1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41                             const APInt &In2, bool IsSigned = false) {
42   bool Overflow;
43   if (IsSigned)
44     Result = In1.sadd_ov(In2, Overflow);
45   else
46     Result = In1.uadd_ov(In2, Overflow);
47 
48   return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54                             const APInt &In2, bool IsSigned = false) {
55   bool Overflow;
56   if (IsSigned)
57     Result = In1.ssub_ov(In2, Overflow);
58   else
59     Result = In1.usub_ov(In2, Overflow);
60 
61   return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
66 static bool hasBranchUse(ICmpInst &I) {
67   for (auto *U : I.users())
68     if (isa<BranchInst>(U))
69       return true;
70   return false;
71 }
72 
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78   if (!ICmpInst::isSigned(Pred))
79     return false;
80 
81   if (C.isNullValue())
82     return ICmpInst::isRelational(Pred);
83 
84   if (C.isOneValue()) {
85     if (Pred == ICmpInst::ICMP_SLT) {
86       Pred = ICmpInst::ICMP_SLE;
87       return true;
88     }
89   } else if (C.isAllOnesValue()) {
90     if (Pred == ICmpInst::ICMP_SGT) {
91       Pred = ICmpInst::ICMP_SGE;
92       return true;
93     }
94   }
95 
96   return false;
97 }
98 
99 /// This is called when we see this pattern:
100 ///   cmp pred (load (gep GV, ...)), cmpcst
101 /// where GV is a global variable with a constant initializer. Try to simplify
102 /// this into some simple computation that does not need the load. For example
103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
104 ///
105 /// If AndCst is non-null, then the loaded value is masked with that constant
106 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
107 Instruction *
108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
109                                                GlobalVariable *GV, CmpInst &ICI,
110                                                ConstantInt *AndCst) {
111   Constant *Init = GV->getInitializer();
112   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
113     return nullptr;
114 
115   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
116   // Don't blow up on huge arrays.
117   if (ArrayElementCount > MaxArraySizeForCombine)
118     return nullptr;
119 
120   // There are many forms of this optimization we can handle, for now, just do
121   // the simple index into a single-dimensional array.
122   //
123   // Require: GEP GV, 0, i {{, constant indices}}
124   if (GEP->getNumOperands() < 3 ||
125       !isa<ConstantInt>(GEP->getOperand(1)) ||
126       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
127       isa<Constant>(GEP->getOperand(2)))
128     return nullptr;
129 
130   // Check that indices after the variable are constants and in-range for the
131   // type they index.  Collect the indices.  This is typically for arrays of
132   // structs.
133   SmallVector<unsigned, 4> LaterIndices;
134 
135   Type *EltTy = Init->getType()->getArrayElementType();
136   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
137     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
138     if (!Idx) return nullptr;  // Variable index.
139 
140     uint64_t IdxVal = Idx->getZExtValue();
141     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
142 
143     if (StructType *STy = dyn_cast<StructType>(EltTy))
144       EltTy = STy->getElementType(IdxVal);
145     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
146       if (IdxVal >= ATy->getNumElements()) return nullptr;
147       EltTy = ATy->getElementType();
148     } else {
149       return nullptr; // Unknown type.
150     }
151 
152     LaterIndices.push_back(IdxVal);
153   }
154 
155   enum { Overdefined = -3, Undefined = -2 };
156 
157   // Variables for our state machines.
158 
159   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
160   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
161   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
162   // undefined, otherwise set to the first true element.  SecondTrueElement is
163   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
164   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
165 
166   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
167   // form "i != 47 & i != 87".  Same state transitions as for true elements.
168   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
169 
170   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
171   /// define a state machine that triggers for ranges of values that the index
172   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
173   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
174   /// index in the range (inclusive).  We use -2 for undefined here because we
175   /// use relative comparisons and don't want 0-1 to match -1.
176   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
177 
178   // MagicBitvector - This is a magic bitvector where we set a bit if the
179   // comparison is true for element 'i'.  If there are 64 elements or less in
180   // the array, this will fully represent all the comparison results.
181   uint64_t MagicBitvector = 0;
182 
183   // Scan the array and see if one of our patterns matches.
184   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
185   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
186     Constant *Elt = Init->getAggregateElement(i);
187     if (!Elt) return nullptr;
188 
189     // If this is indexing an array of structures, get the structure element.
190     if (!LaterIndices.empty())
191       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
192 
193     // If the element is masked, handle it.
194     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
195 
196     // Find out if the comparison would be true or false for the i'th element.
197     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
198                                                   CompareRHS, DL, &TLI);
199     // If the result is undef for this element, ignore it.
200     if (isa<UndefValue>(C)) {
201       // Extend range state machines to cover this element in case there is an
202       // undef in the middle of the range.
203       if (TrueRangeEnd == (int)i-1)
204         TrueRangeEnd = i;
205       if (FalseRangeEnd == (int)i-1)
206         FalseRangeEnd = i;
207       continue;
208     }
209 
210     // If we can't compute the result for any of the elements, we have to give
211     // up evaluating the entire conditional.
212     if (!isa<ConstantInt>(C)) return nullptr;
213 
214     // Otherwise, we know if the comparison is true or false for this element,
215     // update our state machines.
216     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
217 
218     // State machine for single/double/range index comparison.
219     if (IsTrueForElt) {
220       // Update the TrueElement state machine.
221       if (FirstTrueElement == Undefined)
222         FirstTrueElement = TrueRangeEnd = i;  // First true element.
223       else {
224         // Update double-compare state machine.
225         if (SecondTrueElement == Undefined)
226           SecondTrueElement = i;
227         else
228           SecondTrueElement = Overdefined;
229 
230         // Update range state machine.
231         if (TrueRangeEnd == (int)i-1)
232           TrueRangeEnd = i;
233         else
234           TrueRangeEnd = Overdefined;
235       }
236     } else {
237       // Update the FalseElement state machine.
238       if (FirstFalseElement == Undefined)
239         FirstFalseElement = FalseRangeEnd = i; // First false element.
240       else {
241         // Update double-compare state machine.
242         if (SecondFalseElement == Undefined)
243           SecondFalseElement = i;
244         else
245           SecondFalseElement = Overdefined;
246 
247         // Update range state machine.
248         if (FalseRangeEnd == (int)i-1)
249           FalseRangeEnd = i;
250         else
251           FalseRangeEnd = Overdefined;
252       }
253     }
254 
255     // If this element is in range, update our magic bitvector.
256     if (i < 64 && IsTrueForElt)
257       MagicBitvector |= 1ULL << i;
258 
259     // If all of our states become overdefined, bail out early.  Since the
260     // predicate is expensive, only check it every 8 elements.  This is only
261     // really useful for really huge arrays.
262     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
263         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
264         FalseRangeEnd == Overdefined)
265       return nullptr;
266   }
267 
268   // Now that we've scanned the entire array, emit our new comparison(s).  We
269   // order the state machines in complexity of the generated code.
270   Value *Idx = GEP->getOperand(2);
271 
272   // If the index is larger than the pointer size of the target, truncate the
273   // index down like the GEP would do implicitly.  We don't have to do this for
274   // an inbounds GEP because the index can't be out of range.
275   if (!GEP->isInBounds()) {
276     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
277     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
278     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
279       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
280   }
281 
282   // If inbounds keyword is not present, Idx * ElementSize can overflow.
283   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
284   // Then, there are two possible values for Idx to match offset 0:
285   // 0x00..00, 0x80..00.
286   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
287   // comparison is false if Idx was 0x80..00.
288   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
289   unsigned ElementSize =
290       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
291   auto MaskIdx = [&](Value* Idx){
292     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
293       Value *Mask = ConstantInt::get(Idx->getType(), -1);
294       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
295       Idx = Builder.CreateAnd(Idx, Mask);
296     }
297     return Idx;
298   };
299 
300   // If the comparison is only true for one or two elements, emit direct
301   // comparisons.
302   if (SecondTrueElement != Overdefined) {
303     Idx = MaskIdx(Idx);
304     // None true -> false.
305     if (FirstTrueElement == Undefined)
306       return replaceInstUsesWith(ICI, Builder.getFalse());
307 
308     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
309 
310     // True for one element -> 'i == 47'.
311     if (SecondTrueElement == Undefined)
312       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
313 
314     // True for two elements -> 'i == 47 | i == 72'.
315     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
316     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
317     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
318     return BinaryOperator::CreateOr(C1, C2);
319   }
320 
321   // If the comparison is only false for one or two elements, emit direct
322   // comparisons.
323   if (SecondFalseElement != Overdefined) {
324     Idx = MaskIdx(Idx);
325     // None false -> true.
326     if (FirstFalseElement == Undefined)
327       return replaceInstUsesWith(ICI, Builder.getTrue());
328 
329     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
330 
331     // False for one element -> 'i != 47'.
332     if (SecondFalseElement == Undefined)
333       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
334 
335     // False for two elements -> 'i != 47 & i != 72'.
336     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
337     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
338     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
339     return BinaryOperator::CreateAnd(C1, C2);
340   }
341 
342   // If the comparison can be replaced with a range comparison for the elements
343   // where it is true, emit the range check.
344   if (TrueRangeEnd != Overdefined) {
345     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
346     Idx = MaskIdx(Idx);
347 
348     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
349     if (FirstTrueElement) {
350       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
351       Idx = Builder.CreateAdd(Idx, Offs);
352     }
353 
354     Value *End = ConstantInt::get(Idx->getType(),
355                                   TrueRangeEnd-FirstTrueElement+1);
356     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
357   }
358 
359   // False range check.
360   if (FalseRangeEnd != Overdefined) {
361     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
362     Idx = MaskIdx(Idx);
363     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
364     if (FirstFalseElement) {
365       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
366       Idx = Builder.CreateAdd(Idx, Offs);
367     }
368 
369     Value *End = ConstantInt::get(Idx->getType(),
370                                   FalseRangeEnd-FirstFalseElement);
371     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
372   }
373 
374   // If a magic bitvector captures the entire comparison state
375   // of this load, replace it with computation that does:
376   //   ((magic_cst >> i) & 1) != 0
377   {
378     Type *Ty = nullptr;
379 
380     // Look for an appropriate type:
381     // - The type of Idx if the magic fits
382     // - The smallest fitting legal type
383     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
384       Ty = Idx->getType();
385     else
386       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
387 
388     if (Ty) {
389       Idx = MaskIdx(Idx);
390       Value *V = Builder.CreateIntCast(Idx, Ty, false);
391       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
392       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
393       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
394     }
395   }
396 
397   return nullptr;
398 }
399 
400 /// Return a value that can be used to compare the *offset* implied by a GEP to
401 /// zero. For example, if we have &A[i], we want to return 'i' for
402 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
403 /// are involved. The above expression would also be legal to codegen as
404 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
405 /// This latter form is less amenable to optimization though, and we are allowed
406 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
407 ///
408 /// If we can't emit an optimized form for this expression, this returns null.
409 ///
410 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
411                                           const DataLayout &DL) {
412   gep_type_iterator GTI = gep_type_begin(GEP);
413 
414   // Check to see if this gep only has a single variable index.  If so, and if
415   // any constant indices are a multiple of its scale, then we can compute this
416   // in terms of the scale of the variable index.  For example, if the GEP
417   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
418   // because the expression will cross zero at the same point.
419   unsigned i, e = GEP->getNumOperands();
420   int64_t Offset = 0;
421   for (i = 1; i != e; ++i, ++GTI) {
422     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
423       // Compute the aggregate offset of constant indices.
424       if (CI->isZero()) continue;
425 
426       // Handle a struct index, which adds its field offset to the pointer.
427       if (StructType *STy = GTI.getStructTypeOrNull()) {
428         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
429       } else {
430         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
431         Offset += Size*CI->getSExtValue();
432       }
433     } else {
434       // Found our variable index.
435       break;
436     }
437   }
438 
439   // If there are no variable indices, we must have a constant offset, just
440   // evaluate it the general way.
441   if (i == e) return nullptr;
442 
443   Value *VariableIdx = GEP->getOperand(i);
444   // Determine the scale factor of the variable element.  For example, this is
445   // 4 if the variable index is into an array of i32.
446   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
447 
448   // Verify that there are no other variable indices.  If so, emit the hard way.
449   for (++i, ++GTI; i != e; ++i, ++GTI) {
450     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
451     if (!CI) return nullptr;
452 
453     // Compute the aggregate offset of constant indices.
454     if (CI->isZero()) continue;
455 
456     // Handle a struct index, which adds its field offset to the pointer.
457     if (StructType *STy = GTI.getStructTypeOrNull()) {
458       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
459     } else {
460       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
461       Offset += Size*CI->getSExtValue();
462     }
463   }
464 
465   // Okay, we know we have a single variable index, which must be a
466   // pointer/array/vector index.  If there is no offset, life is simple, return
467   // the index.
468   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
469   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
470   if (Offset == 0) {
471     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
472     // we don't need to bother extending: the extension won't affect where the
473     // computation crosses zero.
474     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
475         IntPtrWidth) {
476       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
477     }
478     return VariableIdx;
479   }
480 
481   // Otherwise, there is an index.  The computation we will do will be modulo
482   // the pointer size.
483   Offset = SignExtend64(Offset, IntPtrWidth);
484   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
485 
486   // To do this transformation, any constant index must be a multiple of the
487   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
488   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
489   // multiple of the variable scale.
490   int64_t NewOffs = Offset / (int64_t)VariableScale;
491   if (Offset != NewOffs*(int64_t)VariableScale)
492     return nullptr;
493 
494   // Okay, we can do this evaluation.  Start by converting the index to intptr.
495   if (VariableIdx->getType() != IntPtrTy)
496     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
497                                             true /*Signed*/);
498   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
499   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
500 }
501 
502 /// Returns true if we can rewrite Start as a GEP with pointer Base
503 /// and some integer offset. The nodes that need to be re-written
504 /// for this transformation will be added to Explored.
505 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
506                                   const DataLayout &DL,
507                                   SetVector<Value *> &Explored) {
508   SmallVector<Value *, 16> WorkList(1, Start);
509   Explored.insert(Base);
510 
511   // The following traversal gives us an order which can be used
512   // when doing the final transformation. Since in the final
513   // transformation we create the PHI replacement instructions first,
514   // we don't have to get them in any particular order.
515   //
516   // However, for other instructions we will have to traverse the
517   // operands of an instruction first, which means that we have to
518   // do a post-order traversal.
519   while (!WorkList.empty()) {
520     SetVector<PHINode *> PHIs;
521 
522     while (!WorkList.empty()) {
523       if (Explored.size() >= 100)
524         return false;
525 
526       Value *V = WorkList.back();
527 
528       if (Explored.contains(V)) {
529         WorkList.pop_back();
530         continue;
531       }
532 
533       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
534           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
535         // We've found some value that we can't explore which is different from
536         // the base. Therefore we can't do this transformation.
537         return false;
538 
539       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
540         auto *CI = cast<CastInst>(V);
541         if (!CI->isNoopCast(DL))
542           return false;
543 
544         if (Explored.count(CI->getOperand(0)) == 0)
545           WorkList.push_back(CI->getOperand(0));
546       }
547 
548       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
549         // We're limiting the GEP to having one index. This will preserve
550         // the original pointer type. We could handle more cases in the
551         // future.
552         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
553             GEP->getType() != Start->getType())
554           return false;
555 
556         if (Explored.count(GEP->getOperand(0)) == 0)
557           WorkList.push_back(GEP->getOperand(0));
558       }
559 
560       if (WorkList.back() == V) {
561         WorkList.pop_back();
562         // We've finished visiting this node, mark it as such.
563         Explored.insert(V);
564       }
565 
566       if (auto *PN = dyn_cast<PHINode>(V)) {
567         // We cannot transform PHIs on unsplittable basic blocks.
568         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
569           return false;
570         Explored.insert(PN);
571         PHIs.insert(PN);
572       }
573     }
574 
575     // Explore the PHI nodes further.
576     for (auto *PN : PHIs)
577       for (Value *Op : PN->incoming_values())
578         if (Explored.count(Op) == 0)
579           WorkList.push_back(Op);
580   }
581 
582   // Make sure that we can do this. Since we can't insert GEPs in a basic
583   // block before a PHI node, we can't easily do this transformation if
584   // we have PHI node users of transformed instructions.
585   for (Value *Val : Explored) {
586     for (Value *Use : Val->uses()) {
587 
588       auto *PHI = dyn_cast<PHINode>(Use);
589       auto *Inst = dyn_cast<Instruction>(Val);
590 
591       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
592           Explored.count(PHI) == 0)
593         continue;
594 
595       if (PHI->getParent() == Inst->getParent())
596         return false;
597     }
598   }
599   return true;
600 }
601 
602 // Sets the appropriate insert point on Builder where we can add
603 // a replacement Instruction for V (if that is possible).
604 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
605                               bool Before = true) {
606   if (auto *PHI = dyn_cast<PHINode>(V)) {
607     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
608     return;
609   }
610   if (auto *I = dyn_cast<Instruction>(V)) {
611     if (!Before)
612       I = &*std::next(I->getIterator());
613     Builder.SetInsertPoint(I);
614     return;
615   }
616   if (auto *A = dyn_cast<Argument>(V)) {
617     // Set the insertion point in the entry block.
618     BasicBlock &Entry = A->getParent()->getEntryBlock();
619     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
620     return;
621   }
622   // Otherwise, this is a constant and we don't need to set a new
623   // insertion point.
624   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
625 }
626 
627 /// Returns a re-written value of Start as an indexed GEP using Base as a
628 /// pointer.
629 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
630                                  const DataLayout &DL,
631                                  SetVector<Value *> &Explored) {
632   // Perform all the substitutions. This is a bit tricky because we can
633   // have cycles in our use-def chains.
634   // 1. Create the PHI nodes without any incoming values.
635   // 2. Create all the other values.
636   // 3. Add the edges for the PHI nodes.
637   // 4. Emit GEPs to get the original pointers.
638   // 5. Remove the original instructions.
639   Type *IndexType = IntegerType::get(
640       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
641 
642   DenseMap<Value *, Value *> NewInsts;
643   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
644 
645   // Create the new PHI nodes, without adding any incoming values.
646   for (Value *Val : Explored) {
647     if (Val == Base)
648       continue;
649     // Create empty phi nodes. This avoids cyclic dependencies when creating
650     // the remaining instructions.
651     if (auto *PHI = dyn_cast<PHINode>(Val))
652       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
653                                       PHI->getName() + ".idx", PHI);
654   }
655   IRBuilder<> Builder(Base->getContext());
656 
657   // Create all the other instructions.
658   for (Value *Val : Explored) {
659 
660     if (NewInsts.find(Val) != NewInsts.end())
661       continue;
662 
663     if (auto *CI = dyn_cast<CastInst>(Val)) {
664       // Don't get rid of the intermediate variable here; the store can grow
665       // the map which will invalidate the reference to the input value.
666       Value *V = NewInsts[CI->getOperand(0)];
667       NewInsts[CI] = V;
668       continue;
669     }
670     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
671       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
672                                                   : GEP->getOperand(1);
673       setInsertionPoint(Builder, GEP);
674       // Indices might need to be sign extended. GEPs will magically do
675       // this, but we need to do it ourselves here.
676       if (Index->getType()->getScalarSizeInBits() !=
677           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
678         Index = Builder.CreateSExtOrTrunc(
679             Index, NewInsts[GEP->getOperand(0)]->getType(),
680             GEP->getOperand(0)->getName() + ".sext");
681       }
682 
683       auto *Op = NewInsts[GEP->getOperand(0)];
684       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
685         NewInsts[GEP] = Index;
686       else
687         NewInsts[GEP] = Builder.CreateNSWAdd(
688             Op, Index, GEP->getOperand(0)->getName() + ".add");
689       continue;
690     }
691     if (isa<PHINode>(Val))
692       continue;
693 
694     llvm_unreachable("Unexpected instruction type");
695   }
696 
697   // Add the incoming values to the PHI nodes.
698   for (Value *Val : Explored) {
699     if (Val == Base)
700       continue;
701     // All the instructions have been created, we can now add edges to the
702     // phi nodes.
703     if (auto *PHI = dyn_cast<PHINode>(Val)) {
704       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
705       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
706         Value *NewIncoming = PHI->getIncomingValue(I);
707 
708         if (NewInsts.find(NewIncoming) != NewInsts.end())
709           NewIncoming = NewInsts[NewIncoming];
710 
711         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
712       }
713     }
714   }
715 
716   for (Value *Val : Explored) {
717     if (Val == Base)
718       continue;
719 
720     // Depending on the type, for external users we have to emit
721     // a GEP or a GEP + ptrtoint.
722     setInsertionPoint(Builder, Val, false);
723 
724     // If required, create an inttoptr instruction for Base.
725     Value *NewBase = Base;
726     if (!Base->getType()->isPointerTy())
727       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
728                                                Start->getName() + "to.ptr");
729 
730     Value *GEP = Builder.CreateInBoundsGEP(
731         Start->getType()->getPointerElementType(), NewBase,
732         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
733 
734     if (!Val->getType()->isPointerTy()) {
735       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
736                                               Val->getName() + ".conv");
737       GEP = Cast;
738     }
739     Val->replaceAllUsesWith(GEP);
740   }
741 
742   return NewInsts[Start];
743 }
744 
745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
746 /// the input Value as a constant indexed GEP. Returns a pair containing
747 /// the GEPs Pointer and Index.
748 static std::pair<Value *, Value *>
749 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
750   Type *IndexType = IntegerType::get(V->getContext(),
751                                      DL.getIndexTypeSizeInBits(V->getType()));
752 
753   Constant *Index = ConstantInt::getNullValue(IndexType);
754   while (true) {
755     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
756       // We accept only inbouds GEPs here to exclude the possibility of
757       // overflow.
758       if (!GEP->isInBounds())
759         break;
760       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
761           GEP->getType() == V->getType()) {
762         V = GEP->getOperand(0);
763         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
764         Index = ConstantExpr::getAdd(
765             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
766         continue;
767       }
768       break;
769     }
770     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
771       if (!CI->isNoopCast(DL))
772         break;
773       V = CI->getOperand(0);
774       continue;
775     }
776     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
777       if (!CI->isNoopCast(DL))
778         break;
779       V = CI->getOperand(0);
780       continue;
781     }
782     break;
783   }
784   return {V, Index};
785 }
786 
787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
788 /// We can look through PHIs, GEPs and casts in order to determine a common base
789 /// between GEPLHS and RHS.
790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
791                                               ICmpInst::Predicate Cond,
792                                               const DataLayout &DL) {
793   // FIXME: Support vector of pointers.
794   if (GEPLHS->getType()->isVectorTy())
795     return nullptr;
796 
797   if (!GEPLHS->hasAllConstantIndices())
798     return nullptr;
799 
800   // Make sure the pointers have the same type.
801   if (GEPLHS->getType() != RHS->getType())
802     return nullptr;
803 
804   Value *PtrBase, *Index;
805   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
806 
807   // The set of nodes that will take part in this transformation.
808   SetVector<Value *> Nodes;
809 
810   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
811     return nullptr;
812 
813   // We know we can re-write this as
814   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
815   // Since we've only looked through inbouds GEPs we know that we
816   // can't have overflow on either side. We can therefore re-write
817   // this as:
818   //   OFFSET1 cmp OFFSET2
819   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
820 
821   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
822   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
823   // offset. Since Index is the offset of LHS to the base pointer, we will now
824   // compare the offsets instead of comparing the pointers.
825   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
826 }
827 
828 /// Fold comparisons between a GEP instruction and something else. At this point
829 /// we know that the GEP is on the LHS of the comparison.
830 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
831                                            ICmpInst::Predicate Cond,
832                                            Instruction &I) {
833   // Don't transform signed compares of GEPs into index compares. Even if the
834   // GEP is inbounds, the final add of the base pointer can have signed overflow
835   // and would change the result of the icmp.
836   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
837   // the maximum signed value for the pointer type.
838   if (ICmpInst::isSigned(Cond))
839     return nullptr;
840 
841   // Look through bitcasts and addrspacecasts. We do not however want to remove
842   // 0 GEPs.
843   if (!isa<GetElementPtrInst>(RHS))
844     RHS = RHS->stripPointerCasts();
845 
846   Value *PtrBase = GEPLHS->getOperand(0);
847   // FIXME: Support vector pointer GEPs.
