1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/Debug.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 // How many times is a select replaced by one of its operands?
36 STATISTIC(NumSel, "Number of select opts");
37 
38 
39 static ConstantInt *extractElement(Constant *V, Constant *Idx) {
40   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
41 }
42 
43 static bool hasAddOverflow(ConstantInt *Result,
44                            ConstantInt *In1, ConstantInt *In2,
45                            bool IsSigned) {
46   if (!IsSigned)
47     return Result->getValue().ult(In1->getValue());
48 
49   if (In2->isNegative())
50     return Result->getValue().sgt(In1->getValue());
51   return Result->getValue().slt(In1->getValue());
52 }
53 
54 /// Compute Result = In1+In2, returning true if the result overflowed for this
55 /// type.
56 static bool addWithOverflow(Constant *&Result, Constant *In1,
57                             Constant *In2, bool IsSigned = false) {
58   Result = ConstantExpr::getAdd(In1, In2);
59 
60   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
61     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63       if (hasAddOverflow(extractElement(Result, Idx),
64                          extractElement(In1, Idx),
65                          extractElement(In2, Idx),
66                          IsSigned))
67         return true;
68     }
69     return false;
70   }
71 
72   return hasAddOverflow(cast<ConstantInt>(Result),
73                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74                         IsSigned);
75 }
76 
77 static bool hasSubOverflow(ConstantInt *Result,
78                            ConstantInt *In1, ConstantInt *In2,
79                            bool IsSigned) {
80   if (!IsSigned)
81     return Result->getValue().ugt(In1->getValue());
82 
83   if (In2->isNegative())
84     return Result->getValue().slt(In1->getValue());
85 
86   return Result->getValue().sgt(In1->getValue());
87 }
88 
89 /// Compute Result = In1-In2, returning true if the result overflowed for this
90 /// type.
91 static bool subWithOverflow(Constant *&Result, Constant *In1,
92                             Constant *In2, bool IsSigned = false) {
93   Result = ConstantExpr::getSub(In1, In2);
94 
95   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
96     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98       if (hasSubOverflow(extractElement(Result, Idx),
99                          extractElement(In1, Idx),
100                          extractElement(In2, Idx),
101                          IsSigned))
102         return true;
103     }
104     return false;
105   }
106 
107   return hasSubOverflow(cast<ConstantInt>(Result),
108                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109                         IsSigned);
110 }
111 
112 /// Given an icmp instruction, return true if any use of this comparison is a
113 /// branch on sign bit comparison.
114 static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) {
115   for (auto *U : I.users())
116     if (isa<BranchInst>(U))
117       return isSignBit;
118   return false;
119 }
120 
121 /// Given an exploded icmp instruction, return true if the comparison only
122 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
123 /// result of the comparison is true when the input value is signed.
124 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
125                            bool &TrueIfSigned) {
126   switch (Pred) {
127   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
128     TrueIfSigned = true;
129     return RHS == 0;
130   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
131     TrueIfSigned = true;
132     return RHS.isAllOnesValue();
133   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
134     TrueIfSigned = false;
135     return RHS.isAllOnesValue();
136   case ICmpInst::ICMP_UGT:
137     // True if LHS u> RHS and RHS == high-bit-mask - 1
138     TrueIfSigned = true;
139     return RHS.isMaxSignedValue();
140   case ICmpInst::ICMP_UGE:
141     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
142     TrueIfSigned = true;
143     return RHS.isSignBit();
144   default:
145     return false;
146   }
147 }
148 
149 /// Returns true if the exploded icmp can be expressed as a signed comparison
150 /// to zero and updates the predicate accordingly.
151 /// The signedness of the comparison is preserved.
152 /// TODO: Refactor with decomposeBitTestICmp()?
153 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
154   if (!ICmpInst::isSigned(Pred))
155     return false;
156 
157   if (C == 0)
158     return ICmpInst::isRelational(Pred);
159 
160   if (C == 1) {
161     if (Pred == ICmpInst::ICMP_SLT) {
162       Pred = ICmpInst::ICMP_SLE;
163       return true;
164     }
165   } else if (C.isAllOnesValue()) {
166     if (Pred == ICmpInst::ICMP_SGT) {
167       Pred = ICmpInst::ICMP_SGE;
168       return true;
169     }
170   }
171 
172   return false;
173 }
174 
175 /// Given a signed integer type and a set of known zero and one bits, compute
176 /// the maximum and minimum values that could have the specified known zero and
177 /// known one bits, returning them in Min/Max.
178 static void computeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
179                                                    const APInt &KnownOne,
180                                                    APInt &Min, APInt &Max) {
181   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
182          KnownZero.getBitWidth() == Min.getBitWidth() &&
183          KnownZero.getBitWidth() == Max.getBitWidth() &&
184          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
185   APInt UnknownBits = ~(KnownZero|KnownOne);
186 
187   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
188   // bit if it is unknown.
189   Min = KnownOne;
190   Max = KnownOne|UnknownBits;
191 
192   if (UnknownBits.isNegative()) { // Sign bit is unknown
193     Min.setBit(Min.getBitWidth()-1);
194     Max.clearBit(Max.getBitWidth()-1);
195   }
196 }
197 
198 /// Given an unsigned integer type and a set of known zero and one bits, compute
199 /// the maximum and minimum values that could have the specified known zero and
200 /// known one bits, returning them in Min/Max.
201 static void computeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
202                                                      const APInt &KnownOne,
203                                                      APInt &Min, APInt &Max) {
204   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
205          KnownZero.getBitWidth() == Min.getBitWidth() &&
206          KnownZero.getBitWidth() == Max.getBitWidth() &&
207          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
208   APInt UnknownBits = ~(KnownZero|KnownOne);
209 
210   // The minimum value is when the unknown bits are all zeros.
211   Min = KnownOne;
212   // The maximum value is when the unknown bits are all ones.
213   Max = KnownOne|UnknownBits;
214 }
215 
216 /// This is called when we see this pattern:
217 ///   cmp pred (load (gep GV, ...)), cmpcst
218 /// where GV is a global variable with a constant initializer. Try to simplify
219 /// this into some simple computation that does not need the load. For example
220 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
221 ///
222 /// If AndCst is non-null, then the loaded value is masked with that constant
223 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
224 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
225                                                         GlobalVariable *GV,
226                                                         CmpInst &ICI,
227                                                         ConstantInt *AndCst) {
228   Constant *Init = GV->getInitializer();
229   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
230     return nullptr;
231 
232   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
233   if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
234 
235   // There are many forms of this optimization we can handle, for now, just do
236   // the simple index into a single-dimensional array.
237   //
238   // Require: GEP GV, 0, i {{, constant indices}}
239   if (GEP->getNumOperands() < 3 ||
240       !isa<ConstantInt>(GEP->getOperand(1)) ||
241       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
242       isa<Constant>(GEP->getOperand(2)))
243     return nullptr;
244 
245   // Check that indices after the variable are constants and in-range for the
246   // type they index.  Collect the indices.  This is typically for arrays of
247   // structs.
248   SmallVector<unsigned, 4> LaterIndices;
249 
250   Type *EltTy = Init->getType()->getArrayElementType();
251   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
252     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
253     if (!Idx) return nullptr;  // Variable index.
254 
255     uint64_t IdxVal = Idx->getZExtValue();
256     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
257 
258     if (StructType *STy = dyn_cast<StructType>(EltTy))
259       EltTy = STy->getElementType(IdxVal);
260     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
261       if (IdxVal >= ATy->getNumElements()) return nullptr;
262       EltTy = ATy->getElementType();
263     } else {
264       return nullptr; // Unknown type.
265     }
266 
267     LaterIndices.push_back(IdxVal);
268   }
269 
270   enum { Overdefined = -3, Undefined = -2 };
271 
272   // Variables for our state machines.
273 
274   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
275   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
276   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
277   // undefined, otherwise set to the first true element.  SecondTrueElement is
278   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
279   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
280 
281   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
282   // form "i != 47 & i != 87".  Same state transitions as for true elements.
283   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
284 
285   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
286   /// define a state machine that triggers for ranges of values that the index
287   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
288   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
289   /// index in the range (inclusive).  We use -2 for undefined here because we
290   /// use relative comparisons and don't want 0-1 to match -1.
291   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
292 
293   // MagicBitvector - This is a magic bitvector where we set a bit if the
294   // comparison is true for element 'i'.  If there are 64 elements or less in
295   // the array, this will fully represent all the comparison results.
296   uint64_t MagicBitvector = 0;
297 
298   // Scan the array and see if one of our patterns matches.
299   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
300   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
301     Constant *Elt = Init->getAggregateElement(i);
302     if (!Elt) return nullptr;
303 
304     // If this is indexing an array of structures, get the structure element.
305     if (!LaterIndices.empty())
306       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
307 
308     // If the element is masked, handle it.
309     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
310 
311     // Find out if the comparison would be true or false for the i'th element.
312     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
313                                                   CompareRHS, DL, &TLI);
314     // If the result is undef for this element, ignore it.
315     if (isa<UndefValue>(C)) {
316       // Extend range state machines to cover this element in case there is an
317       // undef in the middle of the range.
318       if (TrueRangeEnd == (int)i-1)
319         TrueRangeEnd = i;
320       if (FalseRangeEnd == (int)i-1)
321         FalseRangeEnd = i;
322       continue;
323     }
324 
325     // If we can't compute the result for any of the elements, we have to give
326     // up evaluating the entire conditional.
327     if (!isa<ConstantInt>(C)) return nullptr;
328 
329     // Otherwise, we know if the comparison is true or false for this element,
330     // update our state machines.
331     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
332 
333     // State machine for single/double/range index comparison.
334     if (IsTrueForElt) {
335       // Update the TrueElement state machine.
336       if (FirstTrueElement == Undefined)
337         FirstTrueElement = TrueRangeEnd = i;  // First true element.
338       else {
339         // Update double-compare state machine.
340         if (SecondTrueElement == Undefined)
341           SecondTrueElement = i;
342         else
343           SecondTrueElement = Overdefined;
344 
345         // Update range state machine.
346         if (TrueRangeEnd == (int)i-1)
347           TrueRangeEnd = i;
348         else
349           TrueRangeEnd = Overdefined;
350       }
351     } else {
352       // Update the FalseElement state machine.
353       if (FirstFalseElement == Undefined)
354         FirstFalseElement = FalseRangeEnd = i; // First false element.
355       else {
356         // Update double-compare state machine.
357         if (SecondFalseElement == Undefined)
358           SecondFalseElement = i;
359         else
360           SecondFalseElement = Overdefined;
361 
362         // Update range state machine.
363         if (FalseRangeEnd == (int)i-1)
364           FalseRangeEnd = i;
365         else
366           FalseRangeEnd = Overdefined;
367       }
368     }
369 
370     // If this element is in range, update our magic bitvector.
371     if (i < 64 && IsTrueForElt)
372       MagicBitvector |= 1ULL << i;
373 
374     // If all of our states become overdefined, bail out early.  Since the
375     // predicate is expensive, only check it every 8 elements.  This is only
376     // really useful for really huge arrays.
377     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
378         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
379         FalseRangeEnd == Overdefined)
380       return nullptr;
381   }
382 
383   // Now that we've scanned the entire array, emit our new comparison(s).  We
384   // order the state machines in complexity of the generated code.
385   Value *Idx = GEP->getOperand(2);
386 
387   // If the index is larger than the pointer size of the target, truncate the
388   // index down like the GEP would do implicitly.  We don't have to do this for
389   // an inbounds GEP because the index can't be out of range.
390   if (!GEP->isInBounds()) {
391     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
392     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
393     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
394       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
395   }
396 
397   // If the comparison is only true for one or two elements, emit direct
398   // comparisons.
399   if (SecondTrueElement != Overdefined) {
400     // None true -> false.
401     if (FirstTrueElement == Undefined)
402       return replaceInstUsesWith(ICI, Builder->getFalse());
403 
404     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
405 
406     // True for one element -> 'i == 47'.
407     if (SecondTrueElement == Undefined)
408       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
409 
410     // True for two elements -> 'i == 47 | i == 72'.
411     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
412     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
413     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
414     return BinaryOperator::CreateOr(C1, C2);
415   }
416 
417   // If the comparison is only false for one or two elements, emit direct
418   // comparisons.
419   if (SecondFalseElement != Overdefined) {
420     // None false -> true.
421     if (FirstFalseElement == Undefined)
422       return replaceInstUsesWith(ICI, Builder->getTrue());
423 
424     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
425 
426     // False for one element -> 'i != 47'.
427     if (SecondFalseElement == Undefined)
428       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
429 
430     // False for two elements -> 'i != 47 & i != 72'.
431     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
432     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
433     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
434     return BinaryOperator::CreateAnd(C1, C2);
435   }
436 
437   // If the comparison can be replaced with a range comparison for the elements
438   // where it is true, emit the range check.
439   if (TrueRangeEnd != Overdefined) {
440     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
441 
442     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
443     if (FirstTrueElement) {
444       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
445       Idx = Builder->CreateAdd(Idx, Offs);
446     }
447 
448     Value *End = ConstantInt::get(Idx->getType(),
449                                   TrueRangeEnd-FirstTrueElement+1);
450     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
451   }
452 
453   // False range check.
454   if (FalseRangeEnd != Overdefined) {
455     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
456     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
457     if (FirstFalseElement) {
458       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
459       Idx = Builder->CreateAdd(Idx, Offs);
460     }
461 
462     Value *End = ConstantInt::get(Idx->getType(),
463                                   FalseRangeEnd-FirstFalseElement);
464     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
465   }
466 
467   // If a magic bitvector captures the entire comparison state
468   // of this load, replace it with computation that does:
469   //   ((magic_cst >> i) & 1) != 0
470   {
471     Type *Ty = nullptr;
472 
473     // Look for an appropriate type:
474     // - The type of Idx if the magic fits
475     // - The smallest fitting legal type if we have a DataLayout
476     // - Default to i32
477     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
478       Ty = Idx->getType();
479     else
480       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
481 
482     if (Ty) {
483       Value *V = Builder->CreateIntCast(Idx, Ty, false);
484       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
485       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
486       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
487     }
488   }
489 
490   return nullptr;
491 }
492 
493 /// Return a value that can be used to compare the *offset* implied by a GEP to
494 /// zero. For example, if we have &A[i], we want to return 'i' for
495 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
496 /// are involved. The above expression would also be legal to codegen as
497 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
498 /// This latter form is less amenable to optimization though, and we are allowed
499 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
500 ///
501 /// If we can't emit an optimized form for this expression, this returns null.
502 ///
503 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
504                                           const DataLayout &DL) {
505   gep_type_iterator GTI = gep_type_begin(GEP);
506 
507   // Check to see if this gep only has a single variable index.  If so, and if
508   // any constant indices are a multiple of its scale, then we can compute this
509   // in terms of the scale of the variable index.  For example, if the GEP
510   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
511   // because the expression will cross zero at the same point.
512   unsigned i, e = GEP->getNumOperands();
513   int64_t Offset = 0;
514   for (i = 1; i != e; ++i, ++GTI) {
515     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
516       // Compute the aggregate offset of constant indices.
517       if (CI->isZero()) continue;
518 
519       // Handle a struct index, which adds its field offset to the pointer.
520       if (StructType *STy = GTI.getStructTypeOrNull()) {
521         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
522       } else {
523         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
524         Offset += Size*CI->getSExtValue();
525       }
526     } else {
527       // Found our variable index.
528       break;
529     }
530   }
531 
532   // If there are no variable indices, we must have a constant offset, just
533   // evaluate it the general way.
534   if (i == e) return nullptr;
535 
536   Value *VariableIdx = GEP->getOperand(i);
537   // Determine the scale factor of the variable element.  For example, this is
538   // 4 if the variable index is into an array of i32.
539   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
540 
541   // Verify that there are no other variable indices.  If so, emit the hard way.
542   for (++i, ++GTI; i != e; ++i, ++GTI) {
543     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
544     if (!CI) return nullptr;
545 
546     // Compute the aggregate offset of constant indices.
547     if (CI->isZero()) continue;
548 
549     // Handle a struct index, which adds its field offset to the pointer.
550     if (StructType *STy = GTI.getStructTypeOrNull()) {
551       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
552     } else {
553       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
554       Offset += Size*CI->getSExtValue();
555     }
556   }
557 
558   // Okay, we know we have a single variable index, which must be a
559   // pointer/array/vector index.  If there is no offset, life is simple, return
560   // the index.
561   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
562   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
563   if (Offset == 0) {
564     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
565     // we don't need to bother extending: the extension won't affect where the
566     // computation crosses zero.
567     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
568       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
569     }
570     return VariableIdx;
571   }
572 
573   // Otherwise, there is an index.  The computation we will do will be modulo
574   // the pointer size, so get it.
575   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
576 
577   Offset &= PtrSizeMask;
578   VariableScale &= PtrSizeMask;
579 
580   // To do this transformation, any constant index must be a multiple of the
581   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
582   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
583   // multiple of the variable scale.
584   int64_t NewOffs = Offset / (int64_t)VariableScale;
585   if (Offset != NewOffs*(int64_t)VariableScale)
586     return nullptr;
587 
588   // Okay, we can do this evaluation.  Start by converting the index to intptr.
589   if (VariableIdx->getType() != IntPtrTy)
590     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
591                                             true /*Signed*/);
592   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
593   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
594 }
595 
596 /// Returns true if we can rewrite Start as a GEP with pointer Base
597 /// and some integer offset. The nodes that need to be re-written
598 /// for this transformation will be added to Explored.
599 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
600                                   const DataLayout &DL,
601                                   SetVector<Value *> &Explored) {
602   SmallVector<Value *, 16> WorkList(1, Start);
603   Explored.insert(Base);
604 
605   // The following traversal gives us an order which can be used
606   // when doing the final transformation. Since in the final
607   // transformation we create the PHI replacement instructions first,
608   // we don't have to get them in any particular order.
609   //
610   // However, for other instructions we will have to traverse the
611   // operands of an instruction first, which means that we have to
612   // do a post-order traversal.
613   while (!WorkList.empty()) {
614     SetVector<PHINode *> PHIs;
615 
616     while (!WorkList.empty()) {
617       if (Explored.size() >= 100)
618         return false;
619 
620       Value *V = WorkList.back();
621 
622       if (Explored.count(V) != 0) {
623         WorkList.pop_back();
624         continue;
625       }
626 
627       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
628           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
629         // We've found some value that we can't explore which is different from
630         // the base. Therefore we can't do this transformation.
631         return false;
632 
633       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
634         auto *CI = dyn_cast<CastInst>(V);
635         if (!CI->isNoopCast(DL))
636           return false;
637 
638         if (Explored.count(CI->getOperand(0)) == 0)
639           WorkList.push_back(CI->getOperand(0));
640       }
641 
642       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
643         // We're limiting the GEP to having one index. This will preserve
644         // the original pointer type. We could handle more cases in the
645         // future.
646         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
647             GEP->getType() != Start->getType())
648           return false;
649 
650         if (Explored.count(GEP->getOperand(0)) == 0)
651           WorkList.push_back(GEP->getOperand(0));
652       }
653 
654       if (WorkList.back() == V) {
655         WorkList.pop_back();
656         // We've finished visiting this node, mark it as such.
657         Explored.insert(V);
658       }
659 
660       if (auto *PN = dyn_cast<PHINode>(V)) {
661         // We cannot transform PHIs on unsplittable basic blocks.
662         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
663           return false;
664         Explored.insert(PN);
665         PHIs.insert(PN);
666       }
667     }
668 
669     // Explore the PHI nodes further.
670     for (auto *PN : PHIs)
671       for (Value *Op : PN->incoming_values())
672         if (Explored.count(Op) == 0)
673           WorkList.push_back(Op);
674   }
675 
676   // Make sure that we can do this. Since we can't insert GEPs in a basic
677   // block before a PHI node, we can't easily do this transformation if
678   // we have PHI node users of transformed instructions.
679   for (Value *Val : Explored) {
680     for (Value *Use : Val->uses()) {
681 
682       auto *PHI = dyn_cast<PHINode>(Use);
683       auto *Inst = dyn_cast<Instruction>(Val);
684 
685       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
686           Explored.count(PHI) == 0)
687         continue;
688 
689       if (PHI->getParent() == Inst->getParent())
690         return false;
691     }
692   }
693   return true;
694 }
695 
696 // Sets the appropriate insert point on Builder where we can add
697 // a replacement Instruction for V (if that is possible).
