1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Given an exploded icmp instruction, return true if the comparison only 73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 74 /// result of the comparison is true when the input value is signed. 75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 76 bool &TrueIfSigned) { 77 switch (Pred) { 78 case ICmpInst::ICMP_SLT: // True if LHS s< 0 79 TrueIfSigned = true; 80 return RHS.isNullValue(); 81 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 82 TrueIfSigned = true; 83 return RHS.isAllOnesValue(); 84 case ICmpInst::ICMP_SGT: // True if LHS s> -1 85 TrueIfSigned = false; 86 return RHS.isAllOnesValue(); 87 case ICmpInst::ICMP_UGT: 88 // True if LHS u> RHS and RHS == high-bit-mask - 1 89 TrueIfSigned = true; 90 return RHS.isMaxSignedValue(); 91 case ICmpInst::ICMP_UGE: 92 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 93 TrueIfSigned = true; 94 return RHS.isSignMask(); 95 default: 96 return false; 97 } 98 } 99 100 /// Returns true if the exploded icmp can be expressed as a signed comparison 101 /// to zero and updates the predicate accordingly. 102 /// The signedness of the comparison is preserved. 103 /// TODO: Refactor with decomposeBitTestICmp()? 104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 105 if (!ICmpInst::isSigned(Pred)) 106 return false; 107 108 if (C.isNullValue()) 109 return ICmpInst::isRelational(Pred); 110 111 if (C.isOneValue()) { 112 if (Pred == ICmpInst::ICMP_SLT) { 113 Pred = ICmpInst::ICMP_SLE; 114 return true; 115 } 116 } else if (C.isAllOnesValue()) { 117 if (Pred == ICmpInst::ICMP_SGT) { 118 Pred = ICmpInst::ICMP_SGE; 119 return true; 120 } 121 } 122 123 return false; 124 } 125 126 /// Given a signed integer type and a set of known zero and one bits, compute 127 /// the maximum and minimum values that could have the specified known zero and 128 /// known one bits, returning them in Min/Max. 129 /// TODO: Move to method on KnownBits struct? 130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 131 APInt &Min, APInt &Max) { 132 assert(Known.getBitWidth() == Min.getBitWidth() && 133 Known.getBitWidth() == Max.getBitWidth() && 134 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 135 APInt UnknownBits = ~(Known.Zero|Known.One); 136 137 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 138 // bit if it is unknown. 139 Min = Known.One; 140 Max = Known.One|UnknownBits; 141 142 if (UnknownBits.isNegative()) { // Sign bit is unknown 143 Min.setSignBit(); 144 Max.clearSignBit(); 145 } 146 } 147 148 /// Given an unsigned integer type and a set of known zero and one bits, compute 149 /// the maximum and minimum values that could have the specified known zero and 150 /// known one bits, returning them in Min/Max. 151 /// TODO: Move to method on KnownBits struct? 152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 153 APInt &Min, APInt &Max) { 154 assert(Known.getBitWidth() == Min.getBitWidth() && 155 Known.getBitWidth() == Max.getBitWidth() && 156 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 157 APInt UnknownBits = ~(Known.Zero|Known.One); 158 159 // The minimum value is when the unknown bits are all zeros. 160 Min = Known.One; 161 // The maximum value is when the unknown bits are all ones. 162 Max = Known.One|UnknownBits; 163 } 164 165 /// This is called when we see this pattern: 166 /// cmp pred (load (gep GV, ...)), cmpcst 167 /// where GV is a global variable with a constant initializer. Try to simplify 168 /// this into some simple computation that does not need the load. For example 169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 170 /// 171 /// If AndCst is non-null, then the loaded value is masked with that constant 172 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 174 GlobalVariable *GV, 175 CmpInst &ICI, 176 ConstantInt *AndCst) { 177 Constant *Init = GV->getInitializer(); 178 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 179 return nullptr; 180 181 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 182 // Don't blow up on huge arrays. 183 if (ArrayElementCount > MaxArraySizeForCombine) 184 return nullptr; 185 186 // There are many forms of this optimization we can handle, for now, just do 187 // the simple index into a single-dimensional array. 188 // 189 // Require: GEP GV, 0, i {{, constant indices}} 190 if (GEP->getNumOperands() < 3 || 191 !isa<ConstantInt>(GEP->getOperand(1)) || 192 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 193 isa<Constant>(GEP->getOperand(2))) 194 return nullptr; 195 196 // Check that indices after the variable are constants and in-range for the 197 // type they index. Collect the indices. This is typically for arrays of 198 // structs. 199 SmallVector<unsigned, 4> LaterIndices; 200 201 Type *EltTy = Init->getType()->getArrayElementType(); 202 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 203 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 204 if (!Idx) return nullptr; // Variable index. 205 206 uint64_t IdxVal = Idx->getZExtValue(); 207 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 208 209 if (StructType *STy = dyn_cast<StructType>(EltTy)) 210 EltTy = STy->getElementType(IdxVal); 211 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 212 if (IdxVal >= ATy->getNumElements()) return nullptr; 213 EltTy = ATy->getElementType(); 214 } else { 215 return nullptr; // Unknown type. 216 } 217 218 LaterIndices.push_back(IdxVal); 219 } 220 221 enum { Overdefined = -3, Undefined = -2 }; 222 223 // Variables for our state machines. 224 225 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 226 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 227 // and 87 is the second (and last) index. FirstTrueElement is -2 when 228 // undefined, otherwise set to the first true element. SecondTrueElement is 229 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 230 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 231 232 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 233 // form "i != 47 & i != 87". Same state transitions as for true elements. 234 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 235 236 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 237 /// define a state machine that triggers for ranges of values that the index 238 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 239 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 240 /// index in the range (inclusive). We use -2 for undefined here because we 241 /// use relative comparisons and don't want 0-1 to match -1. 242 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 243 244 // MagicBitvector - This is a magic bitvector where we set a bit if the 245 // comparison is true for element 'i'. If there are 64 elements or less in 246 // the array, this will fully represent all the comparison results. 247 uint64_t MagicBitvector = 0; 248 249 // Scan the array and see if one of our patterns matches. 250 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 251 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 252 Constant *Elt = Init->getAggregateElement(i); 253 if (!Elt) return nullptr; 254 255 // If this is indexing an array of structures, get the structure element. 256 if (!LaterIndices.empty()) 257 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 258 259 // If the element is masked, handle it. 260 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 261 262 // Find out if the comparison would be true or false for the i'th element. 263 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 264 CompareRHS, DL, &TLI); 265 // If the result is undef for this element, ignore it. 266 if (isa<UndefValue>(C)) { 267 // Extend range state machines to cover this element in case there is an 268 // undef in the middle of the range. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 if (FalseRangeEnd == (int)i-1) 272 FalseRangeEnd = i; 273 continue; 274 } 275 276 // If we can't compute the result for any of the elements, we have to give 277 // up evaluating the entire conditional. 278 if (!isa<ConstantInt>(C)) return nullptr; 279 280 // Otherwise, we know if the comparison is true or false for this element, 281 // update our state machines. 282 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 283 284 // State machine for single/double/range index comparison. 285 if (IsTrueForElt) { 286 // Update the TrueElement state machine. 287 if (FirstTrueElement == Undefined) 288 FirstTrueElement = TrueRangeEnd = i; // First true element. 289 else { 290 // Update double-compare state machine. 291 if (SecondTrueElement == Undefined) 292 SecondTrueElement = i; 293 else 294 SecondTrueElement = Overdefined; 295 296 // Update range state machine. 297 if (TrueRangeEnd == (int)i-1) 298 TrueRangeEnd = i; 299 else 300 TrueRangeEnd = Overdefined; 301 } 302 } else { 303 // Update the FalseElement state machine. 304 if (FirstFalseElement == Undefined) 305 FirstFalseElement = FalseRangeEnd = i; // First false element. 306 else { 307 // Update double-compare state machine. 308 if (SecondFalseElement == Undefined) 309 SecondFalseElement = i; 310 else 311 SecondFalseElement = Overdefined; 312 313 // Update range state machine. 314 if (FalseRangeEnd == (int)i-1) 315 FalseRangeEnd = i; 316 else 317 FalseRangeEnd = Overdefined; 318 } 319 } 320 321 // If this element is in range, update our magic bitvector. 322 if (i < 64 && IsTrueForElt) 323 MagicBitvector |= 1ULL << i; 324 325 // If all of our states become overdefined, bail out early. Since the 326 // predicate is expensive, only check it every 8 elements. This is only 327 // really useful for really huge arrays. 328 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 329 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 330 FalseRangeEnd == Overdefined) 331 return nullptr; 332 } 333 334 // Now that we've scanned the entire array, emit our new comparison(s). We 335 // order the state machines in complexity of the generated code. 336 Value *Idx = GEP->getOperand(2); 337 338 // If the index is larger than the pointer size of the target, truncate the 339 // index down like the GEP would do implicitly. We don't have to do this for 340 // an inbounds GEP because the index can't be out of range. 341 if (!GEP->isInBounds()) { 342 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 343 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 344 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 345 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 346 } 347 348 // If the comparison is only true for one or two elements, emit direct 349 // comparisons. 350 if (SecondTrueElement != Overdefined) { 351 // None true -> false. 352 if (FirstTrueElement == Undefined) 353 return replaceInstUsesWith(ICI, Builder.getFalse()); 354 355 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 356 357 // True for one element -> 'i == 47'. 358 if (SecondTrueElement == Undefined) 359 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 360 361 // True for two elements -> 'i == 47 | i == 72'. 362 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 363 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 364 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 365 return BinaryOperator::CreateOr(C1, C2); 366 } 367 368 // If the comparison is only false for one or two elements, emit direct 369 // comparisons. 370 if (SecondFalseElement != Overdefined) { 371 // None false -> true. 372 if (FirstFalseElement == Undefined) 373 return replaceInstUsesWith(ICI, Builder.getTrue()); 374 375 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 376 377 // False for one element -> 'i != 47'. 378 if (SecondFalseElement == Undefined) 379 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 380 381 // False for two elements -> 'i != 47 & i != 72'. 382 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 383 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 384 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 385 return BinaryOperator::CreateAnd(C1, C2); 386 } 387 388 // If the comparison can be replaced with a range comparison for the elements 389 // where it is true, emit the range check. 390 if (TrueRangeEnd != Overdefined) { 391 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 392 393 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 394 if (FirstTrueElement) { 395 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 396 Idx = Builder.CreateAdd(Idx, Offs); 397 } 398 399 Value *End = ConstantInt::get(Idx->getType(), 400 TrueRangeEnd-FirstTrueElement+1); 401 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 402 } 403 404 // False range check. 405 if (FalseRangeEnd != Overdefined) { 406 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 407 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 408 if (FirstFalseElement) { 409 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 410 Idx = Builder.CreateAdd(Idx, Offs); 411 } 412 413 Value *End = ConstantInt::get(Idx->getType(), 414 FalseRangeEnd-FirstFalseElement); 415 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 416 } 417 418 // If a magic bitvector captures the entire comparison state 419 // of this load, replace it with computation that does: 420 // ((magic_cst >> i) & 1) != 0 421 { 422 Type *Ty = nullptr; 423 424 // Look for an appropriate type: 425 // - The type of Idx if the magic fits 426 // - The smallest fitting legal type 427 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 428 Ty = Idx->getType(); 429 else 430 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 431 432 if (Ty) { 433 Value *V = Builder.CreateIntCast(Idx, Ty, false); 434 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 435 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 436 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 437 } 438 } 439 440 return nullptr; 441 } 442 443 /// Return a value that can be used to compare the *offset* implied by a GEP to 444 /// zero. For example, if we have &A[i], we want to return 'i' for 445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 446 /// are involved. The above expression would also be legal to codegen as 447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 448 /// This latter form is less amenable to optimization though, and we are allowed 449 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 450 /// 451 /// If we can't emit an optimized form for this expression, this returns null. 452 /// 453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 454 const DataLayout &DL) { 455 gep_type_iterator GTI = gep_type_begin(GEP); 456 457 // Check to see if this gep only has a single variable index. If so, and if 458 // any constant indices are a multiple of its scale, then we can compute this 459 // in terms of the scale of the variable index. For example, if the GEP 460 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 461 // because the expression will cross zero at the same point. 462 unsigned i, e = GEP->getNumOperands(); 463 int64_t Offset = 0; 464 for (i = 1; i != e; ++i, ++GTI) { 465 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 466 // Compute the aggregate offset of constant indices. 467 if (CI->isZero()) continue; 468 469 // Handle a struct index, which adds its field offset to the pointer. 470 if (StructType *STy = GTI.getStructTypeOrNull()) { 471 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 472 } else { 473 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 474 Offset += Size*CI->getSExtValue(); 475 } 476 } else { 477 // Found our variable index. 478 break; 479 } 480 } 481 482 // If there are no variable indices, we must have a constant offset, just 483 // evaluate it the general way. 484 if (i == e) return nullptr; 485 486 Value *VariableIdx = GEP->getOperand(i); 487 // Determine the scale factor of the variable element. For example, this is 488 // 4 if the variable index is into an array of i32. 489 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 490 491 // Verify that there are no other variable indices. If so, emit the hard way. 492 for (++i, ++GTI; i != e; ++i, ++GTI) { 493 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 494 if (!CI) return nullptr; 495 496 // Compute the aggregate offset of constant indices. 497 if (CI->isZero()) continue; 498 499 // Handle a struct index, which adds its field offset to the pointer. 500 if (StructType *STy = GTI.getStructTypeOrNull()) { 501 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 502 } else { 503 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 504 Offset += Size*CI->getSExtValue(); 505 } 506 } 507 508 // Okay, we know we have a single variable index, which must be a 509 // pointer/array/vector index. If there is no offset, life is simple, return 510 // the index. 511 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 512 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 513 if (Offset == 0) { 514 // Cast to intptrty in case a truncation occurs. If an extension is needed, 515 // we don't need to bother extending: the extension won't affect where the 516 // computation crosses zero. 517 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 518 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 519 } 520 return VariableIdx; 521 } 522 523 // Otherwise, there is an index. The computation we will do will be modulo 524 // the pointer size. 525 Offset = SignExtend64(Offset, IntPtrWidth); 526 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 527 528 // To do this transformation, any constant index must be a multiple of the 529 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 530 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 531 // multiple of the variable scale. 532 int64_t NewOffs = Offset / (int64_t)VariableScale; 533 if (Offset != NewOffs*(int64_t)VariableScale) 534 return nullptr; 535 536 // Okay, we can do this evaluation. Start by converting the index to intptr. 537 if (VariableIdx->getType() != IntPtrTy) 538 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 539 true /*Signed*/); 540 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 541 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 542 } 543 544 /// Returns true if we can rewrite Start as a GEP with pointer Base 545 /// and some integer offset. The nodes that need to be re-written 546 /// for this transformation will be added to Explored. 547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 548 const DataLayout &DL, 549 SetVector<Value *> &Explored) { 550 SmallVector<Value *, 16> WorkList(1, Start); 551 Explored.insert(Base); 552 553 // The following traversal gives us an order which can be used 554 // when doing the final transformation. Since in the final 555 // transformation we create the PHI replacement instructions first, 556 // we don't have to get them in any particular order. 557 // 558 // However, for other instructions we will have to traverse the 559 // operands of an instruction first, which means that we have to 560 // do a post-order traversal. 561 while (!WorkList.empty()) { 562 SetVector<PHINode *> PHIs; 563 564 while (!WorkList.empty()) { 565 if (Explored.size() >= 100) 566 return false; 567 568 Value *V = WorkList.back(); 569 570 if (Explored.count(V) != 0) { 571 WorkList.pop_back(); 572 continue; 573 } 574 575 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 576 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 577 // We've found some value that we can't explore which is different from 578 // the base. Therefore we can't do this transformation. 579 return false; 580 581 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 582 auto *CI = dyn_cast<CastInst>(V); 583 if (!CI->isNoopCast(DL)) 584 return false; 585 586 if (Explored.count(CI->getOperand(0)) == 0) 587 WorkList.push_back(CI->getOperand(0)); 588 } 589 590 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 591 // We're limiting the GEP to having one index. This will preserve 592 // the original pointer type. We could handle more cases in the 593 // future. 594 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 595 GEP->getType() != Start->getType()) 596 return false; 597 598 if (Explored.count(GEP->getOperand(0)) == 0) 599 WorkList.push_back(GEP->getOperand(0)); 600 } 601 602 if (WorkList.back() == V) { 603 WorkList.pop_back(); 604 // We've finished visiting this node, mark it as such. 605 Explored.insert(V); 606 } 607 608 if (auto *PN = dyn_cast<PHINode>(V)) { 609 // We cannot transform PHIs on unsplittable basic blocks. 610 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 611 return false; 612 Explored.insert(PN); 613 PHIs.insert(PN); 614 } 615 } 616 617 // Explore the PHI nodes further. 618 for (auto *PN : PHIs) 619 for (Value *Op : PN->incoming_values()) 620 if (Explored.count(Op) == 0) 621 WorkList.push_back(Op); 622 } 623 624 // Make sure that we can do this. Since we can't insert GEPs in a basic 625 // block before a PHI node, we can't easily do this transformation if 626 // we have PHI node users of transformed instructions. 627 for (Value *Val : Explored) { 628 for (Value *Use : Val->uses()) { 629 630 auto *PHI = dyn_cast<PHINode>(Use); 631 auto *Inst = dyn_cast<Instruction>(Val); 632 633 if (Inst == Base || Inst == PHI || !Inst || !PHI || 634 Explored.count(PHI) == 0) 635 continue; 636 637 if (PHI->getParent() == Inst->getParent()) 638 return false; 639 } 640 } 641 return true; 642 } 643 644 // Sets the appropriate insert point on Builder where we can add 645 // a replacement Instruction for V (if that is possible). 646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 647 bool Before = true) { 648 if (auto *PHI = dyn_cast<PHINode>(V)) { 649 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 650 return; 651 } 652 if (auto *I = dyn_cast<Instruction>(V)) { 653 if (!Before) 654 I = &*std::next(I->getIterator()); 655 Builder.SetInsertPoint(I); 656 return; 657 } 658 if (auto *A = dyn_cast<Argument>(V)) { 659 // Set the insertion point in the entry block. 660 BasicBlock &Entry = A->getParent()->getEntryBlock(); 661 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 662 return; 663 } 664 // Otherwise, this is a constant and we don't need to set a new 665 // insertion point. 666 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 667 } 668 669 /// Returns a re-written value of Start as an indexed GEP using Base as a 670 /// pointer. 671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 672 const DataLayout &DL, 673 SetVector<Value *> &Explored) { 674 // Perform all the substitutions. This is a bit tricky because we can 675 // have cycles in our use-def chains. 676 // 1. Create the PHI nodes without any incoming values. 677 // 2. Create all the other values. 678 // 3. Add the edges for the PHI nodes. 679 // 4. Emit GEPs to get the original pointers. 680 // 5. Remove the original instructions. 681 Type *IndexType = IntegerType::get( 682 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 683 684 DenseMap<Value *, Value *> NewInsts; 685 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 686 687 // Create the new PHI nodes, without adding any incoming values. 688 for (Value *Val : Explored) { 689 if (Val == Base) 690 continue; 691 // Create empty phi nodes. This avoids cyclic dependencies when creating 692 // the remaining instructions. 693 if (auto *PHI = dyn_cast<PHINode>(Val)) 694 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 695 PHI->getName() + ".idx", PHI); 696 } 697 IRBuilder<> Builder(Base->getContext()); 698 699 // Create all the other instructions. 700 for (Value *Val : Explored) { 701 702 if (NewInsts.find(Val) != NewInsts.end()) 703 continue; 704 705 if (auto *CI = dyn_cast<CastInst>(Val)) { 706 // Don't get rid of the intermediate variable here; the store can grow 707 // the map which will invalidate the reference to the input value. 708 Value *V = NewInsts[CI->getOperand(0)]; 709 NewInsts[CI] = V; 710 continue; 711 } 712 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 713 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 714 : GEP->getOperand(1); 715 setInsertionPoint(Builder, GEP); 716 // Indices might need to be sign extended. GEPs will magically do 717 // this, but we need to do it ourselves here. 718 if (Index->getType()->getScalarSizeInBits() != 719 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 720 Index = Builder.CreateSExtOrTrunc( 721 Index, NewInsts[GEP->getOperand(0)]->getType(), 722 GEP->getOperand(0)->getName() + ".sext"); 723 } 724 725 auto *Op = NewInsts[GEP->getOperand(0)]; 726 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 727 NewInsts[GEP] = Index; 728 else 729 NewInsts[GEP] = Builder.CreateNSWAdd( 730 Op, Index, GEP->getOperand(0)->getName() + ".add"); 731 continue; 732 } 733 if (isa<PHINode>(Val)) 734 continue; 735 736 llvm_unreachable("Unexpected instruction type"); 737 } 738 739 // Add the incoming values to the PHI nodes. 740 for (Value *Val : Explored) { 741 if (Val == Base) 742 continue; 743 // All the instructions have been created, we can now add edges to the 744 // phi nodes. 745 if (auto *PHI = dyn_cast<PHINode>(Val)) { 746 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 747 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 748 Value *NewIncoming = PHI->getIncomingValue(I); 749 750 if (NewInsts.find(NewIncoming) != NewInsts.end()) 751 NewIncoming = NewInsts[NewIncoming]; 752 753 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 754 } 755 } 756 } 757 758 for (Value *Val : Explored) { 759 if (Val == Base) 760 continue; 761 762 // Depending on the type, for external users we have to emit 763 // a GEP or a GEP + ptrtoint. 764 setInsertionPoint(Builder, Val, false); 765 766 // If required, create an inttoptr instruction for Base. 767 Value *NewBase = Base; 768 if (!Base->getType()->isPointerTy()) 769 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 770 Start->getName() + "to.ptr"); 771 772 Value *GEP = Builder.CreateInBoundsGEP( 773 Start->getType()->getPointerElementType(), NewBase, 774 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 775 776 if (!Val->getType()->isPointerTy()) { 777 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 778 Val->getName() + ".conv"); 779 GEP = Cast; 780 } 781 Val->replaceAllUsesWith(GEP); 782 } 783 784 return NewInsts[Start]; 785 } 786 787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 788 /// the input Value as a constant indexed GEP. Returns a pair containing 789 /// the GEPs Pointer and Index. 790 static std::pair<Value *, Value *> 791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 792 Type *IndexType = IntegerType::get(V->getContext(), 793 DL.getIndexTypeSizeInBits(V->getType())); 794 795 Constant *Index = ConstantInt::getNullValue(IndexType); 796 while (true) { 797 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 798 // We accept only inbouds GEPs here to exclude the possibility of 799 // overflow. 800 if (!GEP->isInBounds()) 801 break; 802 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 803 GEP->getType() == V->getType()) { 804 V = GEP->getOperand(0); 805 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 806 Index = ConstantExpr::getAdd( 807 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 808 continue; 809 } 810 break; 811 } 812 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 813 if (!CI->isNoopCast(DL)) 814 break; 815 V = CI->getOperand(0); 816 continue; 817 } 818 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 819 if (!CI->isNoopCast(DL)) 820 break; 821 V = CI->getOperand(0); 822 continue; 823 } 824 break; 825 } 826 return {V, Index}; 827 } 828 829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 830 /// We can look through PHIs, GEPs and casts in order to determine a common base 831 /// between GEPLHS and RHS. 832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 833 ICmpInst::Predicate Cond, 834 const DataLayout &DL) { 835 // FIXME: Support vector of pointers. 836 if (GEPLHS->getType()->isVectorTy()) 837 return nullptr; 838 839 if (!GEPLHS->hasAllConstantIndices()) 840 return nullptr; 841 842 // Make sure the pointers have the same type. 843 if (GEPLHS->getType() != RHS->getType()) 844 return nullptr; 845 846 Value *PtrBase, *Index; 847 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 848 849 // The set of nodes that will take part in this transformation. 