1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/KnownBits.h" 28 #include "llvm/Transforms/InstCombine/InstCombiner.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 39 /// Compute Result = In1+In2, returning true if the result overflowed for this 40 /// type. 41 static bool addWithOverflow(APInt &Result, const APInt &In1, 42 const APInt &In2, bool IsSigned = false) { 43 bool Overflow; 44 if (IsSigned) 45 Result = In1.sadd_ov(In2, Overflow); 46 else 47 Result = In1.uadd_ov(In2, Overflow); 48 49 return Overflow; 50 } 51 52 /// Compute Result = In1-In2, returning true if the result overflowed for this 53 /// type. 54 static bool subWithOverflow(APInt &Result, const APInt &In1, 55 const APInt &In2, bool IsSigned = false) { 56 bool Overflow; 57 if (IsSigned) 58 Result = In1.ssub_ov(In2, Overflow); 59 else 60 Result = In1.usub_ov(In2, Overflow); 61 62 return Overflow; 63 } 64 65 /// Given an icmp instruction, return true if any use of this comparison is a 66 /// branch on sign bit comparison. 67 static bool hasBranchUse(ICmpInst &I) { 68 for (auto *U : I.users()) 69 if (isa<BranchInst>(U)) 70 return true; 71 return false; 72 } 73 74 /// Returns true if the exploded icmp can be expressed as a signed comparison 75 /// to zero and updates the predicate accordingly. 76 /// The signedness of the comparison is preserved. 77 /// TODO: Refactor with decomposeBitTestICmp()? 78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 79 if (!ICmpInst::isSigned(Pred)) 80 return false; 81 82 if (C.isZero()) 83 return ICmpInst::isRelational(Pred); 84 85 if (C.isOne()) { 86 if (Pred == ICmpInst::ICMP_SLT) { 87 Pred = ICmpInst::ICMP_SLE; 88 return true; 89 } 90 } else if (C.isAllOnes()) { 91 if (Pred == ICmpInst::ICMP_SGT) { 92 Pred = ICmpInst::ICMP_SGE; 93 return true; 94 } 95 } 96 97 return false; 98 } 99 100 /// This is called when we see this pattern: 101 /// cmp pred (load (gep GV, ...)), cmpcst 102 /// where GV is a global variable with a constant initializer. Try to simplify 103 /// this into some simple computation that does not need the load. For example 104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 105 /// 106 /// If AndCst is non-null, then the loaded value is masked with that constant 107 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 108 Instruction * 109 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 110 GlobalVariable *GV, CmpInst &ICI, 111 ConstantInt *AndCst) { 112 Constant *Init = GV->getInitializer(); 113 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 114 return nullptr; 115 116 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 117 // Don't blow up on huge arrays. 118 if (ArrayElementCount > MaxArraySizeForCombine) 119 return nullptr; 120 121 // There are many forms of this optimization we can handle, for now, just do 122 // the simple index into a single-dimensional array. 123 // 124 // Require: GEP GV, 0, i {{, constant indices}} 125 if (GEP->getNumOperands() < 3 || 126 !isa<ConstantInt>(GEP->getOperand(1)) || 127 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 128 isa<Constant>(GEP->getOperand(2))) 129 return nullptr; 130 131 // Check that indices after the variable are constants and in-range for the 132 // type they index. Collect the indices. This is typically for arrays of 133 // structs. 134 SmallVector<unsigned, 4> LaterIndices; 135 136 Type *EltTy = Init->getType()->getArrayElementType(); 137 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 138 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 139 if (!Idx) return nullptr; // Variable index. 140 141 uint64_t IdxVal = Idx->getZExtValue(); 142 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 143 144 if (StructType *STy = dyn_cast<StructType>(EltTy)) 145 EltTy = STy->getElementType(IdxVal); 146 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 147 if (IdxVal >= ATy->getNumElements()) return nullptr; 148 EltTy = ATy->getElementType(); 149 } else { 150 return nullptr; // Unknown type. 151 } 152 153 LaterIndices.push_back(IdxVal); 154 } 155 156 enum { Overdefined = -3, Undefined = -2 }; 157 158 // Variables for our state machines. 159 160 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 161 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 162 // and 87 is the second (and last) index. FirstTrueElement is -2 when 163 // undefined, otherwise set to the first true element. SecondTrueElement is 164 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 165 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 166 167 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 168 // form "i != 47 & i != 87". Same state transitions as for true elements. 169 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 170 171 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 172 /// define a state machine that triggers for ranges of values that the index 173 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 174 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 175 /// index in the range (inclusive). We use -2 for undefined here because we 176 /// use relative comparisons and don't want 0-1 to match -1. 177 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 178 179 // MagicBitvector - This is a magic bitvector where we set a bit if the 180 // comparison is true for element 'i'. If there are 64 elements or less in 181 // the array, this will fully represent all the comparison results. 182 uint64_t MagicBitvector = 0; 183 184 // Scan the array and see if one of our patterns matches. 185 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 186 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 187 Constant *Elt = Init->getAggregateElement(i); 188 if (!Elt) return nullptr; 189 190 // If this is indexing an array of structures, get the structure element. 191 if (!LaterIndices.empty()) 192 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 193 194 // If the element is masked, handle it. 195 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 196 197 // Find out if the comparison would be true or false for the i'th element. 198 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 199 CompareRHS, DL, &TLI); 200 // If the result is undef for this element, ignore it. 201 if (isa<UndefValue>(C)) { 202 // Extend range state machines to cover this element in case there is an 203 // undef in the middle of the range. 204 if (TrueRangeEnd == (int)i-1) 205 TrueRangeEnd = i; 206 if (FalseRangeEnd == (int)i-1) 207 FalseRangeEnd = i; 208 continue; 209 } 210 211 // If we can't compute the result for any of the elements, we have to give 212 // up evaluating the entire conditional. 213 if (!isa<ConstantInt>(C)) return nullptr; 214 215 // Otherwise, we know if the comparison is true or false for this element, 216 // update our state machines. 217 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 218 219 // State machine for single/double/range index comparison. 220 if (IsTrueForElt) { 221 // Update the TrueElement state machine. 222 if (FirstTrueElement == Undefined) 223 FirstTrueElement = TrueRangeEnd = i; // First true element. 224 else { 225 // Update double-compare state machine. 226 if (SecondTrueElement == Undefined) 227 SecondTrueElement = i; 228 else 229 SecondTrueElement = Overdefined; 230 231 // Update range state machine. 232 if (TrueRangeEnd == (int)i-1) 233 TrueRangeEnd = i; 234 else 235 TrueRangeEnd = Overdefined; 236 } 237 } else { 238 // Update the FalseElement state machine. 239 if (FirstFalseElement == Undefined) 240 FirstFalseElement = FalseRangeEnd = i; // First false element. 241 else { 242 // Update double-compare state machine. 243 if (SecondFalseElement == Undefined) 244 SecondFalseElement = i; 245 else 246 SecondFalseElement = Overdefined; 247 248 // Update range state machine. 249 if (FalseRangeEnd == (int)i-1) 250 FalseRangeEnd = i; 251 else 252 FalseRangeEnd = Overdefined; 253 } 254 } 255 256 // If this element is in range, update our magic bitvector. 257 if (i < 64 && IsTrueForElt) 258 MagicBitvector |= 1ULL << i; 259 260 // If all of our states become overdefined, bail out early. Since the 261 // predicate is expensive, only check it every 8 elements. This is only 262 // really useful for really huge arrays. 263 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 264 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 265 FalseRangeEnd == Overdefined) 266 return nullptr; 267 } 268 269 // Now that we've scanned the entire array, emit our new comparison(s). We 270 // order the state machines in complexity of the generated code. 271 Value *Idx = GEP->getOperand(2); 272 273 // If the index is larger than the pointer size of the target, truncate the 274 // index down like the GEP would do implicitly. We don't have to do this for 275 // an inbounds GEP because the index can't be out of range. 276 if (!GEP->isInBounds()) { 277 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 278 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 279 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 280 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 281 } 282 283 // If inbounds keyword is not present, Idx * ElementSize can overflow. 284 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 285 // Then, there are two possible values for Idx to match offset 0: 286 // 0x00..00, 0x80..00. 287 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 288 // comparison is false if Idx was 0x80..00. 289 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 290 unsigned ElementSize = 291 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 292 auto MaskIdx = [&](Value* Idx){ 293 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 294 Value *Mask = ConstantInt::get(Idx->getType(), -1); 295 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 296 Idx = Builder.CreateAnd(Idx, Mask); 297 } 298 return Idx; 299 }; 300 301 // If the comparison is only true for one or two elements, emit direct 302 // comparisons. 303 if (SecondTrueElement != Overdefined) { 304 Idx = MaskIdx(Idx); 305 // None true -> false. 306 if (FirstTrueElement == Undefined) 307 return replaceInstUsesWith(ICI, Builder.getFalse()); 308 309 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 310 311 // True for one element -> 'i == 47'. 312 if (SecondTrueElement == Undefined) 313 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 314 315 // True for two elements -> 'i == 47 | i == 72'. 316 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 317 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 318 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 319 return BinaryOperator::CreateOr(C1, C2); 320 } 321 322 // If the comparison is only false for one or two elements, emit direct 323 // comparisons. 324 if (SecondFalseElement != Overdefined) { 325 Idx = MaskIdx(Idx); 326 // None false -> true. 327 if (FirstFalseElement == Undefined) 328 return replaceInstUsesWith(ICI, Builder.getTrue()); 329 330 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 331 332 // False for one element -> 'i != 47'. 333 if (SecondFalseElement == Undefined) 334 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 335 336 // False for two elements -> 'i != 47 & i != 72'. 337 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 338 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 339 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 340 return BinaryOperator::CreateAnd(C1, C2); 341 } 342 343 // If the comparison can be replaced with a range comparison for the elements 344 // where it is true, emit the range check. 345 if (TrueRangeEnd != Overdefined) { 346 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 347 Idx = MaskIdx(Idx); 348 349 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 350 if (FirstTrueElement) { 351 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 352 Idx = Builder.CreateAdd(Idx, Offs); 353 } 354 355 Value *End = ConstantInt::get(Idx->getType(), 356 TrueRangeEnd-FirstTrueElement+1); 357 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 358 } 359 360 // False range check. 361 if (FalseRangeEnd != Overdefined) { 362 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 363 Idx = MaskIdx(Idx); 364 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 365 if (FirstFalseElement) { 366 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 367 Idx = Builder.CreateAdd(Idx, Offs); 368 } 369 370 Value *End = ConstantInt::get(Idx->getType(), 371 FalseRangeEnd-FirstFalseElement); 372 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 373 } 374 375 // If a magic bitvector captures the entire comparison state 376 // of this load, replace it with computation that does: 377 // ((magic_cst >> i) & 1) != 0 378 { 379 Type *Ty = nullptr; 380 381 // Look for an appropriate type: 382 // - The type of Idx if the magic fits 383 // - The smallest fitting legal type 384 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 385 Ty = Idx->getType(); 386 else 387 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 388 389 if (Ty) { 390 Idx = MaskIdx(Idx); 391 Value *V = Builder.CreateIntCast(Idx, Ty, false); 392 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 393 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 394 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 395 } 396 } 397 398 return nullptr; 399 } 400 401 /// Return a value that can be used to compare the *offset* implied by a GEP to 402 /// zero. For example, if we have &A[i], we want to return 'i' for 403 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 404 /// are involved. The above expression would also be legal to codegen as 405 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 406 /// This latter form is less amenable to optimization though, and we are allowed 407 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 408 /// 409 /// If we can't emit an optimized form for this expression, this returns null. 410 /// 411 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 412 const DataLayout &DL) { 413 gep_type_iterator GTI = gep_type_begin(GEP); 414 415 // Check to see if this gep only has a single variable index. If so, and if 416 // any constant indices are a multiple of its scale, then we can compute this 417 // in terms of the scale of the variable index. For example, if the GEP 418 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 419 // because the expression will cross zero at the same point. 420 unsigned i, e = GEP->getNumOperands(); 421 int64_t Offset = 0; 422 for (i = 1; i != e; ++i, ++GTI) { 423 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 424 // Compute the aggregate offset of constant indices. 425 if (CI->isZero()) continue; 426 427 // Handle a struct index, which adds its field offset to the pointer. 428 if (StructType *STy = GTI.getStructTypeOrNull()) { 429 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 430 } else { 431 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 432 Offset += Size*CI->getSExtValue(); 433 } 434 } else { 435 // Found our variable index. 436 break; 437 } 438 } 439 440 // If there are no variable indices, we must have a constant offset, just 441 // evaluate it the general way. 442 if (i == e) return nullptr; 443 444 Value *VariableIdx = GEP->getOperand(i); 445 // Determine the scale factor of the variable element. For example, this is 446 // 4 if the variable index is into an array of i32. 447 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 448 449 // Verify that there are no other variable indices. If so, emit the hard way. 450 for (++i, ++GTI; i != e; ++i, ++GTI) { 451 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 452 if (!CI) return nullptr; 453 454 // Compute the aggregate offset of constant indices. 455 if (CI->isZero()) continue; 456 457 // Handle a struct index, which adds its field offset to the pointer. 458 if (StructType *STy = GTI.getStructTypeOrNull()) { 459 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 460 } else { 461 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 462 Offset += Size*CI->getSExtValue(); 463 } 464 } 465 466 // Okay, we know we have a single variable index, which must be a 467 // pointer/array/vector index. If there is no offset, life is simple, return 468 // the index. 469 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 470 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 471 if (Offset == 0) { 472 // Cast to intptrty in case a truncation occurs. If an extension is needed, 473 // we don't need to bother extending: the extension won't affect where the 474 // computation crosses zero. 475 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 476 IntPtrWidth) { 477 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 478 } 479 return VariableIdx; 480 } 481 482 // Otherwise, there is an index. The computation we will do will be modulo 483 // the pointer size. 484 Offset = SignExtend64(Offset, IntPtrWidth); 485 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 486 487 // To do this transformation, any constant index must be a multiple of the 488 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 489 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 490 // multiple of the variable scale. 491 int64_t NewOffs = Offset / (int64_t)VariableScale; 492 if (Offset != NewOffs*(int64_t)VariableScale) 493 return nullptr; 494 495 // Okay, we can do this evaluation. Start by converting the index to intptr. 496 if (VariableIdx->getType() != IntPtrTy) 497 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 498 true /*Signed*/); 499 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 500 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 501 } 502 503 /// Returns true if we can rewrite Start as a GEP with pointer Base 504 /// and some integer offset. The nodes that need to be re-written 505 /// for this transformation will be added to Explored. 506 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 507 const DataLayout &DL, 508 SetVector<Value *> &Explored) { 509 SmallVector<Value *, 16> WorkList(1, Start); 510 Explored.insert(Base); 511 512 // The following traversal gives us an order which can be used 513 // when doing the final transformation. Since in the final 514 // transformation we create the PHI replacement instructions first, 515 // we don't have to get them in any particular order. 516 // 517 // However, for other instructions we will have to traverse the 518 // operands of an instruction first, which means that we have to 519 // do a post-order traversal. 520 while (!WorkList.empty()) { 521 SetVector<PHINode *> PHIs; 522 523 while (!WorkList.empty()) { 524 if (Explored.size() >= 100) 525 return false; 526 527 Value *V = WorkList.back(); 528 529 if (Explored.contains(V)) { 530 WorkList.pop_back(); 531 continue; 532 } 533 534 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 535 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 536 // We've found some value that we can't explore which is different from 537 // the base. Therefore we can't do this transformation. 538 return false; 539 540 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 541 auto *CI = cast<CastInst>(V); 542 if (!CI->isNoopCast(DL)) 543 return false; 544 545 if (!Explored.contains(CI->getOperand(0))) 546 WorkList.push_back(CI->getOperand(0)); 547 } 548 549 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 550 // We're limiting the GEP to having one index. This will preserve 551 // the original pointer type. We could handle more cases in the 552 // future. 553 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 554 GEP->getSourceElementType() != ElemTy) 555 return false; 556 557 if (!Explored.contains(GEP->getOperand(0))) 558 WorkList.push_back(GEP->getOperand(0)); 559 } 560 561 if (WorkList.back() == V) { 562 WorkList.pop_back(); 563 // We've finished visiting this node, mark it as such. 564 Explored.insert(V); 565 } 566 567 if (auto *PN = dyn_cast<PHINode>(V)) { 568 // We cannot transform PHIs on unsplittable basic blocks. 569 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 570 return false; 571 Explored.insert(PN); 572 PHIs.insert(PN); 573 } 574 } 575 576 // Explore the PHI nodes further. 577 for (auto *PN : PHIs) 578 for (Value *Op : PN->incoming_values()) 579 if (!Explored.contains(Op)) 580 WorkList.push_back(Op); 581 } 582 583 // Make sure that we can do this. Since we can't insert GEPs in a basic 584 // block before a PHI node, we can't easily do this transformation if 585 // we have PHI node users of transformed instructions. 586 for (Value *Val : Explored) { 587 for (Value *Use : Val->uses()) { 588 589 auto *PHI = dyn_cast<PHINode>(Use); 590 auto *Inst = dyn_cast<Instruction>(Val); 591 592 if (Inst == Base || Inst == PHI || !Inst || !PHI || 593 !Explored.contains(PHI)) 594 continue; 595 596 if (PHI->getParent() == Inst->getParent()) 597 return false; 598 } 599 } 600 return true; 601 } 602 603 // Sets the appropriate insert point on Builder where we can add 604 // a replacement Instruction for V (if that is possible). 605 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 606 bool Before = true) { 607 if (auto *PHI = dyn_cast<PHINode>(V)) { 608 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 609 return; 610 } 611 if (auto *I = dyn_cast<Instruction>(V)) { 612 if (!Before) 613 I = &*std::next(I->getIterator()); 614 Builder.SetInsertPoint(I); 615 return; 616 } 617 if (auto *A = dyn_cast<Argument>(V)) { 618 // Set the insertion point in the entry block. 619 BasicBlock &Entry = A->getParent()->getEntryBlock(); 620 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 621 return; 622 } 623 // Otherwise, this is a constant and we don't need to set a new 624 // insertion point. 625 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 626 } 627 628 /// Returns a re-written value of Start as an indexed GEP using Base as a 629 /// pointer. 630 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 631 const DataLayout &DL, 632 SetVector<Value *> &Explored) { 633 // Perform all the substitutions. This is a bit tricky because we can 634 // have cycles in our use-def chains. 635 // 1. Create the PHI nodes without any incoming values. 636 // 2. Create all the other values. 637 // 3. Add the edges for the PHI nodes. 638 // 4. Emit GEPs to get the original pointers. 639 // 5. Remove the original instructions. 640 Type *IndexType = IntegerType::get( 641 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 642 643 DenseMap<Value *, Value *> NewInsts; 644 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 645 646 // Create the new PHI nodes, without adding any incoming values. 647 for (Value *Val : Explored) { 648 if (Val == Base) 649 continue; 650 // Create empty phi nodes. This avoids cyclic dependencies when creating 651 // the remaining instructions. 652 if (auto *PHI = dyn_cast<PHINode>(Val)) 653 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 654 PHI->getName() + ".idx", PHI); 655 } 656 IRBuilder<> Builder(Base->getContext()); 657 658 // Create all the other instructions. 659 for (Value *Val : Explored) { 660 661 if (NewInsts.find(Val) != NewInsts.end()) 662 continue; 663 664 if (auto *CI = dyn_cast<CastInst>(Val)) { 665 // Don't get rid of the intermediate variable here; the store can grow 666 // the map which will invalidate the reference to the input value. 667 Value *V = NewInsts[CI->getOperand(0)]; 668 NewInsts[CI] = V; 669 continue; 670 } 671 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 672 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 673 : GEP->getOperand(1); 674 setInsertionPoint(Builder, GEP); 675 // Indices might need to be sign extended. GEPs will magically do 676 // this, but we need to do it ourselves here. 677 if (Index->getType()->getScalarSizeInBits() != 678 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 679 Index = Builder.CreateSExtOrTrunc( 680 Index, NewInsts[GEP->getOperand(0)]->getType(), 681 GEP->getOperand(0)->getName() + ".sext"); 682 } 683 684 auto *Op = NewInsts[GEP->getOperand(0)]; 685 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 686 NewInsts[GEP] = Index; 687 else 688 NewInsts[GEP] = Builder.CreateNSWAdd( 689 Op, Index, GEP->getOperand(0)->getName() + ".add"); 690 continue; 691 } 692 if (isa<PHINode>(Val)) 693 continue; 694 695 llvm_unreachable("Unexpected instruction type"); 696 } 697 698 // Add the incoming values to the PHI nodes. 699 for (Value *Val : Explored) { 700 if (Val == Base) 701 continue; 702 // All the instructions have been created, we can now add edges to the 703 // phi nodes. 704 if (auto *PHI = dyn_cast<PHINode>(Val)) { 705 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 706 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 707 Value *NewIncoming = PHI->getIncomingValue(I); 708 709 if (NewInsts.find(NewIncoming) != NewInsts.end()) 710 NewIncoming = NewInsts[NewIncoming]; 711 712 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 713 } 714 } 715 } 716 717 PointerType *PtrTy = 718 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 719 for (Value *Val : Explored) { 720 if (Val == Base) 721 continue; 722 723 // Depending on the type, for external users we have to emit 724 // a GEP or a GEP + ptrtoint. 725 setInsertionPoint(Builder, Val, false); 726 727 // Cast base to the expected type. 728 Value *NewVal = Builder.CreateBitOrPointerCast( 729 Base, PtrTy, Start->getName() + "to.ptr"); 730 NewVal = Builder.CreateInBoundsGEP( 731 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 732 NewVal = Builder.CreateBitOrPointerCast( 733 NewVal, Val->getType(), Val->getName() + ".conv"); 734 Val->replaceAllUsesWith(NewVal); 735 } 736 737 return NewInsts[Start]; 738 } 739 740 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 741 /// the input Value as a constant indexed GEP. Returns a pair containing 742 /// the GEPs Pointer and Index. 743 static std::pair<Value *, Value *> 744 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 745 Type *IndexType = IntegerType::get(V->getContext(), 746 DL.getIndexTypeSizeInBits(V->getType())); 747 748 Constant *Index = ConstantInt::getNullValue(IndexType); 749 while (true) { 750 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 751 // We accept only inbouds GEPs here to exclude the possibility of 752 // overflow. 753 if (!GEP->isInBounds()) 754 break; 755 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 756 GEP->getSourceElementType() == ElemTy) { 757 V = GEP->getOperand(0); 758 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 759 Index = ConstantExpr::getAdd( 760 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 761 continue; 762 } 763 break; 764 } 765 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 766 if (!CI->isNoopCast(DL)) 767 break; 768 V = CI->getOperand(0); 769 continue; 770 } 771 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 772 if (!CI->isNoopCast(DL)) 773 break; 774 V = CI->getOperand(0); 775 continue; 776 } 777 break; 778 } 779 return {V, Index}; 780 } 781 782 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 783 /// We can look through PHIs, GEPs and casts in order to determine a common base 784 /// between GEPLHS and RHS. 785 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 786 ICmpInst::Predicate Cond, 787 const DataLayout &DL) { 788 // FIXME: Support vector of pointers. 789 if (GEPLHS->getType()->isVectorTy()) 790 return nullptr; 791 792 if (!GEPLHS->hasAllConstantIndices()) 793 return nullptr; 794 795 Type *ElemTy = GEPLHS->getSourceElementType(); 796 Value *PtrBase, *Index; 797 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 798 799 // The set of nodes that will take part in this transformation. 800 SetVector<Value *> Nodes; 801 802 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 803 return nullptr; 804 805 // We know we can re-write this as 806 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 807 // Since we've only looked through inbouds GEPs we know that we 808 // can't have overflow on either side. We can therefore re-write 809 // this as: 810 // OFFSET1 cmp OFFSET2 811 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 812 813 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 814 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 815 // offset. Since Index is the offset of LHS to the base pointer, we will now 816 // compare the offsets instead of comparing the pointers. 817 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 818 } 819 820 /// Fold comparisons between a GEP instruction and something else. At this point 821 /// we know that the GEP is on the LHS of the comparison. 822 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 823 ICmpInst::Predicate Cond, 824 Instruction &I) { 825 // Don't transform signed compares of GEPs into index compares. Even if the 826 // GEP is inbounds, the final add of the base pointer can have signed overflow 827 // and would change the result of the icmp. 828 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 829 // the maximum signed value for the pointer type. 830 if (ICmpInst::isSigned(Cond)) 831 return nullptr; 832 833 // Look through bitcasts and addrspacecasts. We do not however want to remove 834 // 0 GEPs. 835 if (!isa<GetElementPtrInst>(RHS)) 836 RHS = RHS->stripPointerCasts(); 837 838 Value *PtrBase = GEPLHS->getOperand(0); 839 // FIXME: Support vector pointer GEPs. 840 if (PtrBase == RHS && GEPLHS->isInBounds() && 841 !GEPLHS->getType()->isVectorTy()) { 842 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 843 // This transformation (ignoring the base and scales) is valid because we 844 // know pointers can't overflow since the gep is inbounds. See if we can 845 // output an optimized form. 846 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 847 848 // If not, synthesize the offset the hard way. 849 if (!Offset) 850 Offset = EmitGEPOffset(GEPLHS); 851 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 852 Constant::getNullValue(Offset->getType())); 853 } 854 855 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 856 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 857 !NullPointerIsDefined(I.getFunction(), 858 RHS->getType()->getPointerAddressSpace())) { 859 // For most address spaces, an allocation can't be placed at null, but null 860 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 861 // the only valid inbounds address derived from null, is null itself. 862 // Thus, we have four cases to consider: 863 // 1) Base == nullptr, Offset == 0 -> inbounds, null 864 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 865 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 866 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 867 // 868 // (Note if we're indexing a type of size 0, that simply collapses into one 869 // of the buckets above.) 870 // 871 // In general, we're allowed to make values less poison (i.e. remove 872 // sources of full UB), so in this case, we just select between the two 873 // non-poison cases (1 and 4 above). 874 // 875 // For vectors, we apply the same reasoning on a per-lane basis. 876 auto *Base = GEPLHS->getPointerOperand(); 877 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 878 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 879 Base = Builder.CreateVectorSplat(EC, Base); 880 } 881 return new ICmpInst(Cond, Base, 882 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 883 cast<Constant>(RHS), Base->getType())); 884 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 885 // If the base pointers are different, but the indices are the same, just 886 // compare the base pointer. 