seemingly similar
5979   // patterns.
5980   // FIXME: It may be possible to enhance select folding to make this
5981   //        unnecessary. It may also be moot if we canonicalize to min/max
5982   //        intrinsics.
5983   if (Instruction *Res = foldICmpBinOp(I, Q))
5984     return Res;
5985 
5986   if (Instruction *Res = foldICmpInstWithConstant(I))
5987     return Res;
5988 
5989   // Try to match comparison as a sign bit test. Intentionally do this after
5990   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5991   if (Instruction *New = foldSignBitTest(I))
5992     return New;
5993 
5994   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5995     return Res;
5996 
5997   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
5998   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
5999     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6000       return NI;
6001   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6002     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6003       return NI;
6004 
6005   // Try to optimize equality comparisons against alloca-based pointers.
6006   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6007     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6008     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6009       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
6010         return New;
6011     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6012       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
6013         return New;
6014   }
6015 
6016   if (Instruction *Res = foldICmpBitCast(I))
6017     return Res;
6018 
6019   // TODO: Hoist this above the min/max bailout.
6020   if (Instruction *R = foldICmpWithCastOp(I))
6021     return R;
6022 
6023   if (Instruction *Res = foldICmpWithMinMax(I))
6024     return Res;
6025 
6026   {
6027     Value *A, *B;
6028     // Transform (A & ~B) == 0 --> (A & B) != 0
6029     // and       (A & ~B) != 0 --> (A & B) == 0
6030     // if A is a power of 2.
6031     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6032         match(Op1, m_Zero()) &&
6033         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6034       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6035                           Op1);
6036 
6037     // ~X < ~Y --> Y < X
6038     // ~X < C -->  X > ~C
6039     if (match(Op0, m_Not(m_Value(A)))) {
6040       if (match(Op1, m_Not(m_Value(B))))
6041         return new ICmpInst(I.getPredicate(), B, A);
6042 
6043       const APInt *C;
6044       if (match(Op1, m_APInt(C)))
6045         return new ICmpInst(I.getSwappedPredicate(), A,
6046                             ConstantInt::get(Op1->getType(), ~(*C)));
6047     }
6048 
6049     Instruction *AddI = nullptr;
6050     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6051                                      m_Instruction(AddI))) &&
6052         isa<IntegerType>(A->getType())) {
6053       Value *Result;
6054       Constant *Overflow;
6055       // m_UAddWithOverflow can match patterns that do not include  an explicit
6056       // "add" instruction, so check the opcode of the matched op.
6057       if (AddI->getOpcode() == Instruction::Add &&
6058           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6059                                 Result, Overflow)) {
6060         replaceInstUsesWith(*AddI, Result);
6061         eraseInstFromFunction(*AddI);
6062         return replaceInstUsesWith(I, Overflow);
6063       }
6064     }
6065 
6066     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6067     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6068       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6069         return R;
6070     }
6071     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6072       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6073         return R;
6074     }
6075   }
6076 
6077   if (Instruction *Res = foldICmpEquality(I))
6078     return Res;
6079 
6080   if (Instruction *Res = foldICmpOfUAddOv(I))
6081     return Res;
6082 
6083   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6084   // an i1 which indicates whether or not we successfully did the swap.
6085   //
6086   // Replace comparisons between the old value and the expected value with the
6087   // indicator that 'cmpxchg' returns.
6088   //
6089   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6090   // spuriously fail.  In those cases, the old value may equal the expected
6091   // value but it is possible for the swap to not occur.
6092   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6093     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6094       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6095         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6096             !ACXI->isWeak())
6097           return ExtractValueInst::Create(ACXI, 1);
6098 
6099   {
6100     Value *X;
6101     const APInt *C;
6102     // icmp X+Cst, X
6103     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6104       return foldICmpAddOpConst(X, *C, I.getPredicate());
6105 
6106     // icmp X, X+Cst
6107     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6108       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6109   }
6110 
6111   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6112     return Res;
6113 
6114   if (I.getType()->isVectorTy())
6115     if (Instruction *Res = foldVectorCmp(I, Builder))
6116       return Res;
6117 
6118   if (Instruction *Res = foldICmpInvariantGroup(I))
6119     return Res;
6120 
6121   return Changed ? &I : nullptr;
6122 }
6123 
6124 /// Fold fcmp ([us]itofp x, cst) if possible.