850 SetVector<Value *> Nodes; 851 852 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 853 return nullptr; 854 855 // We know we can re-write this as 856 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 857 // Since we've only looked through inbouds GEPs we know that we 858 // can't have overflow on either side. We can therefore re-write 859 // this as: 860 // OFFSET1 cmp OFFSET2 861 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 862 863 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 864 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 865 // offset. Since Index is the offset of LHS to the base pointer, we will now 866 // compare the offsets instead of comparing the pointers. 867 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 868 } 869 870 /// Fold comparisons between a GEP instruction and something else. At this point 871 /// we know that the GEP is on the LHS of the comparison. 872 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 873 ICmpInst::Predicate Cond, 874 Instruction &I) { 875 // Don't transform signed compares of GEPs into index compares. Even if the 876 // GEP is inbounds, the final add of the base pointer can have signed overflow 877 // and would change the result of the icmp. 878 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 879 // the maximum signed value for the pointer type. 880 if (ICmpInst::isSigned(Cond)) 881 return nullptr; 882 883 // Look through bitcasts and addrspacecasts. We do not however want to remove 884 // 0 GEPs. 885 if (!isa<GetElementPtrInst>(RHS)) 886 RHS = RHS->stripPointerCasts(); 887 888 Value *PtrBase = GEPLHS->getOperand(0); 889 // FIXME: Support vector pointer GEPs. 890 if (PtrBase == RHS && GEPLHS->isInBounds() && 891 !GEPLHS->getType()->isVectorTy()) { 892 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 893 // This transformation (ignoring the base and scales) is valid because we 894 // know pointers can't overflow since the gep is inbounds. See if we can 895 // output an optimized form. 896 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 897 898 // If not, synthesize the offset the hard way. 899 if (!Offset) 900 Offset = EmitGEPOffset(GEPLHS); 901 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 902 Constant::getNullValue(Offset->getType())); 903 } 904 905 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 906 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 907 !NullPointerIsDefined(I.getFunction(), 908 RHS->getType()->getPointerAddressSpace())) { 909 // For most address spaces, an allocation can't be placed at null, but null 910 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 911 // the only valid inbounds address derived from null, is null itself. 912 // Thus, we have four cases to consider: 913 // 1) Base == nullptr, Offset == 0 -> inbounds, null 914 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 915 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 916 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 917 // 918 // (Note if we're indexing a type of size 0, that simply collapses into one 919 // of the buckets above.) 920 // 921 // In general, we're allowed to make values less poison (i.e. remove 922 // sources of full UB), so in this case, we just select between the two 923 // non-poison cases (1 and 4 above). 924 // 925 // For vectors, we apply the same reasoning on a per-lane basis. 926 auto *Base = GEPLHS->getPointerOperand(); 927 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 928 int NumElts = GEPLHS->getType()->getVectorNumElements(); 929 Base = Builder.CreateVectorSplat(NumElts, Base); 930 } 931 return new ICmpInst(Cond, Base, 932 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 933 cast<Constant>(RHS), Base->getType())); 934 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 935 // If the base pointers are different, but the indices are the same, just 936 // compare the base pointer. 937 if (PtrBase != GEPRHS->getOperand(0)) { 938 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 939 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 940 GEPRHS->getOperand(0)->getType(); 941 if (IndicesTheSame) 942 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 943 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 944 IndicesTheSame = false; 945 break; 946 } 947 948 // If all indices are the same, just compare the base pointers. 949 Type *BaseType = GEPLHS->getOperand(0)->getType(); 950 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 951 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 952 953 // If we're comparing GEPs with two base pointers that only differ in type 954 // and both GEPs have only constant indices or just one use, then fold 955 // the compare with the adjusted indices. 956 // FIXME: Support vector of pointers. 957 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 958 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 959 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 960 PtrBase->stripPointerCasts() == 961 GEPRHS->getOperand(0)->stripPointerCasts() && 962 !GEPLHS->getType()->isVectorTy()) { 963 Value *LOffset = EmitGEPOffset(GEPLHS); 964 Value *ROffset = EmitGEPOffset(GEPRHS); 965 966 // If we looked through an addrspacecast between different sized address 967 // spaces, the LHS and RHS pointers are different sized 968 // integers. Truncate to the smaller one. 969 Type *LHSIndexTy = LOffset->getType(); 970 Type *RHSIndexTy = ROffset->getType(); 971 if (LHSIndexTy != RHSIndexTy) { 972 if (LHSIndexTy->getPrimitiveSizeInBits() < 973 RHSIndexTy->getPrimitiveSizeInBits()) { 974 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 975 } else 976 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 977 } 978 979 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 980 LOffset, ROffset); 981 return replaceInstUsesWith(I, Cmp); 982 } 983 984 // Otherwise, the base pointers are different and the indices are 985 // different. Try convert this to an indexed compare by looking through 986 // PHIs/casts. 987 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 988 } 989 990 // If one of the GEPs has all zero indices, recurse. 991 // FIXME: Handle vector of pointers. 992 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 993 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 994 ICmpInst::getSwappedPredicate(Cond), I); 995 996 // If the other GEP has all zero indices, recurse. 997 // FIXME: Handle vector of pointers. 998 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 999 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 1000 1001 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 1002 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 1003 // If the GEPs only differ by one index, compare it. 1004 unsigned NumDifferences = 0; // Keep track of # differences. 1005 unsigned DiffOperand = 0; // The operand that differs. 1006 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 1007 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 1008 Type *LHSType = GEPLHS->getOperand(i)->getType(); 1009 Type *RHSType = GEPRHS->getOperand(i)->getType(); 1010 // FIXME: Better support for vector of pointers. 1011 if (LHSType->getPrimitiveSizeInBits() != 1012 RHSType->getPrimitiveSizeInBits() || 1013 (GEPLHS->getType()->isVectorTy() && 1014 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 1015 // Irreconcilable differences. 1016 NumDifferences = 2; 1017 break; 1018 } 1019 1020 if (NumDifferences++) break; 1021 DiffOperand = i; 1022 } 1023 1024 if (NumDifferences == 0) // SAME GEP? 1025 return replaceInstUsesWith(I, // No comparison is needed here. 1026 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 1027 1028 else if (NumDifferences == 1 && GEPsInBounds) { 1029 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1030 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1031 // Make sure we do a signed comparison here. 1032 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1033 } 1034 } 1035 1036 // Only lower this if the icmp is the only user of the GEP or if we expect 1037 // the result to fold to a constant! 1038 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1039 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1040 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1041 Value *L = EmitGEPOffset(GEPLHS); 1042 Value *R = EmitGEPOffset(GEPRHS); 1043 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1044 } 1045 } 1046 1047 // Try convert this to an indexed compare by looking through PHIs/casts as a 1048 // last resort. 1049 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1050 } 1051 1052 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1053 const AllocaInst *Alloca, 1054 const Value *Other) { 1055 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1056 1057 // It would be tempting to fold away comparisons between allocas and any 1058 // pointer not based on that alloca (e.g. an argument). However, even 1059 // though such pointers cannot alias, they can still compare equal. 1060 // 1061 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1062 // doesn't escape we can argue that it's impossible to guess its value, and we 1063 // can therefore act as if any such guesses are wrong. 1064 // 1065 // The code below checks that the alloca doesn't escape, and that it's only 1066 // used in a comparison once (the current instruction). The 1067 // single-comparison-use condition ensures that we're trivially folding all 1068 // comparisons against the alloca consistently, and avoids the risk of 1069 // erroneously folding a comparison of the pointer with itself. 1070 1071 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1072 1073 SmallVector<const Use *, 32> Worklist; 1074 for (const Use &U : Alloca->uses()) { 1075 if (Worklist.size() >= MaxIter) 1076 return nullptr; 1077 Worklist.push_back(&U); 1078 } 1079 1080 unsigned NumCmps = 0; 1081 while (!Worklist.empty()) { 1082 assert(Worklist.size() <= MaxIter); 1083 const Use *U = Worklist.pop_back_val(); 1084 const Value *V = U->getUser(); 1085 --MaxIter; 1086 1087 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1088 isa<SelectInst>(V)) { 1089 // Track the uses. 1090 } else if (isa<LoadInst>(V)) { 1091 // Loading from the pointer doesn't escape it. 1092 continue; 1093 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1094 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1095 if (SI->getValueOperand() == U->get()) 1096 return nullptr; 1097 continue; 1098 } else if (isa<ICmpInst>(V)) { 1099 if (NumCmps++) 1100 return nullptr; // Found more than one cmp. 1101 continue; 1102 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1103 switch (Intrin->getIntrinsicID()) { 1104 // These intrinsics don't escape or compare the pointer. Memset is safe 1105 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1106 // we don't allow stores, so src cannot point to V. 1107 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1108 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1109 continue; 1110 default: 1111 return nullptr; 1112 } 1113 } else { 1114 return nullptr; 1115 } 1116 for (const Use &U : V->uses()) { 1117 if (Worklist.size() >= MaxIter) 1118 return nullptr; 1119 Worklist.push_back(&U); 1120 } 1121 } 1122 1123 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1124 return replaceInstUsesWith( 1125 ICI, 1126 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1127 } 1128 1129 /// Fold "icmp pred (X+C), X". 1130 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1131 ICmpInst::Predicate Pred) { 1132 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1133 // so the values can never be equal. Similarly for all other "or equals" 1134 // operators. 1135 assert(!!C && "C should not be zero!"); 1136 1137 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1138 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1139 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1140 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1141 Constant *R = ConstantInt::get(X->getType(), 1142 APInt::getMaxValue(C.getBitWidth()) - C); 1143 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1144 } 1145 1146 // (X+1) >u X --> X <u (0-1) --> X != 255 1147 // (X+2) >u X --> X <u (0-2) --> X <u 254 1148 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1149 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1150 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1151 ConstantInt::get(X->getType(), -C)); 1152 1153 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1154 1155 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1156 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1157 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1158 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1159 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1160 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1161 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1162 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1163 ConstantInt::get(X->getType(), SMax - C)); 1164 1165 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1166 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1167 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1168 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1169 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1170 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1171 1172 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1173 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1174 ConstantInt::get(X->getType(), SMax - (C - 1))); 1175 } 1176 1177 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1178 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1179 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1180 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1181 const APInt &AP1, 1182 const APInt &AP2) { 1183 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1184 1185 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1186 if (I.getPredicate() == I.ICMP_NE) 1187 Pred = CmpInst::getInversePredicate(Pred); 1188 return new ICmpInst(Pred, LHS, RHS); 1189 }; 1190 1191 // Don't bother doing any work for cases which InstSimplify handles. 1192 if (AP2.isNullValue()) 1193 return nullptr; 1194 1195 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1196 if (IsAShr) { 1197 if (AP2.isAllOnesValue()) 1198 return nullptr; 1199 if (AP2.isNegative() != AP1.isNegative()) 1200 return nullptr; 1201 if (AP2.sgt(AP1)) 1202 return nullptr; 1203 } 1204 1205 if (!AP1) 1206 // 'A' must be large enough to shift out the highest set bit. 1207 return getICmp(I.ICMP_UGT, A, 1208 ConstantInt::get(A->getType(), AP2.logBase2())); 1209 1210 if (AP1 == AP2) 1211 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1212 1213 int Shift; 1214 if (IsAShr && AP1.isNegative()) 1215 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1216 else 1217 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1218 1219 if (Shift > 0) { 1220 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1221 // There are multiple solutions if we are comparing against -1 and the LHS 1222 // of the ashr is not a power of two. 1223 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1224 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1225 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1226 } else if (AP1 == AP2.lshr(Shift)) { 1227 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1228 } 1229 } 1230 1231 // Shifting const2 will never be equal to const1. 1232 // FIXME: This should always be handled by InstSimplify? 1233 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1234 return replaceInstUsesWith(I, TorF); 1235 } 1236 1237 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1238 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1239 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1240 const APInt &AP1, 1241 const APInt &AP2) { 1242 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1243 1244 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1245 if (I.getPredicate() == I.ICMP_NE) 1246 Pred = CmpInst::getInversePredicate(Pred); 1247 return new ICmpInst(Pred, LHS, RHS); 1248 }; 1249 1250 // Don't bother doing any work for cases which InstSimplify handles. 1251 if (AP2.isNullValue()) 1252 return nullptr; 1253 1254 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1255 1256 if (!AP1 && AP2TrailingZeros != 0) 1257 return getICmp( 1258 I.ICMP_UGE, A, 1259 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1260 1261 if (AP1 == AP2) 1262 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1263 1264 // Get the distance between the lowest bits that are set. 1265 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1266 1267 if (Shift > 0 && AP2.shl(Shift) == AP1) 1268 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1269 1270 // Shifting const2 will never be equal to const1. 1271 // FIXME: This should always be handled by InstSimplify? 1272 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1273 return replaceInstUsesWith(I, TorF); 1274 } 1275 1276 /// The caller has matched a pattern of the form: 1277 /// I = icmp ugt (add (add A, B), CI2), CI1 1278 /// If this is of the form: 1279 /// sum = a + b 1280 /// if (sum+128 >u 255) 1281 /// Then replace it with llvm.sadd.with.overflow.i8. 1282 /// 1283 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1284 ConstantInt *CI2, ConstantInt *CI1, 1285 InstCombiner &IC) { 1286 // The transformation we're trying to do here is to transform this into an 1287 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1288 // with a narrower add, and discard the add-with-constant that is part of the 1289 // range check (if we can't eliminate it, this isn't profitable). 1290 1291 // In order to eliminate the add-with-constant, the compare can be its only 1292 // use. 1293 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1294 if (!AddWithCst->hasOneUse()) 1295 return nullptr; 1296 1297 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1298 if (!CI2->getValue().isPowerOf2()) 1299 return nullptr; 1300 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1301 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1302 return nullptr; 1303 1304 // The width of the new add formed is 1 more than the bias. 1305 ++NewWidth; 1306 1307 // Check to see that CI1 is an all-ones value with NewWidth bits. 1308 if (CI1->getBitWidth() == NewWidth || 1309 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1310 return nullptr; 1311 1312 // This is only really a signed overflow check if the inputs have been 1313 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1314 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1315 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1316 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1317 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1318 return nullptr; 1319 1320 // In order to replace the original add with a narrower 1321 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1322 // and truncates that discard the high bits of the add. Verify that this is 1323 // the case. 1324 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1325 for (User *U : OrigAdd->users()) { 1326 if (U == AddWithCst) 1327 continue; 1328 1329 // Only accept truncates for now. We would really like a nice recursive 1330 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1331 // chain to see which bits of a value are actually demanded. If the 1332 // original add had another add which was then immediately truncated, we 1333 // could still do the transformation. 1334 TruncInst *TI = dyn_cast<TruncInst>(U); 1335 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1336 return nullptr; 1337 } 1338 1339 // If the pattern matches, truncate the inputs to the narrower type and 1340 // use the sadd_with_overflow intrinsic to efficiently compute both the 1341 // result and the overflow bit. 1342 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1343 Function *F = Intrinsic::getDeclaration( 1344 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1345 1346 InstCombiner::BuilderTy &Builder = IC.Builder; 1347 1348 // Put the new code above the original add, in case there are any uses of the 1349 // add between the add and the compare. 1350 Builder.SetInsertPoint(OrigAdd); 1351 1352 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1353 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1354 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1355 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1356 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1357 1358 // The inner add was the result of the narrow add, zero extended to the 1359 // wider type. Replace it with the result computed by the intrinsic. 1360 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1361 1362 // The original icmp gets replaced with the overflow value. 1363 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1364 } 1365 1366 /// If we have: 1367 /// icmp eq/ne (urem/srem %x, %y), 0 1368 /// iff %y is a power-of-two, we can replace this with a bit test: 1369 /// icmp eq/ne (and %x, (add %y, -1)), 0 1370 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1371 // This fold is only valid for equality predicates. 1372 if (!I.isEquality()) 1373 return nullptr; 1374 ICmpInst::Predicate Pred; 1375 Value *X, *Y, *Zero; 1376 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1377 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1378 return nullptr; 1379 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1380 return nullptr; 1381 // This may increase instruction count, we don't enforce that Y is a constant. 1382 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1383 Value *Masked = Builder.CreateAnd(X, Mask); 1384 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1385 } 1386 1387 // Handle icmp pred X, 0 1388 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1389 CmpInst::Predicate Pred = Cmp.getPredicate(); 1390 if (!match(Cmp.getOperand(1), m_Zero())) 1391 return nullptr; 1392 1393 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1394 if (Pred == ICmpInst::ICMP_SGT) { 1395 Value *A, *B; 1396 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1397 if (SPR.Flavor == SPF_SMIN) { 1398 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1399 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1400 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1401 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1402 } 1403 } 1404 1405 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1406 return New; 1407 1408 // Given: 1409 // icmp eq/ne (urem %x, %y), 0 1410 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1411 // icmp eq/ne %x, 0 1412 Value *X, *Y; 1413 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1414 ICmpInst::isEquality(Pred)) { 1415 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1416 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1417 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1418 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1419 } 1420 1421 return nullptr; 1422 } 1423 1424 /// Fold icmp Pred X, C. 1425 /// TODO: This code structure does not make sense. The saturating add fold 1426 /// should be moved to some other helper and extended as noted below (it is also 1427 /// possible that code has been made unnecessary - do we canonicalize IR to 1428 /// overflow/saturating intrinsics or not?). 1429 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1430 // Match the following pattern, which is a common idiom when writing 1431 // overflow-safe integer arithmetic functions. The source performs an addition 1432 // in wider type and explicitly checks for overflow using comparisons against 1433 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1434 // 1435 // TODO: This could probably be generalized to handle other overflow-safe 1436 // operations if we worked out the formulas to compute the appropriate magic 1437 // constants. 1438 // 1439 // sum = a + b 1440 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1441 CmpInst::Predicate Pred = Cmp.getPredicate(); 1442 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1443 Value *A, *B; 1444 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1445 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1446 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1447 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1448 return Res; 1449 1450 return nullptr; 1451 } 1452 1453 /// Canonicalize icmp instructions based on dominating conditions. 1454 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1455 // This is a cheap/incomplete check for dominance - just match a single 1456 // predecessor with a conditional branch. 1457 BasicBlock *CmpBB = Cmp.getParent(); 1458 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1459 if (!DomBB) 1460 return nullptr; 1461 1462 Value *DomCond; 1463 BasicBlock *TrueBB, *FalseBB; 1464 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1465 return nullptr; 1466 1467 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1468 "Predecessor block does not point to successor?"); 1469 1470 // The branch should get simplified. Don't bother simplifying this condition. 1471 if (TrueBB == FalseBB) 1472 return nullptr; 1473 1474 // Try to simplify this compare to T/F based on the dominating condition. 1475 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1476 if (Imp) 1477 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1478 1479 CmpInst::Predicate Pred = Cmp.getPredicate(); 1480 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1481 ICmpInst::Predicate DomPred; 1482 const APInt *C, *DomC; 1483 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1484 match(Y, m_APInt(C))) { 1485 // We have 2 compares of a variable with constants. Calculate the constant 1486 // ranges of those compares to see if we can transform the 2nd compare: 1487 // DomBB: 1488 // DomCond = icmp DomPred X, DomC 1489 // br DomCond, CmpBB, FalseBB 1490 // CmpBB: 1491 // Cmp = icmp Pred X, C 1492 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1493 ConstantRange DominatingCR = 1494 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1495 : ConstantRange::makeExactICmpRegion( 1496 CmpInst::getInversePredicate(DomPred), *DomC); 1497 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1498 ConstantRange Difference = DominatingCR.difference(CR); 1499 if (Intersection.isEmptySet()) 1500 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1501 if (Difference.isEmptySet()) 1502 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1503 1504 // Canonicalizing a sign bit comparison that gets used in a branch, 1505 // pessimizes codegen by generating branch on zero instruction instead 1506 // of a test and branch. So we avoid canonicalizing in such situations 1507 // because test and branch instruction has better branch displacement 1508 // than compare and branch instruction. 1509 bool UnusedBit; 1510 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1511 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1512 return nullptr; 1513 1514 if (const APInt *EqC = Intersection.getSingleElement()) 1515 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1516 if (const APInt *NeC = Difference.getSingleElement()) 1517 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1518 } 1519 1520 return nullptr; 1521 } 1522 1523 /// Fold icmp (trunc X, Y), C. 1524 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1525 TruncInst *Trunc, 1526 const APInt &C) { 1527 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1528 Value *X = Trunc->getOperand(0); 1529 if (C.isOneValue() && C.getBitWidth() > 1) { 1530 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1531 Value *V = nullptr; 1532 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1533 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1534 ConstantInt::get(V->getType(), 1)); 1535 } 1536 1537 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1538 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1539 // of the high bits truncated out of x are known. 1540 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1541 SrcBits = X->getType()->getScalarSizeInBits(); 1542 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1543 1544 // If all the high bits are known, we can do this xform. 