698 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
699                               bool Before = true) {
700   if (auto *PHI = dyn_cast<PHINode>(V)) {
701     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
702     return;
703   }
704   if (auto *I = dyn_cast<Instruction>(V)) {
705     if (!Before)
706       I = &*std::next(I->getIterator());
707     Builder.SetInsertPoint(I);
708     return;
709   }
710   if (auto *A = dyn_cast<Argument>(V)) {
711     // Set the insertion point in the entry block.
712     BasicBlock &Entry = A->getParent()->getEntryBlock();
713     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
714     return;
715   }
716   // Otherwise, this is a constant and we don't need to set a new
717   // insertion point.
718   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
719 }
720 
721 /// Returns a re-written value of Start as an indexed GEP using Base as a
722 /// pointer.
723 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
724                                  const DataLayout &DL,
725                                  SetVector<Value *> &Explored) {
726   // Perform all the substitutions. This is a bit tricky because we can
727   // have cycles in our use-def chains.
728   // 1. Create the PHI nodes without any incoming values.
729   // 2. Create all the other values.
730   // 3. Add the edges for the PHI nodes.
731   // 4. Emit GEPs to get the original pointers.
732   // 5. Remove the original instructions.
733   Type *IndexType = IntegerType::get(
734       Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
735 
736   DenseMap<Value *, Value *> NewInsts;
737   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
738 
739   // Create the new PHI nodes, without adding any incoming values.
740   for (Value *Val : Explored) {
741     if (Val == Base)
742       continue;
743     // Create empty phi nodes. This avoids cyclic dependencies when creating
744     // the remaining instructions.
745     if (auto *PHI = dyn_cast<PHINode>(Val))
746       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
747                                       PHI->getName() + ".idx", PHI);
748   }
749   IRBuilder<> Builder(Base->getContext());
750 
751   // Create all the other instructions.
752   for (Value *Val : Explored) {
753 
754     if (NewInsts.find(Val) != NewInsts.end())
755       continue;
756 
757     if (auto *CI = dyn_cast<CastInst>(Val)) {
758       NewInsts[CI] = NewInsts[CI->getOperand(0)];
759       continue;
760     }
761     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
762       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
763                                                   : GEP->getOperand(1);
764       setInsertionPoint(Builder, GEP);
765       // Indices might need to be sign extended. GEPs will magically do
766       // this, but we need to do it ourselves here.
767       if (Index->getType()->getScalarSizeInBits() !=
768           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
769         Index = Builder.CreateSExtOrTrunc(
770             Index, NewInsts[GEP->getOperand(0)]->getType(),
771             GEP->getOperand(0)->getName() + ".sext");
772       }
773 
774       auto *Op = NewInsts[GEP->getOperand(0)];
775       if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
776         NewInsts[GEP] = Index;
777       else
778         NewInsts[GEP] = Builder.CreateNSWAdd(
779             Op, Index, GEP->getOperand(0)->getName() + ".add");
780       continue;
781     }
782     if (isa<PHINode>(Val))
783       continue;
784 
785     llvm_unreachable("Unexpected instruction type");
786   }
787 
788   // Add the incoming values to the PHI nodes.
789   for (Value *Val : Explored) {
790     if (Val == Base)
791       continue;
792     // All the instructions have been created, we can now add edges to the
793     // phi nodes.
794     if (auto *PHI = dyn_cast<PHINode>(Val)) {
795       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
796       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
797         Value *NewIncoming = PHI->getIncomingValue(I);
798 
799         if (NewInsts.find(NewIncoming) != NewInsts.end())
800           NewIncoming = NewInsts[NewIncoming];
801 
802         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
803       }
804     }
805   }
806 
807   for (Value *Val : Explored) {
808     if (Val == Base)
809       continue;
810 
811     // Depending on the type, for external users we have to emit
812     // a GEP or a GEP + ptrtoint.
813     setInsertionPoint(Builder, Val, false);
814 
815     // If required, create an inttoptr instruction for Base.
816     Value *NewBase = Base;
817     if (!Base->getType()->isPointerTy())
818       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
819                                                Start->getName() + "to.ptr");
820 
821     Value *GEP = Builder.CreateInBoundsGEP(
822         Start->getType()->getPointerElementType(), NewBase,
823         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
824 
825     if (!Val->getType()->isPointerTy()) {
826       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
827                                               Val->getName() + ".conv");
828       GEP = Cast;
829     }
830     Val->replaceAllUsesWith(GEP);
831   }
832 
833   return NewInsts[Start];
834 }
835 
836 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
837 /// the input Value as a constant indexed GEP. Returns a pair containing
838 /// the GEPs Pointer and Index.
839 static std::pair<Value *, Value *>
840 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
841   Type *IndexType = IntegerType::get(V->getContext(),
842                                      DL.getPointerTypeSizeInBits(V->getType()));
843 
844   Constant *Index = ConstantInt::getNullValue(IndexType);
845   while (true) {
846     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
847       // We accept only inbouds GEPs here to exclude the possibility of
848       // overflow.
849       if (!GEP->isInBounds())
850         break;
851       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
852           GEP->getType() == V->getType()) {
853         V = GEP->getOperand(0);
854         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
855         Index = ConstantExpr::getAdd(
856             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
857         continue;
858       }
859       break;
860     }
861     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
862       if (!CI->isNoopCast(DL))
863         break;
864       V = CI->getOperand(0);
865       continue;
866     }
867     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
868       if (!CI->isNoopCast(DL))
869         break;
870       V = CI->getOperand(0);
871       continue;
872     }
873     break;
874   }
875   return {V, Index};
876 }
877 
878 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
879 /// We can look through PHIs, GEPs and casts in order to determine a common base
880 /// between GEPLHS and RHS.
881 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
882                                               ICmpInst::Predicate Cond,
883                                               const DataLayout &DL) {
884   if (!GEPLHS->hasAllConstantIndices())
885     return nullptr;
886 
887   // Make sure the pointers have the same type.
888   if (GEPLHS->getType() != RHS->getType())
889     return nullptr;
890 
891   Value *PtrBase, *Index;
892   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
893 
894   // The set of nodes that will take part in this transformation.
895   SetVector<Value *> Nodes;
896 
897   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
898     return nullptr;
899 
900   // We know we can re-write this as
901   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
902   // Since we've only looked through inbouds GEPs we know that we
903   // can't have overflow on either side. We can therefore re-write
904   // this as:
905   //   OFFSET1 cmp OFFSET2
906   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
907 
908   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
909   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
910   // offset. Since Index is the offset of LHS to the base pointer, we will now
911   // compare the offsets instead of comparing the pointers.
912   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
913 }
914 
915 /// Fold comparisons between a GEP instruction and something else. At this point
916 /// we know that the GEP is on the LHS of the comparison.
917 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
918                                        ICmpInst::Predicate Cond,
919                                        Instruction &I) {
920   // Don't transform signed compares of GEPs into index compares. Even if the
921   // GEP is inbounds, the final add of the base pointer can have signed overflow
922   // and would change the result of the icmp.
923   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
924   // the maximum signed value for the pointer type.
925   if (ICmpInst::isSigned(Cond))
926     return nullptr;
927 
928   // Look through bitcasts and addrspacecasts. We do not however want to remove
929   // 0 GEPs.
930   if (!isa<GetElementPtrInst>(RHS))
931     RHS = RHS->stripPointerCasts();
932 
933   Value *PtrBase = GEPLHS->getOperand(0);
934   if (PtrBase == RHS && GEPLHS->isInBounds()) {
935     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
936     // This transformation (ignoring the base and scales) is valid because we
937     // know pointers can't overflow since the gep is inbounds.  See if we can
938     // output an optimized form.
939     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
940 
941     // If not, synthesize the offset the hard way.
942     if (!Offset)
943       Offset = EmitGEPOffset(GEPLHS);
944     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
945                         Constant::getNullValue(Offset->getType()));
946   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
947     // If the base pointers are different, but the indices are the same, just
948     // compare the base pointer.
949     if (PtrBase != GEPRHS->getOperand(0)) {
950       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
951       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
952                         GEPRHS->getOperand(0)->getType();
953       if (IndicesTheSame)
954         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
955           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
956             IndicesTheSame = false;
957             break;
958           }
959 
960       // If all indices are the same, just compare the base pointers.
961       if (IndicesTheSame)
962         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
963 
964       // If we're comparing GEPs with two base pointers that only differ in type
965       // and both GEPs have only constant indices or just one use, then fold
966       // the compare with the adjusted indices.
967       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
968           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
969           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
970           PtrBase->stripPointerCasts() ==
971               GEPRHS->getOperand(0)->stripPointerCasts()) {
972         Value *LOffset = EmitGEPOffset(GEPLHS);
973         Value *ROffset = EmitGEPOffset(GEPRHS);
974 
975         // If we looked through an addrspacecast between different sized address
976         // spaces, the LHS and RHS pointers are different sized
977         // integers. Truncate to the smaller one.
978         Type *LHSIndexTy = LOffset->getType();
979         Type *RHSIndexTy = ROffset->getType();
980         if (LHSIndexTy != RHSIndexTy) {
981           if (LHSIndexTy->getPrimitiveSizeInBits() <
982               RHSIndexTy->getPrimitiveSizeInBits()) {
983             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
984           } else
985             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
986         }
987 
988         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
989                                          LOffset, ROffset);
990         return replaceInstUsesWith(I, Cmp);
991       }
992 
993       // Otherwise, the base pointers are different and the indices are
994       // different. Try convert this to an indexed compare by looking through
995       // PHIs/casts.
996       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
997     }
998 
999     // If one of the GEPs has all zero indices, recurse.
1000     if (GEPLHS->hasAllZeroIndices())
1001       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
1002                          ICmpInst::getSwappedPredicate(Cond), I);
1003 
1004     // If the other GEP has all zero indices, recurse.
1005     if (GEPRHS->hasAllZeroIndices())
1006       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
1007 
1008     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
1009     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
1010       // If the GEPs only differ by one index, compare it.
1011       unsigned NumDifferences = 0;  // Keep track of # differences.
1012       unsigned DiffOperand = 0;     // The operand that differs.
1013       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
1014         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
1015           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
1016                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
1017             // Irreconcilable differences.
1018             NumDifferences = 2;
1019             break;
1020           } else {
1021             if (NumDifferences++) break;
1022             DiffOperand = i;
1023           }
1024         }
1025 
1026       if (NumDifferences == 0)   // SAME GEP?
1027         return replaceInstUsesWith(I, // No comparison is needed here.
1028                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
1029 
1030       else if (NumDifferences == 1 && GEPsInBounds) {
1031         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1032         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1033         // Make sure we do a signed comparison here.
1034         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1035       }
1036     }
1037 
1038     // Only lower this if the icmp is the only user of the GEP or if we expect
1039     // the result to fold to a constant!
1040     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1041         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1042       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1043       Value *L = EmitGEPOffset(GEPLHS);
1044       Value *R = EmitGEPOffset(GEPRHS);
1045       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1046     }
1047   }
1048 
1049   // Try convert this to an indexed compare by looking through PHIs/casts as a
1050   // last resort.
1051   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1052 }
1053 
1054 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1055                                          const AllocaInst *Alloca,
1056                                          const Value *Other) {
1057   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1058 
1059   // It would be tempting to fold away comparisons between allocas and any
1060   // pointer not based on that alloca (e.g. an argument). However, even
1061   // though such pointers cannot alias, they can still compare equal.
1062   //
1063   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1064   // doesn't escape we can argue that it's impossible to guess its value, and we
1065   // can therefore act as if any such guesses are wrong.
1066   //
1067   // The code below checks that the alloca doesn't escape, and that it's only
1068   // used in a comparison once (the current instruction). The
1069   // single-comparison-use condition ensures that we're trivially folding all
1070   // comparisons against the alloca consistently, and avoids the risk of
1071   // erroneously folding a comparison of the pointer with itself.
1072 
1073   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1074 
1075   SmallVector<const Use *, 32> Worklist;
1076   for (const Use &U : Alloca->uses()) {
1077     if (Worklist.size() >= MaxIter)
1078       return nullptr;
1079     Worklist.push_back(&U);
1080   }
1081 
1082   unsigned NumCmps = 0;
1083   while (!Worklist.empty()) {
1084     assert(Worklist.size() <= MaxIter);
1085     const Use *U = Worklist.pop_back_val();
1086     const Value *V = U->getUser();
1087     --MaxIter;
1088 
1089     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1090         isa<SelectInst>(V)) {
1091       // Track the uses.
1092     } else if (isa<LoadInst>(V)) {
1093       // Loading from the pointer doesn't escape it.
1094       continue;
1095     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1096       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1097       if (SI->getValueOperand() == U->get())
1098         return nullptr;
1099       continue;
1100     } else if (isa<ICmpInst>(V)) {
1101       if (NumCmps++)
1102         return nullptr; // Found more than one cmp.
1103       continue;
1104     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1105       switch (Intrin->getIntrinsicID()) {
1106         // These intrinsics don't escape or compare the pointer. Memset is safe
1107         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1108         // we don't allow stores, so src cannot point to V.
1109         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1110         case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
1111         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1112           continue;
1113         default:
1114           return nullptr;
1115       }
1116     } else {
1117       return nullptr;
1118     }
1119     for (const Use &U : V->uses()) {
1120       if (Worklist.size() >= MaxIter)
1121         return nullptr;
1122       Worklist.push_back(&U);
1123     }
1124   }
1125 
1126   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1127   return replaceInstUsesWith(
1128       ICI,
1129       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1130 }
1131 
1132 /// Fold "icmp pred (X+CI), X".
1133 Instruction *InstCombiner::foldICmpAddOpConst(Instruction &ICI,
1134                                               Value *X, ConstantInt *CI,
1135                                               ICmpInst::Predicate Pred) {
1136   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1137   // so the values can never be equal.  Similarly for all other "or equals"
1138   // operators.
1139 
1140   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1141   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1142   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1143   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1144     Value *R =
1145       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
1146     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1147   }
1148 
1149   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1150   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1151   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1152   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1153     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
1154 
1155   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
1156   ConstantInt *SMax = ConstantInt::get(X->getContext(),
1157                                        APInt::getSignedMaxValue(BitWidth));
1158 
1159   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1160   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1161   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1162   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1163   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1164   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1165   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1166     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
1167 
1168   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1169   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1170   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1171   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1172   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1173   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1174 
1175   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1176   Constant *C = Builder->getInt(CI->getValue()-1);
1177   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
1178 }
1179 
1180 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1181 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1182 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1183 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1184                                                  const APInt &AP1,
1185                                                  const APInt &AP2) {
1186   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1187 
1188   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1189     if (I.getPredicate() == I.ICMP_NE)
1190       Pred = CmpInst::getInversePredicate(Pred);
1191     return new ICmpInst(Pred, LHS, RHS);
1192   };
1193 
1194   // Don't bother doing any work for cases which InstSimplify handles.
1195   if (AP2 == 0)
1196     return nullptr;
1197 
1198   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1199   if (IsAShr) {
1200     if (AP2.isAllOnesValue())
1201       return nullptr;
1202     if (AP2.isNegative() != AP1.isNegative())
1203       return nullptr;
1204     if (AP2.sgt(AP1))
1205       return nullptr;
1206   }
1207 
1208   if (!AP1)
1209     // 'A' must be large enough to shift out the highest set bit.
1210     return getICmp(I.ICMP_UGT, A,
1211                    ConstantInt::get(A->getType(), AP2.logBase2()));
1212 
1213   if (AP1 == AP2)
1214     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1215 
1216   int Shift;
1217   if (IsAShr && AP1.isNegative())
1218     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1219   else
1220     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1221 
1222   if (Shift > 0) {
1223     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1224       // There are multiple solutions if we are comparing against -1 and the LHS
1225       // of the ashr is not a power of two.
1226       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1227         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1228       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1229     } else if (AP1 == AP2.lshr(Shift)) {
1230       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1231     }
1232   }
1233 
1234   // Shifting const2 will never be equal to const1.
1235   // FIXME: This should always be handled by InstSimplify?
1236   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1237   return replaceInstUsesWith(I, TorF);
1238 }
1239 
1240 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1241 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1242 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1243                                                  const APInt &AP1,
1244                                                  const APInt &AP2) {
1245   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1246 
1247   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1248     if (I.getPredicate() == I.ICMP_NE)
1249       Pred = CmpInst::getInversePredicate(Pred);
1250     return new ICmpInst(Pred, LHS, RHS);
1251   };
1252 
1253   // Don't bother doing any work for cases which InstSimplify handles.
1254   if (AP2 == 0)
1255     return nullptr;
1256 
1257   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1258 
1259   if (!AP1 && AP2TrailingZeros != 0)
1260     return getICmp(
1261         I.ICMP_UGE, A,
1262         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1263 
1264   if (AP1 == AP2)
1265     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1266 
1267   // Get the distance between the lowest bits that are set.
1268   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1269 
1270   if (Shift > 0 && AP2.shl(Shift) == AP1)
1271     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1272 
1273   // Shifting const2 will never be equal to const1.
1274   // FIXME: This should always be handled by InstSimplify?
1275   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1276   return replaceInstUsesWith(I, TorF);
1277 }
1278 
1279 /// The caller has matched a pattern of the form:
1280 ///   I = icmp ugt (add (add A, B), CI2), CI1
1281 /// If this is of the form:
1282 ///   sum = a + b
1283 ///   if (sum+128 >u 255)
1284 /// Then replace it with llvm.sadd.with.overflow.i8.
1285 ///
1286 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1287                                           ConstantInt *CI2, ConstantInt *CI1,
1288                                           InstCombiner &IC) {
1289   // The transformation we're trying to do here is to transform this into an
1290   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1291   // with a narrower add, and discard the add-with-constant that is part of the
1292   // range check (if we can't eliminate it, this isn't profitable).
1293 
1294   // In order to eliminate the add-with-constant, the compare can be its only
1295   // use.
1296   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1297   if (!AddWithCst->hasOneUse())
1298     return nullptr;
1299 
1300   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1301   if (!CI2->getValue().isPowerOf2())
1302     return nullptr;
1303   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1304   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1305     return nullptr;
1306 
1307   // The width of the new add formed is 1 more than the bias.
1308   ++NewWidth;
1309 
1310   // Check to see that CI1 is an all-ones value with NewWidth bits.
1311   if (CI1->getBitWidth() == NewWidth ||
1312       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1313     return nullptr;
1314 
1315   // This is only really a signed overflow check if the inputs have been
1316   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1317   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1318   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1319   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1320       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1321     return nullptr;
1322 
1323   // In order to replace the original add with a narrower
1324   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1325   // and truncates that discard the high bits of the add.  Verify that this is
1326   // the case.
1327   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1328   for (User *U : OrigAdd->users()) {
1329     if (U == AddWithCst)
1330       continue;
1331 
1332     // Only accept truncates for now.  We would really like a nice recursive
1333     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1334     // chain to see which bits of a value are actually demanded.  If the
1335     // original add had another add which was then immediately truncated, we
1336     // could still do the transformation.
1337     TruncInst *TI = dyn_cast<TruncInst>(U);
1338     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1339       return nullptr;
1340   }
1341 
1342   // If the pattern matches, truncate the inputs to the narrower type and
1343   // use the sadd_with_overflow intrinsic to efficiently compute both the
1344   // result and the overflow bit.
1345   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1346   Value *F = Intrinsic::getDeclaration(I.getModule(),
1347                                        Intrinsic::sadd_with_overflow, NewType);
1348 
1349   InstCombiner::BuilderTy *Builder = IC.Builder;
1350 
1351   // Put the new code above the original add, in case there are any uses of the
1352   // add between the add and the compare.
1353   Builder->SetInsertPoint(OrigAdd);
1354 
1355   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName() + ".trunc");
1356   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName() + ".trunc");
1357   CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
1358   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1359   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1360 
1361   // The inner add was the result of the narrow add, zero extended to the
1362   // wider type.  Replace it with the result computed by the intrinsic.