848   if (PtrBase == RHS && GEPLHS->isInBounds() &&
849       !GEPLHS->getType()->isVectorTy()) {
850     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
851     // This transformation (ignoring the base and scales) is valid because we
852     // know pointers can't overflow since the gep is inbounds.  See if we can
853     // output an optimized form.
854     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
855 
856     // If not, synthesize the offset the hard way.
857     if (!Offset)
858       Offset = EmitGEPOffset(GEPLHS);
859     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
860                         Constant::getNullValue(Offset->getType()));
861   }
862 
863   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
864       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
865       !NullPointerIsDefined(I.getFunction(),
866                             RHS->getType()->getPointerAddressSpace())) {
867     // For most address spaces, an allocation can't be placed at null, but null
868     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
869     // the only valid inbounds address derived from null, is null itself.
870     // Thus, we have four cases to consider:
871     // 1) Base == nullptr, Offset == 0 -> inbounds, null
872     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
873     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
874     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
875     //
876     // (Note if we're indexing a type of size 0, that simply collapses into one
877     //  of the buckets above.)
878     //
879     // In general, we're allowed to make values less poison (i.e. remove
880     //   sources of full UB), so in this case, we just select between the two
881     //   non-poison cases (1 and 4 above).
882     //
883     // For vectors, we apply the same reasoning on a per-lane basis.
884     auto *Base = GEPLHS->getPointerOperand();
885     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
886       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
887       Base = Builder.CreateVectorSplat(EC, Base);
888     }
889     return new ICmpInst(Cond, Base,
890                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
891                             cast<Constant>(RHS), Base->getType()));
892   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
893     // If the base pointers are different, but the indices are the same, just
894     // compare the base pointer.
895     if (PtrBase != GEPRHS->getOperand(0)) {
896       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
897       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
898                         GEPRHS->getOperand(0)->getType();
899       if (IndicesTheSame)
900         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
901           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
902             IndicesTheSame = false;
903             break;
904           }
905 
906       // If all indices are the same, just compare the base pointers.
907       Type *BaseType = GEPLHS->getOperand(0)->getType();
908       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
909         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
910 
911       // If we're comparing GEPs with two base pointers that only differ in type
912       // and both GEPs have only constant indices or just one use, then fold
913       // the compare with the adjusted indices.
914       // FIXME: Support vector of pointers.
915       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
916           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
917           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
918           PtrBase->stripPointerCasts() ==
919               GEPRHS->getOperand(0)->stripPointerCasts() &&
920           !GEPLHS->getType()->isVectorTy()) {
921         Value *LOffset = EmitGEPOffset(GEPLHS);
922         Value *ROffset = EmitGEPOffset(GEPRHS);
923 
924         // If we looked through an addrspacecast between different sized address
925         // spaces, the LHS and RHS pointers are different sized
926         // integers. Truncate to the smaller one.
927         Type *LHSIndexTy = LOffset->getType();
928         Type *RHSIndexTy = ROffset->getType();
929         if (LHSIndexTy != RHSIndexTy) {
930           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
931               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
932             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
933           } else
934             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
935         }
936 
937         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
938                                         LOffset, ROffset);
939         return replaceInstUsesWith(I, Cmp);
940       }
941 
942       // Otherwise, the base pointers are different and the indices are
943       // different. Try convert this to an indexed compare by looking through
944       // PHIs/casts.
945       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
946     }
947 
948     // If one of the GEPs has all zero indices, recurse.
949     // FIXME: Handle vector of pointers.
950     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
951       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
952                          ICmpInst::getSwappedPredicate(Cond), I);
953 
954     // If the other GEP has all zero indices, recurse.
955     // FIXME: Handle vector of pointers.
956     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
957       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
958 
959     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
960     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
961       // If the GEPs only differ by one index, compare it.
962       unsigned NumDifferences = 0;  // Keep track of # differences.
963       unsigned DiffOperand = 0;     // The operand that differs.
964       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
965         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
966           Type *LHSType = GEPLHS->getOperand(i)->getType();
967           Type *RHSType = GEPRHS->getOperand(i)->getType();
968           // FIXME: Better support for vector of pointers.
969           if (LHSType->getPrimitiveSizeInBits() !=
970                    RHSType->getPrimitiveSizeInBits() ||
971               (GEPLHS->getType()->isVectorTy() &&
972                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
973             // Irreconcilable differences.
974             NumDifferences = 2;
975             break;
976           }
977 
978           if (NumDifferences++) break;
979           DiffOperand = i;
980         }
981 
982       if (NumDifferences == 0)   // SAME GEP?
983         return replaceInstUsesWith(I, // No comparison is needed here.
984           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
985 
986       else if (NumDifferences == 1 && GEPsInBounds) {
987         Value *LHSV = GEPLHS->getOperand(DiffOperand);
988         Value *RHSV = GEPRHS->getOperand(DiffOperand);
989         // Make sure we do a signed comparison here.
990         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
991       }
992     }
993 
994     // Only lower this if the icmp is the only user of the GEP or if we expect
995     // the result to fold to a constant!
996     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
997         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
998       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
999       Value *L = EmitGEPOffset(GEPLHS);
1000       Value *R = EmitGEPOffset(GEPRHS);
1001       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1002     }
1003   }
1004 
1005   // Try convert this to an indexed compare by looking through PHIs/casts as a
1006   // last resort.
1007   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1008 }
1009 
1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1011                                              const AllocaInst *Alloca,
1012                                              const Value *Other) {
1013   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1014 
1015   // It would be tempting to fold away comparisons between allocas and any
1016   // pointer not based on that alloca (e.g. an argument). However, even
1017   // though such pointers cannot alias, they can still compare equal.
1018   //
1019   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1020   // doesn't escape we can argue that it's impossible to guess its value, and we
1021   // can therefore act as if any such guesses are wrong.
1022   //
1023   // The code below checks that the alloca doesn't escape, and that it's only
1024   // used in a comparison once (the current instruction). The
1025   // single-comparison-use condition ensures that we're trivially folding all
1026   // comparisons against the alloca consistently, and avoids the risk of
1027   // erroneously folding a comparison of the pointer with itself.
1028 
1029   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1030 
1031   SmallVector<const Use *, 32> Worklist;
1032   for (const Use &U : Alloca->uses()) {
1033     if (Worklist.size() >= MaxIter)
1034       return nullptr;
1035     Worklist.push_back(&U);
1036   }
1037 
1038   unsigned NumCmps = 0;
1039   while (!Worklist.empty()) {
1040     assert(Worklist.size() <= MaxIter);
1041     const Use *U = Worklist.pop_back_val();
1042     const Value *V = U->getUser();
1043     --MaxIter;
1044 
1045     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1046         isa<SelectInst>(V)) {
1047       // Track the uses.
1048     } else if (isa<LoadInst>(V)) {
1049       // Loading from the pointer doesn't escape it.
1050       continue;
1051     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1052       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1053       if (SI->getValueOperand() == U->get())
1054         return nullptr;
1055       continue;
1056     } else if (isa<ICmpInst>(V)) {
1057       if (NumCmps++)
1058         return nullptr; // Found more than one cmp.
1059       continue;
1060     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1061       switch (Intrin->getIntrinsicID()) {
1062         // These intrinsics don't escape or compare the pointer. Memset is safe
1063         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1064         // we don't allow stores, so src cannot point to V.
1065         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1066         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1067           continue;
1068         default:
1069           return nullptr;
1070       }
1071     } else {
1072       return nullptr;
1073     }
1074     for (const Use &U : V->uses()) {
1075       if (Worklist.size() >= MaxIter)
1076         return nullptr;
1077       Worklist.push_back(&U);
1078     }
1079   }
1080 
1081   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1082   return replaceInstUsesWith(
1083       ICI,
1084       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1085 }
1086 
1087 /// Fold "icmp pred (X+C), X".
1088 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1089                                                   ICmpInst::Predicate Pred) {
1090   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1091   // so the values can never be equal.  Similarly for all other "or equals"
1092   // operators.
1093   assert(!!C && "C should not be zero!");
1094 
1095   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1096   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1097   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1098   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1099     Constant *R = ConstantInt::get(X->getType(),
1100                                    APInt::getMaxValue(C.getBitWidth()) - C);
1101     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1102   }
1103 
1104   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1105   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1106   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1107   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1108     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1109                         ConstantInt::get(X->getType(), -C));
1110 
1111   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1112 
1113   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1114   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1115   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1116   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1117   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1118   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1119   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1120     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1121                         ConstantInt::get(X->getType(), SMax - C));
1122 
1123   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1124   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1125   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1126   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1127   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1128   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1129 
1130   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1131   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1132                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1133 }
1134 
1135 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1136 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1137 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1138 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1139                                                      const APInt &AP1,
1140                                                      const APInt &AP2) {
1141   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1142 
1143   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1144     if (I.getPredicate() == I.ICMP_NE)
1145       Pred = CmpInst::getInversePredicate(Pred);
1146     return new ICmpInst(Pred, LHS, RHS);
1147   };
1148 
1149   // Don't bother doing any work for cases which InstSimplify handles.
1150   if (AP2.isNullValue())
1151     return nullptr;
1152 
1153   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1154   if (IsAShr) {
1155     if (AP2.isAllOnesValue())
1156       return nullptr;
1157     if (AP2.isNegative() != AP1.isNegative())
1158       return nullptr;
1159     if (AP2.sgt(AP1))
1160       return nullptr;
1161   }
1162 
1163   if (!AP1)
1164     // 'A' must be large enough to shift out the highest set bit.
1165     return getICmp(I.ICMP_UGT, A,
1166                    ConstantInt::get(A->getType(), AP2.logBase2()));
1167 
1168   if (AP1 == AP2)
1169     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1170 
1171   int Shift;
1172   if (IsAShr && AP1.isNegative())
1173     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1174   else
1175     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1176 
1177   if (Shift > 0) {
1178     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1179       // There are multiple solutions if we are comparing against -1 and the LHS
1180       // of the ashr is not a power of two.
1181       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1182         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1183       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1184     } else if (AP1 == AP2.lshr(Shift)) {
1185       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1186     }
1187   }
1188 
1189   // Shifting const2 will never be equal to const1.
1190   // FIXME: This should always be handled by InstSimplify?
1191   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1192   return replaceInstUsesWith(I, TorF);
1193 }
1194 
1195 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1196 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1197 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1198                                                      const APInt &AP1,
1199                                                      const APInt &AP2) {
1200   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1201 
1202   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1203     if (I.getPredicate() == I.ICMP_NE)
1204       Pred = CmpInst::getInversePredicate(Pred);
1205     return new ICmpInst(Pred, LHS, RHS);
1206   };
1207 
1208   // Don't bother doing any work for cases which InstSimplify handles.
1209   if (AP2.isNullValue())
1210     return nullptr;
1211 
1212   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1213 
1214   if (!AP1 && AP2TrailingZeros != 0)
1215     return getICmp(
1216         I.ICMP_UGE, A,
1217         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1218 
1219   if (AP1 == AP2)
1220     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1221 
1222   // Get the distance between the lowest bits that are set.
1223   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1224 
1225   if (Shift > 0 && AP2.shl(Shift) == AP1)
1226     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1227 
1228   // Shifting const2 will never be equal to const1.
1229   // FIXME: This should always be handled by InstSimplify?
1230   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1231   return replaceInstUsesWith(I, TorF);
1232 }
1233 
1234 /// The caller has matched a pattern of the form:
1235 ///   I = icmp ugt (add (add A, B), CI2), CI1
1236 /// If this is of the form:
1237 ///   sum = a + b
1238 ///   if (sum+128 >u 255)
1239 /// Then replace it with llvm.sadd.with.overflow.i8.
1240 ///
1241 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1242                                           ConstantInt *CI2, ConstantInt *CI1,
1243                                           InstCombinerImpl &IC) {
1244   // The transformation we're trying to do here is to transform this into an
1245   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1246   // with a narrower add, and discard the add-with-constant that is part of the
1247   // range check (if we can't eliminate it, this isn't profitable).
1248 
1249   // In order to eliminate the add-with-constant, the compare can be its only
1250   // use.
1251   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1252   if (!AddWithCst->hasOneUse())
1253     return nullptr;
1254 
1255   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1256   if (!CI2->getValue().isPowerOf2())
1257     return nullptr;
1258   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1259   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1260     return nullptr;
1261 
1262   // The width of the new add formed is 1 more than the bias.
1263   ++NewWidth;
1264 
1265   // Check to see that CI1 is an all-ones value with NewWidth bits.
1266   if (CI1->getBitWidth() == NewWidth ||
1267       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1268     return nullptr;
1269 
1270   // This is only really a signed overflow check if the inputs have been
1271   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1272   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1273   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1274   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1275       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1276     return nullptr;
1277 
1278   // In order to replace the original add with a narrower
1279   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1280   // and truncates that discard the high bits of the add.  Verify that this is
1281   // the case.
1282   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1283   for (User *U : OrigAdd->users()) {
1284     if (U == AddWithCst)
1285       continue;
1286 
1287     // Only accept truncates for now.  We would really like a nice recursive
1288     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1289     // chain to see which bits of a value are actually demanded.  If the
1290     // original add had another add which was then immediately truncated, we
1291     // could still do the transformation.
1292     TruncInst *TI = dyn_cast<TruncInst>(U);
1293     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1294       return nullptr;
1295   }
1296 
1297   // If the pattern matches, truncate the inputs to the narrower type and
1298   // use the sadd_with_overflow intrinsic to efficiently compute both the
1299   // result and the overflow bit.
1300   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1301   Function *F = Intrinsic::getDeclaration(
1302       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1303 
1304   InstCombiner::BuilderTy &Builder = IC.Builder;
1305 
1306   // Put the new code above the original add, in case there are any uses of the
1307   // add between the add and the compare.
1308   Builder.SetInsertPoint(OrigAdd);
1309 
1310   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1311   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1312   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1313   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1314   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1315 
1316   // The inner add was the result of the narrow add, zero extended to the
1317   // wider type.  Replace it with the result computed by the intrinsic.
1318   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1319   IC.eraseInstFromFunction(*OrigAdd);
1320 
1321   // The original icmp gets replaced with the overflow value.
1322   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1323 }
1324 
1325 /// If we have:
1326 ///   icmp eq/ne (urem/srem %x, %y), 0
1327 /// iff %y is a power-of-two, we can replace this with a bit test:
1328 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1329 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1330   // This fold is only valid for equality predicates.
1331   if (!I.isEquality())
1332     return nullptr;
1333   ICmpInst::Predicate Pred;
1334   Value *X, *Y, *Zero;
1335   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1336                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1337     return nullptr;
1338   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1339     return nullptr;
1340   // This may increase instruction count, we don't enforce that Y is a constant.
1341   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1342   Value *Masked = Builder.CreateAnd(X, Mask);
1343   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1344 }
1345 
1346 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1347 /// by one-less-than-bitwidth into a sign test on the original value.
1348 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1349   Instruction *Val;
1350   ICmpInst::Predicate Pred;
1351   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1352     return nullptr;
1353 
1354   Value *X;
1355   Type *XTy;
1356 
1357   Constant *C;
1358   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1359     XTy = X->getType();
1360     unsigned XBitWidth = XTy->getScalarSizeInBits();
1361     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1362                                      APInt(XBitWidth, XBitWidth - 1))))
1363       return nullptr;
1364   } else if (isa<BinaryOperator>(Val) &&
1365              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1366                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1367                   /*AnalyzeForSignBitExtraction=*/true))) {
1368     XTy = X->getType();
1369   } else
1370     return nullptr;
1371 
1372   return ICmpInst::Create(Instruction::ICmp,
1373                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1374                                                     : ICmpInst::ICMP_SLT,
1375                           X, ConstantInt::getNullValue(XTy));
1376 }
1377 
1378 // Handle  icmp pred X, 0
1379 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1380   CmpInst::Predicate Pred = Cmp.getPredicate();
1381   if (!match(Cmp.getOperand(1), m_Zero()))
1382     return nullptr;
1383 
1384   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1385   if (Pred == ICmpInst::ICMP_SGT) {
1386     Value *A, *B;
1387     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1388     if (SPR.Flavor == SPF_SMIN) {
1389       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1390         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1391       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1392         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1393     }
1394   }
1395 
1396   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1397     return New;
1398 
1399   // Given:
1400   //   icmp eq/ne (urem %x, %y), 0
1401   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1402   //   icmp eq/ne %x, 0
1403   Value *X, *Y;
1404   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1405       ICmpInst::isEquality(Pred)) {
1406     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1407     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1408     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1409       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1410   }
1411 
1412   return nullptr;
1413 }
1414 
1415 /// Fold icmp Pred X, C.
1416 /// TODO: This code structure does not make sense. The saturating add fold
1417 /// should be moved to some other helper and extended as noted below (it is also
1418 /// possible that code has been made unnecessary - do we canonicalize IR to
1419 /// overflow/saturating intrinsics or not?).
1420 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1421   // Match the following pattern, which is a common idiom when writing
1422   // overflow-safe integer arithmetic functions. The source performs an addition
1423   // in wider type and explicitly checks for overflow using comparisons against
1424   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1425   //
1426   // TODO: This could probably be generalized to handle other overflow-safe
1427   // operations if we worked out the formulas to compute the appropriate magic
1428   // constants.
1429   //
1430   // sum = a + b
1431   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1432   CmpInst::Predicate Pred = Cmp.getPredicate();
1433   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1434   Value *A, *B;
1435   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1436   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1437       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1438     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1439       return Res;
1440 
1441   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1442   Constant *C = dyn_cast<Constant>(Op1);
1443   if (!C || C->canTrap())
1444     return nullptr;
1445 
1446   if (auto *Phi = dyn_cast<PHINode>(Op0))
1447     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1448       Type *Ty = Cmp.getType();
1449       Builder.SetInsertPoint(Phi);
1450       PHINode *NewPhi =
1451           Builder.CreatePHI(Ty, Phi->getNumOperands());
1452       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1453         auto *Input =
1454             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1455         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1456         NewPhi->addIncoming(BoolInput, Predecessor);
1457       }
1458       NewPhi->takeName(&Cmp);
1459       return replaceInstUsesWith(Cmp, NewPhi);
1460     }
1461 
1462   return nullptr;
1463 }
1464 
1465 /// Canonicalize icmp instructions based on dominating conditions.
1466 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1467   // This is a cheap/incomplete check for dominance - just match a single
1468   // predecessor with a conditional branch.
1469   BasicBlock *CmpBB = Cmp.getParent();
1470   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1471   if (!DomBB)
1472     return nullptr;
1473 
1474   Value *DomCond;
1475   BasicBlock *TrueBB, *FalseBB;
1476   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1477     return nullptr;
1478 
1479   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1480          "Predecessor block does not point to successor?");
1481 
1482   // The branch should get simplified. Don't bother simplifying this condition.
1483   if (TrueBB == FalseBB)
1484     return nullptr;
1485 
1486   // Try to simplify this compare to T/F based on the dominating condition.
1487   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1488   if (Imp)
1489     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1490 
1491   CmpInst::Predicate Pred = Cmp.getPredicate();
1492   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1493   ICmpInst::Predicate DomPred;
1494   const APInt *C, *DomC;
1495   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1496       match(Y, m_APInt(C))) {
1497     // We have 2 compares of a variable with constants. Calculate the constant
1498     // ranges of those compares to see if we can transform the 2nd compare:
1499     // DomBB:
1500     //   DomCond = icmp DomPred X, DomC
1501     //   br DomCond, CmpBB, FalseBB
1502     // CmpBB:
1503     //   Cmp = icmp Pred X, C
1504     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1505     ConstantRange DominatingCR =
1506         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1507                           : ConstantRange::makeExactICmpRegion(
1508                                 CmpInst::getInversePredicate(DomPred), *DomC);
1509     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1510     ConstantRange Difference = DominatingCR.difference(CR);
1511     if (Intersection.isEmptySet())
1512       return replaceInstUsesWith(Cmp, Builder.getFalse());
1513     if (Difference.isEmptySet())
1514       return replaceInstUsesWith(Cmp, Builder.getTrue());
1515 
1516     // Canonicalizing a sign bit comparison that gets used in a branch,
1517     // pessimizes codegen by generating branch on zero instruction instead
1518     // of a test and branch. So we avoid canonicalizing in such situations
1519     // because test and branch instruction has better branch displacement
1520     // than compare and branch instruction.
1521     bool UnusedBit;
1522     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1523     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1524       return nullptr;
1525 
1526     // Avoid an infinite loop with min/max canonicalization.
1527     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1528     if (Cmp.hasOneUse() &&
1529         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1530       return nullptr;
1531 
1532     if (const APInt *EqC = Intersection.getSingleElement())
1533       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1534     if (const APInt *NeC = Difference.getSingleElement())
1535       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1536   }
1537 
1538   return nullptr;
1539 }
1540 
1541 /// Fold icmp (trunc X, Y), C.
1542 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1543                                                      TruncInst *Trunc,
1544                                                      const APInt &C) {
1545   ICmpInst::Predicate Pred = Cmp.getPredicate();
1546   Value *X = Trunc->getOperand(0);
1547   if (C.isOneValue() && C.getBitWidth() > 1) {
1548     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1549     Value *V = nullptr;
1550     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1551       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1552                           ConstantInt::get(V->getType(), 1));
1553   }
1554 
1555   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1556            SrcBits = X->getType()->getScalarSizeInBits();
1557   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1558     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1559     // of the high bits truncated out of x are known.
1560     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1561 
1562     // If all the high bits are known, we can do this xform.
1563     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1564       // Pull in the high bits from known-ones set.
1565       APInt NewRHS = C.zext(SrcBits);
1566       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1567       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1568     }
1569   }
1570 
1571   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1572   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1573   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1574   Value *ShOp;
1575   const APInt *ShAmtC;
1576   bool TrueIfSigned;
1577   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1578       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1579       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1580     return TrueIfSigned
1581                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1582                               ConstantInt::getNullValue(X->getType()))
1583                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1584                               ConstantInt::getAllOnesValue(X->getType()));
1585   }
1586 
1587   return nullptr;
1588 }
1589 
1590 /// Fold icmp (xor X, Y), C.
1591 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1592                                                    BinaryOperator *Xor,
1593                                                    const APInt &C) {
1594   Value *X = Xor->getOperand(0);
1595   Value *Y = Xor->getOperand(1);
1596   const APInt *XorC;
1597   if (!match(Y, m_APInt(XorC)))
1598     return nullptr;
1599 
1600   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1601   // fold the xor.
1602   ICmpInst::Predicate Pred = Cmp.getPredicate();
1603   bool TrueIfSigned = false;
1604   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1605 
1606     // If the sign bit of the XorCst is not set, there is no change to
1607     // the operation, just stop using the Xor.
1608     if (!XorC->isNegative())
1609       return replaceOperand(Cmp, 0, X);
1610 
1611     // Emit the opposite comparison.
1612     if (TrueIfSigned)
1613       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1614                           ConstantInt::getAllOnesValue(X->getType()));
1615     else
1616       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1617                           ConstantInt::getNullValue(X->getType()));
1618   }
1619 
1620   if (Xor->hasOneUse()) {
1621     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1622     if (!Cmp.isEquality() && XorC->isSignMask()) {
1623       Pred = Cmp.getFlippedSignednessPredicate();
1624       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1625     }
1626 
1627     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1628     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1629       Pred = Cmp.getFlippedSignednessPredicate();
1630       Pred = Cmp.getSwappedPredicate(Pred);
1631       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1632     }
1633   }
1634 
1635   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1636   if (Pred == ICmpInst::ICMP_UGT) {
1637     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1638     if (*XorC == ~C && (C + 1).isPowerOf2())
1639       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1640     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1641     if (*XorC == C && (C + 1).isPowerOf2())
1642       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1643   }
1644   if (Pred == ICmpInst::ICMP_ULT) {
1645     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1646     if (*XorC == -C && C.isPowerOf2())
1647       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1648                           ConstantInt::get(X->getType(), ~C));
1649     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1650     if (*XorC == C && (-C).isPowerOf2())
1651       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1652                           ConstantInt::get(X->getType(), ~C));
1653   }
1654   return nullptr;
1655 }
1656 
1657 /// Fold icmp (and (sh X, Y), C2), C1.