6125 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6126                                                     Instruction *LHSI,
6127                                                     Constant *RHSC) {
6128   if (!isa<ConstantFP>(RHSC)) return nullptr;
6129   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6130 
6131   // Get the width of the mantissa.  We don't want to hack on conversions that
6132   // might lose information from the integer, e.g. "i64 -> float"
6133   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6134   if (MantissaWidth == -1) return nullptr;  // Unknown.
6135 
6136   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6137 
6138   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6139 
6140   if (I.isEquality()) {
6141     FCmpInst::Predicate P = I.getPredicate();
6142     bool IsExact = false;
6143     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6144     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6145 
6146     // If the floating point constant isn't an integer value, we know if we will
6147     // ever compare equal / not equal to it.
6148     if (!IsExact) {
6149       // TODO: Can never be -0.0 and other non-representable values
6150       APFloat RHSRoundInt(RHS);
6151       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6152       if (RHS != RHSRoundInt) {
6153         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6154           return replaceInstUsesWith(I, Builder.getFalse());
6155 
6156         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6157         return replaceInstUsesWith(I, Builder.getTrue());
6158       }
6159     }
6160 
6161     // TODO: If the constant is exactly representable, is it always OK to do
6162     // equality compares as integer?
6163   }
6164 
6165   // Check to see that the input is converted from an integer type that is small
6166   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6167   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6168   unsigned InputSize = IntTy->getScalarSizeInBits();
6169 
6170   // Following test does NOT adjust InputSize downwards for signed inputs,
6171   // because the most negative value still requires all the mantissa bits
6172   // to distinguish it from one less than that value.
6173   if ((int)InputSize > MantissaWidth) {
6174     // Conversion would lose accuracy. Check if loss can impact comparison.
6175     int Exp = ilogb(RHS);
6176     if (Exp == APFloat::IEK_Inf) {
6177       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6178       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6179         // Conversion could create infinity.
6180         return nullptr;
6181     } else {
6182       // Note that if RHS is zero or NaN, then Exp is negative
6183       // and first condition is trivially false.
6184       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6185         // Conversion could affect comparison.
6186         return nullptr;
6187     }
6188   }
6189 
6190   // Otherwise, we can potentially simplify the comparison.  We know that it
6191   // will always come through as an integer value and we know the constant is
6192   // not a NAN (it would have been previously simplified).
6193   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6194 
6195   ICmpInst::Predicate Pred;
6196   switch (I.getPredicate()) {
6197   default: llvm_unreachable("Unexpected predicate!");
6198   case FCmpInst::FCMP_UEQ:
6199   case FCmpInst::FCMP_OEQ:
6200     Pred = ICmpInst::ICMP_EQ;
6201     break;
6202   case FCmpInst::FCMP_UGT:
6203   case FCmpInst::FCMP_OGT:
6204     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6205     break;
6206   case FCmpInst::FCMP_UGE:
6207   case FCmpInst::FCMP_OGE:
6208     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6209     break;
6210   case FCmpInst::FCMP_ULT:
6211   case FCmpInst::FCMP_OLT:
6212     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6213     break;
6214   case FCmpInst::FCMP_ULE:
6215   case FCmpInst::FCMP_OLE:
6216     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6217     break;
6218   case FCmpInst::FCMP_UNE:
6219   case FCmpInst::FCMP_ONE:
6220     Pred = ICmpInst::ICMP_NE;
6221     break;
6222   case FCmpInst::FCMP_ORD:
6223     return replaceInstUsesWith(I, Builder.getTrue());
6224   case FCmpInst::FCMP_UNO:
6225     return replaceInstUsesWith(I, Builder.getFalse());
6226   }
6227 
6228   // Now we know that the APFloat is a normal number, zero or inf.
6229 
6230   // See if the FP constant is too large for the integer.  For example,
6231   // comparing an i8 to 300.0.
6232   unsigned IntWidth = IntTy->getScalarSizeInBits();
6233 
6234   if (!LHSUnsigned) {
6235     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6236     // and large values.
6237     APFloat SMax(RHS.getSemantics());
6238     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6239                           APFloat::rmNearestTiesToEven);
6240     if (SMax < RHS) { // smax < 13123.0
6241       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6242           Pred == ICmpInst::ICMP_SLE)
6243         return replaceInstUsesWith(I, Builder.getTrue());
6244       return replaceInstUsesWith(I, Builder.getFalse());
6245     }
6246   } else {
6247     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6248     // +INF and large values.
