1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Given an exploded icmp instruction, return true if the comparison only
73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
74 /// result of the comparison is true when the input value is signed.
75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
76                            bool &TrueIfSigned) {
77   switch (Pred) {
78   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
79     TrueIfSigned = true;
80     return RHS.isNullValue();
81   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
82     TrueIfSigned = true;
83     return RHS.isAllOnesValue();
84   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
85     TrueIfSigned = false;
86     return RHS.isAllOnesValue();
87   case ICmpInst::ICMP_UGT:
88     // True if LHS u> RHS and RHS == high-bit-mask - 1
89     TrueIfSigned = true;
90     return RHS.isMaxSignedValue();
91   case ICmpInst::ICMP_UGE:
92     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
93     TrueIfSigned = true;
94     return RHS.isSignMask();
95   default:
96     return false;
97   }
98 }
99 
100 /// Returns true if the exploded icmp can be expressed as a signed comparison
101 /// to zero and updates the predicate accordingly.
102 /// The signedness of the comparison is preserved.
103 /// TODO: Refactor with decomposeBitTestICmp()?
104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
105   if (!ICmpInst::isSigned(Pred))
106     return false;
107 
108   if (C.isNullValue())
109     return ICmpInst::isRelational(Pred);
110 
111   if (C.isOneValue()) {
112     if (Pred == ICmpInst::ICMP_SLT) {
113       Pred = ICmpInst::ICMP_SLE;
114       return true;
115     }
116   } else if (C.isAllOnesValue()) {
117     if (Pred == ICmpInst::ICMP_SGT) {
118       Pred = ICmpInst::ICMP_SGE;
119       return true;
120     }
121   }
122 
123   return false;
124 }
125 
126 /// Given a signed integer type and a set of known zero and one bits, compute
127 /// the maximum and minimum values that could have the specified known zero and
128 /// known one bits, returning them in Min/Max.
129 /// TODO: Move to method on KnownBits struct?
130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
131                                                    APInt &Min, APInt &Max) {
132   assert(Known.getBitWidth() == Min.getBitWidth() &&
133          Known.getBitWidth() == Max.getBitWidth() &&
134          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
135   APInt UnknownBits = ~(Known.Zero|Known.One);
136 
137   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
138   // bit if it is unknown.
139   Min = Known.One;
140   Max = Known.One|UnknownBits;
141 
142   if (UnknownBits.isNegative()) { // Sign bit is unknown
143     Min.setSignBit();
144     Max.clearSignBit();
145   }
146 }
147 
148 /// Given an unsigned integer type and a set of known zero and one bits, compute
149 /// the maximum and minimum values that could have the specified known zero and
150 /// known one bits, returning them in Min/Max.
151 /// TODO: Move to method on KnownBits struct?
152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
153                                                      APInt &Min, APInt &Max) {
154   assert(Known.getBitWidth() == Min.getBitWidth() &&
155          Known.getBitWidth() == Max.getBitWidth() &&
156          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
157   APInt UnknownBits = ~(Known.Zero|Known.One);
158 
159   // The minimum value is when the unknown bits are all zeros.
160   Min = Known.One;
161   // The maximum value is when the unknown bits are all ones.
162   Max = Known.One|UnknownBits;
163 }
164 
165 /// This is called when we see this pattern:
166 ///   cmp pred (load (gep GV, ...)), cmpcst
167 /// where GV is a global variable with a constant initializer. Try to simplify
168 /// this into some simple computation that does not need the load. For example
169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
170 ///
171 /// If AndCst is non-null, then the loaded value is masked with that constant
172 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
174                                                         GlobalVariable *GV,
175                                                         CmpInst &ICI,
176                                                         ConstantInt *AndCst) {
177   Constant *Init = GV->getInitializer();
178   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
179     return nullptr;
180 
181   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
182   // Don't blow up on huge arrays.
183   if (ArrayElementCount > MaxArraySizeForCombine)
184     return nullptr;
185 
186   // There are many forms of this optimization we can handle, for now, just do
187   // the simple index into a single-dimensional array.
188   //
189   // Require: GEP GV, 0, i {{, constant indices}}
190   if (GEP->getNumOperands() < 3 ||
191       !isa<ConstantInt>(GEP->getOperand(1)) ||
192       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
193       isa<Constant>(GEP->getOperand(2)))
194     return nullptr;
195 
196   // Check that indices after the variable are constants and in-range for the
197   // type they index.  Collect the indices.  This is typically for arrays of
198   // structs.
199   SmallVector<unsigned, 4> LaterIndices;
200 
201   Type *EltTy = Init->getType()->getArrayElementType();
202   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
203     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
204     if (!Idx) return nullptr;  // Variable index.
205 
206     uint64_t IdxVal = Idx->getZExtValue();
207     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
208 
209     if (StructType *STy = dyn_cast<StructType>(EltTy))
210       EltTy = STy->getElementType(IdxVal);
211     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
212       if (IdxVal >= ATy->getNumElements()) return nullptr;
213       EltTy = ATy->getElementType();
214     } else {
215       return nullptr; // Unknown type.
216     }
217 
218     LaterIndices.push_back(IdxVal);
219   }
220 
221   enum { Overdefined = -3, Undefined = -2 };
222 
223   // Variables for our state machines.
224 
225   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
226   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
227   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
228   // undefined, otherwise set to the first true element.  SecondTrueElement is
229   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
230   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
231 
232   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
233   // form "i != 47 & i != 87".  Same state transitions as for true elements.
234   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
235 
236   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
237   /// define a state machine that triggers for ranges of values that the index
238   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
239   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
240   /// index in the range (inclusive).  We use -2 for undefined here because we
241   /// use relative comparisons and don't want 0-1 to match -1.
242   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
243 
244   // MagicBitvector - This is a magic bitvector where we set a bit if the
245   // comparison is true for element 'i'.  If there are 64 elements or less in
246   // the array, this will fully represent all the comparison results.
247   uint64_t MagicBitvector = 0;
248 
249   // Scan the array and see if one of our patterns matches.
250   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
251   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
252     Constant *Elt = Init->getAggregateElement(i);
253     if (!Elt) return nullptr;
254 
255     // If this is indexing an array of structures, get the structure element.
256     if (!LaterIndices.empty())
257       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
258 
259     // If the element is masked, handle it.
260     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
261 
262     // Find out if the comparison would be true or false for the i'th element.
263     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
264                                                   CompareRHS, DL, &TLI);
265     // If the result is undef for this element, ignore it.
266     if (isa<UndefValue>(C)) {
267       // Extend range state machines to cover this element in case there is an
268       // undef in the middle of the range.
269       if (TrueRangeEnd == (int)i-1)
270         TrueRangeEnd = i;
271       if (FalseRangeEnd == (int)i-1)
272         FalseRangeEnd = i;
273       continue;
274     }
275 
276     // If we can't compute the result for any of the elements, we have to give
277     // up evaluating the entire conditional.
278     if (!isa<ConstantInt>(C)) return nullptr;
279 
280     // Otherwise, we know if the comparison is true or false for this element,
281     // update our state machines.
282     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
283 
284     // State machine for single/double/range index comparison.
285     if (IsTrueForElt) {
286       // Update the TrueElement state machine.
287       if (FirstTrueElement == Undefined)
288         FirstTrueElement = TrueRangeEnd = i;  // First true element.
289       else {
290         // Update double-compare state machine.
291         if (SecondTrueElement == Undefined)
292           SecondTrueElement = i;
293         else
294           SecondTrueElement = Overdefined;
295 
296         // Update range state machine.
297         if (TrueRangeEnd == (int)i-1)
298           TrueRangeEnd = i;
299         else
300           TrueRangeEnd = Overdefined;
301       }
302     } else {
303       // Update the FalseElement state machine.
304       if (FirstFalseElement == Undefined)
305         FirstFalseElement = FalseRangeEnd = i; // First false element.
306       else {
307         // Update double-compare state machine.
308         if (SecondFalseElement == Undefined)
309           SecondFalseElement = i;
310         else
311           SecondFalseElement = Overdefined;
312 
313         // Update range state machine.
314         if (FalseRangeEnd == (int)i-1)
315           FalseRangeEnd = i;
316         else
317           FalseRangeEnd = Overdefined;
318       }
319     }
320 
321     // If this element is in range, update our magic bitvector.
322     if (i < 64 && IsTrueForElt)
323       MagicBitvector |= 1ULL << i;
324 
325     // If all of our states become overdefined, bail out early.  Since the
326     // predicate is expensive, only check it every 8 elements.  This is only
327     // really useful for really huge arrays.
328     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
329         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
330         FalseRangeEnd == Overdefined)
331       return nullptr;
332   }
333 
334   // Now that we've scanned the entire array, emit our new comparison(s).  We
335   // order the state machines in complexity of the generated code.
336   Value *Idx = GEP->getOperand(2);
337 
338   // If the index is larger than the pointer size of the target, truncate the
339   // index down like the GEP would do implicitly.  We don't have to do this for
340   // an inbounds GEP because the index can't be out of range.
341   if (!GEP->isInBounds()) {
342     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
343     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
344     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
345       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
346   }
347 
348   // If the comparison is only true for one or two elements, emit direct
349   // comparisons.
350   if (SecondTrueElement != Overdefined) {
351     // None true -> false.
352     if (FirstTrueElement == Undefined)
353       return replaceInstUsesWith(ICI, Builder.getFalse());
354 
355     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
356 
357     // True for one element -> 'i == 47'.
358     if (SecondTrueElement == Undefined)
359       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
360 
361     // True for two elements -> 'i == 47 | i == 72'.
362     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
363     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
364     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
365     return BinaryOperator::CreateOr(C1, C2);
366   }
367 
368   // If the comparison is only false for one or two elements, emit direct
369   // comparisons.
370   if (SecondFalseElement != Overdefined) {
371     // None false -> true.
372     if (FirstFalseElement == Undefined)
373       return replaceInstUsesWith(ICI, Builder.getTrue());
374 
375     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
376 
377     // False for one element -> 'i != 47'.
378     if (SecondFalseElement == Undefined)
379       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
380 
381     // False for two elements -> 'i != 47 & i != 72'.
382     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
383     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
384     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
385     return BinaryOperator::CreateAnd(C1, C2);
386   }
387 
388   // If the comparison can be replaced with a range comparison for the elements
389   // where it is true, emit the range check.
390   if (TrueRangeEnd != Overdefined) {
391     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
392 
393     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
394     if (FirstTrueElement) {
395       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
396       Idx = Builder.CreateAdd(Idx, Offs);
397     }
398 
399     Value *End = ConstantInt::get(Idx->getType(),
400                                   TrueRangeEnd-FirstTrueElement+1);
401     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
402   }
403 
404   // False range check.
405   if (FalseRangeEnd != Overdefined) {
406     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
407     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
408     if (FirstFalseElement) {
409       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
410       Idx = Builder.CreateAdd(Idx, Offs);
411     }
412 
413     Value *End = ConstantInt::get(Idx->getType(),
414                                   FalseRangeEnd-FirstFalseElement);
415     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
416   }
417 
418   // If a magic bitvector captures the entire comparison state
419   // of this load, replace it with computation that does:
420   //   ((magic_cst >> i) & 1) != 0
421   {
422     Type *Ty = nullptr;
423 
424     // Look for an appropriate type:
425     // - The type of Idx if the magic fits
426     // - The smallest fitting legal type
427     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
428       Ty = Idx->getType();
429     else
430       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
431 
432     if (Ty) {
433       Value *V = Builder.CreateIntCast(Idx, Ty, false);
434       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
435       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
436       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
437     }
438   }
439 
440   return nullptr;
441 }
442 
443 /// Return a value that can be used to compare the *offset* implied by a GEP to
444 /// zero. For example, if we have &A[i], we want to return 'i' for
445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
446 /// are involved. The above expression would also be legal to codegen as
447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
448 /// This latter form is less amenable to optimization though, and we are allowed
449 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
450 ///
451 /// If we can't emit an optimized form for this expression, this returns null.
452 ///
453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
454                                           const DataLayout &DL) {
455   gep_type_iterator GTI = gep_type_begin(GEP);
456 
457   // Check to see if this gep only has a single variable index.  If so, and if
458   // any constant indices are a multiple of its scale, then we can compute this
459   // in terms of the scale of the variable index.  For example, if the GEP
460   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
461   // because the expression will cross zero at the same point.
462   unsigned i, e = GEP->getNumOperands();
463   int64_t Offset = 0;
464   for (i = 1; i != e; ++i, ++GTI) {
465     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
466       // Compute the aggregate offset of constant indices.
467       if (CI->isZero()) continue;
468 
469       // Handle a struct index, which adds its field offset to the pointer.
470       if (StructType *STy = GTI.getStructTypeOrNull()) {
471         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
472       } else {
473         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
474         Offset += Size*CI->getSExtValue();
475       }
476     } else {
477       // Found our variable index.
478       break;
479     }
480   }
481 
482   // If there are no variable indices, we must have a constant offset, just
483   // evaluate it the general way.
484   if (i == e) return nullptr;
485 
486   Value *VariableIdx = GEP->getOperand(i);
487   // Determine the scale factor of the variable element.  For example, this is
488   // 4 if the variable index is into an array of i32.
489   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
490 
491   // Verify that there are no other variable indices.  If so, emit the hard way.
492   for (++i, ++GTI; i != e; ++i, ++GTI) {
493     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
494     if (!CI) return nullptr;
495 
496     // Compute the aggregate offset of constant indices.
497     if (CI->isZero()) continue;
498 
499     // Handle a struct index, which adds its field offset to the pointer.
500     if (StructType *STy = GTI.getStructTypeOrNull()) {
501       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
502     } else {
503       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
504       Offset += Size*CI->getSExtValue();
505     }
506   }
507 
508   // Okay, we know we have a single variable index, which must be a
509   // pointer/array/vector index.  If there is no offset, life is simple, return
510   // the index.
511   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
512   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
513   if (Offset == 0) {
514     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
515     // we don't need to bother extending: the extension won't affect where the
516     // computation crosses zero.
517     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
518       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
519     }
520     return VariableIdx;
521   }
522 
523   // Otherwise, there is an index.  The computation we will do will be modulo
524   // the pointer size.
525   Offset = SignExtend64(Offset, IntPtrWidth);
526   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
527 
528   // To do this transformation, any constant index must be a multiple of the
529   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
530   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
531   // multiple of the variable scale.
532   int64_t NewOffs = Offset / (int64_t)VariableScale;
533   if (Offset != NewOffs*(int64_t)VariableScale)
534     return nullptr;
535 
536   // Okay, we can do this evaluation.  Start by converting the index to intptr.
537   if (VariableIdx->getType() != IntPtrTy)
538     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
539                                             true /*Signed*/);
540   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
541   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
542 }
543 
544 /// Returns true if we can rewrite Start as a GEP with pointer Base
545 /// and some integer offset. The nodes that need to be re-written
546 /// for this transformation will be added to Explored.
547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
548                                   const DataLayout &DL,
549                                   SetVector<Value *> &Explored) {
550   SmallVector<Value *, 16> WorkList(1, Start);
551   Explored.insert(Base);
552 
553   // The following traversal gives us an order which can be used
554   // when doing the final transformation. Since in the final
555   // transformation we create the PHI replacement instructions first,
556   // we don't have to get them in any particular order.
557   //
558   // However, for other instructions we will have to traverse the
559   // operands of an instruction first, which means that we have to
560   // do a post-order traversal.
561   while (!WorkList.empty()) {
562     SetVector<PHINode *> PHIs;
563 
564     while (!WorkList.empty()) {
565       if (Explored.size() >= 100)
566         return false;
567 
568       Value *V = WorkList.back();
569 
570       if (Explored.count(V) != 0) {
571         WorkList.pop_back();
572         continue;
573       }
574 
575       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
576           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
577         // We've found some value that we can't explore which is different from
578         // the base. Therefore we can't do this transformation.
579         return false;
580 
581       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
582         auto *CI = dyn_cast<CastInst>(V);
583         if (!CI->isNoopCast(DL))
584           return false;
585 
586         if (Explored.count(CI->getOperand(0)) == 0)
587           WorkList.push_back(CI->getOperand(0));
588       }
589 
590       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
591         // We're limiting the GEP to having one index. This will preserve
592         // the original pointer type. We could handle more cases in the
593         // future.
594         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
595             GEP->getType() != Start->getType())
596           return false;
597 
598         if (Explored.count(GEP->getOperand(0)) == 0)
599           WorkList.push_back(GEP->getOperand(0));
600       }
601 
602       if (WorkList.back() == V) {
603         WorkList.pop_back();
604         // We've finished visiting this node, mark it as such.
605         Explored.insert(V);
606       }
607 
608       if (auto *PN = dyn_cast<PHINode>(V)) {
609         // We cannot transform PHIs on unsplittable basic blocks.
610         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
611           return false;
612         Explored.insert(PN);
613         PHIs.insert(PN);
614       }
615     }
616 
617     // Explore the PHI nodes further.
618     for (auto *PN : PHIs)
619       for (Value *Op : PN->incoming_values())
620         if (Explored.count(Op) == 0)
621           WorkList.push_back(Op);
622   }
623 
624   // Make sure that we can do this. Since we can't insert GEPs in a basic
625   // block before a PHI node, we can't easily do this transformation if
626   // we have PHI node users of transformed instructions.
627   for (Value *Val : Explored) {
628     for (Value *Use : Val->uses()) {
629 
630       auto *PHI = dyn_cast<PHINode>(Use);
631       auto *Inst = dyn_cast<Instruction>(Val);
632 
633       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
634           Explored.count(PHI) == 0)
635         continue;
636 
637       if (PHI->getParent() == Inst->getParent())
638         return false;
639     }
640   }
641   return true;
642 }
643 
644 // Sets the appropriate insert point on Builder where we can add
645 // a replacement Instruction for V (if that is possible).
646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
647                               bool Before = true) {
648   if (auto *PHI = dyn_cast<PHINode>(V)) {
649     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
650     return;
651   }
652   if (auto *I = dyn_cast<Instruction>(V)) {
653     if (!Before)
654       I = &*std::next(I->getIterator());
655     Builder.SetInsertPoint(I);
656     return;
657   }
658   if (auto *A = dyn_cast<Argument>(V)) {
659     // Set the insertion point in the entry block.
660     BasicBlock &Entry = A->getParent()->getEntryBlock();
661     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
662     return;
663   }
664   // Otherwise, this is a constant and we don't need to set a new
665   // insertion point.
666   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
667 }
668 
669 /// Returns a re-written value of Start as an indexed GEP using Base as a
670 /// pointer.
671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
672                                  const DataLayout &DL,
673                                  SetVector<Value *> &Explored) {
674   // Perform all the substitutions. This is a bit tricky because we can
675   // have cycles in our use-def chains.
676   // 1. Create the PHI nodes without any incoming values.
677   // 2. Create all the other values.
678   // 3. Add the edges for the PHI nodes.
679   // 4. Emit GEPs to get the original pointers.
680   // 5. Remove the original instructions.
681   Type *IndexType = IntegerType::get(
682       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
683 
684   DenseMap<Value *, Value *> NewInsts;
685   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
686 
687   // Create the new PHI nodes, without adding any incoming values.
688   for (Value *Val : Explored) {
689     if (Val == Base)
690       continue;
691     // Create empty phi nodes. This avoids cyclic dependencies when creating
692     // the remaining instructions.
693     if (auto *PHI = dyn_cast<PHINode>(Val))
694       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
695                                       PHI->getName() + ".idx", PHI);
696   }
697   IRBuilder<> Builder(Base->getContext());
698 
699   // Create all the other instructions.
700   for (Value *Val : Explored) {
701 
702     if (NewInsts.find(Val) != NewInsts.end())
703       continue;
704 
705     if (auto *CI = dyn_cast<CastInst>(Val)) {
706       // Don't get rid of the intermediate variable here; the store can grow
707       // the map which will invalidate the reference to the input value.
708       Value *V = NewInsts[CI->getOperand(0)];
709       NewInsts[CI] = V;
710       continue;
711     }
712     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
713       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
714                                                   : GEP->getOperand(1);
715       setInsertionPoint(Builder, GEP);
716       // Indices might need to be sign extended. GEPs will magically do
717       // this, but we need to do it ourselves here.
718       if (Index->getType()->getScalarSizeInBits() !=
719           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
720         Index = Builder.CreateSExtOrTrunc(
721             Index, NewInsts[GEP->getOperand(0)]->getType(),
722             GEP->getOperand(0)->getName() + ".sext");
723       }
724 
725       auto *Op = NewInsts[GEP->getOperand(0)];
726       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
727         NewInsts[GEP] = Index;
728       else
729         NewInsts[GEP] = Builder.CreateNSWAdd(
730             Op, Index, GEP->getOperand(0)->getName() + ".add");
731       continue;
732     }
733     if (isa<PHINode>(Val))
734       continue;
735 
736     llvm_unreachable("Unexpected instruction type");
737   }
738 
739   // Add the incoming values to the PHI nodes.
740   for (Value *Val : Explored) {
741     if (Val == Base)
742       continue;
743     // All the instructions have been created, we can now add edges to the
744     // phi nodes.
745     if (auto *PHI = dyn_cast<PHINode>(Val)) {
746       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
747       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
748         Value *NewIncoming = PHI->getIncomingValue(I);
749 
750         if (NewInsts.find(NewIncoming) != NewInsts.end())
751           NewIncoming = NewInsts[NewIncoming];
752 
753         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
754       }
755     }
756   }
757 
758   for (Value *Val : Explored) {
759     if (Val == Base)
760       continue;
761 
762     // Depending on the type, for external users we have to emit
763     // a GEP or a GEP + ptrtoint.
764     setInsertionPoint(Builder, Val, false);
765 
766     // If required, create an inttoptr instruction for Base.
767     Value *NewBase = Base;
768     if (!Base->getType()->isPointerTy())
769       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
770                                                Start->getName() + "to.ptr");
771 
772     Value *GEP = Builder.CreateInBoundsGEP(
773         Start->getType()->getPointerElementType(), NewBase,
774         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
775 
776     if (!Val->getType()->isPointerTy()) {
777       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
778                                               Val->getName() + ".conv");
779       GEP = Cast;
780     }
781     Val->replaceAllUsesWith(GEP);
782   }
783 
784   return NewInsts[Start];
785 }
786 
787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
788 /// the input Value as a constant indexed GEP. Returns a pair containing
789 /// the GEPs Pointer and Index.
790 static std::pair<Value *, Value *>
791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
792   Type *IndexType = IntegerType::get(V->getContext(),
793                                      DL.getIndexTypeSizeInBits(V->getType()));
794 
795   Constant *Index = ConstantInt::getNullValue(IndexType);
796   while (true) {
797     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
798       // We accept only inbouds GEPs here to exclude the possibility of
799       // overflow.