1658 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1659                                                 BinaryOperator *And,
1660                                                 const APInt &C1,
1661                                                 const APInt &C2) {
1662   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1663   if (!Shift || !Shift->isShift())
1664     return nullptr;
1665 
1666   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1667   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1668   // code produced by the clang front-end, for bitfield access.
1669   // This seemingly simple opportunity to fold away a shift turns out to be
1670   // rather complicated. See PR17827 for details.
1671   unsigned ShiftOpcode = Shift->getOpcode();
1672   bool IsShl = ShiftOpcode == Instruction::Shl;
1673   const APInt *C3;
1674   if (match(Shift->getOperand(1), m_APInt(C3))) {
1675     APInt NewAndCst, NewCmpCst;
1676     bool AnyCmpCstBitsShiftedOut;
1677     if (ShiftOpcode == Instruction::Shl) {
1678       // For a left shift, we can fold if the comparison is not signed. We can
1679       // also fold a signed comparison if the mask value and comparison value
1680       // are not negative. These constraints may not be obvious, but we can
1681       // prove that they are correct using an SMT solver.
1682       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1683         return nullptr;
1684 
1685       NewCmpCst = C1.lshr(*C3);
1686       NewAndCst = C2.lshr(*C3);
1687       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1688     } else if (ShiftOpcode == Instruction::LShr) {
1689       // For a logical right shift, we can fold if the comparison is not signed.
1690       // We can also fold a signed comparison if the shifted mask value and the
1691       // shifted comparison value are not negative. These constraints may not be
1692       // obvious, but we can prove that they are correct using an SMT solver.
1693       NewCmpCst = C1.shl(*C3);
1694       NewAndCst = C2.shl(*C3);
1695       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1696       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1697         return nullptr;
1698     } else {
1699       // For an arithmetic shift, check that both constants don't use (in a
1700       // signed sense) the top bits being shifted out.
1701       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1702       NewCmpCst = C1.shl(*C3);
1703       NewAndCst = C2.shl(*C3);
1704       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1705       if (NewAndCst.ashr(*C3) != C2)
1706         return nullptr;
1707     }
1708 
1709     if (AnyCmpCstBitsShiftedOut) {
1710       // If we shifted bits out, the fold is not going to work out. As a
1711       // special case, check to see if this means that the result is always
1712       // true or false now.
1713       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1714         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1715       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1716         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1717     } else {
1718       Value *NewAnd = Builder.CreateAnd(
1719           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1720       return new ICmpInst(Cmp.getPredicate(),
1721           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1722     }
1723   }
1724 
1725   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1726   // preferable because it allows the C2 << Y expression to be hoisted out of a
1727   // loop if Y is invariant and X is not.
1728   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1729       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1730     // Compute C2 << Y.
1731     Value *NewShift =
1732         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1733               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1734 
1735     // Compute X & (C2 << Y).
1736     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1737     return replaceOperand(Cmp, 0, NewAnd);
1738   }
1739 
1740   return nullptr;
1741 }
1742 
1743 /// Fold icmp (and X, C2), C1.
1744 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1745                                                      BinaryOperator *And,
1746                                                      const APInt &C1) {
1747   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1748 
1749   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1750   // TODO: We canonicalize to the longer form for scalars because we have
1751   // better analysis/folds for icmp, and codegen may be better with icmp.
1752   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1753       match(And->getOperand(1), m_One()))
1754     return new TruncInst(And->getOperand(0), Cmp.getType());
1755 
1756   const APInt *C2;
1757   Value *X;
1758   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1759     return nullptr;
1760 
1761   // Don't perform the following transforms if the AND has multiple uses
1762   if (!And->hasOneUse())
1763     return nullptr;
1764 
1765   if (Cmp.isEquality() && C1.isNullValue()) {
1766     // Restrict this fold to single-use 'and' (PR10267).
1767     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1768     if (C2->isSignMask()) {
1769       Constant *Zero = Constant::getNullValue(X->getType());
1770       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1771       return new ICmpInst(NewPred, X, Zero);
1772     }
1773 
1774     // Restrict this fold only for single-use 'and' (PR10267).
1775     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1776     if ((~(*C2) + 1).isPowerOf2()) {
1777       Constant *NegBOC =
1778           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1779       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1780       return new ICmpInst(NewPred, X, NegBOC);
1781     }
1782   }
1783 
1784   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1785   // the input width without changing the value produced, eliminate the cast:
1786   //
1787   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1788   //
1789   // We can do this transformation if the constants do not have their sign bits
1790   // set or if it is an equality comparison. Extending a relational comparison
1791   // when we're checking the sign bit would not work.
1792   Value *W;
1793   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1794       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1795     // TODO: Is this a good transform for vectors? Wider types may reduce
1796     // throughput. Should this transform be limited (even for scalars) by using
1797     // shouldChangeType()?
1798     if (!Cmp.getType()->isVectorTy()) {
1799       Type *WideType = W->getType();
1800       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1801       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1802       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1803       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1804       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1805     }
1806   }
1807 
1808   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1809     return I;
1810 
1811   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1812   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1813   //
1814   // iff pred isn't signed
1815   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1816       match(And->getOperand(1), m_One())) {
1817     Constant *One = cast<Constant>(And->getOperand(1));
1818     Value *Or = And->getOperand(0);
1819     Value *A, *B, *LShr;
1820     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1821         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1822       unsigned UsesRemoved = 0;
1823       if (And->hasOneUse())
1824         ++UsesRemoved;
1825       if (Or->hasOneUse())
1826         ++UsesRemoved;
1827       if (LShr->hasOneUse())
1828         ++UsesRemoved;
1829 
1830       // Compute A & ((1 << B) | 1)
1831       Value *NewOr = nullptr;
1832       if (auto *C = dyn_cast<Constant>(B)) {
1833         if (UsesRemoved >= 1)
1834           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1835       } else {
1836         if (UsesRemoved >= 3)
1837           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1838                                                      /*HasNUW=*/true),
1839                                    One, Or->getName());
1840       }
1841       if (NewOr) {
1842         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1843         return replaceOperand(Cmp, 0, NewAnd);
1844       }
1845     }
1846   }
1847 
1848   return nullptr;
1849 }
1850 
1851 /// Fold icmp (and X, Y), C.
1852 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1853                                                    BinaryOperator *And,
1854                                                    const APInt &C) {
1855   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1856     return I;
1857 
1858   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1859   bool TrueIfNeg;
1860   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1861     // ((X - 1) & ~X) <  0 --> X == 0
1862     // ((X - 1) & ~X) >= 0 --> X != 0
1863     Value *X;
1864     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1865         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1866       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1867       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1868     }
1869   }
1870 
1871   // TODO: These all require that Y is constant too, so refactor with the above.
1872 
1873   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1874   Value *X = And->getOperand(0);
1875   Value *Y = And->getOperand(1);
1876   if (auto *LI = dyn_cast<LoadInst>(X))
1877     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1878       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1879         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1880             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1881           ConstantInt *C2 = cast<ConstantInt>(Y);
1882           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1883             return Res;
1884         }
1885 
1886   if (!Cmp.isEquality())
1887     return nullptr;
1888 
1889   // X & -C == -C -> X >  u ~C
1890   // X & -C != -C -> X <= u ~C
1891   //   iff C is a power of 2
1892   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1893     auto NewPred =
1894         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1895     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1896   }
1897 
1898   // (X & C2) == 0 -> (trunc X) >= 0
1899   // (X & C2) != 0 -> (trunc X) <  0
1900   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1901   const APInt *C2;
1902   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1903     int32_t ExactLogBase2 = C2->exactLogBase2();
1904     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1905       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1906       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1907         NTy = VectorType::get(NTy, AndVTy->getElementCount());
1908       Value *Trunc = Builder.CreateTrunc(X, NTy);
1909       auto NewPred =
1910           Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE : CmpInst::ICMP_SLT;
1911       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1912     }
1913   }
1914 
1915   return nullptr;
1916 }
1917 
1918 /// Fold icmp (or X, Y), C.
1919 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1920                                                   BinaryOperator *Or,
1921                                                   const APInt &C) {
1922   ICmpInst::Predicate Pred = Cmp.getPredicate();
1923   if (C.isOneValue()) {
1924     // icmp slt signum(V) 1 --> icmp slt V, 1
1925     Value *V = nullptr;
1926     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1927       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1928                           ConstantInt::get(V->getType(), 1));
1929   }
1930 
1931   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1932   const APInt *MaskC;
1933   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1934     if (*MaskC == C && (C + 1).isPowerOf2()) {
1935       // X | C == C --> X <=u C
1936       // X | C != C --> X  >u C
1937       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1938       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1939       return new ICmpInst(Pred, OrOp0, OrOp1);
1940     }
1941 
1942     // More general: canonicalize 'equality with set bits mask' to
1943     // 'equality with clear bits mask'.
1944     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1945     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1946     if (Or->hasOneUse()) {
1947       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1948       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1949       return new ICmpInst(Pred, And, NewC);
1950     }
1951   }
1952 
1953   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1954     return nullptr;
1955 
1956   Value *P, *Q;
1957   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1958     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1959     // -> and (icmp eq P, null), (icmp eq Q, null).
1960     Value *CmpP =
1961         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1962     Value *CmpQ =
1963         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1964     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1965     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1966   }
1967 
1968   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1969   // a shorter form that has more potential to be folded even further.
1970   Value *X1, *X2, *X3, *X4;
1971   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1972       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1973     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1974     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1975     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1976     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1977     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1978     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1979   }
1980 
1981   return nullptr;
1982 }
1983 
1984 /// Fold icmp (mul X, Y), C.
1985 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1986                                                    BinaryOperator *Mul,
1987                                                    const APInt &C) {
1988   const APInt *MulC;
1989   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1990     return nullptr;
1991 
1992   // If this is a test of the sign bit and the multiply is sign-preserving with
1993   // a constant operand, use the multiply LHS operand instead.
1994   ICmpInst::Predicate Pred = Cmp.getPredicate();
1995   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1996     if (MulC->isNegative())
1997       Pred = ICmpInst::getSwappedPredicate(Pred);
1998     return new ICmpInst(Pred, Mul->getOperand(0),
1999                         Constant::getNullValue(Mul->getType()));
2000   }
2001 
2002   // If the multiply does not wrap, try to divide the compare constant by the
2003   // multiplication factor.
2004   if (Cmp.isEquality() && !MulC->isNullValue()) {
2005     // (mul nsw X, MulC) == C --> X == C /s MulC
2006     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
2007       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
2008       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2009     }
2010     // (mul nuw X, MulC) == C --> X == C /u MulC
2011     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
2012       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
2013       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2014     }
2015   }
2016 
2017   return nullptr;
2018 }
2019 
2020 /// Fold icmp (shl 1, Y), C.
2021 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2022                                    const APInt &C) {
2023   Value *Y;
2024   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2025     return nullptr;
2026 
2027   Type *ShiftType = Shl->getType();
2028   unsigned TypeBits = C.getBitWidth();
2029   bool CIsPowerOf2 = C.isPowerOf2();
2030   ICmpInst::Predicate Pred = Cmp.getPredicate();
2031   if (Cmp.isUnsigned()) {
2032     // (1 << Y) pred C -> Y pred Log2(C)
2033     if (!CIsPowerOf2) {
2034       // (1 << Y) <  30 -> Y <= 4
2035       // (1 << Y) <= 30 -> Y <= 4
2036       // (1 << Y) >= 30 -> Y >  4
2037       // (1 << Y) >  30 -> Y >  4
2038       if (Pred == ICmpInst::ICMP_ULT)
2039         Pred = ICmpInst::ICMP_ULE;
2040       else if (Pred == ICmpInst::ICMP_UGE)
2041         Pred = ICmpInst::ICMP_UGT;
2042     }
2043 
2044     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2045     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2046     unsigned CLog2 = C.logBase2();
2047     if (CLog2 == TypeBits - 1) {
2048       if (Pred == ICmpInst::ICMP_UGE)
2049         Pred = ICmpInst::ICMP_EQ;
2050       else if (Pred == ICmpInst::ICMP_ULT)
2051         Pred = ICmpInst::ICMP_NE;
2052     }
2053     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2054   } else if (Cmp.isSigned()) {
2055     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2056     if (C.isAllOnesValue()) {
2057       // (1 << Y) <= -1 -> Y == 31
2058       if (Pred == ICmpInst::ICMP_SLE)
2059         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2060 
2061       // (1 << Y) >  -1 -> Y != 31
2062       if (Pred == ICmpInst::ICMP_SGT)
2063         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2064     } else if (!C) {
2065       // (1 << Y) <  0 -> Y == 31
2066       // (1 << Y) <= 0 -> Y == 31
2067       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2068         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2069 
2070       // (1 << Y) >= 0 -> Y != 31
2071       // (1 << Y) >  0 -> Y != 31
2072       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2073         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2074     }
2075   } else if (Cmp.isEquality() && CIsPowerOf2) {
2076     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2077   }
2078 
2079   return nullptr;
2080 }
2081 
2082 /// Fold icmp (shl X, Y), C.
2083 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2084                                                    BinaryOperator *Shl,
2085                                                    const APInt &C) {
2086   const APInt *ShiftVal;
2087   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2088     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2089 
2090   const APInt *ShiftAmt;
2091   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2092     return foldICmpShlOne(Cmp, Shl, C);
2093 
2094   // Check that the shift amount is in range. If not, don't perform undefined
2095   // shifts. When the shift is visited, it will be simplified.
2096   unsigned TypeBits = C.getBitWidth();
2097   if (ShiftAmt->uge(TypeBits))
2098     return nullptr;
2099 
2100   ICmpInst::Predicate Pred = Cmp.getPredicate();
2101   Value *X = Shl->getOperand(0);
2102   Type *ShType = Shl->getType();
2103 
2104   // NSW guarantees that we are only shifting out sign bits from the high bits,
2105   // so we can ASHR the compare constant without needing a mask and eliminate
2106   // the shift.
2107   if (Shl->hasNoSignedWrap()) {
2108     if (Pred == ICmpInst::ICMP_SGT) {
2109       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2110       APInt ShiftedC = C.ashr(*ShiftAmt);
2111       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2112     }
2113     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2114         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2115       APInt ShiftedC = C.ashr(*ShiftAmt);
2116       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2117     }
2118     if (Pred == ICmpInst::ICMP_SLT) {
2119       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2120       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2121       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2122       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2123       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2124       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2125       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2126     }
2127     // If this is a signed comparison to 0 and the shift is sign preserving,
2128     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2129     // do that if we're sure to not continue on in this function.
2130     if (isSignTest(Pred, C))
2131       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2132   }
2133 
2134   // NUW guarantees that we are only shifting out zero bits from the high bits,
2135   // so we can LSHR the compare constant without needing a mask and eliminate
2136   // the shift.
2137   if (Shl->hasNoUnsignedWrap()) {
2138     if (Pred == ICmpInst::ICMP_UGT) {
2139       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2140       APInt ShiftedC = C.lshr(*ShiftAmt);
2141       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2142     }
2143     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2144         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2145       APInt ShiftedC = C.lshr(*ShiftAmt);
2146       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2147     }
2148     if (Pred == ICmpInst::ICMP_ULT) {
2149       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2150       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2151       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2152       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2153       assert(C.ugt(0) && "ult 0 should have been eliminated");
2154       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2155       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2156     }
2157   }
2158 
2159   if (Cmp.isEquality() && Shl->hasOneUse()) {
2160     // Strength-reduce the shift into an 'and'.
2161     Constant *Mask = ConstantInt::get(
2162         ShType,
2163         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2164     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2165     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2166     return new ICmpInst(Pred, And, LShrC);
2167   }
2168 
2169   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2170   bool TrueIfSigned = false;
2171   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2172     // (X << 31) <s 0  --> (X & 1) != 0
2173     Constant *Mask = ConstantInt::get(
2174         ShType,
2175         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2176     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2177     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2178                         And, Constant::getNullValue(ShType));
2179   }
2180 
2181   // Simplify 'shl' inequality test into 'and' equality test.
2182   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2183     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2184     if ((C + 1).isPowerOf2() &&
2185         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2186       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2187       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2188                                                      : ICmpInst::ICMP_NE,
2189                           And, Constant::getNullValue(ShType));
2190     }
2191     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2192     if (C.isPowerOf2() &&
2193         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2194       Value *And =
2195           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2196       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2197                                                      : ICmpInst::ICMP_NE,
2198                           And, Constant::getNullValue(ShType));
2199     }
2200   }
2201 
2202   // Transform (icmp pred iM (shl iM %v, N), C)
2203   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2204   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2205   // This enables us to get rid of the shift in favor of a trunc that may be
2206   // free on the target. It has the additional benefit of comparing to a
2207   // smaller constant that may be more target-friendly.
2208   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2209   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2210       DL.isLegalInteger(TypeBits - Amt)) {
2211     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2212     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2213       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2214     Constant *NewC =
2215         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2216     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2217   }
2218 
2219   return nullptr;
2220 }
2221 
2222 /// Fold icmp ({al}shr X, Y), C.
2223 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2224                                                    BinaryOperator *Shr,
2225                                                    const APInt &C) {
2226   // An exact shr only shifts out zero bits, so:
2227   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2228   Value *X = Shr->getOperand(0);
2229   CmpInst::Predicate Pred = Cmp.getPredicate();
2230   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2231       C.isNullValue())
2232     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2233 
2234   const APInt *ShiftVal;
2235   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2236     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2237 
2238   const APInt *ShiftAmt;
2239   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2240     return nullptr;
2241 
2242   // Check that the shift amount is in range. If not, don't perform undefined
2243   // shifts. When the shift is visited it will be simplified.
2244   unsigned TypeBits = C.getBitWidth();
2245   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2246   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2247     return nullptr;
2248 
2249   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2250   bool IsExact = Shr->isExact();
2251   Type *ShrTy = Shr->getType();
2252   // TODO: If we could guarantee that InstSimplify would handle all of the
2253   // constant-value-based preconditions in the folds below, then we could assert
2254   // those conditions rather than checking them. This is difficult because of
2255   // undef/poison (PR34838).
2256   if (IsAShr) {
2257     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2258       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2259       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2260       APInt ShiftedC = C.shl(ShAmtVal);
2261       if (ShiftedC.ashr(ShAmtVal) == C)
2262         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2263     }
2264     if (Pred == CmpInst::ICMP_SGT) {
2265       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2266       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2267       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2268           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2269         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2270     }
2271 
2272     // If the compare constant has significant bits above the lowest sign-bit,
2273     // then convert an unsigned cmp to a test of the sign-bit:
2274     // (ashr X, ShiftC) u> C --> X s< 0
2275     // (ashr X, ShiftC) u< C --> X s> -1
2276     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2277       if (Pred == CmpInst::ICMP_UGT) {
2278         return new ICmpInst(CmpInst::ICMP_SLT, X,
2279                             ConstantInt::getNullValue(ShrTy));
2280       }
2281       if (Pred == CmpInst::ICMP_ULT) {
2282         return new ICmpInst(CmpInst::ICMP_SGT, X,
2283                             ConstantInt::getAllOnesValue(ShrTy));
2284       }
2285     }
2286   } else {
2287     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2288       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2289       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2290       APInt ShiftedC = C.shl(ShAmtVal);
2291       if (ShiftedC.lshr(ShAmtVal) == C)
2292         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2293     }
2294     if (Pred == CmpInst::ICMP_UGT) {
2295       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2296       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2297       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2298         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2299     }
2300   }
2301 
2302   if (!Cmp.isEquality())
2303     return nullptr;
2304 
2305   // Handle equality comparisons of shift-by-constant.
2306 
2307   // If the comparison constant changes with the shift, the comparison cannot
2308   // succeed (bits of the comparison constant cannot match the shifted value).
2309   // This should be known by InstSimplify and already be folded to true/false.
2310   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2311           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2312          "Expected icmp+shr simplify did not occur.");
2313 
2314   // If the bits shifted out are known zero, compare the unshifted value:
2315   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2316   if (Shr->isExact())
2317     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2318 
2319   if (C.isNullValue()) {
2320     // == 0 is u< 1.
2321     if (Pred == CmpInst::ICMP_EQ)
2322       return new ICmpInst(CmpInst::ICMP_ULT, X,
2323                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2324     else
2325       return new ICmpInst(CmpInst::ICMP_UGT, X,
2326                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2327   }
2328 
2329   if (Shr->hasOneUse()) {
2330     // Canonicalize the shift into an 'and':
2331     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2332     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2333     Constant *Mask = ConstantInt::get(ShrTy, Val);
2334     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2335     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2336   }
2337 
2338   return nullptr;
2339 }
2340 
2341 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2342                                                     BinaryOperator *SRem,
2343                                                     const APInt &C) {
2344   // Match an 'is positive' or 'is negative' comparison of remainder by a
2345   // constant power-of-2 value:
2346   // (X % pow2C) sgt/slt 0
2347   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2348   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2349     return nullptr;
2350 
2351   // TODO: The one-use check is standard because we do not typically want to
2352   //       create longer instruction sequences, but this might be a special-case
2353   //       because srem is not good for analysis or codegen.
2354   if (!SRem->hasOneUse())
2355     return nullptr;
2356 
2357   const APInt *DivisorC;
2358   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2359     return nullptr;
2360 
2361   // Mask off the sign bit and the modulo bits (low-bits).
2362   Type *Ty = SRem->getType();
2363   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2364   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2365   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2366 
2367   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2368   // bit is set. Example:
2369   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2370   if (Pred == ICmpInst::ICMP_SGT)
2371     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2372 
2373   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2374   // bit is set. Example:
2375   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2376   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2377 }
2378 
2379 /// Fold icmp (udiv X, Y), C.
2380 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2381                                                     BinaryOperator *UDiv,
2382                                                     const APInt &C) {
2383   const APInt *C2;
2384   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2385     return nullptr;
2386 
2387   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2388 
2389   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2390   Value *Y = UDiv->getOperand(1);
2391   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2392     assert(!C.isMaxValue() &&
2393            "icmp ugt X, UINT_MAX should have been simplified already.");
2394     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2395                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2396   }
2397 
2398   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2399   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2400     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2401     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2402                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2403   }
2404 
2405   return nullptr;
2406 }
2407 
2408 /// Fold icmp ({su}div X, Y), C.
2409 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2410                                                    BinaryOperator *Div,
2411                                                    const APInt &C) {
2412   // Fold: icmp pred ([us]div X, C2), C -> range test
2413   // Fold this div into the comparison, producing a range check.
2414   // Determine, based on the divide type, what the range is being
2415   // checked.  If there is an overflow on the low or high side, remember
2416   // it, otherwise compute the range [low, hi) bounding the new value.
2417   // See: InsertRangeTest above for the kinds of replacements possible.
2418   const APInt *C2;
2419   if (!match(Div->getOperand(1), m_APInt(C2)))
2420     return nullptr;
2421 
2422   // FIXME: If the operand types don't match the type of the divide
2423   // then don't attempt this transform. The code below doesn't have the
2424   // logic to deal with a signed divide and an unsigned compare (and
2425   // vice versa). This is because (x /s C2) <s C  produces different
2426   // results than (x /s C2) <u C or (x /u C2) <s C or even
2427   // (x /u C2) <u C.  Simply casting the operands and result won't
2428   // work. :(  The if statement below tests that condition and bails
2429   // if it finds it.
2430   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2431   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2432     return nullptr;
2433 
2434   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2435   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2436   // division-by-constant cases should be present, we can not assert that they
2437   // have happened before we reach this icmp instruction.
2438   if (C2->isNullValue() || C2->isOneValue() ||
2439       (DivIsSigned && C2->isAllOnesValue()))
2440     return nullptr;
2441 
2442   // Compute Prod = C * C2. We are essentially solving an equation of
2443   // form X / C2 = C. We solve for X by multiplying C2 and C.
2444   // By solving for X, we can turn this into a range check instead of computing
2445   // a divide.
2446   APInt Prod = C * *C2;
2447 
2448   // Determine if the product overflows by seeing if the product is not equal to
2449   // the divide. Make sure we do the same kind of divide as in the LHS
2450   // instruction that we're folding.
2451   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2452 
2453   ICmpInst::Predicate Pred = Cmp.getPredicate();
2454 
2455   // If the division is known to be exact, then there is no remainder from the
2456   // divide, so the covered range size is unit, otherwise it is the divisor.