1545 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1546 // Pull in the high bits from known-ones set. 1547 APInt NewRHS = C.zext(SrcBits); 1548 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1549 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1550 } 1551 } 1552 1553 return nullptr; 1554 } 1555 1556 /// Fold icmp (xor X, Y), C. 1557 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1558 BinaryOperator *Xor, 1559 const APInt &C) { 1560 Value *X = Xor->getOperand(0); 1561 Value *Y = Xor->getOperand(1); 1562 const APInt *XorC; 1563 if (!match(Y, m_APInt(XorC))) 1564 return nullptr; 1565 1566 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1567 // fold the xor. 1568 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1569 bool TrueIfSigned = false; 1570 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1571 1572 // If the sign bit of the XorCst is not set, there is no change to 1573 // the operation, just stop using the Xor. 1574 if (!XorC->isNegative()) { 1575 Cmp.setOperand(0, X); 1576 Worklist.Add(Xor); 1577 return &Cmp; 1578 } 1579 1580 // Emit the opposite comparison. 1581 if (TrueIfSigned) 1582 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1583 ConstantInt::getAllOnesValue(X->getType())); 1584 else 1585 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1586 ConstantInt::getNullValue(X->getType())); 1587 } 1588 1589 if (Xor->hasOneUse()) { 1590 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1591 if (!Cmp.isEquality() && XorC->isSignMask()) { 1592 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1593 : Cmp.getSignedPredicate(); 1594 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1595 } 1596 1597 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1598 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1599 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1600 : Cmp.getSignedPredicate(); 1601 Pred = Cmp.getSwappedPredicate(Pred); 1602 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1603 } 1604 } 1605 1606 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1607 if (Pred == ICmpInst::ICMP_UGT) { 1608 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1609 if (*XorC == ~C && (C + 1).isPowerOf2()) 1610 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1611 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1612 if (*XorC == C && (C + 1).isPowerOf2()) 1613 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1614 } 1615 if (Pred == ICmpInst::ICMP_ULT) { 1616 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1617 if (*XorC == -C && C.isPowerOf2()) 1618 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1619 ConstantInt::get(X->getType(), ~C)); 1620 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1621 if (*XorC == C && (-C).isPowerOf2()) 1622 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1623 ConstantInt::get(X->getType(), ~C)); 1624 } 1625 return nullptr; 1626 } 1627 1628 /// Fold icmp (and (sh X, Y), C2), C1. 1629 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1630 const APInt &C1, const APInt &C2) { 1631 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1632 if (!Shift || !Shift->isShift()) 1633 return nullptr; 1634 1635 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1636 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1637 // code produced by the clang front-end, for bitfield access. 1638 // This seemingly simple opportunity to fold away a shift turns out to be 1639 // rather complicated. See PR17827 for details. 1640 unsigned ShiftOpcode = Shift->getOpcode(); 1641 bool IsShl = ShiftOpcode == Instruction::Shl; 1642 const APInt *C3; 1643 if (match(Shift->getOperand(1), m_APInt(C3))) { 1644 bool CanFold = false; 1645 if (ShiftOpcode == Instruction::Shl) { 1646 // For a left shift, we can fold if the comparison is not signed. We can 1647 // also fold a signed comparison if the mask value and comparison value 1648 // are not negative. These constraints may not be obvious, but we can 1649 // prove that they are correct using an SMT solver. 1650 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) 1651 CanFold = true; 1652 } else { 1653 bool IsAshr = ShiftOpcode == Instruction::AShr; 1654 // For a logical right shift, we can fold if the comparison is not signed. 1655 // We can also fold a signed comparison if the shifted mask value and the 1656 // shifted comparison value are not negative. These constraints may not be 1657 // obvious, but we can prove that they are correct using an SMT solver. 1658 // For an arithmetic shift right we can do the same, if we ensure 1659 // the And doesn't use any bits being shifted in. Normally these would 1660 // be turned into lshr by SimplifyDemandedBits, but not if there is an 1661 // additional user. 1662 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { 1663 if (!Cmp.isSigned() || 1664 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) 1665 CanFold = true; 1666 } 1667 } 1668 1669 if (CanFold) { 1670 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); 1671 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1672 // Check to see if we are shifting out any of the bits being compared. 1673 if (SameAsC1 != C1) { 1674 // If we shifted bits out, the fold is not going to work out. As a 1675 // special case, check to see if this means that the result is always 1676 // true or false now. 1677 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1678 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1679 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1680 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1681 } else { 1682 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1683 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); 1684 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1685 And->setOperand(0, Shift->getOperand(0)); 1686 Worklist.Add(Shift); // Shift is dead. 1687 return &Cmp; 1688 } 1689 } 1690 } 1691 1692 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1693 // preferable because it allows the C2 << Y expression to be hoisted out of a 1694 // loop if Y is invariant and X is not. 1695 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1696 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1697 // Compute C2 << Y. 1698 Value *NewShift = 1699 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1700 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1701 1702 // Compute X & (C2 << Y). 1703 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1704 Cmp.setOperand(0, NewAnd); 1705 return &Cmp; 1706 } 1707 1708 return nullptr; 1709 } 1710 1711 /// Fold icmp (and X, C2), C1. 1712 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1713 BinaryOperator *And, 1714 const APInt &C1) { 1715 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1716 1717 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1718 // TODO: We canonicalize to the longer form for scalars because we have 1719 // better analysis/folds for icmp, and codegen may be better with icmp. 1720 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1721 match(And->getOperand(1), m_One())) 1722 return new TruncInst(And->getOperand(0), Cmp.getType()); 1723 1724 const APInt *C2; 1725 Value *X; 1726 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1727 return nullptr; 1728 1729 // Don't perform the following transforms if the AND has multiple uses 1730 if (!And->hasOneUse()) 1731 return nullptr; 1732 1733 if (Cmp.isEquality() && C1.isNullValue()) { 1734 // Restrict this fold to single-use 'and' (PR10267). 1735 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1736 if (C2->isSignMask()) { 1737 Constant *Zero = Constant::getNullValue(X->getType()); 1738 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1739 return new ICmpInst(NewPred, X, Zero); 1740 } 1741 1742 // Restrict this fold only for single-use 'and' (PR10267). 1743 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1744 if ((~(*C2) + 1).isPowerOf2()) { 1745 Constant *NegBOC = 1746 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1747 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1748 return new ICmpInst(NewPred, X, NegBOC); 1749 } 1750 } 1751 1752 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1753 // the input width without changing the value produced, eliminate the cast: 1754 // 1755 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1756 // 1757 // We can do this transformation if the constants do not have their sign bits 1758 // set or if it is an equality comparison. Extending a relational comparison 1759 // when we're checking the sign bit would not work. 1760 Value *W; 1761 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1762 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1763 // TODO: Is this a good transform for vectors? Wider types may reduce 1764 // throughput. Should this transform be limited (even for scalars) by using 1765 // shouldChangeType()? 1766 if (!Cmp.getType()->isVectorTy()) { 1767 Type *WideType = W->getType(); 1768 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1769 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1770 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1771 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1772 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1773 } 1774 } 1775 1776 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1777 return I; 1778 1779 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1780 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1781 // 1782 // iff pred isn't signed 1783 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1784 match(And->getOperand(1), m_One())) { 1785 Constant *One = cast<Constant>(And->getOperand(1)); 1786 Value *Or = And->getOperand(0); 1787 Value *A, *B, *LShr; 1788 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1789 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1790 unsigned UsesRemoved = 0; 1791 if (And->hasOneUse()) 1792 ++UsesRemoved; 1793 if (Or->hasOneUse()) 1794 ++UsesRemoved; 1795 if (LShr->hasOneUse()) 1796 ++UsesRemoved; 1797 1798 // Compute A & ((1 << B) | 1) 1799 Value *NewOr = nullptr; 1800 if (auto *C = dyn_cast<Constant>(B)) { 1801 if (UsesRemoved >= 1) 1802 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1803 } else { 1804 if (UsesRemoved >= 3) 1805 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1806 /*HasNUW=*/true), 1807 One, Or->getName()); 1808 } 1809 if (NewOr) { 1810 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1811 Cmp.setOperand(0, NewAnd); 1812 return &Cmp; 1813 } 1814 } 1815 } 1816 1817 return nullptr; 1818 } 1819 1820 /// Fold icmp (and X, Y), C. 1821 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1822 BinaryOperator *And, 1823 const APInt &C) { 1824 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1825 return I; 1826 1827 // TODO: These all require that Y is constant too, so refactor with the above. 1828 1829 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1830 Value *X = And->getOperand(0); 1831 Value *Y = And->getOperand(1); 1832 if (auto *LI = dyn_cast<LoadInst>(X)) 1833 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1834 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1835 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1836 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1837 ConstantInt *C2 = cast<ConstantInt>(Y); 1838 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1839 return Res; 1840 } 1841 1842 if (!Cmp.isEquality()) 1843 return nullptr; 1844 1845 // X & -C == -C -> X > u ~C 1846 // X & -C != -C -> X <= u ~C 1847 // iff C is a power of 2 1848 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1849 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1850 : CmpInst::ICMP_ULE; 1851 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1852 } 1853 1854 // (X & C2) == 0 -> (trunc X) >= 0 1855 // (X & C2) != 0 -> (trunc X) < 0 1856 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1857 const APInt *C2; 1858 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1859 int32_t ExactLogBase2 = C2->exactLogBase2(); 1860 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1861 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1862 if (And->getType()->isVectorTy()) 1863 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1864 Value *Trunc = Builder.CreateTrunc(X, NTy); 1865 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1866 : CmpInst::ICMP_SLT; 1867 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1868 } 1869 } 1870 1871 return nullptr; 1872 } 1873 1874 /// Fold icmp (or X, Y), C. 1875 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1876 const APInt &C) { 1877 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1878 if (C.isOneValue()) { 1879 // icmp slt signum(V) 1 --> icmp slt V, 1 1880 Value *V = nullptr; 1881 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1882 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1883 ConstantInt::get(V->getType(), 1)); 1884 } 1885 1886 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1887 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) { 1888 // X | C == C --> X <=u C 1889 // X | C != C --> X >u C 1890 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1891 if ((C + 1).isPowerOf2()) { 1892 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1893 return new ICmpInst(Pred, OrOp0, OrOp1); 1894 } 1895 // More general: are all bits outside of a mask constant set or not set? 1896 // X | C == C --> (X & ~C) == 0 1897 // X | C != C --> (X & ~C) != 0 1898 if (Or->hasOneUse()) { 1899 Value *A = Builder.CreateAnd(OrOp0, ~C); 1900 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType())); 1901 } 1902 } 1903 1904 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1905 return nullptr; 1906 1907 Value *P, *Q; 1908 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1909 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1910 // -> and (icmp eq P, null), (icmp eq Q, null). 1911 Value *CmpP = 1912 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1913 Value *CmpQ = 1914 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1915 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1916 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1917 } 1918 1919 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1920 // a shorter form that has more potential to be folded even further. 1921 Value *X1, *X2, *X3, *X4; 1922 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1923 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1924 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1925 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1926 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1927 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1928 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1929 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1930 } 1931 1932 return nullptr; 1933 } 1934 1935 /// Fold icmp (mul X, Y), C. 1936 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1937 BinaryOperator *Mul, 1938 const APInt &C) { 1939 const APInt *MulC; 1940 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1941 return nullptr; 1942 1943 // If this is a test of the sign bit and the multiply is sign-preserving with 1944 // a constant operand, use the multiply LHS operand instead. 1945 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1946 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1947 if (MulC->isNegative()) 1948 Pred = ICmpInst::getSwappedPredicate(Pred); 1949 return new ICmpInst(Pred, Mul->getOperand(0), 1950 Constant::getNullValue(Mul->getType())); 1951 } 1952 1953 return nullptr; 1954 } 1955 1956 /// Fold icmp (shl 1, Y), C. 1957 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1958 const APInt &C) { 1959 Value *Y; 1960 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1961 return nullptr; 1962 1963 Type *ShiftType = Shl->getType(); 1964 unsigned TypeBits = C.getBitWidth(); 1965 bool CIsPowerOf2 = C.isPowerOf2(); 1966 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1967 if (Cmp.isUnsigned()) { 1968 // (1 << Y) pred C -> Y pred Log2(C) 1969 if (!CIsPowerOf2) { 1970 // (1 << Y) < 30 -> Y <= 4 1971 // (1 << Y) <= 30 -> Y <= 4 1972 // (1 << Y) >= 30 -> Y > 4 1973 // (1 << Y) > 30 -> Y > 4 1974 if (Pred == ICmpInst::ICMP_ULT) 1975 Pred = ICmpInst::ICMP_ULE; 1976 else if (Pred == ICmpInst::ICMP_UGE) 1977 Pred = ICmpInst::ICMP_UGT; 1978 } 1979 1980 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1981 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1982 unsigned CLog2 = C.logBase2(); 1983 if (CLog2 == TypeBits - 1) { 1984 if (Pred == ICmpInst::ICMP_UGE) 1985 Pred = ICmpInst::ICMP_EQ; 1986 else if (Pred == ICmpInst::ICMP_ULT) 1987 Pred = ICmpInst::ICMP_NE; 1988 } 1989 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1990 } else if (Cmp.isSigned()) { 1991 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1992 if (C.isAllOnesValue()) { 1993 // (1 << Y) <= -1 -> Y == 31 1994 if (Pred == ICmpInst::ICMP_SLE) 1995 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1996 1997 // (1 << Y) > -1 -> Y != 31 1998 if (Pred == ICmpInst::ICMP_SGT) 1999 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2000 } else if (!C) { 2001 // (1 << Y) < 0 -> Y == 31 2002 // (1 << Y) <= 0 -> Y == 31 2003 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2004 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2005 2006 // (1 << Y) >= 0 -> Y != 31 2007 // (1 << Y) > 0 -> Y != 31 2008 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2009 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2010 } 2011 } else if (Cmp.isEquality() && CIsPowerOf2) { 2012 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2013 } 2014 2015 return nullptr; 2016 } 2017 2018 /// Fold icmp (shl X, Y), C. 2019 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 2020 BinaryOperator *Shl, 2021 const APInt &C) { 2022 const APInt *ShiftVal; 2023 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2024 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2025 2026 const APInt *ShiftAmt; 2027 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2028 return foldICmpShlOne(Cmp, Shl, C); 2029 2030 // Check that the shift amount is in range. If not, don't perform undefined 2031 // shifts. When the shift is visited, it will be simplified. 2032 unsigned TypeBits = C.getBitWidth(); 2033 if (ShiftAmt->uge(TypeBits)) 2034 return nullptr; 2035 2036 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2037 Value *X = Shl->getOperand(0); 2038 Type *ShType = Shl->getType(); 2039 2040 // NSW guarantees that we are only shifting out sign bits from the high bits, 2041 // so we can ASHR the compare constant without needing a mask and eliminate 2042 // the shift. 2043 if (Shl->hasNoSignedWrap()) { 2044 if (Pred == ICmpInst::ICMP_SGT) { 2045 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2046 APInt ShiftedC = C.ashr(*ShiftAmt); 2047 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2048 } 2049 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2050 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2051 APInt ShiftedC = C.ashr(*ShiftAmt); 2052 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2053 } 2054 if (Pred == ICmpInst::ICMP_SLT) { 2055 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2056 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2057 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2058 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2059 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2060 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2061 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2062 } 2063 // If this is a signed comparison to 0 and the shift is sign preserving, 2064 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2065 // do that if we're sure to not continue on in this function. 2066 if (isSignTest(Pred, C)) 2067 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2068 } 2069 2070 // NUW guarantees that we are only shifting out zero bits from the high bits, 2071 // so we can LSHR the compare constant without needing a mask and eliminate 2072 // the shift. 2073 if (Shl->hasNoUnsignedWrap()) { 2074 if (Pred == ICmpInst::ICMP_UGT) { 2075 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2076 APInt ShiftedC = C.lshr(*ShiftAmt); 2077 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2078 } 2079 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2080 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2081 APInt ShiftedC = C.lshr(*ShiftAmt); 2082 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2083 } 2084 if (Pred == ICmpInst::ICMP_ULT) { 2085 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2086 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2087 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2088 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2089 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2090 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2091 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2092 } 2093 } 2094 2095 if (Cmp.isEquality() && Shl->hasOneUse()) { 2096 // Strength-reduce the shift into an 'and'. 2097 Constant *Mask = ConstantInt::get( 2098 ShType, 2099 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2100 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2101 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2102 return new ICmpInst(Pred, And, LShrC); 2103 } 2104 2105 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2106 bool TrueIfSigned = false; 2107 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2108 // (X << 31) <s 0 --> (X & 1) != 0 2109 Constant *Mask = ConstantInt::get( 2110 ShType, 2111 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2112 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2113 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2114 And, Constant::getNullValue(ShType)); 2115 } 2116 2117 // Simplify 'shl' inequality test into 'and' equality test. 2118 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2119 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2120 if ((C + 1).isPowerOf2() && 2121 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2122 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2123 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2124 : ICmpInst::ICMP_NE, 2125 And, Constant::getNullValue(ShType)); 2126 } 2127 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2128 if (C.isPowerOf2() && 2129 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2130 Value *And = 2131 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2132 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2133 : ICmpInst::ICMP_NE, 2134 And, Constant::getNullValue(ShType)); 2135 } 2136 } 2137 2138 // Transform (icmp pred iM (shl iM %v, N), C) 2139 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2140 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2141 // This enables us to get rid of the shift in favor of a trunc that may be 2142 // free on the target. It has the additional benefit of comparing to a 2143 // smaller constant that may be more target-friendly. 2144 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2145 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2146 DL.isLegalInteger(TypeBits - Amt)) { 2147 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2148 if (ShType->isVectorTy()) 2149 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2150 Constant *NewC = 2151 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2152 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2153 } 2154 2155 return nullptr; 2156 } 2157 2158 /// Fold icmp ({al}shr X, Y), C. 2159 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2160 BinaryOperator *Shr, 2161 const APInt &C) { 2162 // An exact shr only shifts out zero bits, so: 2163 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2164 Value *X = Shr->getOperand(0); 2165 CmpInst::Predicate Pred = Cmp.getPredicate(); 2166 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2167 C.isNullValue()) 2168 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2169 2170 const APInt *ShiftVal; 2171 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2172 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2173 2174 const APInt *ShiftAmt; 2175 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2176 return nullptr; 2177 2178 // Check that the shift amount is in range. If not, don't perform undefined 2179 // shifts. When the shift is visited it will be simplified. 2180 unsigned TypeBits = C.getBitWidth(); 2181 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2182 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2183 return nullptr; 2184 2185 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2186 bool IsExact = Shr->isExact(); 2187 Type *ShrTy = Shr->getType(); 2188 // TODO: If we could guarantee that InstSimplify would handle all of the 2189 // constant-value-based preconditions in the folds below, then we could assert 2190 // those conditions rather than checking them. This is difficult because of 2191 // undef/poison (PR34838). 2192 if (IsAShr) { 2193 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2194 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2195 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2196 APInt ShiftedC = C.shl(ShAmtVal); 2197 if (ShiftedC.ashr(ShAmtVal) == C) 2198 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2199 } 2200 if (Pred == CmpInst::ICMP_SGT) { 2201 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2202 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2203 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2204 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2205 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2206 } 2207 } else { 2208 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2209 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2210 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2211 APInt ShiftedC = C.shl(ShAmtVal); 2212 if (ShiftedC.lshr(ShAmtVal) == C) 2213 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2214 } 2215 if (Pred == CmpInst::ICMP_UGT) { 2216 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2217 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2218 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2219 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2220 } 2221 } 2222 2223 if (!Cmp.isEquality()) 2224 return nullptr; 2225 2226 // Handle equality comparisons of shift-by-constant. 2227 2228 // If the comparison constant changes with the shift, the comparison cannot 2229 // succeed (bits of the comparison constant cannot match the shifted value). 2230 // This should be known by InstSimplify and already be folded to true/false. 2231 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2232 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2233 "Expected icmp+shr simplify did not occur."); 2234 2235 // If the bits shifted out are known zero, compare the unshifted value: 2236 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2237 if (Shr->isExact()) 2238 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2239 2240 if (Shr->hasOneUse()) { 2241 // Canonicalize the shift into an 'and': 2242 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2243 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2244 Constant *Mask = ConstantInt::get(ShrTy, Val); 2245 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2246 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2247 } 2248 2249 return nullptr; 2250 } 2251 2252 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp, 2253 BinaryOperator *SRem, 2254 const APInt &C) { 2255 // Match an 'is positive' or 'is negative' comparison of remainder by a 2256 // constant power-of-2 value: 2257 // (X % pow2C) sgt/slt 0 2258 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2259 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2260 return nullptr; 2261 2262 // TODO: The one-use check is standard because we do not typically want to 2263 // create longer instruction sequences, but this might be a special-case 2264 // because srem is not good for analysis or codegen. 2265 if (!SRem->hasOneUse()) 2266 return nullptr; 2267 2268 const APInt *DivisorC; 2269 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2270 return nullptr; 2271 2272 // Mask off the sign bit and the modulo bits (low-bits). 