6249     APFloat UMax(RHS.getSemantics());
6250     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6251                           APFloat::rmNearestTiesToEven);
6252     if (UMax < RHS) { // umax < 13123.0
6253       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6254           Pred == ICmpInst::ICMP_ULE)
6255         return replaceInstUsesWith(I, Builder.getTrue());
6256       return replaceInstUsesWith(I, Builder.getFalse());
6257     }
6258   }
6259 
6260   if (!LHSUnsigned) {
6261     // See if the RHS value is < SignedMin.
6262     APFloat SMin(RHS.getSemantics());
6263     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6264                           APFloat::rmNearestTiesToEven);
6265     if (SMin > RHS) { // smin > 12312.0
6266       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6267           Pred == ICmpInst::ICMP_SGE)
6268         return replaceInstUsesWith(I, Builder.getTrue());
6269       return replaceInstUsesWith(I, Builder.getFalse());
6270     }
6271   } else {
6272     // See if the RHS value is < UnsignedMin.
6273     APFloat UMin(RHS.getSemantics());
6274     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6275                           APFloat::rmNearestTiesToEven);
6276     if (UMin > RHS) { // umin > 12312.0
6277       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6278           Pred == ICmpInst::ICMP_UGE)
6279         return replaceInstUsesWith(I, Builder.getTrue());
6280       return replaceInstUsesWith(I, Builder.getFalse());
6281     }
6282   }
6283 
6284   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6285   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6286   // casting the FP value to the integer value and back, checking for equality.
6287   // Don't do this for zero, because -0.0 is not fractional.
6288   Constant *RHSInt = LHSUnsigned
6289     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6290     : ConstantExpr::getFPToSI(RHSC, IntTy);
6291   if (!RHS.isZero()) {
6292     bool Equal = LHSUnsigned
6293       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6294       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6295     if (!Equal) {
6296       // If we had a comparison against a fractional value, we have to adjust
6297       // the compare predicate and sometimes the value.  RHSC is rounded towards
6298       // zero at this point.
6299       switch (Pred) {
6300       default: llvm_unreachable("Unexpected integer comparison!");
6301       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6302         return replaceInstUsesWith(I, Builder.getTrue());
6303       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6304         return replaceInstUsesWith(I, Builder.getFalse());
6305       case ICmpInst::ICMP_ULE:
6306         // (float)int <= 4.4   --> int <= 4
6307         // (float)int <= -4.4  --> false
6308         if (RHS.isNegative())
6309           return replaceInstUsesWith(I, Builder.getFalse());
6310         break;
6311       case ICmpInst::ICMP_SLE:
6312         // (float)int <= 4.4   --> int <= 4
6313         // (float)int <= -4.4  --> int < -4
6314         if (RHS.isNegative())
6315           Pred = ICmpInst::ICMP_SLT;
6316         break;
6317       case ICmpInst::ICMP_ULT:
6318         // (float)int < -4.4   --> false
6319         // (float)int < 4.4    --> int <= 4
6320         if (RHS.isNegative())
6321           return replaceInstUsesWith(I, Builder.getFalse());
6322         Pred = ICmpInst::ICMP_ULE;
6323         break;
6324       case ICmpInst::ICMP_SLT:
6325         // (float)int < -4.4   --> int < -4
6326         // (float)int < 4.4    --> int <= 4
6327         if (!RHS.isNegative())
6328           Pred = ICmpInst::ICMP_SLE;
6329         break;
6330       case ICmpInst::ICMP_UGT:
6331         // (float)int > 4.4    --> int > 4
6332         // (float)int > -4.4   --> true
6333         if (RHS.isNegative())
6334           return replaceInstUsesWith(I, Builder.getTrue());
6335         break;
6336       case ICmpInst::ICMP_SGT:
6337         // (float)int > 4.4    --> int > 4
6338         // (float)int > -4.4   --> int >= -4
6339         if (RHS.isNegative())
6340           Pred = ICmpInst::ICMP_SGE;
6341         break;
6342       case ICmpInst::ICMP_UGE:
6343         // (float)int >= -4.4   --> true
6344         // (float)int >= 4.4    --> int > 4
6345         if (RHS.isNegative())
6346           return replaceInstUsesWith(I, Builder.getTrue());
6347         Pred = ICmpInst::ICMP_UGT;
6348         break;
6349       case ICmpInst::ICMP_SGE:
6350         // (float)int >= -4.4   --> int >= -4
6351         // (float)int >= 4.4    --> int > 4
6352         if (!RHS.isNegative())
6353           Pred = ICmpInst::ICMP_SGT;
6354         break;
6355       }
6356     }
6357   }
6358 
6359   // Lower this FP comparison into an appropriate integer version of the
6360   // comparison.