1363   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1364 
1365   // The original icmp gets replaced with the overflow value.
1366   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1367 }
1368 
1369 // Fold icmp Pred X, C.
1370 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1371   CmpInst::Predicate Pred = Cmp.getPredicate();
1372   Value *X = Cmp.getOperand(0);
1373 
1374   const APInt *C;
1375   if (!match(Cmp.getOperand(1), m_APInt(C)))
1376     return nullptr;
1377 
1378   Value *A = nullptr, *B = nullptr;
1379 
1380   // Match the following pattern, which is a common idiom when writing
1381   // overflow-safe integer arithmetic functions. The source performs an addition
1382   // in wider type and explicitly checks for overflow using comparisons against
1383   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1384   //
1385   // TODO: This could probably be generalized to handle other overflow-safe
1386   // operations if we worked out the formulas to compute the appropriate magic
1387   // constants.
1388   //
1389   // sum = a + b
1390   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1391   {
1392     ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1393     if (Pred == ICmpInst::ICMP_UGT &&
1394         match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1395       if (Instruction *Res = processUGT_ADDCST_ADD(
1396               Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this))
1397         return Res;
1398   }
1399 
1400   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1401   if (*C == 0 && Pred == ICmpInst::ICMP_SGT) {
1402     SelectPatternResult SPR = matchSelectPattern(X, A, B);
1403     if (SPR.Flavor == SPF_SMIN) {
1404       if (isKnownPositive(A, DL))
1405         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1406       if (isKnownPositive(B, DL))
1407         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1408     }
1409   }
1410 
1411   // FIXME: Use m_APInt to allow folds for splat constants.
1412   ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1));
1413   if (!CI)
1414     return nullptr;
1415 
1416   // Canonicalize icmp instructions based on dominating conditions.
1417   BasicBlock *Parent = Cmp.getParent();
1418   BasicBlock *Dom = Parent->getSinglePredecessor();
1419   auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
1420   ICmpInst::Predicate Pred2;
1421   BasicBlock *TrueBB, *FalseBB;
1422   ConstantInt *CI2;
1423   if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)),
1424                            TrueBB, FalseBB)) &&
1425       TrueBB != FalseBB) {
1426     ConstantRange CR =
1427         ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue());
1428     ConstantRange DominatingCR =
1429         (Parent == TrueBB)
1430             ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue())
1431             : ConstantRange::makeExactICmpRegion(
1432                   CmpInst::getInversePredicate(Pred2), CI2->getValue());
1433     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1434     ConstantRange Difference = DominatingCR.difference(CR);
1435     if (Intersection.isEmptySet())
1436       return replaceInstUsesWith(Cmp, Builder->getFalse());
1437     if (Difference.isEmptySet())
1438       return replaceInstUsesWith(Cmp, Builder->getTrue());
1439 
1440     // If this is a normal comparison, it demands all bits. If it is a sign
1441     // bit comparison, it only demands the sign bit.
1442     bool UnusedBit;
1443     bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit);
1444 
1445     // Canonicalizing a sign bit comparison that gets used in a branch,
1446     // pessimizes codegen by generating branch on zero instruction instead
1447     // of a test and branch. So we avoid canonicalizing in such situations
1448     // because test and branch instruction has better branch displacement
1449     // than compare and branch instruction.
1450     if (!isBranchOnSignBitCheck(Cmp, IsSignBit) && !Cmp.isEquality()) {
1451       if (auto *AI = Intersection.getSingleElement())
1452         return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder->getInt(*AI));
1453       if (auto *AD = Difference.getSingleElement())
1454         return new ICmpInst(ICmpInst::ICMP_NE, X, Builder->getInt(*AD));
1455     }
1456   }
1457 
1458   return nullptr;
1459 }
1460 
1461 /// Fold icmp (trunc X, Y), C.
1462 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1463                                                  Instruction *Trunc,
1464                                                  const APInt *C) {
1465   ICmpInst::Predicate Pred = Cmp.getPredicate();
1466   Value *X = Trunc->getOperand(0);
1467   if (*C == 1 && C->getBitWidth() > 1) {
1468     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1469     Value *V = nullptr;
1470     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1471       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1472                           ConstantInt::get(V->getType(), 1));
1473   }
1474 
1475   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1476     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1477     // of the high bits truncated out of x are known.
1478     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1479              SrcBits = X->getType()->getScalarSizeInBits();
1480     APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1481     computeKnownBits(X, KnownZero, KnownOne, 0, &Cmp);
1482 
1483     // If all the high bits are known, we can do this xform.
1484     if ((KnownZero | KnownOne).countLeadingOnes() >= SrcBits - DstBits) {
1485       // Pull in the high bits from known-ones set.
1486       APInt NewRHS = C->zext(SrcBits);
1487       NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1488       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1489     }
1490   }
1491 
1492   return nullptr;
1493 }
1494 
1495 /// Fold icmp (xor X, Y), C.
1496 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1497                                                BinaryOperator *Xor,
1498                                                const APInt *C) {
1499   Value *X = Xor->getOperand(0);
1500   Value *Y = Xor->getOperand(1);
1501   const APInt *XorC;
1502   if (!match(Y, m_APInt(XorC)))
1503     return nullptr;
1504 
1505   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1506   // fold the xor.
1507   ICmpInst::Predicate Pred = Cmp.getPredicate();
1508   if ((Pred == ICmpInst::ICMP_SLT && *C == 0) ||
1509       (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) {
1510 
1511     // If the sign bit of the XorCst is not set, there is no change to
1512     // the operation, just stop using the Xor.
1513     if (!XorC->isNegative()) {
1514       Cmp.setOperand(0, X);
1515       Worklist.Add(Xor);
1516       return &Cmp;
1517     }
1518 
1519     // Was the old condition true if the operand is positive?
1520     bool isTrueIfPositive = Pred == ICmpInst::ICMP_SGT;
1521 
1522     // If so, the new one isn't.
1523     isTrueIfPositive ^= true;
1524 
1525     Constant *CmpConstant = cast<Constant>(Cmp.getOperand(1));
1526     if (isTrueIfPositive)
1527       return new ICmpInst(ICmpInst::ICMP_SGT, X, SubOne(CmpConstant));
1528     else
1529       return new ICmpInst(ICmpInst::ICMP_SLT, X, AddOne(CmpConstant));
1530   }
1531 
1532   if (Xor->hasOneUse()) {
1533     // (icmp u/s (xor X SignBit), C) -> (icmp s/u X, (xor C SignBit))
1534     if (!Cmp.isEquality() && XorC->isSignBit()) {
1535       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1536                             : Cmp.getSignedPredicate();
1537       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
1538     }
1539 
1540     // (icmp u/s (xor X ~SignBit), C) -> (icmp s/u X, (xor C ~SignBit))
1541     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1542       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1543                             : Cmp.getSignedPredicate();
1544       Pred = Cmp.getSwappedPredicate(Pred);
1545       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
1546     }
1547   }
1548 
1549   // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1550   //   iff -C is a power of 2
1551   if (Pred == ICmpInst::ICMP_UGT && *XorC == ~(*C) && (*C + 1).isPowerOf2())
1552     return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1553 
1554   // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1555   //   iff -C is a power of 2
1556   if (Pred == ICmpInst::ICMP_ULT && *XorC == -(*C) && C->isPowerOf2())
1557     return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
1558 
1559   return nullptr;
1560 }
1561 
1562 /// Fold icmp (and (sh X, Y), C2), C1.
1563 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1564                                             const APInt *C1, const APInt *C2) {
1565   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1566   if (!Shift || !Shift->isShift())
1567     return nullptr;
1568 
1569   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1570   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1571   // code produced by the clang front-end, for bitfield access.
1572   // This seemingly simple opportunity to fold away a shift turns out to be
1573   // rather complicated. See PR17827 for details.
1574   unsigned ShiftOpcode = Shift->getOpcode();
1575   bool IsShl = ShiftOpcode == Instruction::Shl;
1576   const APInt *C3;
1577   if (match(Shift->getOperand(1), m_APInt(C3))) {
1578     bool CanFold = false;
1579     if (ShiftOpcode == Instruction::AShr) {
1580       // There may be some constraints that make this possible, but nothing
1581       // simple has been discovered yet.
1582       CanFold = false;
1583     } else if (ShiftOpcode == Instruction::Shl) {
1584       // For a left shift, we can fold if the comparison is not signed. We can
1585       // also fold a signed comparison if the mask value and comparison value
1586       // are not negative. These constraints may not be obvious, but we can
1587       // prove that they are correct using an SMT solver.
1588       if (!Cmp.isSigned() || (!C2->isNegative() && !C1->isNegative()))
1589         CanFold = true;
1590     } else if (ShiftOpcode == Instruction::LShr) {
1591       // For a logical right shift, we can fold if the comparison is not signed.
1592       // We can also fold a signed comparison if the shifted mask value and the
1593       // shifted comparison value are not negative. These constraints may not be
1594       // obvious, but we can prove that they are correct using an SMT solver.
1595       if (!Cmp.isSigned() ||
1596           (!C2->shl(*C3).isNegative() && !C1->shl(*C3).isNegative()))
1597         CanFold = true;
1598     }
1599 
1600     if (CanFold) {
1601       APInt NewCst = IsShl ? C1->lshr(*C3) : C1->shl(*C3);
1602       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1603       // Check to see if we are shifting out any of the bits being compared.
1604       if (SameAsC1 != *C1) {
1605         // If we shifted bits out, the fold is not going to work out. As a
1606         // special case, check to see if this means that the result is always
1607         // true or false now.
1608         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1609           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1610         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1611           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1612       } else {
1613         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1614         APInt NewAndCst = IsShl ? C2->lshr(*C3) : C2->shl(*C3);
1615         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1616         And->setOperand(0, Shift->getOperand(0));
1617         Worklist.Add(Shift); // Shift is dead.
1618         return &Cmp;
1619       }
1620     }
1621   }
1622 
1623   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1624   // preferable because it allows the C2 << Y expression to be hoisted out of a
1625   // loop if Y is invariant and X is not.
1626   if (Shift->hasOneUse() && *C1 == 0 && Cmp.isEquality() &&
1627       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1628     // Compute C2 << Y.
1629     Value *NewShift =
1630         IsShl ? Builder->CreateLShr(And->getOperand(1), Shift->getOperand(1))
1631               : Builder->CreateShl(And->getOperand(1), Shift->getOperand(1));
1632 
1633     // Compute X & (C2 << Y).
1634     Value *NewAnd = Builder->CreateAnd(Shift->getOperand(0), NewShift);
1635     Cmp.setOperand(0, NewAnd);
1636     return &Cmp;
1637   }
1638 
1639   return nullptr;
1640 }
1641 
1642 /// Fold icmp (and X, C2), C1.
1643 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1644                                                  BinaryOperator *And,
1645                                                  const APInt *C1) {
1646   const APInt *C2;
1647   if (!match(And->getOperand(1), m_APInt(C2)))
1648     return nullptr;
1649 
1650   if (!And->hasOneUse() || !And->getOperand(0)->hasOneUse())
1651     return nullptr;
1652 
1653   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1654   // the input width without changing the value produced, eliminate the cast:
1655   //
1656   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1657   //
1658   // We can do this transformation if the constants do not have their sign bits
1659   // set or if it is an equality comparison. Extending a relational comparison
1660   // when we're checking the sign bit would not work.
1661   Value *W;
1662   if (match(And->getOperand(0), m_Trunc(m_Value(W))) &&
1663       (Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) {
1664     // TODO: Is this a good transform for vectors? Wider types may reduce
1665     // throughput. Should this transform be limited (even for scalars) by using
1666     // shouldChangeType()?
1667     if (!Cmp.getType()->isVectorTy()) {
1668       Type *WideType = W->getType();
1669       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1670       Constant *ZextC1 = ConstantInt::get(WideType, C1->zext(WideScalarBits));
1671       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1672       Value *NewAnd = Builder->CreateAnd(W, ZextC2, And->getName());
1673       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1674     }
1675   }
1676 
1677   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2))
1678     return I;
1679 
1680   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1681   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1682   //
1683   // iff pred isn't signed
1684   if (!Cmp.isSigned() && *C1 == 0 && match(And->getOperand(1), m_One())) {
1685     Constant *One = cast<Constant>(And->getOperand(1));
1686     Value *Or = And->getOperand(0);
1687     Value *A, *B, *LShr;
1688     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1689         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1690       unsigned UsesRemoved = 0;
1691       if (And->hasOneUse())
1692         ++UsesRemoved;
1693       if (Or->hasOneUse())
1694         ++UsesRemoved;
1695       if (LShr->hasOneUse())
1696         ++UsesRemoved;
1697 
1698       // Compute A & ((1 << B) | 1)
1699       Value *NewOr = nullptr;
1700       if (auto *C = dyn_cast<Constant>(B)) {
1701         if (UsesRemoved >= 1)
1702           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1703       } else {
1704         if (UsesRemoved >= 3)
1705           NewOr = Builder->CreateOr(Builder->CreateShl(One, B, LShr->getName(),
1706                                                        /*HasNUW=*/true),
1707                                     One, Or->getName());
1708       }
1709       if (NewOr) {
1710         Value *NewAnd = Builder->CreateAnd(A, NewOr, And->getName());
1711         Cmp.setOperand(0, NewAnd);
1712         return &Cmp;
1713       }
1714     }
1715   }
1716 
1717   // (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a
1718   // result greater than C1.
1719   unsigned NumTZ = C2->countTrailingZeros();
1720   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && NumTZ < C2->getBitWidth() &&
1721       APInt::getOneBitSet(C2->getBitWidth(), NumTZ).ugt(*C1)) {
1722     Constant *Zero = Constant::getNullValue(And->getType());
1723     return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
1724   }
1725 
1726   return nullptr;
1727 }
1728 
1729 /// Fold icmp (and X, Y), C.
1730 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1731                                                BinaryOperator *And,
1732                                                const APInt *C) {
1733   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1734     return I;
1735 
1736   // TODO: These all require that Y is constant too, so refactor with the above.
1737 
1738   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1739   Value *X = And->getOperand(0);
1740   Value *Y = And->getOperand(1);
1741   if (auto *LI = dyn_cast<LoadInst>(X))
1742     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1743       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1744         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1745             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1746           ConstantInt *C2 = cast<ConstantInt>(Y);
1747           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1748             return Res;
1749         }
1750 
1751   if (!Cmp.isEquality())
1752     return nullptr;
1753 
1754   // X & -C == -C -> X >  u ~C
1755   // X & -C != -C -> X <= u ~C
1756   //   iff C is a power of 2
1757   if (Cmp.getOperand(1) == Y && (-(*C)).isPowerOf2()) {
1758     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1759                                                           : CmpInst::ICMP_ULE;
1760     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1761   }
1762 
1763   // (X & C2) == 0 -> (trunc X) >= 0
1764   // (X & C2) != 0 -> (trunc X) <  0
1765   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1766   const APInt *C2;
1767   if (And->hasOneUse() && *C == 0 && match(Y, m_APInt(C2))) {
1768     int32_t ExactLogBase2 = C2->exactLogBase2();
1769     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1770       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1771       if (And->getType()->isVectorTy())
1772         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1773       Value *Trunc = Builder->CreateTrunc(X, NTy);
1774       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1775                                                             : CmpInst::ICMP_SLT;
1776       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1777     }
1778   }
1779 
1780   return nullptr;
1781 }
1782 
1783 /// Fold icmp (or X, Y), C.
1784 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1785                                               const APInt *C) {
1786   ICmpInst::Predicate Pred = Cmp.getPredicate();
1787   if (*C == 1) {
1788     // icmp slt signum(V) 1 --> icmp slt V, 1
1789     Value *V = nullptr;
1790     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1791       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1792                           ConstantInt::get(V->getType(), 1));
1793   }
1794 
1795   if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse())
1796     return nullptr;
1797 
1798   Value *P, *Q;
1799   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1800     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1801     // -> and (icmp eq P, null), (icmp eq Q, null).
1802     Value *CmpP =
1803         Builder->CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1804     Value *CmpQ =
1805         Builder->CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1806     auto LogicOpc = Pred == ICmpInst::Predicate::ICMP_EQ ? Instruction::And
1807                                                          : Instruction::Or;
1808     return BinaryOperator::Create(LogicOpc, CmpP, CmpQ);
1809   }
1810 
1811   return nullptr;
1812 }
1813 
1814 /// Fold icmp (mul X, Y), C.
1815 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1816                                                BinaryOperator *Mul,
1817                                                const APInt *C) {
1818   const APInt *MulC;
1819   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1820     return nullptr;
1821 
1822   // If this is a test of the sign bit and the multiply is sign-preserving with
1823   // a constant operand, use the multiply LHS operand instead.
1824   ICmpInst::Predicate Pred = Cmp.getPredicate();
1825   if (isSignTest(Pred, *C) && Mul->hasNoSignedWrap()) {
1826     if (MulC->isNegative())
1827       Pred = ICmpInst::getSwappedPredicate(Pred);
1828     return new ICmpInst(Pred, Mul->getOperand(0),
1829                         Constant::getNullValue(Mul->getType()));
1830   }
1831 
1832   return nullptr;
1833 }
1834 
1835 /// Fold icmp (shl 1, Y), C.
1836 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1837                                    const APInt *C) {
1838   Value *Y;
1839   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1840     return nullptr;
1841 
1842   Type *ShiftType = Shl->getType();
1843   uint32_t TypeBits = C->getBitWidth();
1844   bool CIsPowerOf2 = C->isPowerOf2();
1845   ICmpInst::Predicate Pred = Cmp.getPredicate();
1846   if (Cmp.isUnsigned()) {
1847     // (1 << Y) pred C -> Y pred Log2(C)
1848     if (!CIsPowerOf2) {
1849       // (1 << Y) <  30 -> Y <= 4
1850       // (1 << Y) <= 30 -> Y <= 4
1851       // (1 << Y) >= 30 -> Y >  4
1852       // (1 << Y) >  30 -> Y >  4
1853       if (Pred == ICmpInst::ICMP_ULT)
1854         Pred = ICmpInst::ICMP_ULE;
1855       else if (Pred == ICmpInst::ICMP_UGE)
1856         Pred = ICmpInst::ICMP_UGT;
1857     }
1858 
1859     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1860     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1861     unsigned CLog2 = C->logBase2();
1862     if (CLog2 == TypeBits - 1) {
1863       if (Pred == ICmpInst::ICMP_UGE)
1864         Pred = ICmpInst::ICMP_EQ;
1865       else if (Pred == ICmpInst::ICMP_ULT)
1866         Pred = ICmpInst::ICMP_NE;
1867     }
1868     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1869   } else if (Cmp.isSigned()) {
1870     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1871     if (C->isAllOnesValue()) {
1872       // (1 << Y) <= -1 -> Y == 31
1873       if (Pred == ICmpInst::ICMP_SLE)
1874         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1875 
1876       // (1 << Y) >  -1 -> Y != 31
1877       if (Pred == ICmpInst::ICMP_SGT)
1878         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1879     } else if (!(*C)) {
1880       // (1 << Y) <  0 -> Y == 31
1881       // (1 << Y) <= 0 -> Y == 31
1882       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1883         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1884 
1885       // (1 << Y) >= 0 -> Y != 31
1886       // (1 << Y) >  0 -> Y != 31
1887       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1888         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1889     }
1890   } else if (Cmp.isEquality() && CIsPowerOf2) {
1891     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C->logBase2()));
1892   }
1893 
1894   return nullptr;
1895 }
1896 
1897 /// Fold icmp (shl X, Y), C.
1898 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
1899                                                BinaryOperator *Shl,
1900                                                const APInt *C) {
1901   const APInt *ShiftVal;
1902   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
1903     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), *C, *ShiftVal);
1904 
1905   const APInt *ShiftAmt;
1906   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
1907     return foldICmpShlOne(Cmp, Shl, C);
1908 
1909   // Check that the shift amount is in range. If not, don't perform undefined
1910   // shifts. When the shift is visited, it will be simplified.
1911   unsigned TypeBits = C->getBitWidth();
1912   if (ShiftAmt->uge(TypeBits))
1913     return nullptr;
1914 
1915   ICmpInst::Predicate Pred = Cmp.getPredicate();
1916   Value *X = Shl->getOperand(0);
1917   Type *ShType = Shl->getType();
1918 
1919   // NSW guarantees that we are only shifting out sign bits from the high bits,
1920   // so we can ASHR the compare constant without needing a mask and eliminate
1921   // the shift.