887 if (PtrBase != GEPRHS->getOperand(0)) { 888 bool IndicesTheSame = 889 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 890 GEPLHS->getType() == GEPRHS->getType() && 891 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 892 if (IndicesTheSame) 893 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 894 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 895 IndicesTheSame = false; 896 break; 897 } 898 899 // If all indices are the same, just compare the base pointers. 900 Type *BaseType = GEPLHS->getOperand(0)->getType(); 901 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 902 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 903 904 // If we're comparing GEPs with two base pointers that only differ in type 905 // and both GEPs have only constant indices or just one use, then fold 906 // the compare with the adjusted indices. 907 // FIXME: Support vector of pointers. 908 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 909 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 910 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 911 PtrBase->stripPointerCasts() == 912 GEPRHS->getOperand(0)->stripPointerCasts() && 913 !GEPLHS->getType()->isVectorTy()) { 914 Value *LOffset = EmitGEPOffset(GEPLHS); 915 Value *ROffset = EmitGEPOffset(GEPRHS); 916 917 // If we looked through an addrspacecast between different sized address 918 // spaces, the LHS and RHS pointers are different sized 919 // integers. Truncate to the smaller one. 920 Type *LHSIndexTy = LOffset->getType(); 921 Type *RHSIndexTy = ROffset->getType(); 922 if (LHSIndexTy != RHSIndexTy) { 923 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 924 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 925 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 926 } else 927 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 928 } 929 930 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 931 LOffset, ROffset); 932 return replaceInstUsesWith(I, Cmp); 933 } 934 935 // Otherwise, the base pointers are different and the indices are 936 // different. Try convert this to an indexed compare by looking through 937 // PHIs/casts. 938 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 939 } 940 941 // If one of the GEPs has all zero indices, recurse. 942 // FIXME: Handle vector of pointers. 943 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 944 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 945 ICmpInst::getSwappedPredicate(Cond), I); 946 947 // If the other GEP has all zero indices, recurse. 948 // FIXME: Handle vector of pointers. 949 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 950 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 951 952 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 953 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 954 // If the GEPs only differ by one index, compare it. 955 unsigned NumDifferences = 0; // Keep track of # differences. 956 unsigned DiffOperand = 0; // The operand that differs. 957 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 958 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 959 Type *LHSType = GEPLHS->getOperand(i)->getType(); 960 Type *RHSType = GEPRHS->getOperand(i)->getType(); 961 // FIXME: Better support for vector of pointers. 962 if (LHSType->getPrimitiveSizeInBits() != 963 RHSType->getPrimitiveSizeInBits() || 964 (GEPLHS->getType()->isVectorTy() && 965 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 966 // Irreconcilable differences. 967 NumDifferences = 2; 968 break; 969 } 970 971 if (NumDifferences++) break; 972 DiffOperand = i; 973 } 974 975 if (NumDifferences == 0) // SAME GEP? 976 return replaceInstUsesWith(I, // No comparison is needed here. 977 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 978 979 else if (NumDifferences == 1 && GEPsInBounds) { 980 Value *LHSV = GEPLHS->getOperand(DiffOperand); 981 Value *RHSV = GEPRHS->getOperand(DiffOperand); 982 // Make sure we do a signed comparison here. 983 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 984 } 985 } 986 987 // Only lower this if the icmp is the only user of the GEP or if we expect 988 // the result to fold to a constant! 989 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 990 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 991 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 992 Value *L = EmitGEPOffset(GEPLHS); 993 Value *R = EmitGEPOffset(GEPRHS); 994 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 995 } 996 } 997 998 // Try convert this to an indexed compare by looking through PHIs/casts as a 999 // last resort. 1000 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1001 } 1002 1003 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1004 const AllocaInst *Alloca, 1005 const Value *Other) { 1006 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1007 1008 // It would be tempting to fold away comparisons between allocas and any 1009 // pointer not based on that alloca (e.g. an argument). However, even 1010 // though such pointers cannot alias, they can still compare equal. 1011 // 1012 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1013 // doesn't escape we can argue that it's impossible to guess its value, and we 1014 // can therefore act as if any such guesses are wrong. 1015 // 1016 // The code below checks that the alloca doesn't escape, and that it's only 1017 // used in a comparison once (the current instruction). The 1018 // single-comparison-use condition ensures that we're trivially folding all 1019 // comparisons against the alloca consistently, and avoids the risk of 1020 // erroneously folding a comparison of the pointer with itself. 1021 1022 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1023 1024 SmallVector<const Use *, 32> Worklist; 1025 for (const Use &U : Alloca->uses()) { 1026 if (Worklist.size() >= MaxIter) 1027 return nullptr; 1028 Worklist.push_back(&U); 1029 } 1030 1031 unsigned NumCmps = 0; 1032 while (!Worklist.empty()) { 1033 assert(Worklist.size() <= MaxIter); 1034 const Use *U = Worklist.pop_back_val(); 1035 const Value *V = U->getUser(); 1036 --MaxIter; 1037 1038 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1039 isa<SelectInst>(V)) { 1040 // Track the uses. 1041 } else if (isa<LoadInst>(V)) { 1042 // Loading from the pointer doesn't escape it. 1043 continue; 1044 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1045 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1046 if (SI->getValueOperand() == U->get()) 1047 return nullptr; 1048 continue; 1049 } else if (isa<ICmpInst>(V)) { 1050 if (NumCmps++) 1051 return nullptr; // Found more than one cmp. 1052 continue; 1053 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1054 switch (Intrin->getIntrinsicID()) { 1055 // These intrinsics don't escape or compare the pointer. Memset is safe 1056 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1057 // we don't allow stores, so src cannot point to V. 1058 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1059 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1060 continue; 1061 default: 1062 return nullptr; 1063 } 1064 } else { 1065 return nullptr; 1066 } 1067 for (const Use &U : V->uses()) { 1068 if (Worklist.size() >= MaxIter) 1069 return nullptr; 1070 Worklist.push_back(&U); 1071 } 1072 } 1073 1074 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1075 return replaceInstUsesWith( 1076 ICI, 1077 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1078 } 1079 1080 /// Fold "icmp pred (X+C), X". 1081 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1082 ICmpInst::Predicate Pred) { 1083 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1084 // so the values can never be equal. Similarly for all other "or equals" 1085 // operators. 1086 assert(!!C && "C should not be zero!"); 1087 1088 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1089 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1090 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1091 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1092 Constant *R = ConstantInt::get(X->getType(), 1093 APInt::getMaxValue(C.getBitWidth()) - C); 1094 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1095 } 1096 1097 // (X+1) >u X --> X <u (0-1) --> X != 255 1098 // (X+2) >u X --> X <u (0-2) --> X <u 254 1099 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1100 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1101 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1102 ConstantInt::get(X->getType(), -C)); 1103 1104 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1105 1106 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1107 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1108 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1109 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1110 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1111 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1112 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1113 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1114 ConstantInt::get(X->getType(), SMax - C)); 1115 1116 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1117 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1118 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1119 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1120 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1121 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1122 1123 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1124 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1125 ConstantInt::get(X->getType(), SMax - (C - 1))); 1126 } 1127 1128 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1129 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1130 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1131 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1132 const APInt &AP1, 1133 const APInt &AP2) { 1134 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1135 1136 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1137 if (I.getPredicate() == I.ICMP_NE) 1138 Pred = CmpInst::getInversePredicate(Pred); 1139 return new ICmpInst(Pred, LHS, RHS); 1140 }; 1141 1142 // Don't bother doing any work for cases which InstSimplify handles. 1143 if (AP2.isZero()) 1144 return nullptr; 1145 1146 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1147 if (IsAShr) { 1148 if (AP2.isAllOnes()) 1149 return nullptr; 1150 if (AP2.isNegative() != AP1.isNegative()) 1151 return nullptr; 1152 if (AP2.sgt(AP1)) 1153 return nullptr; 1154 } 1155 1156 if (!AP1) 1157 // 'A' must be large enough to shift out the highest set bit. 1158 return getICmp(I.ICMP_UGT, A, 1159 ConstantInt::get(A->getType(), AP2.logBase2())); 1160 1161 if (AP1 == AP2) 1162 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1163 1164 int Shift; 1165 if (IsAShr && AP1.isNegative()) 1166 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1167 else 1168 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1169 1170 if (Shift > 0) { 1171 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1172 // There are multiple solutions if we are comparing against -1 and the LHS 1173 // of the ashr is not a power of two. 1174 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1175 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1176 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1177 } else if (AP1 == AP2.lshr(Shift)) { 1178 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1179 } 1180 } 1181 1182 // Shifting const2 will never be equal to const1. 1183 // FIXME: This should always be handled by InstSimplify? 1184 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1185 return replaceInstUsesWith(I, TorF); 1186 } 1187 1188 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1189 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1190 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1191 const APInt &AP1, 1192 const APInt &AP2) { 1193 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1194 1195 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1196 if (I.getPredicate() == I.ICMP_NE) 1197 Pred = CmpInst::getInversePredicate(Pred); 1198 return new ICmpInst(Pred, LHS, RHS); 1199 }; 1200 1201 // Don't bother doing any work for cases which InstSimplify handles. 1202 if (AP2.isZero()) 1203 return nullptr; 1204 1205 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1206 1207 if (!AP1 && AP2TrailingZeros != 0) 1208 return getICmp( 1209 I.ICMP_UGE, A, 1210 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1211 1212 if (AP1 == AP2) 1213 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1214 1215 // Get the distance between the lowest bits that are set. 1216 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1217 1218 if (Shift > 0 && AP2.shl(Shift) == AP1) 1219 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1220 1221 // Shifting const2 will never be equal to const1. 1222 // FIXME: This should always be handled by InstSimplify? 1223 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1224 return replaceInstUsesWith(I, TorF); 1225 } 1226 1227 /// The caller has matched a pattern of the form: 1228 /// I = icmp ugt (add (add A, B), CI2), CI1 1229 /// If this is of the form: 1230 /// sum = a + b 1231 /// if (sum+128 >u 255) 1232 /// Then replace it with llvm.sadd.with.overflow.i8. 1233 /// 1234 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1235 ConstantInt *CI2, ConstantInt *CI1, 1236 InstCombinerImpl &IC) { 1237 // The transformation we're trying to do here is to transform this into an 1238 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1239 // with a narrower add, and discard the add-with-constant that is part of the 1240 // range check (if we can't eliminate it, this isn't profitable). 1241 1242 // In order to eliminate the add-with-constant, the compare can be its only 1243 // use. 1244 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1245 if (!AddWithCst->hasOneUse()) 1246 return nullptr; 1247 1248 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1249 if (!CI2->getValue().isPowerOf2()) 1250 return nullptr; 1251 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1252 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1253 return nullptr; 1254 1255 // The width of the new add formed is 1 more than the bias. 1256 ++NewWidth; 1257 1258 // Check to see that CI1 is an all-ones value with NewWidth bits. 1259 if (CI1->getBitWidth() == NewWidth || 1260 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1261 return nullptr; 1262 1263 // This is only really a signed overflow check if the inputs have been 1264 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1265 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1266 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1267 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1268 return nullptr; 1269 1270 // In order to replace the original add with a narrower 1271 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1272 // and truncates that discard the high bits of the add. Verify that this is 1273 // the case. 1274 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1275 for (User *U : OrigAdd->users()) { 1276 if (U == AddWithCst) 1277 continue; 1278 1279 // Only accept truncates for now. We would really like a nice recursive 1280 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1281 // chain to see which bits of a value are actually demanded. If the 1282 // original add had another add which was then immediately truncated, we 1283 // could still do the transformation. 1284 TruncInst *TI = dyn_cast<TruncInst>(U); 1285 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1286 return nullptr; 1287 } 1288 1289 // If the pattern matches, truncate the inputs to the narrower type and 1290 // use the sadd_with_overflow intrinsic to efficiently compute both the 1291 // result and the overflow bit. 1292 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1293 Function *F = Intrinsic::getDeclaration( 1294 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1295 1296 InstCombiner::BuilderTy &Builder = IC.Builder; 1297 1298 // Put the new code above the original add, in case there are any uses of the 1299 // add between the add and the compare. 1300 Builder.SetInsertPoint(OrigAdd); 1301 1302 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1303 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1304 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1305 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1306 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1307 1308 // The inner add was the result of the narrow add, zero extended to the 1309 // wider type. Replace it with the result computed by the intrinsic. 1310 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1311 IC.eraseInstFromFunction(*OrigAdd); 1312 1313 // The original icmp gets replaced with the overflow value. 1314 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1315 } 1316 1317 /// If we have: 1318 /// icmp eq/ne (urem/srem %x, %y), 0 1319 /// iff %y is a power-of-two, we can replace this with a bit test: 1320 /// icmp eq/ne (and %x, (add %y, -1)), 0 1321 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1322 // This fold is only valid for equality predicates. 1323 if (!I.isEquality()) 1324 return nullptr; 1325 ICmpInst::Predicate Pred; 1326 Value *X, *Y, *Zero; 1327 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1328 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1329 return nullptr; 1330 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1331 return nullptr; 1332 // This may increase instruction count, we don't enforce that Y is a constant. 1333 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1334 Value *Masked = Builder.CreateAnd(X, Mask); 1335 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1336 } 1337 1338 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1339 /// by one-less-than-bitwidth into a sign test on the original value. 1340 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1341 Instruction *Val; 1342 ICmpInst::Predicate Pred; 1343 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1344 return nullptr; 1345 1346 Value *X; 1347 Type *XTy; 1348 1349 Constant *C; 1350 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1351 XTy = X->getType(); 1352 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1353 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1354 APInt(XBitWidth, XBitWidth - 1)))) 1355 return nullptr; 1356 } else if (isa<BinaryOperator>(Val) && 1357 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1358 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1359 /*AnalyzeForSignBitExtraction=*/true))) { 1360 XTy = X->getType(); 1361 } else 1362 return nullptr; 1363 1364 return ICmpInst::Create(Instruction::ICmp, 1365 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1366 : ICmpInst::ICMP_SLT, 1367 X, ConstantInt::getNullValue(XTy)); 1368 } 1369 1370 // Handle icmp pred X, 0 1371 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1372 CmpInst::Predicate Pred = Cmp.getPredicate(); 1373 if (!match(Cmp.getOperand(1), m_Zero())) 1374 return nullptr; 1375 1376 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1377 if (Pred == ICmpInst::ICMP_SGT) { 1378 Value *A, *B; 1379 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1380 if (SPR.Flavor == SPF_SMIN) { 1381 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1382 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1383 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1384 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1385 } 1386 } 1387 1388 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1389 return New; 1390 1391 // Given: 1392 // icmp eq/ne (urem %x, %y), 0 1393 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1394 // icmp eq/ne %x, 0 1395 Value *X, *Y; 1396 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1397 ICmpInst::isEquality(Pred)) { 1398 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1399 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1400 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1401 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1402 } 1403 1404 return nullptr; 1405 } 1406 1407 /// Fold icmp Pred X, C. 1408 /// TODO: This code structure does not make sense. The saturating add fold 1409 /// should be moved to some other helper and extended as noted below (it is also 1410 /// possible that code has been made unnecessary - do we canonicalize IR to 1411 /// overflow/saturating intrinsics or not?). 1412 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1413 // Match the following pattern, which is a common idiom when writing 1414 // overflow-safe integer arithmetic functions. The source performs an addition 1415 // in wider type and explicitly checks for overflow using comparisons against 1416 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1417 // 1418 // TODO: This could probably be generalized to handle other overflow-safe 1419 // operations if we worked out the formulas to compute the appropriate magic 1420 // constants. 1421 // 1422 // sum = a + b 1423 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1424 CmpInst::Predicate Pred = Cmp.getPredicate(); 1425 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1426 Value *A, *B; 1427 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1428 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1429 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1430 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1431 return Res; 1432 1433 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1434 Constant *C = dyn_cast<Constant>(Op1); 1435 if (!C || C->canTrap()) 1436 return nullptr; 1437 1438 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1439 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1440 Type *Ty = Cmp.getType(); 1441 Builder.SetInsertPoint(Phi); 1442 PHINode *NewPhi = 1443 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1444 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1445 auto *Input = 1446 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1447 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1448 NewPhi->addIncoming(BoolInput, Predecessor); 1449 } 1450 NewPhi->takeName(&Cmp); 1451 return replaceInstUsesWith(Cmp, NewPhi); 1452 } 1453 1454 return nullptr; 1455 } 1456 1457 /// Canonicalize icmp instructions based on dominating conditions. 1458 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1459 // This is a cheap/incomplete check for dominance - just match a single 1460 // predecessor with a conditional branch. 1461 BasicBlock *CmpBB = Cmp.getParent(); 1462 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1463 if (!DomBB) 1464 return nullptr; 1465 1466 Value *DomCond; 1467 BasicBlock *TrueBB, *FalseBB; 1468 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1469 return nullptr; 1470 1471 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1472 "Predecessor block does not point to successor?"); 1473 1474 // The branch should get simplified. Don't bother simplifying this condition. 1475 if (TrueBB == FalseBB) 1476 return nullptr; 1477 1478 // Try to simplify this compare to T/F based on the dominating condition. 1479 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1480 if (Imp) 1481 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1482 1483 CmpInst::Predicate Pred = Cmp.getPredicate(); 1484 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1485 ICmpInst::Predicate DomPred; 1486 const APInt *C, *DomC; 1487 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1488 match(Y, m_APInt(C))) { 1489 // We have 2 compares of a variable with constants. Calculate the constant 1490 // ranges of those compares to see if we can transform the 2nd compare: 1491 // DomBB: 1492 // DomCond = icmp DomPred X, DomC 1493 // br DomCond, CmpBB, FalseBB 1494 // CmpBB: 1495 // Cmp = icmp Pred X, C 1496 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1497 ConstantRange DominatingCR = 1498 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1499 : ConstantRange::makeExactICmpRegion( 1500 CmpInst::getInversePredicate(DomPred), *DomC); 1501 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1502 ConstantRange Difference = DominatingCR.difference(CR); 1503 if (Intersection.isEmptySet()) 1504 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1505 if (Difference.isEmptySet()) 1506 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1507 1508 // Canonicalizing a sign bit comparison that gets used in a branch, 1509 // pessimizes codegen by generating branch on zero instruction instead 1510 // of a test and branch. So we avoid canonicalizing in such situations 1511 // because test and branch instruction has better branch displacement 1512 // than compare and branch instruction. 1513 bool UnusedBit; 1514 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1515 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1516 return nullptr; 1517 1518 // Avoid an infinite loop with min/max canonicalization. 1519 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1520 if (Cmp.hasOneUse() && 1521 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1522 return nullptr; 1523 1524 if (const APInt *EqC = Intersection.getSingleElement()) 1525 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1526 if (const APInt *NeC = Difference.getSingleElement()) 1527 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1528 } 1529 1530 return nullptr; 1531 } 1532 1533 /// Fold icmp (trunc X, Y), C. 1534 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1535 TruncInst *Trunc, 1536 const APInt &C) { 1537 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1538 Value *X = Trunc->getOperand(0); 1539 if (C.isOne() && C.getBitWidth() > 1) { 1540 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1541 Value *V = nullptr; 1542 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1543 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1544 ConstantInt::get(V->getType(), 1)); 1545 } 1546 1547 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1548 SrcBits = X->getType()->getScalarSizeInBits(); 1549 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1550 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1551 // of the high bits truncated out of x are known. 1552 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1553 1554 // If all the high bits are known, we can do this xform. 1555 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1556 // Pull in the high bits from known-ones set. 1557 APInt NewRHS = C.zext(SrcBits); 1558 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1559 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1560 } 1561 } 1562 1563 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1564 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1565 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1566 Value *ShOp; 1567 const APInt *ShAmtC; 1568 bool TrueIfSigned; 1569 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1570 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1571 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1572 return TrueIfSigned 1573 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1574 ConstantInt::getNullValue(X->getType())) 1575 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1576 ConstantInt::getAllOnesValue(X->getType())); 1577 } 1578 1579 return nullptr; 1580 } 1581 1582 /// Fold icmp (xor X, Y), C. 1583 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1584 BinaryOperator *Xor, 1585 const APInt &C) { 1586 Value *X = Xor->getOperand(0); 1587 Value *Y = Xor->getOperand(1); 1588 const APInt *XorC; 1589 if (!match(Y, m_APInt(XorC))) 1590 return nullptr; 1591 1592 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1593 // fold the xor. 1594 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1595 bool TrueIfSigned = false; 1596 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1597 1598 // If the sign bit of the XorCst is not set, there is no change to 1599 // the operation, just stop using the Xor. 1600 if (!XorC->isNegative()) 1601 return replaceOperand(Cmp, 0, X); 1602 1603 // Emit the opposite comparison. 1604 if (TrueIfSigned) 1605 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1606 ConstantInt::getAllOnesValue(X->getType())); 1607 else 1608 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1609 ConstantInt::getNullValue(X->getType())); 1610 } 1611 1612 if (Xor->hasOneUse()) { 1613 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1614 if (!Cmp.isEquality() && XorC->isSignMask()) { 1615 Pred = Cmp.getFlippedSignednessPredicate(); 1616 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1617 } 1618 1619 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1620 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1621 Pred = Cmp.getFlippedSignednessPredicate(); 1622 Pred = Cmp.getSwappedPredicate(Pred); 1623 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1624 } 1625 } 1626 1627 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1628 if (Pred == ICmpInst::ICMP_UGT) { 1629 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1630 if (*XorC == ~C && (C + 1).isPowerOf2()) 1631 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1632 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1633 if (*XorC == C && (C + 1).isPowerOf2()) 1634 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1635 } 1636 if (Pred == ICmpInst::ICMP_ULT) { 1637 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1638 if (*XorC == -C && C.isPowerOf2()) 1639 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1640 ConstantInt::get(X->getType(), ~C)); 1641 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1642 if (*XorC == C && (-C).isPowerOf2()) 1643 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1644 ConstantInt::get(X->getType(), ~C)); 1645 } 1646 return nullptr; 1647 } 1648 1649 /// Fold icmp (and (sh X, Y), C2), C1. 1650 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1651 BinaryOperator *And, 1652 const APInt &C1, 1653 const APInt &C2) { 1654 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1655 if (!Shift || !Shift->isShift()) 1656 return nullptr; 1657 1658 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1659 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1660 // code produced by the clang front-end, for bitfield access. 1661 // This seemingly simple opportunity to fold away a shift turns out to be 1662 // rather complicated. See PR17827 for details. 1663 unsigned ShiftOpcode = Shift->getOpcode(); 1664 bool IsShl = ShiftOpcode == Instruction::Shl; 1665 const APInt *C3; 1666 if (match(Shift->getOperand(1), m_APInt(C3))) { 1667 APInt NewAndCst, NewCmpCst; 1668 bool AnyCmpCstBitsShiftedOut; 1669 if (ShiftOpcode == Instruction::Shl) { 1670 // For a left shift, we can fold if the comparison is not signed. We can 1671 // also fold a signed comparison if the mask value and comparison value 1672 // are not negative. These constraints may not be obvious, but we can 1673 // prove that they are correct using an SMT solver. 