2457   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2458 
2459   // Figure out the interval that is being checked.  For example, a comparison
2460   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2461   // Compute this interval based on the constants involved and the signedness of
2462   // the compare/divide.  This computes a half-open interval, keeping track of
2463   // whether either value in the interval overflows.  After analysis each
2464   // overflow variable is set to 0 if it's corresponding bound variable is valid
2465   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2466   int LoOverflow = 0, HiOverflow = 0;
2467   APInt LoBound, HiBound;
2468 
2469   if (!DivIsSigned) {  // udiv
2470     // e.g. X/5 op 3  --> [15, 20)
2471     LoBound = Prod;
2472     HiOverflow = LoOverflow = ProdOV;
2473     if (!HiOverflow) {
2474       // If this is not an exact divide, then many values in the range collapse
2475       // to the same result value.
2476       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2477     }
2478   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2479     if (C.isNullValue()) {       // (X / pos) op 0
2480       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2481       LoBound = -(RangeSize - 1);
2482       HiBound = RangeSize;
2483     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2484       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2485       HiOverflow = LoOverflow = ProdOV;
2486       if (!HiOverflow)
2487         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2488     } else {                       // (X / pos) op neg
2489       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2490       HiBound = Prod + 1;
2491       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2492       if (!LoOverflow) {
2493         APInt DivNeg = -RangeSize;
2494         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2495       }
2496     }
2497   } else if (C2->isNegative()) { // Divisor is < 0.
2498     if (Div->isExact())
2499       RangeSize.negate();
2500     if (C.isNullValue()) { // (X / neg) op 0
2501       // e.g. X/-5 op 0  --> [-4, 5)
2502       LoBound = RangeSize + 1;
2503       HiBound = -RangeSize;
2504       if (HiBound == *C2) {        // -INTMIN = INTMIN
2505         HiOverflow = 1;            // [INTMIN+1, overflow)
2506         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2507       }
2508     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2509       // e.g. X/-5 op 3  --> [-19, -14)
2510       HiBound = Prod + 1;
2511       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2512       if (!LoOverflow)
2513         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2514     } else {                       // (X / neg) op neg
2515       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2516       LoOverflow = HiOverflow = ProdOV;
2517       if (!HiOverflow)
2518         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2519     }
2520 
2521     // Dividing by a negative swaps the condition.  LT <-> GT
2522     Pred = ICmpInst::getSwappedPredicate(Pred);
2523   }
2524 
2525   Value *X = Div->getOperand(0);
2526   switch (Pred) {
2527     default: llvm_unreachable("Unhandled icmp opcode!");
2528     case ICmpInst::ICMP_EQ:
2529       if (LoOverflow && HiOverflow)
2530         return replaceInstUsesWith(Cmp, Builder.getFalse());
2531       if (HiOverflow)
2532         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2533                             ICmpInst::ICMP_UGE, X,
2534                             ConstantInt::get(Div->getType(), LoBound));
2535       if (LoOverflow)
2536         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2537                             ICmpInst::ICMP_ULT, X,
2538                             ConstantInt::get(Div->getType(), HiBound));
2539       return replaceInstUsesWith(
2540           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2541     case ICmpInst::ICMP_NE:
2542       if (LoOverflow && HiOverflow)
2543         return replaceInstUsesWith(Cmp, Builder.getTrue());
2544       if (HiOverflow)
2545         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2546                             ICmpInst::ICMP_ULT, X,
2547                             ConstantInt::get(Div->getType(), LoBound));
2548       if (LoOverflow)
2549         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2550                             ICmpInst::ICMP_UGE, X,
2551                             ConstantInt::get(Div->getType(), HiBound));
2552       return replaceInstUsesWith(Cmp,
2553                                  insertRangeTest(X, LoBound, HiBound,
2554                                                  DivIsSigned, false));
2555     case ICmpInst::ICMP_ULT:
2556     case ICmpInst::ICMP_SLT:
2557       if (LoOverflow == +1)   // Low bound is greater than input range.
2558         return replaceInstUsesWith(Cmp, Builder.getTrue());
2559       if (LoOverflow == -1)   // Low bound is less than input range.
2560         return replaceInstUsesWith(Cmp, Builder.getFalse());
2561       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2562     case ICmpInst::ICMP_UGT:
2563     case ICmpInst::ICMP_SGT:
2564       if (HiOverflow == +1)       // High bound greater than input range.
2565         return replaceInstUsesWith(Cmp, Builder.getFalse());
2566       if (HiOverflow == -1)       // High bound less than input range.
2567         return replaceInstUsesWith(Cmp, Builder.getTrue());
2568       if (Pred == ICmpInst::ICMP_UGT)
2569         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2570                             ConstantInt::get(Div->getType(), HiBound));
2571       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2572                           ConstantInt::get(Div->getType(), HiBound));
2573   }
2574 
2575   return nullptr;
2576 }
2577 
2578 /// Fold icmp (sub X, Y), C.
2579 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2580                                                    BinaryOperator *Sub,
2581                                                    const APInt &C) {
2582   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2583   ICmpInst::Predicate Pred = Cmp.getPredicate();
2584   const APInt *C2;
2585   APInt SubResult;
2586 
2587   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2588   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2589     return new ICmpInst(Cmp.getPredicate(), Y,
2590                         ConstantInt::get(Y->getType(), 0));
2591 
2592   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2593   if (match(X, m_APInt(C2)) &&
2594       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2595        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2596       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2597     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2598                         ConstantInt::get(Y->getType(), SubResult));
2599 
2600   // The following transforms are only worth it if the only user of the subtract
2601   // is the icmp.
2602   if (!Sub->hasOneUse())
2603     return nullptr;
2604 
2605   if (Sub->hasNoSignedWrap()) {
2606     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2607     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2608       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2609 
2610     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2611     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2612       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2613 
2614     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2615     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2616       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2617 
2618     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2619     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2620       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2621   }
2622 
2623   if (!match(X, m_APInt(C2)))
2624     return nullptr;
2625 
2626   // C2 - Y <u C -> (Y | (C - 1)) == C2
2627   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2628   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2629       (*C2 & (C - 1)) == (C - 1))
2630     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2631 
2632   // C2 - Y >u C -> (Y | C) != C2
2633   //   iff C2 & C == C and C + 1 is a power of 2
2634   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2635     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2636 
2637   return nullptr;
2638 }
2639 
2640 /// Fold icmp (add X, Y), C.
2641 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2642                                                    BinaryOperator *Add,
2643                                                    const APInt &C) {
2644   Value *Y = Add->getOperand(1);
2645   const APInt *C2;
2646   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2647     return nullptr;
2648 
2649   // Fold icmp pred (add X, C2), C.
2650   Value *X = Add->getOperand(0);
2651   Type *Ty = Add->getType();
2652   const CmpInst::Predicate Pred = Cmp.getPredicate();
2653 
2654   // If the add does not wrap, we can always adjust the compare by subtracting
2655   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2656   // are canonicalized to SGT/SLT/UGT/ULT.
2657   if ((Add->hasNoSignedWrap() &&
2658        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2659       (Add->hasNoUnsignedWrap() &&
2660        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2661     bool Overflow;
2662     APInt NewC =
2663         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2664     // If there is overflow, the result must be true or false.
2665     // TODO: Can we assert there is no overflow because InstSimplify always
2666     // handles those cases?
2667     if (!Overflow)
2668       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2669       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2670   }
2671 
2672   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2673   const APInt &Upper = CR.getUpper();
2674   const APInt &Lower = CR.getLower();
2675   if (Cmp.isSigned()) {
2676     if (Lower.isSignMask())
2677       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2678     if (Upper.isSignMask())
2679       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2680   } else {
2681     if (Lower.isMinValue())
2682       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2683     if (Upper.isMinValue())
2684       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2685   }
2686 
2687   // This set of folds is intentionally placed after folds that use no-wrapping
2688   // flags because those folds are likely better for later analysis/codegen.
2689   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2690   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2691 
2692   // Fold compare with offset to opposite sign compare if it eliminates offset:
2693   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2694   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2695     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2696 
2697   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2698   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2699     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2700 
2701   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2702   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2703     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2704 
2705   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2706   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2707     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2708 
2709   if (!Add->hasOneUse())
2710     return nullptr;
2711 
2712   // X+C <u C2 -> (X & -C2) == C
2713   //   iff C & (C2-1) == 0
2714   //       C2 is a power of 2
2715   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2716     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2717                         ConstantExpr::getNeg(cast<Constant>(Y)));
2718 
2719   // X+C >u C2 -> (X & ~C2) != C
2720   //   iff C & C2 == 0
2721   //       C2+1 is a power of 2
2722   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2723     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2724                         ConstantExpr::getNeg(cast<Constant>(Y)));
2725 
2726   return nullptr;
2727 }
2728 
2729 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2730                                                Value *&RHS, ConstantInt *&Less,
2731                                                ConstantInt *&Equal,
2732                                                ConstantInt *&Greater) {
2733   // TODO: Generalize this to work with other comparison idioms or ensure
2734   // they get canonicalized into this form.
2735 
2736   // select i1 (a == b),
2737   //        i32 Equal,
2738   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2739   // where Equal, Less and Greater are placeholders for any three constants.
2740   ICmpInst::Predicate PredA;
2741   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2742       !ICmpInst::isEquality(PredA))
2743     return false;
2744   Value *EqualVal = SI->getTrueValue();
2745   Value *UnequalVal = SI->getFalseValue();
2746   // We still can get non-canonical predicate here, so canonicalize.
2747   if (PredA == ICmpInst::ICMP_NE)
2748     std::swap(EqualVal, UnequalVal);
2749   if (!match(EqualVal, m_ConstantInt(Equal)))
2750     return false;
2751   ICmpInst::Predicate PredB;
2752   Value *LHS2, *RHS2;
2753   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2754                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2755     return false;
2756   // We can get predicate mismatch here, so canonicalize if possible:
2757   // First, ensure that 'LHS' match.
2758   if (LHS2 != LHS) {
2759     // x sgt y <--> y slt x
2760     std::swap(LHS2, RHS2);
2761     PredB = ICmpInst::getSwappedPredicate(PredB);
2762   }
2763   if (LHS2 != LHS)
2764     return false;
2765   // We also need to canonicalize 'RHS'.
2766   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2767     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2768     auto FlippedStrictness =
2769         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2770             PredB, cast<Constant>(RHS2));
2771     if (!FlippedStrictness)
2772       return false;
2773     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2774     RHS2 = FlippedStrictness->second;
2775     // And kind-of perform the result swap.
2776     std::swap(Less, Greater);
2777     PredB = ICmpInst::ICMP_SLT;
2778   }
2779   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2780 }
2781 
2782 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2783                                                       SelectInst *Select,
2784                                                       ConstantInt *C) {
2785 
2786   assert(C && "Cmp RHS should be a constant int!");
2787   // If we're testing a constant value against the result of a three way
2788   // comparison, the result can be expressed directly in terms of the
2789   // original values being compared.  Note: We could possibly be more
2790   // aggressive here and remove the hasOneUse test. The original select is
2791   // really likely to simplify or sink when we remove a test of the result.
2792   Value *OrigLHS, *OrigRHS;
2793   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2794   if (Cmp.hasOneUse() &&
2795       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2796                               C3GreaterThan)) {
2797     assert(C1LessThan && C2Equal && C3GreaterThan);
2798 
2799     bool TrueWhenLessThan =
2800         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2801             ->isAllOnesValue();
2802     bool TrueWhenEqual =
2803         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2804             ->isAllOnesValue();
2805     bool TrueWhenGreaterThan =
2806         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2807             ->isAllOnesValue();
2808 
2809     // This generates the new instruction that will replace the original Cmp
2810     // Instruction. Instead of enumerating the various combinations when
2811     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2812     // false, we rely on chaining of ORs and future passes of InstCombine to
2813     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2814 
2815     // When none of the three constants satisfy the predicate for the RHS (C),
2816     // the entire original Cmp can be simplified to a false.
2817     Value *Cond = Builder.getFalse();
2818     if (TrueWhenLessThan)
2819       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2820                                                        OrigLHS, OrigRHS));
2821     if (TrueWhenEqual)
2822       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2823                                                        OrigLHS, OrigRHS));
2824     if (TrueWhenGreaterThan)
2825       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2826                                                        OrigLHS, OrigRHS));
2827 
2828     return replaceInstUsesWith(Cmp, Cond);
2829   }
2830   return nullptr;
2831 }
2832 
2833 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2834   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2835   if (!Bitcast)
2836     return nullptr;
2837 
2838   ICmpInst::Predicate Pred = Cmp.getPredicate();
2839   Value *Op1 = Cmp.getOperand(1);
2840   Value *BCSrcOp = Bitcast->getOperand(0);
2841 
2842   // Make sure the bitcast doesn't change the number of vector elements.
2843   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2844           Bitcast->getDestTy()->getScalarSizeInBits()) {
2845     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2846     Value *X;
2847     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2848       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2849       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2850       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2851       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2852       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2853            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2854           match(Op1, m_Zero()))
2855         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2856 
2857       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2858       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2859         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2860 
2861       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2862       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2863         return new ICmpInst(Pred, X,
2864                             ConstantInt::getAllOnesValue(X->getType()));
2865     }
2866 
2867     // Zero-equality checks are preserved through unsigned floating-point casts:
2868     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2869     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2870     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2871       if (Cmp.isEquality() && match(Op1, m_Zero()))
2872         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2873 
2874     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2875     // the FP extend/truncate because that cast does not change the sign-bit.
2876     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2877     // The sign-bit is always the most significant bit in those types.
2878     const APInt *C;
2879     bool TrueIfSigned;
2880     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2881         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2882       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2883           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2884         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2885         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2886         Type *XType = X->getType();
2887 
2888         // We can't currently handle Power style floating point operations here.
2889         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2890 
2891           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2892           if (auto *XVTy = dyn_cast<VectorType>(XType))
2893             NewType = VectorType::get(NewType, XVTy->getElementCount());
2894           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2895           if (TrueIfSigned)
2896             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2897                                 ConstantInt::getNullValue(NewType));
2898           else
2899             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2900                                 ConstantInt::getAllOnesValue(NewType));
2901         }
2902       }
2903     }
2904   }
2905 
2906   // Test to see if the operands of the icmp are casted versions of other
2907   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2908   if (Bitcast->getType()->isPointerTy() &&
2909       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2910     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2911     // so eliminate it as well.
2912     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2913       Op1 = BC2->getOperand(0);
2914 
2915     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2916     return new ICmpInst(Pred, BCSrcOp, Op1);
2917   }
2918 
2919   const APInt *C;
2920   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2921       !Bitcast->getType()->isIntegerTy() ||
2922       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2923     return nullptr;
2924 
2925   // If this is checking if all elements of a vector compare are set or not,
2926   // invert the casted vector equality compare and test if all compare
2927   // elements are clear or not. Compare against zero is generally easier for
2928   // analysis and codegen.
2929   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2930   // Example: are all elements equal? --> are zero elements not equal?
2931   // TODO: Try harder to reduce compare of 2 freely invertible operands?
2932   if (Cmp.isEquality() && C->isAllOnesValue() && Bitcast->hasOneUse() &&
2933       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
2934     Type *ScalarTy = Bitcast->getType();
2935     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy);
2936     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy));
2937   }
2938 
2939   // If this is checking if all elements of an extended vector are clear or not,
2940   // compare in a narrow type to eliminate the extend:
2941   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
2942   Value *X;
2943   if (Cmp.isEquality() && C->isNullValue() && Bitcast->hasOneUse() &&
2944       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
2945     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
2946       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
2947       Value *NewCast = Builder.CreateBitCast(X, NewType);
2948       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
2949     }
2950   }
2951 
2952   // Folding: icmp <pred> iN X, C
2953   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2954   //    and C is a splat of a K-bit pattern
2955   //    and SC is a constant vector = <C', C', C', ..., C'>
2956   // Into:
2957   //   %E = extractelement <M x iK> %vec, i32 C'
2958   //   icmp <pred> iK %E, trunc(C)
2959   Value *Vec;
2960   ArrayRef<int> Mask;
2961   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2962     // Check whether every element of Mask is the same constant
2963     if (is_splat(Mask)) {
2964       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2965       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2966       if (C->isSplat(EltTy->getBitWidth())) {
2967         // Fold the icmp based on the value of C
2968         // If C is M copies of an iK sized bit pattern,
2969         // then:
2970         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2971         //       icmp <pred> iK %SplatVal, <pattern>
2972         Value *Elem = Builder.getInt32(Mask[0]);
2973         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2974         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2975         return new ICmpInst(Pred, Extract, NewC);
2976       }
2977     }
2978   }
2979   return nullptr;
2980 }
2981 
2982 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2983 /// where X is some kind of instruction.
2984 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2985   const APInt *C;
2986   if (!match(Cmp.getOperand(1), m_APInt(C)))
2987     return nullptr;
2988 
2989   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2990     switch (BO->getOpcode()) {
2991     case Instruction::Xor:
2992       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2993         return I;
2994       break;
2995     case Instruction::And:
2996       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2997         return I;
2998       break;
2999     case Instruction::Or:
3000       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
3001         return I;
3002       break;
3003     case Instruction::Mul:
3004       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
3005         return I;
3006       break;
3007     case Instruction::Shl:
3008       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
3009         return I;
3010       break;
3011     case Instruction::LShr:
3012     case Instruction::AShr:
3013       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
3014         return I;
3015       break;
3016     case Instruction::SRem:
3017       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
3018         return I;
3019       break;
3020     case Instruction::UDiv:
3021       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
3022         return I;
3023       LLVM_FALLTHROUGH;
3024     case Instruction::SDiv:
3025       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
3026         return I;
3027       break;
3028     case Instruction::Sub:
3029       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
3030         return I;
3031       break;
3032     case Instruction::Add:
3033       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
3034         return I;
3035       break;
3036     default:
3037       break;
3038     }
3039     // TODO: These folds could be refactored to be part of the above calls.
3040     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
3041       return I;
3042   }
3043 
3044   // Match against CmpInst LHS being instructions other than binary operators.
3045 
3046   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
3047     // For now, we only support constant integers while folding the
3048     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3049     // similar to the cases handled by binary ops above.
3050     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3051       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3052         return I;
3053   }
3054 
3055   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
3056     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3057       return I;
3058   }
3059 
3060   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3061     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3062       return I;
3063 
3064   return nullptr;
3065 }
3066 
3067 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3068 /// icmp eq/ne BO, C.
3069 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3070     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3071   // TODO: Some of these folds could work with arbitrary constants, but this
3072   // function is limited to scalar and vector splat constants.
3073   if (!Cmp.isEquality())
3074     return nullptr;
3075 
3076   ICmpInst::Predicate Pred = Cmp.getPredicate();
3077   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3078   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3079   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3080 
3081   switch (BO->getOpcode()) {
3082   case Instruction::SRem:
3083     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3084     if (C.isNullValue() && BO->hasOneUse()) {
3085       const APInt *BOC;
3086       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3087         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3088         return new ICmpInst(Pred, NewRem,
3089                             Constant::getNullValue(BO->getType()));
3090       }
3091     }
3092     break;
3093   case Instruction::Add: {
3094     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3095     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3096       if (BO->hasOneUse())
3097         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3098     } else if (C.isNullValue()) {
3099       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3100       // efficiently invertible, or if the add has just this one use.
3101       if (Value *NegVal = dyn_castNegVal(BOp1))
3102         return new ICmpInst(Pred, BOp0, NegVal);
3103       if (Value *NegVal = dyn_castNegVal(BOp0))
3104         return new ICmpInst(Pred, NegVal, BOp1);
3105       if (BO->hasOneUse()) {
3106         Value *Neg = Builder.CreateNeg(BOp1);
3107         Neg->takeName(BO);
3108         return new ICmpInst(Pred, BOp0, Neg);
3109       }
3110     }
3111     break;
3112   }
3113   case Instruction::Xor:
3114     if (BO->hasOneUse()) {
3115       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3116         // For the xor case, we can xor two constants together, eliminating
3117         // the explicit xor.
3118         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3119       } else if (C.isNullValue()) {
3120         // Replace ((xor A, B) != 0) with (A != B)
3121         return new ICmpInst(Pred, BOp0, BOp1);
3122       }
3123     }
3124     break;
3125   case Instruction::Sub:
3126     if (BO->hasOneUse()) {
3127       // Only check for constant LHS here, as constant RHS will be canonicalized
3128       // to add and use the fold above.
3129       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3130         // Replace ((sub BOC, B) != C) with (B != BOC-C).
3131         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3132       } else if (C.isNullValue()) {
3133         // Replace ((sub A, B) != 0) with (A != B).
3134         return new ICmpInst(Pred, BOp0, BOp1);
3135       }
3136     }
3137     break;
3138   case Instruction::Or: {
3139     const APInt *BOC;
3140     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3141       // Comparing if all bits outside of a constant mask are set?
3142       // Replace (X | C) == -1 with (X & ~C) == ~C.
3143       // This removes the -1 constant.
3144       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3145       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3146       return new ICmpInst(Pred, And, NotBOC);
3147     }
3148     break;
3149   }
3150   case Instruction::And: {
3151     const APInt *BOC;
3152     if (match(BOp1, m_APInt(BOC))) {
3153       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3154       if (C == *BOC && C.isPowerOf2())
3155         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3156                             BO, Constant::getNullValue(RHS->getType()));
3157     }
3158     break;
3159   }
3160   case Instruction::UDiv:
3161     if (C.isNullValue()) {
3162       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3163       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3164       return new ICmpInst(NewPred, BOp1, BOp0);
3165     }
3166     break;
3167   default:
3168     break;
3169   }
3170   return nullptr;
3171 }
3172 
3173 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3174 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3175     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3176   Type *Ty = II->getType();
3177   unsigned BitWidth = C.getBitWidth();
3178   switch (II->getIntrinsicID()) {
3179   case Intrinsic::abs:
3180     // abs(A) == 0  ->  A == 0
3181     // abs(A) == INT_MIN  ->  A == INT_MIN
3182     if (C.isNullValue() || C.isMinSignedValue())
3183       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3184                           ConstantInt::get(Ty, C));
3185     break;
3186 
3187   case Intrinsic::bswap:
3188     // bswap(A) == C  ->  A == bswap(C)
3189     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3190                         ConstantInt::get(Ty, C.byteSwap()));
3191 
3192   case Intrinsic::ctlz:
3193   case Intrinsic::cttz: {
3194     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3195     if (C == BitWidth)
3196       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3197                           ConstantInt::getNullValue(Ty));
3198 
3199     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3200     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3201     // Limit to one use to ensure we don't increase instruction count.
3202     unsigned Num = C.getLimitedValue(BitWidth);
3203     if (Num != BitWidth && II->hasOneUse()) {
3204       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3205       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3206                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3207       APInt Mask2 = IsTrailing
3208         ? APInt::getOneBitSet(BitWidth, Num)
3209         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3210       return new ICmpInst(Cmp.getPredicate(),
3211           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3212           ConstantInt::get(Ty, Mask2));
3213     }
3214     break;
3215   }
3216 
3217   case Intrinsic::ctpop: {
3218     // popcount(A) == 0  ->  A == 0 and likewise for !=
3219     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3220     bool IsZero = C.isNullValue();
3221     if (IsZero || C == BitWidth)
3222       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3223           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3224 
3225     break;
3226   }
3227 
3228   case Intrinsic::uadd_sat: {
3229     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3230     if (C.isNullValue()) {
3231       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3232       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3233     }
3234     break;
3235   }
3236 
3237   case Intrinsic::usub_sat: {
3238     // usub.sat(a, b) == 0  ->  a <= b
3239     if (C.isNullValue()) {
3240       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3241           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3242       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3243     }
3244     break;
3245   }
3246   default:
3247     break;
3248   }
3249 
3250   return nullptr;
3251 }
3252 
3253 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3254 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3255                                                              IntrinsicInst *II,
3256                                                              const APInt &C) {
3257   if (Cmp.isEquality())
3258     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3259 
3260   Type *Ty = II->getType();
3261   unsigned BitWidth = C.getBitWidth();
3262   ICmpInst::Predicate Pred = Cmp.getPredicate();
3263   switch (II->getIntrinsicID()) {
3264   case Intrinsic::ctpop: {
3265     // (ctpop X > BitWidth - 1) --> X == -1
3266     Value *X = II->getArgOperand(0);
3267     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3268       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3269                              ConstantInt::getAllOnesValue(Ty));
3270     // (ctpop X < BitWidth) --> X != -1
3271     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3272       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3273                              ConstantInt::getAllOnesValue(Ty));
3274     break;
3275   }
3276   case Intrinsic::ctlz: {
3277     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3278     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3279       unsigned Num = C.getLimitedValue();
3280       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3281       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3282                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3283     }
3284 
3285     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3286     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3287       unsigned Num = C.getLimitedValue();
3288       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3289       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3290                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3291     }
3292     break;
3293   }
3294   case Intrinsic::cttz: {
3295     // Limit to one use to ensure we don't increase instruction count.