6361   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6362 }
6363 
6364 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6365 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6366                                               Constant *RHSC) {
6367   // When C is not 0.0 and infinities are not allowed:
6368   // (C / X) < 0.0 is a sign-bit test of X
6369   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6370   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6371   //
6372   // Proof:
6373   // Multiply (C / X) < 0.0 by X * X / C.
6374   // - X is non zero, if it is the flag 'ninf' is violated.
6375   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6376   //   the predicate. C is also non zero by definition.
6377   //
6378   // Thus X * X / C is non zero and the transformation is valid. [qed]
6379 
6380   FCmpInst::Predicate Pred = I.getPredicate();
6381 
6382   // Check that predicates are valid.
6383   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6384       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6385     return nullptr;
6386 
6387   // Check that RHS operand is zero.
6388   if (!match(RHSC, m_AnyZeroFP()))
6389     return nullptr;
6390 
6391   // Check fastmath flags ('ninf').
6392   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6393     return nullptr;
6394 
6395   // Check the properties of the dividend. It must not be zero to avoid a
6396   // division by zero (see Proof).
6397   const APFloat *C;
6398   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6399     return nullptr;
6400 
6401   if (C->isZero())
6402     return nullptr;
6403 
6404   // Get swapped predicate if necessary.
6405   if (C->isNegative())
6406     Pred = I.getSwappedPredicate();
6407 
6408   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6409 }
6410 
6411 /// Optimize fabs(X) compared with zero.
6412 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6413   Value *X;
6414   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6415       !match(I.getOperand(1), m_PosZeroFP()))
6416     return nullptr;
6417 
6418   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6419     I->setPredicate(P);
6420     return IC.replaceOperand(*I, 0, X);
6421   };
6422 
6423   switch (I.getPredicate()) {
6424   case FCmpInst::FCMP_UGE:
6425   case FCmpInst::FCMP_OLT:
6426     // fabs(X) >= 0.0 --> true
6427     // fabs(X) <  0.0 --> false
6428     llvm_unreachable("fcmp should have simplified");
6429 
6430   case FCmpInst::FCMP_OGT:
6431     // fabs(X) > 0.0 --> X != 0.0
6432     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6433 
6434   case FCmpInst::FCMP_UGT:
6435     // fabs(X) u> 0.0 --> X u!= 0.0
6436     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6437 
6438   case FCmpInst::FCMP_OLE:
6439     // fabs(X) <= 0.0 --> X == 0.0
6440     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6441 
6442   case FCmpInst::FCMP_ULE:
6443     // fabs(X) u<= 0.0 --> X u== 0.0
6444     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6445 
6446   case FCmpInst::FCMP_OGE:
6447     // fabs(X) >= 0.0 --> !isnan(X)
6448     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6449     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6450 
6451   case FCmpInst::FCMP_ULT:
6452     // fabs(X) u< 0.0 --> isnan(X)
6453     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6454     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6455 
6456   case FCmpInst::FCMP_OEQ:
6457   case FCmpInst::FCMP_UEQ:
6458   case FCmpInst::FCMP_ONE:
6459   case FCmpInst::FCMP_UNE:
6460   case FCmpInst::FCMP_ORD:
6461   case FCmpInst::FCMP_UNO:
6462     // Look through the fabs() because it doesn't change anything but the sign.
6463     // fabs(X) == 0.0 --> X == 0.0,
6464     // fabs(X) != 0.0 --> X != 0.0
6465     // isnan(fabs(X)) --> isnan(X)
6466     // !isnan(fabs(X) --> !isnan(X)
6467     return replacePredAndOp0(&I, I.getPredicate(), X);
6468 
6469   default:
6470     return nullptr;
6471   }
6472 }
6473 
6474 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6475   bool Changed = false;
6476 
6477   /// Orders the operands of the compare so that they are listed from most
6478   /// complex to least complex.  This puts constants before unary operators,
6479   /// before binary operators.