2273 Type *Ty = SRem->getType(); 2274 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2275 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2276 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2277 2278 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2279 // bit is set. Example: 2280 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2281 if (Pred == ICmpInst::ICMP_SGT) 2282 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2283 2284 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2285 // bit is set. Example: 2286 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2287 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2288 } 2289 2290 /// Fold icmp (udiv X, Y), C. 2291 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2292 BinaryOperator *UDiv, 2293 const APInt &C) { 2294 const APInt *C2; 2295 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2296 return nullptr; 2297 2298 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2299 2300 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2301 Value *Y = UDiv->getOperand(1); 2302 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2303 assert(!C.isMaxValue() && 2304 "icmp ugt X, UINT_MAX should have been simplified already."); 2305 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2306 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2307 } 2308 2309 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2310 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2311 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2312 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2313 ConstantInt::get(Y->getType(), C2->udiv(C))); 2314 } 2315 2316 return nullptr; 2317 } 2318 2319 /// Fold icmp ({su}div X, Y), C. 2320 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2321 BinaryOperator *Div, 2322 const APInt &C) { 2323 // Fold: icmp pred ([us]div X, C2), C -> range test 2324 // Fold this div into the comparison, producing a range check. 2325 // Determine, based on the divide type, what the range is being 2326 // checked. If there is an overflow on the low or high side, remember 2327 // it, otherwise compute the range [low, hi) bounding the new value. 2328 // See: InsertRangeTest above for the kinds of replacements possible. 2329 const APInt *C2; 2330 if (!match(Div->getOperand(1), m_APInt(C2))) 2331 return nullptr; 2332 2333 // FIXME: If the operand types don't match the type of the divide 2334 // then don't attempt this transform. The code below doesn't have the 2335 // logic to deal with a signed divide and an unsigned compare (and 2336 // vice versa). This is because (x /s C2) <s C produces different 2337 // results than (x /s C2) <u C or (x /u C2) <s C or even 2338 // (x /u C2) <u C. Simply casting the operands and result won't 2339 // work. :( The if statement below tests that condition and bails 2340 // if it finds it. 2341 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2342 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2343 return nullptr; 2344 2345 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2346 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2347 // division-by-constant cases should be present, we can not assert that they 2348 // have happened before we reach this icmp instruction. 2349 if (C2->isNullValue() || C2->isOneValue() || 2350 (DivIsSigned && C2->isAllOnesValue())) 2351 return nullptr; 2352 2353 // Compute Prod = C * C2. We are essentially solving an equation of 2354 // form X / C2 = C. We solve for X by multiplying C2 and C. 2355 // By solving for X, we can turn this into a range check instead of computing 2356 // a divide. 2357 APInt Prod = C * *C2; 2358 2359 // Determine if the product overflows by seeing if the product is not equal to 2360 // the divide. Make sure we do the same kind of divide as in the LHS 2361 // instruction that we're folding. 2362 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2363 2364 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2365 2366 // If the division is known to be exact, then there is no remainder from the 2367 // divide, so the covered range size is unit, otherwise it is the divisor. 2368 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2369 2370 // Figure out the interval that is being checked. For example, a comparison 2371 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2372 // Compute this interval based on the constants involved and the signedness of 2373 // the compare/divide. This computes a half-open interval, keeping track of 2374 // whether either value in the interval overflows. After analysis each 2375 // overflow variable is set to 0 if it's corresponding bound variable is valid 2376 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2377 int LoOverflow = 0, HiOverflow = 0; 2378 APInt LoBound, HiBound; 2379 2380 if (!DivIsSigned) { // udiv 2381 // e.g. X/5 op 3 --> [15, 20) 2382 LoBound = Prod; 2383 HiOverflow = LoOverflow = ProdOV; 2384 if (!HiOverflow) { 2385 // If this is not an exact divide, then many values in the range collapse 2386 // to the same result value. 2387 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2388 } 2389 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2390 if (C.isNullValue()) { // (X / pos) op 0 2391 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2392 LoBound = -(RangeSize - 1); 2393 HiBound = RangeSize; 2394 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2395 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2396 HiOverflow = LoOverflow = ProdOV; 2397 if (!HiOverflow) 2398 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2399 } else { // (X / pos) op neg 2400 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2401 HiBound = Prod + 1; 2402 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2403 if (!LoOverflow) { 2404 APInt DivNeg = -RangeSize; 2405 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2406 } 2407 } 2408 } else if (C2->isNegative()) { // Divisor is < 0. 2409 if (Div->isExact()) 2410 RangeSize.negate(); 2411 if (C.isNullValue()) { // (X / neg) op 0 2412 // e.g. X/-5 op 0 --> [-4, 5) 2413 LoBound = RangeSize + 1; 2414 HiBound = -RangeSize; 2415 if (HiBound == *C2) { // -INTMIN = INTMIN 2416 HiOverflow = 1; // [INTMIN+1, overflow) 2417 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2418 } 2419 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2420 // e.g. X/-5 op 3 --> [-19, -14) 2421 HiBound = Prod + 1; 2422 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2423 if (!LoOverflow) 2424 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2425 } else { // (X / neg) op neg 2426 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2427 LoOverflow = HiOverflow = ProdOV; 2428 if (!HiOverflow) 2429 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2430 } 2431 2432 // Dividing by a negative swaps the condition. LT <-> GT 2433 Pred = ICmpInst::getSwappedPredicate(Pred); 2434 } 2435 2436 Value *X = Div->getOperand(0); 2437 switch (Pred) { 2438 default: llvm_unreachable("Unhandled icmp opcode!"); 2439 case ICmpInst::ICMP_EQ: 2440 if (LoOverflow && HiOverflow) 2441 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2442 if (HiOverflow) 2443 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2444 ICmpInst::ICMP_UGE, X, 2445 ConstantInt::get(Div->getType(), LoBound)); 2446 if (LoOverflow) 2447 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2448 ICmpInst::ICMP_ULT, X, 2449 ConstantInt::get(Div->getType(), HiBound)); 2450 return replaceInstUsesWith( 2451 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2452 case ICmpInst::ICMP_NE: 2453 if (LoOverflow && HiOverflow) 2454 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2455 if (HiOverflow) 2456 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2457 ICmpInst::ICMP_ULT, X, 2458 ConstantInt::get(Div->getType(), LoBound)); 2459 if (LoOverflow) 2460 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2461 ICmpInst::ICMP_UGE, X, 2462 ConstantInt::get(Div->getType(), HiBound)); 2463 return replaceInstUsesWith(Cmp, 2464 insertRangeTest(X, LoBound, HiBound, 2465 DivIsSigned, false)); 2466 case ICmpInst::ICMP_ULT: 2467 case ICmpInst::ICMP_SLT: 2468 if (LoOverflow == +1) // Low bound is greater than input range. 2469 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2470 if (LoOverflow == -1) // Low bound is less than input range. 2471 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2472 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2473 case ICmpInst::ICMP_UGT: 2474 case ICmpInst::ICMP_SGT: 2475 if (HiOverflow == +1) // High bound greater than input range. 2476 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2477 if (HiOverflow == -1) // High bound less than input range. 2478 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2479 if (Pred == ICmpInst::ICMP_UGT) 2480 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2481 ConstantInt::get(Div->getType(), HiBound)); 2482 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2483 ConstantInt::get(Div->getType(), HiBound)); 2484 } 2485 2486 return nullptr; 2487 } 2488 2489 /// Fold icmp (sub X, Y), C. 2490 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2491 BinaryOperator *Sub, 2492 const APInt &C) { 2493 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2494 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2495 const APInt *C2; 2496 APInt SubResult; 2497 2498 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2499 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2500 return new ICmpInst(Cmp.getPredicate(), Y, 2501 ConstantInt::get(Y->getType(), 0)); 2502 2503 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2504 if (match(X, m_APInt(C2)) && 2505 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2506 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2507 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2508 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2509 ConstantInt::get(Y->getType(), SubResult)); 2510 2511 // The following transforms are only worth it if the only user of the subtract 2512 // is the icmp. 2513 if (!Sub->hasOneUse()) 2514 return nullptr; 2515 2516 if (Sub->hasNoSignedWrap()) { 2517 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2518 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2519 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2520 2521 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2522 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2523 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2524 2525 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2526 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2527 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2528 2529 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2530 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2531 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2532 } 2533 2534 if (!match(X, m_APInt(C2))) 2535 return nullptr; 2536 2537 // C2 - Y <u C -> (Y | (C - 1)) == C2 2538 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2539 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2540 (*C2 & (C - 1)) == (C - 1)) 2541 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2542 2543 // C2 - Y >u C -> (Y | C) != C2 2544 // iff C2 & C == C and C + 1 is a power of 2 2545 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2546 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2547 2548 return nullptr; 2549 } 2550 2551 /// Fold icmp (add X, Y), C. 2552 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2553 BinaryOperator *Add, 2554 const APInt &C) { 2555 Value *Y = Add->getOperand(1); 2556 const APInt *C2; 2557 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2558 return nullptr; 2559 2560 // Fold icmp pred (add X, C2), C. 2561 Value *X = Add->getOperand(0); 2562 Type *Ty = Add->getType(); 2563 CmpInst::Predicate Pred = Cmp.getPredicate(); 2564 2565 if (!Add->hasOneUse()) 2566 return nullptr; 2567 2568 // If the add does not wrap, we can always adjust the compare by subtracting 2569 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2570 // are canonicalized to SGT/SLT/UGT/ULT. 2571 if ((Add->hasNoSignedWrap() && 2572 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2573 (Add->hasNoUnsignedWrap() && 2574 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2575 bool Overflow; 2576 APInt NewC = 2577 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2578 // If there is overflow, the result must be true or false. 2579 // TODO: Can we assert there is no overflow because InstSimplify always 2580 // handles those cases? 2581 if (!Overflow) 2582 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2583 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2584 } 2585 2586 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2587 const APInt &Upper = CR.getUpper(); 2588 const APInt &Lower = CR.getLower(); 2589 if (Cmp.isSigned()) { 2590 if (Lower.isSignMask()) 2591 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2592 if (Upper.isSignMask()) 2593 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2594 } else { 2595 if (Lower.isMinValue()) 2596 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2597 if (Upper.isMinValue()) 2598 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2599 } 2600 2601 // X+C <u C2 -> (X & -C2) == C 2602 // iff C & (C2-1) == 0 2603 // C2 is a power of 2 2604 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2605 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2606 ConstantExpr::getNeg(cast<Constant>(Y))); 2607 2608 // X+C >u C2 -> (X & ~C2) != C 2609 // iff C & C2 == 0 2610 // C2+1 is a power of 2 2611 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2612 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2613 ConstantExpr::getNeg(cast<Constant>(Y))); 2614 2615 return nullptr; 2616 } 2617 2618 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2619 Value *&RHS, ConstantInt *&Less, 2620 ConstantInt *&Equal, 2621 ConstantInt *&Greater) { 2622 // TODO: Generalize this to work with other comparison idioms or ensure 2623 // they get canonicalized into this form. 2624 2625 // select i1 (a == b), 2626 // i32 Equal, 2627 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2628 // where Equal, Less and Greater are placeholders for any three constants. 2629 ICmpInst::Predicate PredA; 2630 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2631 !ICmpInst::isEquality(PredA)) 2632 return false; 2633 Value *EqualVal = SI->getTrueValue(); 2634 Value *UnequalVal = SI->getFalseValue(); 2635 // We still can get non-canonical predicate here, so canonicalize. 2636 if (PredA == ICmpInst::ICMP_NE) 2637 std::swap(EqualVal, UnequalVal); 2638 if (!match(EqualVal, m_ConstantInt(Equal))) 2639 return false; 2640 ICmpInst::Predicate PredB; 2641 Value *LHS2, *RHS2; 2642 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2643 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2644 return false; 2645 // We can get predicate mismatch here, so canonicalize if possible: 2646 // First, ensure that 'LHS' match. 2647 if (LHS2 != LHS) { 2648 // x sgt y <--> y slt x 2649 std::swap(LHS2, RHS2); 2650 PredB = ICmpInst::getSwappedPredicate(PredB); 2651 } 2652 if (LHS2 != LHS) 2653 return false; 2654 // We also need to canonicalize 'RHS'. 2655 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2656 // x sgt C-1 <--> x sge C <--> not(x slt C) 2657 auto FlippedStrictness = 2658 getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2)); 2659 if (!FlippedStrictness) 2660 return false; 2661 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2662 RHS2 = FlippedStrictness->second; 2663 // And kind-of perform the result swap. 2664 std::swap(Less, Greater); 2665 PredB = ICmpInst::ICMP_SLT; 2666 } 2667 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2668 } 2669 2670 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2671 SelectInst *Select, 2672 ConstantInt *C) { 2673 2674 assert(C && "Cmp RHS should be a constant int!"); 2675 // If we're testing a constant value against the result of a three way 2676 // comparison, the result can be expressed directly in terms of the 2677 // original values being compared. Note: We could possibly be more 2678 // aggressive here and remove the hasOneUse test. The original select is 2679 // really likely to simplify or sink when we remove a test of the result. 2680 Value *OrigLHS, *OrigRHS; 2681 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2682 if (Cmp.hasOneUse() && 2683 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2684 C3GreaterThan)) { 2685 assert(C1LessThan && C2Equal && C3GreaterThan); 2686 2687 bool TrueWhenLessThan = 2688 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2689 ->isAllOnesValue(); 2690 bool TrueWhenEqual = 2691 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2692 ->isAllOnesValue(); 2693 bool TrueWhenGreaterThan = 2694 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2695 ->isAllOnesValue(); 2696 2697 // This generates the new instruction that will replace the original Cmp 2698 // Instruction. Instead of enumerating the various combinations when 2699 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2700 // false, we rely on chaining of ORs and future passes of InstCombine to 2701 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2702 2703 // When none of the three constants satisfy the predicate for the RHS (C), 2704 // the entire original Cmp can be simplified to a false. 2705 Value *Cond = Builder.getFalse(); 2706 if (TrueWhenLessThan) 2707 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2708 OrigLHS, OrigRHS)); 2709 if (TrueWhenEqual) 2710 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2711 OrigLHS, OrigRHS)); 2712 if (TrueWhenGreaterThan) 2713 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2714 OrigLHS, OrigRHS)); 2715 2716 return replaceInstUsesWith(Cmp, Cond); 2717 } 2718 return nullptr; 2719 } 2720 2721 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2722 InstCombiner::BuilderTy &Builder) { 2723 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2724 if (!Bitcast) 2725 return nullptr; 2726 2727 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2728 Value *Op1 = Cmp.getOperand(1); 2729 Value *BCSrcOp = Bitcast->getOperand(0); 2730 2731 // Make sure the bitcast doesn't change the number of vector elements. 2732 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2733 Bitcast->getDestTy()->getScalarSizeInBits()) { 2734 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2735 Value *X; 2736 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2737 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2738 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2739 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2740 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2741 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2742 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2743 match(Op1, m_Zero())) 2744 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2745 2746 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2747 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2748 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2749 2750 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2751 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2752 return new ICmpInst(Pred, X, 2753 ConstantInt::getAllOnesValue(X->getType())); 2754 } 2755 2756 // Zero-equality checks are preserved through unsigned floating-point casts: 2757 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2758 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2759 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2760 if (Cmp.isEquality() && match(Op1, m_Zero())) 2761 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2762 } 2763 2764 // Test to see if the operands of the icmp are casted versions of other 2765 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2766 if (Bitcast->getType()->isPointerTy() && 2767 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2768 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2769 // so eliminate it as well. 2770 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2771 Op1 = BC2->getOperand(0); 2772 2773 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2774 return new ICmpInst(Pred, BCSrcOp, Op1); 2775 } 2776 2777 // Folding: icmp <pred> iN X, C 2778 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2779 // and C is a splat of a K-bit pattern 2780 // and SC is a constant vector = <C', C', C', ..., C'> 2781 // Into: 2782 // %E = extractelement <M x iK> %vec, i32 C' 2783 // icmp <pred> iK %E, trunc(C) 2784 const APInt *C; 2785 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2786 !Bitcast->getType()->isIntegerTy() || 2787 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2788 return nullptr; 2789 2790 Value *Vec; 2791 Constant *Mask; 2792 if (match(BCSrcOp, 2793 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { 2794 // Check whether every element of Mask is the same constant 2795 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { 2796 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2797 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2798 if (C->isSplat(EltTy->getBitWidth())) { 2799 // Fold the icmp based on the value of C 2800 // If C is M copies of an iK sized bit pattern, 2801 // then: 2802 // => %E = extractelement <N x iK> %vec, i32 Elem 2803 // icmp <pred> iK %SplatVal, <pattern> 2804 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2805 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2806 return new ICmpInst(Pred, Extract, NewC); 2807 } 2808 } 2809 } 2810 return nullptr; 2811 } 2812 2813 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2814 /// where X is some kind of instruction. 2815 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2816 const APInt *C; 2817 if (!match(Cmp.getOperand(1), m_APInt(C))) 2818 return nullptr; 2819 2820 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2821 switch (BO->getOpcode()) { 2822 case Instruction::Xor: 2823 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2824 return I; 2825 break; 2826 case Instruction::And: 2827 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2828 return I; 2829 break; 2830 case Instruction::Or: 2831 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2832 return I; 2833 break; 2834 case Instruction::Mul: 2835 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2836 return I; 2837 break; 2838 case Instruction::Shl: 2839 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2840 return I; 2841 break; 2842 case Instruction::LShr: 2843 case Instruction::AShr: 2844 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2845 return I; 2846 break; 2847 case Instruction::SRem: 2848 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 2849 return I; 2850 break; 2851 case Instruction::UDiv: 2852 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2853 return I; 2854 LLVM_FALLTHROUGH; 2855 case Instruction::SDiv: 2856 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2857 return I; 2858 break; 2859 case Instruction::Sub: 2860 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2861 return I; 2862 break; 2863 case Instruction::Add: 2864 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2865 return I; 2866 break; 2867 default: 2868 break; 2869 } 2870 // TODO: These folds could be refactored to be part of the above calls. 2871 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2872 return I; 2873 } 2874 2875 // Match against CmpInst LHS being instructions other than binary operators. 2876 2877 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2878 // For now, we only support constant integers while folding the 2879 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2880 // similar to the cases handled by binary ops above. 2881 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2882 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2883 return I; 2884 } 2885 2886 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2887 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2888 return I; 2889 } 2890 2891 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2892 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2893 return I; 2894 2895 return nullptr; 2896 } 2897 2898 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2899 /// icmp eq/ne BO, C. 2900 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2901 BinaryOperator *BO, 2902 const APInt &C) { 2903 // TODO: Some of these folds could work with arbitrary constants, but this 2904 // function is limited to scalar and vector splat constants. 2905 if (!Cmp.isEquality()) 2906 return nullptr; 2907 2908 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2909 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2910 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2911 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2912 2913 switch (BO->getOpcode()) { 2914 case Instruction::SRem: 2915 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2916 if (C.isNullValue() && BO->hasOneUse()) { 2917 const APInt *BOC; 2918 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2919 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2920 return new ICmpInst(Pred, NewRem, 2921 Constant::getNullValue(BO->getType())); 2922 } 2923 } 2924 break; 2925 case Instruction::Add: { 2926 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2927 const APInt *BOC; 2928 if (match(BOp1, m_APInt(BOC))) { 2929 if (BO->hasOneUse()) { 2930 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2931 return new ICmpInst(Pred, BOp0, SubC); 2932 } 2933 } else if (C.isNullValue()) { 2934 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2935 // efficiently invertible, or if the add has just this one use. 2936 if (Value *NegVal = dyn_castNegVal(BOp1)) 2937 return new ICmpInst(Pred, BOp0, NegVal); 2938 if (Value *NegVal = dyn_castNegVal(BOp0)) 2939 return new ICmpInst(Pred, NegVal, BOp1); 2940 if (BO->hasOneUse()) { 2941 Value *Neg = Builder.CreateNeg(BOp1); 2942 Neg->takeName(BO); 2943 return new ICmpInst(Pred, BOp0, Neg); 2944 } 2945 } 2946 break; 2947 } 2948 case Instruction::Xor: 2949 if (BO->hasOneUse()) { 2950 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2951 // For the xor case, we can xor two constants together, eliminating 2952 // the explicit xor. 2953 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2954 } else if (C.isNullValue()) { 2955 // Replace ((xor A, B) != 0) with (A != B) 2956 return new ICmpInst(Pred, BOp0, BOp1); 2957 } 2958 } 2959 break; 2960 case Instruction::Sub: 2961 if (BO->hasOneUse()) { 2962 const APInt *BOC; 2963 if (match(BOp0, m_APInt(BOC))) { 2964 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2965 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2966 return new ICmpInst(Pred, BOp1, SubC); 2967 } else if (C.isNullValue()) { 2968 // Replace ((sub A, B) != 0) with (A != B). 2969 return new ICmpInst(Pred, BOp0, BOp1); 2970 } 2971 } 2972 break; 2973 case Instruction::Or: { 2974 const APInt *BOC; 2975 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2976 // Comparing if all bits outside of a constant mask are set? 2977 // Replace (X | C) == -1 with (X & ~C) == ~C. 2978 // This removes the -1 constant. 2979 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2980 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2981 return new ICmpInst(Pred, And, NotBOC); 2982 } 2983 break; 2984 } 2985 case Instruction::And: { 2986 const APInt *BOC; 2987 if (match(BOp1, m_APInt(BOC))) { 2988 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2989 if (C == *BOC && C.isPowerOf2()) 2990 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2991 BO, Constant::getNullValue(RHS->getType())); 2992 } 2993 break; 2994 } 2995 case Instruction::Mul: 2996 if (C.isNullValue() && BO->hasNoSignedWrap()) { 2997 const APInt *BOC; 2998 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 2999 // The trivial case (mul X, 0) is handled by InstSimplify. 