1674 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1675 return nullptr; 1676 1677 NewCmpCst = C1.lshr(*C3); 1678 NewAndCst = C2.lshr(*C3); 1679 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1680 } else if (ShiftOpcode == Instruction::LShr) { 1681 // For a logical right shift, we can fold if the comparison is not signed. 1682 // We can also fold a signed comparison if the shifted mask value and the 1683 // shifted comparison value are not negative. These constraints may not be 1684 // obvious, but we can prove that they are correct using an SMT solver. 1685 NewCmpCst = C1.shl(*C3); 1686 NewAndCst = C2.shl(*C3); 1687 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1688 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1689 return nullptr; 1690 } else { 1691 // For an arithmetic shift, check that both constants don't use (in a 1692 // signed sense) the top bits being shifted out. 1693 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1694 NewCmpCst = C1.shl(*C3); 1695 NewAndCst = C2.shl(*C3); 1696 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1697 if (NewAndCst.ashr(*C3) != C2) 1698 return nullptr; 1699 } 1700 1701 if (AnyCmpCstBitsShiftedOut) { 1702 // If we shifted bits out, the fold is not going to work out. As a 1703 // special case, check to see if this means that the result is always 1704 // true or false now. 1705 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1706 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1707 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1708 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1709 } else { 1710 Value *NewAnd = Builder.CreateAnd( 1711 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1712 return new ICmpInst(Cmp.getPredicate(), 1713 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1714 } 1715 } 1716 1717 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1718 // preferable because it allows the C2 << Y expression to be hoisted out of a 1719 // loop if Y is invariant and X is not. 1720 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1721 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1722 // Compute C2 << Y. 1723 Value *NewShift = 1724 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1725 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1726 1727 // Compute X & (C2 << Y). 1728 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1729 return replaceOperand(Cmp, 0, NewAnd); 1730 } 1731 1732 return nullptr; 1733 } 1734 1735 /// Fold icmp (and X, C2), C1. 1736 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1737 BinaryOperator *And, 1738 const APInt &C1) { 1739 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1740 1741 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1742 // TODO: We canonicalize to the longer form for scalars because we have 1743 // better analysis/folds for icmp, and codegen may be better with icmp. 1744 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1745 match(And->getOperand(1), m_One())) 1746 return new TruncInst(And->getOperand(0), Cmp.getType()); 1747 1748 const APInt *C2; 1749 Value *X; 1750 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1751 return nullptr; 1752 1753 // Don't perform the following transforms if the AND has multiple uses 1754 if (!And->hasOneUse()) 1755 return nullptr; 1756 1757 if (Cmp.isEquality() && C1.isZero()) { 1758 // Restrict this fold to single-use 'and' (PR10267). 1759 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1760 if (C2->isSignMask()) { 1761 Constant *Zero = Constant::getNullValue(X->getType()); 1762 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1763 return new ICmpInst(NewPred, X, Zero); 1764 } 1765 1766 // Restrict this fold only for single-use 'and' (PR10267). 1767 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1768 if ((~(*C2) + 1).isPowerOf2()) { 1769 Constant *NegBOC = 1770 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1771 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1772 return new ICmpInst(NewPred, X, NegBOC); 1773 } 1774 } 1775 1776 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1777 // the input width without changing the value produced, eliminate the cast: 1778 // 1779 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1780 // 1781 // We can do this transformation if the constants do not have their sign bits 1782 // set or if it is an equality comparison. Extending a relational comparison 1783 // when we're checking the sign bit would not work. 1784 Value *W; 1785 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1786 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1787 // TODO: Is this a good transform for vectors? Wider types may reduce 1788 // throughput. Should this transform be limited (even for scalars) by using 1789 // shouldChangeType()? 1790 if (!Cmp.getType()->isVectorTy()) { 1791 Type *WideType = W->getType(); 1792 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1793 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1794 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1795 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1796 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1797 } 1798 } 1799 1800 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1801 return I; 1802 1803 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1804 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1805 // 1806 // iff pred isn't signed 1807 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1808 match(And->getOperand(1), m_One())) { 1809 Constant *One = cast<Constant>(And->getOperand(1)); 1810 Value *Or = And->getOperand(0); 1811 Value *A, *B, *LShr; 1812 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1813 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1814 unsigned UsesRemoved = 0; 1815 if (And->hasOneUse()) 1816 ++UsesRemoved; 1817 if (Or->hasOneUse()) 1818 ++UsesRemoved; 1819 if (LShr->hasOneUse()) 1820 ++UsesRemoved; 1821 1822 // Compute A & ((1 << B) | 1) 1823 Value *NewOr = nullptr; 1824 if (auto *C = dyn_cast<Constant>(B)) { 1825 if (UsesRemoved >= 1) 1826 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1827 } else { 1828 if (UsesRemoved >= 3) 1829 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1830 /*HasNUW=*/true), 1831 One, Or->getName()); 1832 } 1833 if (NewOr) { 1834 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1835 return replaceOperand(Cmp, 0, NewAnd); 1836 } 1837 } 1838 } 1839 1840 return nullptr; 1841 } 1842 1843 /// Fold icmp (and X, Y), C. 1844 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1845 BinaryOperator *And, 1846 const APInt &C) { 1847 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1848 return I; 1849 1850 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1851 bool TrueIfNeg; 1852 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1853 // ((X - 1) & ~X) < 0 --> X == 0 1854 // ((X - 1) & ~X) >= 0 --> X != 0 1855 Value *X; 1856 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1857 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1858 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1859 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1860 } 1861 } 1862 1863 // TODO: These all require that Y is constant too, so refactor with the above. 1864 1865 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1866 Value *X = And->getOperand(0); 1867 Value *Y = And->getOperand(1); 1868 if (auto *LI = dyn_cast<LoadInst>(X)) 1869 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1870 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1871 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1872 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1873 ConstantInt *C2 = cast<ConstantInt>(Y); 1874 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1875 return Res; 1876 } 1877 1878 if (!Cmp.isEquality()) 1879 return nullptr; 1880 1881 // X & -C == -C -> X > u ~C 1882 // X & -C != -C -> X <= u ~C 1883 // iff C is a power of 2 1884 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1885 auto NewPred = 1886 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1887 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1888 } 1889 1890 return nullptr; 1891 } 1892 1893 /// Fold icmp (or X, Y), C. 1894 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1895 BinaryOperator *Or, 1896 const APInt &C) { 1897 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1898 if (C.isOne()) { 1899 // icmp slt signum(V) 1 --> icmp slt V, 1 1900 Value *V = nullptr; 1901 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1902 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1903 ConstantInt::get(V->getType(), 1)); 1904 } 1905 1906 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1907 const APInt *MaskC; 1908 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1909 if (*MaskC == C && (C + 1).isPowerOf2()) { 1910 // X | C == C --> X <=u C 1911 // X | C != C --> X >u C 1912 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1913 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1914 return new ICmpInst(Pred, OrOp0, OrOp1); 1915 } 1916 1917 // More general: canonicalize 'equality with set bits mask' to 1918 // 'equality with clear bits mask'. 1919 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1920 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1921 if (Or->hasOneUse()) { 1922 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1923 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1924 return new ICmpInst(Pred, And, NewC); 1925 } 1926 } 1927 1928 // (X | (X-1)) s< 0 --> X s< 1 1929 // (X | (X-1)) s> -1 --> X s> 0 1930 Value *X; 1931 bool TrueIfSigned; 1932 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1933 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1934 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1935 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1936 return new ICmpInst(NewPred, X, NewC); 1937 } 1938 1939 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1940 return nullptr; 1941 1942 Value *P, *Q; 1943 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1944 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1945 // -> and (icmp eq P, null), (icmp eq Q, null). 1946 Value *CmpP = 1947 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1948 Value *CmpQ = 1949 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1950 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1951 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1952 } 1953 1954 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1955 // a shorter form that has more potential to be folded even further. 1956 Value *X1, *X2, *X3, *X4; 1957 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1958 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1959 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1960 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1961 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1962 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1963 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1964 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1965 } 1966 1967 return nullptr; 1968 } 1969 1970 /// Fold icmp (mul X, Y), C. 1971 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1972 BinaryOperator *Mul, 1973 const APInt &C) { 1974 const APInt *MulC; 1975 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1976 return nullptr; 1977 1978 // If this is a test of the sign bit and the multiply is sign-preserving with 1979 // a constant operand, use the multiply LHS operand instead. 1980 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1981 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1982 if (MulC->isNegative()) 1983 Pred = ICmpInst::getSwappedPredicate(Pred); 1984 return new ICmpInst(Pred, Mul->getOperand(0), 1985 Constant::getNullValue(Mul->getType())); 1986 } 1987 1988 // If the multiply does not wrap, try to divide the compare constant by the 1989 // multiplication factor. 1990 if (Cmp.isEquality() && !MulC->isZero()) { 1991 // (mul nsw X, MulC) == C --> X == C /s MulC 1992 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 1993 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1994 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1995 } 1996 // (mul nuw X, MulC) == C --> X == C /u MulC 1997 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 1998 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1999 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2000 } 2001 } 2002 2003 return nullptr; 2004 } 2005 2006 /// Fold icmp (shl 1, Y), C. 2007 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2008 const APInt &C) { 2009 Value *Y; 2010 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2011 return nullptr; 2012 2013 Type *ShiftType = Shl->getType(); 2014 unsigned TypeBits = C.getBitWidth(); 2015 bool CIsPowerOf2 = C.isPowerOf2(); 2016 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2017 if (Cmp.isUnsigned()) { 2018 // (1 << Y) pred C -> Y pred Log2(C) 2019 if (!CIsPowerOf2) { 2020 // (1 << Y) < 30 -> Y <= 4 2021 // (1 << Y) <= 30 -> Y <= 4 2022 // (1 << Y) >= 30 -> Y > 4 2023 // (1 << Y) > 30 -> Y > 4 2024 if (Pred == ICmpInst::ICMP_ULT) 2025 Pred = ICmpInst::ICMP_ULE; 2026 else if (Pred == ICmpInst::ICMP_UGE) 2027 Pred = ICmpInst::ICMP_UGT; 2028 } 2029 2030 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2031 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2032 unsigned CLog2 = C.logBase2(); 2033 if (CLog2 == TypeBits - 1) { 2034 if (Pred == ICmpInst::ICMP_UGE) 2035 Pred = ICmpInst::ICMP_EQ; 2036 else if (Pred == ICmpInst::ICMP_ULT) 2037 Pred = ICmpInst::ICMP_NE; 2038 } 2039 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2040 } else if (Cmp.isSigned()) { 2041 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2042 if (C.isAllOnes()) { 2043 // (1 << Y) <= -1 -> Y == 31 2044 if (Pred == ICmpInst::ICMP_SLE) 2045 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2046 2047 // (1 << Y) > -1 -> Y != 31 2048 if (Pred == ICmpInst::ICMP_SGT) 2049 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2050 } else if (!C) { 2051 // (1 << Y) < 0 -> Y == 31 2052 // (1 << Y) <= 0 -> Y == 31 2053 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2054 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2055 2056 // (1 << Y) >= 0 -> Y != 31 2057 // (1 << Y) > 0 -> Y != 31 2058 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2059 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2060 } 2061 } else if (Cmp.isEquality() && CIsPowerOf2) { 2062 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2063 } 2064 2065 return nullptr; 2066 } 2067 2068 /// Fold icmp (shl X, Y), C. 2069 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2070 BinaryOperator *Shl, 2071 const APInt &C) { 2072 const APInt *ShiftVal; 2073 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2074 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2075 2076 const APInt *ShiftAmt; 2077 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2078 return foldICmpShlOne(Cmp, Shl, C); 2079 2080 // Check that the shift amount is in range. If not, don't perform undefined 2081 // shifts. When the shift is visited, it will be simplified. 2082 unsigned TypeBits = C.getBitWidth(); 2083 if (ShiftAmt->uge(TypeBits)) 2084 return nullptr; 2085 2086 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2087 Value *X = Shl->getOperand(0); 2088 Type *ShType = Shl->getType(); 2089 2090 // NSW guarantees that we are only shifting out sign bits from the high bits, 2091 // so we can ASHR the compare constant without needing a mask and eliminate 2092 // the shift. 2093 if (Shl->hasNoSignedWrap()) { 2094 if (Pred == ICmpInst::ICMP_SGT) { 2095 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2096 APInt ShiftedC = C.ashr(*ShiftAmt); 2097 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2098 } 2099 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2100 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2101 APInt ShiftedC = C.ashr(*ShiftAmt); 2102 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2103 } 2104 if (Pred == ICmpInst::ICMP_SLT) { 2105 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2106 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2107 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2108 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2109 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2110 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2111 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2112 } 2113 // If this is a signed comparison to 0 and the shift is sign preserving, 2114 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2115 // do that if we're sure to not continue on in this function. 2116 if (isSignTest(Pred, C)) 2117 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2118 } 2119 2120 // NUW guarantees that we are only shifting out zero bits from the high bits, 2121 // so we can LSHR the compare constant without needing a mask and eliminate 2122 // the shift. 2123 if (Shl->hasNoUnsignedWrap()) { 2124 if (Pred == ICmpInst::ICMP_UGT) { 2125 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2126 APInt ShiftedC = C.lshr(*ShiftAmt); 2127 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2128 } 2129 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2130 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2131 APInt ShiftedC = C.lshr(*ShiftAmt); 2132 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2133 } 2134 if (Pred == ICmpInst::ICMP_ULT) { 2135 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2136 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2137 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2138 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2139 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2140 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2141 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2142 } 2143 } 2144 2145 if (Cmp.isEquality() && Shl->hasOneUse()) { 2146 // Strength-reduce the shift into an 'and'. 2147 Constant *Mask = ConstantInt::get( 2148 ShType, 2149 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2150 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2151 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2152 return new ICmpInst(Pred, And, LShrC); 2153 } 2154 2155 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2156 bool TrueIfSigned = false; 2157 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2158 // (X << 31) <s 0 --> (X & 1) != 0 2159 Constant *Mask = ConstantInt::get( 2160 ShType, 2161 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2162 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2163 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2164 And, Constant::getNullValue(ShType)); 2165 } 2166 2167 // Simplify 'shl' inequality test into 'and' equality test. 2168 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2169 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2170 if ((C + 1).isPowerOf2() && 2171 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2172 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2173 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2174 : ICmpInst::ICMP_NE, 2175 And, Constant::getNullValue(ShType)); 2176 } 2177 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2178 if (C.isPowerOf2() && 2179 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2180 Value *And = 2181 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2182 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2183 : ICmpInst::ICMP_NE, 2184 And, Constant::getNullValue(ShType)); 2185 } 2186 } 2187 2188 // Transform (icmp pred iM (shl iM %v, N), C) 2189 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2190 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2191 // This enables us to get rid of the shift in favor of a trunc that may be 2192 // free on the target. It has the additional benefit of comparing to a 2193 // smaller constant that may be more target-friendly. 2194 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2195 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2196 DL.isLegalInteger(TypeBits - Amt)) { 2197 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2198 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2199 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2200 Constant *NewC = 2201 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2202 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2203 } 2204 2205 return nullptr; 2206 } 2207 2208 /// Fold icmp ({al}shr X, Y), C. 2209 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2210 BinaryOperator *Shr, 2211 const APInt &C) { 2212 // An exact shr only shifts out zero bits, so: 2213 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2214 Value *X = Shr->getOperand(0); 2215 CmpInst::Predicate Pred = Cmp.getPredicate(); 2216 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2217 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2218 2219 const APInt *ShiftVal; 2220 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2221 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2222 2223 const APInt *ShiftAmt; 2224 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2225 return nullptr; 2226 2227 // Check that the shift amount is in range. If not, don't perform undefined 2228 // shifts. When the shift is visited it will be simplified. 2229 unsigned TypeBits = C.getBitWidth(); 2230 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2231 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2232 return nullptr; 2233 2234 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2235 bool IsExact = Shr->isExact(); 2236 Type *ShrTy = Shr->getType(); 2237 // TODO: If we could guarantee that InstSimplify would handle all of the 2238 // constant-value-based preconditions in the folds below, then we could assert 2239 // those conditions rather than checking them. This is difficult because of 2240 // undef/poison (PR34838). 2241 if (IsAShr) { 2242 if (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT || IsExact) { 2243 // When ShAmtC can be shifted losslessly: 2244 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2245 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2246 APInt ShiftedC = C.shl(ShAmtVal); 2247 if (ShiftedC.ashr(ShAmtVal) == C) 2248 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2249 } 2250 if (Pred == CmpInst::ICMP_SGT) { 2251 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2252 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2253 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2254 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2255 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2256 } 2257 2258 // If the compare constant has significant bits above the lowest sign-bit, 2259 // then convert an unsigned cmp to a test of the sign-bit: 2260 // (ashr X, ShiftC) u> C --> X s< 0 2261 // (ashr X, ShiftC) u< C --> X s> -1 2262 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2263 if (Pred == CmpInst::ICMP_UGT) { 2264 return new ICmpInst(CmpInst::ICMP_SLT, X, 2265 ConstantInt::getNullValue(ShrTy)); 2266 } 2267 if (Pred == CmpInst::ICMP_ULT) { 2268 return new ICmpInst(CmpInst::ICMP_SGT, X, 2269 ConstantInt::getAllOnesValue(ShrTy)); 2270 } 2271 } 2272 } else { 2273 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2274 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2275 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2276 APInt ShiftedC = C.shl(ShAmtVal); 2277 if (ShiftedC.lshr(ShAmtVal) == C) 2278 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2279 } 2280 if (Pred == CmpInst::ICMP_UGT) { 2281 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2282 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2283 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2284 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2285 } 2286 } 2287 2288 if (!Cmp.isEquality()) 2289 return nullptr; 2290 2291 // Handle equality comparisons of shift-by-constant. 2292 2293 // If the comparison constant changes with the shift, the comparison cannot 2294 // succeed (bits of the comparison constant cannot match the shifted value). 2295 // This should be known by InstSimplify and already be folded to true/false. 2296 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2297 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2298 "Expected icmp+shr simplify did not occur."); 2299 2300 // If the bits shifted out are known zero, compare the unshifted value: 2301 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2302 if (Shr->isExact()) 2303 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2304 2305 if (C.isZero()) { 2306 // == 0 is u< 1. 2307 if (Pred == CmpInst::ICMP_EQ) 2308 return new ICmpInst(CmpInst::ICMP_ULT, X, 2309 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2310 else 2311 return new ICmpInst(CmpInst::ICMP_UGT, X, 2312 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2313 } 2314 2315 if (Shr->hasOneUse()) { 2316 // Canonicalize the shift into an 'and': 2317 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2318 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2319 Constant *Mask = ConstantInt::get(ShrTy, Val); 2320 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2321 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2322 } 2323 2324 return nullptr; 2325 } 2326 2327 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2328 BinaryOperator *SRem, 2329 const APInt &C) { 2330 // Match an 'is positive' or 'is negative' comparison of remainder by a 2331 // constant power-of-2 value: 2332 // (X % pow2C) sgt/slt 0 2333 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2334 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2335 return nullptr; 2336 2337 // TODO: The one-use check is standard because we do not typically want to 2338 // create longer instruction sequences, but this might be a special-case 2339 // because srem is not good for analysis or codegen. 2340 if (!SRem->hasOneUse()) 2341 return nullptr; 2342 2343 const APInt *DivisorC; 2344 if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2345 return nullptr; 2346 2347 // Mask off the sign bit and the modulo bits (low-bits). 2348 Type *Ty = SRem->getType(); 2349 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2350 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2351 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2352 2353 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2354 // bit is set. Example: 2355 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2356 if (Pred == ICmpInst::ICMP_SGT) 2357 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2358 2359 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2360 // bit is set. Example: 2361 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2362 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2363 } 2364 2365 /// Fold icmp (udiv X, Y), C. 2366 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2367 BinaryOperator *UDiv, 2368 const APInt &C) { 2369 const APInt *C2; 2370 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2371 return nullptr; 2372 2373 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2374 2375 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2376 Value *Y = UDiv->getOperand(1); 2377 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2378 assert(!C.isMaxValue() && 2379 "icmp ugt X, UINT_MAX should have been simplified already."); 2380 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2381 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2382 } 2383 2384 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2385 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2386 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2387 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2388 ConstantInt::get(Y->getType(), C2->udiv(C))); 2389 } 2390 2391 return nullptr; 2392 } 2393 2394 /// Fold icmp ({su}div X, Y), C. 2395 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2396 BinaryOperator *Div, 2397 const APInt &C) { 2398 // Fold: icmp pred ([us]div X, C2), C -> range test 2399 // Fold this div into the comparison, producing a range check. 2400 // Determine, based on the divide type, what the range is being 2401 // checked. If there is an overflow on the low or high side, remember 2402 // it, otherwise compute the range [low, hi) bounding the new value. 2403 // See: InsertRangeTest above for the kinds of replacements possible. 2404 const APInt *C2; 2405 if (!match(Div->getOperand(1), m_APInt(C2))) 2406 return nullptr; 2407 2408 // FIXME: If the operand types don't match the type of the divide 2409 // then don't attempt this transform. The code below doesn't have the 2410 // logic to deal with a signed divide and an unsigned compare (and 2411 // vice versa). This is because (x /s C2) <s C produces different 2412 // results than (x /s C2) <u C or (x /u C2) <s C or even 2413 // (x /u C2) <u C. Simply casting the operands and result won't 2414 // work. :( The if statement below tests that condition and bails 2415 // if it finds it. 2416 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2417 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2418 return nullptr; 2419 2420 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2421 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2422 // division-by-constant cases should be present, we can not assert that they 2423 // have happened before we reach this icmp instruction. 2424 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2425 return nullptr; 2426 2427 // Compute Prod = C * C2. We are essentially solving an equation of 2428 // form X / C2 = C. We solve for X by multiplying C2 and C. 2429 // By solving for X, we can turn this into a range check instead of computing 2430 // a divide. 2431 APInt Prod = C * *C2; 2432 2433 // Determine if the product overflows by seeing if the product is not equal to 2434 // the divide. Make sure we do the same kind of divide as in the LHS 2435 // instruction that we're folding. 2436 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2437 2438 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2439 2440 // If the division is known to be exact, then there is no remainder from the 2441 // divide, so the covered range size is unit, otherwise it is the divisor. 2442 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2443 2444 // Figure out the interval that is being checked. For example, a comparison 2445 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2446 // Compute this interval based on the constants involved and the signedness of 2447 // the compare/divide. This computes a half-open interval, keeping track of 2448 // whether either value in the interval overflows. After analysis each 2449 // overflow variable is set to 0 if it's corresponding bound variable is valid 2450 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2451 int LoOverflow = 0, HiOverflow = 0; 2452 APInt LoBound, HiBound; 2453 2454 if (!DivIsSigned) { // udiv 2455 // e.g. X/5 op 3 --> [15, 20) 2456 LoBound = Prod; 2457 HiOverflow = LoOverflow = ProdOV; 2458 if (!HiOverflow) { 2459 // If this is not an exact divide, then many values in the range collapse 2460 // to the same result value. 