6480   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6481     I.swapOperands();
6482     Changed = true;
6483   }
6484 
6485   const CmpInst::Predicate Pred = I.getPredicate();
6486   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6487   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6488                                   SQ.getWithInstruction(&I)))
6489     return replaceInstUsesWith(I, V);
6490 
6491   // Simplify 'fcmp pred X, X'
6492   Type *OpType = Op0->getType();
6493   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6494   if (Op0 == Op1) {
6495     switch (Pred) {
6496       default: break;
6497     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6498     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6499     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6500     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6501       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6502       I.setPredicate(FCmpInst::FCMP_UNO);
6503       I.setOperand(1, Constant::getNullValue(OpType));
6504       return &I;
6505 
6506     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6507     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6508     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6509     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6510       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6511       I.setPredicate(FCmpInst::FCMP_ORD);
6512       I.setOperand(1, Constant::getNullValue(OpType));
6513       return &I;
6514     }
6515   }
6516 
6517   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6518   // then canonicalize the operand to 0.0.
6519   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6520     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6521       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6522 
6523     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6524       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6525   }
6526 
6527   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6528   Value *X, *Y;
6529   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6530     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6531 
6532   // Test if the FCmpInst instruction is used exclusively by a select as
6533   // part of a minimum or maximum operation. If so, refrain from doing
6534   // any other folding. This helps out other analyses which understand
6535   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6536   // and CodeGen. And in this case, at least one of the comparison
6537   // operands has at least one user besides the compare (the select),
6538   // which would often largely negate the benefit of folding anyway.
6539   if (I.hasOneUse())
6540     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6541       Value *A, *B;
6542       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6543       if (SPR.Flavor != SPF_UNKNOWN)
6544         return nullptr;
6545     }
6546 
6547   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6548   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6549   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6550     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6551 
6552   // Handle fcmp with instruction LHS and constant RHS.
6553   Instruction *LHSI;
6554   Constant *RHSC;
6555   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6556     switch (LHSI->getOpcode()) {
6557     case Instruction::PHI:
6558       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6559       // block.  If in the same block, we're encouraging jump threading.  If
6560       // not, we are just pessimizing the code by making an i1 phi.
6561       if (LHSI->getParent() == I.getParent())
6562         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6563           return NV;
6564       break;
6565     case Instruction::SIToFP:
6566     case Instruction::UIToFP:
6567       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6568         return NV;
6569       break;
6570     case Instruction::FDiv:
6571       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6572         return NV;
6573       break;
6574     case Instruction::Load:
6575       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6576         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6577           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6578               !cast<LoadInst>(LHSI)->isVolatile())
6579             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6580               return Res;
6581       break;
6582   }
6583   }
6584 
6585   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6586     return R;
6587 
6588   if (match(Op0, m_FNeg(m_Value(X)))) {
6589     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6590     Constant *C;
6591     if (match(Op1, m_Constant(C))) {
6592       Constant *NegC = ConstantExpr::getFNeg(C);
6593       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6594     }
6595   }
6596 
6597   if (match(Op0, m_FPExt(m_Value(X)))) {
6598     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6599     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6600       return new FCmpInst(Pred, X, Y, "", &I);
6601 
6602     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6603     const APFloat *C;
6604     if (match(Op1, m_APFloat(C))) {
6605       const fltSemantics &FPSem =
6606           X->getType()->getScalarType()->getFltSemantics();
6607       bool Lossy;
6608       APFloat TruncC = *C;
6609       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6610 
6611       // Avoid lossy conversions and denormals.
6612       // Zero is a special case that's OK to convert.
6613       APFloat Fabs = TruncC;
6614       Fabs.clearSign();
6615       if (!Lossy &&
6616           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6617         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6618         return new FCmpInst(Pred, X, NewC, "", &I);
6619       }
6620     }
6621   }
6622 
6623   // Convert a sign-bit test of an FP value into a cast and integer compare.
6624   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6625   // TODO: Handle non-zero compare constants.
6626   // TODO: Handle other predicates.
6627   const APFloat *C;
6628   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6629                                                            m_Value(X)))) &&
6630       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6631     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6632     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6633       IntType = VectorType::get(IntType, VecTy->getElementCount());
6634 
6635     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6636     if (Pred == FCmpInst::FCMP_OLT) {
6637       Value *IntX = Builder.CreateBitCast(X, IntType);
6638       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6639                           ConstantInt::getNullValue(IntType));
6640     }
6641   }
6642 
6643   if (I.getType()->isVectorTy())
6644     if (Instruction *Res = foldVectorCmp(I, Builder))
6645       return Res;
6646 
6647   return Changed ? &I : nullptr;
6648 }
6649