3000 // General case : (mul X, C) != 0 iff X != 0 3001 // (mul X, C) == 0 iff X == 0 3002 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 3003 } 3004 } 3005 break; 3006 case Instruction::UDiv: 3007 if (C.isNullValue()) { 3008 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3009 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3010 return new ICmpInst(NewPred, BOp1, BOp0); 3011 } 3012 break; 3013 default: 3014 break; 3015 } 3016 return nullptr; 3017 } 3018 3019 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3020 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 3021 IntrinsicInst *II, 3022 const APInt &C) { 3023 Type *Ty = II->getType(); 3024 unsigned BitWidth = C.getBitWidth(); 3025 switch (II->getIntrinsicID()) { 3026 case Intrinsic::bswap: 3027 Worklist.Add(II); 3028 Cmp.setOperand(0, II->getArgOperand(0)); 3029 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); 3030 return &Cmp; 3031 3032 case Intrinsic::ctlz: 3033 case Intrinsic::cttz: { 3034 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3035 if (C == BitWidth) { 3036 Worklist.Add(II); 3037 Cmp.setOperand(0, II->getArgOperand(0)); 3038 Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); 3039 return &Cmp; 3040 } 3041 3042 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3043 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3044 // Limit to one use to ensure we don't increase instruction count. 3045 unsigned Num = C.getLimitedValue(BitWidth); 3046 if (Num != BitWidth && II->hasOneUse()) { 3047 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3048 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3049 : APInt::getHighBitsSet(BitWidth, Num + 1); 3050 APInt Mask2 = IsTrailing 3051 ? APInt::getOneBitSet(BitWidth, Num) 3052 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3053 Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); 3054 Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); 3055 Worklist.Add(II); 3056 return &Cmp; 3057 } 3058 break; 3059 } 3060 3061 case Intrinsic::ctpop: { 3062 // popcount(A) == 0 -> A == 0 and likewise for != 3063 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3064 bool IsZero = C.isNullValue(); 3065 if (IsZero || C == BitWidth) { 3066 Worklist.Add(II); 3067 Cmp.setOperand(0, II->getArgOperand(0)); 3068 auto *NewOp = 3069 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); 3070 Cmp.setOperand(1, NewOp); 3071 return &Cmp; 3072 } 3073 break; 3074 } 3075 default: 3076 break; 3077 } 3078 3079 return nullptr; 3080 } 3081 3082 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3083 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3084 IntrinsicInst *II, 3085 const APInt &C) { 3086 if (Cmp.isEquality()) 3087 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3088 3089 Type *Ty = II->getType(); 3090 unsigned BitWidth = C.getBitWidth(); 3091 switch (II->getIntrinsicID()) { 3092 case Intrinsic::ctlz: { 3093 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3094 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3095 unsigned Num = C.getLimitedValue(); 3096 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3097 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3098 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3099 } 3100 3101 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3102 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3103 C.uge(1) && C.ule(BitWidth)) { 3104 unsigned Num = C.getLimitedValue(); 3105 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3106 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3107 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3108 } 3109 break; 3110 } 3111 case Intrinsic::cttz: { 3112 // Limit to one use to ensure we don't increase instruction count. 3113 if (!II->hasOneUse()) 3114 return nullptr; 3115 3116 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3117 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3118 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3119 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3120 Builder.CreateAnd(II->getArgOperand(0), Mask), 3121 ConstantInt::getNullValue(Ty)); 3122 } 3123 3124 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3125 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3126 C.uge(1) && C.ule(BitWidth)) { 3127 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3128 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3129 Builder.CreateAnd(II->getArgOperand(0), Mask), 3130 ConstantInt::getNullValue(Ty)); 3131 } 3132 break; 3133 } 3134 default: 3135 break; 3136 } 3137 3138 return nullptr; 3139 } 3140 3141 /// Handle icmp with constant (but not simple integer constant) RHS. 3142 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3143 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3144 Constant *RHSC = dyn_cast<Constant>(Op1); 3145 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3146 if (!RHSC || !LHSI) 3147 return nullptr; 3148 3149 switch (LHSI->getOpcode()) { 3150 case Instruction::GetElementPtr: 3151 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3152 if (RHSC->isNullValue() && 3153 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3154 return new ICmpInst( 3155 I.getPredicate(), LHSI->getOperand(0), 3156 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3157 break; 3158 case Instruction::PHI: 3159 // Only fold icmp into the PHI if the phi and icmp are in the same 3160 // block. If in the same block, we're encouraging jump threading. If 3161 // not, we are just pessimizing the code by making an i1 phi. 3162 if (LHSI->getParent() == I.getParent()) 3163 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3164 return NV; 3165 break; 3166 case Instruction::Select: { 3167 // If either operand of the select is a constant, we can fold the 3168 // comparison into the select arms, which will cause one to be 3169 // constant folded and the select turned into a bitwise or. 3170 Value *Op1 = nullptr, *Op2 = nullptr; 3171 ConstantInt *CI = nullptr; 3172 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3173 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3174 CI = dyn_cast<ConstantInt>(Op1); 3175 } 3176 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3177 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3178 CI = dyn_cast<ConstantInt>(Op2); 3179 } 3180 3181 // We only want to perform this transformation if it will not lead to 3182 // additional code. This is true if either both sides of the select 3183 // fold to a constant (in which case the icmp is replaced with a select 3184 // which will usually simplify) or this is the only user of the 3185 // select (in which case we are trading a select+icmp for a simpler 3186 // select+icmp) or all uses of the select can be replaced based on 3187 // dominance information ("Global cases"). 3188 bool Transform = false; 3189 if (Op1 && Op2) 3190 Transform = true; 3191 else if (Op1 || Op2) { 3192 // Local case 3193 if (LHSI->hasOneUse()) 3194 Transform = true; 3195 // Global cases 3196 else if (CI && !CI->isZero()) 3197 // When Op1 is constant try replacing select with second operand. 3198 // Otherwise Op2 is constant and try replacing select with first 3199 // operand. 3200 Transform = 3201 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3202 } 3203 if (Transform) { 3204 if (!Op1) 3205 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3206 I.getName()); 3207 if (!Op2) 3208 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3209 I.getName()); 3210 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3211 } 3212 break; 3213 } 3214 case Instruction::IntToPtr: 3215 // icmp pred inttoptr(X), null -> icmp pred X, 0 3216 if (RHSC->isNullValue() && 3217 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3218 return new ICmpInst( 3219 I.getPredicate(), LHSI->getOperand(0), 3220 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3221 break; 3222 3223 case Instruction::Load: 3224 // Try to optimize things like "A[i] > 4" to index computations. 3225 if (GetElementPtrInst *GEP = 3226 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3227 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3228 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3229 !cast<LoadInst>(LHSI)->isVolatile()) 3230 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3231 return Res; 3232 } 3233 break; 3234 } 3235 3236 return nullptr; 3237 } 3238 3239 /// Some comparisons can be simplified. 3240 /// In this case, we are looking for comparisons that look like 3241 /// a check for a lossy truncation. 3242 /// Folds: 3243 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3244 /// Where Mask is some pattern that produces all-ones in low bits: 3245 /// (-1 >> y) 3246 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3247 /// ~(-1 << y) 3248 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3249 /// The Mask can be a constant, too. 3250 /// For some predicates, the operands are commutative. 3251 /// For others, x can only be on a specific side. 3252 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3253 InstCombiner::BuilderTy &Builder) { 3254 ICmpInst::Predicate SrcPred; 3255 Value *X, *M, *Y; 3256 auto m_VariableMask = m_CombineOr( 3257 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3258 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3259 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3260 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3261 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3262 if (!match(&I, m_c_ICmp(SrcPred, 3263 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3264 m_Deferred(X)))) 3265 return nullptr; 3266 3267 ICmpInst::Predicate DstPred; 3268 switch (SrcPred) { 3269 case ICmpInst::Predicate::ICMP_EQ: 3270 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3271 DstPred = ICmpInst::Predicate::ICMP_ULE; 3272 break; 3273 case ICmpInst::Predicate::ICMP_NE: 3274 // x & (-1 >> y) != x -> x u> (-1 >> y) 3275 DstPred = ICmpInst::Predicate::ICMP_UGT; 3276 break; 3277 case ICmpInst::Predicate::ICMP_UGT: 3278 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3279 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3280 DstPred = ICmpInst::Predicate::ICMP_UGT; 3281 break; 3282 case ICmpInst::Predicate::ICMP_UGE: 3283 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3284 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3285 DstPred = ICmpInst::Predicate::ICMP_ULE; 3286 break; 3287 case ICmpInst::Predicate::ICMP_ULT: 3288 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3289 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3290 DstPred = ICmpInst::Predicate::ICMP_UGT; 3291 break; 3292 case ICmpInst::Predicate::ICMP_ULE: 3293 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3294 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3295 DstPred = ICmpInst::Predicate::ICMP_ULE; 3296 break; 3297 case ICmpInst::Predicate::ICMP_SGT: 3298 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3299 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3300 return nullptr; // Ignore the other case. 3301 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3302 return nullptr; 3303 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3304 return nullptr; 3305 DstPred = ICmpInst::Predicate::ICMP_SGT; 3306 break; 3307 case ICmpInst::Predicate::ICMP_SGE: 3308 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3309 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3310 return nullptr; // Ignore the other case. 3311 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3312 return nullptr; 3313 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3314 return nullptr; 3315 DstPred = ICmpInst::Predicate::ICMP_SLE; 3316 break; 3317 case ICmpInst::Predicate::ICMP_SLT: 3318 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3319 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3320 return nullptr; // Ignore the other case. 3321 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3322 return nullptr; 3323 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3324 return nullptr; 3325 DstPred = ICmpInst::Predicate::ICMP_SGT; 3326 break; 3327 case ICmpInst::Predicate::ICMP_SLE: 3328 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3329 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3330 return nullptr; // Ignore the other case. 3331 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3332 return nullptr; 3333 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3334 return nullptr; 3335 DstPred = ICmpInst::Predicate::ICMP_SLE; 3336 break; 3337 default: 3338 llvm_unreachable("All possible folds are handled."); 3339 } 3340 3341 return Builder.CreateICmp(DstPred, X, M); 3342 } 3343 3344 /// Some comparisons can be simplified. 3345 /// In this case, we are looking for comparisons that look like 3346 /// a check for a lossy signed truncation. 3347 /// Folds: (MaskedBits is a constant.) 3348 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3349 /// Into: 3350 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3351 /// Where KeptBits = bitwidth(%x) - MaskedBits 3352 static Value * 3353 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3354 InstCombiner::BuilderTy &Builder) { 3355 ICmpInst::Predicate SrcPred; 3356 Value *X; 3357 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3358 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3359 if (!match(&I, m_c_ICmp(SrcPred, 3360 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3361 m_APInt(C1))), 3362 m_Deferred(X)))) 3363 return nullptr; 3364 3365 // Potential handling of non-splats: for each element: 3366 // * if both are undef, replace with constant 0. 3367 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3368 // * if both are not undef, and are different, bailout. 3369 // * else, only one is undef, then pick the non-undef one. 3370 3371 // The shift amount must be equal. 3372 if (*C0 != *C1) 3373 return nullptr; 3374 const APInt &MaskedBits = *C0; 3375 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3376 3377 ICmpInst::Predicate DstPred; 3378 switch (SrcPred) { 3379 case ICmpInst::Predicate::ICMP_EQ: 3380 // ((%x << MaskedBits) a>> MaskedBits) == %x 3381 // => 3382 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3383 DstPred = ICmpInst::Predicate::ICMP_ULT; 3384 break; 3385 case ICmpInst::Predicate::ICMP_NE: 3386 // ((%x << MaskedBits) a>> MaskedBits) != %x 3387 // => 3388 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3389 DstPred = ICmpInst::Predicate::ICMP_UGE; 3390 break; 3391 // FIXME: are more folds possible? 3392 default: 3393 return nullptr; 3394 } 3395 3396 auto *XType = X->getType(); 3397 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3398 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3399 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3400 3401 // KeptBits = bitwidth(%x) - MaskedBits 3402 const APInt KeptBits = BitWidth - MaskedBits; 3403 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3404 // ICmpCst = (1 << KeptBits) 3405 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3406 assert(ICmpCst.isPowerOf2()); 3407 // AddCst = (1 << (KeptBits-1)) 3408 const APInt AddCst = ICmpCst.lshr(1); 3409 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3410 3411 // T0 = add %x, AddCst 3412 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3413 // T1 = T0 DstPred ICmpCst 3414 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3415 3416 return T1; 3417 } 3418 3419 // Given pattern: 3420 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3421 // we should move shifts to the same hand of 'and', i.e. rewrite as 3422 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3423 // We are only interested in opposite logical shifts here. 3424 // One of the shifts can be truncated. 3425 // If we can, we want to end up creating 'lshr' shift. 3426 static Value * 3427 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3428 InstCombiner::BuilderTy &Builder) { 3429 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3430 !I.getOperand(0)->hasOneUse()) 3431 return nullptr; 3432 3433 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3434 3435 // Look for an 'and' of two logical shifts, one of which may be truncated. 3436 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3437 Instruction *XShift, *MaybeTruncation, *YShift; 3438 if (!match( 3439 I.getOperand(0), 3440 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3441 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3442 m_AnyLogicalShift, m_Instruction(YShift))), 3443 m_Instruction(MaybeTruncation))))) 3444 return nullptr; 3445 3446 // We potentially looked past 'trunc', but only when matching YShift, 3447 // therefore YShift must have the widest type. 3448 Instruction *WidestShift = YShift; 3449 // Therefore XShift must have the shallowest type. 3450 // Or they both have identical types if there was no truncation. 3451 Instruction *NarrowestShift = XShift; 3452 3453 Type *WidestTy = WidestShift->getType(); 3454 assert(NarrowestShift->getType() == I.getOperand(0)->getType() && 3455 "We did not look past any shifts while matching XShift though."); 3456 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3457 3458 // If YShift is a 'lshr', swap the shifts around. 3459 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3460 std::swap(XShift, YShift); 3461 3462 // The shifts must be in opposite directions. 3463 auto XShiftOpcode = XShift->getOpcode(); 3464 if (XShiftOpcode == YShift->getOpcode()) 3465 return nullptr; // Do not care about same-direction shifts here. 3466 3467 Value *X, *XShAmt, *Y, *YShAmt; 3468 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3469 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3470 3471 // If one of the values being shifted is a constant, then we will end with 3472 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3473 // however, we will need to ensure that we won't increase instruction count. 3474 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3475 // At least one of the hands of the 'and' should be one-use shift. 3476 if (!match(I.getOperand(0), 3477 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3478 return nullptr; 3479 if (HadTrunc) { 3480 // Due to the 'trunc', we will need to widen X. For that either the old 3481 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3482 if (!MaybeTruncation->hasOneUse() && 3483 !NarrowestShift->getOperand(1)->hasOneUse()) 3484 return nullptr; 3485 } 3486 } 3487 3488 // We have two shift amounts from two different shifts. The types of those 3489 // shift amounts may not match. If that's the case let's bailout now. 3490 if (XShAmt->getType() != YShAmt->getType()) 3491 return nullptr; 3492 3493 // Can we fold (XShAmt+YShAmt) ? 3494 auto *NewShAmt = dyn_cast_or_null<Constant>( 3495 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3496 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3497 if (!NewShAmt) 3498 return nullptr; 3499 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3500 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3501 3502 // Is the new shift amount smaller than the bit width? 3503 // FIXME: could also rely on ConstantRange. 3504 if (!match(NewShAmt, 3505 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3506 APInt(WidestBitWidth, WidestBitWidth)))) 3507 return nullptr; 3508 3509 // An extra legality check is needed if we had trunc-of-lshr. 3510 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3511 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3512 WidestShift]() { 3513 // It isn't obvious whether it's worth it to analyze non-constants here. 3514 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3515 // If *any* of these preconditions matches we can perform the fold. 3516 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3517 ? NewShAmt->getSplatValue() 3518 : NewShAmt; 3519 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3520 if (NewShAmtSplat && 3521 (NewShAmtSplat->isNullValue() || 3522 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3523 return true; 3524 // We consider *min* leading zeros so a single outlier 3525 // blocks the transform as opposed to allowing it. 3526 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3527 KnownBits Known = computeKnownBits(C, SQ.DL); 3528 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3529 // If the value being shifted has at most lowest bit set we can fold. 3530 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3531 if (MaxActiveBits <= 1) 3532 return true; 3533 // Precondition: NewShAmt u<= countLeadingZeros(C) 3534 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3535 return true; 3536 } 3537 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3538 KnownBits Known = computeKnownBits(C, SQ.DL); 3539 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3540 // If the value being shifted has at most lowest bit set we can fold. 3541 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3542 if (MaxActiveBits <= 1) 3543 return true; 3544 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3545 if (NewShAmtSplat) { 3546 APInt AdjNewShAmt = 3547 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3548 if (AdjNewShAmt.ule(MinLeadZero)) 3549 return true; 3550 } 3551 } 3552 return false; // Can't tell if it's ok. 3553 }; 3554 if (!CanFold()) 3555 return nullptr; 3556 } 3557 3558 // All good, we can do this fold. 3559 X = Builder.CreateZExt(X, WidestTy); 3560 Y = Builder.CreateZExt(Y, WidestTy); 3561 // The shift is the same that was for X. 3562 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3563 ? Builder.CreateLShr(X, NewShAmt) 3564 : Builder.CreateShl(X, NewShAmt); 3565 Value *T1 = Builder.CreateAnd(T0, Y); 3566 return Builder.CreateICmp(I.getPredicate(), T1, 3567 Constant::getNullValue(WidestTy)); 3568 } 3569 3570 /// Fold 3571 /// (-1 u/ x) u< y 3572 /// ((x * y) u/ x) != y 3573 /// to 3574 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit 3575 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3576 /// will mean that we are looking for the opposite answer. 3577 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { 3578 ICmpInst::Predicate Pred; 3579 Value *X, *Y; 3580 Instruction *Mul; 3581 bool NeedNegation; 3582 // Look for: (-1 u/ x) u</u>= y 3583 if (!I.isEquality() && 3584 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3585 m_Value(Y)))) { 3586 Mul = nullptr; 3587 // Canonicalize as-if y was on RHS. 3588 if (I.getOperand(1) != Y) 3589 Pred = I.getSwappedPredicate(); 3590 3591 // Are we checking that overflow does not happen, or does happen? 3592 switch (Pred) { 3593 case ICmpInst::Predicate::ICMP_ULT: 3594 NeedNegation = false; 3595 break; // OK 3596 case ICmpInst::Predicate::ICMP_UGE: 3597 NeedNegation = true; 3598 break; // OK 3599 default: 3600 return nullptr; // Wrong predicate. 3601 } 3602 } else // Look for: ((x * y) u/ x) !=/== y 3603 if (I.isEquality() && 3604 match(&I, m_c_ICmp(Pred, m_Value(Y), 3605 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3606 m_Value(X)), 3607 m_Instruction(Mul)), 3608 m_Deferred(X)))))) { 3609 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3610 } else 3611 return nullptr; 3612 3613 BuilderTy::InsertPointGuard Guard(Builder); 3614 // If the pattern included (x * y), we'll want to insert new instructions 3615 // right before that original multiplication so that we can replace it. 3616 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3617 if (MulHadOtherUses) 3618 Builder.SetInsertPoint(Mul); 3619 3620 Function *F = Intrinsic::getDeclaration( 3621 I.getModule(), Intrinsic::umul_with_overflow, X->getType()); 3622 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); 3623 3624 // If the multiplication was used elsewhere, to ensure that we don't leave 3625 // "duplicate" instructions, replace uses of that original multiplication 3626 // with the multiplication result from the with.overflow intrinsic. 3627 if (MulHadOtherUses) 3628 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); 3629 3630 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); 3631 if (NeedNegation) // This technically increases instruction count. 3632 Res = Builder.CreateNot(Res, "umul.not.ov"); 3633 3634 return Res; 3635 } 3636 3637 /// Try to fold icmp (binop), X or icmp X, (binop). 3638 /// TODO: A large part of this logic is duplicated in InstSimplify's 3639 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3640 /// duplication. 3641 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 3642 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3643 3644 // Special logic for binary operators. 3645 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3646 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3647 if (!BO0 && !BO1) 3648 return nullptr; 3649 3650 const CmpInst::Predicate Pred = I.getPredicate(); 3651 Value *X; 3652 3653 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3654 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3655 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3656 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3657 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3658 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3659 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3660 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3661 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3662 3663 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3664 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3665 NoOp0WrapProblem = 3666 ICmpInst::isEquality(Pred) || 3667 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3668 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3669 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3670 NoOp1WrapProblem = 3671 ICmpInst::isEquality(Pred) || 3672 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3673 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3674 3675 // Analyze the case when either Op0 or Op1 is an add instruction. 3676 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3677 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3678 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3679 A = BO0->getOperand(0); 3680 B = BO0->getOperand(1); 3681 } 3682 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3683 C = BO1->getOperand(0); 3684 D = BO1->getOperand(1); 3685 } 3686 3687 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3688 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3689 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3690 return new ICmpInst(Pred, A == Op1 ? B : A, 3691 Constant::getNullValue(Op1->getType())); 3692 3693 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3694 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3695 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3696 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3697 C == Op0 ? D : C); 3698 3699 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3700 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3701 NoOp1WrapProblem) { 3702 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3703 Value *Y, *Z; 3704 if (A == C) { 3705 // C + B == C + D -> B == D 3706 Y = B; 3707 Z = D; 3708 } else if (A == D) { 3709 // D + B == C + D -> B == C 3710 Y = B; 3711 Z = C; 3712 } else if (B == C) { 3713 // A + C == C + D -> A == D 3714 Y = A; 3715 Z = D; 3716 } else { 3717 assert(B == D); 3718 // A + D == C + D -> A == C 3719 Y = A; 3720 Z = C; 3721 } 3722 return new ICmpInst(Pred, Y, Z); 3723 } 3724 3725 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 3726 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3727 match(B, m_AllOnes())) 3728 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3729 3730 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 3731 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3732 match(B, m_AllOnes())) 3733 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3734 3735 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 3736 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3737 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3738 3739 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 3740 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3741 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3742 3743 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 3744 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3745 match(D, m_AllOnes())) 3746 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3747 3748 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 3749 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3750 match(D, m_AllOnes())) 3751 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3752 3753 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 3754 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3755 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3756 3757 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 3758 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3759 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3760 3761 // TODO: The subtraction-related identities shown below also hold, but 3762 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3763 // wouldn't happen even if they were implemented. 