2461 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2462 } 2463 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2464 if (C.isZero()) { // (X / pos) op 0 2465 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2466 LoBound = -(RangeSize - 1); 2467 HiBound = RangeSize; 2468 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2469 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2470 HiOverflow = LoOverflow = ProdOV; 2471 if (!HiOverflow) 2472 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2473 } else { // (X / pos) op neg 2474 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2475 HiBound = Prod + 1; 2476 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2477 if (!LoOverflow) { 2478 APInt DivNeg = -RangeSize; 2479 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2480 } 2481 } 2482 } else if (C2->isNegative()) { // Divisor is < 0. 2483 if (Div->isExact()) 2484 RangeSize.negate(); 2485 if (C.isZero()) { // (X / neg) op 0 2486 // e.g. X/-5 op 0 --> [-4, 5) 2487 LoBound = RangeSize + 1; 2488 HiBound = -RangeSize; 2489 if (HiBound == *C2) { // -INTMIN = INTMIN 2490 HiOverflow = 1; // [INTMIN+1, overflow) 2491 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2492 } 2493 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2494 // e.g. X/-5 op 3 --> [-19, -14) 2495 HiBound = Prod + 1; 2496 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2497 if (!LoOverflow) 2498 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2499 } else { // (X / neg) op neg 2500 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2501 LoOverflow = HiOverflow = ProdOV; 2502 if (!HiOverflow) 2503 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2504 } 2505 2506 // Dividing by a negative swaps the condition. LT <-> GT 2507 Pred = ICmpInst::getSwappedPredicate(Pred); 2508 } 2509 2510 Value *X = Div->getOperand(0); 2511 switch (Pred) { 2512 default: llvm_unreachable("Unhandled icmp opcode!"); 2513 case ICmpInst::ICMP_EQ: 2514 if (LoOverflow && HiOverflow) 2515 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2516 if (HiOverflow) 2517 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2518 ICmpInst::ICMP_UGE, X, 2519 ConstantInt::get(Div->getType(), LoBound)); 2520 if (LoOverflow) 2521 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2522 ICmpInst::ICMP_ULT, X, 2523 ConstantInt::get(Div->getType(), HiBound)); 2524 return replaceInstUsesWith( 2525 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2526 case ICmpInst::ICMP_NE: 2527 if (LoOverflow && HiOverflow) 2528 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2529 if (HiOverflow) 2530 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2531 ICmpInst::ICMP_ULT, X, 2532 ConstantInt::get(Div->getType(), LoBound)); 2533 if (LoOverflow) 2534 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2535 ICmpInst::ICMP_UGE, X, 2536 ConstantInt::get(Div->getType(), HiBound)); 2537 return replaceInstUsesWith(Cmp, 2538 insertRangeTest(X, LoBound, HiBound, 2539 DivIsSigned, false)); 2540 case ICmpInst::ICMP_ULT: 2541 case ICmpInst::ICMP_SLT: 2542 if (LoOverflow == +1) // Low bound is greater than input range. 2543 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2544 if (LoOverflow == -1) // Low bound is less than input range. 2545 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2546 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2547 case ICmpInst::ICMP_UGT: 2548 case ICmpInst::ICMP_SGT: 2549 if (HiOverflow == +1) // High bound greater than input range. 2550 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2551 if (HiOverflow == -1) // High bound less than input range. 2552 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2553 if (Pred == ICmpInst::ICMP_UGT) 2554 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2555 ConstantInt::get(Div->getType(), HiBound)); 2556 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2557 ConstantInt::get(Div->getType(), HiBound)); 2558 } 2559 2560 return nullptr; 2561 } 2562 2563 /// Fold icmp (sub X, Y), C. 2564 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2565 BinaryOperator *Sub, 2566 const APInt &C) { 2567 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2568 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2569 Type *Ty = Sub->getType(); 2570 2571 // (SubC - Y) == C) --> Y == (SubC - C) 2572 // (SubC - Y) != C) --> Y != (SubC - C) 2573 Constant *SubC; 2574 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2575 return new ICmpInst(Pred, Y, 2576 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2577 } 2578 2579 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2580 const APInt *C2; 2581 APInt SubResult; 2582 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2583 bool HasNSW = Sub->hasNoSignedWrap(); 2584 bool HasNUW = Sub->hasNoUnsignedWrap(); 2585 if (match(X, m_APInt(C2)) && 2586 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2587 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2588 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2589 2590 // The following transforms are only worth it if the only user of the subtract 2591 // is the icmp. 2592 // TODO: This is an artificial restriction for all of the transforms below 2593 // that only need a single replacement icmp. 2594 if (!Sub->hasOneUse()) 2595 return nullptr; 2596 2597 // X - Y == 0 --> X == Y. 2598 // X - Y != 0 --> X != Y. 2599 if (Cmp.isEquality() && C.isZero()) 2600 return new ICmpInst(Pred, X, Y); 2601 2602 if (Sub->hasNoSignedWrap()) { 2603 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2604 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2605 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2606 2607 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2608 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2609 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2610 2611 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2612 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2613 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2614 2615 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2616 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2617 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2618 } 2619 2620 if (!match(X, m_APInt(C2))) 2621 return nullptr; 2622 2623 // C2 - Y <u C -> (Y | (C - 1)) == C2 2624 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2625 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2626 (*C2 & (C - 1)) == (C - 1)) 2627 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2628 2629 // C2 - Y >u C -> (Y | C) != C2 2630 // iff C2 & C == C and C + 1 is a power of 2 2631 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2632 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2633 2634 // We have handled special cases that reduce. 2635 // Canonicalize any remaining sub to add as: 2636 // (C2 - Y) > C --> (Y + ~C2) < ~C 2637 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2638 HasNUW, HasNSW); 2639 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2640 } 2641 2642 /// Fold icmp (add X, Y), C. 2643 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2644 BinaryOperator *Add, 2645 const APInt &C) { 2646 Value *Y = Add->getOperand(1); 2647 const APInt *C2; 2648 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2649 return nullptr; 2650 2651 // Fold icmp pred (add X, C2), C. 2652 Value *X = Add->getOperand(0); 2653 Type *Ty = Add->getType(); 2654 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2655 2656 // If the add does not wrap, we can always adjust the compare by subtracting 2657 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2658 // are canonicalized to SGT/SLT/UGT/ULT. 2659 if ((Add->hasNoSignedWrap() && 2660 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2661 (Add->hasNoUnsignedWrap() && 2662 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2663 bool Overflow; 2664 APInt NewC = 2665 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2666 // If there is overflow, the result must be true or false. 2667 // TODO: Can we assert there is no overflow because InstSimplify always 2668 // handles those cases? 2669 if (!Overflow) 2670 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2671 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2672 } 2673 2674 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2675 const APInt &Upper = CR.getUpper(); 2676 const APInt &Lower = CR.getLower(); 2677 if (Cmp.isSigned()) { 2678 if (Lower.isSignMask()) 2679 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2680 if (Upper.isSignMask()) 2681 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2682 } else { 2683 if (Lower.isMinValue()) 2684 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2685 if (Upper.isMinValue()) 2686 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2687 } 2688 2689 // This set of folds is intentionally placed after folds that use no-wrapping 2690 // flags because those folds are likely better for later analysis/codegen. 2691 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2692 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2693 2694 // Fold compare with offset to opposite sign compare if it eliminates offset: 2695 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2696 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2697 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2698 2699 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2700 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2701 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2702 2703 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2704 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2705 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2706 2707 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2708 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2709 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2710 2711 if (!Add->hasOneUse()) 2712 return nullptr; 2713 2714 // X+C <u C2 -> (X & -C2) == C 2715 // iff C & (C2-1) == 0 2716 // C2 is a power of 2 2717 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2718 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2719 ConstantExpr::getNeg(cast<Constant>(Y))); 2720 2721 // X+C >u C2 -> (X & ~C2) != C 2722 // iff C & C2 == 0 2723 // C2+1 is a power of 2 2724 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2725 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2726 ConstantExpr::getNeg(cast<Constant>(Y))); 2727 2728 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2729 // to the ult form. 2730 // X+C2 >u C -> X+(C2-C-1) <u ~C 2731 if (Pred == ICmpInst::ICMP_UGT) 2732 return new ICmpInst(ICmpInst::ICMP_ULT, 2733 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2734 ConstantInt::get(Ty, ~C)); 2735 2736 return nullptr; 2737 } 2738 2739 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2740 Value *&RHS, ConstantInt *&Less, 2741 ConstantInt *&Equal, 2742 ConstantInt *&Greater) { 2743 // TODO: Generalize this to work with other comparison idioms or ensure 2744 // they get canonicalized into this form. 2745 2746 // select i1 (a == b), 2747 // i32 Equal, 2748 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2749 // where Equal, Less and Greater are placeholders for any three constants. 2750 ICmpInst::Predicate PredA; 2751 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2752 !ICmpInst::isEquality(PredA)) 2753 return false; 2754 Value *EqualVal = SI->getTrueValue(); 2755 Value *UnequalVal = SI->getFalseValue(); 2756 // We still can get non-canonical predicate here, so canonicalize. 2757 if (PredA == ICmpInst::ICMP_NE) 2758 std::swap(EqualVal, UnequalVal); 2759 if (!match(EqualVal, m_ConstantInt(Equal))) 2760 return false; 2761 ICmpInst::Predicate PredB; 2762 Value *LHS2, *RHS2; 2763 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2764 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2765 return false; 2766 // We can get predicate mismatch here, so canonicalize if possible: 2767 // First, ensure that 'LHS' match. 2768 if (LHS2 != LHS) { 2769 // x sgt y <--> y slt x 2770 std::swap(LHS2, RHS2); 2771 PredB = ICmpInst::getSwappedPredicate(PredB); 2772 } 2773 if (LHS2 != LHS) 2774 return false; 2775 // We also need to canonicalize 'RHS'. 2776 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2777 // x sgt C-1 <--> x sge C <--> not(x slt C) 2778 auto FlippedStrictness = 2779 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2780 PredB, cast<Constant>(RHS2)); 2781 if (!FlippedStrictness) 2782 return false; 2783 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2784 "basic correctness failure"); 2785 RHS2 = FlippedStrictness->second; 2786 // And kind-of perform the result swap. 2787 std::swap(Less, Greater); 2788 PredB = ICmpInst::ICMP_SLT; 2789 } 2790 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2791 } 2792 2793 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2794 SelectInst *Select, 2795 ConstantInt *C) { 2796 2797 assert(C && "Cmp RHS should be a constant int!"); 2798 // If we're testing a constant value against the result of a three way 2799 // comparison, the result can be expressed directly in terms of the 2800 // original values being compared. Note: We could possibly be more 2801 // aggressive here and remove the hasOneUse test. The original select is 2802 // really likely to simplify or sink when we remove a test of the result. 2803 Value *OrigLHS, *OrigRHS; 2804 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2805 if (Cmp.hasOneUse() && 2806 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2807 C3GreaterThan)) { 2808 assert(C1LessThan && C2Equal && C3GreaterThan); 2809 2810 bool TrueWhenLessThan = 2811 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2812 ->isAllOnesValue(); 2813 bool TrueWhenEqual = 2814 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2815 ->isAllOnesValue(); 2816 bool TrueWhenGreaterThan = 2817 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2818 ->isAllOnesValue(); 2819 2820 // This generates the new instruction that will replace the original Cmp 2821 // Instruction. Instead of enumerating the various combinations when 2822 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2823 // false, we rely on chaining of ORs and future passes of InstCombine to 2824 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2825 2826 // When none of the three constants satisfy the predicate for the RHS (C), 2827 // the entire original Cmp can be simplified to a false. 2828 Value *Cond = Builder.getFalse(); 2829 if (TrueWhenLessThan) 2830 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2831 OrigLHS, OrigRHS)); 2832 if (TrueWhenEqual) 2833 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2834 OrigLHS, OrigRHS)); 2835 if (TrueWhenGreaterThan) 2836 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2837 OrigLHS, OrigRHS)); 2838 2839 return replaceInstUsesWith(Cmp, Cond); 2840 } 2841 return nullptr; 2842 } 2843 2844 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2845 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2846 if (!Bitcast) 2847 return nullptr; 2848 2849 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2850 Value *Op1 = Cmp.getOperand(1); 2851 Value *BCSrcOp = Bitcast->getOperand(0); 2852 2853 // Make sure the bitcast doesn't change the number of vector elements. 2854 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2855 Bitcast->getDestTy()->getScalarSizeInBits()) { 2856 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2857 Value *X; 2858 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2859 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2860 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2861 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2862 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2863 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2864 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2865 match(Op1, m_Zero())) 2866 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2867 2868 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2869 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2870 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2871 2872 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2873 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2874 return new ICmpInst(Pred, X, 2875 ConstantInt::getAllOnesValue(X->getType())); 2876 } 2877 2878 // Zero-equality checks are preserved through unsigned floating-point casts: 2879 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2880 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2881 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2882 if (Cmp.isEquality() && match(Op1, m_Zero())) 2883 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2884 2885 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2886 // the FP extend/truncate because that cast does not change the sign-bit. 2887 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2888 // The sign-bit is always the most significant bit in those types. 2889 const APInt *C; 2890 bool TrueIfSigned; 2891 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2892 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2893 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2894 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2895 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2896 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2897 Type *XType = X->getType(); 2898 2899 // We can't currently handle Power style floating point operations here. 2900 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2901 2902 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2903 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2904 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2905 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2906 if (TrueIfSigned) 2907 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2908 ConstantInt::getNullValue(NewType)); 2909 else 2910 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2911 ConstantInt::getAllOnesValue(NewType)); 2912 } 2913 } 2914 } 2915 } 2916 2917 // Test to see if the operands of the icmp are casted versions of other 2918 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2919 if (Bitcast->getType()->isPointerTy() && 2920 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2921 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2922 // so eliminate it as well. 2923 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2924 Op1 = BC2->getOperand(0); 2925 2926 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2927 return new ICmpInst(Pred, BCSrcOp, Op1); 2928 } 2929 2930 const APInt *C; 2931 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2932 !Bitcast->getType()->isIntegerTy() || 2933 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2934 return nullptr; 2935 2936 // If this is checking if all elements of a vector compare are set or not, 2937 // invert the casted vector equality compare and test if all compare 2938 // elements are clear or not. Compare against zero is generally easier for 2939 // analysis and codegen. 2940 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2941 // Example: are all elements equal? --> are zero elements not equal? 2942 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2943 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2944 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2945 Type *ScalarTy = Bitcast->getType(); 2946 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy); 2947 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy)); 2948 } 2949 2950 // If this is checking if all elements of an extended vector are clear or not, 2951 // compare in a narrow type to eliminate the extend: 2952 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2953 Value *X; 2954 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2955 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2956 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2957 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2958 Value *NewCast = Builder.CreateBitCast(X, NewType); 2959 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2960 } 2961 } 2962 2963 // Folding: icmp <pred> iN X, C 2964 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2965 // and C is a splat of a K-bit pattern 2966 // and SC is a constant vector = <C', C', C', ..., C'> 2967 // Into: 2968 // %E = extractelement <M x iK> %vec, i32 C' 2969 // icmp <pred> iK %E, trunc(C) 2970 Value *Vec; 2971 ArrayRef<int> Mask; 2972 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2973 // Check whether every element of Mask is the same constant 2974 if (is_splat(Mask)) { 2975 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2976 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2977 if (C->isSplat(EltTy->getBitWidth())) { 2978 // Fold the icmp based on the value of C 2979 // If C is M copies of an iK sized bit pattern, 2980 // then: 2981 // => %E = extractelement <N x iK> %vec, i32 Elem 2982 // icmp <pred> iK %SplatVal, <pattern> 2983 Value *Elem = Builder.getInt32(Mask[0]); 2984 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2985 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2986 return new ICmpInst(Pred, Extract, NewC); 2987 } 2988 } 2989 } 2990 return nullptr; 2991 } 2992 2993 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2994 /// where X is some kind of instruction. 2995 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 2996 const APInt *C; 2997 if (!match(Cmp.getOperand(1), m_APInt(C))) 2998 return nullptr; 2999 3000 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 3001 switch (BO->getOpcode()) { 3002 case Instruction::Xor: 3003 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 3004 return I; 3005 break; 3006 case Instruction::And: 3007 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 3008 return I; 3009 break; 3010 case Instruction::Or: 3011 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 3012 return I; 3013 break; 3014 case Instruction::Mul: 3015 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 3016 return I; 3017 break; 3018 case Instruction::Shl: 3019 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 3020 return I; 3021 break; 3022 case Instruction::LShr: 3023 case Instruction::AShr: 3024 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 3025 return I; 3026 break; 3027 case Instruction::SRem: 3028 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 3029 return I; 3030 break; 3031 case Instruction::UDiv: 3032 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 3033 return I; 3034 LLVM_FALLTHROUGH; 3035 case Instruction::SDiv: 3036 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 3037 return I; 3038 break; 3039 case Instruction::Sub: 3040 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 3041 return I; 3042 break; 3043 case Instruction::Add: 3044 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 3045 return I; 3046 break; 3047 default: 3048 break; 3049 } 3050 // TODO: These folds could be refactored to be part of the above calls. 3051 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 3052 return I; 3053 } 3054 3055 // Match against CmpInst LHS being instructions other than binary operators. 3056 3057 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 3058 // For now, we only support constant integers while folding the 3059 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3060 // similar to the cases handled by binary ops above. 3061 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3062 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3063 return I; 3064 } 3065 3066 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 3067 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3068 return I; 3069 } 3070 3071 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3072 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3073 return I; 3074 3075 return nullptr; 3076 } 3077 3078 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3079 /// icmp eq/ne BO, C. 3080 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3081 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3082 // TODO: Some of these folds could work with arbitrary constants, but this 3083 // function is limited to scalar and vector splat constants. 3084 if (!Cmp.isEquality()) 3085 return nullptr; 3086 3087 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3088 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3089 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3090 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3091 3092 switch (BO->getOpcode()) { 3093 case Instruction::SRem: 3094 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3095 if (C.isZero() && BO->hasOneUse()) { 3096 const APInt *BOC; 3097 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3098 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3099 return new ICmpInst(Pred, NewRem, 3100 Constant::getNullValue(BO->getType())); 3101 } 3102 } 3103 break; 3104 case Instruction::Add: { 3105 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3106 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3107 if (BO->hasOneUse()) 3108 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3109 } else if (C.isZero()) { 3110 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3111 // efficiently invertible, or if the add has just this one use. 3112 if (Value *NegVal = dyn_castNegVal(BOp1)) 3113 return new ICmpInst(Pred, BOp0, NegVal); 3114 if (Value *NegVal = dyn_castNegVal(BOp0)) 3115 return new ICmpInst(Pred, NegVal, BOp1); 3116 if (BO->hasOneUse()) { 3117 Value *Neg = Builder.CreateNeg(BOp1); 3118 Neg->takeName(BO); 3119 return new ICmpInst(Pred, BOp0, Neg); 3120 } 3121 } 3122 break; 3123 } 3124 case Instruction::Xor: 3125 if (BO->hasOneUse()) { 3126 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3127 // For the xor case, we can xor two constants together, eliminating 3128 // the explicit xor. 3129 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3130 } else if (C.isZero()) { 3131 // Replace ((xor A, B) != 0) with (A != B) 3132 return new ICmpInst(Pred, BOp0, BOp1); 3133 } 3134 } 3135 break; 3136 case Instruction::Or: { 3137 const APInt *BOC; 3138 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3139 // Comparing if all bits outside of a constant mask are set? 3140 // Replace (X | C) == -1 with (X & ~C) == ~C. 3141 // This removes the -1 constant. 3142 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3143 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3144 return new ICmpInst(Pred, And, NotBOC); 3145 } 3146 break; 3147 } 3148 case Instruction::And: { 3149 const APInt *BOC; 3150 if (match(BOp1, m_APInt(BOC))) { 3151 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3152 if (C == *BOC && C.isPowerOf2()) 3153 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3154 BO, Constant::getNullValue(RHS->getType())); 3155 } 3156 break; 3157 } 3158 case Instruction::UDiv: 3159 if (C.isZero()) { 3160 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3161 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3162 return new ICmpInst(NewPred, BOp1, BOp0); 3163 } 3164 break; 3165 default: 3166 break; 3167 } 3168 return nullptr; 3169 } 3170 3171 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3172 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3173 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3174 Type *Ty = II->getType(); 3175 unsigned BitWidth = C.getBitWidth(); 3176 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3177 3178 switch (II->getIntrinsicID()) { 3179 case Intrinsic::abs: 3180 // abs(A) == 0 -> A == 0 3181 // abs(A) == INT_MIN -> A == INT_MIN 3182 if (C.isZero() || C.isMinSignedValue()) 3183 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3184 break; 3185 3186 case Intrinsic::bswap: 3187 // bswap(A) == C -> A == bswap(C) 3188 return new ICmpInst(Pred, II->getArgOperand(0), 3189 ConstantInt::get(Ty, C.byteSwap())); 3190 3191 case Intrinsic::ctlz: 3192 case Intrinsic::cttz: { 3193 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3194 if (C == BitWidth) 3195 return new ICmpInst(Pred, II->getArgOperand(0), 3196 ConstantInt::getNullValue(Ty)); 3197 3198 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3199 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3200 // Limit to one use to ensure we don't increase instruction count. 3201 unsigned Num = C.getLimitedValue(BitWidth); 3202 if (Num != BitWidth && II->hasOneUse()) { 3203 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3204 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3205 : APInt::getHighBitsSet(BitWidth, Num + 1); 3206 APInt Mask2 = IsTrailing 3207 ? APInt::getOneBitSet(BitWidth, Num) 3208 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3209 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3210 ConstantInt::get(Ty, Mask2)); 3211 } 3212 break; 3213 } 3214 3215 case Intrinsic::ctpop: { 3216 // popcount(A) == 0 -> A == 0 and likewise for != 3217 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3218 bool IsZero = C.isZero(); 3219 if (IsZero || C == BitWidth) 3220 return new ICmpInst(Pred, II->getArgOperand(0), 3221 IsZero ? Constant::getNullValue(Ty) 3222 : Constant::getAllOnesValue(Ty)); 3223 3224 break; 3225 } 3226 3227 case Intrinsic::fshl: 3228 case Intrinsic::fshr: 3229 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3230 // (rot X, ?) == 0/-1 --> X == 0/-1 3231 // TODO: This transform is safe to re-use undef elts in a vector, but 3232 // the constant value passed in by the caller doesn't allow that. 3233 if (C.isZero() || C.isAllOnes()) 3234 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3235 3236 const APInt *RotAmtC; 3237 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3238 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3239 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3240 return new ICmpInst(Pred, II->getArgOperand(0), 3241 II->getIntrinsicID() == Intrinsic::fshl 3242 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3243 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3244 } 3245 break; 3246 3247 case Intrinsic::uadd_sat: { 3248 // uadd.sat(a, b) == 0 -> (a | b) == 0 3249 if (C.isZero()) { 3250 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3251 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3252 } 3253 break; 3254 } 3255 3256 case Intrinsic::usub_sat: { 3257 // usub.sat(a, b) == 0 -> a <= b 3258 if (C.isZero()) { 3259 ICmpInst::Predicate NewPred = 3260 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3261 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3262 } 3263 break; 3264 } 3265 default: 3266 break; 3267 } 3268 3269 return nullptr; 3270 } 3271 3272 /// Fold an icmp with LLVM intrinsics 3273 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3274 assert(Cmp.isEquality()); 3275 3276 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3277 Value *Op0 = Cmp.getOperand(0); 3278 Value *Op1 = Cmp.getOperand(1); 3279 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3280 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3281 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3282 return nullptr; 3283 3284 switch (IIOp0->getIntrinsicID()) { 3285 case Intrinsic::bswap: 3286 case Intrinsic::bitreverse: 3287 // If both operands are byte-swapped or bit-reversed, just compare the 3288 // original values. 3289 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3290 case Intrinsic::fshl: 3291 case Intrinsic::fshr: 3292 // If both operands are rotated by same amount, just compare the 3293 // original values. 