1922   if (Shl->hasNoSignedWrap()) {
1923     if (Pred == ICmpInst::ICMP_SGT) {
1924       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
1925       APInt ShiftedC = C->ashr(*ShiftAmt);
1926       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1927     }
1928     if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) {
1929       // This is the same code as the SGT case, but assert the pre-condition
1930       // that is needed for this to work with equality predicates.
1931       assert(C->ashr(*ShiftAmt).shl(*ShiftAmt) == *C &&
1932              "Compare known true or false was not folded");
1933       APInt ShiftedC = C->ashr(*ShiftAmt);
1934       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1935     }
1936     if (Pred == ICmpInst::ICMP_SLT) {
1937       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
1938       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
1939       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
1940       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
1941       assert(!C->isMinSignedValue() && "Unexpected icmp slt");
1942       APInt ShiftedC = (*C - 1).ashr(*ShiftAmt) + 1;
1943       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1944     }
1945     // If this is a signed comparison to 0 and the shift is sign preserving,
1946     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
1947     // do that if we're sure to not continue on in this function.
1948     if (isSignTest(Pred, *C))
1949       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
1950   }
1951 
1952   // NUW guarantees that we are only shifting out zero bits from the high bits,
1953   // so we can LSHR the compare constant without needing a mask and eliminate
1954   // the shift.
1955   if (Shl->hasNoUnsignedWrap()) {
1956     if (Pred == ICmpInst::ICMP_UGT) {
1957       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
1958       APInt ShiftedC = C->lshr(*ShiftAmt);
1959       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1960     }
1961     if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) {
1962       // This is the same code as the UGT case, but assert the pre-condition
1963       // that is needed for this to work with equality predicates.
1964       assert(C->lshr(*ShiftAmt).shl(*ShiftAmt) == *C &&
1965              "Compare known true or false was not folded");
1966       APInt ShiftedC = C->lshr(*ShiftAmt);
1967       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1968     }
1969     if (Pred == ICmpInst::ICMP_ULT) {
1970       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
1971       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
1972       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
1973       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
1974       assert(C->ugt(0) && "ult 0 should have been eliminated");
1975       APInt ShiftedC = (*C - 1).lshr(*ShiftAmt) + 1;
1976       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1977     }
1978   }
1979 
1980   if (Cmp.isEquality() && Shl->hasOneUse()) {
1981     // Strength-reduce the shift into an 'and'.
1982     Constant *Mask = ConstantInt::get(
1983         ShType,
1984         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
1985     Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
1986     Constant *LShrC = ConstantInt::get(ShType, C->lshr(*ShiftAmt));
1987     return new ICmpInst(Pred, And, LShrC);
1988   }
1989 
1990   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1991   bool TrueIfSigned = false;
1992   if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) {
1993     // (X << 31) <s 0  --> (X & 1) != 0
1994     Constant *Mask = ConstantInt::get(
1995         ShType,
1996         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
1997     Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
1998     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1999                         And, Constant::getNullValue(ShType));
2000   }
2001 
2002   // Transform (icmp pred iM (shl iM %v, N), C)
2003   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2004   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2005   // This enables us to get rid of the shift in favor of a trunc that may be
2006   // free on the target. It has the additional benefit of comparing to a
2007   // smaller constant that may be more target-friendly.
2008   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2009   if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt &&
2010       DL.isLegalInteger(TypeBits - Amt)) {
2011     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2012     if (ShType->isVectorTy())
2013       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2014     Constant *NewC =
2015         ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt));
2016     return new ICmpInst(Pred, Builder->CreateTrunc(X, TruncTy), NewC);
2017   }
2018 
2019   return nullptr;
2020 }
2021 
2022 /// Fold icmp ({al}shr X, Y), C.
2023 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2024                                                BinaryOperator *Shr,
2025                                                const APInt *C) {
2026   // An exact shr only shifts out zero bits, so:
2027   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2028   Value *X = Shr->getOperand(0);
2029   CmpInst::Predicate Pred = Cmp.getPredicate();
2030   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && *C == 0)
2031     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2032 
2033   const APInt *ShiftVal;
2034   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2035     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), *C, *ShiftVal);
2036 
2037   const APInt *ShiftAmt;
2038   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2039     return nullptr;
2040 
2041   // Check that the shift amount is in range. If not, don't perform undefined
2042   // shifts. When the shift is visited it will be simplified.
2043   unsigned TypeBits = C->getBitWidth();
2044   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2045   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2046     return nullptr;
2047 
2048   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2049   if (!Cmp.isEquality()) {
2050     // If we have an unsigned comparison and an ashr, we can't simplify this.
2051     // Similarly for signed comparisons with lshr.
2052     if (Cmp.isSigned() != IsAShr)
2053       return nullptr;
2054 
2055     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
2056     // by a power of 2.  Since we already have logic to simplify these,
2057     // transform to div and then simplify the resultant comparison.
2058     if (IsAShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1))
2059       return nullptr;
2060 
2061     // Revisit the shift (to delete it).
2062     Worklist.Add(Shr);
2063 
2064     Constant *DivCst = ConstantInt::get(
2065         Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
2066 
2067     Value *Tmp = IsAShr ? Builder->CreateSDiv(X, DivCst, "", Shr->isExact())
2068                         : Builder->CreateUDiv(X, DivCst, "", Shr->isExact());
2069 
2070     Cmp.setOperand(0, Tmp);
2071 
2072     // If the builder folded the binop, just return it.
2073     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
2074     if (!TheDiv)
2075       return &Cmp;
2076 
2077     // Otherwise, fold this div/compare.
2078     assert(TheDiv->getOpcode() == Instruction::SDiv ||
2079            TheDiv->getOpcode() == Instruction::UDiv);
2080 
2081     Instruction *Res = foldICmpDivConstant(Cmp, TheDiv, C);
2082     assert(Res && "This div/cst should have folded!");
2083     return Res;
2084   }
2085 
2086   // Handle equality comparisons of shift-by-constant.
2087 
2088   // If the comparison constant changes with the shift, the comparison cannot
2089   // succeed (bits of the comparison constant cannot match the shifted value).
2090   // This should be known by InstSimplify and already be folded to true/false.
2091   assert(((IsAShr && C->shl(ShAmtVal).ashr(ShAmtVal) == *C) ||
2092           (!IsAShr && C->shl(ShAmtVal).lshr(ShAmtVal) == *C)) &&
2093          "Expected icmp+shr simplify did not occur.");
2094 
2095   // Check if the bits shifted out are known to be zero. If so, we can compare
2096   // against the unshifted value:
2097   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2098   Constant *ShiftedCmpRHS = ConstantInt::get(Shr->getType(), *C << ShAmtVal);
2099   if (Shr->hasOneUse()) {
2100     if (Shr->isExact())
2101       return new ICmpInst(Pred, X, ShiftedCmpRHS);
2102 
2103     // Otherwise strength reduce the shift into an 'and'.
2104     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2105     Constant *Mask = ConstantInt::get(Shr->getType(), Val);
2106     Value *And = Builder->CreateAnd(X, Mask, Shr->getName() + ".mask");
2107     return new ICmpInst(Pred, And, ShiftedCmpRHS);
2108   }
2109 
2110   return nullptr;
2111 }
2112 
2113 /// Fold icmp (udiv X, Y), C.
2114 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2115                                                 BinaryOperator *UDiv,
2116                                                 const APInt *C) {
2117   const APInt *C2;
2118   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2119     return nullptr;
2120 
2121   assert(C2 != 0 && "udiv 0, X should have been simplified already.");
2122 
2123   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2124   Value *Y = UDiv->getOperand(1);
2125   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2126     assert(!C->isMaxValue() &&
2127            "icmp ugt X, UINT_MAX should have been simplified already.");
2128     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2129                         ConstantInt::get(Y->getType(), C2->udiv(*C + 1)));
2130   }
2131 
2132   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2133   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2134     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2135     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2136                         ConstantInt::get(Y->getType(), C2->udiv(*C)));
2137   }
2138 
2139   return nullptr;
2140 }
2141 
2142 /// Fold icmp ({su}div X, Y), C.
2143 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2144                                                BinaryOperator *Div,
2145                                                const APInt *C) {
2146   // Fold: icmp pred ([us]div X, C2), C -> range test
2147   // Fold this div into the comparison, producing a range check.
2148   // Determine, based on the divide type, what the range is being
2149   // checked.  If there is an overflow on the low or high side, remember
2150   // it, otherwise compute the range [low, hi) bounding the new value.
2151   // See: InsertRangeTest above for the kinds of replacements possible.
2152   const APInt *C2;
2153   if (!match(Div->getOperand(1), m_APInt(C2)))
2154     return nullptr;
2155 
2156   // FIXME: If the operand types don't match the type of the divide
2157   // then don't attempt this transform. The code below doesn't have the
2158   // logic to deal with a signed divide and an unsigned compare (and
2159   // vice versa). This is because (x /s C2) <s C  produces different
2160   // results than (x /s C2) <u C or (x /u C2) <s C or even
2161   // (x /u C2) <u C.  Simply casting the operands and result won't
2162   // work. :(  The if statement below tests that condition and bails
2163   // if it finds it.
2164   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2165   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2166     return nullptr;
2167 
2168   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2169   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2170   // division-by-constant cases should be present, we can not assert that they
2171   // have happened before we reach this icmp instruction.
2172   if (*C2 == 0 || *C2 == 1 || (DivIsSigned && C2->isAllOnesValue()))
2173     return nullptr;
2174 
2175   // TODO: We could do all of the computations below using APInt.
2176   Constant *CmpRHS = cast<Constant>(Cmp.getOperand(1));
2177   Constant *DivRHS = cast<Constant>(Div->getOperand(1));
2178 
2179   // Compute Prod = CmpRHS * DivRHS. We are essentially solving an equation of
2180   // form X / C2 = C. We solve for X by multiplying C2 (DivRHS) and C (CmpRHS).
2181   // By solving for X, we can turn this into a range check instead of computing
2182   // a divide.
2183   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
2184 
2185   // Determine if the product overflows by seeing if the product is not equal to
2186   // the divide. Make sure we do the same kind of divide as in the LHS
2187   // instruction that we're folding.
2188   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS)
2189                              : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
2190 
2191   ICmpInst::Predicate Pred = Cmp.getPredicate();
2192 
2193   // If the division is known to be exact, then there is no remainder from the
2194   // divide, so the covered range size is unit, otherwise it is the divisor.
2195   Constant *RangeSize =
2196       Div->isExact() ? ConstantInt::get(Div->getType(), 1) : DivRHS;
2197 
2198   // Figure out the interval that is being checked.  For example, a comparison
2199   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2200   // Compute this interval based on the constants involved and the signedness of
2201   // the compare/divide.  This computes a half-open interval, keeping track of
2202   // whether either value in the interval overflows.  After analysis each
2203   // overflow variable is set to 0 if it's corresponding bound variable is valid
2204   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2205   int LoOverflow = 0, HiOverflow = 0;
2206   Constant *LoBound = nullptr, *HiBound = nullptr;
2207 
2208   if (!DivIsSigned) {  // udiv
2209     // e.g. X/5 op 3  --> [15, 20)
2210     LoBound = Prod;
2211     HiOverflow = LoOverflow = ProdOV;
2212     if (!HiOverflow) {
2213       // If this is not an exact divide, then many values in the range collapse
2214       // to the same result value.
2215       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2216     }
2217   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2218     if (*C == 0) {       // (X / pos) op 0
2219       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2220       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
2221       HiBound = RangeSize;
2222     } else if (C->isStrictlyPositive()) {   // (X / pos) op pos
2223       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2224       HiOverflow = LoOverflow = ProdOV;
2225       if (!HiOverflow)
2226         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2227     } else {                       // (X / pos) op neg
2228       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2229       HiBound = AddOne(Prod);
2230       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2231       if (!LoOverflow) {
2232         Constant *DivNeg = ConstantExpr::getNeg(RangeSize);
2233         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2234       }
2235     }
2236   } else if (C2->isNegative()) { // Divisor is < 0.
2237     if (Div->isExact())
2238       RangeSize = ConstantExpr::getNeg(RangeSize);
2239     if (*C == 0) {       // (X / neg) op 0
2240       // e.g. X/-5 op 0  --> [-4, 5)
2241       LoBound = AddOne(RangeSize);
2242       HiBound = ConstantExpr::getNeg(RangeSize);
2243       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
2244         HiOverflow = 1;            // [INTMIN+1, overflow)
2245         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
2246       }
2247     } else if (C->isStrictlyPositive()) {   // (X / neg) op pos
2248       // e.g. X/-5 op 3  --> [-19, -14)
2249       HiBound = AddOne(Prod);
2250       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2251       if (!LoOverflow)
2252         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2253     } else {                       // (X / neg) op neg
2254       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2255       LoOverflow = HiOverflow = ProdOV;
2256       if (!HiOverflow)
2257         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2258     }
2259 
2260     // Dividing by a negative swaps the condition.  LT <-> GT
2261     Pred = ICmpInst::getSwappedPredicate(Pred);
2262   }
2263 
2264   Value *X = Div->getOperand(0);
2265   switch (Pred) {
2266     default: llvm_unreachable("Unhandled icmp opcode!");
2267     case ICmpInst::ICMP_EQ:
2268       if (LoOverflow && HiOverflow)
2269         return replaceInstUsesWith(Cmp, Builder->getFalse());
2270       if (HiOverflow)
2271         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2272                             ICmpInst::ICMP_UGE, X, LoBound);
2273       if (LoOverflow)
2274         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2275                             ICmpInst::ICMP_ULT, X, HiBound);
2276       return replaceInstUsesWith(
2277           Cmp, insertRangeTest(X, LoBound->getUniqueInteger(),
2278                                HiBound->getUniqueInteger(), DivIsSigned, true));
2279     case ICmpInst::ICMP_NE:
2280       if (LoOverflow && HiOverflow)
2281         return replaceInstUsesWith(Cmp, Builder->getTrue());
2282       if (HiOverflow)
2283         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2284                             ICmpInst::ICMP_ULT, X, LoBound);
2285       if (LoOverflow)
2286         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2287                             ICmpInst::ICMP_UGE, X, HiBound);
2288       return replaceInstUsesWith(Cmp,
2289                                  insertRangeTest(X, LoBound->getUniqueInteger(),
2290                                                  HiBound->getUniqueInteger(),
2291                                                  DivIsSigned, false));
2292     case ICmpInst::ICMP_ULT:
2293     case ICmpInst::ICMP_SLT:
2294       if (LoOverflow == +1)   // Low bound is greater than input range.
2295         return replaceInstUsesWith(Cmp, Builder->getTrue());
2296       if (LoOverflow == -1)   // Low bound is less than input range.
2297         return replaceInstUsesWith(Cmp, Builder->getFalse());
2298       return new ICmpInst(Pred, X, LoBound);
2299     case ICmpInst::ICMP_UGT:
2300     case ICmpInst::ICMP_SGT:
2301       if (HiOverflow == +1)       // High bound greater than input range.
2302         return replaceInstUsesWith(Cmp, Builder->getFalse());
2303       if (HiOverflow == -1)       // High bound less than input range.
2304         return replaceInstUsesWith(Cmp, Builder->getTrue());
2305       if (Pred == ICmpInst::ICMP_UGT)
2306         return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
2307       return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
2308   }
2309 
2310   return nullptr;
2311 }
2312 
2313 /// Fold icmp (sub X, Y), C.
2314 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2315                                                BinaryOperator *Sub,
2316                                                const APInt *C) {
2317   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2318   ICmpInst::Predicate Pred = Cmp.getPredicate();
2319 
2320   // The following transforms are only worth it if the only user of the subtract
2321   // is the icmp.
2322   if (!Sub->hasOneUse())
2323     return nullptr;
2324 
2325   if (Sub->hasNoSignedWrap()) {
2326     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2327     if (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())
2328       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2329 
2330     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2331     if (Pred == ICmpInst::ICMP_SGT && *C == 0)
2332       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2333 
2334     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2335     if (Pred == ICmpInst::ICMP_SLT && *C == 0)
2336       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2337 
2338     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2339     if (Pred == ICmpInst::ICMP_SLT && *C == 1)
2340       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2341   }
2342 
2343   const APInt *C2;
2344   if (!match(X, m_APInt(C2)))
2345     return nullptr;
2346 
2347   // C2 - Y <u C -> (Y | (C - 1)) == C2
2348   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2349   if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
2350       (*C2 & (*C - 1)) == (*C - 1))
2351     return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateOr(Y, *C - 1), X);
2352 
2353   // C2 - Y >u C -> (Y | C) != C2
2354   //   iff C2 & C == C and C + 1 is a power of 2
2355   if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == *C)
2356     return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateOr(Y, *C), X);
2357 
2358   return nullptr;
2359 }
2360 
2361 /// Fold icmp (add X, Y), C.
2362 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2363                                                BinaryOperator *Add,
2364                                                const APInt *C) {
2365   Value *Y = Add->getOperand(1);
2366   const APInt *C2;
2367   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2368     return nullptr;
2369 
2370   // Fold icmp pred (add X, C2), C.
2371   Value *X = Add->getOperand(0);
2372   Type *Ty = Add->getType();
2373   auto CR =
2374       ConstantRange::makeExactICmpRegion(Cmp.getPredicate(), *C).subtract(*C2);
2375   const APInt &Upper = CR.getUpper();
2376   const APInt &Lower = CR.getLower();
2377   if (Cmp.isSigned()) {
2378     if (Lower.isSignBit())
2379       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2380     if (Upper.isSignBit())
2381       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2382   } else {
2383     if (Lower.isMinValue())
2384       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2385     if (Upper.isMinValue())
2386       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2387   }
2388 
2389   if (!Add->hasOneUse())
2390     return nullptr;
2391 
2392   // X+C <u C2 -> (X & -C2) == C
2393   //   iff C & (C2-1) == 0
2394   //       C2 is a power of 2
2395   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
2396       (*C2 & (*C - 1)) == 0)
2397     return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateAnd(X, -(*C)),
2398                         ConstantExpr::getNeg(cast<Constant>(Y)));
2399 
2400   // X+C >u C2 -> (X & ~C2) != C
2401   //   iff C & C2 == 0
2402   //       C2+1 is a power of 2
2403   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() &&
2404       (*C2 & *C) == 0)
2405     return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateAnd(X, ~(*C)),
2406                         ConstantExpr::getNeg(cast<Constant>(Y)));
2407 
2408   return nullptr;
2409 }
2410 
2411 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2412 /// where X is some kind of instruction.
2413 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2414   const APInt *C;
2415   if (!match(Cmp.getOperand(1), m_APInt(C)))
2416     return nullptr;
2417 
2418   BinaryOperator *BO;
2419   if (match(Cmp.getOperand(0), m_BinOp(BO))) {
2420     switch (BO->getOpcode()) {
2421     case Instruction::Xor:
2422       if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
2423         return I;
2424       break;
2425     case Instruction::And:
2426       if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
2427         return I;
2428       break;
2429     case Instruction::Or:
2430       if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
2431         return I;
2432       break;
2433     case Instruction::Mul:
2434       if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
2435         return I;
2436       break;
2437     case Instruction::Shl:
2438       if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
2439         return I;
2440       break;
2441     case Instruction::LShr:
2442     case Instruction::AShr:
2443       if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
2444         return I;
2445       break;
2446     case Instruction::UDiv:
2447       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
2448         return I;
2449       LLVM_FALLTHROUGH;
2450     case Instruction::SDiv:
2451       if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
2452         return I;
2453       break;
2454     case Instruction::Sub:
2455       if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
2456         return I;
2457       break;
2458     case Instruction::Add:
2459       if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
2460         return I;
2461       break;
2462     default:
2463       break;
2464     }
2465     // TODO: These folds could be refactored to be part of the above calls.