3296     if (!II->hasOneUse())
3297       return nullptr;
3298 
3299     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3300     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3301       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3302       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3303                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3304                              ConstantInt::getNullValue(Ty));
3305     }
3306 
3307     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3308     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3309       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3310       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3311                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3312                              ConstantInt::getNullValue(Ty));
3313     }
3314     break;
3315   }
3316   default:
3317     break;
3318   }
3319 
3320   return nullptr;
3321 }
3322 
3323 /// Handle icmp with constant (but not simple integer constant) RHS.
3324 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3325   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3326   Constant *RHSC = dyn_cast<Constant>(Op1);
3327   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3328   if (!RHSC || !LHSI)
3329     return nullptr;
3330 
3331   switch (LHSI->getOpcode()) {
3332   case Instruction::GetElementPtr:
3333     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3334     if (RHSC->isNullValue() &&
3335         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3336       return new ICmpInst(
3337           I.getPredicate(), LHSI->getOperand(0),
3338           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3339     break;
3340   case Instruction::PHI:
3341     // Only fold icmp into the PHI if the phi and icmp are in the same
3342     // block.  If in the same block, we're encouraging jump threading.  If
3343     // not, we are just pessimizing the code by making an i1 phi.
3344     if (LHSI->getParent() == I.getParent())
3345       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3346         return NV;
3347     break;
3348   case Instruction::Select: {
3349     // If either operand of the select is a constant, we can fold the
3350     // comparison into the select arms, which will cause one to be
3351     // constant folded and the select turned into a bitwise or.
3352     Value *Op1 = nullptr, *Op2 = nullptr;
3353     ConstantInt *CI = nullptr;
3354 
3355     auto SimplifyOp = [&](Value *V) {
3356       Value *Op = nullptr;
3357       if (Constant *C = dyn_cast<Constant>(V)) {
3358         Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3359       } else if (RHSC->isNullValue()) {
3360         // If null is being compared, check if it can be further simplified.
3361         Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ);
3362       }
3363       return Op;
3364     };
3365     Op1 = SimplifyOp(LHSI->getOperand(1));
3366     if (Op1)
3367       CI = dyn_cast<ConstantInt>(Op1);
3368 
3369     Op2 = SimplifyOp(LHSI->getOperand(2));
3370     if (Op2)
3371       CI = dyn_cast<ConstantInt>(Op2);
3372 
3373     // We only want to perform this transformation if it will not lead to
3374     // additional code. This is true if either both sides of the select
3375     // fold to a constant (in which case the icmp is replaced with a select
3376     // which will usually simplify) or this is the only user of the
3377     // select (in which case we are trading a select+icmp for a simpler
3378     // select+icmp) or all uses of the select can be replaced based on
3379     // dominance information ("Global cases").
3380     bool Transform = false;
3381     if (Op1 && Op2)
3382       Transform = true;
3383     else if (Op1 || Op2) {
3384       // Local case
3385       if (LHSI->hasOneUse())
3386         Transform = true;
3387       // Global cases
3388       else if (CI && !CI->isZero())
3389         // When Op1 is constant try replacing select with second operand.
3390         // Otherwise Op2 is constant and try replacing select with first
3391         // operand.
3392         Transform =
3393             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3394     }
3395     if (Transform) {
3396       if (!Op1)
3397         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3398                                  I.getName());
3399       if (!Op2)
3400         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3401                                  I.getName());
3402       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3403     }
3404     break;
3405   }
3406   case Instruction::IntToPtr:
3407     // icmp pred inttoptr(X), null -> icmp pred X, 0
3408     if (RHSC->isNullValue() &&
3409         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3410       return new ICmpInst(
3411           I.getPredicate(), LHSI->getOperand(0),
3412           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3413     break;
3414 
3415   case Instruction::Load:
3416     // Try to optimize things like "A[i] > 4" to index computations.
3417     if (GetElementPtrInst *GEP =
3418             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3419       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3420         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3421             !cast<LoadInst>(LHSI)->isVolatile())
3422           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3423             return Res;
3424     }
3425     break;
3426   }
3427 
3428   return nullptr;
3429 }
3430 
3431 /// Some comparisons can be simplified.
3432 /// In this case, we are looking for comparisons that look like
3433 /// a check for a lossy truncation.
3434 /// Folds:
3435 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3436 /// Where Mask is some pattern that produces all-ones in low bits:
3437 ///    (-1 >> y)
3438 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3439 ///   ~(-1 << y)
3440 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3441 /// The Mask can be a constant, too.
3442 /// For some predicates, the operands are commutative.
3443 /// For others, x can only be on a specific side.
3444 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3445                                           InstCombiner::BuilderTy &Builder) {
3446   ICmpInst::Predicate SrcPred;
3447   Value *X, *M, *Y;
3448   auto m_VariableMask = m_CombineOr(
3449       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3450                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3451       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3452                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3453   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3454   if (!match(&I, m_c_ICmp(SrcPred,
3455                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3456                           m_Deferred(X))))
3457     return nullptr;
3458 
3459   ICmpInst::Predicate DstPred;
3460   switch (SrcPred) {
3461   case ICmpInst::Predicate::ICMP_EQ:
3462     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3463     DstPred = ICmpInst::Predicate::ICMP_ULE;
3464     break;
3465   case ICmpInst::Predicate::ICMP_NE:
3466     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3467     DstPred = ICmpInst::Predicate::ICMP_UGT;
3468     break;
3469   case ICmpInst::Predicate::ICMP_ULT:
3470     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3471     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3472     DstPred = ICmpInst::Predicate::ICMP_UGT;
3473     break;
3474   case ICmpInst::Predicate::ICMP_UGE:
3475     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3476     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3477     DstPred = ICmpInst::Predicate::ICMP_ULE;
3478     break;
3479   case ICmpInst::Predicate::ICMP_SLT:
3480     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3481     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3482     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3483       return nullptr;
3484     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3485       return nullptr;
3486     DstPred = ICmpInst::Predicate::ICMP_SGT;
3487     break;
3488   case ICmpInst::Predicate::ICMP_SGE:
3489     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3490     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3491     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3492       return nullptr;
3493     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3494       return nullptr;
3495     DstPred = ICmpInst::Predicate::ICMP_SLE;
3496     break;
3497   case ICmpInst::Predicate::ICMP_SGT:
3498   case ICmpInst::Predicate::ICMP_SLE:
3499     return nullptr;
3500   case ICmpInst::Predicate::ICMP_UGT:
3501   case ICmpInst::Predicate::ICMP_ULE:
3502     llvm_unreachable("Instsimplify took care of commut. variant");
3503     break;
3504   default:
3505     llvm_unreachable("All possible folds are handled.");
3506   }
3507 
3508   // The mask value may be a vector constant that has undefined elements. But it
3509   // may not be safe to propagate those undefs into the new compare, so replace
3510   // those elements by copying an existing, defined, and safe scalar constant.
3511   Type *OpTy = M->getType();
3512   auto *VecC = dyn_cast<Constant>(M);
3513   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3514   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3515     Constant *SafeReplacementConstant = nullptr;
3516     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3517       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3518         SafeReplacementConstant = VecC->getAggregateElement(i);
3519         break;
3520       }
3521     }
3522     assert(SafeReplacementConstant && "Failed to find undef replacement");
3523     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3524   }
3525 
3526   return Builder.CreateICmp(DstPred, X, M);
3527 }
3528 
3529 /// Some comparisons can be simplified.
3530 /// In this case, we are looking for comparisons that look like
3531 /// a check for a lossy signed truncation.
3532 /// Folds:   (MaskedBits is a constant.)
3533 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3534 /// Into:
3535 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3536 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3537 static Value *
3538 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3539                                  InstCombiner::BuilderTy &Builder) {
3540   ICmpInst::Predicate SrcPred;
3541   Value *X;
3542   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3543   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3544   if (!match(&I, m_c_ICmp(SrcPred,
3545                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3546                                           m_APInt(C1))),
3547                           m_Deferred(X))))
3548     return nullptr;
3549 
3550   // Potential handling of non-splats: for each element:
3551   //  * if both are undef, replace with constant 0.
3552   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3553   //  * if both are not undef, and are different, bailout.
3554   //  * else, only one is undef, then pick the non-undef one.
3555 
3556   // The shift amount must be equal.
3557   if (*C0 != *C1)
3558     return nullptr;
3559   const APInt &MaskedBits = *C0;
3560   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3561 
3562   ICmpInst::Predicate DstPred;
3563   switch (SrcPred) {
3564   case ICmpInst::Predicate::ICMP_EQ:
3565     // ((%x << MaskedBits) a>> MaskedBits) == %x
3566     //   =>
3567     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3568     DstPred = ICmpInst::Predicate::ICMP_ULT;
3569     break;
3570   case ICmpInst::Predicate::ICMP_NE:
3571     // ((%x << MaskedBits) a>> MaskedBits) != %x
3572     //   =>
3573     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3574     DstPred = ICmpInst::Predicate::ICMP_UGE;
3575     break;
3576   // FIXME: are more folds possible?
3577   default:
3578     return nullptr;
3579   }
3580 
3581   auto *XType = X->getType();
3582   const unsigned XBitWidth = XType->getScalarSizeInBits();
3583   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3584   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3585 
3586   // KeptBits = bitwidth(%x) - MaskedBits
3587   const APInt KeptBits = BitWidth - MaskedBits;
3588   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3589   // ICmpCst = (1 << KeptBits)
3590   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3591   assert(ICmpCst.isPowerOf2());
3592   // AddCst = (1 << (KeptBits-1))
3593   const APInt AddCst = ICmpCst.lshr(1);
3594   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3595 
3596   // T0 = add %x, AddCst
3597   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3598   // T1 = T0 DstPred ICmpCst
3599   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3600 
3601   return T1;
3602 }
3603 
3604 // Given pattern:
3605 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3606 // we should move shifts to the same hand of 'and', i.e. rewrite as
3607 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3608 // We are only interested in opposite logical shifts here.
3609 // One of the shifts can be truncated.
3610 // If we can, we want to end up creating 'lshr' shift.
3611 static Value *
3612 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3613                                            InstCombiner::BuilderTy &Builder) {
3614   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3615       !I.getOperand(0)->hasOneUse())
3616     return nullptr;
3617 
3618   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3619 
3620   // Look for an 'and' of two logical shifts, one of which may be truncated.
3621   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3622   Instruction *XShift, *MaybeTruncation, *YShift;
3623   if (!match(
3624           I.getOperand(0),
3625           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3626                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3627                                    m_AnyLogicalShift, m_Instruction(YShift))),
3628                                m_Instruction(MaybeTruncation)))))
3629     return nullptr;
3630 
3631   // We potentially looked past 'trunc', but only when matching YShift,
3632   // therefore YShift must have the widest type.
3633   Instruction *WidestShift = YShift;
3634   // Therefore XShift must have the shallowest type.
3635   // Or they both have identical types if there was no truncation.
3636   Instruction *NarrowestShift = XShift;
3637 
3638   Type *WidestTy = WidestShift->getType();
3639   Type *NarrowestTy = NarrowestShift->getType();
3640   assert(NarrowestTy == I.getOperand(0)->getType() &&
3641          "We did not look past any shifts while matching XShift though.");
3642   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3643 
3644   // If YShift is a 'lshr', swap the shifts around.
3645   if (match(YShift, m_LShr(m_Value(), m_Value())))
3646     std::swap(XShift, YShift);
3647 
3648   // The shifts must be in opposite directions.
3649   auto XShiftOpcode = XShift->getOpcode();
3650   if (XShiftOpcode == YShift->getOpcode())
3651     return nullptr; // Do not care about same-direction shifts here.
3652 
3653   Value *X, *XShAmt, *Y, *YShAmt;
3654   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3655   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3656 
3657   // If one of the values being shifted is a constant, then we will end with
3658   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3659   // however, we will need to ensure that we won't increase instruction count.
3660   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3661     // At least one of the hands of the 'and' should be one-use shift.
3662     if (!match(I.getOperand(0),
3663                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3664       return nullptr;
3665     if (HadTrunc) {
3666       // Due to the 'trunc', we will need to widen X. For that either the old
3667       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3668       if (!MaybeTruncation->hasOneUse() &&
3669           !NarrowestShift->getOperand(1)->hasOneUse())
3670         return nullptr;
3671     }
3672   }
3673 
3674   // We have two shift amounts from two different shifts. The types of those
3675   // shift amounts may not match. If that's the case let's bailout now.
3676   if (XShAmt->getType() != YShAmt->getType())
3677     return nullptr;
3678 
3679   // As input, we have the following pattern:
3680   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3681   // We want to rewrite that as:
3682   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3683   // While we know that originally (Q+K) would not overflow
3684   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3685   // shift amounts. so it may now overflow in smaller bitwidth.
3686   // To ensure that does not happen, we need to ensure that the total maximal
3687   // shift amount is still representable in that smaller bit width.
3688   unsigned MaximalPossibleTotalShiftAmount =
3689       (WidestTy->getScalarSizeInBits() - 1) +
3690       (NarrowestTy->getScalarSizeInBits() - 1);
3691   APInt MaximalRepresentableShiftAmount =
3692       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3693   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3694     return nullptr;
3695 
3696   // Can we fold (XShAmt+YShAmt) ?
3697   auto *NewShAmt = dyn_cast_or_null<Constant>(
3698       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3699                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3700   if (!NewShAmt)
3701     return nullptr;
3702   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3703   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3704 
3705   // Is the new shift amount smaller than the bit width?
3706   // FIXME: could also rely on ConstantRange.
3707   if (!match(NewShAmt,
3708              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3709                                 APInt(WidestBitWidth, WidestBitWidth))))
3710     return nullptr;
3711 
3712   // An extra legality check is needed if we had trunc-of-lshr.
3713   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3714     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3715                     WidestShift]() {
3716       // It isn't obvious whether it's worth it to analyze non-constants here.
3717       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3718       // If *any* of these preconditions matches we can perform the fold.
3719       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3720                                     ? NewShAmt->getSplatValue()
3721                                     : NewShAmt;
3722       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3723       if (NewShAmtSplat &&
3724           (NewShAmtSplat->isNullValue() ||
3725            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3726         return true;
3727       // We consider *min* leading zeros so a single outlier
3728       // blocks the transform as opposed to allowing it.
3729       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3730         KnownBits Known = computeKnownBits(C, SQ.DL);
3731         unsigned MinLeadZero = Known.countMinLeadingZeros();
3732         // If the value being shifted has at most lowest bit set we can fold.
3733         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3734         if (MaxActiveBits <= 1)
3735           return true;
3736         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3737         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3738           return true;
3739       }
3740       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3741         KnownBits Known = computeKnownBits(C, SQ.DL);
3742         unsigned MinLeadZero = Known.countMinLeadingZeros();
3743         // If the value being shifted has at most lowest bit set we can fold.
3744         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3745         if (MaxActiveBits <= 1)
3746           return true;
3747         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3748         if (NewShAmtSplat) {
3749           APInt AdjNewShAmt =
3750               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3751           if (AdjNewShAmt.ule(MinLeadZero))
3752             return true;
3753         }
3754       }
3755       return false; // Can't tell if it's ok.
3756     };
3757     if (!CanFold())
3758       return nullptr;
3759   }
3760 
3761   // All good, we can do this fold.
3762   X = Builder.CreateZExt(X, WidestTy);
3763   Y = Builder.CreateZExt(Y, WidestTy);
3764   // The shift is the same that was for X.
3765   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3766                   ? Builder.CreateLShr(X, NewShAmt)
3767                   : Builder.CreateShl(X, NewShAmt);
3768   Value *T1 = Builder.CreateAnd(T0, Y);
3769   return Builder.CreateICmp(I.getPredicate(), T1,
3770                             Constant::getNullValue(WidestTy));
3771 }
3772 
3773 /// Fold
3774 ///   (-1 u/ x) u< y
3775 ///   ((x * y) u/ x) != y
3776 /// to
3777 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3778 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3779 /// will mean that we are looking for the opposite answer.
3780 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3781   ICmpInst::Predicate Pred;
3782   Value *X, *Y;
3783   Instruction *Mul;
3784   bool NeedNegation;
3785   // Look for: (-1 u/ x) u</u>= y
3786   if (!I.isEquality() &&
3787       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3788                          m_Value(Y)))) {
3789     Mul = nullptr;
3790 
3791     // Are we checking that overflow does not happen, or does happen?
3792     switch (Pred) {
3793     case ICmpInst::Predicate::ICMP_ULT:
3794       NeedNegation = false;
3795       break; // OK
3796     case ICmpInst::Predicate::ICMP_UGE:
3797       NeedNegation = true;
3798       break; // OK
3799     default:
3800       return nullptr; // Wrong predicate.
3801     }
3802   } else // Look for: ((x * y) u/ x) !=/== y
3803       if (I.isEquality() &&
3804           match(&I, m_c_ICmp(Pred, m_Value(Y),
3805                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3806                                                                   m_Value(X)),
3807                                                           m_Instruction(Mul)),
3808                                              m_Deferred(X)))))) {
3809     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3810   } else
3811     return nullptr;
3812 
3813   BuilderTy::InsertPointGuard Guard(Builder);
3814   // If the pattern included (x * y), we'll want to insert new instructions
3815   // right before that original multiplication so that we can replace it.
3816   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3817   if (MulHadOtherUses)
3818     Builder.SetInsertPoint(Mul);
3819 
3820   Function *F = Intrinsic::getDeclaration(
3821       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3822   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3823 
3824   // If the multiplication was used elsewhere, to ensure that we don't leave
3825   // "duplicate" instructions, replace uses of that original multiplication
3826   // with the multiplication result from the with.overflow intrinsic.
3827   if (MulHadOtherUses)
3828     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3829 
3830   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3831   if (NeedNegation) // This technically increases instruction count.
3832     Res = Builder.CreateNot(Res, "umul.not.ov");
3833 
3834   // If we replaced the mul, erase it. Do this after all uses of Builder,
3835   // as the mul is used as insertion point.
3836   if (MulHadOtherUses)
3837     eraseInstFromFunction(*Mul);
3838 
3839   return Res;
3840 }
3841 
3842 static Instruction *foldICmpXNegX(ICmpInst &I) {
3843   CmpInst::Predicate Pred;
3844   Value *X;
3845   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3846     return nullptr;
3847 
3848   if (ICmpInst::isSigned(Pred))
3849     Pred = ICmpInst::getSwappedPredicate(Pred);
3850   else if (ICmpInst::isUnsigned(Pred))
3851     Pred = ICmpInst::getSignedPredicate(Pred);
3852   // else for equality-comparisons just keep the predicate.
3853 
3854   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3855                           Constant::getNullValue(X->getType()), I.getName());
3856 }
3857 
3858 /// Try to fold icmp (binop), X or icmp X, (binop).
3859 /// TODO: A large part of this logic is duplicated in InstSimplify's
3860 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3861 /// duplication.
3862 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3863                                              const SimplifyQuery &SQ) {
3864   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3865   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3866 
3867   // Special logic for binary operators.
3868   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3869   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3870   if (!BO0 && !BO1)
3871     return nullptr;
3872 
3873   if (Instruction *NewICmp = foldICmpXNegX(I))
3874     return NewICmp;
3875 
3876   const CmpInst::Predicate Pred = I.getPredicate();
3877   Value *X;
3878 
3879   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3880   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3881   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3882       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3883     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3884   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3885   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3886       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3887     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3888 
3889   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3890   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3891     NoOp0WrapProblem =
3892         ICmpInst::isEquality(Pred) ||
3893         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3894         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3895   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3896     NoOp1WrapProblem =
3897         ICmpInst::isEquality(Pred) ||
3898         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3899         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3900 
3901   // Analyze the case when either Op0 or Op1 is an add instruction.
3902   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3903   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3904   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3905     A = BO0->getOperand(0);
3906     B = BO0->getOperand(1);
3907   }
3908   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3909     C = BO1->getOperand(0);
3910     D = BO1->getOperand(1);
3911   }
3912 
3913   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3914   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3915   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3916     return new ICmpInst(Pred, A == Op1 ? B : A,
3917                         Constant::getNullValue(Op1->getType()));
3918 
3919   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3920   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3921   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3922     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3923                         C == Op0 ? D : C);
3924 
3925   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3926   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3927       NoOp1WrapProblem) {
3928     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3929     Value *Y, *Z;
3930     if (A == C) {
3931       // C + B == C + D  ->  B == D
3932       Y = B;
3933       Z = D;
3934     } else if (A == D) {
3935       // D + B == C + D  ->  B == C
3936       Y = B;
3937       Z = C;
3938     } else if (B == C) {
3939       // A + C == C + D  ->  A == D
3940       Y = A;
3941       Z = D;
3942     } else {
3943       assert(B == D);
3944       // A + D == C + D  ->  A == C
3945       Y = A;
3946       Z = C;
3947     }
3948     return new ICmpInst(Pred, Y, Z);
3949   }
3950 
3951   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3952   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3953       match(B, m_AllOnes()))
3954     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3955 
3956   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3957   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3958       match(B, m_AllOnes()))
3959     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3960 
3961   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3962   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3963     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3964 
3965   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3966   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3967     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3968 
3969   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3970   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3971       match(D, m_AllOnes()))
3972     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3973 
3974   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3975   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3976       match(D, m_AllOnes()))
3977     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3978 
3979   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3980   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3981     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3982 
3983   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3984   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3985     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3986 
3987   // TODO: The subtraction-related identities shown below also hold, but
3988   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3989   // wouldn't happen even if they were implemented.
3990   //
3991   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3992   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3993   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3994   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3995 
3996   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3997   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3998     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3999 
4000   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4001   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4002     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4003 
4004   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4005   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4006     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4007 
4008   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4009   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4010     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4011 
4012   // if C1 has greater magnitude than C2:
4013   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4014   //  s.t. C3 = C1 - C2
4015   //
4016   // if C2 has greater magnitude than C1:
4017   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4018   //  s.t. C3 = C2 - C1
4019   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4020       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
4021     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
4022       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
4023         const APInt &AP1 = C1->getValue();
4024         const APInt &AP2 = C2->getValue();
4025         if (AP1.isNegative() == AP2.isNegative()) {
4026           APInt AP1Abs = C1->getValue().abs();
4027           APInt AP2Abs = C2->getValue().abs();
4028           if (AP1Abs.uge(AP2Abs)) {
4029             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
4030             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
4031             bool HasNSW = BO0->hasNoSignedWrap();
4032             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4033             return new ICmpInst(Pred, NewAdd, C);
4034           } else {
4035             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
4036             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
4037             bool HasNSW = BO1->hasNoSignedWrap();
4038             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4039             return new ICmpInst(Pred, A, NewAdd);
4040           }
4041         }
4042       }
4043 
4044   // Analyze the case when either Op0 or Op1 is a sub instruction.