3294 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3295 break; 3296 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3297 break; 3298 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3299 break; 3300 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3301 default: 3302 break; 3303 } 3304 3305 return nullptr; 3306 } 3307 3308 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3309 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3310 IntrinsicInst *II, 3311 const APInt &C) { 3312 if (Cmp.isEquality()) 3313 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3314 3315 Type *Ty = II->getType(); 3316 unsigned BitWidth = C.getBitWidth(); 3317 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3318 switch (II->getIntrinsicID()) { 3319 case Intrinsic::ctpop: { 3320 // (ctpop X > BitWidth - 1) --> X == -1 3321 Value *X = II->getArgOperand(0); 3322 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3323 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3324 ConstantInt::getAllOnesValue(Ty)); 3325 // (ctpop X < BitWidth) --> X != -1 3326 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3327 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3328 ConstantInt::getAllOnesValue(Ty)); 3329 break; 3330 } 3331 case Intrinsic::ctlz: { 3332 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3333 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3334 unsigned Num = C.getLimitedValue(); 3335 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3336 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3337 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3338 } 3339 3340 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3341 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3342 unsigned Num = C.getLimitedValue(); 3343 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3344 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3345 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3346 } 3347 break; 3348 } 3349 case Intrinsic::cttz: { 3350 // Limit to one use to ensure we don't increase instruction count. 3351 if (!II->hasOneUse()) 3352 return nullptr; 3353 3354 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3355 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3356 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3357 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3358 Builder.CreateAnd(II->getArgOperand(0), Mask), 3359 ConstantInt::getNullValue(Ty)); 3360 } 3361 3362 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3363 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3364 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3365 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3366 Builder.CreateAnd(II->getArgOperand(0), Mask), 3367 ConstantInt::getNullValue(Ty)); 3368 } 3369 break; 3370 } 3371 default: 3372 break; 3373 } 3374 3375 return nullptr; 3376 } 3377 3378 /// Handle icmp with constant (but not simple integer constant) RHS. 3379 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3380 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3381 Constant *RHSC = dyn_cast<Constant>(Op1); 3382 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3383 if (!RHSC || !LHSI) 3384 return nullptr; 3385 3386 switch (LHSI->getOpcode()) { 3387 case Instruction::GetElementPtr: 3388 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3389 if (RHSC->isNullValue() && 3390 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3391 return new ICmpInst( 3392 I.getPredicate(), LHSI->getOperand(0), 3393 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3394 break; 3395 case Instruction::PHI: 3396 // Only fold icmp into the PHI if the phi and icmp are in the same 3397 // block. If in the same block, we're encouraging jump threading. If 3398 // not, we are just pessimizing the code by making an i1 phi. 3399 if (LHSI->getParent() == I.getParent()) 3400 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3401 return NV; 3402 break; 3403 case Instruction::Select: { 3404 // If either operand of the select is a constant, we can fold the 3405 // comparison into the select arms, which will cause one to be 3406 // constant folded and the select turned into a bitwise or. 3407 Value *Op1 = nullptr, *Op2 = nullptr; 3408 ConstantInt *CI = nullptr; 3409 3410 auto SimplifyOp = [&](Value *V) { 3411 Value *Op = nullptr; 3412 if (Constant *C = dyn_cast<Constant>(V)) { 3413 Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3414 } else if (RHSC->isNullValue()) { 3415 // If null is being compared, check if it can be further simplified. 3416 Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ); 3417 } 3418 return Op; 3419 }; 3420 Op1 = SimplifyOp(LHSI->getOperand(1)); 3421 if (Op1) 3422 CI = dyn_cast<ConstantInt>(Op1); 3423 3424 Op2 = SimplifyOp(LHSI->getOperand(2)); 3425 if (Op2) 3426 CI = dyn_cast<ConstantInt>(Op2); 3427 3428 // We only want to perform this transformation if it will not lead to 3429 // additional code. This is true if either both sides of the select 3430 // fold to a constant (in which case the icmp is replaced with a select 3431 // which will usually simplify) or this is the only user of the 3432 // select (in which case we are trading a select+icmp for a simpler 3433 // select+icmp) or all uses of the select can be replaced based on 3434 // dominance information ("Global cases"). 3435 bool Transform = false; 3436 if (Op1 && Op2) 3437 Transform = true; 3438 else if (Op1 || Op2) { 3439 // Local case 3440 if (LHSI->hasOneUse()) 3441 Transform = true; 3442 // Global cases 3443 else if (CI && !CI->isZero()) 3444 // When Op1 is constant try replacing select with second operand. 3445 // Otherwise Op2 is constant and try replacing select with first 3446 // operand. 3447 Transform = 3448 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3449 } 3450 if (Transform) { 3451 if (!Op1) 3452 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3453 I.getName()); 3454 if (!Op2) 3455 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3456 I.getName()); 3457 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3458 } 3459 break; 3460 } 3461 case Instruction::IntToPtr: 3462 // icmp pred inttoptr(X), null -> icmp pred X, 0 3463 if (RHSC->isNullValue() && 3464 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3465 return new ICmpInst( 3466 I.getPredicate(), LHSI->getOperand(0), 3467 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3468 break; 3469 3470 case Instruction::Load: 3471 // Try to optimize things like "A[i] > 4" to index computations. 3472 if (GetElementPtrInst *GEP = 3473 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3474 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3475 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3476 !cast<LoadInst>(LHSI)->isVolatile()) 3477 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3478 return Res; 3479 } 3480 break; 3481 } 3482 3483 return nullptr; 3484 } 3485 3486 /// Some comparisons can be simplified. 3487 /// In this case, we are looking for comparisons that look like 3488 /// a check for a lossy truncation. 3489 /// Folds: 3490 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3491 /// Where Mask is some pattern that produces all-ones in low bits: 3492 /// (-1 >> y) 3493 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3494 /// ~(-1 << y) 3495 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3496 /// The Mask can be a constant, too. 3497 /// For some predicates, the operands are commutative. 3498 /// For others, x can only be on a specific side. 3499 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3500 InstCombiner::BuilderTy &Builder) { 3501 ICmpInst::Predicate SrcPred; 3502 Value *X, *M, *Y; 3503 auto m_VariableMask = m_CombineOr( 3504 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3505 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3506 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3507 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3508 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3509 if (!match(&I, m_c_ICmp(SrcPred, 3510 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3511 m_Deferred(X)))) 3512 return nullptr; 3513 3514 ICmpInst::Predicate DstPred; 3515 switch (SrcPred) { 3516 case ICmpInst::Predicate::ICMP_EQ: 3517 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3518 DstPred = ICmpInst::Predicate::ICMP_ULE; 3519 break; 3520 case ICmpInst::Predicate::ICMP_NE: 3521 // x & (-1 >> y) != x -> x u> (-1 >> y) 3522 DstPred = ICmpInst::Predicate::ICMP_UGT; 3523 break; 3524 case ICmpInst::Predicate::ICMP_ULT: 3525 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3526 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3527 DstPred = ICmpInst::Predicate::ICMP_UGT; 3528 break; 3529 case ICmpInst::Predicate::ICMP_UGE: 3530 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3531 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3532 DstPred = ICmpInst::Predicate::ICMP_ULE; 3533 break; 3534 case ICmpInst::Predicate::ICMP_SLT: 3535 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3536 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3537 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3538 return nullptr; 3539 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3540 return nullptr; 3541 DstPred = ICmpInst::Predicate::ICMP_SGT; 3542 break; 3543 case ICmpInst::Predicate::ICMP_SGE: 3544 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3545 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3546 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3547 return nullptr; 3548 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3549 return nullptr; 3550 DstPred = ICmpInst::Predicate::ICMP_SLE; 3551 break; 3552 case ICmpInst::Predicate::ICMP_SGT: 3553 case ICmpInst::Predicate::ICMP_SLE: 3554 return nullptr; 3555 case ICmpInst::Predicate::ICMP_UGT: 3556 case ICmpInst::Predicate::ICMP_ULE: 3557 llvm_unreachable("Instsimplify took care of commut. variant"); 3558 break; 3559 default: 3560 llvm_unreachable("All possible folds are handled."); 3561 } 3562 3563 // The mask value may be a vector constant that has undefined elements. But it 3564 // may not be safe to propagate those undefs into the new compare, so replace 3565 // those elements by copying an existing, defined, and safe scalar constant. 3566 Type *OpTy = M->getType(); 3567 auto *VecC = dyn_cast<Constant>(M); 3568 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3569 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3570 Constant *SafeReplacementConstant = nullptr; 3571 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3572 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3573 SafeReplacementConstant = VecC->getAggregateElement(i); 3574 break; 3575 } 3576 } 3577 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3578 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3579 } 3580 3581 return Builder.CreateICmp(DstPred, X, M); 3582 } 3583 3584 /// Some comparisons can be simplified. 3585 /// In this case, we are looking for comparisons that look like 3586 /// a check for a lossy signed truncation. 3587 /// Folds: (MaskedBits is a constant.) 3588 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3589 /// Into: 3590 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3591 /// Where KeptBits = bitwidth(%x) - MaskedBits 3592 static Value * 3593 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3594 InstCombiner::BuilderTy &Builder) { 3595 ICmpInst::Predicate SrcPred; 3596 Value *X; 3597 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3598 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3599 if (!match(&I, m_c_ICmp(SrcPred, 3600 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3601 m_APInt(C1))), 3602 m_Deferred(X)))) 3603 return nullptr; 3604 3605 // Potential handling of non-splats: for each element: 3606 // * if both are undef, replace with constant 0. 3607 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3608 // * if both are not undef, and are different, bailout. 3609 // * else, only one is undef, then pick the non-undef one. 3610 3611 // The shift amount must be equal. 3612 if (*C0 != *C1) 3613 return nullptr; 3614 const APInt &MaskedBits = *C0; 3615 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3616 3617 ICmpInst::Predicate DstPred; 3618 switch (SrcPred) { 3619 case ICmpInst::Predicate::ICMP_EQ: 3620 // ((%x << MaskedBits) a>> MaskedBits) == %x 3621 // => 3622 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3623 DstPred = ICmpInst::Predicate::ICMP_ULT; 3624 break; 3625 case ICmpInst::Predicate::ICMP_NE: 3626 // ((%x << MaskedBits) a>> MaskedBits) != %x 3627 // => 3628 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3629 DstPred = ICmpInst::Predicate::ICMP_UGE; 3630 break; 3631 // FIXME: are more folds possible? 3632 default: 3633 return nullptr; 3634 } 3635 3636 auto *XType = X->getType(); 3637 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3638 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3639 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3640 3641 // KeptBits = bitwidth(%x) - MaskedBits 3642 const APInt KeptBits = BitWidth - MaskedBits; 3643 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3644 // ICmpCst = (1 << KeptBits) 3645 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3646 assert(ICmpCst.isPowerOf2()); 3647 // AddCst = (1 << (KeptBits-1)) 3648 const APInt AddCst = ICmpCst.lshr(1); 3649 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3650 3651 // T0 = add %x, AddCst 3652 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3653 // T1 = T0 DstPred ICmpCst 3654 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3655 3656 return T1; 3657 } 3658 3659 // Given pattern: 3660 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3661 // we should move shifts to the same hand of 'and', i.e. rewrite as 3662 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3663 // We are only interested in opposite logical shifts here. 3664 // One of the shifts can be truncated. 3665 // If we can, we want to end up creating 'lshr' shift. 3666 static Value * 3667 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3668 InstCombiner::BuilderTy &Builder) { 3669 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3670 !I.getOperand(0)->hasOneUse()) 3671 return nullptr; 3672 3673 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3674 3675 // Look for an 'and' of two logical shifts, one of which may be truncated. 3676 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3677 Instruction *XShift, *MaybeTruncation, *YShift; 3678 if (!match( 3679 I.getOperand(0), 3680 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3681 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3682 m_AnyLogicalShift, m_Instruction(YShift))), 3683 m_Instruction(MaybeTruncation))))) 3684 return nullptr; 3685 3686 // We potentially looked past 'trunc', but only when matching YShift, 3687 // therefore YShift must have the widest type. 3688 Instruction *WidestShift = YShift; 3689 // Therefore XShift must have the shallowest type. 3690 // Or they both have identical types if there was no truncation. 3691 Instruction *NarrowestShift = XShift; 3692 3693 Type *WidestTy = WidestShift->getType(); 3694 Type *NarrowestTy = NarrowestShift->getType(); 3695 assert(NarrowestTy == I.getOperand(0)->getType() && 3696 "We did not look past any shifts while matching XShift though."); 3697 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3698 3699 // If YShift is a 'lshr', swap the shifts around. 3700 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3701 std::swap(XShift, YShift); 3702 3703 // The shifts must be in opposite directions. 3704 auto XShiftOpcode = XShift->getOpcode(); 3705 if (XShiftOpcode == YShift->getOpcode()) 3706 return nullptr; // Do not care about same-direction shifts here. 3707 3708 Value *X, *XShAmt, *Y, *YShAmt; 3709 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3710 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3711 3712 // If one of the values being shifted is a constant, then we will end with 3713 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3714 // however, we will need to ensure that we won't increase instruction count. 3715 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3716 // At least one of the hands of the 'and' should be one-use shift. 3717 if (!match(I.getOperand(0), 3718 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3719 return nullptr; 3720 if (HadTrunc) { 3721 // Due to the 'trunc', we will need to widen X. For that either the old 3722 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3723 if (!MaybeTruncation->hasOneUse() && 3724 !NarrowestShift->getOperand(1)->hasOneUse()) 3725 return nullptr; 3726 } 3727 } 3728 3729 // We have two shift amounts from two different shifts. The types of those 3730 // shift amounts may not match. If that's the case let's bailout now. 3731 if (XShAmt->getType() != YShAmt->getType()) 3732 return nullptr; 3733 3734 // As input, we have the following pattern: 3735 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3736 // We want to rewrite that as: 3737 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3738 // While we know that originally (Q+K) would not overflow 3739 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3740 // shift amounts. so it may now overflow in smaller bitwidth. 3741 // To ensure that does not happen, we need to ensure that the total maximal 3742 // shift amount is still representable in that smaller bit width. 3743 unsigned MaximalPossibleTotalShiftAmount = 3744 (WidestTy->getScalarSizeInBits() - 1) + 3745 (NarrowestTy->getScalarSizeInBits() - 1); 3746 APInt MaximalRepresentableShiftAmount = 3747 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3748 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3749 return nullptr; 3750 3751 // Can we fold (XShAmt+YShAmt) ? 3752 auto *NewShAmt = dyn_cast_or_null<Constant>( 3753 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3754 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3755 if (!NewShAmt) 3756 return nullptr; 3757 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3758 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3759 3760 // Is the new shift amount smaller than the bit width? 3761 // FIXME: could also rely on ConstantRange. 3762 if (!match(NewShAmt, 3763 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3764 APInt(WidestBitWidth, WidestBitWidth)))) 3765 return nullptr; 3766 3767 // An extra legality check is needed if we had trunc-of-lshr. 3768 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3769 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3770 WidestShift]() { 3771 // It isn't obvious whether it's worth it to analyze non-constants here. 3772 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3773 // If *any* of these preconditions matches we can perform the fold. 3774 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3775 ? NewShAmt->getSplatValue() 3776 : NewShAmt; 3777 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3778 if (NewShAmtSplat && 3779 (NewShAmtSplat->isNullValue() || 3780 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3781 return true; 3782 // We consider *min* leading zeros so a single outlier 3783 // blocks the transform as opposed to allowing it. 3784 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3785 KnownBits Known = computeKnownBits(C, SQ.DL); 3786 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3787 // If the value being shifted has at most lowest bit set we can fold. 3788 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3789 if (MaxActiveBits <= 1) 3790 return true; 3791 // Precondition: NewShAmt u<= countLeadingZeros(C) 3792 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3793 return true; 3794 } 3795 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3796 KnownBits Known = computeKnownBits(C, SQ.DL); 3797 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3798 // If the value being shifted has at most lowest bit set we can fold. 3799 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3800 if (MaxActiveBits <= 1) 3801 return true; 3802 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3803 if (NewShAmtSplat) { 3804 APInt AdjNewShAmt = 3805 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3806 if (AdjNewShAmt.ule(MinLeadZero)) 3807 return true; 3808 } 3809 } 3810 return false; // Can't tell if it's ok. 3811 }; 3812 if (!CanFold()) 3813 return nullptr; 3814 } 3815 3816 // All good, we can do this fold. 3817 X = Builder.CreateZExt(X, WidestTy); 3818 Y = Builder.CreateZExt(Y, WidestTy); 3819 // The shift is the same that was for X. 3820 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3821 ? Builder.CreateLShr(X, NewShAmt) 3822 : Builder.CreateShl(X, NewShAmt); 3823 Value *T1 = Builder.CreateAnd(T0, Y); 3824 return Builder.CreateICmp(I.getPredicate(), T1, 3825 Constant::getNullValue(WidestTy)); 3826 } 3827 3828 /// Fold 3829 /// (-1 u/ x) u< y 3830 /// ((x * y) ?/ x) != y 3831 /// to 3832 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3833 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3834 /// will mean that we are looking for the opposite answer. 3835 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3836 ICmpInst::Predicate Pred; 3837 Value *X, *Y; 3838 Instruction *Mul; 3839 Instruction *Div; 3840 bool NeedNegation; 3841 // Look for: (-1 u/ x) u</u>= y 3842 if (!I.isEquality() && 3843 match(&I, m_c_ICmp(Pred, 3844 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3845 m_Instruction(Div)), 3846 m_Value(Y)))) { 3847 Mul = nullptr; 3848 3849 // Are we checking that overflow does not happen, or does happen? 3850 switch (Pred) { 3851 case ICmpInst::Predicate::ICMP_ULT: 3852 NeedNegation = false; 3853 break; // OK 3854 case ICmpInst::Predicate::ICMP_UGE: 3855 NeedNegation = true; 3856 break; // OK 3857 default: 3858 return nullptr; // Wrong predicate. 3859 } 3860 } else // Look for: ((x * y) / x) !=/== y 3861 if (I.isEquality() && 3862 match(&I, 3863 m_c_ICmp(Pred, m_Value(Y), 3864 m_CombineAnd( 3865 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3866 m_Value(X)), 3867 m_Instruction(Mul)), 3868 m_Deferred(X))), 3869 m_Instruction(Div))))) { 3870 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3871 } else 3872 return nullptr; 3873 3874 BuilderTy::InsertPointGuard Guard(Builder); 3875 // If the pattern included (x * y), we'll want to insert new instructions 3876 // right before that original multiplication so that we can replace it. 3877 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3878 if (MulHadOtherUses) 3879 Builder.SetInsertPoint(Mul); 3880 3881 Function *F = Intrinsic::getDeclaration(I.getModule(), 3882 Div->getOpcode() == Instruction::UDiv 3883 ? Intrinsic::umul_with_overflow 3884 : Intrinsic::smul_with_overflow, 3885 X->getType()); 3886 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3887 3888 // If the multiplication was used elsewhere, to ensure that we don't leave 3889 // "duplicate" instructions, replace uses of that original multiplication 3890 // with the multiplication result from the with.overflow intrinsic. 3891 if (MulHadOtherUses) 3892 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3893 3894 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3895 if (NeedNegation) // This technically increases instruction count. 3896 Res = Builder.CreateNot(Res, "mul.not.ov"); 3897 3898 // If we replaced the mul, erase it. Do this after all uses of Builder, 3899 // as the mul is used as insertion point. 3900 if (MulHadOtherUses) 3901 eraseInstFromFunction(*Mul); 3902 3903 return Res; 3904 } 3905 3906 static Instruction *foldICmpXNegX(ICmpInst &I) { 3907 CmpInst::Predicate Pred; 3908 Value *X; 3909 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3910 return nullptr; 3911 3912 if (ICmpInst::isSigned(Pred)) 3913 Pred = ICmpInst::getSwappedPredicate(Pred); 3914 else if (ICmpInst::isUnsigned(Pred)) 3915 Pred = ICmpInst::getSignedPredicate(Pred); 3916 // else for equality-comparisons just keep the predicate. 3917 3918 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3919 Constant::getNullValue(X->getType()), I.getName()); 3920 } 3921 3922 /// Try to fold icmp (binop), X or icmp X, (binop). 3923 /// TODO: A large part of this logic is duplicated in InstSimplify's 3924 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3925 /// duplication. 3926 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3927 const SimplifyQuery &SQ) { 3928 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3929 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3930 3931 // Special logic for binary operators. 3932 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3933 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3934 if (!BO0 && !BO1) 3935 return nullptr; 3936 3937 if (Instruction *NewICmp = foldICmpXNegX(I)) 3938 return NewICmp; 3939 3940 const CmpInst::Predicate Pred = I.getPredicate(); 3941 Value *X; 3942 3943 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3944 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3945 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3946 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3947 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3948 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3949 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3950 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3951 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3952 3953 { 3954 // Similar to above: an unsigned overflow comparison may use offset + mask: 3955 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 3956 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 3957 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 3958 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 3959 BinaryOperator *BO; 3960 const APInt *C; 3961 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 3962 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3963 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 3964 CmpInst::Predicate NewPred = 3965 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 3966 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 3967 return new ICmpInst(NewPred, Op1, Zero); 3968 } 3969 3970 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 3971 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3972 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 3973 CmpInst::Predicate NewPred = 3974 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 3975 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 3976 return new ICmpInst(NewPred, Op0, Zero); 3977 } 3978 } 3979 3980 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3981 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3982 NoOp0WrapProblem = 3983 ICmpInst::isEquality(Pred) || 3984 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3985 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3986 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3987 NoOp1WrapProblem = 3988 ICmpInst::isEquality(Pred) || 3989 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3990 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3991 3992 // Analyze the case when either Op0 or Op1 is an add instruction. 3993 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3994 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3995 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3996 A = BO0->getOperand(0); 3997 B = BO0->getOperand(1); 3998 } 3999 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4000 C = BO1->getOperand(0); 4001 D = BO1->getOperand(1); 4002 } 4003 4004 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4005 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4006 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4007 return new ICmpInst(Pred, A == Op1 ? B : A, 4008 Constant::getNullValue(Op1->getType())); 4009 4010 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4011 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4012 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4013 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4014 C == Op0 ? D : C); 4015 4016 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4017 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4018 NoOp1WrapProblem) { 4019 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4020 Value *Y, *Z; 4021 if (A == C) { 4022 // C + B == C + D -> B == D 4023 Y = B; 4024 Z = D; 4025 } else if (A == D) { 4026 // D + B == C + D -> B == C 4027 Y = B; 4028 Z = C; 4029 } else if (B == C) { 4030 // A + C == C + D -> A == D 4031 Y = A; 4032 Z = D; 4033 } else { 4034 assert(B == D); 4035 // A + D == C + D -> A == C 4036 Y = A; 4037 Z = C; 4038 } 4039 return new ICmpInst(Pred, Y, Z); 4040 } 4041 4042 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4043 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4044 match(B, m_AllOnes())) 4045 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4046 4047 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4048 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4049 match(B, m_AllOnes())) 4050 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4051 4052 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4053 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4054 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4055 4056 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4057 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4058 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4059 4060 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4061 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4062 match(D, m_AllOnes())) 4063 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4064 4065 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4066 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4067 match(D, m_AllOnes())) 4068 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4069 4070 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4071 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4072 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4073 4074 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4075 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4076 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4077 4078 // TODO: The subtraction-related identities shown below also hold, but 4079 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4080 // wouldn't happen even if they were implemented. 