2466     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C))
2467       return I;
2468   }
2469 
2470   Instruction *LHSI;
2471   if (match(Cmp.getOperand(0), m_Instruction(LHSI)) &&
2472       LHSI->getOpcode() == Instruction::Trunc)
2473     if (Instruction *I = foldICmpTruncConstant(Cmp, LHSI, C))
2474       return I;
2475 
2476   if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, C))
2477     return I;
2478 
2479   return nullptr;
2480 }
2481 
2482 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2483 /// icmp eq/ne BO, C.
2484 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2485                                                              BinaryOperator *BO,
2486                                                              const APInt *C) {
2487   // TODO: Some of these folds could work with arbitrary constants, but this
2488   // function is limited to scalar and vector splat constants.
2489   if (!Cmp.isEquality())
2490     return nullptr;
2491 
2492   ICmpInst::Predicate Pred = Cmp.getPredicate();
2493   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2494   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2495   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2496 
2497   switch (BO->getOpcode()) {
2498   case Instruction::SRem:
2499     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2500     if (*C == 0 && BO->hasOneUse()) {
2501       const APInt *BOC;
2502       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2503         Value *NewRem = Builder->CreateURem(BOp0, BOp1, BO->getName());
2504         return new ICmpInst(Pred, NewRem,
2505                             Constant::getNullValue(BO->getType()));
2506       }
2507     }
2508     break;
2509   case Instruction::Add: {
2510     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2511     const APInt *BOC;
2512     if (match(BOp1, m_APInt(BOC))) {
2513       if (BO->hasOneUse()) {
2514         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2515         return new ICmpInst(Pred, BOp0, SubC);
2516       }
2517     } else if (*C == 0) {
2518       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2519       // efficiently invertible, or if the add has just this one use.
2520       if (Value *NegVal = dyn_castNegVal(BOp1))
2521         return new ICmpInst(Pred, BOp0, NegVal);
2522       if (Value *NegVal = dyn_castNegVal(BOp0))
2523         return new ICmpInst(Pred, NegVal, BOp1);
2524       if (BO->hasOneUse()) {
2525         Value *Neg = Builder->CreateNeg(BOp1);
2526         Neg->takeName(BO);
2527         return new ICmpInst(Pred, BOp0, Neg);
2528       }
2529     }
2530     break;
2531   }
2532   case Instruction::Xor:
2533     if (BO->hasOneUse()) {
2534       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2535         // For the xor case, we can xor two constants together, eliminating
2536         // the explicit xor.
2537         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2538       } else if (*C == 0) {
2539         // Replace ((xor A, B) != 0) with (A != B)
2540         return new ICmpInst(Pred, BOp0, BOp1);
2541       }
2542     }
2543     break;
2544   case Instruction::Sub:
2545     if (BO->hasOneUse()) {
2546       const APInt *BOC;
2547       if (match(BOp0, m_APInt(BOC))) {
2548         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2549         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2550         return new ICmpInst(Pred, BOp1, SubC);
2551       } else if (*C == 0) {
2552         // Replace ((sub A, B) != 0) with (A != B).
2553         return new ICmpInst(Pred, BOp0, BOp1);
2554       }
2555     }
2556     break;
2557   case Instruction::Or: {
2558     const APInt *BOC;
2559     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2560       // Comparing if all bits outside of a constant mask are set?
2561       // Replace (X | C) == -1 with (X & ~C) == ~C.
2562       // This removes the -1 constant.
2563       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2564       Value *And = Builder->CreateAnd(BOp0, NotBOC);
2565       return new ICmpInst(Pred, And, NotBOC);
2566     }
2567     break;
2568   }
2569   case Instruction::And: {
2570     const APInt *BOC;
2571     if (match(BOp1, m_APInt(BOC))) {
2572       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2573       if (C == BOC && C->isPowerOf2())
2574         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2575                             BO, Constant::getNullValue(RHS->getType()));
2576 
2577       // Don't perform the following transforms if the AND has multiple uses
2578       if (!BO->hasOneUse())
2579         break;
2580 
2581       // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
2582       if (BOC->isSignBit()) {
2583         Constant *Zero = Constant::getNullValue(BOp0->getType());
2584         auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
2585         return new ICmpInst(NewPred, BOp0, Zero);
2586       }
2587 
2588       // ((X & ~7) == 0) --> X < 8
2589       if (*C == 0 && (~(*BOC) + 1).isPowerOf2()) {
2590         Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
2591         auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
2592         return new ICmpInst(NewPred, BOp0, NegBOC);
2593       }
2594     }
2595     break;
2596   }
2597   case Instruction::Mul:
2598     if (*C == 0 && BO->hasNoSignedWrap()) {
2599       const APInt *BOC;
2600       if (match(BOp1, m_APInt(BOC)) && *BOC != 0) {
2601         // The trivial case (mul X, 0) is handled by InstSimplify.
2602         // General case : (mul X, C) != 0 iff X != 0
2603         //                (mul X, C) == 0 iff X == 0
2604         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
2605       }
2606     }
2607     break;
2608   case Instruction::UDiv:
2609     if (*C == 0) {
2610       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2611       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
2612       return new ICmpInst(NewPred, BOp1, BOp0);
2613     }
2614     break;
2615   default:
2616     break;
2617   }
2618   return nullptr;
2619 }
2620 
2621 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
2622 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
2623                                                          const APInt *C) {
2624   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0));
2625   if (!II || !Cmp.isEquality())
2626     return nullptr;
2627 
2628   // Handle icmp {eq|ne} <intrinsic>, intcst.
2629   switch (II->getIntrinsicID()) {
2630   case Intrinsic::bswap:
2631     Worklist.Add(II);
2632     Cmp.setOperand(0, II->getArgOperand(0));
2633     Cmp.setOperand(1, Builder->getInt(C->byteSwap()));
2634     return &Cmp;
2635   case Intrinsic::ctlz:
2636   case Intrinsic::cttz:
2637     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
2638     if (*C == C->getBitWidth()) {
2639       Worklist.Add(II);
2640       Cmp.setOperand(0, II->getArgOperand(0));
2641       Cmp.setOperand(1, ConstantInt::getNullValue(II->getType()));
2642       return &Cmp;
2643     }
2644     break;
2645   case Intrinsic::ctpop: {
2646     // popcount(A) == 0  ->  A == 0 and likewise for !=
2647     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
2648     bool IsZero = *C == 0;
2649     if (IsZero || *C == C->getBitWidth()) {
2650       Worklist.Add(II);
2651       Cmp.setOperand(0, II->getArgOperand(0));
2652       auto *NewOp = IsZero ? Constant::getNullValue(II->getType())
2653                            : Constant::getAllOnesValue(II->getType());
2654       Cmp.setOperand(1, NewOp);
2655       return &Cmp;
2656     }
2657     break;
2658   }
2659   default:
2660     break;
2661   }
2662   return nullptr;
2663 }
2664 
2665 /// Handle icmp with constant (but not simple integer constant) RHS.
2666 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
2667   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2668   Constant *RHSC = dyn_cast<Constant>(Op1);
2669   Instruction *LHSI = dyn_cast<Instruction>(Op0);
2670   if (!RHSC || !LHSI)
2671     return nullptr;
2672 
2673   switch (LHSI->getOpcode()) {
2674   case Instruction::GetElementPtr:
2675     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2676     if (RHSC->isNullValue() &&
2677         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2678       return new ICmpInst(
2679           I.getPredicate(), LHSI->getOperand(0),
2680           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2681     break;
2682   case Instruction::PHI:
2683     // Only fold icmp into the PHI if the phi and icmp are in the same
2684     // block.  If in the same block, we're encouraging jump threading.  If
2685     // not, we are just pessimizing the code by making an i1 phi.
2686     if (LHSI->getParent() == I.getParent())
2687       if (Instruction *NV = FoldOpIntoPhi(I))
2688         return NV;
2689     break;
2690   case Instruction::Select: {
2691     // If either operand of the select is a constant, we can fold the
2692     // comparison into the select arms, which will cause one to be
2693     // constant folded and the select turned into a bitwise or.
2694     Value *Op1 = nullptr, *Op2 = nullptr;
2695     ConstantInt *CI = nullptr;
2696     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2697       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2698       CI = dyn_cast<ConstantInt>(Op1);
2699     }
2700     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2701       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2702       CI = dyn_cast<ConstantInt>(Op2);
2703     }
2704 
2705     // We only want to perform this transformation if it will not lead to
2706     // additional code. This is true if either both sides of the select
2707     // fold to a constant (in which case the icmp is replaced with a select
2708     // which will usually simplify) or this is the only user of the
2709     // select (in which case we are trading a select+icmp for a simpler
2710     // select+icmp) or all uses of the select can be replaced based on
2711     // dominance information ("Global cases").
2712     bool Transform = false;
2713     if (Op1 && Op2)
2714       Transform = true;
2715     else if (Op1 || Op2) {
2716       // Local case
2717       if (LHSI->hasOneUse())
2718         Transform = true;
2719       // Global cases
2720       else if (CI && !CI->isZero())
2721         // When Op1 is constant try replacing select with second operand.
2722         // Otherwise Op2 is constant and try replacing select with first
2723         // operand.
2724         Transform =
2725             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
2726     }
2727     if (Transform) {
2728       if (!Op1)
2729         Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
2730                                   I.getName());
2731       if (!Op2)
2732         Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
2733                                   I.getName());
2734       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2735     }
2736     break;
2737   }
2738   case Instruction::IntToPtr:
2739     // icmp pred inttoptr(X), null -> icmp pred X, 0
2740     if (RHSC->isNullValue() &&
2741         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
2742       return new ICmpInst(
2743           I.getPredicate(), LHSI->getOperand(0),
2744           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2745     break;
2746 
2747   case Instruction::Load:
2748     // Try to optimize things like "A[i] > 4" to index computations.
2749     if (GetElementPtrInst *GEP =
2750             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2751       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2752         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2753             !cast<LoadInst>(LHSI)->isVolatile())
2754           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
2755             return Res;
2756     }
2757     break;
2758   }
2759 
2760   return nullptr;
2761 }
2762 
2763 /// Try to fold icmp (binop), X or icmp X, (binop).
2764 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
2765   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2766 
2767   // Special logic for binary operators.
2768   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2769   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2770   if (!BO0 && !BO1)
2771     return nullptr;
2772 
2773   CmpInst::Predicate Pred = I.getPredicate();
2774   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2775   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2776     NoOp0WrapProblem =
2777         ICmpInst::isEquality(Pred) ||
2778         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2779         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2780   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2781     NoOp1WrapProblem =
2782         ICmpInst::isEquality(Pred) ||
2783         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2784         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2785 
2786   // Analyze the case when either Op0 or Op1 is an add instruction.
2787   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2788   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2789   if (BO0 && BO0->getOpcode() == Instruction::Add) {
2790     A = BO0->getOperand(0);
2791     B = BO0->getOperand(1);
2792   }
2793   if (BO1 && BO1->getOpcode() == Instruction::Add) {
2794     C = BO1->getOperand(0);
2795     D = BO1->getOperand(1);
2796   }
2797 
2798   // icmp (X+cst) < 0 --> X < -cst
2799   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
2800     if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
2801       if (!RHSC->isMinValue(/*isSigned=*/true))
2802         return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
2803 
2804   // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2805   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2806     return new ICmpInst(Pred, A == Op1 ? B : A,
2807                         Constant::getNullValue(Op1->getType()));
2808 
2809   // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2810   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2811     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2812                         C == Op0 ? D : C);
2813 
2814   // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2815   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
2816       NoOp1WrapProblem &&
2817       // Try not to increase register pressure.
2818       BO0->hasOneUse() && BO1->hasOneUse()) {
2819     // Determine Y and Z in the form icmp (X+Y), (X+Z).
2820     Value *Y, *Z;
2821     if (A == C) {
2822       // C + B == C + D  ->  B == D
2823       Y = B;
2824       Z = D;
2825     } else if (A == D) {
2826       // D + B == C + D  ->  B == C
2827       Y = B;
2828       Z = C;
2829     } else if (B == C) {
2830       // A + C == C + D  ->  A == D
2831       Y = A;
2832       Z = D;
2833     } else {
2834       assert(B == D);
2835       // A + D == C + D  ->  A == C
2836       Y = A;
2837       Z = C;
2838     }
2839     return new ICmpInst(Pred, Y, Z);
2840   }
2841 
2842   // icmp slt (X + -1), Y -> icmp sle X, Y
2843   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2844       match(B, m_AllOnes()))
2845     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2846 
2847   // icmp sge (X + -1), Y -> icmp sgt X, Y
2848   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2849       match(B, m_AllOnes()))
2850     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2851 
2852   // icmp sle (X + 1), Y -> icmp slt X, Y
2853   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
2854     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2855 
2856   // icmp sgt (X + 1), Y -> icmp sge X, Y
2857   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
2858     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2859 
2860   // icmp sgt X, (Y + -1) -> icmp sge X, Y
2861   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
2862       match(D, m_AllOnes()))
2863     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
2864 
2865   // icmp sle X, (Y + -1) -> icmp slt X, Y
2866   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
2867       match(D, m_AllOnes()))
2868     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
2869 
2870   // icmp sge X, (Y + 1) -> icmp sgt X, Y
2871   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
2872     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
2873 
2874   // icmp slt X, (Y + 1) -> icmp sle X, Y
2875   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
2876     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
2877 
2878   // TODO: The subtraction-related identities shown below also hold, but
2879   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
2880   // wouldn't happen even if they were implemented.
2881   //
2882   // icmp ult (X - 1), Y -> icmp ule X, Y
2883   // icmp uge (X - 1), Y -> icmp ugt X, Y
2884   // icmp ugt X, (Y - 1) -> icmp uge X, Y
2885   // icmp ule X, (Y - 1) -> icmp ult X, Y
2886 
2887   // icmp ule (X + 1), Y -> icmp ult X, Y
2888   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
2889     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
2890 
2891   // icmp ugt (X + 1), Y -> icmp uge X, Y
2892   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
2893     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
2894 
2895   // icmp uge X, (Y + 1) -> icmp ugt X, Y
2896   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
2897     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
2898 
2899   // icmp ult X, (Y + 1) -> icmp ule X, Y
2900   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
2901     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
2902 
2903   // if C1 has greater magnitude than C2:
2904   //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2905   //  s.t. C3 = C1 - C2
2906   //
2907   // if C2 has greater magnitude than C1:
2908   //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2909   //  s.t. C3 = C2 - C1
2910   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2911       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2912     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2913       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2914         const APInt &AP1 = C1->getValue();
2915         const APInt &AP2 = C2->getValue();
2916         if (AP1.isNegative() == AP2.isNegative()) {
2917           APInt AP1Abs = C1->getValue().abs();
2918           APInt AP2Abs = C2->getValue().abs();
2919           if (AP1Abs.uge(AP2Abs)) {
2920             ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2921             Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2922             return new ICmpInst(Pred, NewAdd, C);
2923           } else {
2924             ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2925             Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2926             return new ICmpInst(Pred, A, NewAdd);
2927           }
2928         }
2929       }
2930 
2931   // Analyze the case when either Op0 or Op1 is a sub instruction.
2932   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2933   A = nullptr;
2934   B = nullptr;
2935   C = nullptr;
2936   D = nullptr;
2937   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
2938     A = BO0->getOperand(0);
2939     B = BO0->getOperand(1);
2940   }
2941   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
2942     C = BO1->getOperand(0);
2943     D = BO1->getOperand(1);
2944   }
2945 
2946   // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2947   if (A == Op1 && NoOp0WrapProblem)
2948     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2949 
2950   // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2951   if (C == Op0 && NoOp1WrapProblem)
2952     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2953 
2954   // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2955   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2956       // Try not to increase register pressure.
2957       BO0->hasOneUse() && BO1->hasOneUse())
2958     return new ICmpInst(Pred, A, C);
2959 
2960   // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2961   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2962       // Try not to increase register pressure.
2963       BO0->hasOneUse() && BO1->hasOneUse())
2964     return new ICmpInst(Pred, D, B);
2965 
2966   // icmp (0-X) < cst --> x > -cst
2967   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
2968     Value *X;
2969     if (match(BO0, m_Neg(m_Value(X))))
2970       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2971         if (!RHSC->isMinValue(/*isSigned=*/true))
2972           return new ICmpInst(I.getSwappedPredicate(), X,
2973                               ConstantExpr::getNeg(RHSC));
2974   }
2975 
2976   BinaryOperator *SRem = nullptr;
2977   // icmp (srem X, Y), Y
2978   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
2979     SRem = BO0;
2980   // icmp Y, (srem X, Y)
2981   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2982            Op0 == BO1->getOperand(1))
2983     SRem = BO1;
2984   if (SRem) {
2985     // We don't check hasOneUse to avoid increasing register pressure because
2986     // the value we use is the same value this instruction was already using.
2987     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2988     default:
2989       break;
2990     case ICmpInst::ICMP_EQ:
2991       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2992     case ICmpInst::ICMP_NE:
2993       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2994     case ICmpInst::ICMP_SGT:
2995     case ICmpInst::ICMP_SGE:
2996       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2997                           Constant::getAllOnesValue(SRem->getType()));
2998     case ICmpInst::ICMP_SLT:
2999     case ICmpInst::ICMP_SLE:
3000       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3001                           Constant::getNullValue(SRem->getType()));
3002     }
3003   }
3004 
3005   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3006       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3007     switch (BO0->getOpcode()) {
3008     default:
3009       break;
3010     case Instruction::Add:
3011     case Instruction::Sub:
3012     case Instruction::Xor:
3013       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3014         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3015                             BO1->getOperand(0));
3016       // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
3017       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3018         if (CI->getValue().isSignBit()) {
3019           ICmpInst::Predicate Pred =
3020               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3021           return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3022         }
3023 
3024         if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
3025           ICmpInst::Predicate Pred =
3026               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3027           Pred = I.getSwappedPredicate(Pred);
3028           return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3029         }
3030       }
3031       break;
3032     case Instruction::Mul:
3033       if (!I.isEquality())
3034         break;
3035 
3036       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3037         // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
3038         // Mask = -1 >> count-trailing-zeros(Cst).
3039         if (!CI->isZero() && !CI->isOne()) {
3040           const APInt &AP = CI->getValue();
3041           ConstantInt *Mask = ConstantInt::get(
3042               I.getContext(),
3043               APInt::getLowBitsSet(AP.getBitWidth(),
3044                                    AP.getBitWidth() - AP.countTrailingZeros()));
3045           Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3046           Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3047           return new ICmpInst(I.getPredicate(), And1, And2);
3048         }
3049       }
3050       break;
3051     case Instruction::UDiv:
3052     case Instruction::LShr:
3053       if (I.isSigned())
3054         break;
3055       LLVM_FALLTHROUGH;
3056     case Instruction::SDiv:
3057     case Instruction::AShr:
3058       if (!BO0->isExact() || !BO1->isExact())
3059         break;
3060       return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3061                           BO1->getOperand(0));
3062     case Instruction::Shl: {
3063       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3064       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3065       if (!NUW && !NSW)
3066         break;
3067       if (!NSW && I.isSigned())
3068         break;
3069       return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3070                           BO1->getOperand(0));
3071     }
3072     }
3073   }
3074 
3075   if (BO0) {
3076     // Transform  A & (L - 1) `ult` L --> L != 0
3077     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3078     auto BitwiseAnd =
3079         m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
3080 
3081     if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
3082       auto *Zero = Constant::getNullValue(BO0->getType());
3083       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3084     }
3085   }
3086 
3087   return nullptr;
3088 }
3089 
3090 /// Fold icmp Pred min|max(X, Y), X.
3091 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
3092   ICmpInst::Predicate Pred = Cmp.getPredicate();
3093   Value *Op0 = Cmp.getOperand(0);
3094   Value *X = Cmp.getOperand(1);
3095 
3096   // Canonicalize minimum or maximum operand to LHS of the icmp.