800       if (!GEP->isInBounds())
801         break;
802       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
803           GEP->getType() == V->getType()) {
804         V = GEP->getOperand(0);
805         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
806         Index = ConstantExpr::getAdd(
807             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
808         continue;
809       }
810       break;
811     }
812     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
813       if (!CI->isNoopCast(DL))
814         break;
815       V = CI->getOperand(0);
816       continue;
817     }
818     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
819       if (!CI->isNoopCast(DL))
820         break;
821       V = CI->getOperand(0);
822       continue;
823     }
824     break;
825   }
826   return {V, Index};
827 }
828 
829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
830 /// We can look through PHIs, GEPs and casts in order to determine a common base
831 /// between GEPLHS and RHS.
832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
833                                               ICmpInst::Predicate Cond,
834                                               const DataLayout &DL) {
835   // FIXME: Support vector of pointers.
836   if (GEPLHS->getType()->isVectorTy())
837     return nullptr;
838 
839   if (!GEPLHS->hasAllConstantIndices())
840     return nullptr;
841 
842   // Make sure the pointers have the same type.
843   if (GEPLHS->getType() != RHS->getType())
844     return nullptr;
845 
846   Value *PtrBase, *Index;
847   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
848 
849   // The set of nodes that will take part in this transformation.
850   SetVector<Value *> Nodes;
851 
852   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
853     return nullptr;
854 
855   // We know we can re-write this as
856   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
857   // Since we've only looked through inbouds GEPs we know that we
858   // can't have overflow on either side. We can therefore re-write
859   // this as:
860   //   OFFSET1 cmp OFFSET2
861   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
862 
863   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
864   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
865   // offset. Since Index is the offset of LHS to the base pointer, we will now
866   // compare the offsets instead of comparing the pointers.
867   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
868 }
869 
870 /// Fold comparisons between a GEP instruction and something else. At this point
871 /// we know that the GEP is on the LHS of the comparison.
872 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
873                                        ICmpInst::Predicate Cond,
874                                        Instruction &I) {
875   // Don't transform signed compares of GEPs into index compares. Even if the
876   // GEP is inbounds, the final add of the base pointer can have signed overflow
877   // and would change the result of the icmp.
878   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
879   // the maximum signed value for the pointer type.
880   if (ICmpInst::isSigned(Cond))
881     return nullptr;
882 
883   // Look through bitcasts and addrspacecasts. We do not however want to remove
884   // 0 GEPs.
885   if (!isa<GetElementPtrInst>(RHS))
886     RHS = RHS->stripPointerCasts();
887 
888   Value *PtrBase = GEPLHS->getOperand(0);
889   // FIXME: Support vector pointer GEPs.
890   if (PtrBase == RHS && GEPLHS->isInBounds() &&
891       !GEPLHS->getType()->isVectorTy()) {
892     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
893     // This transformation (ignoring the base and scales) is valid because we
894     // know pointers can't overflow since the gep is inbounds.  See if we can
895     // output an optimized form.
896     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
897 
898     // If not, synthesize the offset the hard way.
899     if (!Offset)
900       Offset = EmitGEPOffset(GEPLHS);
901     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
902                         Constant::getNullValue(Offset->getType()));
903   }
904 
905   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
906       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
907       !NullPointerIsDefined(I.getFunction(),
908                             RHS->getType()->getPointerAddressSpace())) {
909     // For most address spaces, an allocation can't be placed at null, but null
910     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
911     // the only valid inbounds address derived from null, is null itself.
912     // Thus, we have four cases to consider:
913     // 1) Base == nullptr, Offset == 0 -> inbounds, null
914     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
915     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
916     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
917     //
918     // (Note if we're indexing a type of size 0, that simply collapses into one
919     //  of the buckets above.)
920     //
921     // In general, we're allowed to make values less poison (i.e. remove
922     //   sources of full UB), so in this case, we just select between the two
923     //   non-poison cases (1 and 4 above).
924     //
925     // For vectors, we apply the same reasoning on a per-lane basis.
926     auto *Base = GEPLHS->getPointerOperand();
927     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
928       int NumElts = GEPLHS->getType()->getVectorNumElements();
929       Base = Builder.CreateVectorSplat(NumElts, Base);
930     }
931     return new ICmpInst(Cond, Base,
932                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
933                             cast<Constant>(RHS), Base->getType()));
934   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
935     // If the base pointers are different, but the indices are the same, just
936     // compare the base pointer.
937     if (PtrBase != GEPRHS->getOperand(0)) {
938       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
939       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
940                         GEPRHS->getOperand(0)->getType();
941       if (IndicesTheSame)
942         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
943           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
944             IndicesTheSame = false;
945             break;
946           }
947 
948       // If all indices are the same, just compare the base pointers.
949       Type *BaseType = GEPLHS->getOperand(0)->getType();
950       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
951         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
952 
953       // If we're comparing GEPs with two base pointers that only differ in type
954       // and both GEPs have only constant indices or just one use, then fold
955       // the compare with the adjusted indices.
956       // FIXME: Support vector of pointers.
957       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
958           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
959           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
960           PtrBase->stripPointerCasts() ==
961               GEPRHS->getOperand(0)->stripPointerCasts() &&
962           !GEPLHS->getType()->isVectorTy()) {
963         Value *LOffset = EmitGEPOffset(GEPLHS);
964         Value *ROffset = EmitGEPOffset(GEPRHS);
965 
966         // If we looked through an addrspacecast between different sized address
967         // spaces, the LHS and RHS pointers are different sized
968         // integers. Truncate to the smaller one.
969         Type *LHSIndexTy = LOffset->getType();
970         Type *RHSIndexTy = ROffset->getType();
971         if (LHSIndexTy != RHSIndexTy) {
972           if (LHSIndexTy->getPrimitiveSizeInBits() <
973               RHSIndexTy->getPrimitiveSizeInBits()) {
974             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
975           } else
976             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
977         }
978 
979         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
980                                         LOffset, ROffset);
981         return replaceInstUsesWith(I, Cmp);
982       }
983 
984       // Otherwise, the base pointers are different and the indices are
985       // different. Try convert this to an indexed compare by looking through
986       // PHIs/casts.
987       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
988     }
989 
990     // If one of the GEPs has all zero indices, recurse.
991     // FIXME: Handle vector of pointers.
992     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
993       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
994                          ICmpInst::getSwappedPredicate(Cond), I);
995 
996     // If the other GEP has all zero indices, recurse.
997     // FIXME: Handle vector of pointers.
998     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
999       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
1000 
1001     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
1002     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
1003       // If the GEPs only differ by one index, compare it.
1004       unsigned NumDifferences = 0;  // Keep track of # differences.
1005       unsigned DiffOperand = 0;     // The operand that differs.
1006       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
1007         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
1008           Type *LHSType = GEPLHS->getOperand(i)->getType();
1009           Type *RHSType = GEPRHS->getOperand(i)->getType();
1010           // FIXME: Better support for vector of pointers.
1011           if (LHSType->getPrimitiveSizeInBits() !=
1012                    RHSType->getPrimitiveSizeInBits() ||
1013               (GEPLHS->getType()->isVectorTy() &&
1014                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
1015             // Irreconcilable differences.
1016             NumDifferences = 2;
1017             break;
1018           }
1019 
1020           if (NumDifferences++) break;
1021           DiffOperand = i;
1022         }
1023 
1024       if (NumDifferences == 0)   // SAME GEP?
1025         return replaceInstUsesWith(I, // No comparison is needed here.
1026           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
1027 
1028       else if (NumDifferences == 1 && GEPsInBounds) {
1029         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1030         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1031         // Make sure we do a signed comparison here.
1032         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1033       }
1034     }
1035 
1036     // Only lower this if the icmp is the only user of the GEP or if we expect
1037     // the result to fold to a constant!
1038     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1039         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1040       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1041       Value *L = EmitGEPOffset(GEPLHS);
1042       Value *R = EmitGEPOffset(GEPRHS);
1043       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1044     }
1045   }
1046 
1047   // Try convert this to an indexed compare by looking through PHIs/casts as a
1048   // last resort.
1049   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1050 }
1051 
1052 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1053                                          const AllocaInst *Alloca,
1054                                          const Value *Other) {
1055   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1056 
1057   // It would be tempting to fold away comparisons between allocas and any
1058   // pointer not based on that alloca (e.g. an argument). However, even
1059   // though such pointers cannot alias, they can still compare equal.
1060   //
1061   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1062   // doesn't escape we can argue that it's impossible to guess its value, and we
1063   // can therefore act as if any such guesses are wrong.
1064   //
1065   // The code below checks that the alloca doesn't escape, and that it's only
1066   // used in a comparison once (the current instruction). The
1067   // single-comparison-use condition ensures that we're trivially folding all
1068   // comparisons against the alloca consistently, and avoids the risk of
1069   // erroneously folding a comparison of the pointer with itself.
1070 
1071   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1072 
1073   SmallVector<const Use *, 32> Worklist;
1074   for (const Use &U : Alloca->uses()) {
1075     if (Worklist.size() >= MaxIter)
1076       return nullptr;
1077     Worklist.push_back(&U);
1078   }
1079 
1080   unsigned NumCmps = 0;
1081   while (!Worklist.empty()) {
1082     assert(Worklist.size() <= MaxIter);
1083     const Use *U = Worklist.pop_back_val();
1084     const Value *V = U->getUser();
1085     --MaxIter;
1086 
1087     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1088         isa<SelectInst>(V)) {
1089       // Track the uses.
1090     } else if (isa<LoadInst>(V)) {
1091       // Loading from the pointer doesn't escape it.
1092       continue;
1093     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1094       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1095       if (SI->getValueOperand() == U->get())
1096         return nullptr;
1097       continue;
1098     } else if (isa<ICmpInst>(V)) {
1099       if (NumCmps++)
1100         return nullptr; // Found more than one cmp.
1101       continue;
1102     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1103       switch (Intrin->getIntrinsicID()) {
1104         // These intrinsics don't escape or compare the pointer. Memset is safe
1105         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1106         // we don't allow stores, so src cannot point to V.
1107         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1108         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1109           continue;
1110         default:
1111           return nullptr;
1112       }
1113     } else {
1114       return nullptr;
1115     }
1116     for (const Use &U : V->uses()) {
1117       if (Worklist.size() >= MaxIter)
1118         return nullptr;
1119       Worklist.push_back(&U);
1120     }
1121   }
1122 
1123   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1124   return replaceInstUsesWith(
1125       ICI,
1126       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1127 }
1128 
1129 /// Fold "icmp pred (X+C), X".
1130 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1131                                               ICmpInst::Predicate Pred) {
1132   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1133   // so the values can never be equal.  Similarly for all other "or equals"
1134   // operators.
1135   assert(!!C && "C should not be zero!");
1136 
1137   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1138   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1139   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1140   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1141     Constant *R = ConstantInt::get(X->getType(),
1142                                    APInt::getMaxValue(C.getBitWidth()) - C);
1143     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1144   }
1145 
1146   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1147   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1148   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1149   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1150     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1151                         ConstantInt::get(X->getType(), -C));
1152 
1153   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1154 
1155   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1156   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1157   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1158   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1159   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1160   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1161   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1162     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1163                         ConstantInt::get(X->getType(), SMax - C));
1164 
1165   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1166   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1167   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1168   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1169   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1170   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1171 
1172   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1173   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1174                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1175 }
1176 
1177 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1178 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1179 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1180 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1181                                                  const APInt &AP1,
1182                                                  const APInt &AP2) {
1183   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1184 
1185   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1186     if (I.getPredicate() == I.ICMP_NE)
1187       Pred = CmpInst::getInversePredicate(Pred);
1188     return new ICmpInst(Pred, LHS, RHS);
1189   };
1190 
1191   // Don't bother doing any work for cases which InstSimplify handles.
1192   if (AP2.isNullValue())
1193     return nullptr;
1194 
1195   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1196   if (IsAShr) {
1197     if (AP2.isAllOnesValue())
1198       return nullptr;
1199     if (AP2.isNegative() != AP1.isNegative())
1200       return nullptr;
1201     if (AP2.sgt(AP1))
1202       return nullptr;
1203   }
1204 
1205   if (!AP1)
1206     // 'A' must be large enough to shift out the highest set bit.
1207     return getICmp(I.ICMP_UGT, A,
1208                    ConstantInt::get(A->getType(), AP2.logBase2()));
1209 
1210   if (AP1 == AP2)
1211     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1212 
1213   int Shift;
1214   if (IsAShr && AP1.isNegative())
1215     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1216   else
1217     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1218 
1219   if (Shift > 0) {
1220     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1221       // There are multiple solutions if we are comparing against -1 and the LHS
1222       // of the ashr is not a power of two.
1223       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1224         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1225       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1226     } else if (AP1 == AP2.lshr(Shift)) {
1227       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1228     }
1229   }
1230 
1231   // Shifting const2 will never be equal to const1.
1232   // FIXME: This should always be handled by InstSimplify?
1233   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1234   return replaceInstUsesWith(I, TorF);
1235 }
1236 
1237 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1238 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1239 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1240                                                  const APInt &AP1,
1241                                                  const APInt &AP2) {
1242   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1243 
1244   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1245     if (I.getPredicate() == I.ICMP_NE)
1246       Pred = CmpInst::getInversePredicate(Pred);
1247     return new ICmpInst(Pred, LHS, RHS);
1248   };
1249 
1250   // Don't bother doing any work for cases which InstSimplify handles.
1251   if (AP2.isNullValue())
1252     return nullptr;
1253 
1254   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1255 
1256   if (!AP1 && AP2TrailingZeros != 0)
1257     return getICmp(
1258         I.ICMP_UGE, A,
1259         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1260 
1261   if (AP1 == AP2)
1262     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1263 
1264   // Get the distance between the lowest bits that are set.
1265   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1266 
1267   if (Shift > 0 && AP2.shl(Shift) == AP1)
1268     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1269 
1270   // Shifting const2 will never be equal to const1.
1271   // FIXME: This should always be handled by InstSimplify?
1272   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1273   return replaceInstUsesWith(I, TorF);
1274 }
1275 
1276 /// The caller has matched a pattern of the form:
1277 ///   I = icmp ugt (add (add A, B), CI2), CI1
1278 /// If this is of the form:
1279 ///   sum = a + b
1280 ///   if (sum+128 >u 255)
1281 /// Then replace it with llvm.sadd.with.overflow.i8.
1282 ///
1283 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1284                                           ConstantInt *CI2, ConstantInt *CI1,
1285                                           InstCombiner &IC) {
1286   // The transformation we're trying to do here is to transform this into an
1287   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1288   // with a narrower add, and discard the add-with-constant that is part of the
1289   // range check (if we can't eliminate it, this isn't profitable).
1290 
1291   // In order to eliminate the add-with-constant, the compare can be its only
1292   // use.
1293   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1294   if (!AddWithCst->hasOneUse())
1295     return nullptr;
1296 
1297   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1298   if (!CI2->getValue().isPowerOf2())
1299     return nullptr;
1300   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1301   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1302     return nullptr;
1303 
1304   // The width of the new add formed is 1 more than the bias.
1305   ++NewWidth;
1306 
1307   // Check to see that CI1 is an all-ones value with NewWidth bits.
1308   if (CI1->getBitWidth() == NewWidth ||
1309       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1310     return nullptr;
1311 
1312   // This is only really a signed overflow check if the inputs have been
1313   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1314   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1315   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1316   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1317       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1318     return nullptr;
1319 
1320   // In order to replace the original add with a narrower
1321   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1322   // and truncates that discard the high bits of the add.  Verify that this is
1323   // the case.
1324   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1325   for (User *U : OrigAdd->users()) {
1326     if (U == AddWithCst)
1327       continue;
1328 
1329     // Only accept truncates for now.  We would really like a nice recursive
1330     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1331     // chain to see which bits of a value are actually demanded.  If the
1332     // original add had another add which was then immediately truncated, we
1333     // could still do the transformation.
1334     TruncInst *TI = dyn_cast<TruncInst>(U);
1335     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1336       return nullptr;
1337   }
1338 
1339   // If the pattern matches, truncate the inputs to the narrower type and
1340   // use the sadd_with_overflow intrinsic to efficiently compute both the
1341   // result and the overflow bit.
1342   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1343   Function *F = Intrinsic::getDeclaration(
1344       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1345 
1346   InstCombiner::BuilderTy &Builder = IC.Builder;
1347 
1348   // Put the new code above the original add, in case there are any uses of the
1349   // add between the add and the compare.
1350   Builder.SetInsertPoint(OrigAdd);
1351 
1352   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1353   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1354   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1355   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1356   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1357 
1358   // The inner add was the result of the narrow add, zero extended to the
1359   // wider type.  Replace it with the result computed by the intrinsic.
1360   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1361 
1362   // The original icmp gets replaced with the overflow value.
1363   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1364 }
1365 
1366 /// If we have:
1367 ///   icmp eq/ne (urem/srem %x, %y), 0
1368 /// iff %y is a power-of-two, we can replace this with a bit test:
1369 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1370 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1371   // This fold is only valid for equality predicates.
1372   if (!I.isEquality())
1373     return nullptr;
1374   ICmpInst::Predicate Pred;
1375   Value *X, *Y, *Zero;
1376   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1377                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1378     return nullptr;
1379   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1380     return nullptr;
1381   // This may increase instruction count, we don't enforce that Y is a constant.
1382   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1383   Value *Masked = Builder.CreateAnd(X, Mask);
1384   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1385 }
1386 
1387 // Handle  icmp pred X, 0
1388 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1389   CmpInst::Predicate Pred = Cmp.getPredicate();
1390   if (!match(Cmp.getOperand(1), m_Zero()))
1391     return nullptr;
1392 
1393   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1394   if (Pred == ICmpInst::ICMP_SGT) {
1395     Value *A, *B;
1396     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1397     if (SPR.Flavor == SPF_SMIN) {
1398       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1399         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1400       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1401         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1402     }
1403   }
1404 
1405   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1406     return New;
1407 
1408   // Given:
1409   //   icmp eq/ne (urem %x, %y), 0
1410   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1411   //   icmp eq/ne %x, 0
1412   Value *X, *Y;
1413   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1414       ICmpInst::isEquality(Pred)) {
1415     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1416     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1417     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1418       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1419   }
1420 
1421   return nullptr;
1422 }
1423 
1424 /// Fold icmp Pred X, C.
1425 /// TODO: This code structure does not make sense. The saturating add fold
1426 /// should be moved to some other helper and extended as noted below (it is also
1427 /// possible that code has been made unnecessary - do we canonicalize IR to
1428 /// overflow/saturating intrinsics or not?).
1429 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1430   // Match the following pattern, which is a common idiom when writing
1431   // overflow-safe integer arithmetic functions. The source performs an addition
1432   // in wider type and explicitly checks for overflow using comparisons against
1433   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1434   //
1435   // TODO: This could probably be generalized to handle other overflow-safe
1436   // operations if we worked out the formulas to compute the appropriate magic
1437   // constants.
1438   //
1439   // sum = a + b
1440   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1441   CmpInst::Predicate Pred = Cmp.getPredicate();
1442   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1443   Value *A, *B;
1444   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1445   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1446       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1447     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1448       return Res;
1449 
1450   return nullptr;
1451 }
1452 
1453 /// Canonicalize icmp instructions based on dominating conditions.
1454 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1455   // This is a cheap/incomplete check for dominance - just match a single
1456   // predecessor with a conditional branch.
1457   BasicBlock *CmpBB = Cmp.getParent();
1458   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1459   if (!DomBB)
1460     return nullptr;
1461 
1462   Value *DomCond;
1463   BasicBlock *TrueBB, *FalseBB;
1464   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1465     return nullptr;
1466 
1467   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1468          "Predecessor block does not point to successor?");
1469 
1470   // The branch should get simplified. Don't bother simplifying this condition.
1471   if (TrueBB == FalseBB)
1472     return nullptr;
1473 
1474   // Try to simplify this compare to T/F based on the dominating condition.
1475   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1476   if (Imp)
1477     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1478 
1479   CmpInst::Predicate Pred = Cmp.getPredicate();
1480   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1481   ICmpInst::Predicate DomPred;
1482   const APInt *C, *DomC;
1483   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1484       match(Y, m_APInt(C))) {
1485     // We have 2 compares of a variable with constants. Calculate the constant
1486     // ranges of those compares to see if we can transform the 2nd compare:
1487     // DomBB:
1488     //   DomCond = icmp DomPred X, DomC
1489     //   br DomCond, CmpBB, FalseBB
1490     // CmpBB:
1491     //   Cmp = icmp Pred X, C
1492     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1493     ConstantRange DominatingCR =
1494         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1495                           : ConstantRange::makeExactICmpRegion(
1496                                 CmpInst::getInversePredicate(DomPred), *DomC);
1497     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1498     ConstantRange Difference = DominatingCR.difference(CR);
1499     if (Intersection.isEmptySet())
1500       return replaceInstUsesWith(Cmp, Builder.getFalse());
1501     if (Difference.isEmptySet())
1502       return replaceInstUsesWith(Cmp, Builder.getTrue());
1503 
1504     // Canonicalizing a sign bit comparison that gets used in a branch,
1505     // pessimizes codegen by generating branch on zero instruction instead
1506     // of a test and branch. So we avoid canonicalizing in such situations
1507     // because test and branch instruction has better branch displacement
1508     // than compare and branch instruction.
1509     bool UnusedBit;
1510     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1511     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1512       return nullptr;
1513 
1514     if (const APInt *EqC = Intersection.getSingleElement())
1515       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1516     if (const APInt *NeC = Difference.getSingleElement())
1517       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1518   }
1519 
1520   return nullptr;
1521 }
1522 
1523 /// Fold icmp (trunc X, Y), C.
1524 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1525                                                  TruncInst *Trunc,
1526                                                  const APInt &C) {
1527   ICmpInst::Predicate Pred = Cmp.getPredicate();
1528   Value *X = Trunc->getOperand(0);
1529   if (C.isOneValue() && C.getBitWidth() > 1) {
1530     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1531     Value *V = nullptr;
1532     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1533       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1534                           ConstantInt::get(V->getType(), 1));
1535   }
1536 
1537   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1538     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1539     // of the high bits truncated out of x are known.
1540     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1541              SrcBits = X->getType()->getScalarSizeInBits();
1542     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1543 
1544     // If all the high bits are known, we can do this xform.
1545     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1546       // Pull in the high bits from known-ones set.
1547       APInt NewRHS = C.zext(SrcBits);
1548       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1549       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1550     }
1551   }
1552 
1553   return nullptr;
1554 }
1555 
1556 /// Fold icmp (xor X, Y), C.
1557 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1558                                                BinaryOperator *Xor,
1559                                                const APInt &C) {
1560   Value *X = Xor->getOperand(0);
1561   Value *Y = Xor->getOperand(1);
1562   const APInt *XorC;
1563   if (!match(Y, m_APInt(XorC)))
1564     return nullptr;
1565 
1566   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1567   // fold the xor.