4081 // 4082 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4083 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4084 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4085 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4086 4087 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4088 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4089 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4090 4091 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4092 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4093 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4094 4095 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4096 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4097 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4098 4099 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4100 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4101 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4102 4103 // if C1 has greater magnitude than C2: 4104 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4105 // s.t. C3 = C1 - C2 4106 // 4107 // if C2 has greater magnitude than C1: 4108 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4109 // s.t. C3 = C2 - C1 4110 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4111 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 4112 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 4113 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 4114 const APInt &AP1 = C1->getValue(); 4115 const APInt &AP2 = C2->getValue(); 4116 if (AP1.isNegative() == AP2.isNegative()) { 4117 APInt AP1Abs = C1->getValue().abs(); 4118 APInt AP2Abs = C2->getValue().abs(); 4119 if (AP1Abs.uge(AP2Abs)) { 4120 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 4121 bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1); 4122 bool HasNSW = BO0->hasNoSignedWrap(); 4123 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4124 return new ICmpInst(Pred, NewAdd, C); 4125 } else { 4126 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 4127 bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2); 4128 bool HasNSW = BO1->hasNoSignedWrap(); 4129 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4130 return new ICmpInst(Pred, A, NewAdd); 4131 } 4132 } 4133 } 4134 4135 // Analyze the case when either Op0 or Op1 is a sub instruction. 4136 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4137 A = nullptr; 4138 B = nullptr; 4139 C = nullptr; 4140 D = nullptr; 4141 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4142 A = BO0->getOperand(0); 4143 B = BO0->getOperand(1); 4144 } 4145 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4146 C = BO1->getOperand(0); 4147 D = BO1->getOperand(1); 4148 } 4149 4150 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4151 if (A == Op1 && NoOp0WrapProblem) 4152 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4153 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4154 if (C == Op0 && NoOp1WrapProblem) 4155 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4156 4157 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4158 // (A - B) u>/u<= A --> B u>/u<= A 4159 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4160 return new ICmpInst(Pred, B, A); 4161 // C u</u>= (C - D) --> C u</u>= D 4162 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4163 return new ICmpInst(Pred, C, D); 4164 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4165 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4166 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4167 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4168 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4169 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4170 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4171 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4172 4173 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4174 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4175 return new ICmpInst(Pred, A, C); 4176 4177 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4178 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4179 return new ICmpInst(Pred, D, B); 4180 4181 // icmp (0-X) < cst --> x > -cst 4182 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4183 Value *X; 4184 if (match(BO0, m_Neg(m_Value(X)))) 4185 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4186 if (RHSC->isNotMinSignedValue()) 4187 return new ICmpInst(I.getSwappedPredicate(), X, 4188 ConstantExpr::getNeg(RHSC)); 4189 } 4190 4191 { 4192 // Try to remove shared constant multiplier from equality comparison: 4193 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4194 Value *X, *Y; 4195 const APInt *C; 4196 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4197 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4198 if (!C->countTrailingZeros() || 4199 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4200 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4201 return new ICmpInst(Pred, X, Y); 4202 } 4203 4204 BinaryOperator *SRem = nullptr; 4205 // icmp (srem X, Y), Y 4206 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4207 SRem = BO0; 4208 // icmp Y, (srem X, Y) 4209 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4210 Op0 == BO1->getOperand(1)) 4211 SRem = BO1; 4212 if (SRem) { 4213 // We don't check hasOneUse to avoid increasing register pressure because 4214 // the value we use is the same value this instruction was already using. 4215 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4216 default: 4217 break; 4218 case ICmpInst::ICMP_EQ: 4219 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4220 case ICmpInst::ICMP_NE: 4221 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4222 case ICmpInst::ICMP_SGT: 4223 case ICmpInst::ICMP_SGE: 4224 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4225 Constant::getAllOnesValue(SRem->getType())); 4226 case ICmpInst::ICMP_SLT: 4227 case ICmpInst::ICMP_SLE: 4228 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4229 Constant::getNullValue(SRem->getType())); 4230 } 4231 } 4232 4233 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4234 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4235 switch (BO0->getOpcode()) { 4236 default: 4237 break; 4238 case Instruction::Add: 4239 case Instruction::Sub: 4240 case Instruction::Xor: { 4241 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4242 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4243 4244 const APInt *C; 4245 if (match(BO0->getOperand(1), m_APInt(C))) { 4246 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4247 if (C->isSignMask()) { 4248 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4249 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4250 } 4251 4252 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4253 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4254 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4255 NewPred = I.getSwappedPredicate(NewPred); 4256 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4257 } 4258 } 4259 break; 4260 } 4261 case Instruction::Mul: { 4262 if (!I.isEquality()) 4263 break; 4264 4265 const APInt *C; 4266 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4267 !C->isOne()) { 4268 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4269 // Mask = -1 >> count-trailing-zeros(C). 4270 if (unsigned TZs = C->countTrailingZeros()) { 4271 Constant *Mask = ConstantInt::get( 4272 BO0->getType(), 4273 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4274 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4275 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4276 return new ICmpInst(Pred, And1, And2); 4277 } 4278 } 4279 break; 4280 } 4281 case Instruction::UDiv: 4282 case Instruction::LShr: 4283 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4284 break; 4285 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4286 4287 case Instruction::SDiv: 4288 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4289 break; 4290 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4291 4292 case Instruction::AShr: 4293 if (!BO0->isExact() || !BO1->isExact()) 4294 break; 4295 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4296 4297 case Instruction::Shl: { 4298 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4299 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4300 if (!NUW && !NSW) 4301 break; 4302 if (!NSW && I.isSigned()) 4303 break; 4304 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4305 } 4306 } 4307 } 4308 4309 if (BO0) { 4310 // Transform A & (L - 1) `ult` L --> L != 0 4311 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4312 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4313 4314 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4315 auto *Zero = Constant::getNullValue(BO0->getType()); 4316 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4317 } 4318 } 4319 4320 if (Value *V = foldMultiplicationOverflowCheck(I)) 4321 return replaceInstUsesWith(I, V); 4322 4323 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4324 return replaceInstUsesWith(I, V); 4325 4326 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4327 return replaceInstUsesWith(I, V); 4328 4329 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4330 return replaceInstUsesWith(I, V); 4331 4332 return nullptr; 4333 } 4334 4335 /// Fold icmp Pred min|max(X, Y), X. 4336 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4337 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4338 Value *Op0 = Cmp.getOperand(0); 4339 Value *X = Cmp.getOperand(1); 4340 4341 // Canonicalize minimum or maximum operand to LHS of the icmp. 4342 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4343 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4344 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4345 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4346 std::swap(Op0, X); 4347 Pred = Cmp.getSwappedPredicate(); 4348 } 4349 4350 Value *Y; 4351 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4352 // smin(X, Y) == X --> X s<= Y 4353 // smin(X, Y) s>= X --> X s<= Y 4354 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4355 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4356 4357 // smin(X, Y) != X --> X s> Y 4358 // smin(X, Y) s< X --> X s> Y 4359 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4360 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4361 4362 // These cases should be handled in InstSimplify: 4363 // smin(X, Y) s<= X --> true 4364 // smin(X, Y) s> X --> false 4365 return nullptr; 4366 } 4367 4368 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4369 // smax(X, Y) == X --> X s>= Y 4370 // smax(X, Y) s<= X --> X s>= Y 4371 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4372 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4373 4374 // smax(X, Y) != X --> X s< Y 4375 // smax(X, Y) s> X --> X s< Y 4376 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4377 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4378 4379 // These cases should be handled in InstSimplify: 4380 // smax(X, Y) s>= X --> true 4381 // smax(X, Y) s< X --> false 4382 return nullptr; 4383 } 4384 4385 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4386 // umin(X, Y) == X --> X u<= Y 4387 // umin(X, Y) u>= X --> X u<= Y 4388 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4389 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4390 4391 // umin(X, Y) != X --> X u> Y 4392 // umin(X, Y) u< X --> X u> Y 4393 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4394 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4395 4396 // These cases should be handled in InstSimplify: 4397 // umin(X, Y) u<= X --> true 4398 // umin(X, Y) u> X --> false 4399 return nullptr; 4400 } 4401 4402 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4403 // umax(X, Y) == X --> X u>= Y 4404 // umax(X, Y) u<= X --> X u>= Y 4405 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4406 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4407 4408 // umax(X, Y) != X --> X u< Y 4409 // umax(X, Y) u> X --> X u< Y 4410 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4411 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4412 4413 // These cases should be handled in InstSimplify: 4414 // umax(X, Y) u>= X --> true 4415 // umax(X, Y) u< X --> false 4416 return nullptr; 4417 } 4418 4419 return nullptr; 4420 } 4421 4422 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4423 if (!I.isEquality()) 4424 return nullptr; 4425 4426 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4427 const CmpInst::Predicate Pred = I.getPredicate(); 4428 Value *A, *B, *C, *D; 4429 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4430 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4431 Value *OtherVal = A == Op1 ? B : A; 4432 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4433 } 4434 4435 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4436 // A^c1 == C^c2 --> A == C^(c1^c2) 4437 ConstantInt *C1, *C2; 4438 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4439 Op1->hasOneUse()) { 4440 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4441 Value *Xor = Builder.CreateXor(C, NC); 4442 return new ICmpInst(Pred, A, Xor); 4443 } 4444 4445 // A^B == A^D -> B == D 4446 if (A == C) 4447 return new ICmpInst(Pred, B, D); 4448 if (A == D) 4449 return new ICmpInst(Pred, B, C); 4450 if (B == C) 4451 return new ICmpInst(Pred, A, D); 4452 if (B == D) 4453 return new ICmpInst(Pred, A, C); 4454 } 4455 } 4456 4457 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4458 // A == (A^B) -> B == 0 4459 Value *OtherVal = A == Op0 ? B : A; 4460 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4461 } 4462 4463 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4464 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4465 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4466 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4467 4468 if (A == C) { 4469 X = B; 4470 Y = D; 4471 Z = A; 4472 } else if (A == D) { 4473 X = B; 4474 Y = C; 4475 Z = A; 4476 } else if (B == C) { 4477 X = A; 4478 Y = D; 4479 Z = B; 4480 } else if (B == D) { 4481 X = A; 4482 Y = C; 4483 Z = B; 4484 } 4485 4486 if (X) { // Build (X^Y) & Z 4487 Op1 = Builder.CreateXor(X, Y); 4488 Op1 = Builder.CreateAnd(Op1, Z); 4489 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4490 } 4491 } 4492 4493 { 4494 // Similar to above, but specialized for constant because invert is needed: 4495 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4496 Value *X, *Y; 4497 Constant *C; 4498 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4499 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4500 Value *Xor = Builder.CreateXor(X, Y); 4501 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4502 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4503 } 4504 } 4505 4506 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4507 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4508 ConstantInt *Cst1; 4509 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4510 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4511 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4512 match(Op1, m_ZExt(m_Value(A))))) { 4513 APInt Pow2 = Cst1->getValue() + 1; 4514 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4515 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4516 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4517 } 4518 4519 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4520 // For lshr and ashr pairs. 4521 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4522 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4523 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4524 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4525 unsigned TypeBits = Cst1->getBitWidth(); 4526 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4527 if (ShAmt < TypeBits && ShAmt != 0) { 4528 ICmpInst::Predicate NewPred = 4529 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4530 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4531 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4532 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4533 } 4534 } 4535 4536 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4537 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4538 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4539 unsigned TypeBits = Cst1->getBitWidth(); 4540 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4541 if (ShAmt < TypeBits && ShAmt != 0) { 4542 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4543 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4544 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4545 I.getName() + ".mask"); 4546 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4547 } 4548 } 4549 4550 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4551 // "icmp (and X, mask), cst" 4552 uint64_t ShAmt = 0; 4553 if (Op0->hasOneUse() && 4554 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4555 match(Op1, m_ConstantInt(Cst1)) && 4556 // Only do this when A has multiple uses. This is most important to do 4557 // when it exposes other optimizations. 4558 !A->hasOneUse()) { 4559 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4560 4561 if (ShAmt < ASize) { 4562 APInt MaskV = 4563 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4564 MaskV <<= ShAmt; 4565 4566 APInt CmpV = Cst1->getValue().zext(ASize); 4567 CmpV <<= ShAmt; 4568 4569 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4570 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4571 } 4572 } 4573 4574 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4575 return ICmp; 4576 4577 // Canonicalize checking for a power-of-2-or-zero value: 4578 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4579 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4580 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4581 m_Deferred(A)))) || 4582 !match(Op1, m_ZeroInt())) 4583 A = nullptr; 4584 4585 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4586 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4587 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4588 A = Op1; 4589 else if (match(Op1, 4590 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4591 A = Op0; 4592 4593 if (A) { 4594 Type *Ty = A->getType(); 4595 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4596 return Pred == ICmpInst::ICMP_EQ 4597 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4598 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4599 } 4600 4601 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4602 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4603 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4604 // of instcombine. 4605 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4606 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4607 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4608 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4609 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4610 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4611 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4612 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4613 : ICmpInst::ICMP_UGE, 4614 Add, ConstantInt::get(A->getType(), C.shl(1))); 4615 } 4616 4617 return nullptr; 4618 } 4619 4620 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4621 InstCombiner::BuilderTy &Builder) { 4622 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4623 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4624 4625 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4626 // The trunc masks high bits while the compare may effectively mask low bits. 4627 Value *X; 4628 const APInt *C; 4629 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4630 return nullptr; 4631 4632 // This matches patterns corresponding to tests of the signbit as well as: 4633 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4634 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4635 APInt Mask; 4636 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4637 Value *And = Builder.CreateAnd(X, Mask); 4638 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4639 return new ICmpInst(Pred, And, Zero); 4640 } 4641 4642 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4643 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4644 // If C is a negative power-of-2 (high-bit mask): 4645 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4646 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4647 Value *And = Builder.CreateAnd(X, MaskC); 4648 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4649 } 4650 4651 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4652 // If C is not-of-power-of-2 (one clear bit): 4653 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4654 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4655 Value *And = Builder.CreateAnd(X, MaskC); 4656 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4657 } 4658 4659 return nullptr; 4660 } 4661 4662 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4663 InstCombiner::BuilderTy &Builder) { 4664 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4665 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4666 Value *X; 4667 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4668 return nullptr; 4669 4670 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4671 bool IsSignedCmp = ICmp.isSigned(); 4672 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4673 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4674 // and the other is a zext), then we can't handle this. 4675 // TODO: This is too strict. We can handle some predicates (equality?). 4676 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4677 return nullptr; 4678 4679 // Not an extension from the same type? 4680 Value *Y = CastOp1->getOperand(0); 4681 Type *XTy = X->getType(), *YTy = Y->getType(); 4682 if (XTy != YTy) { 4683 // One of the casts must have one use because we are creating a new cast. 4684 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4685 return nullptr; 4686 // Extend the narrower operand to the type of the wider operand. 4687 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4688 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4689 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4690 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4691 else 4692 return nullptr; 4693 } 4694 4695 // (zext X) == (zext Y) --> X == Y 4696 // (sext X) == (sext Y) --> X == Y 4697 if (ICmp.isEquality()) 4698 return new ICmpInst(ICmp.getPredicate(), X, Y); 4699 4700 // A signed comparison of sign extended values simplifies into a 4701 // signed comparison. 4702 if (IsSignedCmp && IsSignedExt) 4703 return new ICmpInst(ICmp.getPredicate(), X, Y); 4704 4705 // The other three cases all fold into an unsigned comparison. 4706 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4707 } 4708 4709 // Below here, we are only folding a compare with constant. 4710 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4711 if (!C) 4712 return nullptr; 4713 4714 // Compute the constant that would happen if we truncated to SrcTy then 4715 // re-extended to DestTy. 4716 Type *SrcTy = CastOp0->getSrcTy(); 4717 Type *DestTy = CastOp0->getDestTy(); 4718 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4719 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4720 4721 // If the re-extended constant didn't change... 4722 if (Res2 == C) { 4723 if (ICmp.isEquality()) 4724 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4725 4726 // A signed comparison of sign extended values simplifies into a 4727 // signed comparison. 4728 if (IsSignedExt && IsSignedCmp) 4729 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4730 4731 // The other three cases all fold into an unsigned comparison. 4732 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4733 } 4734 4735 // The re-extended constant changed, partly changed (in the case of a vector), 4736 // or could not be determined to be equal (in the case of a constant 4737 // expression), so the constant cannot be represented in the shorter type. 4738 // All the cases that fold to true or false will have already been handled 4739 // by SimplifyICmpInst, so only deal with the tricky case. 4740 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4741 return nullptr; 4742 4743 // Is source op positive? 4744 // icmp ult (sext X), C --> icmp sgt X, -1 4745 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4746 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4747 4748 // Is source op negative? 4749 // icmp ugt (sext X), C --> icmp slt X, 0 4750 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4751 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4752 } 4753 4754 /// Handle icmp (cast x), (cast or constant). 4755 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4756 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4757 // icmp compares only pointer's value. 4758 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4759 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4760 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4761 if (SimplifiedOp0 || SimplifiedOp1) 4762 return new ICmpInst(ICmp.getPredicate(), 4763 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4764 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4765 4766 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4767 if (!CastOp0) 4768 return nullptr; 4769 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4770 return nullptr; 4771 4772 Value *Op0Src = CastOp0->getOperand(0); 4773 Type *SrcTy = CastOp0->getSrcTy(); 4774 Type *DestTy = CastOp0->getDestTy(); 4775 4776 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4777 // integer type is the same size as the pointer type. 4778 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4779 if (isa<VectorType>(SrcTy)) { 4780 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4781 DestTy = cast<VectorType>(DestTy)->getElementType(); 4782 } 4783 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4784 }; 4785 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4786 CompatibleSizes(SrcTy, DestTy)) { 4787 Value *NewOp1 = nullptr; 4788 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4789 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4790 if (PtrSrc->getType()->getPointerAddressSpace() == 4791 Op0Src->getType()->getPointerAddressSpace()) { 4792 NewOp1 = PtrToIntOp1->getOperand(0); 4793 // If the pointer types don't match, insert a bitcast. 4794 if (Op0Src->getType() != NewOp1->getType()) 4795 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4796 } 4797 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4798 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4799 } 4800 4801 if (NewOp1) 4802 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4803 } 4804 4805 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4806 return R; 4807 4808 return foldICmpWithZextOrSext(ICmp, Builder); 4809 } 4810 4811 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4812 switch (BinaryOp) { 4813 default: 4814 llvm_unreachable("Unsupported binary op"); 4815 case Instruction::Add: 4816 case Instruction::Sub: 4817 return match(RHS, m_Zero()); 4818 case Instruction::Mul: 4819 return match(RHS, m_One()); 4820 } 4821 } 4822 4823 OverflowResult 4824 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4825 bool IsSigned, Value *LHS, Value *RHS, 4826 Instruction *CxtI) const { 4827 switch (BinaryOp) { 4828 default: 4829 llvm_unreachable("Unsupported binary op"); 4830 case Instruction::Add: 4831 if (IsSigned) 4832 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4833 else 4834 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4835 case Instruction::Sub: 4836 if (IsSigned) 4837 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4838 else 4839 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4840 case Instruction::Mul: 4841 if (IsSigned) 4842 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4843 else 4844 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4845 } 4846 } 4847 4848 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4849 bool IsSigned, Value *LHS, 4850 Value *RHS, Instruction &OrigI, 4851 Value *&Result, 4852 Constant *&Overflow) { 4853 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4854 std::swap(LHS, RHS); 4855 4856 // If the overflow check was an add followed by a compare, the insertion point 4857 // may be pointing to the compare. We want to insert the new instructions 4858 // before the add in case there are uses of the add between the add and the 4859 // compare. 4860 Builder.SetInsertPoint(&OrigI); 4861 4862 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4863 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4864 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4865 4866 if (isNeutralValue(BinaryOp, RHS)) { 4867 Result = LHS; 4868 Overflow = ConstantInt::getFalse(OverflowTy); 4869 return true; 4870 } 4871 4872 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4873 case OverflowResult::MayOverflow: 4874 return false; 4875 case OverflowResult::AlwaysOverflowsLow: 4876 case OverflowResult::AlwaysOverflowsHigh: 4877 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4878 Result->takeName(&OrigI); 4879 Overflow = ConstantInt::getTrue(OverflowTy); 4880 return true; 4881 case OverflowResult::NeverOverflows: 4882 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4883 Result->takeName(&OrigI); 4884 Overflow = ConstantInt::getFalse(OverflowTy); 4885 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4886 if (IsSigned) 4887 Inst->setHasNoSignedWrap(); 4888 else 4889 Inst->setHasNoUnsignedWrap(); 4890 } 4891 return true; 4892 } 4893 4894 llvm_unreachable("Unexpected overflow result"); 4895 } 4896 4897 /// Recognize and process idiom involving test for multiplication 4898 /// overflow. 4899 /// 4900 /// The caller has matched a pattern of the form: 4901 /// I = cmp u (mul(zext A, zext B), V 4902 /// The function checks if this is a test for overflow and if so replaces 4903 /// multiplication with call to 'mul.with.overflow' intrinsic. 4904 /// 4905 /// \param I Compare instruction. 4906 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4907 /// the compare instruction. Must be of integer type. 4908 /// \param OtherVal The other argument of compare instruction. 4909 /// \returns Instruction which must replace the compare instruction, NULL if no 4910 /// replacement required. 4911 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4912 Value *OtherVal, 4913 InstCombinerImpl &IC) { 4914 // Don't bother doing this transformation for pointers, don't do it for 4915 // vectors. 4916 if (!isa<IntegerType>(MulVal->getType())) 4917 return nullptr; 4918 4919 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4920 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4921 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4922 if (!MulInstr) 4923 return nullptr; 4924 assert(MulInstr->getOpcode() == Instruction::Mul); 4925 4926 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4927 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4928 assert(LHS->getOpcode() == Instruction::ZExt); 4929 assert(RHS->getOpcode() == Instruction::ZExt); 4930 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4931 4932 // Calculate type and width of the result produced by mul.with.overflow. 4933 Type *TyA = A->getType(), *TyB = B->getType(); 4934 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4935 WidthB = TyB->getPrimitiveSizeInBits(); 4936 unsigned MulWidth; 4937 Type *MulType; 4938 if (WidthB > WidthA) { 4939 MulWidth = WidthB; 4940 MulType = TyB; 4941 } else { 4942 MulWidth = WidthA; 4943 MulType = TyA; 4944 } 4945 4946 // In order to replace the original mul with a narrower mul.with.overflow, 4947 // all uses must ignore upper bits of the product. The number of used low 4948 // bits must be not greater than the width of mul.with.overflow. 4949 if (MulVal->hasNUsesOrMore(2)) 4950 for (User *U : MulVal->users()) { 4951 if (U == &I) 4952 continue; 4953 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4954 // Check if truncation ignores bits above MulWidth. 