3097   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
3098       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
3099       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
3100       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
3101     std::swap(Op0, X);
3102     Pred = Cmp.getSwappedPredicate();
3103   }
3104 
3105   Value *Y;
3106   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
3107     // smin(X, Y)  == X --> X s<= Y
3108     // smin(X, Y) s>= X --> X s<= Y
3109     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
3110       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
3111 
3112     // smin(X, Y) != X --> X s> Y
3113     // smin(X, Y) s< X --> X s> Y
3114     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
3115       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
3116 
3117     // These cases should be handled in InstSimplify:
3118     // smin(X, Y) s<= X --> true
3119     // smin(X, Y) s> X --> false
3120     return nullptr;
3121   }
3122 
3123   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
3124     // smax(X, Y)  == X --> X s>= Y
3125     // smax(X, Y) s<= X --> X s>= Y
3126     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
3127       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
3128 
3129     // smax(X, Y) != X --> X s< Y
3130     // smax(X, Y) s> X --> X s< Y
3131     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
3132       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
3133 
3134     // These cases should be handled in InstSimplify:
3135     // smax(X, Y) s>= X --> true
3136     // smax(X, Y) s< X --> false
3137     return nullptr;
3138   }
3139 
3140   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
3141     // umin(X, Y)  == X --> X u<= Y
3142     // umin(X, Y) u>= X --> X u<= Y
3143     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
3144       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
3145 
3146     // umin(X, Y) != X --> X u> Y
3147     // umin(X, Y) u< X --> X u> Y
3148     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
3149       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
3150 
3151     // These cases should be handled in InstSimplify:
3152     // umin(X, Y) u<= X --> true
3153     // umin(X, Y) u> X --> false
3154     return nullptr;
3155   }
3156 
3157   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
3158     // umax(X, Y)  == X --> X u>= Y
3159     // umax(X, Y) u<= X --> X u>= Y
3160     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
3161       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
3162 
3163     // umax(X, Y) != X --> X u< Y
3164     // umax(X, Y) u> X --> X u< Y
3165     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
3166       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
3167 
3168     // These cases should be handled in InstSimplify:
3169     // umax(X, Y) u>= X --> true
3170     // umax(X, Y) u< X --> false
3171     return nullptr;
3172   }
3173 
3174   return nullptr;
3175 }
3176 
3177 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
3178   if (!I.isEquality())
3179     return nullptr;
3180 
3181   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3182   Value *A, *B, *C, *D;
3183   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3184     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
3185       Value *OtherVal = A == Op1 ? B : A;
3186       return new ICmpInst(I.getPredicate(), OtherVal,
3187                           Constant::getNullValue(A->getType()));
3188     }
3189 
3190     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3191       // A^c1 == C^c2 --> A == C^(c1^c2)
3192       ConstantInt *C1, *C2;
3193       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
3194           Op1->hasOneUse()) {
3195         Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3196         Value *Xor = Builder->CreateXor(C, NC);
3197         return new ICmpInst(I.getPredicate(), A, Xor);
3198       }
3199 
3200       // A^B == A^D -> B == D
3201       if (A == C)
3202         return new ICmpInst(I.getPredicate(), B, D);
3203       if (A == D)
3204         return new ICmpInst(I.getPredicate(), B, C);
3205       if (B == C)
3206         return new ICmpInst(I.getPredicate(), A, D);
3207       if (B == D)
3208         return new ICmpInst(I.getPredicate(), A, C);
3209     }
3210   }
3211 
3212   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
3213     // A == (A^B)  ->  B == 0
3214     Value *OtherVal = A == Op0 ? B : A;
3215     return new ICmpInst(I.getPredicate(), OtherVal,
3216                         Constant::getNullValue(A->getType()));
3217   }
3218 
3219   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3220   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3221       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3222     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3223 
3224     if (A == C) {
3225       X = B;
3226       Y = D;
3227       Z = A;
3228     } else if (A == D) {
3229       X = B;
3230       Y = C;
3231       Z = A;
3232     } else if (B == C) {
3233       X = A;
3234       Y = D;
3235       Z = B;
3236     } else if (B == D) {
3237       X = A;
3238       Y = C;
3239       Z = B;
3240     }
3241 
3242     if (X) { // Build (X^Y) & Z
3243       Op1 = Builder->CreateXor(X, Y);
3244       Op1 = Builder->CreateAnd(Op1, Z);
3245       I.setOperand(0, Op1);
3246       I.setOperand(1, Constant::getNullValue(Op1->getType()));
3247       return &I;
3248     }
3249   }
3250 
3251   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3252   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3253   ConstantInt *Cst1;
3254   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
3255        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3256       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3257        match(Op1, m_ZExt(m_Value(A))))) {
3258     APInt Pow2 = Cst1->getValue() + 1;
3259     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3260         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3261       return new ICmpInst(I.getPredicate(), A,
3262                           Builder->CreateTrunc(B, A->getType()));
3263   }
3264 
3265   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3266   // For lshr and ashr pairs.
3267   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3268        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3269       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3270        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3271     unsigned TypeBits = Cst1->getBitWidth();
3272     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3273     if (ShAmt < TypeBits && ShAmt != 0) {
3274       ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3275                                      ? ICmpInst::ICMP_UGE
3276                                      : ICmpInst::ICMP_ULT;
3277       Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3278       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3279       return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3280     }
3281   }
3282 
3283   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3284   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3285       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3286     unsigned TypeBits = Cst1->getBitWidth();
3287     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3288     if (ShAmt < TypeBits && ShAmt != 0) {
3289       Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3290       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3291       Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
3292                                       I.getName() + ".mask");
3293       return new ICmpInst(I.getPredicate(), And,
3294                           Constant::getNullValue(Cst1->getType()));
3295     }
3296   }
3297 
3298   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3299   // "icmp (and X, mask), cst"
3300   uint64_t ShAmt = 0;
3301   if (Op0->hasOneUse() &&
3302       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
3303       match(Op1, m_ConstantInt(Cst1)) &&
3304       // Only do this when A has multiple uses.  This is most important to do
3305       // when it exposes other optimizations.
3306       !A->hasOneUse()) {
3307     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3308 
3309     if (ShAmt < ASize) {
3310       APInt MaskV =
3311           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3312       MaskV <<= ShAmt;
3313 
3314       APInt CmpV = Cst1->getValue().zext(ASize);
3315       CmpV <<= ShAmt;
3316 
3317       Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3318       return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3319     }
3320   }
3321 
3322   return nullptr;
3323 }
3324 
3325 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
3326 /// far.
3327 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
3328   const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
3329   Value *LHSCIOp        = LHSCI->getOperand(0);
3330   Type *SrcTy     = LHSCIOp->getType();
3331   Type *DestTy    = LHSCI->getType();
3332   Value *RHSCIOp;
3333 
3334   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
3335   // integer type is the same size as the pointer type.
3336   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
3337       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
3338     Value *RHSOp = nullptr;
3339     if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
3340       Value *RHSCIOp = RHSC->getOperand(0);
3341       if (RHSCIOp->getType()->getPointerAddressSpace() ==
3342           LHSCIOp->getType()->getPointerAddressSpace()) {
3343         RHSOp = RHSC->getOperand(0);
3344         // If the pointer types don't match, insert a bitcast.
3345         if (LHSCIOp->getType() != RHSOp->getType())
3346           RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
3347       }
3348     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
3349       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
3350     }
3351 
3352     if (RHSOp)
3353       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
3354   }
3355 
3356   // The code below only handles extension cast instructions, so far.
3357   // Enforce this.
3358   if (LHSCI->getOpcode() != Instruction::ZExt &&
3359       LHSCI->getOpcode() != Instruction::SExt)
3360     return nullptr;
3361 
3362   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
3363   bool isSignedCmp = ICmp.isSigned();
3364 
3365   if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
3366     // Not an extension from the same type?
3367     RHSCIOp = CI->getOperand(0);
3368     if (RHSCIOp->getType() != LHSCIOp->getType())
3369       return nullptr;
3370 
3371     // If the signedness of the two casts doesn't agree (i.e. one is a sext
3372     // and the other is a zext), then we can't handle this.
3373     if (CI->getOpcode() != LHSCI->getOpcode())
3374       return nullptr;
3375 
3376     // Deal with equality cases early.
3377     if (ICmp.isEquality())
3378       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3379 
3380     // A signed comparison of sign extended values simplifies into a
3381     // signed comparison.
3382     if (isSignedCmp && isSignedExt)
3383       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3384 
3385     // The other three cases all fold into an unsigned comparison.
3386     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
3387   }
3388 
3389   // If we aren't dealing with a constant on the RHS, exit early.
3390   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
3391   if (!C)
3392     return nullptr;
3393 
3394   // Compute the constant that would happen if we truncated to SrcTy then
3395   // re-extended to DestTy.
3396   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
3397   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
3398 
3399   // If the re-extended constant didn't change...
3400   if (Res2 == C) {
3401     // Deal with equality cases early.
3402     if (ICmp.isEquality())
3403       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3404 
3405     // A signed comparison of sign extended values simplifies into a
3406     // signed comparison.
3407     if (isSignedExt && isSignedCmp)
3408       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3409 
3410     // The other three cases all fold into an unsigned comparison.
3411     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
3412   }
3413 
3414   // The re-extended constant changed, partly changed (in the case of a vector),
3415   // or could not be determined to be equal (in the case of a constant
3416   // expression), so the constant cannot be represented in the shorter type.
3417   // Consequently, we cannot emit a simple comparison.
3418   // All the cases that fold to true or false will have already been handled
3419   // by SimplifyICmpInst, so only deal with the tricky case.
3420 
3421   if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
3422     return nullptr;
3423 
3424   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
3425   // should have been folded away previously and not enter in here.
3426 
3427   // We're performing an unsigned comp with a sign extended value.
3428   // This is true if the input is >= 0. [aka >s -1]
3429   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
3430   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
3431 
3432   // Finally, return the value computed.
3433   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
3434     return replaceInstUsesWith(ICmp, Result);
3435 
3436   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
3437   return BinaryOperator::CreateNot(Result);
3438 }
3439 
3440 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
3441                                          Value *RHS, Instruction &OrigI,
3442                                          Value *&Result, Constant *&Overflow) {
3443   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
3444     std::swap(LHS, RHS);
3445 
3446   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
3447     Result = OpResult;
3448     Overflow = OverflowVal;
3449     if (ReuseName)
3450       Result->takeName(&OrigI);
3451     return true;
3452   };
3453 
3454   // If the overflow check was an add followed by a compare, the insertion point
3455   // may be pointing to the compare.  We want to insert the new instructions
3456   // before the add in case there are uses of the add between the add and the
3457   // compare.
3458   Builder->SetInsertPoint(&OrigI);
3459 
3460   switch (OCF) {
3461   case OCF_INVALID:
3462     llvm_unreachable("bad overflow check kind!");
3463 
3464   case OCF_UNSIGNED_ADD: {
3465     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
3466     if (OR == OverflowResult::NeverOverflows)
3467       return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
3468                        true);
3469 
3470     if (OR == OverflowResult::AlwaysOverflows)
3471       return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
3472 
3473     // Fall through uadd into sadd
3474     LLVM_FALLTHROUGH;
3475   }
3476   case OCF_SIGNED_ADD: {
3477     // X + 0 -> {X, false}
3478     if (match(RHS, m_Zero()))
3479       return SetResult(LHS, Builder->getFalse(), false);
3480 
3481     // We can strength reduce this signed add into a regular add if we can prove
3482     // that it will never overflow.
3483     if (OCF == OCF_SIGNED_ADD)
3484       if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
3485         return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
3486                          true);
3487     break;
3488   }
3489 
3490   case OCF_UNSIGNED_SUB:
3491   case OCF_SIGNED_SUB: {
3492     // X - 0 -> {X, false}
3493     if (match(RHS, m_Zero()))
3494       return SetResult(LHS, Builder->getFalse(), false);
3495 
3496     if (OCF == OCF_SIGNED_SUB) {
3497       if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
3498         return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
3499                          true);
3500     } else {
3501       if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
3502         return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
3503                          true);
3504     }
3505     break;
3506   }
3507 
3508   case OCF_UNSIGNED_MUL: {
3509     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
3510     if (OR == OverflowResult::NeverOverflows)
3511       return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
3512                        true);
3513     if (OR == OverflowResult::AlwaysOverflows)
3514       return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
3515     LLVM_FALLTHROUGH;
3516   }
3517   case OCF_SIGNED_MUL:
3518     // X * undef -> undef
3519     if (isa<UndefValue>(RHS))
3520       return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
3521 
3522     // X * 0 -> {0, false}
3523     if (match(RHS, m_Zero()))
3524       return SetResult(RHS, Builder->getFalse(), false);
3525 
3526     // X * 1 -> {X, false}
3527     if (match(RHS, m_One()))
3528       return SetResult(LHS, Builder->getFalse(), false);
3529 
3530     if (OCF == OCF_SIGNED_MUL)
3531       if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
3532         return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
3533                          true);
3534     break;
3535   }
3536 
3537   return false;
3538 }
3539 
3540 /// \brief Recognize and process idiom involving test for multiplication
3541 /// overflow.
3542 ///
3543 /// The caller has matched a pattern of the form:
3544 ///   I = cmp u (mul(zext A, zext B), V
3545 /// The function checks if this is a test for overflow and if so replaces
3546 /// multiplication with call to 'mul.with.overflow' intrinsic.
3547 ///
3548 /// \param I Compare instruction.
3549 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
3550 ///               the compare instruction.  Must be of integer type.
3551 /// \param OtherVal The other argument of compare instruction.
3552 /// \returns Instruction which must replace the compare instruction, NULL if no
3553 ///          replacement required.
3554 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
3555                                          Value *OtherVal, InstCombiner &IC) {
3556   // Don't bother doing this transformation for pointers, don't do it for
3557   // vectors.
3558   if (!isa<IntegerType>(MulVal->getType()))
3559     return nullptr;
3560 
3561   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
3562   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
3563   auto *MulInstr = dyn_cast<Instruction>(MulVal);
3564   if (!MulInstr)
3565     return nullptr;
3566   assert(MulInstr->getOpcode() == Instruction::Mul);
3567 
3568   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
3569        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
3570   assert(LHS->getOpcode() == Instruction::ZExt);
3571   assert(RHS->getOpcode() == Instruction::ZExt);
3572   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
3573 
3574   // Calculate type and width of the result produced by mul.with.overflow.
3575   Type *TyA = A->getType(), *TyB = B->getType();
3576   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
3577            WidthB = TyB->getPrimitiveSizeInBits();
3578   unsigned MulWidth;
3579   Type *MulType;
3580   if (WidthB > WidthA) {
3581     MulWidth = WidthB;
3582     MulType = TyB;
3583   } else {
3584     MulWidth = WidthA;
3585     MulType = TyA;
3586   }
3587 
3588   // In order to replace the original mul with a narrower mul.with.overflow,
3589   // all uses must ignore upper bits of the product.  The number of used low
3590   // bits must be not greater than the width of mul.with.overflow.
3591   if (MulVal->hasNUsesOrMore(2))
3592     for (User *U : MulVal->users()) {
3593       if (U == &I)
3594         continue;
3595       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3596         // Check if truncation ignores bits above MulWidth.
3597         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
3598         if (TruncWidth > MulWidth)
3599           return nullptr;
3600       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3601         // Check if AND ignores bits above MulWidth.
3602         if (BO->getOpcode() != Instruction::And)
3603           return nullptr;
3604         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
3605           const APInt &CVal = CI->getValue();
3606           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
3607             return nullptr;
3608         }
3609       } else {
3610         // Other uses prohibit this transformation.
3611         return nullptr;
3612       }
3613     }
3614 
3615   // Recognize patterns
3616   switch (I.getPredicate()) {
3617   case ICmpInst::ICMP_EQ:
3618   case ICmpInst::ICMP_NE:
3619     // Recognize pattern:
3620     //   mulval = mul(zext A, zext B)
3621     //   cmp eq/neq mulval, zext trunc mulval
3622     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
3623       if (Zext->hasOneUse()) {
3624         Value *ZextArg = Zext->getOperand(0);
3625         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
3626           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
3627             break; //Recognized
3628       }
3629 
3630     // Recognize pattern:
3631     //   mulval = mul(zext A, zext B)
3632     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
3633     ConstantInt *CI;
3634     Value *ValToMask;
3635     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
3636       if (ValToMask != MulVal)
3637         return nullptr;
3638       const APInt &CVal = CI->getValue() + 1;
3639       if (CVal.isPowerOf2()) {
3640         unsigned MaskWidth = CVal.logBase2();
3641         if (MaskWidth == MulWidth)
3642           break; // Recognized
3643       }
3644     }
3645     return nullptr;
3646 
3647   case ICmpInst::ICMP_UGT:
3648     // Recognize pattern:
3649     //   mulval = mul(zext A, zext B)
3650     //   cmp ugt mulval, max
3651     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3652       APInt MaxVal = APInt::getMaxValue(MulWidth);
3653       MaxVal = MaxVal.zext(CI->getBitWidth());
3654       if (MaxVal.eq(CI->getValue()))
3655         break; // Recognized
3656     }
3657     return nullptr;
3658 
3659   case ICmpInst::ICMP_UGE:
3660     // Recognize pattern:
3661     //   mulval = mul(zext A, zext B)
3662     //   cmp uge mulval, max+1
3663     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3664       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3665       if (MaxVal.eq(CI->getValue()))
3666         break; // Recognized
3667     }
3668     return nullptr;
3669 
3670   case ICmpInst::ICMP_ULE:
3671     // Recognize pattern:
3672     //   mulval = mul(zext A, zext B)
3673     //   cmp ule mulval, max
3674     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3675       APInt MaxVal = APInt::getMaxValue(MulWidth);
3676       MaxVal = MaxVal.zext(CI->getBitWidth());
3677       if (MaxVal.eq(CI->getValue()))
3678         break; // Recognized
3679     }
3680     return nullptr;
3681 
3682   case ICmpInst::ICMP_ULT:
3683     // Recognize pattern:
3684     //   mulval = mul(zext A, zext B)
3685     //   cmp ule mulval, max + 1
3686     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3687       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3688       if (MaxVal.eq(CI->getValue()))
3689         break; // Recognized
3690     }
3691     return nullptr;
3692 
3693   default:
3694     return nullptr;
3695   }
3696 
3697   InstCombiner::BuilderTy *Builder = IC.Builder;
3698   Builder->SetInsertPoint(MulInstr);
3699 
3700   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
3701   Value *MulA = A, *MulB = B;
3702   if (WidthA < MulWidth)
3703     MulA = Builder->CreateZExt(A, MulType);
3704   if (WidthB < MulWidth)
3705     MulB = Builder->CreateZExt(B, MulType);
3706   Value *F = Intrinsic::getDeclaration(I.getModule(),
3707                                        Intrinsic::umul_with_overflow, MulType);
3708   CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
3709   IC.Worklist.Add(MulInstr);
3710 
3711   // If there are uses of mul result other than the comparison, we know that
3712   // they are truncation or binary AND. Change them to use result of
3713   // mul.with.overflow and adjust properly mask/size.
3714   if (MulVal->hasNUsesOrMore(2)) {
3715     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
3716     for (User *U : MulVal->users()) {
3717       if (U == &I || U == OtherVal)
3718         continue;
3719       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3720         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
3721           IC.replaceInstUsesWith(*TI, Mul);
3722         else
3723           TI->setOperand(0, Mul);
3724       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3725         assert(BO->getOpcode() == Instruction::And);
3726         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
3727         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
3728         APInt ShortMask = CI->getValue().trunc(MulWidth);
3729         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
3730         Instruction *Zext =
3731             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
3732         IC.Worklist.Add(Zext);
3733         IC.replaceInstUsesWith(*BO, Zext);
3734       } else {
3735         llvm_unreachable("Unexpected Binary operation");
3736       }
3737       IC.Worklist.Add(cast<Instruction>(U));
3738     }
3739   }
3740   if (isa<Instruction>(OtherVal))
3741     IC.Worklist.Add(cast<Instruction>(OtherVal));
3742 
3743   // The original icmp gets replaced with the overflow value, maybe inverted
3744   // depending on predicate.