3764 // 3765 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 3766 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 3767 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 3768 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 3769 3770 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 3771 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3772 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3773 3774 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 3775 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3776 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3777 3778 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 3779 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3780 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3781 3782 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 3783 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3784 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3785 3786 // if C1 has greater magnitude than C2: 3787 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 3788 // s.t. C3 = C1 - C2 3789 // 3790 // if C2 has greater magnitude than C1: 3791 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 3792 // s.t. C3 = C2 - C1 3793 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3794 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3795 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3796 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3797 const APInt &AP1 = C1->getValue(); 3798 const APInt &AP2 = C2->getValue(); 3799 if (AP1.isNegative() == AP2.isNegative()) { 3800 APInt AP1Abs = C1->getValue().abs(); 3801 APInt AP2Abs = C2->getValue().abs(); 3802 if (AP1Abs.uge(AP2Abs)) { 3803 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3804 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3805 return new ICmpInst(Pred, NewAdd, C); 3806 } else { 3807 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3808 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3809 return new ICmpInst(Pred, A, NewAdd); 3810 } 3811 } 3812 } 3813 3814 // Analyze the case when either Op0 or Op1 is a sub instruction. 3815 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3816 A = nullptr; 3817 B = nullptr; 3818 C = nullptr; 3819 D = nullptr; 3820 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3821 A = BO0->getOperand(0); 3822 B = BO0->getOperand(1); 3823 } 3824 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3825 C = BO1->getOperand(0); 3826 D = BO1->getOperand(1); 3827 } 3828 3829 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 3830 if (A == Op1 && NoOp0WrapProblem) 3831 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3832 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 3833 if (C == Op0 && NoOp1WrapProblem) 3834 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3835 3836 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 3837 // (A - B) u>/u<= A --> B u>/u<= A 3838 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3839 return new ICmpInst(Pred, B, A); 3840 // C u</u>= (C - D) --> C u</u>= D 3841 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3842 return new ICmpInst(Pred, C, D); 3843 3844 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 3845 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 3846 return new ICmpInst(Pred, A, C); 3847 3848 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 3849 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 3850 return new ICmpInst(Pred, D, B); 3851 3852 // icmp (0-X) < cst --> x > -cst 3853 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3854 Value *X; 3855 if (match(BO0, m_Neg(m_Value(X)))) 3856 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3857 if (RHSC->isNotMinSignedValue()) 3858 return new ICmpInst(I.getSwappedPredicate(), X, 3859 ConstantExpr::getNeg(RHSC)); 3860 } 3861 3862 BinaryOperator *SRem = nullptr; 3863 // icmp (srem X, Y), Y 3864 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3865 SRem = BO0; 3866 // icmp Y, (srem X, Y) 3867 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3868 Op0 == BO1->getOperand(1)) 3869 SRem = BO1; 3870 if (SRem) { 3871 // We don't check hasOneUse to avoid increasing register pressure because 3872 // the value we use is the same value this instruction was already using. 3873 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3874 default: 3875 break; 3876 case ICmpInst::ICMP_EQ: 3877 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3878 case ICmpInst::ICMP_NE: 3879 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3880 case ICmpInst::ICMP_SGT: 3881 case ICmpInst::ICMP_SGE: 3882 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3883 Constant::getAllOnesValue(SRem->getType())); 3884 case ICmpInst::ICMP_SLT: 3885 case ICmpInst::ICMP_SLE: 3886 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3887 Constant::getNullValue(SRem->getType())); 3888 } 3889 } 3890 3891 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3892 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3893 switch (BO0->getOpcode()) { 3894 default: 3895 break; 3896 case Instruction::Add: 3897 case Instruction::Sub: 3898 case Instruction::Xor: { 3899 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3900 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3901 3902 const APInt *C; 3903 if (match(BO0->getOperand(1), m_APInt(C))) { 3904 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3905 if (C->isSignMask()) { 3906 ICmpInst::Predicate NewPred = 3907 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3908 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3909 } 3910 3911 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3912 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3913 ICmpInst::Predicate NewPred = 3914 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3915 NewPred = I.getSwappedPredicate(NewPred); 3916 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3917 } 3918 } 3919 break; 3920 } 3921 case Instruction::Mul: { 3922 if (!I.isEquality()) 3923 break; 3924 3925 const APInt *C; 3926 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3927 !C->isOneValue()) { 3928 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3929 // Mask = -1 >> count-trailing-zeros(C). 3930 if (unsigned TZs = C->countTrailingZeros()) { 3931 Constant *Mask = ConstantInt::get( 3932 BO0->getType(), 3933 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 3934 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 3935 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 3936 return new ICmpInst(Pred, And1, And2); 3937 } 3938 // If there are no trailing zeros in the multiplier, just eliminate 3939 // the multiplies (no masking is needed): 3940 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 3941 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3942 } 3943 break; 3944 } 3945 case Instruction::UDiv: 3946 case Instruction::LShr: 3947 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 3948 break; 3949 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3950 3951 case Instruction::SDiv: 3952 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 3953 break; 3954 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3955 3956 case Instruction::AShr: 3957 if (!BO0->isExact() || !BO1->isExact()) 3958 break; 3959 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3960 3961 case Instruction::Shl: { 3962 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3963 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3964 if (!NUW && !NSW) 3965 break; 3966 if (!NSW && I.isSigned()) 3967 break; 3968 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3969 } 3970 } 3971 } 3972 3973 if (BO0) { 3974 // Transform A & (L - 1) `ult` L --> L != 0 3975 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3976 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 3977 3978 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 3979 auto *Zero = Constant::getNullValue(BO0->getType()); 3980 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3981 } 3982 } 3983 3984 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) 3985 return replaceInstUsesWith(I, V); 3986 3987 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 3988 return replaceInstUsesWith(I, V); 3989 3990 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 3991 return replaceInstUsesWith(I, V); 3992 3993 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 3994 return replaceInstUsesWith(I, V); 3995 3996 return nullptr; 3997 } 3998 3999 /// Fold icmp Pred min|max(X, Y), X. 4000 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4001 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4002 Value *Op0 = Cmp.getOperand(0); 4003 Value *X = Cmp.getOperand(1); 4004 4005 // Canonicalize minimum or maximum operand to LHS of the icmp. 4006 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4007 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4008 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4009 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4010 std::swap(Op0, X); 4011 Pred = Cmp.getSwappedPredicate(); 4012 } 4013 4014 Value *Y; 4015 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4016 // smin(X, Y) == X --> X s<= Y 4017 // smin(X, Y) s>= X --> X s<= Y 4018 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4019 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4020 4021 // smin(X, Y) != X --> X s> Y 4022 // smin(X, Y) s< X --> X s> Y 4023 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4024 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4025 4026 // These cases should be handled in InstSimplify: 4027 // smin(X, Y) s<= X --> true 4028 // smin(X, Y) s> X --> false 4029 return nullptr; 4030 } 4031 4032 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4033 // smax(X, Y) == X --> X s>= Y 4034 // smax(X, Y) s<= X --> X s>= Y 4035 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4036 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4037 4038 // smax(X, Y) != X --> X s< Y 4039 // smax(X, Y) s> X --> X s< Y 4040 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4041 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4042 4043 // These cases should be handled in InstSimplify: 4044 // smax(X, Y) s>= X --> true 4045 // smax(X, Y) s< X --> false 4046 return nullptr; 4047 } 4048 4049 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4050 // umin(X, Y) == X --> X u<= Y 4051 // umin(X, Y) u>= X --> X u<= Y 4052 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4053 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4054 4055 // umin(X, Y) != X --> X u> Y 4056 // umin(X, Y) u< X --> X u> Y 4057 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4058 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4059 4060 // These cases should be handled in InstSimplify: 4061 // umin(X, Y) u<= X --> true 4062 // umin(X, Y) u> X --> false 4063 return nullptr; 4064 } 4065 4066 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4067 // umax(X, Y) == X --> X u>= Y 4068 // umax(X, Y) u<= X --> X u>= Y 4069 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4070 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4071 4072 // umax(X, Y) != X --> X u< Y 4073 // umax(X, Y) u> X --> X u< Y 4074 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4075 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4076 4077 // These cases should be handled in InstSimplify: 4078 // umax(X, Y) u>= X --> true 4079 // umax(X, Y) u< X --> false 4080 return nullptr; 4081 } 4082 4083 return nullptr; 4084 } 4085 4086 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 4087 if (!I.isEquality()) 4088 return nullptr; 4089 4090 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4091 const CmpInst::Predicate Pred = I.getPredicate(); 4092 Value *A, *B, *C, *D; 4093 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4094 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4095 Value *OtherVal = A == Op1 ? B : A; 4096 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4097 } 4098 4099 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4100 // A^c1 == C^c2 --> A == C^(c1^c2) 4101 ConstantInt *C1, *C2; 4102 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4103 Op1->hasOneUse()) { 4104 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4105 Value *Xor = Builder.CreateXor(C, NC); 4106 return new ICmpInst(Pred, A, Xor); 4107 } 4108 4109 // A^B == A^D -> B == D 4110 if (A == C) 4111 return new ICmpInst(Pred, B, D); 4112 if (A == D) 4113 return new ICmpInst(Pred, B, C); 4114 if (B == C) 4115 return new ICmpInst(Pred, A, D); 4116 if (B == D) 4117 return new ICmpInst(Pred, A, C); 4118 } 4119 } 4120 4121 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4122 // A == (A^B) -> B == 0 4123 Value *OtherVal = A == Op0 ? B : A; 4124 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4125 } 4126 4127 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4128 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4129 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4130 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4131 4132 if (A == C) { 4133 X = B; 4134 Y = D; 4135 Z = A; 4136 } else if (A == D) { 4137 X = B; 4138 Y = C; 4139 Z = A; 4140 } else if (B == C) { 4141 X = A; 4142 Y = D; 4143 Z = B; 4144 } else if (B == D) { 4145 X = A; 4146 Y = C; 4147 Z = B; 4148 } 4149 4150 if (X) { // Build (X^Y) & Z 4151 Op1 = Builder.CreateXor(X, Y); 4152 Op1 = Builder.CreateAnd(Op1, Z); 4153 I.setOperand(0, Op1); 4154 I.setOperand(1, Constant::getNullValue(Op1->getType())); 4155 return &I; 4156 } 4157 } 4158 4159 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4160 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4161 ConstantInt *Cst1; 4162 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4163 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4164 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4165 match(Op1, m_ZExt(m_Value(A))))) { 4166 APInt Pow2 = Cst1->getValue() + 1; 4167 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4168 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4169 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4170 } 4171 4172 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4173 // For lshr and ashr pairs. 4174 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4175 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4176 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4177 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4178 unsigned TypeBits = Cst1->getBitWidth(); 4179 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4180 if (ShAmt < TypeBits && ShAmt != 0) { 4181 ICmpInst::Predicate NewPred = 4182 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4183 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4184 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4185 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4186 } 4187 } 4188 4189 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4190 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4191 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4192 unsigned TypeBits = Cst1->getBitWidth(); 4193 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4194 if (ShAmt < TypeBits && ShAmt != 0) { 4195 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4196 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4197 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4198 I.getName() + ".mask"); 4199 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4200 } 4201 } 4202 4203 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4204 // "icmp (and X, mask), cst" 4205 uint64_t ShAmt = 0; 4206 if (Op0->hasOneUse() && 4207 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4208 match(Op1, m_ConstantInt(Cst1)) && 4209 // Only do this when A has multiple uses. This is most important to do 4210 // when it exposes other optimizations. 4211 !A->hasOneUse()) { 4212 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4213 4214 if (ShAmt < ASize) { 4215 APInt MaskV = 4216 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4217 MaskV <<= ShAmt; 4218 4219 APInt CmpV = Cst1->getValue().zext(ASize); 4220 CmpV <<= ShAmt; 4221 4222 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4223 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4224 } 4225 } 4226 4227 // If both operands are byte-swapped or bit-reversed, just compare the 4228 // original values. 4229 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 4230 // and handle more intrinsics. 4231 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 4232 (match(Op0, m_BitReverse(m_Value(A))) && 4233 match(Op1, m_BitReverse(m_Value(B))))) 4234 return new ICmpInst(Pred, A, B); 4235 4236 // Canonicalize checking for a power-of-2-or-zero value: 4237 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4238 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4239 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4240 m_Deferred(A)))) || 4241 !match(Op1, m_ZeroInt())) 4242 A = nullptr; 4243 4244 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4245 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4246 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4247 A = Op1; 4248 else if (match(Op1, 4249 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4250 A = Op0; 4251 4252 if (A) { 4253 Type *Ty = A->getType(); 4254 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4255 return Pred == ICmpInst::ICMP_EQ 4256 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4257 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4258 } 4259 4260 return nullptr; 4261 } 4262 4263 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4264 InstCombiner::BuilderTy &Builder) { 4265 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4266 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4267 Value *X; 4268 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4269 return nullptr; 4270 4271 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4272 bool IsSignedCmp = ICmp.isSigned(); 4273 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4274 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4275 // and the other is a zext), then we can't handle this. 4276 // TODO: This is too strict. We can handle some predicates (equality?). 4277 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4278 return nullptr; 4279 4280 // Not an extension from the same type? 4281 Value *Y = CastOp1->getOperand(0); 4282 Type *XTy = X->getType(), *YTy = Y->getType(); 4283 if (XTy != YTy) { 4284 // One of the casts must have one use because we are creating a new cast. 4285 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4286 return nullptr; 4287 // Extend the narrower operand to the type of the wider operand. 4288 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4289 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4290 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4291 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4292 else 4293 return nullptr; 4294 } 4295 4296 // (zext X) == (zext Y) --> X == Y 4297 // (sext X) == (sext Y) --> X == Y 4298 if (ICmp.isEquality()) 4299 return new ICmpInst(ICmp.getPredicate(), X, Y); 4300 4301 // A signed comparison of sign extended values simplifies into a 4302 // signed comparison. 4303 if (IsSignedCmp && IsSignedExt) 4304 return new ICmpInst(ICmp.getPredicate(), X, Y); 4305 4306 // The other three cases all fold into an unsigned comparison. 4307 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4308 } 4309 4310 // Below here, we are only folding a compare with constant. 4311 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4312 if (!C) 4313 return nullptr; 4314 4315 // Compute the constant that would happen if we truncated to SrcTy then 4316 // re-extended to DestTy. 4317 Type *SrcTy = CastOp0->getSrcTy(); 4318 Type *DestTy = CastOp0->getDestTy(); 4319 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4320 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4321 4322 // If the re-extended constant didn't change... 4323 if (Res2 == C) { 4324 if (ICmp.isEquality()) 4325 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4326 4327 // A signed comparison of sign extended values simplifies into a 4328 // signed comparison. 4329 if (IsSignedExt && IsSignedCmp) 4330 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4331 4332 // The other three cases all fold into an unsigned comparison. 4333 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4334 } 4335 4336 // The re-extended constant changed, partly changed (in the case of a vector), 4337 // or could not be determined to be equal (in the case of a constant 4338 // expression), so the constant cannot be represented in the shorter type. 4339 // All the cases that fold to true or false will have already been handled 4340 // by SimplifyICmpInst, so only deal with the tricky case. 4341 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4342 return nullptr; 4343 4344 // Is source op positive? 4345 // icmp ult (sext X), C --> icmp sgt X, -1 4346 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4347 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4348 4349 // Is source op negative? 4350 // icmp ugt (sext X), C --> icmp slt X, 0 4351 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4352 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4353 } 4354 4355 /// Handle icmp (cast x), (cast or constant). 4356 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) { 4357 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4358 if (!CastOp0) 4359 return nullptr; 4360 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4361 return nullptr; 4362 4363 Value *Op0Src = CastOp0->getOperand(0); 4364 Type *SrcTy = CastOp0->getSrcTy(); 4365 Type *DestTy = CastOp0->getDestTy(); 4366 4367 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4368 // integer type is the same size as the pointer type. 4369 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4370 if (isa<VectorType>(SrcTy)) { 4371 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4372 DestTy = cast<VectorType>(DestTy)->getElementType(); 4373 } 4374 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4375 }; 4376 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4377 CompatibleSizes(SrcTy, DestTy)) { 4378 Value *NewOp1 = nullptr; 4379 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4380 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4381 if (PtrSrc->getType()->getPointerAddressSpace() == 4382 Op0Src->getType()->getPointerAddressSpace()) { 4383 NewOp1 = PtrToIntOp1->getOperand(0); 4384 // If the pointer types don't match, insert a bitcast. 4385 if (Op0Src->getType() != NewOp1->getType()) 4386 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4387 } 4388 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4389 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4390 } 4391 4392 if (NewOp1) 4393 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4394 } 4395 4396 return foldICmpWithZextOrSext(ICmp, Builder); 4397 } 4398 4399 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4400 switch (BinaryOp) { 4401 default: 4402 llvm_unreachable("Unsupported binary op"); 4403 case Instruction::Add: 4404 case Instruction::Sub: 4405 return match(RHS, m_Zero()); 4406 case Instruction::Mul: 4407 return match(RHS, m_One()); 4408 } 4409 } 4410 4411 OverflowResult InstCombiner::computeOverflow( 4412 Instruction::BinaryOps BinaryOp, bool IsSigned, 4413 Value *LHS, Value *RHS, Instruction *CxtI) const { 4414 switch (BinaryOp) { 4415 default: 4416 llvm_unreachable("Unsupported binary op"); 4417 case Instruction::Add: 4418 if (IsSigned) 4419 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4420 else 4421 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4422 case Instruction::Sub: 4423 if (IsSigned) 4424 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4425 else 4426 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4427 case Instruction::Mul: 4428 if (IsSigned) 4429 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4430 else 4431 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4432 } 4433 } 4434 4435 bool InstCombiner::OptimizeOverflowCheck( 4436 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, 4437 Instruction &OrigI, Value *&Result, Constant *&Overflow) { 4438 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4439 std::swap(LHS, RHS); 4440 4441 // If the overflow check was an add followed by a compare, the insertion point 4442 // may be pointing to the compare. We want to insert the new instructions 4443 // before the add in case there are uses of the add between the add and the 4444 // compare. 4445 Builder.SetInsertPoint(&OrigI); 4446 4447 if (isNeutralValue(BinaryOp, RHS)) { 4448 Result = LHS; 4449 Overflow = Builder.getFalse(); 4450 return true; 4451 } 4452 4453 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4454 case OverflowResult::MayOverflow: 4455 return false; 4456 case OverflowResult::AlwaysOverflowsLow: 4457 case OverflowResult::AlwaysOverflowsHigh: 4458 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4459 Result->takeName(&OrigI); 4460 Overflow = Builder.getTrue(); 4461 return true; 4462 case OverflowResult::NeverOverflows: 4463 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4464 Result->takeName(&OrigI); 4465 Overflow = Builder.getFalse(); 4466 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4467 if (IsSigned) 4468 Inst->setHasNoSignedWrap(); 4469 else 4470 Inst->setHasNoUnsignedWrap(); 4471 } 4472 return true; 4473 } 4474 4475 llvm_unreachable("Unexpected overflow result"); 4476 } 4477 4478 /// Recognize and process idiom involving test for multiplication 4479 /// overflow. 4480 /// 4481 /// The caller has matched a pattern of the form: 4482 /// I = cmp u (mul(zext A, zext B), V 4483 /// The function checks if this is a test for overflow and if so replaces 4484 /// multiplication with call to 'mul.with.overflow' intrinsic. 4485 /// 4486 /// \param I Compare instruction. 4487 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4488 /// the compare instruction. Must be of integer type. 4489 /// \param OtherVal The other argument of compare instruction. 4490 /// \returns Instruction which must replace the compare instruction, NULL if no 4491 /// replacement required. 4492 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4493 Value *OtherVal, InstCombiner &IC) { 4494 // Don't bother doing this transformation for pointers, don't do it for 4495 // vectors. 4496 if (!isa<IntegerType>(MulVal->getType())) 4497 return nullptr; 4498 4499 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4500 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4501 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4502 if (!MulInstr) 4503 return nullptr; 4504 assert(MulInstr->getOpcode() == Instruction::Mul); 4505 4506 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4507 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4508 assert(LHS->getOpcode() == Instruction::ZExt); 4509 assert(RHS->getOpcode() == Instruction::ZExt); 4510 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4511 4512 // Calculate type and width of the result produced by mul.with.overflow. 4513 Type *TyA = A->getType(), *TyB = B->getType(); 4514 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4515 WidthB = TyB->getPrimitiveSizeInBits(); 4516 unsigned MulWidth; 4517 Type *MulType; 4518 if (WidthB > WidthA) { 4519 MulWidth = WidthB; 4520 MulType = TyB; 4521 } else { 4522 MulWidth = WidthA; 4523 MulType = TyA; 4524 } 4525 4526 // In order to replace the original mul with a narrower mul.with.overflow, 4527 // all uses must ignore upper bits of the product. The number of used low 4528 // bits must be not greater than the width of mul.with.overflow. 4529 if (MulVal->hasNUsesOrMore(2)) 4530 for (User *U : MulVal->users()) { 4531 if (U == &I) 4532 continue; 4533 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4534 // Check if truncation ignores bits above MulWidth. 4535 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4536 if (TruncWidth > MulWidth) 4537 return nullptr; 4538 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4539 // Check if AND ignores bits above MulWidth. 