4955 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4956 if (TruncWidth > MulWidth) 4957 return nullptr; 4958 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4959 // Check if AND ignores bits above MulWidth. 4960 if (BO->getOpcode() != Instruction::And) 4961 return nullptr; 4962 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4963 const APInt &CVal = CI->getValue(); 4964 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4965 return nullptr; 4966 } else { 4967 // In this case we could have the operand of the binary operation 4968 // being defined in another block, and performing the replacement 4969 // could break the dominance relation. 4970 return nullptr; 4971 } 4972 } else { 4973 // Other uses prohibit this transformation. 4974 return nullptr; 4975 } 4976 } 4977 4978 // Recognize patterns 4979 switch (I.getPredicate()) { 4980 case ICmpInst::ICMP_EQ: 4981 case ICmpInst::ICMP_NE: 4982 // Recognize pattern: 4983 // mulval = mul(zext A, zext B) 4984 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4985 ConstantInt *CI; 4986 Value *ValToMask; 4987 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4988 if (ValToMask != MulVal) 4989 return nullptr; 4990 const APInt &CVal = CI->getValue() + 1; 4991 if (CVal.isPowerOf2()) { 4992 unsigned MaskWidth = CVal.logBase2(); 4993 if (MaskWidth == MulWidth) 4994 break; // Recognized 4995 } 4996 } 4997 return nullptr; 4998 4999 case ICmpInst::ICMP_UGT: 5000 // Recognize pattern: 5001 // mulval = mul(zext A, zext B) 5002 // cmp ugt mulval, max 5003 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5004 APInt MaxVal = APInt::getMaxValue(MulWidth); 5005 MaxVal = MaxVal.zext(CI->getBitWidth()); 5006 if (MaxVal.eq(CI->getValue())) 5007 break; // Recognized 5008 } 5009 return nullptr; 5010 5011 case ICmpInst::ICMP_UGE: 5012 // Recognize pattern: 5013 // mulval = mul(zext A, zext B) 5014 // cmp uge mulval, max+1 5015 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5016 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5017 if (MaxVal.eq(CI->getValue())) 5018 break; // Recognized 5019 } 5020 return nullptr; 5021 5022 case ICmpInst::ICMP_ULE: 5023 // Recognize pattern: 5024 // mulval = mul(zext A, zext B) 5025 // cmp ule mulval, max 5026 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5027 APInt MaxVal = APInt::getMaxValue(MulWidth); 5028 MaxVal = MaxVal.zext(CI->getBitWidth()); 5029 if (MaxVal.eq(CI->getValue())) 5030 break; // Recognized 5031 } 5032 return nullptr; 5033 5034 case ICmpInst::ICMP_ULT: 5035 // Recognize pattern: 5036 // mulval = mul(zext A, zext B) 5037 // cmp ule mulval, max + 1 5038 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5039 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5040 if (MaxVal.eq(CI->getValue())) 5041 break; // Recognized 5042 } 5043 return nullptr; 5044 5045 default: 5046 return nullptr; 5047 } 5048 5049 InstCombiner::BuilderTy &Builder = IC.Builder; 5050 Builder.SetInsertPoint(MulInstr); 5051 5052 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5053 Value *MulA = A, *MulB = B; 5054 if (WidthA < MulWidth) 5055 MulA = Builder.CreateZExt(A, MulType); 5056 if (WidthB < MulWidth) 5057 MulB = Builder.CreateZExt(B, MulType); 5058 Function *F = Intrinsic::getDeclaration( 5059 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5060 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5061 IC.addToWorklist(MulInstr); 5062 5063 // If there are uses of mul result other than the comparison, we know that 5064 // they are truncation or binary AND. Change them to use result of 5065 // mul.with.overflow and adjust properly mask/size. 5066 if (MulVal->hasNUsesOrMore(2)) { 5067 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5068 for (User *U : make_early_inc_range(MulVal->users())) { 5069 if (U == &I || U == OtherVal) 5070 continue; 5071 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5072 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5073 IC.replaceInstUsesWith(*TI, Mul); 5074 else 5075 TI->setOperand(0, Mul); 5076 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5077 assert(BO->getOpcode() == Instruction::And); 5078 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5079 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5080 APInt ShortMask = CI->getValue().trunc(MulWidth); 5081 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5082 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5083 IC.replaceInstUsesWith(*BO, Zext); 5084 } else { 5085 llvm_unreachable("Unexpected Binary operation"); 5086 } 5087 IC.addToWorklist(cast<Instruction>(U)); 5088 } 5089 } 5090 if (isa<Instruction>(OtherVal)) 5091 IC.addToWorklist(cast<Instruction>(OtherVal)); 5092 5093 // The original icmp gets replaced with the overflow value, maybe inverted 5094 // depending on predicate. 5095 bool Inverse = false; 5096 switch (I.getPredicate()) { 5097 case ICmpInst::ICMP_NE: 5098 break; 5099 case ICmpInst::ICMP_EQ: 5100 Inverse = true; 5101 break; 5102 case ICmpInst::ICMP_UGT: 5103 case ICmpInst::ICMP_UGE: 5104 if (I.getOperand(0) == MulVal) 5105 break; 5106 Inverse = true; 5107 break; 5108 case ICmpInst::ICMP_ULT: 5109 case ICmpInst::ICMP_ULE: 5110 if (I.getOperand(1) == MulVal) 5111 break; 5112 Inverse = true; 5113 break; 5114 default: 5115 llvm_unreachable("Unexpected predicate"); 5116 } 5117 if (Inverse) { 5118 Value *Res = Builder.CreateExtractValue(Call, 1); 5119 return BinaryOperator::CreateNot(Res); 5120 } 5121 5122 return ExtractValueInst::Create(Call, 1); 5123 } 5124 5125 /// When performing a comparison against a constant, it is possible that not all 5126 /// the bits in the LHS are demanded. This helper method computes the mask that 5127 /// IS demanded. 5128 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5129 const APInt *RHS; 5130 if (!match(I.getOperand(1), m_APInt(RHS))) 5131 return APInt::getAllOnes(BitWidth); 5132 5133 // If this is a normal comparison, it demands all bits. If it is a sign bit 5134 // comparison, it only demands the sign bit. 5135 bool UnusedBit; 5136 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5137 return APInt::getSignMask(BitWidth); 5138 5139 switch (I.getPredicate()) { 5140 // For a UGT comparison, we don't care about any bits that 5141 // correspond to the trailing ones of the comparand. The value of these 5142 // bits doesn't impact the outcome of the comparison, because any value 5143 // greater than the RHS must differ in a bit higher than these due to carry. 5144 case ICmpInst::ICMP_UGT: 5145 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5146 5147 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5148 // Any value less than the RHS must differ in a higher bit because of carries. 5149 case ICmpInst::ICMP_ULT: 5150 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5151 5152 default: 5153 return APInt::getAllOnes(BitWidth); 5154 } 5155 } 5156 5157 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5158 /// should be swapped. 5159 /// The decision is based on how many times these two operands are reused 5160 /// as subtract operands and their positions in those instructions. 5161 /// The rationale is that several architectures use the same instruction for 5162 /// both subtract and cmp. Thus, it is better if the order of those operands 5163 /// match. 5164 /// \return true if Op0 and Op1 should be swapped. 5165 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5166 // Filter out pointer values as those cannot appear directly in subtract. 5167 // FIXME: we may want to go through inttoptrs or bitcasts. 5168 if (Op0->getType()->isPointerTy()) 5169 return false; 5170 // If a subtract already has the same operands as a compare, swapping would be 5171 // bad. If a subtract has the same operands as a compare but in reverse order, 5172 // then swapping is good. 5173 int GoodToSwap = 0; 5174 for (const User *U : Op0->users()) { 5175 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5176 GoodToSwap++; 5177 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5178 GoodToSwap--; 5179 } 5180 return GoodToSwap > 0; 5181 } 5182 5183 /// Check that one use is in the same block as the definition and all 5184 /// other uses are in blocks dominated by a given block. 5185 /// 5186 /// \param DI Definition 5187 /// \param UI Use 5188 /// \param DB Block that must dominate all uses of \p DI outside 5189 /// the parent block 5190 /// \return true when \p UI is the only use of \p DI in the parent block 5191 /// and all other uses of \p DI are in blocks dominated by \p DB. 5192 /// 5193 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5194 const Instruction *UI, 5195 const BasicBlock *DB) const { 5196 assert(DI && UI && "Instruction not defined\n"); 5197 // Ignore incomplete definitions. 5198 if (!DI->getParent()) 5199 return false; 5200 // DI and UI must be in the same block. 5201 if (DI->getParent() != UI->getParent()) 5202 return false; 5203 // Protect from self-referencing blocks. 5204 if (DI->getParent() == DB) 5205 return false; 5206 for (const User *U : DI->users()) { 5207 auto *Usr = cast<Instruction>(U); 5208 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5209 return false; 5210 } 5211 return true; 5212 } 5213 5214 /// Return true when the instruction sequence within a block is select-cmp-br. 5215 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5216 const BasicBlock *BB = SI->getParent(); 5217 if (!BB) 5218 return false; 5219 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5220 if (!BI || BI->getNumSuccessors() != 2) 5221 return false; 5222 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5223 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5224 return false; 5225 return true; 5226 } 5227 5228 /// True when a select result is replaced by one of its operands 5229 /// in select-icmp sequence. This will eventually result in the elimination 5230 /// of the select. 5231 /// 5232 /// \param SI Select instruction 5233 /// \param Icmp Compare instruction 5234 /// \param SIOpd Operand that replaces the select 5235 /// 5236 /// Notes: 5237 /// - The replacement is global and requires dominator information 5238 /// - The caller is responsible for the actual replacement 5239 /// 5240 /// Example: 5241 /// 5242 /// entry: 5243 /// %4 = select i1 %3, %C* %0, %C* null 5244 /// %5 = icmp eq %C* %4, null 5245 /// br i1 %5, label %9, label %7 5246 /// ... 5247 /// ; <label>:7 ; preds = %entry 5248 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5249 /// ... 5250 /// 5251 /// can be transformed to 5252 /// 5253 /// %5 = icmp eq %C* %0, null 5254 /// %6 = select i1 %3, i1 %5, i1 true 5255 /// br i1 %6, label %9, label %7 5256 /// ... 5257 /// ; <label>:7 ; preds = %entry 5258 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5259 /// 5260 /// Similar when the first operand of the select is a constant or/and 5261 /// the compare is for not equal rather than equal. 5262 /// 5263 /// NOTE: The function is only called when the select and compare constants 5264 /// are equal, the optimization can work only for EQ predicates. This is not a 5265 /// major restriction since a NE compare should be 'normalized' to an equal 5266 /// compare, which usually happens in the combiner and test case 5267 /// select-cmp-br.ll checks for it. 5268 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5269 const ICmpInst *Icmp, 5270 const unsigned SIOpd) { 5271 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5272 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5273 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5274 // The check for the single predecessor is not the best that can be 5275 // done. But it protects efficiently against cases like when SI's 5276 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5277 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5278 // replaced can be reached on either path. So the uniqueness check 5279 // guarantees that the path all uses of SI (outside SI's parent) are on 5280 // is disjoint from all other paths out of SI. But that information 5281 // is more expensive to compute, and the trade-off here is in favor 5282 // of compile-time. It should also be noticed that we check for a single 5283 // predecessor and not only uniqueness. This to handle the situation when 5284 // Succ and Succ1 points to the same basic block. 5285 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5286 NumSel++; 5287 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5288 return true; 5289 } 5290 } 5291 return false; 5292 } 5293 5294 /// Try to fold the comparison based on range information we can get by checking 5295 /// whether bits are known to be zero or one in the inputs. 5296 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5297 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5298 Type *Ty = Op0->getType(); 5299 ICmpInst::Predicate Pred = I.getPredicate(); 5300 5301 // Get scalar or pointer size. 5302 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5303 ? Ty->getScalarSizeInBits() 5304 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5305 5306 if (!BitWidth) 5307 return nullptr; 5308 5309 KnownBits Op0Known(BitWidth); 5310 KnownBits Op1Known(BitWidth); 5311 5312 if (SimplifyDemandedBits(&I, 0, 5313 getDemandedBitsLHSMask(I, BitWidth), 5314 Op0Known, 0)) 5315 return &I; 5316 5317 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5318 return &I; 5319 5320 // Given the known and unknown bits, compute a range that the LHS could be 5321 // in. Compute the Min, Max and RHS values based on the known bits. For the 5322 // EQ and NE we use unsigned values. 5323 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5324 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5325 if (I.isSigned()) { 5326 Op0Min = Op0Known.getSignedMinValue(); 5327 Op0Max = Op0Known.getSignedMaxValue(); 5328 Op1Min = Op1Known.getSignedMinValue(); 5329 Op1Max = Op1Known.getSignedMaxValue(); 5330 } else { 5331 Op0Min = Op0Known.getMinValue(); 5332 Op0Max = Op0Known.getMaxValue(); 5333 Op1Min = Op1Known.getMinValue(); 5334 Op1Max = Op1Known.getMaxValue(); 5335 } 5336 5337 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5338 // out that the LHS or RHS is a constant. Constant fold this now, so that 5339 // code below can assume that Min != Max. 5340 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5341 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5342 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5343 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5344 5345 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5346 // min/max canonical compare with some other compare. That could lead to 5347 // conflict with select canonicalization and infinite looping. 5348 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5349 auto isMinMaxCmp = [&](Instruction &Cmp) { 5350 if (!Cmp.hasOneUse()) 5351 return false; 5352 Value *A, *B; 5353 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5354 if (!SelectPatternResult::isMinOrMax(SPF)) 5355 return false; 5356 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5357 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5358 }; 5359 if (!isMinMaxCmp(I)) { 5360 switch (Pred) { 5361 default: 5362 break; 5363 case ICmpInst::ICMP_ULT: { 5364 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5365 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5366 const APInt *CmpC; 5367 if (match(Op1, m_APInt(CmpC))) { 5368 // A <u C -> A == C-1 if min(A)+1 == C 5369 if (*CmpC == Op0Min + 1) 5370 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5371 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5372 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5373 // exceeds the log2 of C. 5374 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5375 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5376 Constant::getNullValue(Op1->getType())); 5377 } 5378 break; 5379 } 5380 case ICmpInst::ICMP_UGT: { 5381 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5382 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5383 const APInt *CmpC; 5384 if (match(Op1, m_APInt(CmpC))) { 5385 // A >u C -> A == C+1 if max(a)-1 == C 5386 if (*CmpC == Op0Max - 1) 5387 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5388 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5389 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5390 // exceeds the log2 of C. 5391 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5392 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5393 Constant::getNullValue(Op1->getType())); 5394 } 5395 break; 5396 } 5397 case ICmpInst::ICMP_SLT: { 5398 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5399 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5400 const APInt *CmpC; 5401 if (match(Op1, m_APInt(CmpC))) { 5402 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5403 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5404 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5405 } 5406 break; 5407 } 5408 case ICmpInst::ICMP_SGT: { 5409 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5410 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5411 const APInt *CmpC; 5412 if (match(Op1, m_APInt(CmpC))) { 5413 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5414 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5415 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5416 } 5417 break; 5418 } 5419 } 5420 } 5421 5422 // Based on the range information we know about the LHS, see if we can 5423 // simplify this comparison. For example, (x&4) < 8 is always true. 5424 switch (Pred) { 5425 default: 5426 llvm_unreachable("Unknown icmp opcode!"); 5427 case ICmpInst::ICMP_EQ: 5428 case ICmpInst::ICMP_NE: { 5429 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5430 return replaceInstUsesWith( 5431 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5432 5433 // If all bits are known zero except for one, then we know at most one bit 5434 // is set. If the comparison is against zero, then this is a check to see if 5435 // *that* bit is set. 5436 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5437 if (Op1Known.isZero()) { 5438 // If the LHS is an AND with the same constant, look through it. 5439 Value *LHS = nullptr; 5440 const APInt *LHSC; 5441 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5442 *LHSC != Op0KnownZeroInverted) 5443 LHS = Op0; 5444 5445 Value *X; 5446 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5447 APInt ValToCheck = Op0KnownZeroInverted; 5448 Type *XTy = X->getType(); 5449 if (ValToCheck.isPowerOf2()) { 5450 // ((1 << X) & 8) == 0 -> X != 3 5451 // ((1 << X) & 8) != 0 -> X == 3 5452 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5453 auto NewPred = ICmpInst::getInversePredicate(Pred); 5454 return new ICmpInst(NewPred, X, CmpC); 5455 } else if ((++ValToCheck).isPowerOf2()) { 5456 // ((1 << X) & 7) == 0 -> X >= 3 5457 // ((1 << X) & 7) != 0 -> X < 3 5458 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5459 auto NewPred = 5460 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5461 return new ICmpInst(NewPred, X, CmpC); 5462 } 5463 } 5464 5465 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5466 const APInt *CI; 5467 if (Op0KnownZeroInverted.isOne() && 5468 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5469 // ((8 >>u X) & 1) == 0 -> X != 3 5470 // ((8 >>u X) & 1) != 0 -> X == 3 5471 unsigned CmpVal = CI->countTrailingZeros(); 5472 auto NewPred = ICmpInst::getInversePredicate(Pred); 5473 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5474 } 5475 } 5476 break; 5477 } 5478 case ICmpInst::ICMP_ULT: { 5479 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5480 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5481 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5482 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5483 break; 5484 } 5485 case ICmpInst::ICMP_UGT: { 5486 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5487 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5488 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5489 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5490 break; 5491 } 5492 case ICmpInst::ICMP_SLT: { 5493 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5494 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5495 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5496 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5497 break; 5498 } 5499 case ICmpInst::ICMP_SGT: { 5500 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5501 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5502 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5503 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5504 break; 5505 } 5506 case ICmpInst::ICMP_SGE: 5507 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5508 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5509 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5510 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5511 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5512 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5513 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5514 break; 5515 case ICmpInst::ICMP_SLE: 5516 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5517 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5518 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5519 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5520 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5521 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5522 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5523 break; 5524 case ICmpInst::ICMP_UGE: 5525 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5526 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5527 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5528 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5529 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5530 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5531 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5532 break; 5533 case ICmpInst::ICMP_ULE: 5534 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5535 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5536 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5537 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5538 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5539 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5540 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5541 break; 5542 } 5543 5544 // Turn a signed comparison into an unsigned one if both operands are known to 5545 // have the same sign. 5546 if (I.isSigned() && 5547 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5548 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5549 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5550 5551 return nullptr; 5552 } 5553 5554 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5555 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5556 Constant *C) { 5557 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5558 "Only for relational integer predicates."); 5559 5560 Type *Type = C->getType(); 5561 bool IsSigned = ICmpInst::isSigned(Pred); 5562 5563 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5564 bool WillIncrement = 5565 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5566 5567 // Check if the constant operand can be safely incremented/decremented 5568 // without overflowing/underflowing. 5569 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5570 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5571 }; 5572 5573 Constant *SafeReplacementConstant = nullptr; 5574 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5575 // Bail out if the constant can't be safely incremented/decremented. 5576 if (!ConstantIsOk(CI)) 5577 return llvm::None; 5578 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5579 unsigned NumElts = FVTy->getNumElements(); 5580 for (unsigned i = 0; i != NumElts; ++i) { 5581 Constant *Elt = C->getAggregateElement(i); 5582 if (!Elt) 5583 return llvm::None; 5584 5585 if (isa<UndefValue>(Elt)) 5586 continue; 5587 5588 // Bail out if we can't determine if this constant is min/max or if we 5589 // know that this constant is min/max. 5590 auto *CI = dyn_cast<ConstantInt>(Elt); 5591 if (!CI || !ConstantIsOk(CI)) 5592 return llvm::None; 5593 5594 if (!SafeReplacementConstant) 5595 SafeReplacementConstant = CI; 5596 } 5597 } else { 5598 // ConstantExpr? 5599 return llvm::None; 5600 } 5601 5602 // It may not be safe to change a compare predicate in the presence of 5603 // undefined elements, so replace those elements with the first safe constant 5604 // that we found. 5605 // TODO: in case of poison, it is safe; let's replace undefs only. 5606 if (C->containsUndefOrPoisonElement()) { 5607 assert(SafeReplacementConstant && "Replacement constant not set"); 5608 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5609 } 5610 5611 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5612 5613 // Increment or decrement the constant. 5614 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5615 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5616 5617 return std::make_pair(NewPred, NewC); 5618 } 5619 5620 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5621 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5622 /// allows them to be folded in visitICmpInst. 5623 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5624 ICmpInst::Predicate Pred = I.getPredicate(); 5625 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5626 InstCombiner::isCanonicalPredicate(Pred)) 5627 return nullptr; 5628 5629 Value *Op0 = I.getOperand(0); 5630 Value *Op1 = I.getOperand(1); 5631 auto *Op1C = dyn_cast<Constant>(Op1); 5632 if (!Op1C) 5633 return nullptr; 5634 5635 auto FlippedStrictness = 5636 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5637 if (!FlippedStrictness) 5638 return nullptr; 5639 5640 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5641 } 5642 5643 /// If we have a comparison with a non-canonical predicate, if we can update 5644 /// all the users, invert the predicate and adjust all the users. 5645 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5646 // Is the predicate already canonical? 5647 CmpInst::Predicate Pred = I.getPredicate(); 5648 if (InstCombiner::isCanonicalPredicate(Pred)) 5649 return nullptr; 5650 5651 // Can all users be adjusted to predicate inversion? 5652 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5653 return nullptr; 5654 5655 // Ok, we can canonicalize comparison! 5656 // Let's first invert the comparison's predicate. 5657 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5658 I.setName(I.getName() + ".not"); 5659 5660 // And, adapt users. 5661 freelyInvertAllUsersOf(&I); 5662 5663 return &I; 5664 } 5665 5666 /// Integer compare with boolean values can always be turned into bitwise ops. 5667 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5668 InstCombiner::BuilderTy &Builder) { 5669 Value *A = I.getOperand(0), *B = I.getOperand(1); 5670 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5671 5672 // A boolean compared to true/false can be simplified to Op0/true/false in 5673 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5674 // Cases not handled by InstSimplify are always 'not' of Op0. 5675 if (match(B, m_Zero())) { 5676 switch (I.getPredicate()) { 5677 case CmpInst::ICMP_EQ: // A == 0 -> !A 5678 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5679 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5680 return BinaryOperator::CreateNot(A); 5681 default: 5682 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5683 } 5684 } else if (match(B, m_One())) { 5685 switch (I.getPredicate()) { 5686 case CmpInst::ICMP_NE: // A != 1 -> !A 5687 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5688 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5689 return BinaryOperator::CreateNot(A); 5690 default: 5691 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5692 } 5693 } 5694 5695 switch (I.getPredicate()) { 5696 default: 5697 llvm_unreachable("Invalid icmp instruction!"); 5698 case ICmpInst::ICMP_EQ: 5699 // icmp eq i1 A, B -> ~(A ^ B) 5700 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5701 5702 case ICmpInst::ICMP_NE: 5703 // icmp ne i1 A, B -> A ^ B 5704 return BinaryOperator::CreateXor(A, B); 5705 5706 case ICmpInst::ICMP_UGT: 5707 // icmp ugt -> icmp ult 5708 std::swap(A, B); 5709 LLVM_FALLTHROUGH; 5710 case ICmpInst::ICMP_ULT: 5711 // icmp ult i1 A, B -> ~A & B 5712 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5713 5714 case ICmpInst::ICMP_SGT: 5715 // icmp sgt -> icmp slt 5716 std::swap(A, B); 5717 LLVM_FALLTHROUGH; 5718 case ICmpInst::ICMP_SLT: 5719 // icmp slt i1 A, B -> A & ~B 5720 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5721 5722 case ICmpInst::ICMP_UGE: 5723 // icmp uge -> icmp ule 5724 std::swap(A, B); 5725 LLVM_FALLTHROUGH; 5726 case ICmpInst::ICMP_ULE: 5727 // icmp ule i1 A, B -> ~A | B 5728 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5729 5730 case ICmpInst::ICMP_SGE: 5731 // icmp sge -> icmp sle 5732 std::swap(A, B); 5733 LLVM_FALLTHROUGH; 5734 case ICmpInst::ICMP_SLE: 5735 // icmp sle i1 A, B -> A | ~B 5736 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5737 } 5738 } 5739 5740 // Transform pattern like: 5741 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5742 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5743 // Into: 5744 // (X l>> Y) != 0 5745 // (X l>> Y) == 0 5746 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5747 InstCombiner::BuilderTy &Builder) { 5748 ICmpInst::Predicate Pred, NewPred; 5749 Value *X, *Y; 5750 if (match(&Cmp, 5751 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5752 switch (Pred) { 5753 case ICmpInst::ICMP_ULE: 5754 NewPred = ICmpInst::ICMP_NE; 5755 break; 5756 case ICmpInst::ICMP_UGT: 5757 NewPred = ICmpInst::ICMP_EQ; 5758 break; 5759 default: 5760 return nullptr; 5761 } 5762 } else if (match(&Cmp, m_c_ICmp(Pred, 5763 m_OneUse(m_CombineOr( 5764 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5765 m_Add(m_Shl(m_One(), m_Value(Y)), 5766 m_AllOnes()))), 5767 m_Value(X)))) { 5768 // The variant with 'add' is not canonical, (the variant with 'not' is) 5769 // we only get it because it has extra uses, and can't be canonicalized, 5770 5771 switch (Pred) { 5772 case ICmpInst::ICMP_ULT: 5773 NewPred = ICmpInst::ICMP_NE; 5774 break; 5775 case ICmpInst::ICMP_UGE: 5776 NewPred = ICmpInst::ICMP_EQ; 5777 break; 5778 default: 5779 return nullptr; 5780 } 5781 } else 5782 return nullptr; 5783 5784 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5785 Constant *Zero = Constant::getNullValue(NewX->getType()); 5786 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5787 } 5788 5789 static Instruction *foldVectorCmp(CmpInst &Cmp, 5790 InstCombiner::BuilderTy &Builder) { 5791 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5792 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5793 Value *V1, *V2; 5794 ArrayRef<int> M; 5795 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5796 return nullptr; 5797 5798 // If both arguments of the cmp are shuffles that use the same mask and 5799 // shuffle within a single vector, move the shuffle after the cmp: 5800 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5801 Type *V1Ty = V1->getType(); 5802 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5803 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5804 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5805 return new ShuffleVectorInst(NewCmp, M); 5806 } 5807 5808 // Try to canonicalize compare with splatted operand and splat constant. 