3745   bool Inverse = false;
3746   switch (I.getPredicate()) {
3747   case ICmpInst::ICMP_NE:
3748     break;
3749   case ICmpInst::ICMP_EQ:
3750     Inverse = true;
3751     break;
3752   case ICmpInst::ICMP_UGT:
3753   case ICmpInst::ICMP_UGE:
3754     if (I.getOperand(0) == MulVal)
3755       break;
3756     Inverse = true;
3757     break;
3758   case ICmpInst::ICMP_ULT:
3759   case ICmpInst::ICMP_ULE:
3760     if (I.getOperand(1) == MulVal)
3761       break;
3762     Inverse = true;
3763     break;
3764   default:
3765     llvm_unreachable("Unexpected predicate");
3766   }
3767   if (Inverse) {
3768     Value *Res = Builder->CreateExtractValue(Call, 1);
3769     return BinaryOperator::CreateNot(Res);
3770   }
3771 
3772   return ExtractValueInst::Create(Call, 1);
3773 }
3774 
3775 /// When performing a comparison against a constant, it is possible that not all
3776 /// the bits in the LHS are demanded. This helper method computes the mask that
3777 /// IS demanded.
3778 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth,
3779                                     bool isSignCheck) {
3780   if (isSignCheck)
3781     return APInt::getSignBit(BitWidth);
3782 
3783   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3784   if (!CI) return APInt::getAllOnesValue(BitWidth);
3785   const APInt &RHS = CI->getValue();
3786 
3787   switch (I.getPredicate()) {
3788   // For a UGT comparison, we don't care about any bits that
3789   // correspond to the trailing ones of the comparand.  The value of these
3790   // bits doesn't impact the outcome of the comparison, because any value
3791   // greater than the RHS must differ in a bit higher than these due to carry.
3792   case ICmpInst::ICMP_UGT: {
3793     unsigned trailingOnes = RHS.countTrailingOnes();
3794     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
3795     return ~lowBitsSet;
3796   }
3797 
3798   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
3799   // Any value less than the RHS must differ in a higher bit because of carries.
3800   case ICmpInst::ICMP_ULT: {
3801     unsigned trailingZeros = RHS.countTrailingZeros();
3802     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
3803     return ~lowBitsSet;
3804   }
3805 
3806   default:
3807     return APInt::getAllOnesValue(BitWidth);
3808   }
3809 }
3810 
3811 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
3812 /// should be swapped.
3813 /// The decision is based on how many times these two operands are reused
3814 /// as subtract operands and their positions in those instructions.
3815 /// The rational is that several architectures use the same instruction for
3816 /// both subtract and cmp, thus it is better if the order of those operands
3817 /// match.
3818 /// \return true if Op0 and Op1 should be swapped.
3819 static bool swapMayExposeCSEOpportunities(const Value * Op0,
3820                                           const Value * Op1) {
3821   // Filter out pointer value as those cannot appears directly in subtract.
3822   // FIXME: we may want to go through inttoptrs or bitcasts.
3823   if (Op0->getType()->isPointerTy())
3824     return false;
3825   // Count every uses of both Op0 and Op1 in a subtract.
3826   // Each time Op0 is the first operand, count -1: swapping is bad, the
3827   // subtract has already the same layout as the compare.
3828   // Each time Op0 is the second operand, count +1: swapping is good, the
3829   // subtract has a different layout as the compare.
3830   // At the end, if the benefit is greater than 0, Op0 should come second to
3831   // expose more CSE opportunities.
3832   int GlobalSwapBenefits = 0;
3833   for (const User *U : Op0->users()) {
3834     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
3835     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
3836       continue;
3837     // If Op0 is the first argument, this is not beneficial to swap the
3838     // arguments.
3839     int LocalSwapBenefits = -1;
3840     unsigned Op1Idx = 1;
3841     if (BinOp->getOperand(Op1Idx) == Op0) {
3842       Op1Idx = 0;
3843       LocalSwapBenefits = 1;
3844     }
3845     if (BinOp->getOperand(Op1Idx) != Op1)
3846       continue;
3847     GlobalSwapBenefits += LocalSwapBenefits;
3848   }
3849   return GlobalSwapBenefits > 0;
3850 }
3851 
3852 /// \brief Check that one use is in the same block as the definition and all
3853 /// other uses are in blocks dominated by a given block.
3854 ///
3855 /// \param DI Definition
3856 /// \param UI Use
3857 /// \param DB Block that must dominate all uses of \p DI outside
3858 ///           the parent block
3859 /// \return true when \p UI is the only use of \p DI in the parent block
3860 /// and all other uses of \p DI are in blocks dominated by \p DB.
3861 ///
3862 bool InstCombiner::dominatesAllUses(const Instruction *DI,
3863                                     const Instruction *UI,
3864                                     const BasicBlock *DB) const {
3865   assert(DI && UI && "Instruction not defined\n");
3866   // Ignore incomplete definitions.
3867   if (!DI->getParent())
3868     return false;
3869   // DI and UI must be in the same block.
3870   if (DI->getParent() != UI->getParent())
3871     return false;
3872   // Protect from self-referencing blocks.
3873   if (DI->getParent() == DB)
3874     return false;
3875   for (const User *U : DI->users()) {
3876     auto *Usr = cast<Instruction>(U);
3877     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
3878       return false;
3879   }
3880   return true;
3881 }
3882 
3883 /// Return true when the instruction sequence within a block is select-cmp-br.
3884 static bool isChainSelectCmpBranch(const SelectInst *SI) {
3885   const BasicBlock *BB = SI->getParent();
3886   if (!BB)
3887     return false;
3888   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
3889   if (!BI || BI->getNumSuccessors() != 2)
3890     return false;
3891   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
3892   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
3893     return false;
3894   return true;
3895 }
3896 
3897 /// \brief True when a select result is replaced by one of its operands
3898 /// in select-icmp sequence. This will eventually result in the elimination
3899 /// of the select.
3900 ///
3901 /// \param SI    Select instruction
3902 /// \param Icmp  Compare instruction
3903 /// \param SIOpd Operand that replaces the select
3904 ///
3905 /// Notes:
3906 /// - The replacement is global and requires dominator information
3907 /// - The caller is responsible for the actual replacement
3908 ///
3909 /// Example:
3910 ///
3911 /// entry:
3912 ///  %4 = select i1 %3, %C* %0, %C* null
3913 ///  %5 = icmp eq %C* %4, null
3914 ///  br i1 %5, label %9, label %7
3915 ///  ...
3916 ///  ; <label>:7                                       ; preds = %entry
3917 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
3918 ///  ...
3919 ///
3920 /// can be transformed to
3921 ///
3922 ///  %5 = icmp eq %C* %0, null
3923 ///  %6 = select i1 %3, i1 %5, i1 true
3924 ///  br i1 %6, label %9, label %7
3925 ///  ...
3926 ///  ; <label>:7                                       ; preds = %entry
3927 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
3928 ///
3929 /// Similar when the first operand of the select is a constant or/and
3930 /// the compare is for not equal rather than equal.
3931 ///
3932 /// NOTE: The function is only called when the select and compare constants
3933 /// are equal, the optimization can work only for EQ predicates. This is not a
3934 /// major restriction since a NE compare should be 'normalized' to an equal
3935 /// compare, which usually happens in the combiner and test case
3936 /// select-cmp-br.ll checks for it.
3937 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
3938                                              const ICmpInst *Icmp,
3939                                              const unsigned SIOpd) {
3940   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
3941   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
3942     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
3943     // The check for the unique predecessor is not the best that can be
3944     // done. But it protects efficiently against cases like when SI's
3945     // home block has two successors, Succ and Succ1, and Succ1 predecessor
3946     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
3947     // replaced can be reached on either path. So the uniqueness check
3948     // guarantees that the path all uses of SI (outside SI's parent) are on
3949     // is disjoint from all other paths out of SI. But that information
3950     // is more expensive to compute, and the trade-off here is in favor
3951     // of compile-time.
3952     if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
3953       NumSel++;
3954       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
3955       return true;
3956     }
3957   }
3958   return false;
3959 }
3960 
3961 /// Try to fold the comparison based on range information we can get by checking
3962 /// whether bits are known to be zero or one in the inputs.
3963 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
3964   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3965   Type *Ty = Op0->getType();
3966   ICmpInst::Predicate Pred = I.getPredicate();
3967 
3968   // Get scalar or pointer size.
3969   unsigned BitWidth = Ty->isIntOrIntVectorTy()
3970                           ? Ty->getScalarSizeInBits()
3971                           : DL.getTypeSizeInBits(Ty->getScalarType());
3972 
3973   if (!BitWidth)
3974     return nullptr;
3975 
3976   // If this is a normal comparison, it demands all bits. If it is a sign bit
3977   // comparison, it only demands the sign bit.
3978   bool IsSignBit = false;
3979   const APInt *CmpC;
3980   if (match(Op1, m_APInt(CmpC))) {
3981     bool UnusedBit;
3982     IsSignBit = isSignBitCheck(Pred, *CmpC, UnusedBit);
3983   }
3984 
3985   APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
3986   APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
3987 
3988   if (SimplifyDemandedBits(I.getOperandUse(0),
3989                            getDemandedBitsLHSMask(I, BitWidth, IsSignBit),
3990                            Op0KnownZero, Op0KnownOne, 0))
3991     return &I;
3992 
3993   if (SimplifyDemandedBits(I.getOperandUse(1), APInt::getAllOnesValue(BitWidth),
3994                            Op1KnownZero, Op1KnownOne, 0))
3995     return &I;
3996 
3997   // Given the known and unknown bits, compute a range that the LHS could be
3998   // in.  Compute the Min, Max and RHS values based on the known bits. For the
3999   // EQ and NE we use unsigned values.
4000   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4001   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4002   if (I.isSigned()) {
4003     computeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
4004                                            Op0Max);
4005     computeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
4006                                            Op1Max);
4007   } else {
4008     computeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
4009                                              Op0Max);
4010     computeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
4011                                              Op1Max);
4012   }
4013 
4014   // If Min and Max are known to be the same, then SimplifyDemandedBits
4015   // figured out that the LHS is a constant. Constant fold this now, so that
4016   // code below can assume that Min != Max.
4017   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4018     return new ICmpInst(Pred, ConstantInt::get(Op0->getType(), Op0Min), Op1);
4019   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4020     return new ICmpInst(Pred, Op0, ConstantInt::get(Op1->getType(), Op1Min));
4021 
4022   // Based on the range information we know about the LHS, see if we can
4023   // simplify this comparison.  For example, (x&4) < 8 is always true.
4024   switch (Pred) {
4025   default:
4026     llvm_unreachable("Unknown icmp opcode!");
4027   case ICmpInst::ICMP_EQ:
4028   case ICmpInst::ICMP_NE: {
4029     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4030       return Pred == CmpInst::ICMP_EQ
4031                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4032                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4033     }
4034 
4035     // If all bits are known zero except for one, then we know at most one bit
4036     // is set. If the comparison is against zero, then this is a check to see if
4037     // *that* bit is set.
4038     APInt Op0KnownZeroInverted = ~Op0KnownZero;
4039     if (~Op1KnownZero == 0) {
4040       // If the LHS is an AND with the same constant, look through it.
4041       Value *LHS = nullptr;
4042       const APInt *LHSC;
4043       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4044           *LHSC != Op0KnownZeroInverted)
4045         LHS = Op0;
4046 
4047       Value *X;
4048       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4049         APInt ValToCheck = Op0KnownZeroInverted;
4050         Type *XTy = X->getType();
4051         if (ValToCheck.isPowerOf2()) {
4052           // ((1 << X) & 8) == 0 -> X != 3
4053           // ((1 << X) & 8) != 0 -> X == 3
4054           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4055           auto NewPred = ICmpInst::getInversePredicate(Pred);
4056           return new ICmpInst(NewPred, X, CmpC);
4057         } else if ((++ValToCheck).isPowerOf2()) {
4058           // ((1 << X) & 7) == 0 -> X >= 3
4059           // ((1 << X) & 7) != 0 -> X  < 3
4060           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4061           auto NewPred =
4062               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4063           return new ICmpInst(NewPred, X, CmpC);
4064         }
4065       }
4066 
4067       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4068       const APInt *CI;
4069       if (Op0KnownZeroInverted == 1 &&
4070           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4071         // ((8 >>u X) & 1) == 0 -> X != 3
4072         // ((8 >>u X) & 1) != 0 -> X == 3
4073         unsigned CmpVal = CI->countTrailingZeros();
4074         auto NewPred = ICmpInst::getInversePredicate(Pred);
4075         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4076       }
4077     }
4078     break;
4079   }
4080   case ICmpInst::ICMP_ULT: {
4081     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4082       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4083     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
4084       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4085     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
4086       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4087 
4088     const APInt *CmpC;
4089     if (match(Op1, m_APInt(CmpC))) {
4090       // A <u C -> A == C-1 if min(A)+1 == C
4091       if (Op1Max == Op0Min + 1) {
4092         Constant *CMinus1 = ConstantInt::get(Op0->getType(), *CmpC - 1);
4093         return new ICmpInst(ICmpInst::ICMP_EQ, Op0, CMinus1);
4094       }
4095     }
4096     break;
4097   }
4098   case ICmpInst::ICMP_UGT: {
4099     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
4100       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4101 
4102     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
4103       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4104 
4105     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
4106       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4107 
4108     const APInt *CmpC;
4109     if (match(Op1, m_APInt(CmpC))) {
4110       // A >u C -> A == C+1 if max(a)-1 == C
4111       if (*CmpC == Op0Max - 1)
4112         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4113                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4114     }
4115     break;
4116   }
4117   case ICmpInst::ICMP_SLT:
4118     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
4119       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4120     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
4121       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4122     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
4123       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4124     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
4125       if (Op1Max == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
4126         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4127                             Builder->getInt(CI->getValue() - 1));
4128     }
4129     break;
4130   case ICmpInst::ICMP_SGT:
4131     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
4132       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4133     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
4134       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4135 
4136     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
4137       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4138     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
4139       if (Op1Min == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
4140         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4141                             Builder->getInt(CI->getValue() + 1));
4142     }
4143     break;
4144   case ICmpInst::ICMP_SGE:
4145     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
4146     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
4147       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4148     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
4149       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4150     break;
4151   case ICmpInst::ICMP_SLE:
4152     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
4153     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
4154       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4155     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
4156       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4157     break;
4158   case ICmpInst::ICMP_UGE:
4159     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
4160     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
4161       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4162     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
4163       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4164     break;
4165   case ICmpInst::ICMP_ULE:
4166     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
4167     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
4168       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4169     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
4170       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4171     break;
4172   }
4173 
4174   // Turn a signed comparison into an unsigned one if both operands are known to
4175   // have the same sign.
4176   if (I.isSigned() &&
4177       ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
4178        (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
4179     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
4180 
4181   return nullptr;
4182 }
4183 
4184 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
4185 /// it into the appropriate icmp lt or icmp gt instruction. This transform
4186 /// allows them to be folded in visitICmpInst.
4187 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
4188   ICmpInst::Predicate Pred = I.getPredicate();
4189   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
4190       Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
4191     return nullptr;
4192 
4193   Value *Op0 = I.getOperand(0);
4194   Value *Op1 = I.getOperand(1);
4195   auto *Op1C = dyn_cast<Constant>(Op1);
4196   if (!Op1C)
4197     return nullptr;
4198 
4199   // Check if the constant operand can be safely incremented/decremented without
4200   // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
4201   // the edge cases for us, so we just assert on them. For vectors, we must
4202   // handle the edge cases.
4203   Type *Op1Type = Op1->getType();
4204   bool IsSigned = I.isSigned();
4205   bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
4206   auto *CI = dyn_cast<ConstantInt>(Op1C);
4207   if (CI) {
4208     // A <= MAX -> TRUE ; A >= MIN -> TRUE
4209     assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
4210   } else if (Op1Type->isVectorTy()) {
4211     // TODO? If the edge cases for vectors were guaranteed to be handled as they
4212     // are for scalar, we could remove the min/max checks. However, to do that,
4213     // we would have to use insertelement/shufflevector to replace edge values.
4214     unsigned NumElts = Op1Type->getVectorNumElements();
4215     for (unsigned i = 0; i != NumElts; ++i) {
4216       Constant *Elt = Op1C->getAggregateElement(i);
4217       if (!Elt)
4218         return nullptr;
4219 
4220       if (isa<UndefValue>(Elt))
4221         continue;
4222 
4223       // Bail out if we can't determine if this constant is min/max or if we
4224       // know that this constant is min/max.
4225       auto *CI = dyn_cast<ConstantInt>(Elt);
4226       if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
4227         return nullptr;
4228     }
4229   } else {
4230     // ConstantExpr?
4231     return nullptr;
4232   }
4233 
4234   // Increment or decrement the constant and set the new comparison predicate:
4235   // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
4236   Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
4237   CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
4238   NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
4239   return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
4240 }
4241 
4242 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4243   bool Changed = false;
4244   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4245   unsigned Op0Cplxity = getComplexity(Op0);
4246   unsigned Op1Cplxity = getComplexity(Op1);
4247 
4248   /// Orders the operands of the compare so that they are listed from most
4249   /// complex to least complex.  This puts constants before unary operators,
4250   /// before binary operators.
4251   if (Op0Cplxity < Op1Cplxity ||
4252       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
4253     I.swapOperands();
4254     std::swap(Op0, Op1);
4255     Changed = true;
4256   }
4257 
4258   if (Value *V =
4259           SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, &TLI, &DT, &AC, &I))
4260     return replaceInstUsesWith(I, V);
4261 
4262   // comparing -val or val with non-zero is the same as just comparing val
4263   // ie, abs(val) != 0 -> val != 0
4264   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
4265     Value *Cond, *SelectTrue, *SelectFalse;
4266     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
4267                             m_Value(SelectFalse)))) {
4268       if (Value *V = dyn_castNegVal(SelectTrue)) {
4269         if (V == SelectFalse)
4270           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4271       }
4272       else if (Value *V = dyn_castNegVal(SelectFalse)) {
4273         if (V == SelectTrue)
4274           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4275       }
4276     }
4277   }
4278 
4279   Type *Ty = Op0->getType();
4280 
4281   // icmp's with boolean values can always be turned into bitwise operations
4282   if (Ty->getScalarType()->isIntegerTy(1)) {
4283     switch (I.getPredicate()) {
4284     default: llvm_unreachable("Invalid icmp instruction!");
4285     case ICmpInst::ICMP_EQ: {                // icmp eq i1 A, B -> ~(A^B)
4286       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName() + "tmp");
4287       return BinaryOperator::CreateNot(Xor);
4288     }
4289     case ICmpInst::ICMP_NE:                  // icmp ne i1 A, B -> A^B
4290       return BinaryOperator::CreateXor(Op0, Op1);
4291 
4292     case ICmpInst::ICMP_UGT:
4293       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
4294       LLVM_FALLTHROUGH;
4295     case ICmpInst::ICMP_ULT:{                // icmp ult i1 A, B -> ~A & B
4296       Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
4297       return BinaryOperator::CreateAnd(Not, Op1);
4298     }
4299     case ICmpInst::ICMP_SGT:
4300       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
4301       LLVM_FALLTHROUGH;
4302     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
4303       Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
4304       return BinaryOperator::CreateAnd(Not, Op0);
4305     }
4306     case ICmpInst::ICMP_UGE:
4307       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
4308       LLVM_FALLTHROUGH;
4309     case ICmpInst::ICMP_ULE: {               // icmp ule i1 A, B -> ~A | B
4310       Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
4311       return BinaryOperator::CreateOr(Not, Op1);
4312     }
4313     case ICmpInst::ICMP_SGE:
4314       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
4315       LLVM_FALLTHROUGH;
4316     case ICmpInst::ICMP_SLE: {               // icmp sle i1 A, B -> A | ~B
4317       Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
4318       return BinaryOperator::CreateOr(Not, Op0);
4319     }
4320     }
4321   }
4322 
4323   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
4324     return NewICmp;
4325 
4326   if (Instruction *Res = foldICmpWithConstant(I))
4327     return Res;
4328 
4329   if (Instruction *Res = foldICmpUsingKnownBits(I))
4330     return Res;
4331 
4332   // Test if the ICmpInst instruction is used exclusively by a select as
4333   // part of a minimum or maximum operation. If so, refrain from doing
4334   // any other folding. This helps out other analyses which understand
4335   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4336   // and CodeGen. And in this case, at least one of the comparison
4337   // operands has at least one user besides the compare (the select),
4338   // which would often largely negate the benefit of folding anyway.
4339   if (I.hasOneUse())
4340     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4341       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4342           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4343         return nullptr;
4344 
4345   // FIXME: We only do this after checking for min/max to prevent infinite
4346   // looping caused by a reverse canonicalization of these patterns for min/max.