4045   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4046   A = nullptr;
4047   B = nullptr;
4048   C = nullptr;
4049   D = nullptr;
4050   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4051     A = BO0->getOperand(0);
4052     B = BO0->getOperand(1);
4053   }
4054   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4055     C = BO1->getOperand(0);
4056     D = BO1->getOperand(1);
4057   }
4058 
4059   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4060   if (A == Op1 && NoOp0WrapProblem)
4061     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4062   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4063   if (C == Op0 && NoOp1WrapProblem)
4064     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4065 
4066   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4067   // (A - B) u>/u<= A --> B u>/u<= A
4068   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4069     return new ICmpInst(Pred, B, A);
4070   // C u</u>= (C - D) --> C u</u>= D
4071   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4072     return new ICmpInst(Pred, C, D);
4073   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4074   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4075       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4076     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4077   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4078   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4079       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4080     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4081 
4082   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4083   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4084     return new ICmpInst(Pred, A, C);
4085 
4086   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4087   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4088     return new ICmpInst(Pred, D, B);
4089 
4090   // icmp (0-X) < cst --> x > -cst
4091   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4092     Value *X;
4093     if (match(BO0, m_Neg(m_Value(X))))
4094       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4095         if (RHSC->isNotMinSignedValue())
4096           return new ICmpInst(I.getSwappedPredicate(), X,
4097                               ConstantExpr::getNeg(RHSC));
4098   }
4099 
4100   {
4101     // Try to remove shared constant multiplier from equality comparison:
4102     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4103     Value *X, *Y;
4104     const APInt *C;
4105     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4106         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4107       if (!C->countTrailingZeros() ||
4108           (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4109           (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4110       return new ICmpInst(Pred, X, Y);
4111   }
4112 
4113   BinaryOperator *SRem = nullptr;
4114   // icmp (srem X, Y), Y
4115   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4116     SRem = BO0;
4117   // icmp Y, (srem X, Y)
4118   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4119            Op0 == BO1->getOperand(1))
4120     SRem = BO1;
4121   if (SRem) {
4122     // We don't check hasOneUse to avoid increasing register pressure because
4123     // the value we use is the same value this instruction was already using.
4124     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4125     default:
4126       break;
4127     case ICmpInst::ICMP_EQ:
4128       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4129     case ICmpInst::ICMP_NE:
4130       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4131     case ICmpInst::ICMP_SGT:
4132     case ICmpInst::ICMP_SGE:
4133       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4134                           Constant::getAllOnesValue(SRem->getType()));
4135     case ICmpInst::ICMP_SLT:
4136     case ICmpInst::ICMP_SLE:
4137       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4138                           Constant::getNullValue(SRem->getType()));
4139     }
4140   }
4141 
4142   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4143       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4144     switch (BO0->getOpcode()) {
4145     default:
4146       break;
4147     case Instruction::Add:
4148     case Instruction::Sub:
4149     case Instruction::Xor: {
4150       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4151         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4152 
4153       const APInt *C;
4154       if (match(BO0->getOperand(1), m_APInt(C))) {
4155         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4156         if (C->isSignMask()) {
4157           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4158           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4159         }
4160 
4161         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4162         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4163           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4164           NewPred = I.getSwappedPredicate(NewPred);
4165           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4166         }
4167       }
4168       break;
4169     }
4170     case Instruction::Mul: {
4171       if (!I.isEquality())
4172         break;
4173 
4174       const APInt *C;
4175       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4176           !C->isOneValue()) {
4177         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4178         // Mask = -1 >> count-trailing-zeros(C).
4179         if (unsigned TZs = C->countTrailingZeros()) {
4180           Constant *Mask = ConstantInt::get(
4181               BO0->getType(),
4182               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4183           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4184           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4185           return new ICmpInst(Pred, And1, And2);
4186         }
4187       }
4188       break;
4189     }
4190     case Instruction::UDiv:
4191     case Instruction::LShr:
4192       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4193         break;
4194       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4195 
4196     case Instruction::SDiv:
4197       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4198         break;
4199       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4200 
4201     case Instruction::AShr:
4202       if (!BO0->isExact() || !BO1->isExact())
4203         break;
4204       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4205 
4206     case Instruction::Shl: {
4207       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4208       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4209       if (!NUW && !NSW)
4210         break;
4211       if (!NSW && I.isSigned())
4212         break;
4213       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4214     }
4215     }
4216   }
4217 
4218   if (BO0) {
4219     // Transform  A & (L - 1) `ult` L --> L != 0
4220     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4221     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4222 
4223     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4224       auto *Zero = Constant::getNullValue(BO0->getType());
4225       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4226     }
4227   }
4228 
4229   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4230     return replaceInstUsesWith(I, V);
4231 
4232   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4233     return replaceInstUsesWith(I, V);
4234 
4235   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4236     return replaceInstUsesWith(I, V);
4237 
4238   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4239     return replaceInstUsesWith(I, V);
4240 
4241   return nullptr;
4242 }
4243 
4244 /// Fold icmp Pred min|max(X, Y), X.
4245 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4246   ICmpInst::Predicate Pred = Cmp.getPredicate();
4247   Value *Op0 = Cmp.getOperand(0);
4248   Value *X = Cmp.getOperand(1);
4249 
4250   // Canonicalize minimum or maximum operand to LHS of the icmp.
4251   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4252       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4253       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4254       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4255     std::swap(Op0, X);
4256     Pred = Cmp.getSwappedPredicate();
4257   }
4258 
4259   Value *Y;
4260   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4261     // smin(X, Y)  == X --> X s<= Y
4262     // smin(X, Y) s>= X --> X s<= Y
4263     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4264       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4265 
4266     // smin(X, Y) != X --> X s> Y
4267     // smin(X, Y) s< X --> X s> Y
4268     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4269       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4270 
4271     // These cases should be handled in InstSimplify:
4272     // smin(X, Y) s<= X --> true
4273     // smin(X, Y) s> X --> false
4274     return nullptr;
4275   }
4276 
4277   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4278     // smax(X, Y)  == X --> X s>= Y
4279     // smax(X, Y) s<= X --> X s>= Y
4280     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4281       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4282 
4283     // smax(X, Y) != X --> X s< Y
4284     // smax(X, Y) s> X --> X s< Y
4285     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4286       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4287 
4288     // These cases should be handled in InstSimplify:
4289     // smax(X, Y) s>= X --> true
4290     // smax(X, Y) s< X --> false
4291     return nullptr;
4292   }
4293 
4294   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4295     // umin(X, Y)  == X --> X u<= Y
4296     // umin(X, Y) u>= X --> X u<= Y
4297     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4298       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4299 
4300     // umin(X, Y) != X --> X u> Y
4301     // umin(X, Y) u< X --> X u> Y
4302     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4303       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4304 
4305     // These cases should be handled in InstSimplify:
4306     // umin(X, Y) u<= X --> true
4307     // umin(X, Y) u> X --> false
4308     return nullptr;
4309   }
4310 
4311   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4312     // umax(X, Y)  == X --> X u>= Y
4313     // umax(X, Y) u<= X --> X u>= Y
4314     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4315       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4316 
4317     // umax(X, Y) != X --> X u< Y
4318     // umax(X, Y) u> X --> X u< Y
4319     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4320       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4321 
4322     // These cases should be handled in InstSimplify:
4323     // umax(X, Y) u>= X --> true
4324     // umax(X, Y) u< X --> false
4325     return nullptr;
4326   }
4327 
4328   return nullptr;
4329 }
4330 
4331 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4332   if (!I.isEquality())
4333     return nullptr;
4334 
4335   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4336   const CmpInst::Predicate Pred = I.getPredicate();
4337   Value *A, *B, *C, *D;
4338   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4339     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4340       Value *OtherVal = A == Op1 ? B : A;
4341       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4342     }
4343 
4344     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4345       // A^c1 == C^c2 --> A == C^(c1^c2)
4346       ConstantInt *C1, *C2;
4347       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4348           Op1->hasOneUse()) {
4349         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4350         Value *Xor = Builder.CreateXor(C, NC);
4351         return new ICmpInst(Pred, A, Xor);
4352       }
4353 
4354       // A^B == A^D -> B == D
4355       if (A == C)
4356         return new ICmpInst(Pred, B, D);
4357       if (A == D)
4358         return new ICmpInst(Pred, B, C);
4359       if (B == C)
4360         return new ICmpInst(Pred, A, D);
4361       if (B == D)
4362         return new ICmpInst(Pred, A, C);
4363     }
4364   }
4365 
4366   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4367     // A == (A^B)  ->  B == 0
4368     Value *OtherVal = A == Op0 ? B : A;
4369     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4370   }
4371 
4372   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4373   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4374       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4375     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4376 
4377     if (A == C) {
4378       X = B;
4379       Y = D;
4380       Z = A;
4381     } else if (A == D) {
4382       X = B;
4383       Y = C;
4384       Z = A;
4385     } else if (B == C) {
4386       X = A;
4387       Y = D;
4388       Z = B;
4389     } else if (B == D) {
4390       X = A;
4391       Y = C;
4392       Z = B;
4393     }
4394 
4395     if (X) { // Build (X^Y) & Z
4396       Op1 = Builder.CreateXor(X, Y);
4397       Op1 = Builder.CreateAnd(Op1, Z);
4398       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4399     }
4400   }
4401 
4402   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4403   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4404   ConstantInt *Cst1;
4405   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4406        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4407       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4408        match(Op1, m_ZExt(m_Value(A))))) {
4409     APInt Pow2 = Cst1->getValue() + 1;
4410     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4411         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4412       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4413   }
4414 
4415   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4416   // For lshr and ashr pairs.
4417   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4418        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4419       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4420        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4421     unsigned TypeBits = Cst1->getBitWidth();
4422     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4423     if (ShAmt < TypeBits && ShAmt != 0) {
4424       ICmpInst::Predicate NewPred =
4425           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4426       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4427       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4428       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4429     }
4430   }
4431 
4432   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4433   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4434       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4435     unsigned TypeBits = Cst1->getBitWidth();
4436     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4437     if (ShAmt < TypeBits && ShAmt != 0) {
4438       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4439       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4440       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4441                                       I.getName() + ".mask");
4442       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4443     }
4444   }
4445 
4446   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4447   // "icmp (and X, mask), cst"
4448   uint64_t ShAmt = 0;
4449   if (Op0->hasOneUse() &&
4450       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4451       match(Op1, m_ConstantInt(Cst1)) &&
4452       // Only do this when A has multiple uses.  This is most important to do
4453       // when it exposes other optimizations.
4454       !A->hasOneUse()) {
4455     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4456 
4457     if (ShAmt < ASize) {
4458       APInt MaskV =
4459           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4460       MaskV <<= ShAmt;
4461 
4462       APInt CmpV = Cst1->getValue().zext(ASize);
4463       CmpV <<= ShAmt;
4464 
4465       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4466       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4467     }
4468   }
4469 
4470   // If both operands are byte-swapped or bit-reversed, just compare the
4471   // original values.
4472   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4473   // and handle more intrinsics.
4474   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4475       (match(Op0, m_BitReverse(m_Value(A))) &&
4476        match(Op1, m_BitReverse(m_Value(B)))))
4477     return new ICmpInst(Pred, A, B);
4478 
4479   // Canonicalize checking for a power-of-2-or-zero value:
4480   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4481   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4482   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4483                                    m_Deferred(A)))) ||
4484       !match(Op1, m_ZeroInt()))
4485     A = nullptr;
4486 
4487   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4488   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4489   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4490     A = Op1;
4491   else if (match(Op1,
4492                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4493     A = Op0;
4494 
4495   if (A) {
4496     Type *Ty = A->getType();
4497     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4498     return Pred == ICmpInst::ICMP_EQ
4499         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4500         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4501   }
4502 
4503   return nullptr;
4504 }
4505 
4506 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4507                                            InstCombiner::BuilderTy &Builder) {
4508   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4509   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4510   Value *X;
4511   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4512     return nullptr;
4513 
4514   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4515   bool IsSignedCmp = ICmp.isSigned();
4516   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4517     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4518     // and the other is a zext), then we can't handle this.
4519     // TODO: This is too strict. We can handle some predicates (equality?).
4520     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4521       return nullptr;
4522 
4523     // Not an extension from the same type?
4524     Value *Y = CastOp1->getOperand(0);
4525     Type *XTy = X->getType(), *YTy = Y->getType();
4526     if (XTy != YTy) {
4527       // One of the casts must have one use because we are creating a new cast.
4528       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4529         return nullptr;
4530       // Extend the narrower operand to the type of the wider operand.
4531       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4532         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4533       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4534         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4535       else
4536         return nullptr;
4537     }
4538 
4539     // (zext X) == (zext Y) --> X == Y
4540     // (sext X) == (sext Y) --> X == Y
4541     if (ICmp.isEquality())
4542       return new ICmpInst(ICmp.getPredicate(), X, Y);
4543 
4544     // A signed comparison of sign extended values simplifies into a
4545     // signed comparison.
4546     if (IsSignedCmp && IsSignedExt)
4547       return new ICmpInst(ICmp.getPredicate(), X, Y);
4548 
4549     // The other three cases all fold into an unsigned comparison.
4550     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4551   }
4552 
4553   // Below here, we are only folding a compare with constant.
4554   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4555   if (!C)
4556     return nullptr;
4557 
4558   // Compute the constant that would happen if we truncated to SrcTy then
4559   // re-extended to DestTy.
4560   Type *SrcTy = CastOp0->getSrcTy();
4561   Type *DestTy = CastOp0->getDestTy();
4562   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4563   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4564 
4565   // If the re-extended constant didn't change...
4566   if (Res2 == C) {
4567     if (ICmp.isEquality())
4568       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4569 
4570     // A signed comparison of sign extended values simplifies into a
4571     // signed comparison.
4572     if (IsSignedExt && IsSignedCmp)
4573       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4574 
4575     // The other three cases all fold into an unsigned comparison.
4576     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4577   }
4578 
4579   // The re-extended constant changed, partly changed (in the case of a vector),
4580   // or could not be determined to be equal (in the case of a constant
4581   // expression), so the constant cannot be represented in the shorter type.
4582   // All the cases that fold to true or false will have already been handled
4583   // by SimplifyICmpInst, so only deal with the tricky case.
4584   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4585     return nullptr;
4586 
4587   // Is source op positive?
4588   // icmp ult (sext X), C --> icmp sgt X, -1
4589   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4590     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4591 
4592   // Is source op negative?
4593   // icmp ugt (sext X), C --> icmp slt X, 0
4594   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4595   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4596 }
4597 
4598 /// Handle icmp (cast x), (cast or constant).
4599 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4600   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4601   // icmp compares only pointer's value.
4602   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4603   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4604   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4605   if (SimplifiedOp0 || SimplifiedOp1)
4606     return new ICmpInst(ICmp.getPredicate(),
4607                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4608                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4609 
4610   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4611   if (!CastOp0)
4612     return nullptr;
4613   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4614     return nullptr;
4615 
4616   Value *Op0Src = CastOp0->getOperand(0);
4617   Type *SrcTy = CastOp0->getSrcTy();
4618   Type *DestTy = CastOp0->getDestTy();
4619 
4620   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4621   // integer type is the same size as the pointer type.
4622   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4623     if (isa<VectorType>(SrcTy)) {
4624       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4625       DestTy = cast<VectorType>(DestTy)->getElementType();
4626     }
4627     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4628   };
4629   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4630       CompatibleSizes(SrcTy, DestTy)) {
4631     Value *NewOp1 = nullptr;
4632     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4633       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4634       if (PtrSrc->getType()->getPointerAddressSpace() ==
4635           Op0Src->getType()->getPointerAddressSpace()) {
4636         NewOp1 = PtrToIntOp1->getOperand(0);
4637         // If the pointer types don't match, insert a bitcast.
4638         if (Op0Src->getType() != NewOp1->getType())
4639           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4640       }
4641     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4642       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4643     }
4644 
4645     if (NewOp1)
4646       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4647   }
4648 
4649   return foldICmpWithZextOrSext(ICmp, Builder);
4650 }
4651 
4652 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4653   switch (BinaryOp) {
4654     default:
4655       llvm_unreachable("Unsupported binary op");
4656     case Instruction::Add:
4657     case Instruction::Sub:
4658       return match(RHS, m_Zero());
4659     case Instruction::Mul:
4660       return match(RHS, m_One());
4661   }
4662 }
4663 
4664 OverflowResult
4665 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4666                                   bool IsSigned, Value *LHS, Value *RHS,
4667                                   Instruction *CxtI) const {
4668   switch (BinaryOp) {
4669     default:
4670       llvm_unreachable("Unsupported binary op");
4671     case Instruction::Add:
4672       if (IsSigned)
4673         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4674       else
4675         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4676     case Instruction::Sub:
4677       if (IsSigned)
4678         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4679       else
4680         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4681     case Instruction::Mul:
4682       if (IsSigned)
4683         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4684       else
4685         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4686   }
4687 }
4688 
4689 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4690                                              bool IsSigned, Value *LHS,
4691                                              Value *RHS, Instruction &OrigI,
4692                                              Value *&Result,
4693                                              Constant *&Overflow) {
4694   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4695     std::swap(LHS, RHS);
4696 
4697   // If the overflow check was an add followed by a compare, the insertion point
4698   // may be pointing to the compare.  We want to insert the new instructions
4699   // before the add in case there are uses of the add between the add and the
4700   // compare.
4701   Builder.SetInsertPoint(&OrigI);
4702 
4703   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4704   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4705     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4706 
4707   if (isNeutralValue(BinaryOp, RHS)) {
4708     Result = LHS;
4709     Overflow = ConstantInt::getFalse(OverflowTy);
4710     return true;
4711   }
4712 
4713   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4714     case OverflowResult::MayOverflow:
4715       return false;
4716     case OverflowResult::AlwaysOverflowsLow:
4717     case OverflowResult::AlwaysOverflowsHigh:
4718       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4719       Result->takeName(&OrigI);
4720       Overflow = ConstantInt::getTrue(OverflowTy);
4721       return true;
4722     case OverflowResult::NeverOverflows:
4723       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4724       Result->takeName(&OrigI);
4725       Overflow = ConstantInt::getFalse(OverflowTy);
4726       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4727         if (IsSigned)
4728           Inst->setHasNoSignedWrap();
4729         else
4730           Inst->setHasNoUnsignedWrap();
4731       }
4732       return true;
4733   }
4734 
4735   llvm_unreachable("Unexpected overflow result");
4736 }
4737 
4738 /// Recognize and process idiom involving test for multiplication
4739 /// overflow.
4740 ///
4741 /// The caller has matched a pattern of the form:
4742 ///   I = cmp u (mul(zext A, zext B), V
4743 /// The function checks if this is a test for overflow and if so replaces
4744 /// multiplication with call to 'mul.with.overflow' intrinsic.
4745 ///
4746 /// \param I Compare instruction.
4747 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4748 ///               the compare instruction.  Must be of integer type.
4749 /// \param OtherVal The other argument of compare instruction.
4750 /// \returns Instruction which must replace the compare instruction, NULL if no
4751 ///          replacement required.
4752 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4753                                          Value *OtherVal,
4754                                          InstCombinerImpl &IC) {
4755   // Don't bother doing this transformation for pointers, don't do it for
4756   // vectors.
4757   if (!isa<IntegerType>(MulVal->getType()))
4758     return nullptr;
4759 
4760   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4761   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4762   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4763   if (!MulInstr)
4764     return nullptr;
4765   assert(MulInstr->getOpcode() == Instruction::Mul);
4766 
4767   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4768        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4769   assert(LHS->getOpcode() == Instruction::ZExt);
4770   assert(RHS->getOpcode() == Instruction::ZExt);
4771   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4772 
4773   // Calculate type and width of the result produced by mul.with.overflow.
4774   Type *TyA = A->getType(), *TyB = B->getType();
4775   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4776            WidthB = TyB->getPrimitiveSizeInBits();
4777   unsigned MulWidth;
4778   Type *MulType;
4779   if (WidthB > WidthA) {
4780     MulWidth = WidthB;
4781     MulType = TyB;
4782   } else {
4783     MulWidth = WidthA;
4784     MulType = TyA;
4785   }
4786 
4787   // In order to replace the original mul with a narrower mul.with.overflow,
4788   // all uses must ignore upper bits of the product.  The number of used low
4789   // bits must be not greater than the width of mul.with.overflow.
4790   if (MulVal->hasNUsesOrMore(2))
4791     for (User *U : MulVal->users()) {
4792       if (U == &I)
4793         continue;
4794       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4795         // Check if truncation ignores bits above MulWidth.
4796         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4797         if (TruncWidth > MulWidth)
4798           return nullptr;
4799       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4800         // Check if AND ignores bits above MulWidth.
4801         if (BO->getOpcode() != Instruction::And)
4802           return nullptr;
4803         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4804           const APInt &CVal = CI->getValue();
4805           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4806             return nullptr;
4807         } else {
4808           // In this case we could have the operand of the binary operation
4809           // being defined in another block, and performing the replacement
4810           // could break the dominance relation.
4811           return nullptr;
4812         }
4813       } else {
4814         // Other uses prohibit this transformation.
4815         return nullptr;
4816       }
4817     }
4818 
4819   // Recognize patterns
4820   switch (I.getPredicate()) {
4821   case ICmpInst::ICMP_EQ:
4822   case ICmpInst::ICMP_NE:
4823     // Recognize pattern:
4824     //   mulval = mul(zext A, zext B)
4825     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4826     ConstantInt *CI;
4827     Value *ValToMask;
4828     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4829       if (ValToMask != MulVal)
4830         return nullptr;
4831       const APInt &CVal = CI->getValue() + 1;
4832       if (CVal.isPowerOf2()) {
4833         unsigned MaskWidth = CVal.logBase2();
4834         if (MaskWidth == MulWidth)
4835           break; // Recognized
4836       }
4837     }
4838     return nullptr;
4839 
4840   case ICmpInst::ICMP_UGT:
4841     // Recognize pattern:
4842     //   mulval = mul(zext A, zext B)
4843     //   cmp ugt mulval, max
4844     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4845       APInt MaxVal = APInt::getMaxValue(MulWidth);
4846       MaxVal = MaxVal.zext(CI->getBitWidth());
4847       if (MaxVal.eq(CI->getValue()))
4848         break; // Recognized
4849     }
4850     return nullptr;
4851 
4852   case ICmpInst::ICMP_UGE:
4853     // Recognize pattern:
4854     //   mulval = mul(zext A, zext B)
4855     //   cmp uge mulval, max+1
4856     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4857       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4858       if (MaxVal.eq(CI->getValue()))
4859         break; // Recognized
4860     }
4861     return nullptr;
4862 
4863   case ICmpInst::ICMP_ULE:
4864     // Recognize pattern:
4865     //   mulval = mul(zext A, zext B)
4866     //   cmp ule mulval, max
4867     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4868       APInt MaxVal = APInt::getMaxValue(MulWidth);
4869       MaxVal = MaxVal.zext(CI->getBitWidth());
4870       if (MaxVal.eq(CI->getValue()))
4871         break; // Recognized
4872     }
4873     return nullptr;
4874 
4875   case ICmpInst::ICMP_ULT:
4876     // Recognize pattern:
4877     //   mulval = mul(zext A, zext B)
4878     //   cmp ule mulval, max + 1
4879     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4880       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4881       if (MaxVal.eq(CI->getValue()))
4882         break; // Recognized
4883     }
4884     return nullptr;
4885 
4886   default:
4887     return nullptr;
4888   }
4889 
4890   InstCombiner::BuilderTy &Builder = IC.Builder;
4891   Builder.SetInsertPoint(MulInstr);
4892 
4893   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4894   Value *MulA = A, *MulB = B;
4895   if (WidthA < MulWidth)
4896     MulA = Builder.CreateZExt(A, MulType);
4897   if (WidthB < MulWidth)
4898     MulB = Builder.CreateZExt(B, MulType);
4899   Function *F = Intrinsic::getDeclaration(
4900       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4901   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4902   IC.addToWorklist(MulInstr);
4903 
4904   // If there are uses of mul result other than the comparison, we know that
4905   // they are truncation or binary AND. Change them to use result of
4906   // mul.with.overflow and adjust properly mask/size.
4907   if (MulVal->hasNUsesOrMore(2)) {
4908     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4909     for (User *U : make_early_inc_range(MulVal->users())) {
4910       if (U == &I || U == OtherVal)
4911         continue;
4912       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4913         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4914           IC.replaceInstUsesWith(*TI, Mul);
4915         else
4916           TI->setOperand(0, Mul);
4917       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4918         assert(BO->getOpcode() == Instruction::And);
4919         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4920         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4921         APInt ShortMask = CI->getValue().trunc(MulWidth);
4922         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4923         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4924         IC.replaceInstUsesWith(*BO, Zext);
4925       } else {
4926         llvm_unreachable("Unexpected Binary operation");
4927       }
4928       IC.addToWorklist(cast<Instruction>(U));
4929     }
4930   }
4931   if (isa<Instruction>(OtherVal))
4932     IC.addToWorklist(cast<Instruction>(OtherVal));
4933 
4934   // The original icmp gets replaced with the overflow value, maybe inverted
4935   // depending on predicate.