1568   ICmpInst::Predicate Pred = Cmp.getPredicate();
1569   bool TrueIfSigned = false;
1570   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1571 
1572     // If the sign bit of the XorCst is not set, there is no change to
1573     // the operation, just stop using the Xor.
1574     if (!XorC->isNegative()) {
1575       Cmp.setOperand(0, X);
1576       Worklist.Add(Xor);
1577       return &Cmp;
1578     }
1579 
1580     // Emit the opposite comparison.
1581     if (TrueIfSigned)
1582       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1583                           ConstantInt::getAllOnesValue(X->getType()));
1584     else
1585       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1586                           ConstantInt::getNullValue(X->getType()));
1587   }
1588 
1589   if (Xor->hasOneUse()) {
1590     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1591     if (!Cmp.isEquality() && XorC->isSignMask()) {
1592       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1593                             : Cmp.getSignedPredicate();
1594       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1595     }
1596 
1597     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1598     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1599       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1600                             : Cmp.getSignedPredicate();
1601       Pred = Cmp.getSwappedPredicate(Pred);
1602       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1603     }
1604   }
1605 
1606   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1607   if (Pred == ICmpInst::ICMP_UGT) {
1608     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1609     if (*XorC == ~C && (C + 1).isPowerOf2())
1610       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1611     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1612     if (*XorC == C && (C + 1).isPowerOf2())
1613       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1614   }
1615   if (Pred == ICmpInst::ICMP_ULT) {
1616     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1617     if (*XorC == -C && C.isPowerOf2())
1618       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1619                           ConstantInt::get(X->getType(), ~C));
1620     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1621     if (*XorC == C && (-C).isPowerOf2())
1622       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1623                           ConstantInt::get(X->getType(), ~C));
1624   }
1625   return nullptr;
1626 }
1627 
1628 /// Fold icmp (and (sh X, Y), C2), C1.
1629 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1630                                             const APInt &C1, const APInt &C2) {
1631   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1632   if (!Shift || !Shift->isShift())
1633     return nullptr;
1634 
1635   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1636   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1637   // code produced by the clang front-end, for bitfield access.
1638   // This seemingly simple opportunity to fold away a shift turns out to be
1639   // rather complicated. See PR17827 for details.
1640   unsigned ShiftOpcode = Shift->getOpcode();
1641   bool IsShl = ShiftOpcode == Instruction::Shl;
1642   const APInt *C3;
1643   if (match(Shift->getOperand(1), m_APInt(C3))) {
1644     bool CanFold = false;
1645     if (ShiftOpcode == Instruction::Shl) {
1646       // For a left shift, we can fold if the comparison is not signed. We can
1647       // also fold a signed comparison if the mask value and comparison value
1648       // are not negative. These constraints may not be obvious, but we can
1649       // prove that they are correct using an SMT solver.
1650       if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative()))
1651         CanFold = true;
1652     } else {
1653       bool IsAshr = ShiftOpcode == Instruction::AShr;
1654       // For a logical right shift, we can fold if the comparison is not signed.
1655       // We can also fold a signed comparison if the shifted mask value and the
1656       // shifted comparison value are not negative. These constraints may not be
1657       // obvious, but we can prove that they are correct using an SMT solver.
1658       // For an arithmetic shift right we can do the same, if we ensure
1659       // the And doesn't use any bits being shifted in. Normally these would
1660       // be turned into lshr by SimplifyDemandedBits, but not if there is an
1661       // additional user.
1662       if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) {
1663         if (!Cmp.isSigned() ||
1664             (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative()))
1665           CanFold = true;
1666       }
1667     }
1668 
1669     if (CanFold) {
1670       APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3);
1671       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1672       // Check to see if we are shifting out any of the bits being compared.
1673       if (SameAsC1 != C1) {
1674         // If we shifted bits out, the fold is not going to work out. As a
1675         // special case, check to see if this means that the result is always
1676         // true or false now.
1677         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1678           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1679         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1680           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1681       } else {
1682         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1683         APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3);
1684         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1685         And->setOperand(0, Shift->getOperand(0));
1686         Worklist.Add(Shift); // Shift is dead.
1687         return &Cmp;
1688       }
1689     }
1690   }
1691 
1692   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1693   // preferable because it allows the C2 << Y expression to be hoisted out of a
1694   // loop if Y is invariant and X is not.
1695   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1696       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1697     // Compute C2 << Y.
1698     Value *NewShift =
1699         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1700               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1701 
1702     // Compute X & (C2 << Y).
1703     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1704     Cmp.setOperand(0, NewAnd);
1705     return &Cmp;
1706   }
1707 
1708   return nullptr;
1709 }
1710 
1711 /// Fold icmp (and X, C2), C1.
1712 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1713                                                  BinaryOperator *And,
1714                                                  const APInt &C1) {
1715   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1716 
1717   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1718   // TODO: We canonicalize to the longer form for scalars because we have
1719   // better analysis/folds for icmp, and codegen may be better with icmp.
1720   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1721       match(And->getOperand(1), m_One()))
1722     return new TruncInst(And->getOperand(0), Cmp.getType());
1723 
1724   const APInt *C2;
1725   Value *X;
1726   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1727     return nullptr;
1728 
1729   // Don't perform the following transforms if the AND has multiple uses
1730   if (!And->hasOneUse())
1731     return nullptr;
1732 
1733   if (Cmp.isEquality() && C1.isNullValue()) {
1734     // Restrict this fold to single-use 'and' (PR10267).
1735     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1736     if (C2->isSignMask()) {
1737       Constant *Zero = Constant::getNullValue(X->getType());
1738       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1739       return new ICmpInst(NewPred, X, Zero);
1740     }
1741 
1742     // Restrict this fold only for single-use 'and' (PR10267).
1743     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1744     if ((~(*C2) + 1).isPowerOf2()) {
1745       Constant *NegBOC =
1746           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1747       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1748       return new ICmpInst(NewPred, X, NegBOC);
1749     }
1750   }
1751 
1752   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1753   // the input width without changing the value produced, eliminate the cast:
1754   //
1755   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1756   //
1757   // We can do this transformation if the constants do not have their sign bits
1758   // set or if it is an equality comparison. Extending a relational comparison
1759   // when we're checking the sign bit would not work.
1760   Value *W;
1761   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1762       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1763     // TODO: Is this a good transform for vectors? Wider types may reduce
1764     // throughput. Should this transform be limited (even for scalars) by using
1765     // shouldChangeType()?
1766     if (!Cmp.getType()->isVectorTy()) {
1767       Type *WideType = W->getType();
1768       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1769       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1770       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1771       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1772       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1773     }
1774   }
1775 
1776   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1777     return I;
1778 
1779   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1780   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1781   //
1782   // iff pred isn't signed
1783   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1784       match(And->getOperand(1), m_One())) {
1785     Constant *One = cast<Constant>(And->getOperand(1));
1786     Value *Or = And->getOperand(0);
1787     Value *A, *B, *LShr;
1788     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1789         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1790       unsigned UsesRemoved = 0;
1791       if (And->hasOneUse())
1792         ++UsesRemoved;
1793       if (Or->hasOneUse())
1794         ++UsesRemoved;
1795       if (LShr->hasOneUse())
1796         ++UsesRemoved;
1797 
1798       // Compute A & ((1 << B) | 1)
1799       Value *NewOr = nullptr;
1800       if (auto *C = dyn_cast<Constant>(B)) {
1801         if (UsesRemoved >= 1)
1802           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1803       } else {
1804         if (UsesRemoved >= 3)
1805           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1806                                                      /*HasNUW=*/true),
1807                                    One, Or->getName());
1808       }
1809       if (NewOr) {
1810         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1811         Cmp.setOperand(0, NewAnd);
1812         return &Cmp;
1813       }
1814     }
1815   }
1816 
1817   return nullptr;
1818 }
1819 
1820 /// Fold icmp (and X, Y), C.
1821 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1822                                                BinaryOperator *And,
1823                                                const APInt &C) {
1824   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1825     return I;
1826 
1827   // TODO: These all require that Y is constant too, so refactor with the above.
1828 
1829   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1830   Value *X = And->getOperand(0);
1831   Value *Y = And->getOperand(1);
1832   if (auto *LI = dyn_cast<LoadInst>(X))
1833     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1834       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1835         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1836             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1837           ConstantInt *C2 = cast<ConstantInt>(Y);
1838           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1839             return Res;
1840         }
1841 
1842   if (!Cmp.isEquality())
1843     return nullptr;
1844 
1845   // X & -C == -C -> X >  u ~C
1846   // X & -C != -C -> X <= u ~C
1847   //   iff C is a power of 2
1848   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1849     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1850                                                           : CmpInst::ICMP_ULE;
1851     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1852   }
1853 
1854   // (X & C2) == 0 -> (trunc X) >= 0
1855   // (X & C2) != 0 -> (trunc X) <  0
1856   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1857   const APInt *C2;
1858   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1859     int32_t ExactLogBase2 = C2->exactLogBase2();
1860     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1861       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1862       if (And->getType()->isVectorTy())
1863         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1864       Value *Trunc = Builder.CreateTrunc(X, NTy);
1865       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1866                                                             : CmpInst::ICMP_SLT;
1867       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1868     }
1869   }
1870 
1871   return nullptr;
1872 }
1873 
1874 /// Fold icmp (or X, Y), C.
1875 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1876                                               const APInt &C) {
1877   ICmpInst::Predicate Pred = Cmp.getPredicate();
1878   if (C.isOneValue()) {
1879     // icmp slt signum(V) 1 --> icmp slt V, 1
1880     Value *V = nullptr;
1881     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1882       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1883                           ConstantInt::get(V->getType(), 1));
1884   }
1885 
1886   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1887   if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) {
1888     // X | C == C --> X <=u C
1889     // X | C != C --> X  >u C
1890     //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1891     if ((C + 1).isPowerOf2()) {
1892       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1893       return new ICmpInst(Pred, OrOp0, OrOp1);
1894     }
1895     // More general: are all bits outside of a mask constant set or not set?
1896     // X | C == C --> (X & ~C) == 0
1897     // X | C != C --> (X & ~C) != 0
1898     if (Or->hasOneUse()) {
1899       Value *A = Builder.CreateAnd(OrOp0, ~C);
1900       return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType()));
1901     }
1902   }
1903 
1904   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1905     return nullptr;
1906 
1907   Value *P, *Q;
1908   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1909     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1910     // -> and (icmp eq P, null), (icmp eq Q, null).
1911     Value *CmpP =
1912         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1913     Value *CmpQ =
1914         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1915     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1916     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1917   }
1918 
1919   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1920   // a shorter form that has more potential to be folded even further.
1921   Value *X1, *X2, *X3, *X4;
1922   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1923       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1924     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1925     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1926     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1927     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1928     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1929     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1930   }
1931 
1932   return nullptr;
1933 }
1934 
1935 /// Fold icmp (mul X, Y), C.
1936 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1937                                                BinaryOperator *Mul,
1938                                                const APInt &C) {
1939   const APInt *MulC;
1940   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1941     return nullptr;
1942 
1943   // If this is a test of the sign bit and the multiply is sign-preserving with
1944   // a constant operand, use the multiply LHS operand instead.
1945   ICmpInst::Predicate Pred = Cmp.getPredicate();
1946   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1947     if (MulC->isNegative())
1948       Pred = ICmpInst::getSwappedPredicate(Pred);
1949     return new ICmpInst(Pred, Mul->getOperand(0),
1950                         Constant::getNullValue(Mul->getType()));
1951   }
1952 
1953   return nullptr;
1954 }
1955 
1956 /// Fold icmp (shl 1, Y), C.
1957 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1958                                    const APInt &C) {
1959   Value *Y;
1960   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1961     return nullptr;
1962 
1963   Type *ShiftType = Shl->getType();
1964   unsigned TypeBits = C.getBitWidth();
1965   bool CIsPowerOf2 = C.isPowerOf2();
1966   ICmpInst::Predicate Pred = Cmp.getPredicate();
1967   if (Cmp.isUnsigned()) {
1968     // (1 << Y) pred C -> Y pred Log2(C)
1969     if (!CIsPowerOf2) {
1970       // (1 << Y) <  30 -> Y <= 4
1971       // (1 << Y) <= 30 -> Y <= 4
1972       // (1 << Y) >= 30 -> Y >  4
1973       // (1 << Y) >  30 -> Y >  4
1974       if (Pred == ICmpInst::ICMP_ULT)
1975         Pred = ICmpInst::ICMP_ULE;
1976       else if (Pred == ICmpInst::ICMP_UGE)
1977         Pred = ICmpInst::ICMP_UGT;
1978     }
1979 
1980     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1981     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1982     unsigned CLog2 = C.logBase2();
1983     if (CLog2 == TypeBits - 1) {
1984       if (Pred == ICmpInst::ICMP_UGE)
1985         Pred = ICmpInst::ICMP_EQ;
1986       else if (Pred == ICmpInst::ICMP_ULT)
1987         Pred = ICmpInst::ICMP_NE;
1988     }
1989     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1990   } else if (Cmp.isSigned()) {
1991     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1992     if (C.isAllOnesValue()) {
1993       // (1 << Y) <= -1 -> Y == 31
1994       if (Pred == ICmpInst::ICMP_SLE)
1995         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1996 
1997       // (1 << Y) >  -1 -> Y != 31
1998       if (Pred == ICmpInst::ICMP_SGT)
1999         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2000     } else if (!C) {
2001       // (1 << Y) <  0 -> Y == 31
2002       // (1 << Y) <= 0 -> Y == 31
2003       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2004         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2005 
2006       // (1 << Y) >= 0 -> Y != 31
2007       // (1 << Y) >  0 -> Y != 31
2008       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2009         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2010     }
2011   } else if (Cmp.isEquality() && CIsPowerOf2) {
2012     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2013   }
2014 
2015   return nullptr;
2016 }
2017 
2018 /// Fold icmp (shl X, Y), C.
2019 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
2020                                                BinaryOperator *Shl,
2021                                                const APInt &C) {
2022   const APInt *ShiftVal;
2023   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2024     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2025 
2026   const APInt *ShiftAmt;
2027   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2028     return foldICmpShlOne(Cmp, Shl, C);
2029 
2030   // Check that the shift amount is in range. If not, don't perform undefined
2031   // shifts. When the shift is visited, it will be simplified.
2032   unsigned TypeBits = C.getBitWidth();
2033   if (ShiftAmt->uge(TypeBits))
2034     return nullptr;
2035 
2036   ICmpInst::Predicate Pred = Cmp.getPredicate();
2037   Value *X = Shl->getOperand(0);
2038   Type *ShType = Shl->getType();
2039 
2040   // NSW guarantees that we are only shifting out sign bits from the high bits,
2041   // so we can ASHR the compare constant without needing a mask and eliminate
2042   // the shift.
2043   if (Shl->hasNoSignedWrap()) {
2044     if (Pred == ICmpInst::ICMP_SGT) {
2045       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2046       APInt ShiftedC = C.ashr(*ShiftAmt);
2047       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2048     }
2049     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2050         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2051       APInt ShiftedC = C.ashr(*ShiftAmt);
2052       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2053     }
2054     if (Pred == ICmpInst::ICMP_SLT) {
2055       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2056       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2057       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2058       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2059       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2060       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2061       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2062     }
2063     // If this is a signed comparison to 0 and the shift is sign preserving,
2064     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2065     // do that if we're sure to not continue on in this function.
2066     if (isSignTest(Pred, C))
2067       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2068   }
2069 
2070   // NUW guarantees that we are only shifting out zero bits from the high bits,
2071   // so we can LSHR the compare constant without needing a mask and eliminate
2072   // the shift.
2073   if (Shl->hasNoUnsignedWrap()) {
2074     if (Pred == ICmpInst::ICMP_UGT) {
2075       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2076       APInt ShiftedC = C.lshr(*ShiftAmt);
2077       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2078     }
2079     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2080         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2081       APInt ShiftedC = C.lshr(*ShiftAmt);
2082       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2083     }
2084     if (Pred == ICmpInst::ICMP_ULT) {
2085       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2086       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2087       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2088       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2089       assert(C.ugt(0) && "ult 0 should have been eliminated");
2090       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2091       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2092     }
2093   }
2094 
2095   if (Cmp.isEquality() && Shl->hasOneUse()) {
2096     // Strength-reduce the shift into an 'and'.
2097     Constant *Mask = ConstantInt::get(
2098         ShType,
2099         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2100     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2101     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2102     return new ICmpInst(Pred, And, LShrC);
2103   }
2104 
2105   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2106   bool TrueIfSigned = false;
2107   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2108     // (X << 31) <s 0  --> (X & 1) != 0
2109     Constant *Mask = ConstantInt::get(
2110         ShType,
2111         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2112     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2113     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2114                         And, Constant::getNullValue(ShType));
2115   }
2116 
2117   // Simplify 'shl' inequality test into 'and' equality test.
2118   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2119     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2120     if ((C + 1).isPowerOf2() &&
2121         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2122       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2123       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2124                                                      : ICmpInst::ICMP_NE,
2125                           And, Constant::getNullValue(ShType));
2126     }
2127     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2128     if (C.isPowerOf2() &&
2129         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2130       Value *And =
2131           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2132       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2133                                                      : ICmpInst::ICMP_NE,
2134                           And, Constant::getNullValue(ShType));
2135     }
2136   }
2137 
2138   // Transform (icmp pred iM (shl iM %v, N), C)
2139   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2140   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2141   // This enables us to get rid of the shift in favor of a trunc that may be
2142   // free on the target. It has the additional benefit of comparing to a
2143   // smaller constant that may be more target-friendly.
2144   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2145   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2146       DL.isLegalInteger(TypeBits - Amt)) {
2147     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2148     if (ShType->isVectorTy())
2149       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2150     Constant *NewC =
2151         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2152     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2153   }
2154 
2155   return nullptr;
2156 }
2157 
2158 /// Fold icmp ({al}shr X, Y), C.
2159 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2160                                                BinaryOperator *Shr,
2161                                                const APInt &C) {
2162   // An exact shr only shifts out zero bits, so:
2163   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2164   Value *X = Shr->getOperand(0);
2165   CmpInst::Predicate Pred = Cmp.getPredicate();
2166   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2167       C.isNullValue())
2168     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2169 
2170   const APInt *ShiftVal;
2171   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2172     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2173 
2174   const APInt *ShiftAmt;
2175   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2176     return nullptr;
2177 
2178   // Check that the shift amount is in range. If not, don't perform undefined
2179   // shifts. When the shift is visited it will be simplified.
2180   unsigned TypeBits = C.getBitWidth();
2181   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2182   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2183     return nullptr;
2184 
2185   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2186   bool IsExact = Shr->isExact();
2187   Type *ShrTy = Shr->getType();
2188   // TODO: If we could guarantee that InstSimplify would handle all of the
2189   // constant-value-based preconditions in the folds below, then we could assert
2190   // those conditions rather than checking them. This is difficult because of
2191   // undef/poison (PR34838).
2192   if (IsAShr) {
2193     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2194       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2195       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2196       APInt ShiftedC = C.shl(ShAmtVal);
2197       if (ShiftedC.ashr(ShAmtVal) == C)
2198         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2199     }
2200     if (Pred == CmpInst::ICMP_SGT) {
2201       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2202       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2203       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2204           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2205         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2206     }
2207   } else {
2208     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2209       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2210       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2211       APInt ShiftedC = C.shl(ShAmtVal);
2212       if (ShiftedC.lshr(ShAmtVal) == C)
2213         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2214     }
2215     if (Pred == CmpInst::ICMP_UGT) {
2216       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2217       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2218       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2219         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2220     }
2221   }
2222 
2223   if (!Cmp.isEquality())
2224     return nullptr;
2225 
2226   // Handle equality comparisons of shift-by-constant.
2227 
2228   // If the comparison constant changes with the shift, the comparison cannot
2229   // succeed (bits of the comparison constant cannot match the shifted value).
2230   // This should be known by InstSimplify and already be folded to true/false.
2231   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2232           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2233          "Expected icmp+shr simplify did not occur.");
2234 
2235   // If the bits shifted out are known zero, compare the unshifted value:
2236   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2237   if (Shr->isExact())
2238     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2239 
2240   if (Shr->hasOneUse()) {
2241     // Canonicalize the shift into an 'and':
2242     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2243     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2244     Constant *Mask = ConstantInt::get(ShrTy, Val);
2245     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2246     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2247   }
2248 
2249   return nullptr;
2250 }
2251 
2252 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
2253                                                 BinaryOperator *SRem,
2254                                                 const APInt &C) {
2255   // Match an 'is positive' or 'is negative' comparison of remainder by a
2256   // constant power-of-2 value:
2257   // (X % pow2C) sgt/slt 0
2258   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2259   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2260     return nullptr;
2261 
2262   // TODO: The one-use check is standard because we do not typically want to
2263   //       create longer instruction sequences, but this might be a special-case
2264   //       because srem is not good for analysis or codegen.
2265   if (!SRem->hasOneUse())
2266     return nullptr;
2267 
2268   const APInt *DivisorC;
2269   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2270     return nullptr;
2271 
2272   // Mask off the sign bit and the modulo bits (low-bits).
2273   Type *Ty = SRem->getType();
2274   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2275   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2276   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2277 
2278   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2279   // bit is set. Example:
2280   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2281   if (Pred == ICmpInst::ICMP_SGT)
2282     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2283 
2284   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2285   // bit is set. Example:
2286   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2287   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2288 }
2289 
2290 /// Fold icmp (udiv X, Y), C.
2291 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2292                                                 BinaryOperator *UDiv,
2293                                                 const APInt &C) {
2294   const APInt *C2;
2295   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2296     return nullptr;
2297 
2298   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2299 
2300   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2301   Value *Y = UDiv->getOperand(1);
2302   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2303     assert(!C.isMaxValue() &&
2304            "icmp ugt X, UINT_MAX should have been simplified already.");
2305     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2306                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2307   }
2308 
2309   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2310   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2311     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2312     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2313                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2314   }
2315 
2316   return nullptr;
2317 }
2318 
2319 /// Fold icmp ({su}div X, Y), C.
2320 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2321                                                BinaryOperator *Div,
2322                                                const APInt &C) {
2323   // Fold: icmp pred ([us]div X, C2), C -> range test
2324   // Fold this div into the comparison, producing a range check.
2325   // Determine, based on the divide type, what the range is being
2326   // checked.  If there is an overflow on the low or high side, remember
2327   // it, otherwise compute the range [low, hi) bounding the new value.
2328   // See: InsertRangeTest above for the kinds of replacements possible.