4347   // FIXME: The organization of folds is a mess. These would naturally go into
4348   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
4349   // down here after the min/max restriction.
4350   ICmpInst::Predicate Pred = I.getPredicate();
4351   const APInt *C;
4352   if (match(Op1, m_APInt(C))) {
4353     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
4354     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
4355       Constant *Zero = Constant::getNullValue(Op0->getType());
4356       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
4357     }
4358 
4359     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
4360     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
4361       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
4362       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
4363     }
4364   }
4365 
4366   if (Instruction *Res = foldICmpInstWithConstant(I))
4367     return Res;
4368 
4369   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
4370     return Res;
4371 
4372   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
4373   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
4374     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
4375       return NI;
4376   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
4377     if (Instruction *NI = foldGEPICmp(GEP, Op0,
4378                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
4379       return NI;
4380 
4381   // Try to optimize equality comparisons against alloca-based pointers.
4382   if (Op0->getType()->isPointerTy() && I.isEquality()) {
4383     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
4384     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
4385       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
4386         return New;
4387     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
4388       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
4389         return New;
4390   }
4391 
4392   // Test to see if the operands of the icmp are casted versions of other
4393   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
4394   // now.
4395   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
4396     if (Op0->getType()->isPointerTy() &&
4397         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
4398       // We keep moving the cast from the left operand over to the right
4399       // operand, where it can often be eliminated completely.
4400       Op0 = CI->getOperand(0);
4401 
4402       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
4403       // so eliminate it as well.
4404       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
4405         Op1 = CI2->getOperand(0);
4406 
4407       // If Op1 is a constant, we can fold the cast into the constant.
4408       if (Op0->getType() != Op1->getType()) {
4409         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
4410           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
4411         } else {
4412           // Otherwise, cast the RHS right before the icmp
4413           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
4414         }
4415       }
4416       return new ICmpInst(I.getPredicate(), Op0, Op1);
4417     }
4418   }
4419 
4420   if (isa<CastInst>(Op0)) {
4421     // Handle the special case of: icmp (cast bool to X), <cst>
4422     // This comes up when you have code like
4423     //   int X = A < B;
4424     //   if (X) ...
4425     // For generality, we handle any zero-extension of any operand comparison
4426     // with a constant or another cast from the same type.
4427     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
4428       if (Instruction *R = foldICmpWithCastAndCast(I))
4429         return R;
4430   }
4431 
4432   if (Instruction *Res = foldICmpBinOp(I))
4433     return Res;
4434 
4435   if (Instruction *Res = foldICmpWithMinMax(I))
4436     return Res;
4437 
4438   {
4439     Value *A, *B;
4440     // Transform (A & ~B) == 0 --> (A & B) != 0
4441     // and       (A & ~B) != 0 --> (A & B) == 0
4442     // if A is a power of 2.
4443     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
4444         match(Op1, m_Zero()) &&
4445         isKnownToBeAPowerOfTwo(A, DL, false, 0, &AC, &I, &DT) && I.isEquality())
4446       return new ICmpInst(I.getInversePredicate(),
4447                           Builder->CreateAnd(A, B),
4448                           Op1);
4449 
4450     // ~x < ~y --> y < x
4451     // ~x < cst --> ~cst < x
4452     if (match(Op0, m_Not(m_Value(A)))) {
4453       if (match(Op1, m_Not(m_Value(B))))
4454         return new ICmpInst(I.getPredicate(), B, A);
4455       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
4456         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
4457     }
4458 
4459     Instruction *AddI = nullptr;
4460     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
4461                                      m_Instruction(AddI))) &&
4462         isa<IntegerType>(A->getType())) {
4463       Value *Result;
4464       Constant *Overflow;
4465       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
4466                                 Overflow)) {
4467         replaceInstUsesWith(*AddI, Result);
4468         return replaceInstUsesWith(I, Overflow);
4469       }
4470     }
4471 
4472     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
4473     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4474       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
4475         return R;
4476     }
4477     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4478       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
4479         return R;
4480     }
4481   }
4482 
4483   if (Instruction *Res = foldICmpEquality(I))
4484     return Res;
4485 
4486   // The 'cmpxchg' instruction returns an aggregate containing the old value and
4487   // an i1 which indicates whether or not we successfully did the swap.
4488   //
4489   // Replace comparisons between the old value and the expected value with the
4490   // indicator that 'cmpxchg' returns.
4491   //
4492   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
4493   // spuriously fail.  In those cases, the old value may equal the expected
4494   // value but it is possible for the swap to not occur.
4495   if (I.getPredicate() == ICmpInst::ICMP_EQ)
4496     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
4497       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
4498         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
4499             !ACXI->isWeak())
4500           return ExtractValueInst::Create(ACXI, 1);
4501 
4502   {
4503     Value *X; ConstantInt *Cst;
4504     // icmp X+Cst, X
4505     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
4506       return foldICmpAddOpConst(I, X, Cst, I.getPredicate());
4507 
4508     // icmp X, X+Cst
4509     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
4510       return foldICmpAddOpConst(I, X, Cst, I.getSwappedPredicate());
4511   }
4512   return Changed ? &I : nullptr;
4513 }
4514 
4515 /// Fold fcmp ([us]itofp x, cst) if possible.
4516 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
4517                                                 Constant *RHSC) {
4518   if (!isa<ConstantFP>(RHSC)) return nullptr;
4519   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
4520 
4521   // Get the width of the mantissa.  We don't want to hack on conversions that
4522   // might lose information from the integer, e.g. "i64 -> float"
4523   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
4524   if (MantissaWidth == -1) return nullptr;  // Unknown.
4525 
4526   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
4527 
4528   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
4529 
4530   if (I.isEquality()) {
4531     FCmpInst::Predicate P = I.getPredicate();
4532     bool IsExact = false;
4533     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
4534     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
4535 
4536     // If the floating point constant isn't an integer value, we know if we will
4537     // ever compare equal / not equal to it.
4538     if (!IsExact) {
4539       // TODO: Can never be -0.0 and other non-representable values
4540       APFloat RHSRoundInt(RHS);
4541       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
4542       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
4543         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
4544           return replaceInstUsesWith(I, Builder->getFalse());
4545 
4546         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
4547         return replaceInstUsesWith(I, Builder->getTrue());
4548       }
4549     }
4550 
4551     // TODO: If the constant is exactly representable, is it always OK to do
4552     // equality compares as integer?
4553   }
4554 
4555   // Check to see that the input is converted from an integer type that is small
4556   // enough that preserves all bits.  TODO: check here for "known" sign bits.
4557   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
4558   unsigned InputSize = IntTy->getScalarSizeInBits();
4559 
4560   // Following test does NOT adjust InputSize downwards for signed inputs,
4561   // because the most negative value still requires all the mantissa bits
4562   // to distinguish it from one less than that value.
4563   if ((int)InputSize > MantissaWidth) {
4564     // Conversion would lose accuracy. Check if loss can impact comparison.
4565     int Exp = ilogb(RHS);
4566     if (Exp == APFloat::IEK_Inf) {
4567       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
4568       if (MaxExponent < (int)InputSize - !LHSUnsigned)
4569         // Conversion could create infinity.
4570         return nullptr;
4571     } else {
4572       // Note that if RHS is zero or NaN, then Exp is negative
4573       // and first condition is trivially false.
4574       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
4575         // Conversion could affect comparison.
4576         return nullptr;
4577     }
4578   }
4579 
4580   // Otherwise, we can potentially simplify the comparison.  We know that it
4581   // will always come through as an integer value and we know the constant is
4582   // not a NAN (it would have been previously simplified).
4583   assert(!RHS.isNaN() && "NaN comparison not already folded!");
4584 
4585   ICmpInst::Predicate Pred;
4586   switch (I.getPredicate()) {
4587   default: llvm_unreachable("Unexpected predicate!");
4588   case FCmpInst::FCMP_UEQ:
4589   case FCmpInst::FCMP_OEQ:
4590     Pred = ICmpInst::ICMP_EQ;
4591     break;
4592   case FCmpInst::FCMP_UGT:
4593   case FCmpInst::FCMP_OGT:
4594     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
4595     break;
4596   case FCmpInst::FCMP_UGE:
4597   case FCmpInst::FCMP_OGE:
4598     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
4599     break;
4600   case FCmpInst::FCMP_ULT:
4601   case FCmpInst::FCMP_OLT:
4602     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
4603     break;
4604   case FCmpInst::FCMP_ULE:
4605   case FCmpInst::FCMP_OLE:
4606     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
4607     break;
4608   case FCmpInst::FCMP_UNE:
4609   case FCmpInst::FCMP_ONE:
4610     Pred = ICmpInst::ICMP_NE;
4611     break;
4612   case FCmpInst::FCMP_ORD:
4613     return replaceInstUsesWith(I, Builder->getTrue());
4614   case FCmpInst::FCMP_UNO:
4615     return replaceInstUsesWith(I, Builder->getFalse());
4616   }
4617 
4618   // Now we know that the APFloat is a normal number, zero or inf.
4619 
4620   // See if the FP constant is too large for the integer.  For example,
4621   // comparing an i8 to 300.0.
4622   unsigned IntWidth = IntTy->getScalarSizeInBits();
4623 
4624   if (!LHSUnsigned) {
4625     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
4626     // and large values.
4627     APFloat SMax(RHS.getSemantics());
4628     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
4629                           APFloat::rmNearestTiesToEven);
4630     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
4631       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
4632           Pred == ICmpInst::ICMP_SLE)
4633         return replaceInstUsesWith(I, Builder->getTrue());
4634       return replaceInstUsesWith(I, Builder->getFalse());
4635     }
4636   } else {
4637     // If the RHS value is > UnsignedMax, fold the comparison. This handles
4638     // +INF and large values.
4639     APFloat UMax(RHS.getSemantics());
4640     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
4641                           APFloat::rmNearestTiesToEven);
4642     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
4643       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
4644           Pred == ICmpInst::ICMP_ULE)
4645         return replaceInstUsesWith(I, Builder->getTrue());
4646       return replaceInstUsesWith(I, Builder->getFalse());
4647     }
4648   }
4649 
4650   if (!LHSUnsigned) {
4651     // See if the RHS value is < SignedMin.
4652     APFloat SMin(RHS.getSemantics());
4653     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
4654                           APFloat::rmNearestTiesToEven);
4655     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
4656       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
4657           Pred == ICmpInst::ICMP_SGE)
4658         return replaceInstUsesWith(I, Builder->getTrue());
4659       return replaceInstUsesWith(I, Builder->getFalse());
4660     }
4661   } else {
4662     // See if the RHS value is < UnsignedMin.
4663     APFloat SMin(RHS.getSemantics());
4664     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
4665                           APFloat::rmNearestTiesToEven);
4666     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
4667       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
4668           Pred == ICmpInst::ICMP_UGE)
4669         return replaceInstUsesWith(I, Builder->getTrue());
4670       return replaceInstUsesWith(I, Builder->getFalse());
4671     }
4672   }
4673 
4674   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
4675   // [0, UMAX], but it may still be fractional.  See if it is fractional by
4676   // casting the FP value to the integer value and back, checking for equality.
4677   // Don't do this for zero, because -0.0 is not fractional.
4678   Constant *RHSInt = LHSUnsigned
4679     ? ConstantExpr::getFPToUI(RHSC, IntTy)
4680     : ConstantExpr::getFPToSI(RHSC, IntTy);
4681   if (!RHS.isZero()) {
4682     bool Equal = LHSUnsigned
4683       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
4684       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
4685     if (!Equal) {
4686       // If we had a comparison against a fractional value, we have to adjust
4687       // the compare predicate and sometimes the value.  RHSC is rounded towards
4688       // zero at this point.
4689       switch (Pred) {
4690       default: llvm_unreachable("Unexpected integer comparison!");
4691       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
4692         return replaceInstUsesWith(I, Builder->getTrue());
4693       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
4694         return replaceInstUsesWith(I, Builder->getFalse());
4695       case ICmpInst::ICMP_ULE:
4696         // (float)int <= 4.4   --> int <= 4
4697         // (float)int <= -4.4  --> false
4698         if (RHS.isNegative())
4699           return replaceInstUsesWith(I, Builder->getFalse());
4700         break;
4701       case ICmpInst::ICMP_SLE:
4702         // (float)int <= 4.4   --> int <= 4
4703         // (float)int <= -4.4  --> int < -4
4704         if (RHS.isNegative())
4705           Pred = ICmpInst::ICMP_SLT;
4706         break;
4707       case ICmpInst::ICMP_ULT:
4708         // (float)int < -4.4   --> false
4709         // (float)int < 4.4    --> int <= 4
4710         if (RHS.isNegative())
4711           return replaceInstUsesWith(I, Builder->getFalse());
4712         Pred = ICmpInst::ICMP_ULE;
4713         break;
4714       case ICmpInst::ICMP_SLT:
4715         // (float)int < -4.4   --> int < -4
4716         // (float)int < 4.4    --> int <= 4
4717         if (!RHS.isNegative())
4718           Pred = ICmpInst::ICMP_SLE;
4719         break;
4720       case ICmpInst::ICMP_UGT:
4721         // (float)int > 4.4    --> int > 4
4722         // (float)int > -4.4   --> true
4723         if (RHS.isNegative())
4724           return replaceInstUsesWith(I, Builder->getTrue());
4725         break;
4726       case ICmpInst::ICMP_SGT:
4727         // (float)int > 4.4    --> int > 4
4728         // (float)int > -4.4   --> int >= -4
4729         if (RHS.isNegative())
4730           Pred = ICmpInst::ICMP_SGE;
4731         break;
4732       case ICmpInst::ICMP_UGE:
4733         // (float)int >= -4.4   --> true
4734         // (float)int >= 4.4    --> int > 4
4735         if (RHS.isNegative())
4736           return replaceInstUsesWith(I, Builder->getTrue());
4737         Pred = ICmpInst::ICMP_UGT;
4738         break;
4739       case ICmpInst::ICMP_SGE:
4740         // (float)int >= -4.4   --> int >= -4
4741         // (float)int >= 4.4    --> int > 4
4742         if (!RHS.isNegative())
4743           Pred = ICmpInst::ICMP_SGT;
4744         break;
4745       }
4746     }
4747   }
4748 
4749   // Lower this FP comparison into an appropriate integer version of the
4750   // comparison.
4751   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
4752 }
4753 
4754 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4755   bool Changed = false;
4756 
4757   /// Orders the operands of the compare so that they are listed from most
4758   /// complex to least complex.  This puts constants before unary operators,
4759   /// before binary operators.
4760   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
4761     I.swapOperands();
4762     Changed = true;
4763   }
4764 
4765   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4766 
4767   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
4768                                   I.getFastMathFlags(), DL, &TLI, &DT, &AC, &I))
4769     return replaceInstUsesWith(I, V);
4770 
4771   // Simplify 'fcmp pred X, X'
4772   if (Op0 == Op1) {
4773     switch (I.getPredicate()) {
4774     default: llvm_unreachable("Unknown predicate!");
4775     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
4776     case FCmpInst::FCMP_ULT:    // True if unordered or less than
4777     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
4778     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
4779       // Canonicalize these to be 'fcmp uno %X, 0.0'.
4780       I.setPredicate(FCmpInst::FCMP_UNO);
4781       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4782       return &I;
4783 
4784     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
4785     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
4786     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
4787     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
4788       // Canonicalize these to be 'fcmp ord %X, 0.0'.
4789       I.setPredicate(FCmpInst::FCMP_ORD);
4790       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4791       return &I;
4792     }
4793   }
4794 
4795   // Test if the FCmpInst instruction is used exclusively by a select as
4796   // part of a minimum or maximum operation. If so, refrain from doing
4797   // any other folding. This helps out other analyses which understand
4798   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4799   // and CodeGen. And in this case, at least one of the comparison
4800   // operands has at least one user besides the compare (the select),
4801   // which would often largely negate the benefit of folding anyway.
4802   if (I.hasOneUse())
4803     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4804       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4805           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4806         return nullptr;
4807 
4808   // Handle fcmp with constant RHS
4809   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4810     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4811       switch (LHSI->getOpcode()) {
4812       case Instruction::FPExt: {
4813         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
4814         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
4815         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
4816         if (!RHSF)
4817           break;
4818 
4819         const fltSemantics *Sem;
4820         // FIXME: This shouldn't be here.
4821         if (LHSExt->getSrcTy()->isHalfTy())
4822           Sem = &APFloat::IEEEhalf();
4823         else if (LHSExt->getSrcTy()->isFloatTy())
4824           Sem = &APFloat::IEEEsingle();
4825         else if (LHSExt->getSrcTy()->isDoubleTy())
4826           Sem = &APFloat::IEEEdouble();
4827         else if (LHSExt->getSrcTy()->isFP128Ty())
4828           Sem = &APFloat::IEEEquad();
4829         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
4830           Sem = &APFloat::x87DoubleExtended();
4831         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
4832           Sem = &APFloat::PPCDoubleDouble();
4833         else
4834           break;
4835 
4836         bool Lossy;
4837         APFloat F = RHSF->getValueAPF();
4838         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
4839 
4840         // Avoid lossy conversions and denormals. Zero is a special case
4841         // that's OK to convert.
4842         APFloat Fabs = F;
4843         Fabs.clearSign();
4844         if (!Lossy &&
4845             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
4846                  APFloat::cmpLessThan) || Fabs.isZero()))
4847 
4848           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4849                               ConstantFP::get(RHSC->getContext(), F));
4850         break;
4851       }
4852       case Instruction::PHI:
4853         // Only fold fcmp into the PHI if the phi and fcmp are in the same
4854         // block.  If in the same block, we're encouraging jump threading.  If
4855         // not, we are just pessimizing the code by making an i1 phi.
4856         if (LHSI->getParent() == I.getParent())
4857           if (Instruction *NV = FoldOpIntoPhi(I))
4858             return NV;
4859         break;
4860       case Instruction::SIToFP:
4861       case Instruction::UIToFP:
4862         if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
4863           return NV;
4864         break;
4865       case Instruction::FSub: {
4866         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
4867         Value *Op;
4868         if (match(LHSI, m_FNeg(m_Value(Op))))
4869           return new FCmpInst(I.getSwappedPredicate(), Op,
4870                               ConstantExpr::getFNeg(RHSC));
4871         break;
4872       }
4873       case Instruction::Load:
4874         if (GetElementPtrInst *GEP =
4875             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
4876           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4877             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
4878                 !cast<LoadInst>(LHSI)->isVolatile())
4879               if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
4880                 return Res;
4881         }
4882         break;
4883       case Instruction::Call: {
4884         if (!RHSC->isNullValue())
4885           break;
4886 
4887         CallInst *CI = cast<CallInst>(LHSI);
4888         Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI);
4889         if (IID != Intrinsic::fabs)
4890           break;
4891 
4892         // Various optimization for fabs compared with zero.
4893         switch (I.getPredicate()) {
4894         default:
4895           break;
4896         // fabs(x) < 0 --> false
4897         case FCmpInst::FCMP_OLT:
4898           llvm_unreachable("handled by SimplifyFCmpInst");
4899         // fabs(x) > 0 --> x != 0
4900         case FCmpInst::FCMP_OGT:
4901           return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
4902         // fabs(x) <= 0 --> x == 0
4903         case FCmpInst::FCMP_OLE:
4904           return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
4905         // fabs(x) >= 0 --> !isnan(x)
4906         case FCmpInst::FCMP_OGE:
4907           return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
4908         // fabs(x) == 0 --> x == 0
4909         // fabs(x) != 0 --> x != 0
4910         case FCmpInst::FCMP_OEQ:
4911         case FCmpInst::FCMP_UEQ:
4912         case FCmpInst::FCMP_ONE:
4913         case FCmpInst::FCMP_UNE:
4914           return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
4915         }
4916       }
4917       }
4918   }
4919 
4920   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
4921   Value *X, *Y;
4922   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
4923     return new FCmpInst(I.getSwappedPredicate(), X, Y);
4924 
4925   // fcmp (fpext x), (fpext y) -> fcmp x, y
4926   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
4927     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
4928       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
4929         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4930                             RHSExt->getOperand(0));
4931 
4932   return Changed ? &I : nullptr;
4933 }
4934