4540 if (BO->getOpcode() != Instruction::And) 4541 return nullptr; 4542 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4543 const APInt &CVal = CI->getValue(); 4544 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4545 return nullptr; 4546 } else { 4547 // In this case we could have the operand of the binary operation 4548 // being defined in another block, and performing the replacement 4549 // could break the dominance relation. 4550 return nullptr; 4551 } 4552 } else { 4553 // Other uses prohibit this transformation. 4554 return nullptr; 4555 } 4556 } 4557 4558 // Recognize patterns 4559 switch (I.getPredicate()) { 4560 case ICmpInst::ICMP_EQ: 4561 case ICmpInst::ICMP_NE: 4562 // Recognize pattern: 4563 // mulval = mul(zext A, zext B) 4564 // cmp eq/neq mulval, zext trunc mulval 4565 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4566 if (Zext->hasOneUse()) { 4567 Value *ZextArg = Zext->getOperand(0); 4568 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4569 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4570 break; //Recognized 4571 } 4572 4573 // Recognize pattern: 4574 // mulval = mul(zext A, zext B) 4575 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4576 ConstantInt *CI; 4577 Value *ValToMask; 4578 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4579 if (ValToMask != MulVal) 4580 return nullptr; 4581 const APInt &CVal = CI->getValue() + 1; 4582 if (CVal.isPowerOf2()) { 4583 unsigned MaskWidth = CVal.logBase2(); 4584 if (MaskWidth == MulWidth) 4585 break; // Recognized 4586 } 4587 } 4588 return nullptr; 4589 4590 case ICmpInst::ICMP_UGT: 4591 // Recognize pattern: 4592 // mulval = mul(zext A, zext B) 4593 // cmp ugt mulval, max 4594 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4595 APInt MaxVal = APInt::getMaxValue(MulWidth); 4596 MaxVal = MaxVal.zext(CI->getBitWidth()); 4597 if (MaxVal.eq(CI->getValue())) 4598 break; // Recognized 4599 } 4600 return nullptr; 4601 4602 case ICmpInst::ICMP_UGE: 4603 // Recognize pattern: 4604 // mulval = mul(zext A, zext B) 4605 // cmp uge mulval, max+1 4606 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4607 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4608 if (MaxVal.eq(CI->getValue())) 4609 break; // Recognized 4610 } 4611 return nullptr; 4612 4613 case ICmpInst::ICMP_ULE: 4614 // Recognize pattern: 4615 // mulval = mul(zext A, zext B) 4616 // cmp ule mulval, max 4617 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4618 APInt MaxVal = APInt::getMaxValue(MulWidth); 4619 MaxVal = MaxVal.zext(CI->getBitWidth()); 4620 if (MaxVal.eq(CI->getValue())) 4621 break; // Recognized 4622 } 4623 return nullptr; 4624 4625 case ICmpInst::ICMP_ULT: 4626 // Recognize pattern: 4627 // mulval = mul(zext A, zext B) 4628 // cmp ule mulval, max + 1 4629 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4630 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4631 if (MaxVal.eq(CI->getValue())) 4632 break; // Recognized 4633 } 4634 return nullptr; 4635 4636 default: 4637 return nullptr; 4638 } 4639 4640 InstCombiner::BuilderTy &Builder = IC.Builder; 4641 Builder.SetInsertPoint(MulInstr); 4642 4643 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4644 Value *MulA = A, *MulB = B; 4645 if (WidthA < MulWidth) 4646 MulA = Builder.CreateZExt(A, MulType); 4647 if (WidthB < MulWidth) 4648 MulB = Builder.CreateZExt(B, MulType); 4649 Function *F = Intrinsic::getDeclaration( 4650 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4651 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4652 IC.Worklist.Add(MulInstr); 4653 4654 // If there are uses of mul result other than the comparison, we know that 4655 // they are truncation or binary AND. Change them to use result of 4656 // mul.with.overflow and adjust properly mask/size. 4657 if (MulVal->hasNUsesOrMore(2)) { 4658 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4659 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4660 User *U = *UI++; 4661 if (U == &I || U == OtherVal) 4662 continue; 4663 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4664 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4665 IC.replaceInstUsesWith(*TI, Mul); 4666 else 4667 TI->setOperand(0, Mul); 4668 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4669 assert(BO->getOpcode() == Instruction::And); 4670 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4671 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4672 APInt ShortMask = CI->getValue().trunc(MulWidth); 4673 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4674 Instruction *Zext = 4675 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); 4676 IC.Worklist.Add(Zext); 4677 IC.replaceInstUsesWith(*BO, Zext); 4678 } else { 4679 llvm_unreachable("Unexpected Binary operation"); 4680 } 4681 IC.Worklist.Add(cast<Instruction>(U)); 4682 } 4683 } 4684 if (isa<Instruction>(OtherVal)) 4685 IC.Worklist.Add(cast<Instruction>(OtherVal)); 4686 4687 // The original icmp gets replaced with the overflow value, maybe inverted 4688 // depending on predicate. 4689 bool Inverse = false; 4690 switch (I.getPredicate()) { 4691 case ICmpInst::ICMP_NE: 4692 break; 4693 case ICmpInst::ICMP_EQ: 4694 Inverse = true; 4695 break; 4696 case ICmpInst::ICMP_UGT: 4697 case ICmpInst::ICMP_UGE: 4698 if (I.getOperand(0) == MulVal) 4699 break; 4700 Inverse = true; 4701 break; 4702 case ICmpInst::ICMP_ULT: 4703 case ICmpInst::ICMP_ULE: 4704 if (I.getOperand(1) == MulVal) 4705 break; 4706 Inverse = true; 4707 break; 4708 default: 4709 llvm_unreachable("Unexpected predicate"); 4710 } 4711 if (Inverse) { 4712 Value *Res = Builder.CreateExtractValue(Call, 1); 4713 return BinaryOperator::CreateNot(Res); 4714 } 4715 4716 return ExtractValueInst::Create(Call, 1); 4717 } 4718 4719 /// When performing a comparison against a constant, it is possible that not all 4720 /// the bits in the LHS are demanded. This helper method computes the mask that 4721 /// IS demanded. 4722 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4723 const APInt *RHS; 4724 if (!match(I.getOperand(1), m_APInt(RHS))) 4725 return APInt::getAllOnesValue(BitWidth); 4726 4727 // If this is a normal comparison, it demands all bits. If it is a sign bit 4728 // comparison, it only demands the sign bit. 4729 bool UnusedBit; 4730 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4731 return APInt::getSignMask(BitWidth); 4732 4733 switch (I.getPredicate()) { 4734 // For a UGT comparison, we don't care about any bits that 4735 // correspond to the trailing ones of the comparand. The value of these 4736 // bits doesn't impact the outcome of the comparison, because any value 4737 // greater than the RHS must differ in a bit higher than these due to carry. 4738 case ICmpInst::ICMP_UGT: 4739 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4740 4741 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4742 // Any value less than the RHS must differ in a higher bit because of carries. 4743 case ICmpInst::ICMP_ULT: 4744 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4745 4746 default: 4747 return APInt::getAllOnesValue(BitWidth); 4748 } 4749 } 4750 4751 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4752 /// should be swapped. 4753 /// The decision is based on how many times these two operands are reused 4754 /// as subtract operands and their positions in those instructions. 4755 /// The rationale is that several architectures use the same instruction for 4756 /// both subtract and cmp. Thus, it is better if the order of those operands 4757 /// match. 4758 /// \return true if Op0 and Op1 should be swapped. 4759 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4760 // Filter out pointer values as those cannot appear directly in subtract. 4761 // FIXME: we may want to go through inttoptrs or bitcasts. 4762 if (Op0->getType()->isPointerTy()) 4763 return false; 4764 // If a subtract already has the same operands as a compare, swapping would be 4765 // bad. If a subtract has the same operands as a compare but in reverse order, 4766 // then swapping is good. 4767 int GoodToSwap = 0; 4768 for (const User *U : Op0->users()) { 4769 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4770 GoodToSwap++; 4771 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4772 GoodToSwap--; 4773 } 4774 return GoodToSwap > 0; 4775 } 4776 4777 /// Check that one use is in the same block as the definition and all 4778 /// other uses are in blocks dominated by a given block. 4779 /// 4780 /// \param DI Definition 4781 /// \param UI Use 4782 /// \param DB Block that must dominate all uses of \p DI outside 4783 /// the parent block 4784 /// \return true when \p UI is the only use of \p DI in the parent block 4785 /// and all other uses of \p DI are in blocks dominated by \p DB. 4786 /// 4787 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4788 const Instruction *UI, 4789 const BasicBlock *DB) const { 4790 assert(DI && UI && "Instruction not defined\n"); 4791 // Ignore incomplete definitions. 4792 if (!DI->getParent()) 4793 return false; 4794 // DI and UI must be in the same block. 4795 if (DI->getParent() != UI->getParent()) 4796 return false; 4797 // Protect from self-referencing blocks. 4798 if (DI->getParent() == DB) 4799 return false; 4800 for (const User *U : DI->users()) { 4801 auto *Usr = cast<Instruction>(U); 4802 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4803 return false; 4804 } 4805 return true; 4806 } 4807 4808 /// Return true when the instruction sequence within a block is select-cmp-br. 4809 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4810 const BasicBlock *BB = SI->getParent(); 4811 if (!BB) 4812 return false; 4813 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4814 if (!BI || BI->getNumSuccessors() != 2) 4815 return false; 4816 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4817 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4818 return false; 4819 return true; 4820 } 4821 4822 /// True when a select result is replaced by one of its operands 4823 /// in select-icmp sequence. This will eventually result in the elimination 4824 /// of the select. 4825 /// 4826 /// \param SI Select instruction 4827 /// \param Icmp Compare instruction 4828 /// \param SIOpd Operand that replaces the select 4829 /// 4830 /// Notes: 4831 /// - The replacement is global and requires dominator information 4832 /// - The caller is responsible for the actual replacement 4833 /// 4834 /// Example: 4835 /// 4836 /// entry: 4837 /// %4 = select i1 %3, %C* %0, %C* null 4838 /// %5 = icmp eq %C* %4, null 4839 /// br i1 %5, label %9, label %7 4840 /// ... 4841 /// ; <label>:7 ; preds = %entry 4842 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4843 /// ... 4844 /// 4845 /// can be transformed to 4846 /// 4847 /// %5 = icmp eq %C* %0, null 4848 /// %6 = select i1 %3, i1 %5, i1 true 4849 /// br i1 %6, label %9, label %7 4850 /// ... 4851 /// ; <label>:7 ; preds = %entry 4852 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4853 /// 4854 /// Similar when the first operand of the select is a constant or/and 4855 /// the compare is for not equal rather than equal. 4856 /// 4857 /// NOTE: The function is only called when the select and compare constants 4858 /// are equal, the optimization can work only for EQ predicates. This is not a 4859 /// major restriction since a NE compare should be 'normalized' to an equal 4860 /// compare, which usually happens in the combiner and test case 4861 /// select-cmp-br.ll checks for it. 4862 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4863 const ICmpInst *Icmp, 4864 const unsigned SIOpd) { 4865 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4866 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4867 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4868 // The check for the single predecessor is not the best that can be 4869 // done. But it protects efficiently against cases like when SI's 4870 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4871 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4872 // replaced can be reached on either path. So the uniqueness check 4873 // guarantees that the path all uses of SI (outside SI's parent) are on 4874 // is disjoint from all other paths out of SI. But that information 4875 // is more expensive to compute, and the trade-off here is in favor 4876 // of compile-time. It should also be noticed that we check for a single 4877 // predecessor and not only uniqueness. This to handle the situation when 4878 // Succ and Succ1 points to the same basic block. 4879 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4880 NumSel++; 4881 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4882 return true; 4883 } 4884 } 4885 return false; 4886 } 4887 4888 /// Try to fold the comparison based on range information we can get by checking 4889 /// whether bits are known to be zero or one in the inputs. 4890 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4891 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4892 Type *Ty = Op0->getType(); 4893 ICmpInst::Predicate Pred = I.getPredicate(); 4894 4895 // Get scalar or pointer size. 4896 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4897 ? Ty->getScalarSizeInBits() 4898 : DL.getIndexTypeSizeInBits(Ty->getScalarType()); 4899 4900 if (!BitWidth) 4901 return nullptr; 4902 4903 KnownBits Op0Known(BitWidth); 4904 KnownBits Op1Known(BitWidth); 4905 4906 if (SimplifyDemandedBits(&I, 0, 4907 getDemandedBitsLHSMask(I, BitWidth), 4908 Op0Known, 0)) 4909 return &I; 4910 4911 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4912 Op1Known, 0)) 4913 return &I; 4914 4915 // Given the known and unknown bits, compute a range that the LHS could be 4916 // in. Compute the Min, Max and RHS values based on the known bits. For the 4917 // EQ and NE we use unsigned values. 4918 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4919 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4920 if (I.isSigned()) { 4921 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4922 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4923 } else { 4924 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4925 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4926 } 4927 4928 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4929 // out that the LHS or RHS is a constant. Constant fold this now, so that 4930 // code below can assume that Min != Max. 4931 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4932 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4933 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4934 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4935 4936 // Based on the range information we know about the LHS, see if we can 4937 // simplify this comparison. For example, (x&4) < 8 is always true. 4938 switch (Pred) { 4939 default: 4940 llvm_unreachable("Unknown icmp opcode!"); 4941 case ICmpInst::ICMP_EQ: 4942 case ICmpInst::ICMP_NE: { 4943 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4944 return Pred == CmpInst::ICMP_EQ 4945 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4946 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4947 } 4948 4949 // If all bits are known zero except for one, then we know at most one bit 4950 // is set. If the comparison is against zero, then this is a check to see if 4951 // *that* bit is set. 4952 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 4953 if (Op1Known.isZero()) { 4954 // If the LHS is an AND with the same constant, look through it. 4955 Value *LHS = nullptr; 4956 const APInt *LHSC; 4957 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4958 *LHSC != Op0KnownZeroInverted) 4959 LHS = Op0; 4960 4961 Value *X; 4962 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4963 APInt ValToCheck = Op0KnownZeroInverted; 4964 Type *XTy = X->getType(); 4965 if (ValToCheck.isPowerOf2()) { 4966 // ((1 << X) & 8) == 0 -> X != 3 4967 // ((1 << X) & 8) != 0 -> X == 3 4968 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4969 auto NewPred = ICmpInst::getInversePredicate(Pred); 4970 return new ICmpInst(NewPred, X, CmpC); 4971 } else if ((++ValToCheck).isPowerOf2()) { 4972 // ((1 << X) & 7) == 0 -> X >= 3 4973 // ((1 << X) & 7) != 0 -> X < 3 4974 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4975 auto NewPred = 4976 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4977 return new ICmpInst(NewPred, X, CmpC); 4978 } 4979 } 4980 4981 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 4982 const APInt *CI; 4983 if (Op0KnownZeroInverted.isOneValue() && 4984 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 4985 // ((8 >>u X) & 1) == 0 -> X != 3 4986 // ((8 >>u X) & 1) != 0 -> X == 3 4987 unsigned CmpVal = CI->countTrailingZeros(); 4988 auto NewPred = ICmpInst::getInversePredicate(Pred); 4989 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 4990 } 4991 } 4992 break; 4993 } 4994 case ICmpInst::ICMP_ULT: { 4995 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 4996 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4997 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 4998 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4999 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5000 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5001 5002 const APInt *CmpC; 5003 if (match(Op1, m_APInt(CmpC))) { 5004 // A <u C -> A == C-1 if min(A)+1 == C 5005 if (*CmpC == Op0Min + 1) 5006 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5007 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5008 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5009 // exceeds the log2 of C. 5010 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5011 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5012 Constant::getNullValue(Op1->getType())); 5013 } 5014 break; 5015 } 5016 case ICmpInst::ICMP_UGT: { 5017 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5018 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5019 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5020 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5021 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5022 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5023 5024 const APInt *CmpC; 5025 if (match(Op1, m_APInt(CmpC))) { 5026 // A >u C -> A == C+1 if max(a)-1 == C 5027 if (*CmpC == Op0Max - 1) 5028 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5029 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5030 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5031 // exceeds the log2 of C. 5032 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5033 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5034 Constant::getNullValue(Op1->getType())); 5035 } 5036 break; 5037 } 5038 case ICmpInst::ICMP_SLT: { 5039 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5040 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5041 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5042 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5043 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5044 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5045 const APInt *CmpC; 5046 if (match(Op1, m_APInt(CmpC))) { 5047 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5048 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5049 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5050 } 5051 break; 5052 } 5053 case ICmpInst::ICMP_SGT: { 5054 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5055 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5056 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5057 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5058 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5059 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5060 const APInt *CmpC; 5061 if (match(Op1, m_APInt(CmpC))) { 5062 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5063 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5064 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5065 } 5066 break; 5067 } 5068 case ICmpInst::ICMP_SGE: 5069 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5070 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5071 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5072 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5073 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5074 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5075 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5076 break; 5077 case ICmpInst::ICMP_SLE: 5078 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5079 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5080 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5081 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5082 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5083 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5084 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5085 break; 5086 case ICmpInst::ICMP_UGE: 5087 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5088 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5089 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5090 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5091 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5092 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5093 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5094 break; 5095 case ICmpInst::ICMP_ULE: 5096 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5097 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5098 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5099 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5100 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5101 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5102 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5103 break; 5104 } 5105 5106 // Turn a signed comparison into an unsigned one if both operands are known to 5107 // have the same sign. 5108 if (I.isSigned() && 5109 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5110 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5111 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5112 5113 return nullptr; 5114 } 5115 5116 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5117 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5118 Constant *C) { 5119 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5120 "Only for relational integer predicates."); 5121 5122 Type *Type = C->getType(); 5123 bool IsSigned = ICmpInst::isSigned(Pred); 5124 5125 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5126 bool WillIncrement = 5127 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5128 5129 // Check if the constant operand can be safely incremented/decremented 5130 // without overflowing/underflowing. 5131 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5132 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5133 }; 5134 5135 // For scalars, SimplifyICmpInst should have already handled 5136 // the edge cases for us, so we just assert on them. 5137 // For vectors, we must handle the edge cases. 5138 if (isa<ConstantInt>(C)) { 5139 // A <= MAX -> TRUE ; A >= MIN -> TRUE 5140 assert(ConstantIsOk(cast<ConstantInt>(C))); 5141 } else if (Type->isVectorTy()) { 5142 // TODO? If the edge cases for vectors were guaranteed to be handled as they 5143 // are for scalar, we could remove the min/max checks. However, to do that, 5144 // we would have to use insertelement/shufflevector to replace edge values. 5145 unsigned NumElts = Type->getVectorNumElements(); 5146 for (unsigned i = 0; i != NumElts; ++i) { 5147 Constant *Elt = C->getAggregateElement(i); 5148 if (!Elt) 5149 return llvm::None; 5150 5151 if (isa<UndefValue>(Elt)) 5152 continue; 5153 5154 // Bail out if we can't determine if this constant is min/max or if we 5155 // know that this constant is min/max. 5156 auto *CI = dyn_cast<ConstantInt>(Elt); 5157 if (!CI || !ConstantIsOk(CI)) 5158 return llvm::None; 5159 } 5160 } else { 5161 // ConstantExpr? 5162 return llvm::None; 5163 } 5164 5165 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5166 5167 // Increment or decrement the constant. 5168 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5169 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5170 5171 return std::make_pair(NewPred, NewC); 5172 } 5173 5174 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5175 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5176 /// allows them to be folded in visitICmpInst. 5177 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5178 ICmpInst::Predicate Pred = I.getPredicate(); 5179 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5180 isCanonicalPredicate(Pred)) 5181 return nullptr; 5182 5183 Value *Op0 = I.getOperand(0); 5184 Value *Op1 = I.getOperand(1); 5185 auto *Op1C = dyn_cast<Constant>(Op1); 5186 if (!Op1C) 5187 return nullptr; 5188 5189 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5190 if (!FlippedStrictness) 5191 return nullptr; 5192 5193 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5194 } 5195 5196 /// Integer compare with boolean values can always be turned into bitwise ops. 5197 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5198 InstCombiner::BuilderTy &Builder) { 5199 Value *A = I.getOperand(0), *B = I.getOperand(1); 5200 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5201 5202 // A boolean compared to true/false can be simplified to Op0/true/false in 5203 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5204 // Cases not handled by InstSimplify are always 'not' of Op0. 5205 if (match(B, m_Zero())) { 5206 switch (I.getPredicate()) { 5207 case CmpInst::ICMP_EQ: // A == 0 -> !A 5208 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5209 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5210 return BinaryOperator::CreateNot(A); 5211 default: 5212 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5213 } 5214 } else if (match(B, m_One())) { 5215 switch (I.getPredicate()) { 5216 case CmpInst::ICMP_NE: // A != 1 -> !A 5217 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5218 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5219 return BinaryOperator::CreateNot(A); 5220 default: 5221 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5222 } 5223 } 5224 5225 switch (I.getPredicate()) { 5226 default: 5227 llvm_unreachable("Invalid icmp instruction!"); 5228 case ICmpInst::ICMP_EQ: 5229 // icmp eq i1 A, B -> ~(A ^ B) 5230 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5231 5232 case ICmpInst::ICMP_NE: 5233 // icmp ne i1 A, B -> A ^ B 5234 return BinaryOperator::CreateXor(A, B); 5235 5236 case ICmpInst::ICMP_UGT: 5237 // icmp ugt -> icmp ult 5238 std::swap(A, B); 5239 LLVM_FALLTHROUGH; 5240 case ICmpInst::ICMP_ULT: 5241 // icmp ult i1 A, B -> ~A & B 5242 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5243 5244 case ICmpInst::ICMP_SGT: 5245 // icmp sgt -> icmp slt 5246 std::swap(A, B); 5247 LLVM_FALLTHROUGH; 5248 case ICmpInst::ICMP_SLT: 5249 // icmp slt i1 A, B -> A & ~B 5250 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5251 5252 case ICmpInst::ICMP_UGE: 5253 // icmp uge -> icmp ule 5254 std::swap(A, B); 5255 LLVM_FALLTHROUGH; 5256 case ICmpInst::ICMP_ULE: 5257 // icmp ule i1 A, B -> ~A | B 5258 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5259 5260 case ICmpInst::ICMP_SGE: 5261 // icmp sge -> icmp sle 5262 std::swap(A, B); 5263 LLVM_FALLTHROUGH; 5264 case ICmpInst::ICMP_SLE: 5265 // icmp sle i1 A, B -> A | ~B 5266 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5267 } 5268 } 5269 5270 // Transform pattern like: 5271 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5272 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5273 // Into: 5274 // (X l>> Y) != 0 5275 // (X l>> Y) == 0 5276 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5277 InstCombiner::BuilderTy &Builder) { 5278 ICmpInst::Predicate Pred, NewPred; 5279 Value *X, *Y; 5280 if (match(&Cmp, 5281 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5282 // We want X to be the icmp's second operand, so swap predicate if it isn't. 5283 if (Cmp.getOperand(0) == X) 5284 Pred = Cmp.getSwappedPredicate(); 5285 5286 switch (Pred) { 5287 case ICmpInst::ICMP_ULE: 5288 NewPred = ICmpInst::ICMP_NE; 5289 break; 5290 case ICmpInst::ICMP_UGT: 5291 NewPred = ICmpInst::ICMP_EQ; 5292 break; 5293 default: 5294 return nullptr; 5295 } 5296 } else if (match(&Cmp, m_c_ICmp(Pred, 5297 m_OneUse(m_CombineOr( 5298 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5299 m_Add(m_Shl(m_One(), m_Value(Y)), 5300 m_AllOnes()))), 5301 m_Value(X)))) { 5302 // The variant with 'add' is not canonical, (the variant with 'not' is) 5303 // we only get it because it has extra uses, and can't be canonicalized, 5304 5305 // We want X to be the icmp's second operand, so swap predicate if it isn't. 5306 if (Cmp.getOperand(0) == X) 5307 Pred = Cmp.getSwappedPredicate(); 5308 5309 switch (Pred) { 5310 case ICmpInst::ICMP_ULT: 5311 NewPred = ICmpInst::ICMP_NE; 5312 break; 5313 case ICmpInst::ICMP_UGE: 5314 NewPred = ICmpInst::ICMP_EQ; 5315 break; 5316 default: 5317 return nullptr; 5318 } 5319 } else 5320 return nullptr; 5321 5322 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5323 Constant *Zero = Constant::getNullValue(NewX->getType()); 5324 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5325 } 5326 5327 static Instruction *foldVectorCmp(CmpInst &Cmp, 5328 InstCombiner::BuilderTy &Builder) { 5329 // If both arguments of the cmp are shuffles that use the same mask and 5330 // shuffle within a single vector, move the shuffle after the cmp. 5331 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5332 Value *V1, *V2; 5333 Constant *M; 5334 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && 5335 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && 5336 V1->getType() == V2->getType() && 5337 (LHS->hasOneUse() || RHS->hasOneUse())) { 5338 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5339 CmpInst::Predicate P = Cmp.getPredicate(); 5340 Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) 5341 : Builder.CreateFCmp(P, V1, V2); 5342 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5343 } 5344 return nullptr; 5345 } 5346 5347 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 5348 bool Changed = false; 5349 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5350 unsigned Op0Cplxity = getComplexity(Op0); 5351 unsigned Op1Cplxity = getComplexity(Op1); 5352 5353 /// Orders the operands of the compare so that they are listed from most 5354 /// complex to least complex. This puts constants before unary operators, 5355 /// before binary operators. 