2329   const APInt *C2;
2330   if (!match(Div->getOperand(1), m_APInt(C2)))
2331     return nullptr;
2332 
2333   // FIXME: If the operand types don't match the type of the divide
2334   // then don't attempt this transform. The code below doesn't have the
2335   // logic to deal with a signed divide and an unsigned compare (and
2336   // vice versa). This is because (x /s C2) <s C  produces different
2337   // results than (x /s C2) <u C or (x /u C2) <s C or even
2338   // (x /u C2) <u C.  Simply casting the operands and result won't
2339   // work. :(  The if statement below tests that condition and bails
2340   // if it finds it.
2341   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2342   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2343     return nullptr;
2344 
2345   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2346   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2347   // division-by-constant cases should be present, we can not assert that they
2348   // have happened before we reach this icmp instruction.
2349   if (C2->isNullValue() || C2->isOneValue() ||
2350       (DivIsSigned && C2->isAllOnesValue()))
2351     return nullptr;
2352 
2353   // Compute Prod = C * C2. We are essentially solving an equation of
2354   // form X / C2 = C. We solve for X by multiplying C2 and C.
2355   // By solving for X, we can turn this into a range check instead of computing
2356   // a divide.
2357   APInt Prod = C * *C2;
2358 
2359   // Determine if the product overflows by seeing if the product is not equal to
2360   // the divide. Make sure we do the same kind of divide as in the LHS
2361   // instruction that we're folding.
2362   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2363 
2364   ICmpInst::Predicate Pred = Cmp.getPredicate();
2365 
2366   // If the division is known to be exact, then there is no remainder from the
2367   // divide, so the covered range size is unit, otherwise it is the divisor.
2368   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2369 
2370   // Figure out the interval that is being checked.  For example, a comparison
2371   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2372   // Compute this interval based on the constants involved and the signedness of
2373   // the compare/divide.  This computes a half-open interval, keeping track of
2374   // whether either value in the interval overflows.  After analysis each
2375   // overflow variable is set to 0 if it's corresponding bound variable is valid
2376   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2377   int LoOverflow = 0, HiOverflow = 0;
2378   APInt LoBound, HiBound;
2379 
2380   if (!DivIsSigned) {  // udiv
2381     // e.g. X/5 op 3  --> [15, 20)
2382     LoBound = Prod;
2383     HiOverflow = LoOverflow = ProdOV;
2384     if (!HiOverflow) {
2385       // If this is not an exact divide, then many values in the range collapse
2386       // to the same result value.
2387       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2388     }
2389   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2390     if (C.isNullValue()) {       // (X / pos) op 0
2391       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2392       LoBound = -(RangeSize - 1);
2393       HiBound = RangeSize;
2394     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2395       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2396       HiOverflow = LoOverflow = ProdOV;
2397       if (!HiOverflow)
2398         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2399     } else {                       // (X / pos) op neg
2400       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2401       HiBound = Prod + 1;
2402       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2403       if (!LoOverflow) {
2404         APInt DivNeg = -RangeSize;
2405         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2406       }
2407     }
2408   } else if (C2->isNegative()) { // Divisor is < 0.
2409     if (Div->isExact())
2410       RangeSize.negate();
2411     if (C.isNullValue()) { // (X / neg) op 0
2412       // e.g. X/-5 op 0  --> [-4, 5)
2413       LoBound = RangeSize + 1;
2414       HiBound = -RangeSize;
2415       if (HiBound == *C2) {        // -INTMIN = INTMIN
2416         HiOverflow = 1;            // [INTMIN+1, overflow)
2417         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2418       }
2419     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2420       // e.g. X/-5 op 3  --> [-19, -14)
2421       HiBound = Prod + 1;
2422       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2423       if (!LoOverflow)
2424         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2425     } else {                       // (X / neg) op neg
2426       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2427       LoOverflow = HiOverflow = ProdOV;
2428       if (!HiOverflow)
2429         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2430     }
2431 
2432     // Dividing by a negative swaps the condition.  LT <-> GT
2433     Pred = ICmpInst::getSwappedPredicate(Pred);
2434   }
2435 
2436   Value *X = Div->getOperand(0);
2437   switch (Pred) {
2438     default: llvm_unreachable("Unhandled icmp opcode!");
2439     case ICmpInst::ICMP_EQ:
2440       if (LoOverflow && HiOverflow)
2441         return replaceInstUsesWith(Cmp, Builder.getFalse());
2442       if (HiOverflow)
2443         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2444                             ICmpInst::ICMP_UGE, X,
2445                             ConstantInt::get(Div->getType(), LoBound));
2446       if (LoOverflow)
2447         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2448                             ICmpInst::ICMP_ULT, X,
2449                             ConstantInt::get(Div->getType(), HiBound));
2450       return replaceInstUsesWith(
2451           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2452     case ICmpInst::ICMP_NE:
2453       if (LoOverflow && HiOverflow)
2454         return replaceInstUsesWith(Cmp, Builder.getTrue());
2455       if (HiOverflow)
2456         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2457                             ICmpInst::ICMP_ULT, X,
2458                             ConstantInt::get(Div->getType(), LoBound));
2459       if (LoOverflow)
2460         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2461                             ICmpInst::ICMP_UGE, X,
2462                             ConstantInt::get(Div->getType(), HiBound));
2463       return replaceInstUsesWith(Cmp,
2464                                  insertRangeTest(X, LoBound, HiBound,
2465                                                  DivIsSigned, false));
2466     case ICmpInst::ICMP_ULT:
2467     case ICmpInst::ICMP_SLT:
2468       if (LoOverflow == +1)   // Low bound is greater than input range.
2469         return replaceInstUsesWith(Cmp, Builder.getTrue());
2470       if (LoOverflow == -1)   // Low bound is less than input range.
2471         return replaceInstUsesWith(Cmp, Builder.getFalse());
2472       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2473     case ICmpInst::ICMP_UGT:
2474     case ICmpInst::ICMP_SGT:
2475       if (HiOverflow == +1)       // High bound greater than input range.
2476         return replaceInstUsesWith(Cmp, Builder.getFalse());
2477       if (HiOverflow == -1)       // High bound less than input range.
2478         return replaceInstUsesWith(Cmp, Builder.getTrue());
2479       if (Pred == ICmpInst::ICMP_UGT)
2480         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2481                             ConstantInt::get(Div->getType(), HiBound));
2482       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2483                           ConstantInt::get(Div->getType(), HiBound));
2484   }
2485 
2486   return nullptr;
2487 }
2488 
2489 /// Fold icmp (sub X, Y), C.
2490 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2491                                                BinaryOperator *Sub,
2492                                                const APInt &C) {
2493   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2494   ICmpInst::Predicate Pred = Cmp.getPredicate();
2495   const APInt *C2;
2496   APInt SubResult;
2497 
2498   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2499   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2500     return new ICmpInst(Cmp.getPredicate(), Y,
2501                         ConstantInt::get(Y->getType(), 0));
2502 
2503   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2504   if (match(X, m_APInt(C2)) &&
2505       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2506        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2507       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2508     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2509                         ConstantInt::get(Y->getType(), SubResult));
2510 
2511   // The following transforms are only worth it if the only user of the subtract
2512   // is the icmp.
2513   if (!Sub->hasOneUse())
2514     return nullptr;
2515 
2516   if (Sub->hasNoSignedWrap()) {
2517     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2518     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2519       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2520 
2521     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2522     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2523       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2524 
2525     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2526     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2527       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2528 
2529     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2530     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2531       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2532   }
2533 
2534   if (!match(X, m_APInt(C2)))
2535     return nullptr;
2536 
2537   // C2 - Y <u C -> (Y | (C - 1)) == C2
2538   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2539   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2540       (*C2 & (C - 1)) == (C - 1))
2541     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2542 
2543   // C2 - Y >u C -> (Y | C) != C2
2544   //   iff C2 & C == C and C + 1 is a power of 2
2545   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2546     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2547 
2548   return nullptr;
2549 }
2550 
2551 /// Fold icmp (add X, Y), C.
2552 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2553                                                BinaryOperator *Add,
2554                                                const APInt &C) {
2555   Value *Y = Add->getOperand(1);
2556   const APInt *C2;
2557   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2558     return nullptr;
2559 
2560   // Fold icmp pred (add X, C2), C.
2561   Value *X = Add->getOperand(0);
2562   Type *Ty = Add->getType();
2563   CmpInst::Predicate Pred = Cmp.getPredicate();
2564 
2565   if (!Add->hasOneUse())
2566     return nullptr;
2567 
2568   // If the add does not wrap, we can always adjust the compare by subtracting
2569   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2570   // are canonicalized to SGT/SLT/UGT/ULT.
2571   if ((Add->hasNoSignedWrap() &&
2572        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2573       (Add->hasNoUnsignedWrap() &&
2574        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2575     bool Overflow;
2576     APInt NewC =
2577         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2578     // If there is overflow, the result must be true or false.
2579     // TODO: Can we assert there is no overflow because InstSimplify always
2580     // handles those cases?
2581     if (!Overflow)
2582       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2583       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2584   }
2585 
2586   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2587   const APInt &Upper = CR.getUpper();
2588   const APInt &Lower = CR.getLower();
2589   if (Cmp.isSigned()) {
2590     if (Lower.isSignMask())
2591       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2592     if (Upper.isSignMask())
2593       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2594   } else {
2595     if (Lower.isMinValue())
2596       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2597     if (Upper.isMinValue())
2598       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2599   }
2600 
2601   // X+C <u C2 -> (X & -C2) == C
2602   //   iff C & (C2-1) == 0
2603   //       C2 is a power of 2
2604   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2605     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2606                         ConstantExpr::getNeg(cast<Constant>(Y)));
2607 
2608   // X+C >u C2 -> (X & ~C2) != C
2609   //   iff C & C2 == 0
2610   //       C2+1 is a power of 2
2611   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2612     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2613                         ConstantExpr::getNeg(cast<Constant>(Y)));
2614 
2615   return nullptr;
2616 }
2617 
2618 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2619                                            Value *&RHS, ConstantInt *&Less,
2620                                            ConstantInt *&Equal,
2621                                            ConstantInt *&Greater) {
2622   // TODO: Generalize this to work with other comparison idioms or ensure
2623   // they get canonicalized into this form.
2624 
2625   // select i1 (a == b),
2626   //        i32 Equal,
2627   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2628   // where Equal, Less and Greater are placeholders for any three constants.
2629   ICmpInst::Predicate PredA;
2630   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2631       !ICmpInst::isEquality(PredA))
2632     return false;
2633   Value *EqualVal = SI->getTrueValue();
2634   Value *UnequalVal = SI->getFalseValue();
2635   // We still can get non-canonical predicate here, so canonicalize.
2636   if (PredA == ICmpInst::ICMP_NE)
2637     std::swap(EqualVal, UnequalVal);
2638   if (!match(EqualVal, m_ConstantInt(Equal)))
2639     return false;
2640   ICmpInst::Predicate PredB;
2641   Value *LHS2, *RHS2;
2642   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2643                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2644     return false;
2645   // We can get predicate mismatch here, so canonicalize if possible:
2646   // First, ensure that 'LHS' match.
2647   if (LHS2 != LHS) {
2648     // x sgt y <--> y slt x
2649     std::swap(LHS2, RHS2);
2650     PredB = ICmpInst::getSwappedPredicate(PredB);
2651   }
2652   if (LHS2 != LHS)
2653     return false;
2654   // We also need to canonicalize 'RHS'.
2655   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2656     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2657     auto FlippedStrictness =
2658         getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
2659     if (!FlippedStrictness)
2660       return false;
2661     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2662     RHS2 = FlippedStrictness->second;
2663     // And kind-of perform the result swap.
2664     std::swap(Less, Greater);
2665     PredB = ICmpInst::ICMP_SLT;
2666   }
2667   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2668 }
2669 
2670 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2671                                                   SelectInst *Select,
2672                                                   ConstantInt *C) {
2673 
2674   assert(C && "Cmp RHS should be a constant int!");
2675   // If we're testing a constant value against the result of a three way
2676   // comparison, the result can be expressed directly in terms of the
2677   // original values being compared.  Note: We could possibly be more
2678   // aggressive here and remove the hasOneUse test. The original select is
2679   // really likely to simplify or sink when we remove a test of the result.
2680   Value *OrigLHS, *OrigRHS;
2681   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2682   if (Cmp.hasOneUse() &&
2683       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2684                               C3GreaterThan)) {
2685     assert(C1LessThan && C2Equal && C3GreaterThan);
2686 
2687     bool TrueWhenLessThan =
2688         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2689             ->isAllOnesValue();
2690     bool TrueWhenEqual =
2691         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2692             ->isAllOnesValue();
2693     bool TrueWhenGreaterThan =
2694         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2695             ->isAllOnesValue();
2696 
2697     // This generates the new instruction that will replace the original Cmp
2698     // Instruction. Instead of enumerating the various combinations when
2699     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2700     // false, we rely on chaining of ORs and future passes of InstCombine to
2701     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2702 
2703     // When none of the three constants satisfy the predicate for the RHS (C),
2704     // the entire original Cmp can be simplified to a false.
2705     Value *Cond = Builder.getFalse();
2706     if (TrueWhenLessThan)
2707       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2708                                                        OrigLHS, OrigRHS));
2709     if (TrueWhenEqual)
2710       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2711                                                        OrigLHS, OrigRHS));
2712     if (TrueWhenGreaterThan)
2713       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2714                                                        OrigLHS, OrigRHS));
2715 
2716     return replaceInstUsesWith(Cmp, Cond);
2717   }
2718   return nullptr;
2719 }
2720 
2721 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2722                                     InstCombiner::BuilderTy &Builder) {
2723   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2724   if (!Bitcast)
2725     return nullptr;
2726 
2727   ICmpInst::Predicate Pred = Cmp.getPredicate();
2728   Value *Op1 = Cmp.getOperand(1);
2729   Value *BCSrcOp = Bitcast->getOperand(0);
2730 
2731   // Make sure the bitcast doesn't change the number of vector elements.
2732   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2733           Bitcast->getDestTy()->getScalarSizeInBits()) {
2734     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2735     Value *X;
2736     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2737       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2738       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2739       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2740       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2741       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2742            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2743           match(Op1, m_Zero()))
2744         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2745 
2746       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2747       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2748         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2749 
2750       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2751       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2752         return new ICmpInst(Pred, X,
2753                             ConstantInt::getAllOnesValue(X->getType()));
2754     }
2755 
2756     // Zero-equality checks are preserved through unsigned floating-point casts:
2757     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2758     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2759     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2760       if (Cmp.isEquality() && match(Op1, m_Zero()))
2761         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2762   }
2763 
2764   // Test to see if the operands of the icmp are casted versions of other
2765   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2766   if (Bitcast->getType()->isPointerTy() &&
2767       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2768     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2769     // so eliminate it as well.
2770     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2771       Op1 = BC2->getOperand(0);
2772 
2773     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2774     return new ICmpInst(Pred, BCSrcOp, Op1);
2775   }
2776 
2777   // Folding: icmp <pred> iN X, C
2778   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2779   //    and C is a splat of a K-bit pattern
2780   //    and SC is a constant vector = <C', C', C', ..., C'>
2781   // Into:
2782   //   %E = extractelement <M x iK> %vec, i32 C'
2783   //   icmp <pred> iK %E, trunc(C)
2784   const APInt *C;
2785   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2786       !Bitcast->getType()->isIntegerTy() ||
2787       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2788     return nullptr;
2789 
2790   Value *Vec;
2791   Constant *Mask;
2792   if (match(BCSrcOp,
2793             m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2794     // Check whether every element of Mask is the same constant
2795     if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2796       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2797       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2798       if (C->isSplat(EltTy->getBitWidth())) {
2799         // Fold the icmp based on the value of C
2800         // If C is M copies of an iK sized bit pattern,
2801         // then:
2802         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2803         //       icmp <pred> iK %SplatVal, <pattern>
2804         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2805         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2806         return new ICmpInst(Pred, Extract, NewC);
2807       }
2808     }
2809   }
2810   return nullptr;
2811 }
2812 
2813 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2814 /// where X is some kind of instruction.
2815 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2816   const APInt *C;
2817   if (!match(Cmp.getOperand(1), m_APInt(C)))
2818     return nullptr;
2819 
2820   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2821     switch (BO->getOpcode()) {
2822     case Instruction::Xor:
2823       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2824         return I;
2825       break;
2826     case Instruction::And:
2827       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2828         return I;
2829       break;
2830     case Instruction::Or:
2831       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2832         return I;
2833       break;
2834     case Instruction::Mul:
2835       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2836         return I;
2837       break;
2838     case Instruction::Shl:
2839       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2840         return I;
2841       break;
2842     case Instruction::LShr:
2843     case Instruction::AShr:
2844       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2845         return I;
2846       break;
2847     case Instruction::SRem:
2848       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2849         return I;
2850       break;
2851     case Instruction::UDiv:
2852       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2853         return I;
2854       LLVM_FALLTHROUGH;
2855     case Instruction::SDiv:
2856       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2857         return I;
2858       break;
2859     case Instruction::Sub:
2860       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2861         return I;
2862       break;
2863     case Instruction::Add:
2864       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2865         return I;
2866       break;
2867     default:
2868       break;
2869     }
2870     // TODO: These folds could be refactored to be part of the above calls.
2871     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2872       return I;
2873   }
2874 
2875   // Match against CmpInst LHS being instructions other than binary operators.
2876 
2877   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2878     // For now, we only support constant integers while folding the
2879     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2880     // similar to the cases handled by binary ops above.
2881     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2882       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2883         return I;
2884   }
2885 
2886   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2887     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2888       return I;
2889   }
2890 
2891   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2892     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2893       return I;
2894 
2895   return nullptr;
2896 }
2897 
2898 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2899 /// icmp eq/ne BO, C.
2900 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2901                                                              BinaryOperator *BO,
2902                                                              const APInt &C) {
2903   // TODO: Some of these folds could work with arbitrary constants, but this
2904   // function is limited to scalar and vector splat constants.
2905   if (!Cmp.isEquality())
2906     return nullptr;
2907 
2908   ICmpInst::Predicate Pred = Cmp.getPredicate();
2909   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2910   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2911   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2912 
2913   switch (BO->getOpcode()) {
2914   case Instruction::SRem:
2915     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2916     if (C.isNullValue() && BO->hasOneUse()) {
2917       const APInt *BOC;
2918       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2919         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2920         return new ICmpInst(Pred, NewRem,
2921                             Constant::getNullValue(BO->getType()));
2922       }
2923     }
2924     break;
2925   case Instruction::Add: {
2926     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2927     const APInt *BOC;
2928     if (match(BOp1, m_APInt(BOC))) {
2929       if (BO->hasOneUse()) {
2930         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2931         return new ICmpInst(Pred, BOp0, SubC);
2932       }
2933     } else if (C.isNullValue()) {
2934       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2935       // efficiently invertible, or if the add has just this one use.
2936       if (Value *NegVal = dyn_castNegVal(BOp1))
2937         return new ICmpInst(Pred, BOp0, NegVal);
2938       if (Value *NegVal = dyn_castNegVal(BOp0))
2939         return new ICmpInst(Pred, NegVal, BOp1);
2940       if (BO->hasOneUse()) {
2941         Value *Neg = Builder.CreateNeg(BOp1);
2942         Neg->takeName(BO);
2943         return new ICmpInst(Pred, BOp0, Neg);
2944       }
2945     }
2946     break;
2947   }
2948   case Instruction::Xor:
2949     if (BO->hasOneUse()) {
2950       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2951         // For the xor case, we can xor two constants together, eliminating
2952         // the explicit xor.
2953         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2954       } else if (C.isNullValue()) {
2955         // Replace ((xor A, B) != 0) with (A != B)
2956         return new ICmpInst(Pred, BOp0, BOp1);
2957       }
2958     }
2959     break;
2960   case Instruction::Sub:
2961     if (BO->hasOneUse()) {
2962       const APInt *BOC;
2963       if (match(BOp0, m_APInt(BOC))) {
2964         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2965         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2966         return new ICmpInst(Pred, BOp1, SubC);
2967       } else if (C.isNullValue()) {
2968         // Replace ((sub A, B) != 0) with (A != B).
2969         return new ICmpInst(Pred, BOp0, BOp1);
2970       }
2971     }
2972     break;
2973   case Instruction::Or: {
2974     const APInt *BOC;
2975     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2976       // Comparing if all bits outside of a constant mask are set?
2977       // Replace (X | C) == -1 with (X & ~C) == ~C.
2978       // This removes the -1 constant.
2979       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2980       Value *And = Builder.CreateAnd(BOp0, NotBOC);
2981       return new ICmpInst(Pred, And, NotBOC);
2982     }
2983     break;
2984   }
2985   case Instruction::And: {
2986     const APInt *BOC;
2987     if (match(BOp1, m_APInt(BOC))) {
2988       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2989       if (C == *BOC && C.isPowerOf2())
2990         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2991                             BO, Constant::getNullValue(RHS->getType()));
2992     }
2993     break;
2994   }
2995   case Instruction::Mul:
2996     if (C.isNullValue() && BO->hasNoSignedWrap()) {
2997       const APInt *BOC;
2998       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
2999         // The trivial case (mul X, 0) is handled by InstSimplify.
3000         // General case : (mul X, C) != 0 iff X != 0
3001         //                (mul X, C) == 0 iff X == 0
3002         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
3003       }
3004     }
3005     break;
3006   case Instruction::UDiv:
3007     if (C.isNullValue()) {
3008       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3009       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3010       return new ICmpInst(NewPred, BOp1, BOp0);
3011     }
3012     break;
3013   default:
3014     break;
3015   }
3016   return nullptr;
3017 }
3018 
3019 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3020 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
3021                                                            IntrinsicInst *II,
3022                                                            const APInt &C) {
3023   Type *Ty = II->getType();
3024   unsigned BitWidth = C.getBitWidth();
3025   switch (II->getIntrinsicID()) {
3026   case Intrinsic::bswap:
3027     Worklist.Add(II);
3028     Cmp.setOperand(0, II->getArgOperand(0));
3029     Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap()));
3030     return &Cmp;
3031 
3032   case Intrinsic::ctlz:
3033   case Intrinsic::cttz: {
3034     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3035     if (C == BitWidth) {
3036       Worklist.Add(II);
3037       Cmp.setOperand(0, II->getArgOperand(0));
3038       Cmp.setOperand(1, ConstantInt::getNullValue(Ty));
3039       return &Cmp;
3040     }
3041 
3042     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3043     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3044     // Limit to one use to ensure we don't increase instruction count.