5809 // TODO: We could generalize this for more than splats. See/use the code in 5810 // InstCombiner::foldVectorBinop(). 5811 Constant *C; 5812 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5813 return nullptr; 5814 5815 // Length-changing splats are ok, so adjust the constants as needed: 5816 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5817 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5818 int MaskSplatIndex; 5819 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5820 // We allow undefs in matching, but this transform removes those for safety. 5821 // Demanded elements analysis should be able to recover some/all of that. 5822 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5823 ScalarC); 5824 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5825 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5826 return new ShuffleVectorInst(NewCmp, NewM); 5827 } 5828 5829 return nullptr; 5830 } 5831 5832 // extract(uadd.with.overflow(A, B), 0) ult A 5833 // -> extract(uadd.with.overflow(A, B), 1) 5834 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5835 CmpInst::Predicate Pred = I.getPredicate(); 5836 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5837 5838 Value *UAddOv; 5839 Value *A, *B; 5840 auto UAddOvResultPat = m_ExtractValue<0>( 5841 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5842 if (match(Op0, UAddOvResultPat) && 5843 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5844 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5845 (match(A, m_One()) || match(B, m_One()))) || 5846 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5847 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5848 // extract(uadd.with.overflow(A, B), 0) < A 5849 // extract(uadd.with.overflow(A, 1), 0) == 0 5850 // extract(uadd.with.overflow(A, -1), 0) != -1 5851 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5852 else if (match(Op1, UAddOvResultPat) && 5853 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5854 // A > extract(uadd.with.overflow(A, B), 0) 5855 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5856 else 5857 return nullptr; 5858 5859 return ExtractValueInst::Create(UAddOv, 1); 5860 } 5861 5862 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5863 if (!I.getOperand(0)->getType()->isPointerTy() || 5864 NullPointerIsDefined( 5865 I.getParent()->getParent(), 5866 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5867 return nullptr; 5868 } 5869 Instruction *Op; 5870 if (match(I.getOperand(0), m_Instruction(Op)) && 5871 match(I.getOperand(1), m_Zero()) && 5872 Op->isLaunderOrStripInvariantGroup()) { 5873 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5874 Op->getOperand(0), I.getOperand(1)); 5875 } 5876 return nullptr; 5877 } 5878 5879 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5880 bool Changed = false; 5881 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5882 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5883 unsigned Op0Cplxity = getComplexity(Op0); 5884 unsigned Op1Cplxity = getComplexity(Op1); 5885 5886 /// Orders the operands of the compare so that they are listed from most 5887 /// complex to least complex. This puts constants before unary operators, 5888 /// before binary operators. 5889 if (Op0Cplxity < Op1Cplxity || 5890 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5891 I.swapOperands(); 5892 std::swap(Op0, Op1); 5893 Changed = true; 5894 } 5895 5896 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5897 return replaceInstUsesWith(I, V); 5898 5899 // Comparing -val or val with non-zero is the same as just comparing val 5900 // ie, abs(val) != 0 -> val != 0 5901 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5902 Value *Cond, *SelectTrue, *SelectFalse; 5903 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5904 m_Value(SelectFalse)))) { 5905 if (Value *V = dyn_castNegVal(SelectTrue)) { 5906 if (V == SelectFalse) 5907 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5908 } 5909 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5910 if (V == SelectTrue) 5911 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5912 } 5913 } 5914 } 5915 5916 if (Op0->getType()->isIntOrIntVectorTy(1)) 5917 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5918 return Res; 5919 5920 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5921 return Res; 5922 5923 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5924 return Res; 5925 5926 if (Instruction *Res = foldICmpWithConstant(I)) 5927 return Res; 5928 5929 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5930 return Res; 5931 5932 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5933 return Res; 5934 5935 // Test if the ICmpInst instruction is used exclusively by a select as 5936 // part of a minimum or maximum operation. If so, refrain from doing 5937 // any other folding. This helps out other analyses which understand 5938 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5939 // and CodeGen. And in this case, at least one of the comparison 5940 // operands has at least one user besides the compare (the select), 5941 // which would often largely negate the benefit of folding anyway. 5942 // 5943 // Do the same for the other patterns recognized by matchSelectPattern. 5944 if (I.hasOneUse()) 5945 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5946 Value *A, *B; 5947 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5948 if (SPR.Flavor != SPF_UNKNOWN) 5949 return nullptr; 5950 } 5951 5952 // Do this after checking for min/max to prevent infinite looping. 5953 if (Instruction *Res = foldICmpWithZero(I)) 5954 return Res; 5955 5956 // FIXME: We only do this after checking for min/max to prevent infinite 5957 // looping caused by a reverse canonicalization of these patterns for min/max. 5958 // FIXME: The organization of folds is a mess. These would naturally go into 5959 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5960 // down here after the min/max restriction. 5961 ICmpInst::Predicate Pred = I.getPredicate(); 5962 const APInt *C; 5963 if (match(Op1, m_APInt(C))) { 5964 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5965 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5966 Constant *Zero = Constant::getNullValue(Op0->getType()); 5967 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5968 } 5969 5970 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5971 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5972 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5973 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5974 } 5975 } 5976 5977 // The folds in here may rely on wrapping flags and special constants, so 5978 // they can break up min/max idioms in some cases but not seemingly similar 5979 // patterns. 5980 // FIXME: It may be possible to enhance select folding to make this 5981 // unnecessary. It may also be moot if we canonicalize to min/max 5982 // intrinsics. 5983 if (Instruction *Res = foldICmpBinOp(I, Q)) 5984 return Res; 5985 5986 if (Instruction *Res = foldICmpInstWithConstant(I)) 5987 return Res; 5988 5989 // Try to match comparison as a sign bit test. Intentionally do this after 5990 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5991 if (Instruction *New = foldSignBitTest(I)) 5992 return New; 5993 5994 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5995 return Res; 5996 5997 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 5998 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 5999 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6000 return NI; 6001 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6002 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6003 return NI; 6004 6005 // Try to optimize equality comparisons against alloca-based pointers. 6006 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6007 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6008 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6009 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 6010 return New; 6011 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6012 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 6013 return New; 6014 } 6015 6016 if (Instruction *Res = foldICmpBitCast(I)) 6017 return Res; 6018 6019 // TODO: Hoist this above the min/max bailout. 6020 if (Instruction *R = foldICmpWithCastOp(I)) 6021 return R; 6022 6023 if (Instruction *Res = foldICmpWithMinMax(I)) 6024 return Res; 6025 6026 { 6027 Value *A, *B; 6028 // Transform (A & ~B) == 0 --> (A & B) != 0 6029 // and (A & ~B) != 0 --> (A & B) == 0 6030 // if A is a power of 2. 6031 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6032 match(Op1, m_Zero()) && 6033 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6034 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6035 Op1); 6036 6037 // ~X < ~Y --> Y < X 6038 // ~X < C --> X > ~C 6039 if (match(Op0, m_Not(m_Value(A)))) { 6040 if (match(Op1, m_Not(m_Value(B)))) 6041 return new ICmpInst(I.getPredicate(), B, A); 6042 6043 const APInt *C; 6044 if (match(Op1, m_APInt(C))) 6045 return new ICmpInst(I.getSwappedPredicate(), A, 6046 ConstantInt::get(Op1->getType(), ~(*C))); 6047 } 6048 6049 Instruction *AddI = nullptr; 6050 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6051 m_Instruction(AddI))) && 6052 isa<IntegerType>(A->getType())) { 6053 Value *Result; 6054 Constant *Overflow; 6055 // m_UAddWithOverflow can match patterns that do not include an explicit 6056 // "add" instruction, so check the opcode of the matched op. 6057 if (AddI->getOpcode() == Instruction::Add && 6058 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6059 Result, Overflow)) { 6060 replaceInstUsesWith(*AddI, Result); 6061 eraseInstFromFunction(*AddI); 6062 return replaceInstUsesWith(I, Overflow); 6063 } 6064 } 6065 6066 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6067 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6068 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6069 return R; 6070 } 6071 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6072 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6073 return R; 6074 } 6075 } 6076 6077 if (Instruction *Res = foldICmpEquality(I)) 6078 return Res; 6079 6080 if (Instruction *Res = foldICmpOfUAddOv(I)) 6081 return Res; 6082 6083 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6084 // an i1 which indicates whether or not we successfully did the swap. 6085 // 6086 // Replace comparisons between the old value and the expected value with the 6087 // indicator that 'cmpxchg' returns. 6088 // 6089 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6090 // spuriously fail. In those cases, the old value may equal the expected 6091 // value but it is possible for the swap to not occur. 6092 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6093 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6094 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6095 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6096 !ACXI->isWeak()) 6097 return ExtractValueInst::Create(ACXI, 1); 6098 6099 { 6100 Value *X; 6101 const APInt *C; 6102 // icmp X+Cst, X 6103 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6104 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6105 6106 // icmp X, X+Cst 6107 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6108 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6109 } 6110 6111 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6112 return Res; 6113 6114 if (I.getType()->isVectorTy()) 6115 if (Instruction *Res = foldVectorCmp(I, Builder)) 6116 return Res; 6117 6118 if (Instruction *Res = foldICmpInvariantGroup(I)) 6119 return Res; 6120 6121 return Changed ? &I : nullptr; 6122 } 6123 6124 /// Fold fcmp ([us]itofp x, cst) if possible. 6125 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6126 Instruction *LHSI, 6127 Constant *RHSC) { 6128 if (!isa<ConstantFP>(RHSC)) return nullptr; 6129 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6130 6131 // Get the width of the mantissa. We don't want to hack on conversions that 6132 // might lose information from the integer, e.g. "i64 -> float" 6133 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6134 if (MantissaWidth == -1) return nullptr; // Unknown. 6135 6136 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6137 6138 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6139 6140 if (I.isEquality()) { 6141 FCmpInst::Predicate P = I.getPredicate(); 6142 bool IsExact = false; 6143 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6144 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6145 6146 // If the floating point constant isn't an integer value, we know if we will 6147 // ever compare equal / not equal to it. 6148 if (!IsExact) { 6149 // TODO: Can never be -0.0 and other non-representable values 6150 APFloat RHSRoundInt(RHS); 6151 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6152 if (RHS != RHSRoundInt) { 6153 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6154 return replaceInstUsesWith(I, Builder.getFalse()); 6155 6156 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6157 return replaceInstUsesWith(I, Builder.getTrue()); 6158 } 6159 } 6160 6161 // TODO: If the constant is exactly representable, is it always OK to do 6162 // equality compares as integer? 6163 } 6164 6165 // Check to see that the input is converted from an integer type that is small 6166 // enough that preserves all bits. TODO: check here for "known" sign bits. 6167 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6168 unsigned InputSize = IntTy->getScalarSizeInBits(); 6169 6170 // Following test does NOT adjust InputSize downwards for signed inputs, 6171 // because the most negative value still requires all the mantissa bits 6172 // to distinguish it from one less than that value. 6173 if ((int)InputSize > MantissaWidth) { 6174 // Conversion would lose accuracy. Check if loss can impact comparison. 6175 int Exp = ilogb(RHS); 6176 if (Exp == APFloat::IEK_Inf) { 6177 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6178 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6179 // Conversion could create infinity. 6180 return nullptr; 6181 } else { 6182 // Note that if RHS is zero or NaN, then Exp is negative 6183 // and first condition is trivially false. 6184 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6185 // Conversion could affect comparison. 6186 return nullptr; 6187 } 6188 } 6189 6190 // Otherwise, we can potentially simplify the comparison. We know that it 6191 // will always come through as an integer value and we know the constant is 6192 // not a NAN (it would have been previously simplified). 6193 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6194 6195 ICmpInst::Predicate Pred; 6196 switch (I.getPredicate()) { 6197 default: llvm_unreachable("Unexpected predicate!"); 6198 case FCmpInst::FCMP_UEQ: 6199 case FCmpInst::FCMP_OEQ: 6200 Pred = ICmpInst::ICMP_EQ; 6201 break; 6202 case FCmpInst::FCMP_UGT: 6203 case FCmpInst::FCMP_OGT: 6204 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6205 break; 6206 case FCmpInst::FCMP_UGE: 6207 case FCmpInst::FCMP_OGE: 6208 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6209 break; 6210 case FCmpInst::FCMP_ULT: 6211 case FCmpInst::FCMP_OLT: 6212 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6213 break; 6214 case FCmpInst::FCMP_ULE: 6215 case FCmpInst::FCMP_OLE: 6216 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6217 break; 6218 case FCmpInst::FCMP_UNE: 6219 case FCmpInst::FCMP_ONE: 6220 Pred = ICmpInst::ICMP_NE; 6221 break; 6222 case FCmpInst::FCMP_ORD: 6223 return replaceInstUsesWith(I, Builder.getTrue()); 6224 case FCmpInst::FCMP_UNO: 6225 return replaceInstUsesWith(I, Builder.getFalse()); 6226 } 6227 6228 // Now we know that the APFloat is a normal number, zero or inf. 6229 6230 // See if the FP constant is too large for the integer. For example, 6231 // comparing an i8 to 300.0. 6232 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6233 6234 if (!LHSUnsigned) { 6235 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6236 // and large values. 6237 APFloat SMax(RHS.getSemantics()); 6238 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6239 APFloat::rmNearestTiesToEven); 6240 if (SMax < RHS) { // smax < 13123.0 6241 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6242 Pred == ICmpInst::ICMP_SLE) 6243 return replaceInstUsesWith(I, Builder.getTrue()); 6244 return replaceInstUsesWith(I, Builder.getFalse()); 6245 } 6246 } else { 6247 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6248 // +INF and large values. 6249 APFloat UMax(RHS.getSemantics()); 6250 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6251 APFloat::rmNearestTiesToEven); 6252 if (UMax < RHS) { // umax < 13123.0 6253 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6254 Pred == ICmpInst::ICMP_ULE) 6255 return replaceInstUsesWith(I, Builder.getTrue()); 6256 return replaceInstUsesWith(I, Builder.getFalse()); 6257 } 6258 } 6259 6260 if (!LHSUnsigned) { 6261 // See if the RHS value is < SignedMin. 6262 APFloat SMin(RHS.getSemantics()); 6263 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6264 APFloat::rmNearestTiesToEven); 6265 if (SMin > RHS) { // smin > 12312.0 6266 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6267 Pred == ICmpInst::ICMP_SGE) 6268 return replaceInstUsesWith(I, Builder.getTrue()); 6269 return replaceInstUsesWith(I, Builder.getFalse()); 6270 } 6271 } else { 6272 // See if the RHS value is < UnsignedMin. 6273 APFloat UMin(RHS.getSemantics()); 6274 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6275 APFloat::rmNearestTiesToEven); 6276 if (UMin > RHS) { // umin > 12312.0 6277 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6278 Pred == ICmpInst::ICMP_UGE) 6279 return replaceInstUsesWith(I, Builder.getTrue()); 6280 return replaceInstUsesWith(I, Builder.getFalse()); 6281 } 6282 } 6283 6284 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6285 // [0, UMAX], but it may still be fractional. See if it is fractional by 6286 // casting the FP value to the integer value and back, checking for equality. 6287 // Don't do this for zero, because -0.0 is not fractional. 6288 Constant *RHSInt = LHSUnsigned 6289 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6290 : ConstantExpr::getFPToSI(RHSC, IntTy); 6291 if (!RHS.isZero()) { 6292 bool Equal = LHSUnsigned 6293 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6294 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6295 if (!Equal) { 6296 // If we had a comparison against a fractional value, we have to adjust 6297 // the compare predicate and sometimes the value. RHSC is rounded towards 6298 // zero at this point. 6299 switch (Pred) { 6300 default: llvm_unreachable("Unexpected integer comparison!"); 6301 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6302 return replaceInstUsesWith(I, Builder.getTrue()); 6303 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6304 return replaceInstUsesWith(I, Builder.getFalse()); 6305 case ICmpInst::ICMP_ULE: 6306 // (float)int <= 4.4 --> int <= 4 6307 // (float)int <= -4.4 --> false 6308 if (RHS.isNegative()) 6309 return replaceInstUsesWith(I, Builder.getFalse()); 6310 break; 6311 case ICmpInst::ICMP_SLE: 6312 // (float)int <= 4.4 --> int <= 4 6313 // (float)int <= -4.4 --> int < -4 6314 if (RHS.isNegative()) 6315 Pred = ICmpInst::ICMP_SLT; 6316 break; 6317 case ICmpInst::ICMP_ULT: 6318 // (float)int < -4.4 --> false 6319 // (float)int < 4.4 --> int <= 4 6320 if (RHS.isNegative()) 6321 return replaceInstUsesWith(I, Builder.getFalse()); 6322 Pred = ICmpInst::ICMP_ULE; 6323 break; 6324 case ICmpInst::ICMP_SLT: 6325 // (float)int < -4.4 --> int < -4 6326 // (float)int < 4.4 --> int <= 4 6327 if (!RHS.isNegative()) 6328 Pred = ICmpInst::ICMP_SLE; 6329 break; 6330 case ICmpInst::ICMP_UGT: 6331 // (float)int > 4.4 --> int > 4 6332 // (float)int > -4.4 --> true 6333 if (RHS.isNegative()) 6334 return replaceInstUsesWith(I, Builder.getTrue()); 6335 break; 6336 case ICmpInst::ICMP_SGT: 6337 // (float)int > 4.4 --> int > 4 6338 // (float)int > -4.4 --> int >= -4 6339 if (RHS.isNegative()) 6340 Pred = ICmpInst::ICMP_SGE; 6341 break; 6342 case ICmpInst::ICMP_UGE: 6343 // (float)int >= -4.4 --> true 6344 // (float)int >= 4.4 --> int > 4 6345 if (RHS.isNegative()) 6346 return replaceInstUsesWith(I, Builder.getTrue()); 6347 Pred = ICmpInst::ICMP_UGT; 6348 break; 6349 case ICmpInst::ICMP_SGE: 6350 // (float)int >= -4.4 --> int >= -4 6351 // (float)int >= 4.4 --> int > 4 6352 if (!RHS.isNegative()) 6353 Pred = ICmpInst::ICMP_SGT; 6354 break; 6355 } 6356 } 6357 } 6358 6359 // Lower this FP comparison into an appropriate integer version of the 6360 // comparison. 6361 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6362 } 6363 6364 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6365 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6366 Constant *RHSC) { 6367 // When C is not 0.0 and infinities are not allowed: 6368 // (C / X) < 0.0 is a sign-bit test of X 6369 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6370 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6371 // 6372 // Proof: 6373 // Multiply (C / X) < 0.0 by X * X / C. 6374 // - X is non zero, if it is the flag 'ninf' is violated. 6375 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6376 // the predicate. C is also non zero by definition. 6377 // 6378 // Thus X * X / C is non zero and the transformation is valid. [qed] 6379 6380 FCmpInst::Predicate Pred = I.getPredicate(); 6381 6382 // Check that predicates are valid. 6383 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6384 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6385 return nullptr; 6386 6387 // Check that RHS operand is zero. 6388 if (!match(RHSC, m_AnyZeroFP())) 6389 return nullptr; 6390 6391 // Check fastmath flags ('ninf'). 6392 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6393 return nullptr; 6394 6395 // Check the properties of the dividend. It must not be zero to avoid a 6396 // division by zero (see Proof). 6397 const APFloat *C; 6398 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6399 return nullptr; 6400 6401 if (C->isZero()) 6402 return nullptr; 6403 6404 // Get swapped predicate if necessary. 6405 if (C->isNegative()) 6406 Pred = I.getSwappedPredicate(); 6407 6408 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6409 } 6410 6411 /// Optimize fabs(X) compared with zero. 6412 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6413 Value *X; 6414 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6415 !match(I.getOperand(1), m_PosZeroFP())) 6416 return nullptr; 6417 6418 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6419 I->setPredicate(P); 6420 return IC.replaceOperand(*I, 0, X); 6421 }; 6422 6423 switch (I.getPredicate()) { 6424 case FCmpInst::FCMP_UGE: 6425 case FCmpInst::FCMP_OLT: 6426 // fabs(X) >= 0.0 --> true 6427 // fabs(X) < 0.0 --> false 6428 llvm_unreachable("fcmp should have simplified"); 6429 6430 case FCmpInst::FCMP_OGT: 6431 // fabs(X) > 0.0 --> X != 0.0 6432 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6433 6434 case FCmpInst::FCMP_UGT: 6435 // fabs(X) u> 0.0 --> X u!= 0.0 6436 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6437 6438 case FCmpInst::FCMP_OLE: 6439 // fabs(X) <= 0.0 --> X == 0.0 6440 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6441 6442 case FCmpInst::FCMP_ULE: 6443 // fabs(X) u<= 0.0 --> X u== 0.0 6444 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6445 6446 case FCmpInst::FCMP_OGE: 6447 // fabs(X) >= 0.0 --> !isnan(X) 6448 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6449 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6450 6451 case FCmpInst::FCMP_ULT: 6452 // fabs(X) u< 0.0 --> isnan(X) 6453 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6454 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6455 6456 case FCmpInst::FCMP_OEQ: 6457 case FCmpInst::FCMP_UEQ: 6458 case FCmpInst::FCMP_ONE: 6459 case FCmpInst::FCMP_UNE: 6460 case FCmpInst::FCMP_ORD: 6461 case FCmpInst::FCMP_UNO: 6462 // Look through the fabs() because it doesn't change anything but the sign. 6463 // fabs(X) == 0.0 --> X == 0.0, 6464 // fabs(X) != 0.0 --> X != 0.0 6465 // isnan(fabs(X)) --> isnan(X) 6466 // !isnan(fabs(X) --> !isnan(X) 6467 return replacePredAndOp0(&I, I.getPredicate(), X); 6468 6469 default: 6470 return nullptr; 6471 } 6472 } 6473 6474 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6475 bool Changed = false; 6476 6477 /// Orders the operands of the compare so that they are listed from most 6478 /// complex to least complex. This puts constants before unary operators, 6479 /// before binary operators. 6480 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6481 I.swapOperands(); 6482 Changed = true; 6483 } 6484 6485 const CmpInst::Predicate Pred = I.getPredicate(); 6486 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6487 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6488 SQ.getWithInstruction(&I))) 6489 return replaceInstUsesWith(I, V); 6490 6491 // Simplify 'fcmp pred X, X' 6492 Type *OpType = Op0->getType(); 6493 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6494 if (Op0 == Op1) { 6495 switch (Pred) { 6496 default: break; 6497 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6498 case FCmpInst::FCMP_ULT: // True if unordered or less than 6499 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6500 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6501 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6502 I.setPredicate(FCmpInst::FCMP_UNO); 6503 I.setOperand(1, Constant::getNullValue(OpType)); 6504 return &I; 6505 6506 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6507 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6508 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6509 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6510 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6511 I.setPredicate(FCmpInst::FCMP_ORD); 6512 I.setOperand(1, Constant::getNullValue(OpType)); 6513 return &I; 6514 } 6515 } 6516 6517 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6518 // then canonicalize the operand to 0.0. 6519 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6520 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6521 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6522 6523 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6524 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6525 } 6526 6527 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6528 Value *X, *Y; 6529 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6530 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6531 6532 // Test if the FCmpInst instruction is used exclusively by a select as 6533 // part of a minimum or maximum operation. If so, refrain from doing 6534 // any other folding. This helps out other analyses which understand 6535 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6536 // and CodeGen. And in this case, at least one of the comparison 6537 // operands has at least one user besides the compare (the select), 6538 // which would often largely negate the benefit of folding anyway. 6539 if (I.hasOneUse()) 6540 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6541 Value *A, *B; 6542 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6543 if (SPR.Flavor != SPF_UNKNOWN) 6544 return nullptr; 6545 } 6546 6547 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6548 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6549 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6550 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6551 6552 // Handle fcmp with instruction LHS and constant RHS. 6553 Instruction *LHSI; 6554 Constant *RHSC; 6555 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6556 switch (LHSI->getOpcode()) { 6557 case Instruction::PHI: 6558 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6559 // block. If in the same block, we're encouraging jump threading. If 6560 // not, we are just pessimizing the code by making an i1 phi. 6561 if (LHSI->getParent() == I.getParent()) 6562 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6563 return NV; 6564 break; 6565 case Instruction::SIToFP: 6566 case Instruction::UIToFP: 6567 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6568 return NV; 6569 break; 6570 case Instruction::FDiv: 6571 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6572 return NV; 6573 break; 6574 case Instruction::Load: 6575 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6576 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6577 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6578 !cast<LoadInst>(LHSI)->isVolatile()) 6579 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6580 return Res; 6581 break; 6582 } 6583 } 6584 6585 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6586 return R; 6587 6588 if (match(Op0, m_FNeg(m_Value(X)))) { 6589 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6590 Constant *C; 6591 if (match(Op1, m_Constant(C))) { 6592 Constant *NegC = ConstantExpr::getFNeg(C); 6593 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6594 } 6595 } 6596 6597 if (match(Op0, m_FPExt(m_Value(X)))) { 6598 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6599 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6600 return new FCmpInst(Pred, X, Y, "", &I); 6601 6602 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6603 const APFloat *C; 6604 if (match(Op1, m_APFloat(C))) { 6605 const fltSemantics &FPSem = 6606 X->getType()->getScalarType()->getFltSemantics(); 6607 bool Lossy; 6608 APFloat TruncC = *C; 6609 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6610 6611 // Avoid lossy conversions and denormals. 6612 // Zero is a special case that's OK to convert. 6613 APFloat Fabs = TruncC; 6614 Fabs.clearSign(); 6615 if (!Lossy && 6616 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6617 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6618 return new FCmpInst(Pred, X, NewC, "", &I); 6619 } 6620 } 6621 } 6622 6623 // Convert a sign-bit test of an FP value into a cast and integer compare. 6624 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6625 // TODO: Handle non-zero compare constants. 6626 // TODO: Handle other predicates. 6627 const APFloat *C; 6628 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6629 m_Value(X)))) && 6630 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6631 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6632 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6633 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6634 6635 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6636 if (Pred == FCmpInst::FCMP_OLT) { 6637 Value *IntX = Builder.CreateBitCast(X, IntType); 6638 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6639 ConstantInt::getNullValue(IntType)); 6640 } 6641 } 6642 6643 if (I.getType()->isVectorTy()) 6644 if (Instruction *Res = foldVectorCmp(I, Builder)) 6645 return Res; 6646 6647 return Changed ? &I : nullptr; 6648 } 6649