5356 if (Op0Cplxity < Op1Cplxity || 5357 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5358 I.swapOperands(); 5359 std::swap(Op0, Op1); 5360 Changed = true; 5361 } 5362 5363 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, 5364 SQ.getWithInstruction(&I))) 5365 return replaceInstUsesWith(I, V); 5366 5367 // Comparing -val or val with non-zero is the same as just comparing val 5368 // ie, abs(val) != 0 -> val != 0 5369 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5370 Value *Cond, *SelectTrue, *SelectFalse; 5371 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5372 m_Value(SelectFalse)))) { 5373 if (Value *V = dyn_castNegVal(SelectTrue)) { 5374 if (V == SelectFalse) 5375 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5376 } 5377 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5378 if (V == SelectTrue) 5379 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5380 } 5381 } 5382 } 5383 5384 if (Op0->getType()->isIntOrIntVectorTy(1)) 5385 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5386 return Res; 5387 5388 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 5389 return NewICmp; 5390 5391 if (Instruction *Res = foldICmpWithConstant(I)) 5392 return Res; 5393 5394 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5395 return Res; 5396 5397 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5398 return Res; 5399 5400 // Test if the ICmpInst instruction is used exclusively by a select as 5401 // part of a minimum or maximum operation. If so, refrain from doing 5402 // any other folding. This helps out other analyses which understand 5403 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5404 // and CodeGen. And in this case, at least one of the comparison 5405 // operands has at least one user besides the compare (the select), 5406 // which would often largely negate the benefit of folding anyway. 5407 // 5408 // Do the same for the other patterns recognized by matchSelectPattern. 5409 if (I.hasOneUse()) 5410 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5411 Value *A, *B; 5412 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5413 if (SPR.Flavor != SPF_UNKNOWN) 5414 return nullptr; 5415 } 5416 5417 // Do this after checking for min/max to prevent infinite looping. 5418 if (Instruction *Res = foldICmpWithZero(I)) 5419 return Res; 5420 5421 // FIXME: We only do this after checking for min/max to prevent infinite 5422 // looping caused by a reverse canonicalization of these patterns for min/max. 5423 // FIXME: The organization of folds is a mess. These would naturally go into 5424 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5425 // down here after the min/max restriction. 5426 ICmpInst::Predicate Pred = I.getPredicate(); 5427 const APInt *C; 5428 if (match(Op1, m_APInt(C))) { 5429 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5430 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5431 Constant *Zero = Constant::getNullValue(Op0->getType()); 5432 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5433 } 5434 5435 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5436 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5437 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5438 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5439 } 5440 } 5441 5442 if (Instruction *Res = foldICmpInstWithConstant(I)) 5443 return Res; 5444 5445 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5446 return Res; 5447 5448 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5449 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5450 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5451 return NI; 5452 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5453 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5454 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5455 return NI; 5456 5457 // Try to optimize equality comparisons against alloca-based pointers. 5458 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5459 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5460 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 5461 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5462 return New; 5463 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 5464 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5465 return New; 5466 } 5467 5468 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5469 return Res; 5470 5471 if (Instruction *R = foldICmpWithCastOp(I)) 5472 return R; 5473 5474 if (Instruction *Res = foldICmpBinOp(I)) 5475 return Res; 5476 5477 if (Instruction *Res = foldICmpWithMinMax(I)) 5478 return Res; 5479 5480 { 5481 Value *A, *B; 5482 // Transform (A & ~B) == 0 --> (A & B) != 0 5483 // and (A & ~B) != 0 --> (A & B) == 0 5484 // if A is a power of 2. 5485 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5486 match(Op1, m_Zero()) && 5487 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5488 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5489 Op1); 5490 5491 // ~X < ~Y --> Y < X 5492 // ~X < C --> X > ~C 5493 if (match(Op0, m_Not(m_Value(A)))) { 5494 if (match(Op1, m_Not(m_Value(B)))) 5495 return new ICmpInst(I.getPredicate(), B, A); 5496 5497 const APInt *C; 5498 if (match(Op1, m_APInt(C))) 5499 return new ICmpInst(I.getSwappedPredicate(), A, 5500 ConstantInt::get(Op1->getType(), ~(*C))); 5501 } 5502 5503 Instruction *AddI = nullptr; 5504 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5505 m_Instruction(AddI))) && 5506 isa<IntegerType>(A->getType())) { 5507 Value *Result; 5508 Constant *Overflow; 5509 if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B, 5510 *AddI, Result, Overflow)) { 5511 replaceInstUsesWith(*AddI, Result); 5512 return replaceInstUsesWith(I, Overflow); 5513 } 5514 } 5515 5516 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5517 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5518 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5519 return R; 5520 } 5521 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5522 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5523 return R; 5524 } 5525 } 5526 5527 if (Instruction *Res = foldICmpEquality(I)) 5528 return Res; 5529 5530 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5531 // an i1 which indicates whether or not we successfully did the swap. 5532 // 5533 // Replace comparisons between the old value and the expected value with the 5534 // indicator that 'cmpxchg' returns. 5535 // 5536 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5537 // spuriously fail. In those cases, the old value may equal the expected 5538 // value but it is possible for the swap to not occur. 5539 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5540 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5541 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5542 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5543 !ACXI->isWeak()) 5544 return ExtractValueInst::Create(ACXI, 1); 5545 5546 { 5547 Value *X; 5548 const APInt *C; 5549 // icmp X+Cst, X 5550 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5551 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5552 5553 // icmp X, X+Cst 5554 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5555 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5556 } 5557 5558 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5559 return Res; 5560 5561 if (I.getType()->isVectorTy()) 5562 if (Instruction *Res = foldVectorCmp(I, Builder)) 5563 return Res; 5564 5565 return Changed ? &I : nullptr; 5566 } 5567 5568 /// Fold fcmp ([us]itofp x, cst) if possible. 5569 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5570 Constant *RHSC) { 5571 if (!isa<ConstantFP>(RHSC)) return nullptr; 5572 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5573 5574 // Get the width of the mantissa. We don't want to hack on conversions that 5575 // might lose information from the integer, e.g. "i64 -> float" 5576 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5577 if (MantissaWidth == -1) return nullptr; // Unknown. 5578 5579 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5580 5581 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5582 5583 if (I.isEquality()) { 5584 FCmpInst::Predicate P = I.getPredicate(); 5585 bool IsExact = false; 5586 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5587 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5588 5589 // If the floating point constant isn't an integer value, we know if we will 5590 // ever compare equal / not equal to it. 5591 if (!IsExact) { 5592 // TODO: Can never be -0.0 and other non-representable values 5593 APFloat RHSRoundInt(RHS); 5594 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5595 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 5596 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5597 return replaceInstUsesWith(I, Builder.getFalse()); 5598 5599 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5600 return replaceInstUsesWith(I, Builder.getTrue()); 5601 } 5602 } 5603 5604 // TODO: If the constant is exactly representable, is it always OK to do 5605 // equality compares as integer? 5606 } 5607 5608 // Check to see that the input is converted from an integer type that is small 5609 // enough that preserves all bits. TODO: check here for "known" sign bits. 5610 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5611 unsigned InputSize = IntTy->getScalarSizeInBits(); 5612 5613 // Following test does NOT adjust InputSize downwards for signed inputs, 5614 // because the most negative value still requires all the mantissa bits 5615 // to distinguish it from one less than that value. 5616 if ((int)InputSize > MantissaWidth) { 5617 // Conversion would lose accuracy. Check if loss can impact comparison. 5618 int Exp = ilogb(RHS); 5619 if (Exp == APFloat::IEK_Inf) { 5620 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5621 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5622 // Conversion could create infinity. 5623 return nullptr; 5624 } else { 5625 // Note that if RHS is zero or NaN, then Exp is negative 5626 // and first condition is trivially false. 5627 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5628 // Conversion could affect comparison. 5629 return nullptr; 5630 } 5631 } 5632 5633 // Otherwise, we can potentially simplify the comparison. We know that it 5634 // will always come through as an integer value and we know the constant is 5635 // not a NAN (it would have been previously simplified). 5636 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5637 5638 ICmpInst::Predicate Pred; 5639 switch (I.getPredicate()) { 5640 default: llvm_unreachable("Unexpected predicate!"); 5641 case FCmpInst::FCMP_UEQ: 5642 case FCmpInst::FCMP_OEQ: 5643 Pred = ICmpInst::ICMP_EQ; 5644 break; 5645 case FCmpInst::FCMP_UGT: 5646 case FCmpInst::FCMP_OGT: 5647 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5648 break; 5649 case FCmpInst::FCMP_UGE: 5650 case FCmpInst::FCMP_OGE: 5651 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5652 break; 5653 case FCmpInst::FCMP_ULT: 5654 case FCmpInst::FCMP_OLT: 5655 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5656 break; 5657 case FCmpInst::FCMP_ULE: 5658 case FCmpInst::FCMP_OLE: 5659 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5660 break; 5661 case FCmpInst::FCMP_UNE: 5662 case FCmpInst::FCMP_ONE: 5663 Pred = ICmpInst::ICMP_NE; 5664 break; 5665 case FCmpInst::FCMP_ORD: 5666 return replaceInstUsesWith(I, Builder.getTrue()); 5667 case FCmpInst::FCMP_UNO: 5668 return replaceInstUsesWith(I, Builder.getFalse()); 5669 } 5670 5671 // Now we know that the APFloat is a normal number, zero or inf. 5672 5673 // See if the FP constant is too large for the integer. For example, 5674 // comparing an i8 to 300.0. 5675 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5676 5677 if (!LHSUnsigned) { 5678 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5679 // and large values. 5680 APFloat SMax(RHS.getSemantics()); 5681 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5682 APFloat::rmNearestTiesToEven); 5683 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 5684 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5685 Pred == ICmpInst::ICMP_SLE) 5686 return replaceInstUsesWith(I, Builder.getTrue()); 5687 return replaceInstUsesWith(I, Builder.getFalse()); 5688 } 5689 } else { 5690 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5691 // +INF and large values. 5692 APFloat UMax(RHS.getSemantics()); 5693 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5694 APFloat::rmNearestTiesToEven); 5695 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 5696 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5697 Pred == ICmpInst::ICMP_ULE) 5698 return replaceInstUsesWith(I, Builder.getTrue()); 5699 return replaceInstUsesWith(I, Builder.getFalse()); 5700 } 5701 } 5702 5703 if (!LHSUnsigned) { 5704 // See if the RHS value is < SignedMin. 5705 APFloat SMin(RHS.getSemantics()); 5706 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5707 APFloat::rmNearestTiesToEven); 5708 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 5709 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5710 Pred == ICmpInst::ICMP_SGE) 5711 return replaceInstUsesWith(I, Builder.getTrue()); 5712 return replaceInstUsesWith(I, Builder.getFalse()); 5713 } 5714 } else { 5715 // See if the RHS value is < UnsignedMin. 5716 APFloat SMin(RHS.getSemantics()); 5717 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 5718 APFloat::rmNearestTiesToEven); 5719 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 5720 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5721 Pred == ICmpInst::ICMP_UGE) 5722 return replaceInstUsesWith(I, Builder.getTrue()); 5723 return replaceInstUsesWith(I, Builder.getFalse()); 5724 } 5725 } 5726 5727 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5728 // [0, UMAX], but it may still be fractional. See if it is fractional by 5729 // casting the FP value to the integer value and back, checking for equality. 5730 // Don't do this for zero, because -0.0 is not fractional. 5731 Constant *RHSInt = LHSUnsigned 5732 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5733 : ConstantExpr::getFPToSI(RHSC, IntTy); 5734 if (!RHS.isZero()) { 5735 bool Equal = LHSUnsigned 5736 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5737 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5738 if (!Equal) { 5739 // If we had a comparison against a fractional value, we have to adjust 5740 // the compare predicate and sometimes the value. RHSC is rounded towards 5741 // zero at this point. 5742 switch (Pred) { 5743 default: llvm_unreachable("Unexpected integer comparison!"); 5744 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5745 return replaceInstUsesWith(I, Builder.getTrue()); 5746 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5747 return replaceInstUsesWith(I, Builder.getFalse()); 5748 case ICmpInst::ICMP_ULE: 5749 // (float)int <= 4.4 --> int <= 4 5750 // (float)int <= -4.4 --> false 5751 if (RHS.isNegative()) 5752 return replaceInstUsesWith(I, Builder.getFalse()); 5753 break; 5754 case ICmpInst::ICMP_SLE: 5755 // (float)int <= 4.4 --> int <= 4 5756 // (float)int <= -4.4 --> int < -4 5757 if (RHS.isNegative()) 5758 Pred = ICmpInst::ICMP_SLT; 5759 break; 5760 case ICmpInst::ICMP_ULT: 5761 // (float)int < -4.4 --> false 5762 // (float)int < 4.4 --> int <= 4 5763 if (RHS.isNegative()) 5764 return replaceInstUsesWith(I, Builder.getFalse()); 5765 Pred = ICmpInst::ICMP_ULE; 5766 break; 5767 case ICmpInst::ICMP_SLT: 5768 // (float)int < -4.4 --> int < -4 5769 // (float)int < 4.4 --> int <= 4 5770 if (!RHS.isNegative()) 5771 Pred = ICmpInst::ICMP_SLE; 5772 break; 5773 case ICmpInst::ICMP_UGT: 5774 // (float)int > 4.4 --> int > 4 5775 // (float)int > -4.4 --> true 5776 if (RHS.isNegative()) 5777 return replaceInstUsesWith(I, Builder.getTrue()); 5778 break; 5779 case ICmpInst::ICMP_SGT: 5780 // (float)int > 4.4 --> int > 4 5781 // (float)int > -4.4 --> int >= -4 5782 if (RHS.isNegative()) 5783 Pred = ICmpInst::ICMP_SGE; 5784 break; 5785 case ICmpInst::ICMP_UGE: 5786 // (float)int >= -4.4 --> true 5787 // (float)int >= 4.4 --> int > 4 5788 if (RHS.isNegative()) 5789 return replaceInstUsesWith(I, Builder.getTrue()); 5790 Pred = ICmpInst::ICMP_UGT; 5791 break; 5792 case ICmpInst::ICMP_SGE: 5793 // (float)int >= -4.4 --> int >= -4 5794 // (float)int >= 4.4 --> int > 4 5795 if (!RHS.isNegative()) 5796 Pred = ICmpInst::ICMP_SGT; 5797 break; 5798 } 5799 } 5800 } 5801 5802 // Lower this FP comparison into an appropriate integer version of the 5803 // comparison. 5804 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5805 } 5806 5807 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5808 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5809 Constant *RHSC) { 5810 // When C is not 0.0 and infinities are not allowed: 5811 // (C / X) < 0.0 is a sign-bit test of X 5812 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5813 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5814 // 5815 // Proof: 5816 // Multiply (C / X) < 0.0 by X * X / C. 5817 // - X is non zero, if it is the flag 'ninf' is violated. 5818 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5819 // the predicate. C is also non zero by definition. 5820 // 5821 // Thus X * X / C is non zero and the transformation is valid. [qed] 5822 5823 FCmpInst::Predicate Pred = I.getPredicate(); 5824 5825 // Check that predicates are valid. 5826 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5827 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5828 return nullptr; 5829 5830 // Check that RHS operand is zero. 5831 if (!match(RHSC, m_AnyZeroFP())) 5832 return nullptr; 5833 5834 // Check fastmath flags ('ninf'). 5835 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5836 return nullptr; 5837 5838 // Check the properties of the dividend. It must not be zero to avoid a 5839 // division by zero (see Proof). 5840 const APFloat *C; 5841 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5842 return nullptr; 5843 5844 if (C->isZero()) 5845 return nullptr; 5846 5847 // Get swapped predicate if necessary. 5848 if (C->isNegative()) 5849 Pred = I.getSwappedPredicate(); 5850 5851 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5852 } 5853 5854 /// Optimize fabs(X) compared with zero. 5855 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { 5856 Value *X; 5857 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5858 !match(I.getOperand(1), m_PosZeroFP())) 5859 return nullptr; 5860 5861 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5862 I->setPredicate(P); 5863 I->setOperand(0, X); 5864 return I; 5865 }; 5866 5867 switch (I.getPredicate()) { 5868 case FCmpInst::FCMP_UGE: 5869 case FCmpInst::FCMP_OLT: 5870 // fabs(X) >= 0.0 --> true 5871 // fabs(X) < 0.0 --> false 5872 llvm_unreachable("fcmp should have simplified"); 5873 5874 case FCmpInst::FCMP_OGT: 5875 // fabs(X) > 0.0 --> X != 0.0 5876 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 5877 5878 case FCmpInst::FCMP_UGT: 5879 // fabs(X) u> 0.0 --> X u!= 0.0 5880 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 5881 5882 case FCmpInst::FCMP_OLE: 5883 // fabs(X) <= 0.0 --> X == 0.0 5884 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 5885 5886 case FCmpInst::FCMP_ULE: 5887 // fabs(X) u<= 0.0 --> X u== 0.0 5888 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 5889 5890 case FCmpInst::FCMP_OGE: 5891 // fabs(X) >= 0.0 --> !isnan(X) 5892 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5893 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 5894 5895 case FCmpInst::FCMP_ULT: 5896 // fabs(X) u< 0.0 --> isnan(X) 5897 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5898 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 5899 5900 case FCmpInst::FCMP_OEQ: 5901 case FCmpInst::FCMP_UEQ: 5902 case FCmpInst::FCMP_ONE: 5903 case FCmpInst::FCMP_UNE: 5904 case FCmpInst::FCMP_ORD: 5905 case FCmpInst::FCMP_UNO: 5906 // Look through the fabs() because it doesn't change anything but the sign. 5907 // fabs(X) == 0.0 --> X == 0.0, 5908 // fabs(X) != 0.0 --> X != 0.0 5909 // isnan(fabs(X)) --> isnan(X) 5910 // !isnan(fabs(X) --> !isnan(X) 5911 return replacePredAndOp0(&I, I.getPredicate(), X); 5912 5913 default: 5914 return nullptr; 5915 } 5916 } 5917 5918 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 5919 bool Changed = false; 5920 5921 /// Orders the operands of the compare so that they are listed from most 5922 /// complex to least complex. This puts constants before unary operators, 5923 /// before binary operators. 5924 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 5925 I.swapOperands(); 5926 Changed = true; 5927 } 5928 5929 const CmpInst::Predicate Pred = I.getPredicate(); 5930 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5931 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 5932 SQ.getWithInstruction(&I))) 5933 return replaceInstUsesWith(I, V); 5934 5935 // Simplify 'fcmp pred X, X' 5936 Type *OpType = Op0->getType(); 5937 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 5938 if (Op0 == Op1) { 5939 switch (Pred) { 5940 default: break; 5941 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 5942 case FCmpInst::FCMP_ULT: // True if unordered or less than 5943 case FCmpInst::FCMP_UGT: // True if unordered or greater than 5944 case FCmpInst::FCMP_UNE: // True if unordered or not equal 5945 // Canonicalize these to be 'fcmp uno %X, 0.0'. 5946 I.setPredicate(FCmpInst::FCMP_UNO); 5947 I.setOperand(1, Constant::getNullValue(OpType)); 5948 return &I; 5949 5950 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 5951 case FCmpInst::FCMP_OEQ: // True if ordered and equal 5952 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 5953 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 5954 // Canonicalize these to be 'fcmp ord %X, 0.0'. 5955 I.setPredicate(FCmpInst::FCMP_ORD); 5956 I.setOperand(1, Constant::getNullValue(OpType)); 5957 return &I; 5958 } 5959 } 5960 5961 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 5962 // then canonicalize the operand to 0.0. 5963 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 5964 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { 5965 I.setOperand(0, ConstantFP::getNullValue(OpType)); 5966 return &I; 5967 } 5968 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { 5969 I.setOperand(1, ConstantFP::getNullValue(OpType)); 5970 return &I; 5971 } 5972 } 5973 5974 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 5975 Value *X, *Y; 5976 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 5977 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 5978 5979 // Test if the FCmpInst instruction is used exclusively by a select as 5980 // part of a minimum or maximum operation. If so, refrain from doing 5981 // any other folding. This helps out other analyses which understand 5982 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5983 // and CodeGen. And in this case, at least one of the comparison 5984 // operands has at least one user besides the compare (the select), 5985 // which would often largely negate the benefit of folding anyway. 5986 if (I.hasOneUse()) 5987 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5988 Value *A, *B; 5989 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5990 if (SPR.Flavor != SPF_UNKNOWN) 5991 return nullptr; 5992 } 5993 5994 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 5995 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 5996 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { 5997 I.setOperand(1, ConstantFP::getNullValue(OpType)); 5998 return &I; 5999 } 6000 6001 // Handle fcmp with instruction LHS and constant RHS. 6002 Instruction *LHSI; 6003 Constant *RHSC; 6004 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6005 switch (LHSI->getOpcode()) { 6006 case Instruction::PHI: 6007 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6008 // block. If in the same block, we're encouraging jump threading. If 6009 // not, we are just pessimizing the code by making an i1 phi. 6010 if (LHSI->getParent() == I.getParent()) 6011 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6012 return NV; 6013 break; 6014 case Instruction::SIToFP: 6015 case Instruction::UIToFP: 6016 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6017 return NV; 6018 break; 6019 case Instruction::FDiv: 6020 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6021 return NV; 6022 break; 6023 case Instruction::Load: 6024 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6025 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6026 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6027 !cast<LoadInst>(LHSI)->isVolatile()) 6028 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6029 return Res; 6030 break; 6031 } 6032 } 6033 6034 if (Instruction *R = foldFabsWithFcmpZero(I)) 6035 return R; 6036 6037 if (match(Op0, m_FNeg(m_Value(X)))) { 6038 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6039 Constant *C; 6040 if (match(Op1, m_Constant(C))) { 6041 Constant *NegC = ConstantExpr::getFNeg(C); 6042 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6043 } 6044 } 6045 6046 if (match(Op0, m_FPExt(m_Value(X)))) { 6047 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6048 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6049 return new FCmpInst(Pred, X, Y, "", &I); 6050 6051 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6052 const APFloat *C; 6053 if (match(Op1, m_APFloat(C))) { 6054 const fltSemantics &FPSem = 6055 X->getType()->getScalarType()->getFltSemantics(); 6056 bool Lossy; 6057 APFloat TruncC = *C; 6058 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6059 6060 // Avoid lossy conversions and denormals. 6061 // Zero is a special case that's OK to convert. 6062 APFloat Fabs = TruncC; 6063 Fabs.clearSign(); 6064 if (!Lossy && 6065 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != 6066 APFloat::cmpLessThan) || Fabs.isZero())) { 6067 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6068 return new FCmpInst(Pred, X, NewC, "", &I); 6069 } 6070 } 6071 } 6072 6073 if (I.getType()->isVectorTy()) 6074 if (Instruction *Res = foldVectorCmp(I, Builder)) 6075 return Res; 6076 6077 return Changed ? &I : nullptr; 6078 } 6079