3045     unsigned Num = C.getLimitedValue(BitWidth);
3046     if (Num != BitWidth && II->hasOneUse()) {
3047       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3048       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3049                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3050       APInt Mask2 = IsTrailing
3051         ? APInt::getOneBitSet(BitWidth, Num)
3052         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3053       Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1));
3054       Cmp.setOperand(1, ConstantInt::get(Ty, Mask2));
3055       Worklist.Add(II);
3056       return &Cmp;
3057     }
3058     break;
3059   }
3060 
3061   case Intrinsic::ctpop: {
3062     // popcount(A) == 0  ->  A == 0 and likewise for !=
3063     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3064     bool IsZero = C.isNullValue();
3065     if (IsZero || C == BitWidth) {
3066       Worklist.Add(II);
3067       Cmp.setOperand(0, II->getArgOperand(0));
3068       auto *NewOp =
3069           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty);
3070       Cmp.setOperand(1, NewOp);
3071       return &Cmp;
3072     }
3073     break;
3074   }
3075   default:
3076     break;
3077   }
3078 
3079   return nullptr;
3080 }
3081 
3082 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3083 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3084                                                          IntrinsicInst *II,
3085                                                          const APInt &C) {
3086   if (Cmp.isEquality())
3087     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3088 
3089   Type *Ty = II->getType();
3090   unsigned BitWidth = C.getBitWidth();
3091   switch (II->getIntrinsicID()) {
3092   case Intrinsic::ctlz: {
3093     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3094     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3095       unsigned Num = C.getLimitedValue();
3096       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3097       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3098                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3099     }
3100 
3101     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3102     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3103         C.uge(1) && C.ule(BitWidth)) {
3104       unsigned Num = C.getLimitedValue();
3105       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3106       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3107                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3108     }
3109     break;
3110   }
3111   case Intrinsic::cttz: {
3112     // Limit to one use to ensure we don't increase instruction count.
3113     if (!II->hasOneUse())
3114       return nullptr;
3115 
3116     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3117     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3118       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3119       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3120                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3121                              ConstantInt::getNullValue(Ty));
3122     }
3123 
3124     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3125     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3126         C.uge(1) && C.ule(BitWidth)) {
3127       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3128       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3129                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3130                              ConstantInt::getNullValue(Ty));
3131     }
3132     break;
3133   }
3134   default:
3135     break;
3136   }
3137 
3138   return nullptr;
3139 }
3140 
3141 /// Handle icmp with constant (but not simple integer constant) RHS.
3142 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3143   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3144   Constant *RHSC = dyn_cast<Constant>(Op1);
3145   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3146   if (!RHSC || !LHSI)
3147     return nullptr;
3148 
3149   switch (LHSI->getOpcode()) {
3150   case Instruction::GetElementPtr:
3151     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3152     if (RHSC->isNullValue() &&
3153         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3154       return new ICmpInst(
3155           I.getPredicate(), LHSI->getOperand(0),
3156           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3157     break;
3158   case Instruction::PHI:
3159     // Only fold icmp into the PHI if the phi and icmp are in the same
3160     // block.  If in the same block, we're encouraging jump threading.  If
3161     // not, we are just pessimizing the code by making an i1 phi.
3162     if (LHSI->getParent() == I.getParent())
3163       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3164         return NV;
3165     break;
3166   case Instruction::Select: {
3167     // If either operand of the select is a constant, we can fold the
3168     // comparison into the select arms, which will cause one to be
3169     // constant folded and the select turned into a bitwise or.
3170     Value *Op1 = nullptr, *Op2 = nullptr;
3171     ConstantInt *CI = nullptr;
3172     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3173       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3174       CI = dyn_cast<ConstantInt>(Op1);
3175     }
3176     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3177       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3178       CI = dyn_cast<ConstantInt>(Op2);
3179     }
3180 
3181     // We only want to perform this transformation if it will not lead to
3182     // additional code. This is true if either both sides of the select
3183     // fold to a constant (in which case the icmp is replaced with a select
3184     // which will usually simplify) or this is the only user of the
3185     // select (in which case we are trading a select+icmp for a simpler
3186     // select+icmp) or all uses of the select can be replaced based on
3187     // dominance information ("Global cases").
3188     bool Transform = false;
3189     if (Op1 && Op2)
3190       Transform = true;
3191     else if (Op1 || Op2) {
3192       // Local case
3193       if (LHSI->hasOneUse())
3194         Transform = true;
3195       // Global cases
3196       else if (CI && !CI->isZero())
3197         // When Op1 is constant try replacing select with second operand.
3198         // Otherwise Op2 is constant and try replacing select with first
3199         // operand.
3200         Transform =
3201             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3202     }
3203     if (Transform) {
3204       if (!Op1)
3205         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3206                                  I.getName());
3207       if (!Op2)
3208         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3209                                  I.getName());
3210       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3211     }
3212     break;
3213   }
3214   case Instruction::IntToPtr:
3215     // icmp pred inttoptr(X), null -> icmp pred X, 0
3216     if (RHSC->isNullValue() &&
3217         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3218       return new ICmpInst(
3219           I.getPredicate(), LHSI->getOperand(0),
3220           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3221     break;
3222 
3223   case Instruction::Load:
3224     // Try to optimize things like "A[i] > 4" to index computations.
3225     if (GetElementPtrInst *GEP =
3226             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3227       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3228         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3229             !cast<LoadInst>(LHSI)->isVolatile())
3230           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3231             return Res;
3232     }
3233     break;
3234   }
3235 
3236   return nullptr;
3237 }
3238 
3239 /// Some comparisons can be simplified.
3240 /// In this case, we are looking for comparisons that look like
3241 /// a check for a lossy truncation.
3242 /// Folds:
3243 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3244 /// Where Mask is some pattern that produces all-ones in low bits:
3245 ///    (-1 >> y)
3246 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3247 ///   ~(-1 << y)
3248 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3249 /// The Mask can be a constant, too.
3250 /// For some predicates, the operands are commutative.
3251 /// For others, x can only be on a specific side.
3252 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3253                                           InstCombiner::BuilderTy &Builder) {
3254   ICmpInst::Predicate SrcPred;
3255   Value *X, *M, *Y;
3256   auto m_VariableMask = m_CombineOr(
3257       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3258                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3259       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3260                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3261   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3262   if (!match(&I, m_c_ICmp(SrcPred,
3263                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3264                           m_Deferred(X))))
3265     return nullptr;
3266 
3267   ICmpInst::Predicate DstPred;
3268   switch (SrcPred) {
3269   case ICmpInst::Predicate::ICMP_EQ:
3270     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3271     DstPred = ICmpInst::Predicate::ICMP_ULE;
3272     break;
3273   case ICmpInst::Predicate::ICMP_NE:
3274     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3275     DstPred = ICmpInst::Predicate::ICMP_UGT;
3276     break;
3277   case ICmpInst::Predicate::ICMP_UGT:
3278     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3279     assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3280     DstPred = ICmpInst::Predicate::ICMP_UGT;
3281     break;
3282   case ICmpInst::Predicate::ICMP_UGE:
3283     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3284     assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3285     DstPred = ICmpInst::Predicate::ICMP_ULE;
3286     break;
3287   case ICmpInst::Predicate::ICMP_ULT:
3288     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3289     assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3290     DstPred = ICmpInst::Predicate::ICMP_UGT;
3291     break;
3292   case ICmpInst::Predicate::ICMP_ULE:
3293     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3294     assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3295     DstPred = ICmpInst::Predicate::ICMP_ULE;
3296     break;
3297   case ICmpInst::Predicate::ICMP_SGT:
3298     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3299     if (X != I.getOperand(0)) // X must be on LHS of comparison!
3300       return nullptr;         // Ignore the other case.
3301     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3302       return nullptr;
3303     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3304       return nullptr;
3305     DstPred = ICmpInst::Predicate::ICMP_SGT;
3306     break;
3307   case ICmpInst::Predicate::ICMP_SGE:
3308     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3309     if (X != I.getOperand(1)) // X must be on RHS of comparison!
3310       return nullptr;         // Ignore the other case.
3311     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3312       return nullptr;
3313     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3314       return nullptr;
3315     DstPred = ICmpInst::Predicate::ICMP_SLE;
3316     break;
3317   case ICmpInst::Predicate::ICMP_SLT:
3318     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3319     if (X != I.getOperand(1)) // X must be on RHS of comparison!
3320       return nullptr;         // Ignore the other case.
3321     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3322       return nullptr;
3323     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3324       return nullptr;
3325     DstPred = ICmpInst::Predicate::ICMP_SGT;
3326     break;
3327   case ICmpInst::Predicate::ICMP_SLE:
3328     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3329     if (X != I.getOperand(0)) // X must be on LHS of comparison!
3330       return nullptr;         // Ignore the other case.
3331     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3332       return nullptr;
3333     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3334       return nullptr;
3335     DstPred = ICmpInst::Predicate::ICMP_SLE;
3336     break;
3337   default:
3338     llvm_unreachable("All possible folds are handled.");
3339   }
3340 
3341   return Builder.CreateICmp(DstPred, X, M);
3342 }
3343 
3344 /// Some comparisons can be simplified.
3345 /// In this case, we are looking for comparisons that look like
3346 /// a check for a lossy signed truncation.
3347 /// Folds:   (MaskedBits is a constant.)
3348 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3349 /// Into:
3350 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3351 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3352 static Value *
3353 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3354                                  InstCombiner::BuilderTy &Builder) {
3355   ICmpInst::Predicate SrcPred;
3356   Value *X;
3357   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3358   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3359   if (!match(&I, m_c_ICmp(SrcPred,
3360                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3361                                           m_APInt(C1))),
3362                           m_Deferred(X))))
3363     return nullptr;
3364 
3365   // Potential handling of non-splats: for each element:
3366   //  * if both are undef, replace with constant 0.
3367   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3368   //  * if both are not undef, and are different, bailout.
3369   //  * else, only one is undef, then pick the non-undef one.
3370 
3371   // The shift amount must be equal.
3372   if (*C0 != *C1)
3373     return nullptr;
3374   const APInt &MaskedBits = *C0;
3375   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3376 
3377   ICmpInst::Predicate DstPred;
3378   switch (SrcPred) {
3379   case ICmpInst::Predicate::ICMP_EQ:
3380     // ((%x << MaskedBits) a>> MaskedBits) == %x
3381     //   =>
3382     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3383     DstPred = ICmpInst::Predicate::ICMP_ULT;
3384     break;
3385   case ICmpInst::Predicate::ICMP_NE:
3386     // ((%x << MaskedBits) a>> MaskedBits) != %x
3387     //   =>
3388     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3389     DstPred = ICmpInst::Predicate::ICMP_UGE;
3390     break;
3391   // FIXME: are more folds possible?
3392   default:
3393     return nullptr;
3394   }
3395 
3396   auto *XType = X->getType();
3397   const unsigned XBitWidth = XType->getScalarSizeInBits();
3398   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3399   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3400 
3401   // KeptBits = bitwidth(%x) - MaskedBits
3402   const APInt KeptBits = BitWidth - MaskedBits;
3403   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3404   // ICmpCst = (1 << KeptBits)
3405   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3406   assert(ICmpCst.isPowerOf2());
3407   // AddCst = (1 << (KeptBits-1))
3408   const APInt AddCst = ICmpCst.lshr(1);
3409   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3410 
3411   // T0 = add %x, AddCst
3412   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3413   // T1 = T0 DstPred ICmpCst
3414   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3415 
3416   return T1;
3417 }
3418 
3419 // Given pattern:
3420 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3421 // we should move shifts to the same hand of 'and', i.e. rewrite as
3422 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3423 // We are only interested in opposite logical shifts here.
3424 // One of the shifts can be truncated.
3425 // If we can, we want to end up creating 'lshr' shift.
3426 static Value *
3427 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3428                                            InstCombiner::BuilderTy &Builder) {
3429   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3430       !I.getOperand(0)->hasOneUse())
3431     return nullptr;
3432 
3433   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3434 
3435   // Look for an 'and' of two logical shifts, one of which may be truncated.
3436   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3437   Instruction *XShift, *MaybeTruncation, *YShift;
3438   if (!match(
3439           I.getOperand(0),
3440           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3441                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3442                                    m_AnyLogicalShift, m_Instruction(YShift))),
3443                                m_Instruction(MaybeTruncation)))))
3444     return nullptr;
3445 
3446   // We potentially looked past 'trunc', but only when matching YShift,
3447   // therefore YShift must have the widest type.
3448   Instruction *WidestShift = YShift;
3449   // Therefore XShift must have the shallowest type.
3450   // Or they both have identical types if there was no truncation.
3451   Instruction *NarrowestShift = XShift;
3452 
3453   Type *WidestTy = WidestShift->getType();
3454   assert(NarrowestShift->getType() == I.getOperand(0)->getType() &&
3455          "We did not look past any shifts while matching XShift though.");
3456   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3457 
3458   // If YShift is a 'lshr', swap the shifts around.
3459   if (match(YShift, m_LShr(m_Value(), m_Value())))
3460     std::swap(XShift, YShift);
3461 
3462   // The shifts must be in opposite directions.
3463   auto XShiftOpcode = XShift->getOpcode();
3464   if (XShiftOpcode == YShift->getOpcode())
3465     return nullptr; // Do not care about same-direction shifts here.
3466 
3467   Value *X, *XShAmt, *Y, *YShAmt;
3468   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3469   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3470 
3471   // If one of the values being shifted is a constant, then we will end with
3472   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3473   // however, we will need to ensure that we won't increase instruction count.
3474   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3475     // At least one of the hands of the 'and' should be one-use shift.
3476     if (!match(I.getOperand(0),
3477                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3478       return nullptr;
3479     if (HadTrunc) {
3480       // Due to the 'trunc', we will need to widen X. For that either the old
3481       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3482       if (!MaybeTruncation->hasOneUse() &&
3483           !NarrowestShift->getOperand(1)->hasOneUse())
3484         return nullptr;
3485     }
3486   }
3487 
3488   // We have two shift amounts from two different shifts. The types of those
3489   // shift amounts may not match. If that's the case let's bailout now.
3490   if (XShAmt->getType() != YShAmt->getType())
3491     return nullptr;
3492 
3493   // Can we fold (XShAmt+YShAmt) ?
3494   auto *NewShAmt = dyn_cast_or_null<Constant>(
3495       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3496                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3497   if (!NewShAmt)
3498     return nullptr;
3499   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3500   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3501 
3502   // Is the new shift amount smaller than the bit width?
3503   // FIXME: could also rely on ConstantRange.
3504   if (!match(NewShAmt,
3505              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3506                                 APInt(WidestBitWidth, WidestBitWidth))))
3507     return nullptr;
3508 
3509   // An extra legality check is needed if we had trunc-of-lshr.
3510   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3511     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3512                     WidestShift]() {
3513       // It isn't obvious whether it's worth it to analyze non-constants here.
3514       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3515       // If *any* of these preconditions matches we can perform the fold.
3516       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3517                                     ? NewShAmt->getSplatValue()
3518                                     : NewShAmt;
3519       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3520       if (NewShAmtSplat &&
3521           (NewShAmtSplat->isNullValue() ||
3522            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3523         return true;
3524       // We consider *min* leading zeros so a single outlier
3525       // blocks the transform as opposed to allowing it.
3526       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3527         KnownBits Known = computeKnownBits(C, SQ.DL);
3528         unsigned MinLeadZero = Known.countMinLeadingZeros();
3529         // If the value being shifted has at most lowest bit set we can fold.
3530         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3531         if (MaxActiveBits <= 1)
3532           return true;
3533         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3534         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3535           return true;
3536       }
3537       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3538         KnownBits Known = computeKnownBits(C, SQ.DL);
3539         unsigned MinLeadZero = Known.countMinLeadingZeros();
3540         // If the value being shifted has at most lowest bit set we can fold.
3541         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3542         if (MaxActiveBits <= 1)
3543           return true;
3544         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3545         if (NewShAmtSplat) {
3546           APInt AdjNewShAmt =
3547               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3548           if (AdjNewShAmt.ule(MinLeadZero))
3549             return true;
3550         }
3551       }
3552       return false; // Can't tell if it's ok.
3553     };
3554     if (!CanFold())
3555       return nullptr;
3556   }
3557 
3558   // All good, we can do this fold.
3559   X = Builder.CreateZExt(X, WidestTy);
3560   Y = Builder.CreateZExt(Y, WidestTy);
3561   // The shift is the same that was for X.
3562   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3563                   ? Builder.CreateLShr(X, NewShAmt)
3564                   : Builder.CreateShl(X, NewShAmt);
3565   Value *T1 = Builder.CreateAnd(T0, Y);
3566   return Builder.CreateICmp(I.getPredicate(), T1,
3567                             Constant::getNullValue(WidestTy));
3568 }
3569 
3570 /// Fold
3571 ///   (-1 u/ x) u< y
3572 ///   ((x * y) u/ x) != y
3573 /// to
3574 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3575 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3576 /// will mean that we are looking for the opposite answer.
3577 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3578   ICmpInst::Predicate Pred;
3579   Value *X, *Y;
3580   Instruction *Mul;
3581   bool NeedNegation;
3582   // Look for: (-1 u/ x) u</u>= y
3583   if (!I.isEquality() &&
3584       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3585                          m_Value(Y)))) {
3586     Mul = nullptr;
3587     // Canonicalize as-if y was on RHS.
3588     if (I.getOperand(1) != Y)
3589       Pred = I.getSwappedPredicate();
3590 
3591     // Are we checking that overflow does not happen, or does happen?
3592     switch (Pred) {
3593     case ICmpInst::Predicate::ICMP_ULT:
3594       NeedNegation = false;
3595       break; // OK
3596     case ICmpInst::Predicate::ICMP_UGE:
3597       NeedNegation = true;
3598       break; // OK
3599     default:
3600       return nullptr; // Wrong predicate.
3601     }
3602   } else // Look for: ((x * y) u/ x) !=/== y
3603       if (I.isEquality() &&
3604           match(&I, m_c_ICmp(Pred, m_Value(Y),
3605                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3606                                                                   m_Value(X)),
3607                                                           m_Instruction(Mul)),
3608                                              m_Deferred(X)))))) {
3609     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3610   } else
3611     return nullptr;
3612 
3613   BuilderTy::InsertPointGuard Guard(Builder);
3614   // If the pattern included (x * y), we'll want to insert new instructions
3615   // right before that original multiplication so that we can replace it.
3616   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3617   if (MulHadOtherUses)
3618     Builder.SetInsertPoint(Mul);
3619 
3620   Function *F = Intrinsic::getDeclaration(
3621       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3622   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3623 
3624   // If the multiplication was used elsewhere, to ensure that we don't leave
3625   // "duplicate" instructions, replace uses of that original multiplication
3626   // with the multiplication result from the with.overflow intrinsic.
3627   if (MulHadOtherUses)
3628     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3629 
3630   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3631   if (NeedNegation) // This technically increases instruction count.
3632     Res = Builder.CreateNot(Res, "umul.not.ov");
3633 
3634   return Res;
3635 }
3636 
3637 /// Try to fold icmp (binop), X or icmp X, (binop).
3638 /// TODO: A large part of this logic is duplicated in InstSimplify's
3639 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3640 /// duplication.
3641 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
3642   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3643 
3644   // Special logic for binary operators.
3645   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3646   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3647   if (!BO0 && !BO1)
3648     return nullptr;
3649 
3650   const CmpInst::Predicate Pred = I.getPredicate();
3651   Value *X;
3652 
3653   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3654   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3655   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3656       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3657     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3658   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3659   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3660       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3661     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3662 
3663   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3664   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3665     NoOp0WrapProblem =
3666         ICmpInst::isEquality(Pred) ||
3667         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3668         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3669   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3670     NoOp1WrapProblem =
3671         ICmpInst::isEquality(Pred) ||
3672         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3673         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3674 
3675   // Analyze the case when either Op0 or Op1 is an add instruction.
3676   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3677   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3678   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3679     A = BO0->getOperand(0);
3680     B = BO0->getOperand(1);
3681   }
3682   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3683     C = BO1->getOperand(0);
3684     D = BO1->getOperand(1);
3685   }
3686 
3687   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3688   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3689   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3690     return new ICmpInst(Pred, A == Op1 ? B : A,
3691                         Constant::getNullValue(Op1->getType()));
3692 
3693   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3694   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3695   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3696     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3697                         C == Op0 ? D : C);
3698 
3699   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3700   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3701       NoOp1WrapProblem) {
3702     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3703     Value *Y, *Z;
3704     if (A == C) {
3705       // C + B == C + D  ->  B == D
3706       Y = B;
3707       Z = D;
3708     } else if (A == D) {
3709       // D + B == C + D  ->  B == C
3710       Y = B;
3711       Z = C;
3712     } else if (B == C) {
3713       // A + C == C + D  ->  A == D
3714       Y = A;
3715       Z = D;
3716     } else {
3717       assert(B == D);
3718       // A + D == C + D  ->  A == C
3719       Y = A;
3720       Z = C;
3721     }
3722     return new ICmpInst(Pred, Y, Z);
3723   }
3724 
3725   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3726   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3727       match(B, m_AllOnes()))
3728     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3729 
3730   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3731   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3732       match(B, m_AllOnes()))
3733     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3734 
3735   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3736   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3737     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3738 
3739   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3740   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3741     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3742 
3743   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3744   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3745       match(D, m_AllOnes()))
3746     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3747 
3748   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3749   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3750       match(D, m_AllOnes()))
3751     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3752 
3753   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3754   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3755     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3756 
3757   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3758   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3759     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3760 
3761   // TODO: The subtraction-related identities shown below also hold, but
3762   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3763   // wouldn't happen even if they were implemented.
3764   //
3765   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3766   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3767   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3768   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3769 
3770   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3771   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3772     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3773 
3774   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3775   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3776     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3777 
3778   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3779   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3780     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3781 
3782   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3783   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3784     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3785 
3786   // if C1 has greater magnitude than C2:
3787   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3788   //  s.t. C3 = C1 - C2
3789   //
3790   // if C2 has greater magnitude than C1:
3791   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3792   //  s.t. C3 = C2 - C1
3793   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3794       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3795     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3796       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3797         const APInt &AP1 = C1->getValue();
3798         const APInt &AP2 = C2->getValue();
3799         if (AP1.isNegative() == AP2.isNegative()) {
3800           APInt AP1Abs = C1->getValue().abs();
3801           APInt AP2Abs = C2->getValue().abs();
3802           if (AP1Abs.uge(AP2Abs)) {
3803             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3804             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3805             return new ICmpInst(Pred, NewAdd, C);
3806           } else {
3807             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3808             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3809             return new ICmpInst(Pred, A, NewAdd);
3810           }
3811         }
3812       }
3813 
3814   // Analyze the case when either Op0 or Op1 is a sub instruction.