4936   bool Inverse = false;
4937   switch (I.getPredicate()) {
4938   case ICmpInst::ICMP_NE:
4939     break;
4940   case ICmpInst::ICMP_EQ:
4941     Inverse = true;
4942     break;
4943   case ICmpInst::ICMP_UGT:
4944   case ICmpInst::ICMP_UGE:
4945     if (I.getOperand(0) == MulVal)
4946       break;
4947     Inverse = true;
4948     break;
4949   case ICmpInst::ICMP_ULT:
4950   case ICmpInst::ICMP_ULE:
4951     if (I.getOperand(1) == MulVal)
4952       break;
4953     Inverse = true;
4954     break;
4955   default:
4956     llvm_unreachable("Unexpected predicate");
4957   }
4958   if (Inverse) {
4959     Value *Res = Builder.CreateExtractValue(Call, 1);
4960     return BinaryOperator::CreateNot(Res);
4961   }
4962 
4963   return ExtractValueInst::Create(Call, 1);
4964 }
4965 
4966 /// When performing a comparison against a constant, it is possible that not all
4967 /// the bits in the LHS are demanded. This helper method computes the mask that
4968 /// IS demanded.
4969 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4970   const APInt *RHS;
4971   if (!match(I.getOperand(1), m_APInt(RHS)))
4972     return APInt::getAllOnesValue(BitWidth);
4973 
4974   // If this is a normal comparison, it demands all bits. If it is a sign bit
4975   // comparison, it only demands the sign bit.
4976   bool UnusedBit;
4977   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4978     return APInt::getSignMask(BitWidth);
4979 
4980   switch (I.getPredicate()) {
4981   // For a UGT comparison, we don't care about any bits that
4982   // correspond to the trailing ones of the comparand.  The value of these
4983   // bits doesn't impact the outcome of the comparison, because any value
4984   // greater than the RHS must differ in a bit higher than these due to carry.
4985   case ICmpInst::ICMP_UGT:
4986     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4987 
4988   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4989   // Any value less than the RHS must differ in a higher bit because of carries.
4990   case ICmpInst::ICMP_ULT:
4991     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4992 
4993   default:
4994     return APInt::getAllOnesValue(BitWidth);
4995   }
4996 }
4997 
4998 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4999 /// should be swapped.
5000 /// The decision is based on how many times these two operands are reused
5001 /// as subtract operands and their positions in those instructions.
5002 /// The rationale is that several architectures use the same instruction for
5003 /// both subtract and cmp. Thus, it is better if the order of those operands
5004 /// match.
5005 /// \return true if Op0 and Op1 should be swapped.
5006 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5007   // Filter out pointer values as those cannot appear directly in subtract.
5008   // FIXME: we may want to go through inttoptrs or bitcasts.
5009   if (Op0->getType()->isPointerTy())
5010     return false;
5011   // If a subtract already has the same operands as a compare, swapping would be
5012   // bad. If a subtract has the same operands as a compare but in reverse order,
5013   // then swapping is good.
5014   int GoodToSwap = 0;
5015   for (const User *U : Op0->users()) {
5016     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5017       GoodToSwap++;
5018     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5019       GoodToSwap--;
5020   }
5021   return GoodToSwap > 0;
5022 }
5023 
5024 /// Check that one use is in the same block as the definition and all
5025 /// other uses are in blocks dominated by a given block.
5026 ///
5027 /// \param DI Definition
5028 /// \param UI Use
5029 /// \param DB Block that must dominate all uses of \p DI outside
5030 ///           the parent block
5031 /// \return true when \p UI is the only use of \p DI in the parent block
5032 /// and all other uses of \p DI are in blocks dominated by \p DB.
5033 ///
5034 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5035                                         const Instruction *UI,
5036                                         const BasicBlock *DB) const {
5037   assert(DI && UI && "Instruction not defined\n");
5038   // Ignore incomplete definitions.
5039   if (!DI->getParent())
5040     return false;
5041   // DI and UI must be in the same block.
5042   if (DI->getParent() != UI->getParent())
5043     return false;
5044   // Protect from self-referencing blocks.
5045   if (DI->getParent() == DB)
5046     return false;
5047   for (const User *U : DI->users()) {
5048     auto *Usr = cast<Instruction>(U);
5049     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5050       return false;
5051   }
5052   return true;
5053 }
5054 
5055 /// Return true when the instruction sequence within a block is select-cmp-br.
5056 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5057   const BasicBlock *BB = SI->getParent();
5058   if (!BB)
5059     return false;
5060   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5061   if (!BI || BI->getNumSuccessors() != 2)
5062     return false;
5063   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5064   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5065     return false;
5066   return true;
5067 }
5068 
5069 /// True when a select result is replaced by one of its operands
5070 /// in select-icmp sequence. This will eventually result in the elimination
5071 /// of the select.
5072 ///
5073 /// \param SI    Select instruction
5074 /// \param Icmp  Compare instruction
5075 /// \param SIOpd Operand that replaces the select
5076 ///
5077 /// Notes:
5078 /// - The replacement is global and requires dominator information
5079 /// - The caller is responsible for the actual replacement
5080 ///
5081 /// Example:
5082 ///
5083 /// entry:
5084 ///  %4 = select i1 %3, %C* %0, %C* null
5085 ///  %5 = icmp eq %C* %4, null
5086 ///  br i1 %5, label %9, label %7
5087 ///  ...
5088 ///  ; <label>:7                                       ; preds = %entry
5089 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5090 ///  ...
5091 ///
5092 /// can be transformed to
5093 ///
5094 ///  %5 = icmp eq %C* %0, null
5095 ///  %6 = select i1 %3, i1 %5, i1 true
5096 ///  br i1 %6, label %9, label %7
5097 ///  ...
5098 ///  ; <label>:7                                       ; preds = %entry
5099 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5100 ///
5101 /// Similar when the first operand of the select is a constant or/and
5102 /// the compare is for not equal rather than equal.
5103 ///
5104 /// NOTE: The function is only called when the select and compare constants
5105 /// are equal, the optimization can work only for EQ predicates. This is not a
5106 /// major restriction since a NE compare should be 'normalized' to an equal
5107 /// compare, which usually happens in the combiner and test case
5108 /// select-cmp-br.ll checks for it.
5109 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5110                                                  const ICmpInst *Icmp,
5111                                                  const unsigned SIOpd) {
5112   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5113   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5114     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5115     // The check for the single predecessor is not the best that can be
5116     // done. But it protects efficiently against cases like when SI's
5117     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5118     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5119     // replaced can be reached on either path. So the uniqueness check
5120     // guarantees that the path all uses of SI (outside SI's parent) are on
5121     // is disjoint from all other paths out of SI. But that information
5122     // is more expensive to compute, and the trade-off here is in favor
5123     // of compile-time. It should also be noticed that we check for a single
5124     // predecessor and not only uniqueness. This to handle the situation when
5125     // Succ and Succ1 points to the same basic block.
5126     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5127       NumSel++;
5128       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5129       return true;
5130     }
5131   }
5132   return false;
5133 }
5134 
5135 /// Try to fold the comparison based on range information we can get by checking
5136 /// whether bits are known to be zero or one in the inputs.
5137 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5138   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5139   Type *Ty = Op0->getType();
5140   ICmpInst::Predicate Pred = I.getPredicate();
5141 
5142   // Get scalar or pointer size.
5143   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5144                           ? Ty->getScalarSizeInBits()
5145                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5146 
5147   if (!BitWidth)
5148     return nullptr;
5149 
5150   KnownBits Op0Known(BitWidth);
5151   KnownBits Op1Known(BitWidth);
5152 
5153   if (SimplifyDemandedBits(&I, 0,
5154                            getDemandedBitsLHSMask(I, BitWidth),
5155                            Op0Known, 0))
5156     return &I;
5157 
5158   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5159                            Op1Known, 0))
5160     return &I;
5161 
5162   // Given the known and unknown bits, compute a range that the LHS could be
5163   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5164   // EQ and NE we use unsigned values.
5165   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5166   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5167   if (I.isSigned()) {
5168     Op0Min = Op0Known.getSignedMinValue();
5169     Op0Max = Op0Known.getSignedMaxValue();
5170     Op1Min = Op1Known.getSignedMinValue();
5171     Op1Max = Op1Known.getSignedMaxValue();
5172   } else {
5173     Op0Min = Op0Known.getMinValue();
5174     Op0Max = Op0Known.getMaxValue();
5175     Op1Min = Op1Known.getMinValue();
5176     Op1Max = Op1Known.getMaxValue();
5177   }
5178 
5179   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5180   // out that the LHS or RHS is a constant. Constant fold this now, so that
5181   // code below can assume that Min != Max.
5182   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5183     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5184   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5185     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5186 
5187   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5188   // min/max canonical compare with some other compare. That could lead to
5189   // conflict with select canonicalization and infinite looping.
5190   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5191   auto isMinMaxCmp = [&](Instruction &Cmp) {
5192     if (!Cmp.hasOneUse())
5193       return false;
5194     Value *A, *B;
5195     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5196     if (!SelectPatternResult::isMinOrMax(SPF))
5197       return false;
5198     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5199            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5200   };
5201   if (!isMinMaxCmp(I)) {
5202     switch (Pred) {
5203     default:
5204       break;
5205     case ICmpInst::ICMP_ULT: {
5206       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5207         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5208       const APInt *CmpC;
5209       if (match(Op1, m_APInt(CmpC))) {
5210         // A <u C -> A == C-1 if min(A)+1 == C
5211         if (*CmpC == Op0Min + 1)
5212           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5213                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5214         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5215         // exceeds the log2 of C.
5216         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5217           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5218                               Constant::getNullValue(Op1->getType()));
5219       }
5220       break;
5221     }
5222     case ICmpInst::ICMP_UGT: {
5223       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5224         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5225       const APInt *CmpC;
5226       if (match(Op1, m_APInt(CmpC))) {
5227         // A >u C -> A == C+1 if max(a)-1 == C
5228         if (*CmpC == Op0Max - 1)
5229           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5230                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5231         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5232         // exceeds the log2 of C.
5233         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5234           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5235                               Constant::getNullValue(Op1->getType()));
5236       }
5237       break;
5238     }
5239     case ICmpInst::ICMP_SLT: {
5240       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5241         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5242       const APInt *CmpC;
5243       if (match(Op1, m_APInt(CmpC))) {
5244         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5245           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5246                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5247       }
5248       break;
5249     }
5250     case ICmpInst::ICMP_SGT: {
5251       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5252         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5253       const APInt *CmpC;
5254       if (match(Op1, m_APInt(CmpC))) {
5255         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5256           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5257                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5258       }
5259       break;
5260     }
5261     }
5262   }
5263 
5264   // Based on the range information we know about the LHS, see if we can
5265   // simplify this comparison.  For example, (x&4) < 8 is always true.
5266   switch (Pred) {
5267   default:
5268     llvm_unreachable("Unknown icmp opcode!");
5269   case ICmpInst::ICMP_EQ:
5270   case ICmpInst::ICMP_NE: {
5271     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5272       return replaceInstUsesWith(
5273           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5274 
5275     // If all bits are known zero except for one, then we know at most one bit
5276     // is set. If the comparison is against zero, then this is a check to see if
5277     // *that* bit is set.
5278     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5279     if (Op1Known.isZero()) {
5280       // If the LHS is an AND with the same constant, look through it.
5281       Value *LHS = nullptr;
5282       const APInt *LHSC;
5283       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5284           *LHSC != Op0KnownZeroInverted)
5285         LHS = Op0;
5286 
5287       Value *X;
5288       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5289         APInt ValToCheck = Op0KnownZeroInverted;
5290         Type *XTy = X->getType();
5291         if (ValToCheck.isPowerOf2()) {
5292           // ((1 << X) & 8) == 0 -> X != 3
5293           // ((1 << X) & 8) != 0 -> X == 3
5294           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5295           auto NewPred = ICmpInst::getInversePredicate(Pred);
5296           return new ICmpInst(NewPred, X, CmpC);
5297         } else if ((++ValToCheck).isPowerOf2()) {
5298           // ((1 << X) & 7) == 0 -> X >= 3
5299           // ((1 << X) & 7) != 0 -> X  < 3
5300           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5301           auto NewPred =
5302               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5303           return new ICmpInst(NewPred, X, CmpC);
5304         }
5305       }
5306 
5307       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5308       const APInt *CI;
5309       if (Op0KnownZeroInverted.isOneValue() &&
5310           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5311         // ((8 >>u X) & 1) == 0 -> X != 3
5312         // ((8 >>u X) & 1) != 0 -> X == 3
5313         unsigned CmpVal = CI->countTrailingZeros();
5314         auto NewPred = ICmpInst::getInversePredicate(Pred);
5315         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5316       }
5317     }
5318     break;
5319   }
5320   case ICmpInst::ICMP_ULT: {
5321     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5322       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5323     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5324       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5325     break;
5326   }
5327   case ICmpInst::ICMP_UGT: {
5328     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5329       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5330     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5331       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5332     break;
5333   }
5334   case ICmpInst::ICMP_SLT: {
5335     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5336       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5337     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5338       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5339     break;
5340   }
5341   case ICmpInst::ICMP_SGT: {
5342     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5343       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5344     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5345       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5346     break;
5347   }
5348   case ICmpInst::ICMP_SGE:
5349     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5350     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5351       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5352     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5353       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5354     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5355       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5356     break;
5357   case ICmpInst::ICMP_SLE:
5358     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5359     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5360       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5361     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5362       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5363     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5364       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5365     break;
5366   case ICmpInst::ICMP_UGE:
5367     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5368     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5369       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5370     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5371       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5372     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5373       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5374     break;
5375   case ICmpInst::ICMP_ULE:
5376     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5377     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5378       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5379     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5380       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5381     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5382       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5383     break;
5384   }
5385 
5386   // Turn a signed comparison into an unsigned one if both operands are known to
5387   // have the same sign.
5388   if (I.isSigned() &&
5389       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5390        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5391     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5392 
5393   return nullptr;
5394 }
5395 
5396 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5397 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5398                                                        Constant *C) {
5399   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5400          "Only for relational integer predicates.");
5401 
5402   Type *Type = C->getType();
5403   bool IsSigned = ICmpInst::isSigned(Pred);
5404 
5405   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5406   bool WillIncrement =
5407       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5408 
5409   // Check if the constant operand can be safely incremented/decremented
5410   // without overflowing/underflowing.
5411   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5412     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5413   };
5414 
5415   Constant *SafeReplacementConstant = nullptr;
5416   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5417     // Bail out if the constant can't be safely incremented/decremented.
5418     if (!ConstantIsOk(CI))
5419       return llvm::None;
5420   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5421     unsigned NumElts = FVTy->getNumElements();
5422     for (unsigned i = 0; i != NumElts; ++i) {
5423       Constant *Elt = C->getAggregateElement(i);
5424       if (!Elt)
5425         return llvm::None;
5426 
5427       if (isa<UndefValue>(Elt))
5428         continue;
5429 
5430       // Bail out if we can't determine if this constant is min/max or if we
5431       // know that this constant is min/max.
5432       auto *CI = dyn_cast<ConstantInt>(Elt);
5433       if (!CI || !ConstantIsOk(CI))
5434         return llvm::None;
5435 
5436       if (!SafeReplacementConstant)
5437         SafeReplacementConstant = CI;
5438     }
5439   } else {
5440     // ConstantExpr?
5441     return llvm::None;
5442   }
5443 
5444   // It may not be safe to change a compare predicate in the presence of
5445   // undefined elements, so replace those elements with the first safe constant
5446   // that we found.
5447   // TODO: in case of poison, it is safe; let's replace undefs only.
5448   if (C->containsUndefOrPoisonElement()) {
5449     assert(SafeReplacementConstant && "Replacement constant not set");
5450     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5451   }
5452 
5453   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5454 
5455   // Increment or decrement the constant.
5456   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5457   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5458 
5459   return std::make_pair(NewPred, NewC);
5460 }
5461 
5462 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5463 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5464 /// allows them to be folded in visitICmpInst.
5465 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5466   ICmpInst::Predicate Pred = I.getPredicate();
5467   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5468       InstCombiner::isCanonicalPredicate(Pred))
5469     return nullptr;
5470 
5471   Value *Op0 = I.getOperand(0);
5472   Value *Op1 = I.getOperand(1);
5473   auto *Op1C = dyn_cast<Constant>(Op1);
5474   if (!Op1C)
5475     return nullptr;
5476 
5477   auto FlippedStrictness =
5478       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5479   if (!FlippedStrictness)
5480     return nullptr;
5481 
5482   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5483 }
5484 
5485 /// If we have a comparison with a non-canonical predicate, if we can update
5486 /// all the users, invert the predicate and adjust all the users.
5487 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5488   // Is the predicate already canonical?
5489   CmpInst::Predicate Pred = I.getPredicate();
5490   if (InstCombiner::isCanonicalPredicate(Pred))
5491     return nullptr;
5492 
5493   // Can all users be adjusted to predicate inversion?
5494   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5495     return nullptr;
5496 
5497   // Ok, we can canonicalize comparison!
5498   // Let's first invert the comparison's predicate.
5499   I.setPredicate(CmpInst::getInversePredicate(Pred));
5500   I.setName(I.getName() + ".not");
5501 
5502   // And, adapt users.
5503   freelyInvertAllUsersOf(&I);
5504 
5505   return &I;
5506 }
5507 
5508 /// Integer compare with boolean values can always be turned into bitwise ops.
5509 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5510                                          InstCombiner::BuilderTy &Builder) {
5511   Value *A = I.getOperand(0), *B = I.getOperand(1);
5512   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5513 
5514   // A boolean compared to true/false can be simplified to Op0/true/false in
5515   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5516   // Cases not handled by InstSimplify are always 'not' of Op0.
5517   if (match(B, m_Zero())) {
5518     switch (I.getPredicate()) {
5519       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5520       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5521       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5522         return BinaryOperator::CreateNot(A);
5523       default:
5524         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5525     }
5526   } else if (match(B, m_One())) {
5527     switch (I.getPredicate()) {
5528       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5529       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5530       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5531         return BinaryOperator::CreateNot(A);
5532       default:
5533         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5534     }
5535   }
5536 
5537   switch (I.getPredicate()) {
5538   default:
5539     llvm_unreachable("Invalid icmp instruction!");
5540   case ICmpInst::ICMP_EQ:
5541     // icmp eq i1 A, B -> ~(A ^ B)
5542     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5543 
5544   case ICmpInst::ICMP_NE:
5545     // icmp ne i1 A, B -> A ^ B
5546     return BinaryOperator::CreateXor(A, B);
5547 
5548   case ICmpInst::ICMP_UGT:
5549     // icmp ugt -> icmp ult
5550     std::swap(A, B);
5551     LLVM_FALLTHROUGH;
5552   case ICmpInst::ICMP_ULT:
5553     // icmp ult i1 A, B -> ~A & B
5554     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5555 
5556   case ICmpInst::ICMP_SGT:
5557     // icmp sgt -> icmp slt
5558     std::swap(A, B);
5559     LLVM_FALLTHROUGH;
5560   case ICmpInst::ICMP_SLT:
5561     // icmp slt i1 A, B -> A & ~B
5562     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5563 
5564   case ICmpInst::ICMP_UGE:
5565     // icmp uge -> icmp ule
5566     std::swap(A, B);
5567     LLVM_FALLTHROUGH;
5568   case ICmpInst::ICMP_ULE:
5569     // icmp ule i1 A, B -> ~A | B
5570     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5571 
5572   case ICmpInst::ICMP_SGE:
5573     // icmp sge -> icmp sle
5574     std::swap(A, B);
5575     LLVM_FALLTHROUGH;
5576   case ICmpInst::ICMP_SLE:
5577     // icmp sle i1 A, B -> A | ~B
5578     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5579   }
5580 }
5581 
5582 // Transform pattern like:
5583 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5584 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5585 // Into:
5586 //   (X l>> Y) != 0
5587 //   (X l>> Y) == 0
5588 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5589                                             InstCombiner::BuilderTy &Builder) {
5590   ICmpInst::Predicate Pred, NewPred;
5591   Value *X, *Y;
5592   if (match(&Cmp,
5593             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5594     switch (Pred) {
5595     case ICmpInst::ICMP_ULE:
5596       NewPred = ICmpInst::ICMP_NE;
5597       break;
5598     case ICmpInst::ICMP_UGT:
5599       NewPred = ICmpInst::ICMP_EQ;
5600       break;
5601     default:
5602       return nullptr;
5603     }
5604   } else if (match(&Cmp, m_c_ICmp(Pred,
5605                                   m_OneUse(m_CombineOr(
5606                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5607                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5608                                             m_AllOnes()))),
5609                                   m_Value(X)))) {
5610     // The variant with 'add' is not canonical, (the variant with 'not' is)
5611     // we only get it because it has extra uses, and can't be canonicalized,
5612 
5613     switch (Pred) {
5614     case ICmpInst::ICMP_ULT:
5615       NewPred = ICmpInst::ICMP_NE;
5616       break;
5617     case ICmpInst::ICMP_UGE:
5618       NewPred = ICmpInst::ICMP_EQ;
5619       break;
5620     default:
5621       return nullptr;
5622     }
5623   } else
5624     return nullptr;
5625 
5626   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5627   Constant *Zero = Constant::getNullValue(NewX->getType());
5628   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5629 }
5630 
5631 static Instruction *foldVectorCmp(CmpInst &Cmp,
5632                                   InstCombiner::BuilderTy &Builder) {
5633   const CmpInst::Predicate Pred = Cmp.getPredicate();
5634   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5635   Value *V1, *V2;
5636   ArrayRef<int> M;
5637   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5638     return nullptr;
5639 
5640   // If both arguments of the cmp are shuffles that use the same mask and
5641   // shuffle within a single vector, move the shuffle after the cmp:
5642   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5643   Type *V1Ty = V1->getType();
5644   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5645       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5646     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5647     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5648   }
5649 
5650   // Try to canonicalize compare with splatted operand and splat constant.
5651   // TODO: We could generalize this for more than splats. See/use the code in
5652   //       InstCombiner::foldVectorBinop().
5653   Constant *C;
5654   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5655     return nullptr;
5656 
5657   // Length-changing splats are ok, so adjust the constants as needed:
5658   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5659   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5660   int MaskSplatIndex;
5661   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5662     // We allow undefs in matching, but this transform removes those for safety.
5663     // Demanded elements analysis should be able to recover some/all of that.
5664     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5665                                  ScalarC);
5666     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5667     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5668     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5669                                  NewM);
5670   }
5671 
5672   return nullptr;
5673 }
5674 
5675 // extract(uadd.with.overflow(A, B), 0) ult A
5676 //  -> extract(uadd.with.overflow(A, B), 1)
5677 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5678   CmpInst::Predicate Pred = I.getPredicate();
5679   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5680 
5681   Value *UAddOv;
5682   Value *A, *B;
5683   auto UAddOvResultPat = m_ExtractValue<0>(
5684       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5685   if (match(Op0, UAddOvResultPat) &&
5686       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5687        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5688         (match(A, m_One()) || match(B, m_One()))) ||
5689        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5690         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5691     // extract(uadd.with.overflow(A, B), 0) < A
5692     // extract(uadd.with.overflow(A, 1), 0) == 0
5693     // extract(uadd.with.overflow(A, -1), 0) != -1
5694     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5695   else if (match(Op1, UAddOvResultPat) &&
5696            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5697     // A > extract(uadd.with.overflow(A, B), 0)
5698     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5699   else
5700     return nullptr;
5701 
5702   return ExtractValueInst::Create(UAddOv, 1);
5703 }
5704 
5705 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5706   if (!I.getOperand(0)->getType()->isPointerTy() ||
5707       NullPointerIsDefined(
5708           I.getParent()->getParent(),
5709           I.getOperand(0)->getType()->getPointerAddressSpace())) {
5710     return nullptr;
5711   }
5712   Instruction *Op;
5713   if (match(I.getOperand(0), m_Instruction(Op)) &&
5714       match(I.getOperand(1), m_Zero()) &&
5715       Op->isLaunderOrStripInvariantGroup()) {
5716     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
5717                             Op->getOperand(0), I.getOperand(1));
5718   }
5719   return nullptr;
5720 }
5721 
5722 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5723   bool Changed = false;
5724   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5725   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5726   unsigned Op0Cplxity = getComplexity(Op0);
5727   unsigned Op1Cplxity = getComplexity(Op1);
5728 
5729   /// Orders the operands of the compare so that they are listed from most
5730   /// complex to least complex.  This puts constants before unary operators,
5731   /// before binary operators.