3815   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3816   A = nullptr;
3817   B = nullptr;
3818   C = nullptr;
3819   D = nullptr;
3820   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3821     A = BO0->getOperand(0);
3822     B = BO0->getOperand(1);
3823   }
3824   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3825     C = BO1->getOperand(0);
3826     D = BO1->getOperand(1);
3827   }
3828 
3829   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3830   if (A == Op1 && NoOp0WrapProblem)
3831     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3832   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3833   if (C == Op0 && NoOp1WrapProblem)
3834     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3835 
3836   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3837   // (A - B) u>/u<= A --> B u>/u<= A
3838   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3839     return new ICmpInst(Pred, B, A);
3840   // C u</u>= (C - D) --> C u</u>= D
3841   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3842     return new ICmpInst(Pred, C, D);
3843 
3844   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3845   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3846     return new ICmpInst(Pred, A, C);
3847 
3848   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3849   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3850     return new ICmpInst(Pred, D, B);
3851 
3852   // icmp (0-X) < cst --> x > -cst
3853   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3854     Value *X;
3855     if (match(BO0, m_Neg(m_Value(X))))
3856       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3857         if (RHSC->isNotMinSignedValue())
3858           return new ICmpInst(I.getSwappedPredicate(), X,
3859                               ConstantExpr::getNeg(RHSC));
3860   }
3861 
3862   BinaryOperator *SRem = nullptr;
3863   // icmp (srem X, Y), Y
3864   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3865     SRem = BO0;
3866   // icmp Y, (srem X, Y)
3867   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3868            Op0 == BO1->getOperand(1))
3869     SRem = BO1;
3870   if (SRem) {
3871     // We don't check hasOneUse to avoid increasing register pressure because
3872     // the value we use is the same value this instruction was already using.
3873     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3874     default:
3875       break;
3876     case ICmpInst::ICMP_EQ:
3877       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3878     case ICmpInst::ICMP_NE:
3879       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3880     case ICmpInst::ICMP_SGT:
3881     case ICmpInst::ICMP_SGE:
3882       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3883                           Constant::getAllOnesValue(SRem->getType()));
3884     case ICmpInst::ICMP_SLT:
3885     case ICmpInst::ICMP_SLE:
3886       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3887                           Constant::getNullValue(SRem->getType()));
3888     }
3889   }
3890 
3891   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3892       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3893     switch (BO0->getOpcode()) {
3894     default:
3895       break;
3896     case Instruction::Add:
3897     case Instruction::Sub:
3898     case Instruction::Xor: {
3899       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3900         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3901 
3902       const APInt *C;
3903       if (match(BO0->getOperand(1), m_APInt(C))) {
3904         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3905         if (C->isSignMask()) {
3906           ICmpInst::Predicate NewPred =
3907               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3908           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3909         }
3910 
3911         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3912         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3913           ICmpInst::Predicate NewPred =
3914               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3915           NewPred = I.getSwappedPredicate(NewPred);
3916           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3917         }
3918       }
3919       break;
3920     }
3921     case Instruction::Mul: {
3922       if (!I.isEquality())
3923         break;
3924 
3925       const APInt *C;
3926       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3927           !C->isOneValue()) {
3928         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3929         // Mask = -1 >> count-trailing-zeros(C).
3930         if (unsigned TZs = C->countTrailingZeros()) {
3931           Constant *Mask = ConstantInt::get(
3932               BO0->getType(),
3933               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3934           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
3935           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
3936           return new ICmpInst(Pred, And1, And2);
3937         }
3938         // If there are no trailing zeros in the multiplier, just eliminate
3939         // the multiplies (no masking is needed):
3940         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3941         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3942       }
3943       break;
3944     }
3945     case Instruction::UDiv:
3946     case Instruction::LShr:
3947       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3948         break;
3949       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3950 
3951     case Instruction::SDiv:
3952       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3953         break;
3954       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3955 
3956     case Instruction::AShr:
3957       if (!BO0->isExact() || !BO1->isExact())
3958         break;
3959       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3960 
3961     case Instruction::Shl: {
3962       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3963       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3964       if (!NUW && !NSW)
3965         break;
3966       if (!NSW && I.isSigned())
3967         break;
3968       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3969     }
3970     }
3971   }
3972 
3973   if (BO0) {
3974     // Transform  A & (L - 1) `ult` L --> L != 0
3975     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3976     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
3977 
3978     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
3979       auto *Zero = Constant::getNullValue(BO0->getType());
3980       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3981     }
3982   }
3983 
3984   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
3985     return replaceInstUsesWith(I, V);
3986 
3987   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
3988     return replaceInstUsesWith(I, V);
3989 
3990   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
3991     return replaceInstUsesWith(I, V);
3992 
3993   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
3994     return replaceInstUsesWith(I, V);
3995 
3996   return nullptr;
3997 }
3998 
3999 /// Fold icmp Pred min|max(X, Y), X.
4000 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4001   ICmpInst::Predicate Pred = Cmp.getPredicate();
4002   Value *Op0 = Cmp.getOperand(0);
4003   Value *X = Cmp.getOperand(1);
4004 
4005   // Canonicalize minimum or maximum operand to LHS of the icmp.
4006   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4007       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4008       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4009       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4010     std::swap(Op0, X);
4011     Pred = Cmp.getSwappedPredicate();
4012   }
4013 
4014   Value *Y;
4015   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4016     // smin(X, Y)  == X --> X s<= Y
4017     // smin(X, Y) s>= X --> X s<= Y
4018     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4019       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4020 
4021     // smin(X, Y) != X --> X s> Y
4022     // smin(X, Y) s< X --> X s> Y
4023     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4024       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4025 
4026     // These cases should be handled in InstSimplify:
4027     // smin(X, Y) s<= X --> true
4028     // smin(X, Y) s> X --> false
4029     return nullptr;
4030   }
4031 
4032   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4033     // smax(X, Y)  == X --> X s>= Y
4034     // smax(X, Y) s<= X --> X s>= Y
4035     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4036       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4037 
4038     // smax(X, Y) != X --> X s< Y
4039     // smax(X, Y) s> X --> X s< Y
4040     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4041       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4042 
4043     // These cases should be handled in InstSimplify:
4044     // smax(X, Y) s>= X --> true
4045     // smax(X, Y) s< X --> false
4046     return nullptr;
4047   }
4048 
4049   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4050     // umin(X, Y)  == X --> X u<= Y
4051     // umin(X, Y) u>= X --> X u<= Y
4052     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4053       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4054 
4055     // umin(X, Y) != X --> X u> Y
4056     // umin(X, Y) u< X --> X u> Y
4057     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4058       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4059 
4060     // These cases should be handled in InstSimplify:
4061     // umin(X, Y) u<= X --> true
4062     // umin(X, Y) u> X --> false
4063     return nullptr;
4064   }
4065 
4066   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4067     // umax(X, Y)  == X --> X u>= Y
4068     // umax(X, Y) u<= X --> X u>= Y
4069     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4070       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4071 
4072     // umax(X, Y) != X --> X u< Y
4073     // umax(X, Y) u> X --> X u< Y
4074     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4075       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4076 
4077     // These cases should be handled in InstSimplify:
4078     // umax(X, Y) u>= X --> true
4079     // umax(X, Y) u< X --> false
4080     return nullptr;
4081   }
4082 
4083   return nullptr;
4084 }
4085 
4086 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
4087   if (!I.isEquality())
4088     return nullptr;
4089 
4090   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4091   const CmpInst::Predicate Pred = I.getPredicate();
4092   Value *A, *B, *C, *D;
4093   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4094     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4095       Value *OtherVal = A == Op1 ? B : A;
4096       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4097     }
4098 
4099     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4100       // A^c1 == C^c2 --> A == C^(c1^c2)
4101       ConstantInt *C1, *C2;
4102       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4103           Op1->hasOneUse()) {
4104         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4105         Value *Xor = Builder.CreateXor(C, NC);
4106         return new ICmpInst(Pred, A, Xor);
4107       }
4108 
4109       // A^B == A^D -> B == D
4110       if (A == C)
4111         return new ICmpInst(Pred, B, D);
4112       if (A == D)
4113         return new ICmpInst(Pred, B, C);
4114       if (B == C)
4115         return new ICmpInst(Pred, A, D);
4116       if (B == D)
4117         return new ICmpInst(Pred, A, C);
4118     }
4119   }
4120 
4121   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4122     // A == (A^B)  ->  B == 0
4123     Value *OtherVal = A == Op0 ? B : A;
4124     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4125   }
4126 
4127   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4128   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4129       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4130     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4131 
4132     if (A == C) {
4133       X = B;
4134       Y = D;
4135       Z = A;
4136     } else if (A == D) {
4137       X = B;
4138       Y = C;
4139       Z = A;
4140     } else if (B == C) {
4141       X = A;
4142       Y = D;
4143       Z = B;
4144     } else if (B == D) {
4145       X = A;
4146       Y = C;
4147       Z = B;
4148     }
4149 
4150     if (X) { // Build (X^Y) & Z
4151       Op1 = Builder.CreateXor(X, Y);
4152       Op1 = Builder.CreateAnd(Op1, Z);
4153       I.setOperand(0, Op1);
4154       I.setOperand(1, Constant::getNullValue(Op1->getType()));
4155       return &I;
4156     }
4157   }
4158 
4159   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4160   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4161   ConstantInt *Cst1;
4162   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4163        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4164       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4165        match(Op1, m_ZExt(m_Value(A))))) {
4166     APInt Pow2 = Cst1->getValue() + 1;
4167     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4168         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4169       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4170   }
4171 
4172   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4173   // For lshr and ashr pairs.
4174   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4175        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4176       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4177        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4178     unsigned TypeBits = Cst1->getBitWidth();
4179     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4180     if (ShAmt < TypeBits && ShAmt != 0) {
4181       ICmpInst::Predicate NewPred =
4182           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4183       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4184       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4185       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4186     }
4187   }
4188 
4189   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4190   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4191       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4192     unsigned TypeBits = Cst1->getBitWidth();
4193     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4194     if (ShAmt < TypeBits && ShAmt != 0) {
4195       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4196       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4197       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4198                                       I.getName() + ".mask");
4199       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4200     }
4201   }
4202 
4203   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4204   // "icmp (and X, mask), cst"
4205   uint64_t ShAmt = 0;
4206   if (Op0->hasOneUse() &&
4207       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4208       match(Op1, m_ConstantInt(Cst1)) &&
4209       // Only do this when A has multiple uses.  This is most important to do
4210       // when it exposes other optimizations.
4211       !A->hasOneUse()) {
4212     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4213 
4214     if (ShAmt < ASize) {
4215       APInt MaskV =
4216           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4217       MaskV <<= ShAmt;
4218 
4219       APInt CmpV = Cst1->getValue().zext(ASize);
4220       CmpV <<= ShAmt;
4221 
4222       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4223       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4224     }
4225   }
4226 
4227   // If both operands are byte-swapped or bit-reversed, just compare the
4228   // original values.
4229   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4230   // and handle more intrinsics.
4231   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4232       (match(Op0, m_BitReverse(m_Value(A))) &&
4233        match(Op1, m_BitReverse(m_Value(B)))))
4234     return new ICmpInst(Pred, A, B);
4235 
4236   // Canonicalize checking for a power-of-2-or-zero value:
4237   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4238   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4239   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4240                                    m_Deferred(A)))) ||
4241       !match(Op1, m_ZeroInt()))
4242     A = nullptr;
4243 
4244   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4245   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4246   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4247     A = Op1;
4248   else if (match(Op1,
4249                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4250     A = Op0;
4251 
4252   if (A) {
4253     Type *Ty = A->getType();
4254     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4255     return Pred == ICmpInst::ICMP_EQ
4256         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4257         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4258   }
4259 
4260   return nullptr;
4261 }
4262 
4263 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4264                                            InstCombiner::BuilderTy &Builder) {
4265   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4266   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4267   Value *X;
4268   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4269     return nullptr;
4270 
4271   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4272   bool IsSignedCmp = ICmp.isSigned();
4273   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4274     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4275     // and the other is a zext), then we can't handle this.
4276     // TODO: This is too strict. We can handle some predicates (equality?).
4277     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4278       return nullptr;
4279 
4280     // Not an extension from the same type?
4281     Value *Y = CastOp1->getOperand(0);
4282     Type *XTy = X->getType(), *YTy = Y->getType();
4283     if (XTy != YTy) {
4284       // One of the casts must have one use because we are creating a new cast.
4285       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4286         return nullptr;
4287       // Extend the narrower operand to the type of the wider operand.
4288       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4289         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4290       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4291         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4292       else
4293         return nullptr;
4294     }
4295 
4296     // (zext X) == (zext Y) --> X == Y
4297     // (sext X) == (sext Y) --> X == Y
4298     if (ICmp.isEquality())
4299       return new ICmpInst(ICmp.getPredicate(), X, Y);
4300 
4301     // A signed comparison of sign extended values simplifies into a
4302     // signed comparison.
4303     if (IsSignedCmp && IsSignedExt)
4304       return new ICmpInst(ICmp.getPredicate(), X, Y);
4305 
4306     // The other three cases all fold into an unsigned comparison.
4307     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4308   }
4309 
4310   // Below here, we are only folding a compare with constant.
4311   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4312   if (!C)
4313     return nullptr;
4314 
4315   // Compute the constant that would happen if we truncated to SrcTy then
4316   // re-extended to DestTy.
4317   Type *SrcTy = CastOp0->getSrcTy();
4318   Type *DestTy = CastOp0->getDestTy();
4319   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4320   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4321 
4322   // If the re-extended constant didn't change...
4323   if (Res2 == C) {
4324     if (ICmp.isEquality())
4325       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4326 
4327     // A signed comparison of sign extended values simplifies into a
4328     // signed comparison.
4329     if (IsSignedExt && IsSignedCmp)
4330       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4331 
4332     // The other three cases all fold into an unsigned comparison.
4333     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4334   }
4335 
4336   // The re-extended constant changed, partly changed (in the case of a vector),
4337   // or could not be determined to be equal (in the case of a constant
4338   // expression), so the constant cannot be represented in the shorter type.
4339   // All the cases that fold to true or false will have already been handled
4340   // by SimplifyICmpInst, so only deal with the tricky case.
4341   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4342     return nullptr;
4343 
4344   // Is source op positive?
4345   // icmp ult (sext X), C --> icmp sgt X, -1
4346   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4347     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4348 
4349   // Is source op negative?
4350   // icmp ugt (sext X), C --> icmp slt X, 0
4351   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4352   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4353 }
4354 
4355 /// Handle icmp (cast x), (cast or constant).
4356 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
4357   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4358   if (!CastOp0)
4359     return nullptr;
4360   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4361     return nullptr;
4362 
4363   Value *Op0Src = CastOp0->getOperand(0);
4364   Type *SrcTy = CastOp0->getSrcTy();
4365   Type *DestTy = CastOp0->getDestTy();
4366 
4367   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4368   // integer type is the same size as the pointer type.
4369   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4370     if (isa<VectorType>(SrcTy)) {
4371       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4372       DestTy = cast<VectorType>(DestTy)->getElementType();
4373     }
4374     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4375   };
4376   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4377       CompatibleSizes(SrcTy, DestTy)) {
4378     Value *NewOp1 = nullptr;
4379     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4380       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4381       if (PtrSrc->getType()->getPointerAddressSpace() ==
4382           Op0Src->getType()->getPointerAddressSpace()) {
4383         NewOp1 = PtrToIntOp1->getOperand(0);
4384         // If the pointer types don't match, insert a bitcast.
4385         if (Op0Src->getType() != NewOp1->getType())
4386           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4387       }
4388     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4389       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4390     }
4391 
4392     if (NewOp1)
4393       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4394   }
4395 
4396   return foldICmpWithZextOrSext(ICmp, Builder);
4397 }
4398 
4399 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4400   switch (BinaryOp) {
4401     default:
4402       llvm_unreachable("Unsupported binary op");
4403     case Instruction::Add:
4404     case Instruction::Sub:
4405       return match(RHS, m_Zero());
4406     case Instruction::Mul:
4407       return match(RHS, m_One());
4408   }
4409 }
4410 
4411 OverflowResult InstCombiner::computeOverflow(
4412     Instruction::BinaryOps BinaryOp, bool IsSigned,
4413     Value *LHS, Value *RHS, Instruction *CxtI) const {
4414   switch (BinaryOp) {
4415     default:
4416       llvm_unreachable("Unsupported binary op");
4417     case Instruction::Add:
4418       if (IsSigned)
4419         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4420       else
4421         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4422     case Instruction::Sub:
4423       if (IsSigned)
4424         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4425       else
4426         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4427     case Instruction::Mul:
4428       if (IsSigned)
4429         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4430       else
4431         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4432   }
4433 }
4434 
4435 bool InstCombiner::OptimizeOverflowCheck(
4436     Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4437     Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4438   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4439     std::swap(LHS, RHS);
4440 
4441   // If the overflow check was an add followed by a compare, the insertion point
4442   // may be pointing to the compare.  We want to insert the new instructions
4443   // before the add in case there are uses of the add between the add and the
4444   // compare.
4445   Builder.SetInsertPoint(&OrigI);
4446 
4447   if (isNeutralValue(BinaryOp, RHS)) {
4448     Result = LHS;
4449     Overflow = Builder.getFalse();
4450     return true;
4451   }
4452 
4453   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4454     case OverflowResult::MayOverflow:
4455       return false;
4456     case OverflowResult::AlwaysOverflowsLow:
4457     case OverflowResult::AlwaysOverflowsHigh:
4458       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4459       Result->takeName(&OrigI);
4460       Overflow = Builder.getTrue();
4461       return true;
4462     case OverflowResult::NeverOverflows:
4463       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4464       Result->takeName(&OrigI);
4465       Overflow = Builder.getFalse();
4466       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4467         if (IsSigned)
4468           Inst->setHasNoSignedWrap();
4469         else
4470           Inst->setHasNoUnsignedWrap();
4471       }
4472       return true;
4473   }
4474 
4475   llvm_unreachable("Unexpected overflow result");
4476 }
4477 
4478 /// Recognize and process idiom involving test for multiplication
4479 /// overflow.
4480 ///
4481 /// The caller has matched a pattern of the form:
4482 ///   I = cmp u (mul(zext A, zext B), V
4483 /// The function checks if this is a test for overflow and if so replaces
4484 /// multiplication with call to 'mul.with.overflow' intrinsic.
4485 ///
4486 /// \param I Compare instruction.
4487 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4488 ///               the compare instruction.  Must be of integer type.
4489 /// \param OtherVal The other argument of compare instruction.
4490 /// \returns Instruction which must replace the compare instruction, NULL if no
4491 ///          replacement required.
4492 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4493                                          Value *OtherVal, InstCombiner &IC) {
4494   // Don't bother doing this transformation for pointers, don't do it for
4495   // vectors.
4496   if (!isa<IntegerType>(MulVal->getType()))
4497     return nullptr;
4498 
4499   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4500   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4501   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4502   if (!MulInstr)
4503     return nullptr;
4504   assert(MulInstr->getOpcode() == Instruction::Mul);
4505 
4506   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4507        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4508   assert(LHS->getOpcode() == Instruction::ZExt);
4509   assert(RHS->getOpcode() == Instruction::ZExt);
4510   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4511 
4512   // Calculate type and width of the result produced by mul.with.overflow.
4513   Type *TyA = A->getType(), *TyB = B->getType();
4514   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4515            WidthB = TyB->getPrimitiveSizeInBits();
4516   unsigned MulWidth;
4517   Type *MulType;
4518   if (WidthB > WidthA) {
4519     MulWidth = WidthB;
4520     MulType = TyB;
4521   } else {
4522     MulWidth = WidthA;
4523     MulType = TyA;
4524   }
4525 
4526   // In order to replace the original mul with a narrower mul.with.overflow,
4527   // all uses must ignore upper bits of the product.  The number of used low
4528   // bits must be not greater than the width of mul.with.overflow.
4529   if (MulVal->hasNUsesOrMore(2))
4530     for (User *U : MulVal->users()) {
4531       if (U == &I)
4532         continue;
4533       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4534         // Check if truncation ignores bits above MulWidth.
4535         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4536         if (TruncWidth > MulWidth)
4537           return nullptr;
4538       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4539         // Check if AND ignores bits above MulWidth.
4540         if (BO->getOpcode() != Instruction::And)
4541           return nullptr;
4542         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4543           const APInt &CVal = CI->getValue();
4544           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4545             return nullptr;
4546         } else {
4547           // In this case we could have the operand of the binary operation
4548           // being defined in another block, and performing the replacement
4549           // could break the dominance relation.
4550           return nullptr;
4551         }
4552       } else {
4553         // Other uses prohibit this transformation.
4554         return nullptr;
4555       }
4556     }
4557 
4558   // Recognize patterns
4559   switch (I.getPredicate()) {
4560   case ICmpInst::ICMP_EQ:
4561   case ICmpInst::ICMP_NE:
4562     // Recognize pattern:
4563     //   mulval = mul(zext A, zext B)
4564     //   cmp eq/neq mulval, zext trunc mulval
4565     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4566       if (Zext->hasOneUse()) {
4567         Value *ZextArg = Zext->getOperand(0);
4568         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4569           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4570             break; //Recognized
4571       }
4572 
4573     // Recognize pattern:
4574     //   mulval = mul(zext A, zext B)
4575     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4576     ConstantInt *CI;
4577     Value *ValToMask;
4578     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4579       if (ValToMask != MulVal)
4580         return nullptr;
4581       const APInt &CVal = CI->getValue() + 1;
4582       if (CVal.isPowerOf2()) {
4583         unsigned MaskWidth = CVal.logBase2();
4584         if (MaskWidth == MulWidth)
4585           break; // Recognized
4586       }
4587     }
4588     return nullptr;
4589 
4590   case ICmpInst::ICMP_UGT:
4591     // Recognize pattern:
4592     //   mulval = mul(zext A, zext B)
4593     //   cmp ugt mulval, max
4594     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4595       APInt MaxVal = APInt::getMaxValue(MulWidth);
4596       MaxVal = MaxVal.zext(CI->getBitWidth());
4597       if (MaxVal.eq(CI->getValue()))
4598         break; // Recognized
4599     }
4600     return nullptr;
4601 
4602   case ICmpInst::ICMP_UGE:
4603     // Recognize pattern:
4604     //   mulval = mul(zext A, zext B)
4605     //   cmp uge mulval, max+1
4606     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4607       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4608       if (MaxVal.eq(CI->getValue()))
4609         break; // Recognized
4610     }
4611     return nullptr;
4612 
4613   case ICmpInst::ICMP_ULE:
4614     // Recognize pattern:
4615     //   mulval = mul(zext A, zext B)
4616     //   cmp ule mulval, max
4617     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4618       APInt MaxVal = APInt::getMaxValue(MulWidth);
4619       MaxVal = MaxVal.zext(CI->getBitWidth());
4620       if (MaxVal.eq(CI->getValue()))
4621         break; // Recognized
4622     }
4623     return nullptr;
4624 
4625   case ICmpInst::ICMP_ULT:
4626     // Recognize pattern:
4627     //   mulval = mul(zext A, zext B)
4628     //   cmp ule mulval, max + 1
4629     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4630       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4631       if (MaxVal.eq(CI->getValue()))
4632         break; // Recognized
4633     }
4634     return nullptr;
4635 
4636   default:
4637     return nullptr;
4638   }
4639 
4640   InstCombiner::BuilderTy &Builder = IC.Builder;
4641   Builder.SetInsertPoint(MulInstr);
4642 
4643   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4644   Value *MulA = A, *MulB = B;
4645   if (WidthA < MulWidth)
4646     MulA = Builder.CreateZExt(A, MulType);
4647   if (WidthB < MulWidth)
4648     MulB = Builder.CreateZExt(B, MulType);
4649   Function *F = Intrinsic::getDeclaration(
4650       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4651   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4652   IC.Worklist.Add(MulInstr);
4653 
4654   // If there are uses of mul result other than the comparison, we know that
4655   // they are truncation or binary AND. Change them to use result of
4656   // mul.with.overflow and adjust properly mask/size.
4657   if (MulVal->hasNUsesOrMore(2)) {
4658     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4659     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4660       User *U = *UI++;
4661       if (U == &I || U == OtherVal)
4662         continue;
4663       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4664         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4665           IC.replaceInstUsesWith(*TI, Mul);
4666         else
4667           TI->setOperand(0, Mul);
4668       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4669         assert(BO->getOpcode() == Instruction::And);
4670         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4671         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4672         APInt ShortMask = CI->getValue().trunc(MulWidth);
4673         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4674         Instruction *Zext =
4675             cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType()));
4676         IC.Worklist.Add(Zext);
4677         IC.replaceInstUsesWith(*BO, Zext);
4678       } else {
4679         llvm_unreachable("Unexpected Binary operation");
4680       }
4681       IC.Worklist.Add(cast<Instruction>(U));
4682     }
4683   }
4684   if (isa<Instruction>(OtherVal))
4685     IC.Worklist.Add(cast<Instruction>(OtherVal));
4686 
4687   // The original icmp gets replaced with the overflow value, maybe inverted
4688   // depending on predicate.
4689   bool Inverse = false;
4690   switch (I.getPredicate()) {
4691   case ICmpInst::ICMP_NE:
4692     break;
4693   case ICmpInst::ICMP_EQ:
4694     Inverse = true;
4695     break;
4696   case ICmpInst::ICMP_UGT:
4697   case ICmpInst::ICMP_UGE:
4698     if (I.getOperand(0) == MulVal)
4699       break;
4700     Inverse = true;
4701     break;
4702   case ICmpInst::ICMP_ULT:
4703   case ICmpInst::ICMP_ULE:
4704     if (I.getOperand(1) == MulVal)
4705       break;
4706     Inverse = true;
4707     break;
4708   default:
4709     llvm_unreachable("Unexpected predicate");
4710   }
4711   if (Inverse) {
4712     Value *Res = Builder.CreateExtractValue(Call, 1);
4713     return BinaryOperator::CreateNot(Res);
4714   }
4715 
4716   return ExtractValueInst::Create(Call, 1);
4717 }
4718 
4719 /// When performing a comparison against a constant, it is possible that not all
4720 /// the bits in the LHS are demanded. This helper method computes the mask that
4721 /// IS demanded.
4722 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4723   const APInt *RHS;
4724   if (!match(I.getOperand(1), m_APInt(RHS)))
4725     return APInt::getAllOnesValue(BitWidth);
4726 
4727   // If this is a normal comparison, it demands all bits. If it is a sign bit
4728   // comparison, it only demands the sign bit.
4729   bool UnusedBit;
4730   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4731     return APInt::getSignMask(BitWidth);
4732 
4733   switch (I.getPredicate()) {
4734   // For a UGT comparison, we don't care about any bits that
4735   // correspond to the trailing ones of the comparand.  The value of these
4736   // bits doesn't impact the outcome of the comparison, because any value
4737   // greater than the RHS must differ in a bit higher than these due to carry.
4738   case ICmpInst::ICMP_UGT:
4739     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4740 
4741   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4742   // Any value less than the RHS must differ in a higher bit because of carries.
4743   case ICmpInst::ICMP_ULT:
4744     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4745 
4746   default:
4747     return APInt::getAllOnesValue(BitWidth);
4748   }
4749 }
4750 
4751 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4752 /// should be swapped.
4753 /// The decision is based on how many times these two operands are reused
4754 /// as subtract operands and their positions in those instructions.
4755 /// The rationale is that several architectures use the same instruction for
4756 /// both subtract and cmp. Thus, it is better if the order of those operands
4757 /// match.
4758 /// \return true if Op0 and Op1 should be swapped.
4759 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4760   // Filter out pointer values as those cannot appear directly in subtract.
4761   // FIXME: we may want to go through inttoptrs or bitcasts.
4762   if (Op0->getType()->isPointerTy())
4763     return false;
4764   // If a subtract already has the same operands as a compare, swapping would be
4765   // bad. If a subtract has the same operands as a compare but in reverse order,
4766   // then swapping is good.
4767   int GoodToSwap = 0;
4768   for (const User *U : Op0->users()) {
4769     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4770       GoodToSwap++;
4771     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4772       GoodToSwap--;
4773   }
4774   return GoodToSwap > 0;
4775 }
4776 
4777 /// Check that one use is in the same block as the definition and all
4778 /// other uses are in blocks dominated by a given block.
4779 ///
4780 /// \param DI Definition
4781 /// \param UI Use
4782 /// \param DB Block that must dominate all uses of \p DI outside
4783 ///           the parent block
4784 /// \return true when \p UI is the only use of \p DI in the parent block
4785 /// and all other uses of \p DI are in blocks dominated by \p DB.
4786 ///
4787 bool InstCombiner::dominatesAllUses(const Instruction *DI,
4788                                     const Instruction *UI,
4789                                     const BasicBlock *DB) const {
4790   assert(DI && UI && "Instruction not defined\n");
4791   // Ignore incomplete definitions.
4792   if (!DI->getParent())
4793     return false;
4794   // DI and UI must be in the same block.
4795   if (DI->getParent() != UI->getParent())
4796     return false;
4797   // Protect from self-referencing blocks.
4798   if (DI->getParent() == DB)
4799     return false;
4800   for (const User *U : DI->users()) {
4801     auto *Usr = cast<Instruction>(U);
4802     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4803       return false;
4804   }
4805   return true;
4806 }
4807 
4808 /// Return true when the instruction sequence within a block is select-cmp-br.
4809 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4810   const BasicBlock *BB = SI->getParent();
4811   if (!BB)
4812     return false;
4813   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4814   if (!BI || BI->getNumSuccessors() != 2)
4815     return false;
4816   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4817   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4818     return false;
4819   return true;
4820 }
4821 
4822 /// True when a select result is replaced by one of its operands
4823 /// in select-icmp sequence. This will eventually result in the elimination
4824 /// of the select.
4825 ///
4826 /// \param SI    Select instruction
4827 /// \param Icmp  Compare instruction
4828 /// \param SIOpd Operand that replaces the select
4829 ///
4830 /// Notes:
4831 /// - The replacement is global and requires dominator information
4832 /// - The caller is responsible for the actual replacement
4833 ///
4834 /// Example:
4835 ///
4836 /// entry:
4837 ///  %4 = select i1 %3, %C* %0, %C* null
4838 ///  %5 = icmp eq %C* %4, null
4839 ///  br i1 %5, label %9, label %7
4840 ///  ...
4841 ///  ; <label>:7                                       ; preds = %entry
4842 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4843 ///  ...
4844 ///
4845 /// can be transformed to
4846 ///
4847 ///  %5 = icmp eq %C* %0, null
4848 ///  %6 = select i1 %3, i1 %5, i1 true
4849 ///  br i1 %6, label %9, label %7
4850 ///  ...
4851 ///  ; <label>:7                                       ; preds = %entry
4852 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4853 ///
4854 /// Similar when the first operand of the select is a constant or/and
4855 /// the compare is for not equal rather than equal.
4856 ///
4857 /// NOTE: The function is only called when the select and compare constants
4858 /// are equal, the optimization can work only for EQ predicates. This is not a
4859 /// major restriction since a NE compare should be 'normalized' to an equal
4860 /// compare, which usually happens in the combiner and test case
4861 /// select-cmp-br.ll checks for it.
4862 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4863                                              const ICmpInst *Icmp,
4864                                              const unsigned SIOpd) {
4865   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4866   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4867     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4868     // The check for the single predecessor is not the best that can be
4869     // done. But it protects efficiently against cases like when SI's
4870     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4871     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4872     // replaced can be reached on either path. So the uniqueness check
4873     // guarantees that the path all uses of SI (outside SI's parent) are on
4874     // is disjoint from all other paths out of SI. But that information
4875     // is more expensive to compute, and the trade-off here is in favor
4876     // of compile-time. It should also be noticed that we check for a single
4877     // predecessor and not only uniqueness. This to handle the situation when
4878     // Succ and Succ1 points to the same basic block.
4879     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4880       NumSel++;
4881       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4882       return true;
4883     }
4884   }
4885   return false;
4886 }
4887 
4888 /// Try to fold the comparison based on range information we can get by checking
4889 /// whether bits are known to be zero or one in the inputs.
4890 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4891   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4892   Type *Ty = Op0->getType();
4893   ICmpInst::Predicate Pred = I.getPredicate();
4894 
4895   // Get scalar or pointer size.
4896   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4897                           ? Ty->getScalarSizeInBits()
4898                           : DL.getIndexTypeSizeInBits(Ty->getScalarType());
4899 
4900   if (!BitWidth)
4901     return nullptr;
4902 
4903   KnownBits Op0Known(BitWidth);
4904   KnownBits Op1Known(BitWidth);
4905 
4906   if (SimplifyDemandedBits(&I, 0,
4907                            getDemandedBitsLHSMask(I, BitWidth),
4908                            Op0Known, 0))
4909     return &I;
4910 
4911   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4912                            Op1Known, 0))
4913     return &I;
4914 
4915   // Given the known and unknown bits, compute a range that the LHS could be
4916   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4917   // EQ and NE we use unsigned values.
4918   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4919   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4920   if (I.isSigned()) {
4921     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4922     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4923   } else {
4924     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4925     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4926   }
4927 
4928   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4929   // out that the LHS or RHS is a constant. Constant fold this now, so that
4930   // code below can assume that Min != Max.
4931   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4932     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4933   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4934     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4935 
4936   // Based on the range information we know about the LHS, see if we can
4937   // simplify this comparison.  For example, (x&4) < 8 is always true.
4938   switch (Pred) {
4939   default:
4940     llvm_unreachable("Unknown icmp opcode!");
4941   case ICmpInst::ICMP_EQ:
4942   case ICmpInst::ICMP_NE: {
4943     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4944       return Pred == CmpInst::ICMP_EQ
4945                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4946                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4947     }
4948 
4949     // If all bits are known zero except for one, then we know at most one bit
4950     // is set. If the comparison is against zero, then this is a check to see if
4951     // *that* bit is set.
4952     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4953     if (Op1Known.isZero()) {
4954       // If the LHS is an AND with the same constant, look through it.
4955       Value *LHS = nullptr;
4956       const APInt *LHSC;
4957       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4958           *LHSC != Op0KnownZeroInverted)
4959         LHS = Op0;
4960 
4961       Value *X;
4962       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4963         APInt ValToCheck = Op0KnownZeroInverted;
4964         Type *XTy = X->getType();
4965         if (ValToCheck.isPowerOf2()) {
4966           // ((1 << X) & 8) == 0 -> X != 3
4967           // ((1 << X) & 8) != 0 -> X == 3
4968           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4969           auto NewPred = ICmpInst::getInversePredicate(Pred);
4970           return new ICmpInst(NewPred, X, CmpC);
4971         } else if ((++ValToCheck).isPowerOf2()) {
4972           // ((1 << X) & 7) == 0 -> X >= 3
4973           // ((1 << X) & 7) != 0 -> X  < 3
4974           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4975           auto NewPred =
4976               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4977           return new ICmpInst(NewPred, X, CmpC);
4978         }
4979       }
4980 
4981       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4982       const APInt *CI;
4983       if (Op0KnownZeroInverted.isOneValue() &&
4984           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4985         // ((8 >>u X) & 1) == 0 -> X != 3
4986         // ((8 >>u X) & 1) != 0 -> X == 3
4987         unsigned CmpVal = CI->countTrailingZeros();
4988         auto NewPred = ICmpInst::getInversePredicate(Pred);
4989         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4990       }
4991     }
4992     break;
4993   }
4994   case ICmpInst::ICMP_ULT: {
4995     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4996       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4997     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
4998       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4999     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5000       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5001 
5002     const APInt *CmpC;
5003     if (match(Op1, m_APInt(CmpC))) {
5004       // A <u C -> A == C-1 if min(A)+1 == C
5005       if (*CmpC == Op0Min + 1)
5006         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5007                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5008       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5009       // exceeds the log2 of C.
5010       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5011         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5012                             Constant::getNullValue(Op1->getType()));
5013     }
5014     break;
5015   }
5016   case ICmpInst::ICMP_UGT: {
5017     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5018       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5019     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5020       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5021     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5022       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5023 
5024     const APInt *CmpC;
5025     if (match(Op1, m_APInt(CmpC))) {
5026       // A >u C -> A == C+1 if max(a)-1 == C
5027       if (*CmpC == Op0Max - 1)
5028         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5029                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5030       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5031       // exceeds the log2 of C.
5032       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5033         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5034                             Constant::getNullValue(Op1->getType()));
5035     }
5036     break;
5037   }
5038   case ICmpInst::ICMP_SLT: {
5039     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5040       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5041     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5042       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5043     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5044       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5045     const APInt *CmpC;
5046     if (match(Op1, m_APInt(CmpC))) {
5047       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5048         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5049                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5050     }
5051     break;
5052   }
5053   case ICmpInst::ICMP_SGT: {
5054     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5055       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5056     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5057       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5058     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5059       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5060     const APInt *CmpC;
5061     if (match(Op1, m_APInt(CmpC))) {
5062       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5063         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5064                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5065     }
5066     break;
5067   }
5068   case ICmpInst::ICMP_SGE:
5069     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5070     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5071       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5072     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5073       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5074     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5075       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5076     break;
5077   case ICmpInst::ICMP_SLE:
5078     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5079     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5080       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5081     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5082       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5083     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5084       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5085     break;
5086   case ICmpInst::ICMP_UGE:
5087     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5088     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5089       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5090     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5091       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5092     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5093       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5094     break;
5095   case ICmpInst::ICMP_ULE:
5096     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5097     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5098       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5099     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5100       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5101     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5102       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5103     break;
5104   }
5105 
5106   // Turn a signed comparison into an unsigned one if both operands are known to
5107   // have the same sign.
5108   if (I.isSigned() &&
5109       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5110        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5111     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5112 
5113   return nullptr;
5114 }
5115 
5116 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5117 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5118                                                Constant *C) {
5119   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5120          "Only for relational integer predicates.");
5121 
5122   Type *Type = C->getType();
5123   bool IsSigned = ICmpInst::isSigned(Pred);
5124 
5125   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5126   bool WillIncrement =
5127       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5128 
5129   // Check if the constant operand can be safely incremented/decremented
5130   // without overflowing/underflowing.
5131   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5132     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5133   };
5134 
5135   // For scalars, SimplifyICmpInst should have already handled
5136   // the edge cases for us, so we just assert on them.
5137   // For vectors, we must handle the edge cases.
5138   if (isa<ConstantInt>(C)) {
5139     // A <= MAX -> TRUE ; A >= MIN -> TRUE
5140     assert(ConstantIsOk(cast<ConstantInt>(C)));
5141   } else if (Type->isVectorTy()) {
5142     // TODO? If the edge cases for vectors were guaranteed to be handled as they
5143     // are for scalar, we could remove the min/max checks. However, to do that,
5144     // we would have to use insertelement/shufflevector to replace edge values.
5145     unsigned NumElts = Type->getVectorNumElements();
5146     for (unsigned i = 0; i != NumElts; ++i) {
5147       Constant *Elt = C->getAggregateElement(i);
5148       if (!Elt)
5149         return llvm::None;
5150 
5151       if (isa<UndefValue>(Elt))
5152         continue;
5153 
5154       // Bail out if we can't determine if this constant is min/max or if we
5155       // know that this constant is min/max.
5156       auto *CI = dyn_cast<ConstantInt>(Elt);
5157       if (!CI || !ConstantIsOk(CI))
5158         return llvm::None;
5159     }
5160   } else {
5161     // ConstantExpr?
5162     return llvm::None;
5163   }
5164 
5165   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5166 
5167   // Increment or decrement the constant.
5168   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5169   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5170 
5171   return std::make_pair(NewPred, NewC);
5172 }
5173 
5174 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5175 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5176 /// allows them to be folded in visitICmpInst.
5177 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5178   ICmpInst::Predicate Pred = I.getPredicate();
5179   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5180       isCanonicalPredicate(Pred))
5181     return nullptr;
5182 
5183   Value *Op0 = I.getOperand(0);
5184   Value *Op1 = I.getOperand(1);
5185   auto *Op1C = dyn_cast<Constant>(Op1);
5186   if (!Op1C)
5187     return nullptr;
5188 
5189   auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5190   if (!FlippedStrictness)
5191     return nullptr;
5192 
5193   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5194 }
5195 
5196 /// Integer compare with boolean values can always be turned into bitwise ops.
5197 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5198                                          InstCombiner::BuilderTy &Builder) {
5199   Value *A = I.getOperand(0), *B = I.getOperand(1);
5200   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5201 
5202   // A boolean compared to true/false can be simplified to Op0/true/false in
5203   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5204   // Cases not handled by InstSimplify are always 'not' of Op0.
5205   if (match(B, m_Zero())) {
5206     switch (I.getPredicate()) {
5207       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5208       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5209       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5210         return BinaryOperator::CreateNot(A);
5211       default:
5212         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5213     }
5214   } else if (match(B, m_One())) {
5215     switch (I.getPredicate()) {
5216       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5217       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5218       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5219         return BinaryOperator::CreateNot(A);
5220       default:
5221         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5222     }
5223   }
5224 
5225   switch (I.getPredicate()) {
5226   default:
5227     llvm_unreachable("Invalid icmp instruction!");
5228   case ICmpInst::ICMP_EQ:
5229     // icmp eq i1 A, B -> ~(A ^ B)
5230     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5231 
5232   case ICmpInst::ICMP_NE:
5233     // icmp ne i1 A, B -> A ^ B
5234     return BinaryOperator::CreateXor(A, B);
5235 
5236   case ICmpInst::ICMP_UGT:
5237     // icmp ugt -> icmp ult
5238     std::swap(A, B);
5239     LLVM_FALLTHROUGH;
5240   case ICmpInst::ICMP_ULT:
5241     // icmp ult i1 A, B -> ~A & B
5242     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5243 
5244   case ICmpInst::ICMP_SGT:
5245     // icmp sgt -> icmp slt
5246     std::swap(A, B);
5247     LLVM_FALLTHROUGH;
5248   case ICmpInst::ICMP_SLT:
5249     // icmp slt i1 A, B -> A & ~B
5250     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5251 
5252   case ICmpInst::ICMP_UGE:
5253     // icmp uge -> icmp ule
5254     std::swap(A, B);
5255     LLVM_FALLTHROUGH;
5256   case ICmpInst::ICMP_ULE:
5257     // icmp ule i1 A, B -> ~A | B
5258     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5259 
5260   case ICmpInst::ICMP_SGE:
5261     // icmp sge -> icmp sle
5262     std::swap(A, B);
5263     LLVM_FALLTHROUGH;
5264   case ICmpInst::ICMP_SLE:
5265     // icmp sle i1 A, B -> A | ~B
5266     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5267   }
5268 }
5269 
5270 // Transform pattern like:
5271 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5272 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5273 // Into:
5274 //   (X l>> Y) != 0
5275 //   (X l>> Y) == 0
5276 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5277                                             InstCombiner::BuilderTy &Builder) {
5278   ICmpInst::Predicate Pred, NewPred;
5279   Value *X, *Y;
5280   if (match(&Cmp,
5281             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5282     // We want X to be the icmp's second operand, so swap predicate if it isn't.
5283     if (Cmp.getOperand(0) == X)
5284       Pred = Cmp.getSwappedPredicate();
5285 
5286     switch (Pred) {
5287     case ICmpInst::ICMP_ULE:
5288       NewPred = ICmpInst::ICMP_NE;
5289       break;
5290     case ICmpInst::ICMP_UGT:
5291       NewPred = ICmpInst::ICMP_EQ;
5292       break;
5293     default:
5294       return nullptr;
5295     }
5296   } else if (match(&Cmp, m_c_ICmp(Pred,
5297                                   m_OneUse(m_CombineOr(
5298                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5299                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5300                                             m_AllOnes()))),
5301                                   m_Value(X)))) {
5302     // The variant with 'add' is not canonical, (the variant with 'not' is)
5303     // we only get it because it has extra uses, and can't be canonicalized,
5304 
5305     // We want X to be the icmp's second operand, so swap predicate if it isn't.
5306     if (Cmp.getOperand(0) == X)
5307       Pred = Cmp.getSwappedPredicate();
5308 
5309     switch (Pred) {
5310     case ICmpInst::ICMP_ULT:
5311       NewPred = ICmpInst::ICMP_NE;
5312       break;
5313     case ICmpInst::ICMP_UGE:
5314       NewPred = ICmpInst::ICMP_EQ;
5315       break;
5316     default:
5317       return nullptr;
5318     }
5319   } else
5320     return nullptr;
5321 
5322   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5323   Constant *Zero = Constant::getNullValue(NewX->getType());
5324   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5325 }
5326 
5327 static Instruction *foldVectorCmp(CmpInst &Cmp,
5328                                   InstCombiner::BuilderTy &Builder) {
5329   // If both arguments of the cmp are shuffles that use the same mask and
5330   // shuffle within a single vector, move the shuffle after the cmp.
5331   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5332   Value *V1, *V2;
5333   Constant *M;
5334   if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) &&
5335       match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
5336       V1->getType() == V2->getType() &&
5337       (LHS->hasOneUse() || RHS->hasOneUse())) {
5338     // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5339     CmpInst::Predicate P = Cmp.getPredicate();
5340     Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2)
5341                                        : Builder.CreateFCmp(P, V1, V2);
5342     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5343   }
5344   return nullptr;
5345 }
5346 
5347 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5348   bool Changed = false;
5349   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5350   unsigned Op0Cplxity = getComplexity(Op0);
5351   unsigned Op1Cplxity = getComplexity(Op1);
5352 
5353   /// Orders the operands of the compare so that they are listed from most
5354   /// complex to least complex.  This puts constants before unary operators,
5355   /// before binary operators.