5732   if (Op0Cplxity < Op1Cplxity ||
5733       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5734     I.swapOperands();
5735     std::swap(Op0, Op1);
5736     Changed = true;
5737   }
5738 
5739   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5740     return replaceInstUsesWith(I, V);
5741 
5742   // Comparing -val or val with non-zero is the same as just comparing val
5743   // ie, abs(val) != 0 -> val != 0
5744   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5745     Value *Cond, *SelectTrue, *SelectFalse;
5746     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5747                             m_Value(SelectFalse)))) {
5748       if (Value *V = dyn_castNegVal(SelectTrue)) {
5749         if (V == SelectFalse)
5750           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5751       }
5752       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5753         if (V == SelectTrue)
5754           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5755       }
5756     }
5757   }
5758 
5759   if (Op0->getType()->isIntOrIntVectorTy(1))
5760     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5761       return Res;
5762 
5763   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5764     return Res;
5765 
5766   if (Instruction *Res = canonicalizeICmpPredicate(I))
5767     return Res;
5768 
5769   if (Instruction *Res = foldICmpWithConstant(I))
5770     return Res;
5771 
5772   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5773     return Res;
5774 
5775   if (Instruction *Res = foldICmpUsingKnownBits(I))
5776     return Res;
5777 
5778   // Test if the ICmpInst instruction is used exclusively by a select as
5779   // part of a minimum or maximum operation. If so, refrain from doing
5780   // any other folding. This helps out other analyses which understand
5781   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5782   // and CodeGen. And in this case, at least one of the comparison
5783   // operands has at least one user besides the compare (the select),
5784   // which would often largely negate the benefit of folding anyway.
5785   //
5786   // Do the same for the other patterns recognized by matchSelectPattern.
5787   if (I.hasOneUse())
5788     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5789       Value *A, *B;
5790       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5791       if (SPR.Flavor != SPF_UNKNOWN)
5792         return nullptr;
5793     }
5794 
5795   // Do this after checking for min/max to prevent infinite looping.
5796   if (Instruction *Res = foldICmpWithZero(I))
5797     return Res;
5798 
5799   // FIXME: We only do this after checking for min/max to prevent infinite
5800   // looping caused by a reverse canonicalization of these patterns for min/max.
5801   // FIXME: The organization of folds is a mess. These would naturally go into
5802   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5803   // down here after the min/max restriction.
5804   ICmpInst::Predicate Pred = I.getPredicate();
5805   const APInt *C;
5806   if (match(Op1, m_APInt(C))) {
5807     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5808     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5809       Constant *Zero = Constant::getNullValue(Op0->getType());
5810       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5811     }
5812 
5813     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5814     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5815       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5816       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5817     }
5818   }
5819 
5820   // The folds in here may rely on wrapping flags and special constants, so
5821   // they can break up min/max idioms in some cases but not seemingly similar
5822   // patterns.
5823   // FIXME: It may be possible to enhance select folding to make this
5824   //        unnecessary. It may also be moot if we canonicalize to min/max
5825   //        intrinsics.
5826   if (Instruction *Res = foldICmpBinOp(I, Q))
5827     return Res;
5828 
5829   if (Instruction *Res = foldICmpInstWithConstant(I))
5830     return Res;
5831 
5832   // Try to match comparison as a sign bit test. Intentionally do this after
5833   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5834   if (Instruction *New = foldSignBitTest(I))
5835     return New;
5836 
5837   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5838     return Res;
5839 
5840   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5841   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5842     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5843       return NI;
5844   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5845     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5846                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5847       return NI;
5848 
5849   // Try to optimize equality comparisons against alloca-based pointers.
5850   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5851     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5852     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5853       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5854         return New;
5855     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5856       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5857         return New;
5858   }
5859 
5860   if (Instruction *Res = foldICmpBitCast(I))
5861     return Res;
5862 
5863   // TODO: Hoist this above the min/max bailout.
5864   if (Instruction *R = foldICmpWithCastOp(I))
5865     return R;
5866 
5867   if (Instruction *Res = foldICmpWithMinMax(I))
5868     return Res;
5869 
5870   {
5871     Value *A, *B;
5872     // Transform (A & ~B) == 0 --> (A & B) != 0
5873     // and       (A & ~B) != 0 --> (A & B) == 0
5874     // if A is a power of 2.
5875     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5876         match(Op1, m_Zero()) &&
5877         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5878       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5879                           Op1);
5880 
5881     // ~X < ~Y --> Y < X
5882     // ~X < C -->  X > ~C
5883     if (match(Op0, m_Not(m_Value(A)))) {
5884       if (match(Op1, m_Not(m_Value(B))))
5885         return new ICmpInst(I.getPredicate(), B, A);
5886 
5887       const APInt *C;
5888       if (match(Op1, m_APInt(C)))
5889         return new ICmpInst(I.getSwappedPredicate(), A,
5890                             ConstantInt::get(Op1->getType(), ~(*C)));
5891     }
5892 
5893     Instruction *AddI = nullptr;
5894     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5895                                      m_Instruction(AddI))) &&
5896         isa<IntegerType>(A->getType())) {
5897       Value *Result;
5898       Constant *Overflow;
5899       // m_UAddWithOverflow can match patterns that do not include  an explicit
5900       // "add" instruction, so check the opcode of the matched op.
5901       if (AddI->getOpcode() == Instruction::Add &&
5902           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5903                                 Result, Overflow)) {
5904         replaceInstUsesWith(*AddI, Result);
5905         eraseInstFromFunction(*AddI);
5906         return replaceInstUsesWith(I, Overflow);
5907       }
5908     }
5909 
5910     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5911     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5912       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5913         return R;
5914     }
5915     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5916       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5917         return R;
5918     }
5919   }
5920 
5921   if (Instruction *Res = foldICmpEquality(I))
5922     return Res;
5923 
5924   if (Instruction *Res = foldICmpOfUAddOv(I))
5925     return Res;
5926 
5927   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5928   // an i1 which indicates whether or not we successfully did the swap.
5929   //
5930   // Replace comparisons between the old value and the expected value with the
5931   // indicator that 'cmpxchg' returns.
5932   //
5933   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5934   // spuriously fail.  In those cases, the old value may equal the expected
5935   // value but it is possible for the swap to not occur.
5936   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5937     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5938       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5939         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5940             !ACXI->isWeak())
5941           return ExtractValueInst::Create(ACXI, 1);
5942 
5943   {
5944     Value *X;
5945     const APInt *C;
5946     // icmp X+Cst, X
5947     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5948       return foldICmpAddOpConst(X, *C, I.getPredicate());
5949 
5950     // icmp X, X+Cst
5951     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5952       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5953   }
5954 
5955   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5956     return Res;
5957 
5958   if (I.getType()->isVectorTy())
5959     if (Instruction *Res = foldVectorCmp(I, Builder))
5960       return Res;
5961 
5962   if (Instruction *Res = foldICmpInvariantGroup(I))
5963     return Res;
5964 
5965   return Changed ? &I : nullptr;
5966 }
5967 
5968 /// Fold fcmp ([us]itofp x, cst) if possible.
5969 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5970                                                     Instruction *LHSI,
5971                                                     Constant *RHSC) {
5972   if (!isa<ConstantFP>(RHSC)) return nullptr;
5973   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5974 
5975   // Get the width of the mantissa.  We don't want to hack on conversions that
5976   // might lose information from the integer, e.g. "i64 -> float"
5977   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5978   if (MantissaWidth == -1) return nullptr;  // Unknown.
5979 
5980   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5981 
5982   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5983 
5984   if (I.isEquality()) {
5985     FCmpInst::Predicate P = I.getPredicate();
5986     bool IsExact = false;
5987     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5988     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5989 
5990     // If the floating point constant isn't an integer value, we know if we will
5991     // ever compare equal / not equal to it.
5992     if (!IsExact) {
5993       // TODO: Can never be -0.0 and other non-representable values
5994       APFloat RHSRoundInt(RHS);
5995       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5996       if (RHS != RHSRoundInt) {
5997         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5998           return replaceInstUsesWith(I, Builder.getFalse());
5999 
6000         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6001         return replaceInstUsesWith(I, Builder.getTrue());
6002       }
6003     }
6004 
6005     // TODO: If the constant is exactly representable, is it always OK to do
6006     // equality compares as integer?
6007   }
6008 
6009   // Check to see that the input is converted from an integer type that is small
6010   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6011   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6012   unsigned InputSize = IntTy->getScalarSizeInBits();
6013 
6014   // Following test does NOT adjust InputSize downwards for signed inputs,
6015   // because the most negative value still requires all the mantissa bits
6016   // to distinguish it from one less than that value.
6017   if ((int)InputSize > MantissaWidth) {
6018     // Conversion would lose accuracy. Check if loss can impact comparison.
6019     int Exp = ilogb(RHS);
6020     if (Exp == APFloat::IEK_Inf) {
6021       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6022       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6023         // Conversion could create infinity.
6024         return nullptr;
6025     } else {
6026       // Note that if RHS is zero or NaN, then Exp is negative
6027       // and first condition is trivially false.
6028       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6029         // Conversion could affect comparison.
6030         return nullptr;
6031     }
6032   }
6033 
6034   // Otherwise, we can potentially simplify the comparison.  We know that it
6035   // will always come through as an integer value and we know the constant is
6036   // not a NAN (it would have been previously simplified).
6037   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6038 
6039   ICmpInst::Predicate Pred;
6040   switch (I.getPredicate()) {
6041   default: llvm_unreachable("Unexpected predicate!");
6042   case FCmpInst::FCMP_UEQ:
6043   case FCmpInst::FCMP_OEQ:
6044     Pred = ICmpInst::ICMP_EQ;
6045     break;
6046   case FCmpInst::FCMP_UGT:
6047   case FCmpInst::FCMP_OGT:
6048     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6049     break;
6050   case FCmpInst::FCMP_UGE:
6051   case FCmpInst::FCMP_OGE:
6052     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6053     break;
6054   case FCmpInst::FCMP_ULT:
6055   case FCmpInst::FCMP_OLT:
6056     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6057     break;
6058   case FCmpInst::FCMP_ULE:
6059   case FCmpInst::FCMP_OLE:
6060     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6061     break;
6062   case FCmpInst::FCMP_UNE:
6063   case FCmpInst::FCMP_ONE:
6064     Pred = ICmpInst::ICMP_NE;
6065     break;
6066   case FCmpInst::FCMP_ORD:
6067     return replaceInstUsesWith(I, Builder.getTrue());
6068   case FCmpInst::FCMP_UNO:
6069     return replaceInstUsesWith(I, Builder.getFalse());
6070   }
6071 
6072   // Now we know that the APFloat is a normal number, zero or inf.
6073 
6074   // See if the FP constant is too large for the integer.  For example,
6075   // comparing an i8 to 300.0.
6076   unsigned IntWidth = IntTy->getScalarSizeInBits();
6077 
6078   if (!LHSUnsigned) {
6079     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6080     // and large values.
6081     APFloat SMax(RHS.getSemantics());
6082     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6083                           APFloat::rmNearestTiesToEven);
6084     if (SMax < RHS) { // smax < 13123.0
6085       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6086           Pred == ICmpInst::ICMP_SLE)
6087         return replaceInstUsesWith(I, Builder.getTrue());
6088       return replaceInstUsesWith(I, Builder.getFalse());
6089     }
6090   } else {
6091     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6092     // +INF and large values.
6093     APFloat UMax(RHS.getSemantics());
6094     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6095                           APFloat::rmNearestTiesToEven);
6096     if (UMax < RHS) { // umax < 13123.0
6097       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6098           Pred == ICmpInst::ICMP_ULE)
6099         return replaceInstUsesWith(I, Builder.getTrue());
6100       return replaceInstUsesWith(I, Builder.getFalse());
6101     }
6102   }
6103 
6104   if (!LHSUnsigned) {
6105     // See if the RHS value is < SignedMin.
6106     APFloat SMin(RHS.getSemantics());
6107     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6108                           APFloat::rmNearestTiesToEven);
6109     if (SMin > RHS) { // smin > 12312.0
6110       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6111           Pred == ICmpInst::ICMP_SGE)
6112         return replaceInstUsesWith(I, Builder.getTrue());
6113       return replaceInstUsesWith(I, Builder.getFalse());
6114     }
6115   } else {
6116     // See if the RHS value is < UnsignedMin.
6117     APFloat UMin(RHS.getSemantics());
6118     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6119                           APFloat::rmNearestTiesToEven);
6120     if (UMin > RHS) { // umin > 12312.0
6121       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6122           Pred == ICmpInst::ICMP_UGE)
6123         return replaceInstUsesWith(I, Builder.getTrue());
6124       return replaceInstUsesWith(I, Builder.getFalse());
6125     }
6126   }
6127 
6128   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6129   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6130   // casting the FP value to the integer value and back, checking for equality.
6131   // Don't do this for zero, because -0.0 is not fractional.
6132   Constant *RHSInt = LHSUnsigned
6133     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6134     : ConstantExpr::getFPToSI(RHSC, IntTy);
6135   if (!RHS.isZero()) {
6136     bool Equal = LHSUnsigned
6137       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6138       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6139     if (!Equal) {
6140       // If we had a comparison against a fractional value, we have to adjust
6141       // the compare predicate and sometimes the value.  RHSC is rounded towards
6142       // zero at this point.
6143       switch (Pred) {
6144       default: llvm_unreachable("Unexpected integer comparison!");
6145       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6146         return replaceInstUsesWith(I, Builder.getTrue());
6147       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6148         return replaceInstUsesWith(I, Builder.getFalse());
6149       case ICmpInst::ICMP_ULE:
6150         // (float)int <= 4.4   --> int <= 4
6151         // (float)int <= -4.4  --> false
6152         if (RHS.isNegative())
6153           return replaceInstUsesWith(I, Builder.getFalse());
6154         break;
6155       case ICmpInst::ICMP_SLE:
6156         // (float)int <= 4.4   --> int <= 4
6157         // (float)int <= -4.4  --> int < -4
6158         if (RHS.isNegative())
6159           Pred = ICmpInst::ICMP_SLT;
6160         break;
6161       case ICmpInst::ICMP_ULT:
6162         // (float)int < -4.4   --> false
6163         // (float)int < 4.4    --> int <= 4
6164         if (RHS.isNegative())
6165           return replaceInstUsesWith(I, Builder.getFalse());
6166         Pred = ICmpInst::ICMP_ULE;
6167         break;
6168       case ICmpInst::ICMP_SLT:
6169         // (float)int < -4.4   --> int < -4
6170         // (float)int < 4.4    --> int <= 4
6171         if (!RHS.isNegative())
6172           Pred = ICmpInst::ICMP_SLE;
6173         break;
6174       case ICmpInst::ICMP_UGT:
6175         // (float)int > 4.4    --> int > 4
6176         // (float)int > -4.4   --> true
6177         if (RHS.isNegative())
6178           return replaceInstUsesWith(I, Builder.getTrue());
6179         break;
6180       case ICmpInst::ICMP_SGT:
6181         // (float)int > 4.4    --> int > 4
6182         // (float)int > -4.4   --> int >= -4
6183         if (RHS.isNegative())
6184           Pred = ICmpInst::ICMP_SGE;
6185         break;
6186       case ICmpInst::ICMP_UGE:
6187         // (float)int >= -4.4   --> true
6188         // (float)int >= 4.4    --> int > 4
6189         if (RHS.isNegative())
6190           return replaceInstUsesWith(I, Builder.getTrue());
6191         Pred = ICmpInst::ICMP_UGT;
6192         break;
6193       case ICmpInst::ICMP_SGE:
6194         // (float)int >= -4.4   --> int >= -4
6195         // (float)int >= 4.4    --> int > 4
6196         if (!RHS.isNegative())
6197           Pred = ICmpInst::ICMP_SGT;
6198         break;
6199       }
6200     }
6201   }
6202 
6203   // Lower this FP comparison into an appropriate integer version of the
6204   // comparison.
6205   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6206 }
6207 
6208 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6209 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6210                                               Constant *RHSC) {
6211   // When C is not 0.0 and infinities are not allowed:
6212   // (C / X) < 0.0 is a sign-bit test of X
6213   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6214   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6215   //
6216   // Proof:
6217   // Multiply (C / X) < 0.0 by X * X / C.
6218   // - X is non zero, if it is the flag 'ninf' is violated.
6219   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6220   //   the predicate. C is also non zero by definition.
6221   //
6222   // Thus X * X / C is non zero and the transformation is valid. [qed]
6223 
6224   FCmpInst::Predicate Pred = I.getPredicate();
6225 
6226   // Check that predicates are valid.
6227   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6228       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6229     return nullptr;
6230 
6231   // Check that RHS operand is zero.
6232   if (!match(RHSC, m_AnyZeroFP()))
6233     return nullptr;
6234 
6235   // Check fastmath flags ('ninf').
6236   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6237     return nullptr;
6238 
6239   // Check the properties of the dividend. It must not be zero to avoid a
6240   // division by zero (see Proof).
6241   const APFloat *C;
6242   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6243     return nullptr;
6244 
6245   if (C->isZero())
6246     return nullptr;
6247 
6248   // Get swapped predicate if necessary.
6249   if (C->isNegative())
6250     Pred = I.getSwappedPredicate();
6251 
6252   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6253 }
6254 
6255 /// Optimize fabs(X) compared with zero.
6256 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6257   Value *X;
6258   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6259       !match(I.getOperand(1), m_PosZeroFP()))
6260     return nullptr;
6261 
6262   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6263     I->setPredicate(P);
6264     return IC.replaceOperand(*I, 0, X);
6265   };
6266 
6267   switch (I.getPredicate()) {
6268   case FCmpInst::FCMP_UGE:
6269   case FCmpInst::FCMP_OLT:
6270     // fabs(X) >= 0.0 --> true
6271     // fabs(X) <  0.0 --> false
6272     llvm_unreachable("fcmp should have simplified");
6273 
6274   case FCmpInst::FCMP_OGT:
6275     // fabs(X) > 0.0 --> X != 0.0
6276     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6277 
6278   case FCmpInst::FCMP_UGT:
6279     // fabs(X) u> 0.0 --> X u!= 0.0
6280     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6281 
6282   case FCmpInst::FCMP_OLE:
6283     // fabs(X) <= 0.0 --> X == 0.0
6284     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6285 
6286   case FCmpInst::FCMP_ULE:
6287     // fabs(X) u<= 0.0 --> X u== 0.0
6288     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6289 
6290   case FCmpInst::FCMP_OGE:
6291     // fabs(X) >= 0.0 --> !isnan(X)
6292     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6293     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6294 
6295   case FCmpInst::FCMP_ULT:
6296     // fabs(X) u< 0.0 --> isnan(X)
6297     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6298     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6299 
6300   case FCmpInst::FCMP_OEQ:
6301   case FCmpInst::FCMP_UEQ:
6302   case FCmpInst::FCMP_ONE:
6303   case FCmpInst::FCMP_UNE:
6304   case FCmpInst::FCMP_ORD:
6305   case FCmpInst::FCMP_UNO:
6306     // Look through the fabs() because it doesn't change anything but the sign.
6307     // fabs(X) == 0.0 --> X == 0.0,
6308     // fabs(X) != 0.0 --> X != 0.0
6309     // isnan(fabs(X)) --> isnan(X)
6310     // !isnan(fabs(X) --> !isnan(X)
6311     return replacePredAndOp0(&I, I.getPredicate(), X);
6312 
6313   default:
6314     return nullptr;
6315   }
6316 }
6317 
6318 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6319   bool Changed = false;
6320 
6321   /// Orders the operands of the compare so that they are listed from most
6322   /// complex to least complex.  This puts constants before unary operators,
6323   /// before binary operators.
6324   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6325     I.swapOperands();
6326     Changed = true;
6327   }
6328 
6329   const CmpInst::Predicate Pred = I.getPredicate();
6330   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6331   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6332                                   SQ.getWithInstruction(&I)))
6333     return replaceInstUsesWith(I, V);
6334 
6335   // Simplify 'fcmp pred X, X'
6336   Type *OpType = Op0->getType();
6337   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6338   if (Op0 == Op1) {
6339     switch (Pred) {
6340       default: break;
6341     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6342     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6343     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6344     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6345       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6346       I.setPredicate(FCmpInst::FCMP_UNO);
6347       I.setOperand(1, Constant::getNullValue(OpType));
6348       return &I;
6349 
6350     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6351     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6352     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6353     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6354       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6355       I.setPredicate(FCmpInst::FCMP_ORD);
6356       I.setOperand(1, Constant::getNullValue(OpType));
6357       return &I;
6358     }
6359   }
6360 
6361   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6362   // then canonicalize the operand to 0.0.
6363   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6364     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6365       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6366 
6367     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6368       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6369   }
6370 
6371   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6372   Value *X, *Y;
6373   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6374     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6375 
6376   // Test if the FCmpInst instruction is used exclusively by a select as
6377   // part of a minimum or maximum operation. If so, refrain from doing
6378   // any other folding. This helps out other analyses which understand
6379   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6380   // and CodeGen. And in this case, at least one of the comparison
6381   // operands has at least one user besides the compare (the select),
6382   // which would often largely negate the benefit of folding anyway.
6383   if (I.hasOneUse())
6384     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6385       Value *A, *B;
6386       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6387       if (SPR.Flavor != SPF_UNKNOWN)
6388         return nullptr;
6389     }
6390 
6391   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6392   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6393   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6394     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6395 
6396   // Handle fcmp with instruction LHS and constant RHS.
6397   Instruction *LHSI;
6398   Constant *RHSC;
6399   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6400     switch (LHSI->getOpcode()) {
6401     case Instruction::PHI:
6402       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6403       // block.  If in the same block, we're encouraging jump threading.  If
6404       // not, we are just pessimizing the code by making an i1 phi.
6405       if (LHSI->getParent() == I.getParent())
6406         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6407           return NV;
6408       break;
6409     case Instruction::SIToFP:
6410     case Instruction::UIToFP:
6411       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6412         return NV;
6413       break;
6414     case Instruction::FDiv:
6415       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6416         return NV;
6417       break;
6418     case Instruction::Load:
6419       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6420         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6421           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6422               !cast<LoadInst>(LHSI)->isVolatile())
6423             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6424               return Res;
6425       break;
6426   }
6427   }
6428 
6429   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6430     return R;
6431 
6432   if (match(Op0, m_FNeg(m_Value(X)))) {
6433     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6434     Constant *C;
6435     if (match(Op1, m_Constant(C))) {
6436       Constant *NegC = ConstantExpr::getFNeg(C);
6437       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6438     }
6439   }
6440 
6441   if (match(Op0, m_FPExt(m_Value(X)))) {
6442     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6443     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6444       return new FCmpInst(Pred, X, Y, "", &I);
6445 
6446     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6447     const APFloat *C;
6448     if (match(Op1, m_APFloat(C))) {
6449       const fltSemantics &FPSem =
6450           X->getType()->getScalarType()->getFltSemantics();
6451       bool Lossy;
6452       APFloat TruncC = *C;
6453       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6454 
6455       // Avoid lossy conversions and denormals.
6456       // Zero is a special case that's OK to convert.
6457       APFloat Fabs = TruncC;
6458       Fabs.clearSign();
6459       if (!Lossy &&
6460           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6461         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6462         return new FCmpInst(Pred, X, NewC, "", &I);
6463       }
6464     }
6465   }
6466 
6467   // Convert a sign-bit test of an FP value into a cast and integer compare.
6468   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6469   // TODO: Handle non-zero compare constants.
6470   // TODO: Handle other predicates.
6471   const APFloat *C;
6472   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6473                                                            m_Value(X)))) &&
6474       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6475     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6476     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6477       IntType = VectorType::get(IntType, VecTy->getElementCount());
6478 
6479     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6480     if (Pred == FCmpInst::FCMP_OLT) {
6481       Value *IntX = Builder.CreateBitCast(X, IntType);
6482       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6483                           ConstantInt::getNullValue(IntType));
6484     }
6485   }
6486 
6487   if (I.getType()->isVectorTy())
6488     if (Instruction *Res = foldVectorCmp(I, Builder))
6489       return Res;
6490 
6491   return Changed ? &I : nullptr;
6492 }
6493