5356   if (Op0Cplxity < Op1Cplxity ||
5357       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5358     I.swapOperands();
5359     std::swap(Op0, Op1);
5360     Changed = true;
5361   }
5362 
5363   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1,
5364                                   SQ.getWithInstruction(&I)))
5365     return replaceInstUsesWith(I, V);
5366 
5367   // Comparing -val or val with non-zero is the same as just comparing val
5368   // ie, abs(val) != 0 -> val != 0
5369   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5370     Value *Cond, *SelectTrue, *SelectFalse;
5371     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5372                             m_Value(SelectFalse)))) {
5373       if (Value *V = dyn_castNegVal(SelectTrue)) {
5374         if (V == SelectFalse)
5375           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5376       }
5377       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5378         if (V == SelectTrue)
5379           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5380       }
5381     }
5382   }
5383 
5384   if (Op0->getType()->isIntOrIntVectorTy(1))
5385     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5386       return Res;
5387 
5388   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
5389     return NewICmp;
5390 
5391   if (Instruction *Res = foldICmpWithConstant(I))
5392     return Res;
5393 
5394   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5395     return Res;
5396 
5397   if (Instruction *Res = foldICmpUsingKnownBits(I))
5398     return Res;
5399 
5400   // Test if the ICmpInst instruction is used exclusively by a select as
5401   // part of a minimum or maximum operation. If so, refrain from doing
5402   // any other folding. This helps out other analyses which understand
5403   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5404   // and CodeGen. And in this case, at least one of the comparison
5405   // operands has at least one user besides the compare (the select),
5406   // which would often largely negate the benefit of folding anyway.
5407   //
5408   // Do the same for the other patterns recognized by matchSelectPattern.
5409   if (I.hasOneUse())
5410     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5411       Value *A, *B;
5412       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5413       if (SPR.Flavor != SPF_UNKNOWN)
5414         return nullptr;
5415     }
5416 
5417   // Do this after checking for min/max to prevent infinite looping.
5418   if (Instruction *Res = foldICmpWithZero(I))
5419     return Res;
5420 
5421   // FIXME: We only do this after checking for min/max to prevent infinite
5422   // looping caused by a reverse canonicalization of these patterns for min/max.
5423   // FIXME: The organization of folds is a mess. These would naturally go into
5424   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5425   // down here after the min/max restriction.
5426   ICmpInst::Predicate Pred = I.getPredicate();
5427   const APInt *C;
5428   if (match(Op1, m_APInt(C))) {
5429     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5430     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5431       Constant *Zero = Constant::getNullValue(Op0->getType());
5432       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5433     }
5434 
5435     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5436     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5437       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5438       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5439     }
5440   }
5441 
5442   if (Instruction *Res = foldICmpInstWithConstant(I))
5443     return Res;
5444 
5445   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5446     return Res;
5447 
5448   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5449   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5450     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5451       return NI;
5452   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5453     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5454                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5455       return NI;
5456 
5457   // Try to optimize equality comparisons against alloca-based pointers.
5458   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5459     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5460     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5461       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5462         return New;
5463     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5464       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5465         return New;
5466   }
5467 
5468   if (Instruction *Res = foldICmpBitCast(I, Builder))
5469     return Res;
5470 
5471   if (Instruction *R = foldICmpWithCastOp(I))
5472     return R;
5473 
5474   if (Instruction *Res = foldICmpBinOp(I))
5475     return Res;
5476 
5477   if (Instruction *Res = foldICmpWithMinMax(I))
5478     return Res;
5479 
5480   {
5481     Value *A, *B;
5482     // Transform (A & ~B) == 0 --> (A & B) != 0
5483     // and       (A & ~B) != 0 --> (A & B) == 0
5484     // if A is a power of 2.
5485     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5486         match(Op1, m_Zero()) &&
5487         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5488       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5489                           Op1);
5490 
5491     // ~X < ~Y --> Y < X
5492     // ~X < C -->  X > ~C
5493     if (match(Op0, m_Not(m_Value(A)))) {
5494       if (match(Op1, m_Not(m_Value(B))))
5495         return new ICmpInst(I.getPredicate(), B, A);
5496 
5497       const APInt *C;
5498       if (match(Op1, m_APInt(C)))
5499         return new ICmpInst(I.getSwappedPredicate(), A,
5500                             ConstantInt::get(Op1->getType(), ~(*C)));
5501     }
5502 
5503     Instruction *AddI = nullptr;
5504     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5505                                      m_Instruction(AddI))) &&
5506         isa<IntegerType>(A->getType())) {
5507       Value *Result;
5508       Constant *Overflow;
5509       if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B,
5510                                 *AddI, Result, Overflow)) {
5511         replaceInstUsesWith(*AddI, Result);
5512         return replaceInstUsesWith(I, Overflow);
5513       }
5514     }
5515 
5516     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5517     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5518       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5519         return R;
5520     }
5521     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5522       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5523         return R;
5524     }
5525   }
5526 
5527   if (Instruction *Res = foldICmpEquality(I))
5528     return Res;
5529 
5530   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5531   // an i1 which indicates whether or not we successfully did the swap.
5532   //
5533   // Replace comparisons between the old value and the expected value with the
5534   // indicator that 'cmpxchg' returns.
5535   //
5536   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5537   // spuriously fail.  In those cases, the old value may equal the expected
5538   // value but it is possible for the swap to not occur.
5539   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5540     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5541       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5542         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5543             !ACXI->isWeak())
5544           return ExtractValueInst::Create(ACXI, 1);
5545 
5546   {
5547     Value *X;
5548     const APInt *C;
5549     // icmp X+Cst, X
5550     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5551       return foldICmpAddOpConst(X, *C, I.getPredicate());
5552 
5553     // icmp X, X+Cst
5554     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5555       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5556   }
5557 
5558   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5559     return Res;
5560 
5561   if (I.getType()->isVectorTy())
5562     if (Instruction *Res = foldVectorCmp(I, Builder))
5563       return Res;
5564 
5565   return Changed ? &I : nullptr;
5566 }
5567 
5568 /// Fold fcmp ([us]itofp x, cst) if possible.
5569 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5570                                                 Constant *RHSC) {
5571   if (!isa<ConstantFP>(RHSC)) return nullptr;
5572   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5573 
5574   // Get the width of the mantissa.  We don't want to hack on conversions that
5575   // might lose information from the integer, e.g. "i64 -> float"
5576   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5577   if (MantissaWidth == -1) return nullptr;  // Unknown.
5578 
5579   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5580 
5581   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5582 
5583   if (I.isEquality()) {
5584     FCmpInst::Predicate P = I.getPredicate();
5585     bool IsExact = false;
5586     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5587     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5588 
5589     // If the floating point constant isn't an integer value, we know if we will
5590     // ever compare equal / not equal to it.
5591     if (!IsExact) {
5592       // TODO: Can never be -0.0 and other non-representable values
5593       APFloat RHSRoundInt(RHS);
5594       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5595       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
5596         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5597           return replaceInstUsesWith(I, Builder.getFalse());
5598 
5599         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5600         return replaceInstUsesWith(I, Builder.getTrue());
5601       }
5602     }
5603 
5604     // TODO: If the constant is exactly representable, is it always OK to do
5605     // equality compares as integer?
5606   }
5607 
5608   // Check to see that the input is converted from an integer type that is small
5609   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5610   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5611   unsigned InputSize = IntTy->getScalarSizeInBits();
5612 
5613   // Following test does NOT adjust InputSize downwards for signed inputs,
5614   // because the most negative value still requires all the mantissa bits
5615   // to distinguish it from one less than that value.
5616   if ((int)InputSize > MantissaWidth) {
5617     // Conversion would lose accuracy. Check if loss can impact comparison.
5618     int Exp = ilogb(RHS);
5619     if (Exp == APFloat::IEK_Inf) {
5620       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5621       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5622         // Conversion could create infinity.
5623         return nullptr;
5624     } else {
5625       // Note that if RHS is zero or NaN, then Exp is negative
5626       // and first condition is trivially false.
5627       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5628         // Conversion could affect comparison.
5629         return nullptr;
5630     }
5631   }
5632 
5633   // Otherwise, we can potentially simplify the comparison.  We know that it
5634   // will always come through as an integer value and we know the constant is
5635   // not a NAN (it would have been previously simplified).
5636   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5637 
5638   ICmpInst::Predicate Pred;
5639   switch (I.getPredicate()) {
5640   default: llvm_unreachable("Unexpected predicate!");
5641   case FCmpInst::FCMP_UEQ:
5642   case FCmpInst::FCMP_OEQ:
5643     Pred = ICmpInst::ICMP_EQ;
5644     break;
5645   case FCmpInst::FCMP_UGT:
5646   case FCmpInst::FCMP_OGT:
5647     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5648     break;
5649   case FCmpInst::FCMP_UGE:
5650   case FCmpInst::FCMP_OGE:
5651     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5652     break;
5653   case FCmpInst::FCMP_ULT:
5654   case FCmpInst::FCMP_OLT:
5655     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5656     break;
5657   case FCmpInst::FCMP_ULE:
5658   case FCmpInst::FCMP_OLE:
5659     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5660     break;
5661   case FCmpInst::FCMP_UNE:
5662   case FCmpInst::FCMP_ONE:
5663     Pred = ICmpInst::ICMP_NE;
5664     break;
5665   case FCmpInst::FCMP_ORD:
5666     return replaceInstUsesWith(I, Builder.getTrue());
5667   case FCmpInst::FCMP_UNO:
5668     return replaceInstUsesWith(I, Builder.getFalse());
5669   }
5670 
5671   // Now we know that the APFloat is a normal number, zero or inf.
5672 
5673   // See if the FP constant is too large for the integer.  For example,
5674   // comparing an i8 to 300.0.
5675   unsigned IntWidth = IntTy->getScalarSizeInBits();
5676 
5677   if (!LHSUnsigned) {
5678     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5679     // and large values.
5680     APFloat SMax(RHS.getSemantics());
5681     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5682                           APFloat::rmNearestTiesToEven);
5683     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
5684       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5685           Pred == ICmpInst::ICMP_SLE)
5686         return replaceInstUsesWith(I, Builder.getTrue());
5687       return replaceInstUsesWith(I, Builder.getFalse());
5688     }
5689   } else {
5690     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5691     // +INF and large values.
5692     APFloat UMax(RHS.getSemantics());
5693     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5694                           APFloat::rmNearestTiesToEven);
5695     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
5696       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5697           Pred == ICmpInst::ICMP_ULE)
5698         return replaceInstUsesWith(I, Builder.getTrue());
5699       return replaceInstUsesWith(I, Builder.getFalse());
5700     }
5701   }
5702 
5703   if (!LHSUnsigned) {
5704     // See if the RHS value is < SignedMin.
5705     APFloat SMin(RHS.getSemantics());
5706     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5707                           APFloat::rmNearestTiesToEven);
5708     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5709       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5710           Pred == ICmpInst::ICMP_SGE)
5711         return replaceInstUsesWith(I, Builder.getTrue());
5712       return replaceInstUsesWith(I, Builder.getFalse());
5713     }
5714   } else {
5715     // See if the RHS value is < UnsignedMin.
5716     APFloat SMin(RHS.getSemantics());
5717     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
5718                           APFloat::rmNearestTiesToEven);
5719     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
5720       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5721           Pred == ICmpInst::ICMP_UGE)
5722         return replaceInstUsesWith(I, Builder.getTrue());
5723       return replaceInstUsesWith(I, Builder.getFalse());
5724     }
5725   }
5726 
5727   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5728   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5729   // casting the FP value to the integer value and back, checking for equality.
5730   // Don't do this for zero, because -0.0 is not fractional.
5731   Constant *RHSInt = LHSUnsigned
5732     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5733     : ConstantExpr::getFPToSI(RHSC, IntTy);
5734   if (!RHS.isZero()) {
5735     bool Equal = LHSUnsigned
5736       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5737       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5738     if (!Equal) {
5739       // If we had a comparison against a fractional value, we have to adjust
5740       // the compare predicate and sometimes the value.  RHSC is rounded towards
5741       // zero at this point.
5742       switch (Pred) {
5743       default: llvm_unreachable("Unexpected integer comparison!");
5744       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5745         return replaceInstUsesWith(I, Builder.getTrue());
5746       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5747         return replaceInstUsesWith(I, Builder.getFalse());
5748       case ICmpInst::ICMP_ULE:
5749         // (float)int <= 4.4   --> int <= 4
5750         // (float)int <= -4.4  --> false
5751         if (RHS.isNegative())
5752           return replaceInstUsesWith(I, Builder.getFalse());
5753         break;
5754       case ICmpInst::ICMP_SLE:
5755         // (float)int <= 4.4   --> int <= 4
5756         // (float)int <= -4.4  --> int < -4
5757         if (RHS.isNegative())
5758           Pred = ICmpInst::ICMP_SLT;
5759         break;
5760       case ICmpInst::ICMP_ULT:
5761         // (float)int < -4.4   --> false
5762         // (float)int < 4.4    --> int <= 4
5763         if (RHS.isNegative())
5764           return replaceInstUsesWith(I, Builder.getFalse());
5765         Pred = ICmpInst::ICMP_ULE;
5766         break;
5767       case ICmpInst::ICMP_SLT:
5768         // (float)int < -4.4   --> int < -4
5769         // (float)int < 4.4    --> int <= 4
5770         if (!RHS.isNegative())
5771           Pred = ICmpInst::ICMP_SLE;
5772         break;
5773       case ICmpInst::ICMP_UGT:
5774         // (float)int > 4.4    --> int > 4
5775         // (float)int > -4.4   --> true
5776         if (RHS.isNegative())
5777           return replaceInstUsesWith(I, Builder.getTrue());
5778         break;
5779       case ICmpInst::ICMP_SGT:
5780         // (float)int > 4.4    --> int > 4
5781         // (float)int > -4.4   --> int >= -4
5782         if (RHS.isNegative())
5783           Pred = ICmpInst::ICMP_SGE;
5784         break;
5785       case ICmpInst::ICMP_UGE:
5786         // (float)int >= -4.4   --> true
5787         // (float)int >= 4.4    --> int > 4
5788         if (RHS.isNegative())
5789           return replaceInstUsesWith(I, Builder.getTrue());
5790         Pred = ICmpInst::ICMP_UGT;
5791         break;
5792       case ICmpInst::ICMP_SGE:
5793         // (float)int >= -4.4   --> int >= -4
5794         // (float)int >= 4.4    --> int > 4
5795         if (!RHS.isNegative())
5796           Pred = ICmpInst::ICMP_SGT;
5797         break;
5798       }
5799     }
5800   }
5801 
5802   // Lower this FP comparison into an appropriate integer version of the
5803   // comparison.
5804   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5805 }
5806 
5807 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5808 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5809                                               Constant *RHSC) {
5810   // When C is not 0.0 and infinities are not allowed:
5811   // (C / X) < 0.0 is a sign-bit test of X
5812   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5813   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5814   //
5815   // Proof:
5816   // Multiply (C / X) < 0.0 by X * X / C.
5817   // - X is non zero, if it is the flag 'ninf' is violated.
5818   // - C defines the sign of X * X * C. Thus it also defines whether to swap
5819   //   the predicate. C is also non zero by definition.
5820   //
5821   // Thus X * X / C is non zero and the transformation is valid. [qed]
5822 
5823   FCmpInst::Predicate Pred = I.getPredicate();
5824 
5825   // Check that predicates are valid.
5826   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5827       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5828     return nullptr;
5829 
5830   // Check that RHS operand is zero.
5831   if (!match(RHSC, m_AnyZeroFP()))
5832     return nullptr;
5833 
5834   // Check fastmath flags ('ninf').
5835   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5836     return nullptr;
5837 
5838   // Check the properties of the dividend. It must not be zero to avoid a
5839   // division by zero (see Proof).
5840   const APFloat *C;
5841   if (!match(LHSI->getOperand(0), m_APFloat(C)))
5842     return nullptr;
5843 
5844   if (C->isZero())
5845     return nullptr;
5846 
5847   // Get swapped predicate if necessary.
5848   if (C->isNegative())
5849     Pred = I.getSwappedPredicate();
5850 
5851   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5852 }
5853 
5854 /// Optimize fabs(X) compared with zero.
5855 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) {
5856   Value *X;
5857   if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5858       !match(I.getOperand(1), m_PosZeroFP()))
5859     return nullptr;
5860 
5861   auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5862     I->setPredicate(P);
5863     I->setOperand(0, X);
5864     return I;
5865   };
5866 
5867   switch (I.getPredicate()) {
5868   case FCmpInst::FCMP_UGE:
5869   case FCmpInst::FCMP_OLT:
5870     // fabs(X) >= 0.0 --> true
5871     // fabs(X) <  0.0 --> false
5872     llvm_unreachable("fcmp should have simplified");
5873 
5874   case FCmpInst::FCMP_OGT:
5875     // fabs(X) > 0.0 --> X != 0.0
5876     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
5877 
5878   case FCmpInst::FCMP_UGT:
5879     // fabs(X) u> 0.0 --> X u!= 0.0
5880     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
5881 
5882   case FCmpInst::FCMP_OLE:
5883     // fabs(X) <= 0.0 --> X == 0.0
5884     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
5885 
5886   case FCmpInst::FCMP_ULE:
5887     // fabs(X) u<= 0.0 --> X u== 0.0
5888     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
5889 
5890   case FCmpInst::FCMP_OGE:
5891     // fabs(X) >= 0.0 --> !isnan(X)
5892     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5893     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
5894 
5895   case FCmpInst::FCMP_ULT:
5896     // fabs(X) u< 0.0 --> isnan(X)
5897     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5898     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
5899 
5900   case FCmpInst::FCMP_OEQ:
5901   case FCmpInst::FCMP_UEQ:
5902   case FCmpInst::FCMP_ONE:
5903   case FCmpInst::FCMP_UNE:
5904   case FCmpInst::FCMP_ORD:
5905   case FCmpInst::FCMP_UNO:
5906     // Look through the fabs() because it doesn't change anything but the sign.
5907     // fabs(X) == 0.0 --> X == 0.0,
5908     // fabs(X) != 0.0 --> X != 0.0
5909     // isnan(fabs(X)) --> isnan(X)
5910     // !isnan(fabs(X) --> !isnan(X)
5911     return replacePredAndOp0(&I, I.getPredicate(), X);
5912 
5913   default:
5914     return nullptr;
5915   }
5916 }
5917 
5918 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5919   bool Changed = false;
5920 
5921   /// Orders the operands of the compare so that they are listed from most
5922   /// complex to least complex.  This puts constants before unary operators,
5923   /// before binary operators.
5924   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
5925     I.swapOperands();
5926     Changed = true;
5927   }
5928 
5929   const CmpInst::Predicate Pred = I.getPredicate();
5930   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5931   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
5932                                   SQ.getWithInstruction(&I)))
5933     return replaceInstUsesWith(I, V);
5934 
5935   // Simplify 'fcmp pred X, X'
5936   Type *OpType = Op0->getType();
5937   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
5938   if (Op0 == Op1) {
5939     switch (Pred) {
5940       default: break;
5941     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
5942     case FCmpInst::FCMP_ULT:    // True if unordered or less than
5943     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
5944     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
5945       // Canonicalize these to be 'fcmp uno %X, 0.0'.
5946       I.setPredicate(FCmpInst::FCMP_UNO);
5947       I.setOperand(1, Constant::getNullValue(OpType));
5948       return &I;
5949 
5950     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
5951     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
5952     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
5953     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
5954       // Canonicalize these to be 'fcmp ord %X, 0.0'.
5955       I.setPredicate(FCmpInst::FCMP_ORD);
5956       I.setOperand(1, Constant::getNullValue(OpType));
5957       return &I;
5958     }
5959   }
5960 
5961   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
5962   // then canonicalize the operand to 0.0.
5963   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
5964     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) {
5965       I.setOperand(0, ConstantFP::getNullValue(OpType));
5966       return &I;
5967     }
5968     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) {
5969       I.setOperand(1, ConstantFP::getNullValue(OpType));
5970       return &I;
5971     }
5972   }
5973 
5974   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
5975   Value *X, *Y;
5976   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
5977     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
5978 
5979   // Test if the FCmpInst instruction is used exclusively by a select as
5980   // part of a minimum or maximum operation. If so, refrain from doing
5981   // any other folding. This helps out other analyses which understand
5982   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5983   // and CodeGen. And in this case, at least one of the comparison
5984   // operands has at least one user besides the compare (the select),
5985   // which would often largely negate the benefit of folding anyway.
5986   if (I.hasOneUse())
5987     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5988       Value *A, *B;
5989       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5990       if (SPR.Flavor != SPF_UNKNOWN)
5991         return nullptr;
5992     }
5993 
5994   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
5995   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
5996   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) {
5997     I.setOperand(1, ConstantFP::getNullValue(OpType));
5998     return &I;
5999   }
6000 
6001   // Handle fcmp with instruction LHS and constant RHS.
6002   Instruction *LHSI;
6003   Constant *RHSC;
6004   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6005     switch (LHSI->getOpcode()) {
6006     case Instruction::PHI:
6007       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6008       // block.  If in the same block, we're encouraging jump threading.  If
6009       // not, we are just pessimizing the code by making an i1 phi.
6010       if (LHSI->getParent() == I.getParent())
6011         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6012           return NV;
6013       break;
6014     case Instruction::SIToFP:
6015     case Instruction::UIToFP:
6016       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6017         return NV;
6018       break;
6019     case Instruction::FDiv:
6020       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6021         return NV;
6022       break;
6023     case Instruction::Load:
6024       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6025         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6026           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6027               !cast<LoadInst>(LHSI)->isVolatile())
6028             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6029               return Res;
6030       break;
6031   }
6032   }
6033 
6034   if (Instruction *R = foldFabsWithFcmpZero(I))
6035     return R;
6036 
6037   if (match(Op0, m_FNeg(m_Value(X)))) {
6038     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6039     Constant *C;
6040     if (match(Op1, m_Constant(C))) {
6041       Constant *NegC = ConstantExpr::getFNeg(C);
6042       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6043     }
6044   }
6045 
6046   if (match(Op0, m_FPExt(m_Value(X)))) {
6047     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6048     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6049       return new FCmpInst(Pred, X, Y, "", &I);
6050 
6051     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6052     const APFloat *C;
6053     if (match(Op1, m_APFloat(C))) {
6054       const fltSemantics &FPSem =
6055           X->getType()->getScalarType()->getFltSemantics();
6056       bool Lossy;
6057       APFloat TruncC = *C;
6058       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6059 
6060       // Avoid lossy conversions and denormals.
6061       // Zero is a special case that's OK to convert.
6062       APFloat Fabs = TruncC;
6063       Fabs.clearSign();
6064       if (!Lossy &&
6065           ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) !=
6066             APFloat::cmpLessThan) || Fabs.isZero())) {
6067         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6068         return new FCmpInst(Pred, X, NewC, "", &I);
6069       }
6070     }
6071   }
6072 
6073   if (I.getType()->isVectorTy())
6074     if (Instruction *Res = foldVectorCmp(I, Builder))
6075       return Res;
6076 
6077   return Changed ? &I : nullptr;
6078 }
6079