1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isZero())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOne()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnes()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// This is called when we see this pattern:
99 ///   cmp pred (load (gep GV, ...)), cmpcst
100 /// where GV is a global variable with a constant initializer. Try to simplify
101 /// this into some simple computation that does not need the load. For example
102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
103 ///
104 /// If AndCst is non-null, then the loaded value is masked with that constant
105 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
107     LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
108     ConstantInt *AndCst) {
109   if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
110       GV->getValueType() != GEP->getSourceElementType() ||
111       !GV->isConstant() || !GV->hasDefinitiveInitializer())
112     return nullptr;
113 
114   Constant *Init = GV->getInitializer();
115   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
116     return nullptr;
117 
118   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
119   // Don't blow up on huge arrays.
120   if (ArrayElementCount > MaxArraySizeForCombine)
121     return nullptr;
122 
123   // There are many forms of this optimization we can handle, for now, just do
124   // the simple index into a single-dimensional array.
125   //
126   // Require: GEP GV, 0, i {{, constant indices}}
127   if (GEP->getNumOperands() < 3 ||
128       !isa<ConstantInt>(GEP->getOperand(1)) ||
129       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
130       isa<Constant>(GEP->getOperand(2)))
131     return nullptr;
132 
133   // Check that indices after the variable are constants and in-range for the
134   // type they index.  Collect the indices.  This is typically for arrays of
135   // structs.
136   SmallVector<unsigned, 4> LaterIndices;
137 
138   Type *EltTy = Init->getType()->getArrayElementType();
139   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
140     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
141     if (!Idx) return nullptr;  // Variable index.
142 
143     uint64_t IdxVal = Idx->getZExtValue();
144     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
145 
146     if (StructType *STy = dyn_cast<StructType>(EltTy))
147       EltTy = STy->getElementType(IdxVal);
148     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
149       if (IdxVal >= ATy->getNumElements()) return nullptr;
150       EltTy = ATy->getElementType();
151     } else {
152       return nullptr; // Unknown type.
153     }
154 
155     LaterIndices.push_back(IdxVal);
156   }
157 
158   enum { Overdefined = -3, Undefined = -2 };
159 
160   // Variables for our state machines.
161 
162   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
163   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
164   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
165   // undefined, otherwise set to the first true element.  SecondTrueElement is
166   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
167   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
168 
169   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
170   // form "i != 47 & i != 87".  Same state transitions as for true elements.
171   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
172 
173   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
174   /// define a state machine that triggers for ranges of values that the index
175   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
176   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
177   /// index in the range (inclusive).  We use -2 for undefined here because we
178   /// use relative comparisons and don't want 0-1 to match -1.
179   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
180 
181   // MagicBitvector - This is a magic bitvector where we set a bit if the
182   // comparison is true for element 'i'.  If there are 64 elements or less in
183   // the array, this will fully represent all the comparison results.
184   uint64_t MagicBitvector = 0;
185 
186   // Scan the array and see if one of our patterns matches.
187   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
188   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
189     Constant *Elt = Init->getAggregateElement(i);
190     if (!Elt) return nullptr;
191 
192     // If this is indexing an array of structures, get the structure element.
193     if (!LaterIndices.empty()) {
194       Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices);
195       if (!Elt)
196         return nullptr;
197     }
198 
199     // If the element is masked, handle it.
200     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
201 
202     // Find out if the comparison would be true or false for the i'th element.
203     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
204                                                   CompareRHS, DL, &TLI);
205     // If the result is undef for this element, ignore it.
206     if (isa<UndefValue>(C)) {
207       // Extend range state machines to cover this element in case there is an
208       // undef in the middle of the range.
209       if (TrueRangeEnd == (int)i-1)
210         TrueRangeEnd = i;
211       if (FalseRangeEnd == (int)i-1)
212         FalseRangeEnd = i;
213       continue;
214     }
215 
216     // If we can't compute the result for any of the elements, we have to give
217     // up evaluating the entire conditional.
218     if (!isa<ConstantInt>(C)) return nullptr;
219 
220     // Otherwise, we know if the comparison is true or false for this element,
221     // update our state machines.
222     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
223 
224     // State machine for single/double/range index comparison.
225     if (IsTrueForElt) {
226       // Update the TrueElement state machine.
227       if (FirstTrueElement == Undefined)
228         FirstTrueElement = TrueRangeEnd = i;  // First true element.
229       else {
230         // Update double-compare state machine.
231         if (SecondTrueElement == Undefined)
232           SecondTrueElement = i;
233         else
234           SecondTrueElement = Overdefined;
235 
236         // Update range state machine.
237         if (TrueRangeEnd == (int)i-1)
238           TrueRangeEnd = i;
239         else
240           TrueRangeEnd = Overdefined;
241       }
242     } else {
243       // Update the FalseElement state machine.
244       if (FirstFalseElement == Undefined)
245         FirstFalseElement = FalseRangeEnd = i; // First false element.
246       else {
247         // Update double-compare state machine.
248         if (SecondFalseElement == Undefined)
249           SecondFalseElement = i;
250         else
251           SecondFalseElement = Overdefined;
252 
253         // Update range state machine.
254         if (FalseRangeEnd == (int)i-1)
255           FalseRangeEnd = i;
256         else
257           FalseRangeEnd = Overdefined;
258       }
259     }
260 
261     // If this element is in range, update our magic bitvector.
262     if (i < 64 && IsTrueForElt)
263       MagicBitvector |= 1ULL << i;
264 
265     // If all of our states become overdefined, bail out early.  Since the
266     // predicate is expensive, only check it every 8 elements.  This is only
267     // really useful for really huge arrays.
268     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
269         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
270         FalseRangeEnd == Overdefined)
271       return nullptr;
272   }
273 
274   // Now that we've scanned the entire array, emit our new comparison(s).  We
275   // order the state machines in complexity of the generated code.
276   Value *Idx = GEP->getOperand(2);
277 
278   // If the index is larger than the pointer size of the target, truncate the
279   // index down like the GEP would do implicitly.  We don't have to do this for
280   // an inbounds GEP because the index can't be out of range.
281   if (!GEP->isInBounds()) {
282     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
283     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
284     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
285       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
286   }
287 
288   // If inbounds keyword is not present, Idx * ElementSize can overflow.
289   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
290   // Then, there are two possible values for Idx to match offset 0:
291   // 0x00..00, 0x80..00.
292   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
293   // comparison is false if Idx was 0x80..00.
294   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
295   unsigned ElementSize =
296       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
297   auto MaskIdx = [&](Value* Idx){
298     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
299       Value *Mask = ConstantInt::get(Idx->getType(), -1);
300       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
301       Idx = Builder.CreateAnd(Idx, Mask);
302     }
303     return Idx;
304   };
305 
306   // If the comparison is only true for one or two elements, emit direct
307   // comparisons.
308   if (SecondTrueElement != Overdefined) {
309     Idx = MaskIdx(Idx);
310     // None true -> false.
311     if (FirstTrueElement == Undefined)
312       return replaceInstUsesWith(ICI, Builder.getFalse());
313 
314     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
315 
316     // True for one element -> 'i == 47'.
317     if (SecondTrueElement == Undefined)
318       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
319 
320     // True for two elements -> 'i == 47 | i == 72'.
321     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
322     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
323     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
324     return BinaryOperator::CreateOr(C1, C2);
325   }
326 
327   // If the comparison is only false for one or two elements, emit direct
328   // comparisons.
329   if (SecondFalseElement != Overdefined) {
330     Idx = MaskIdx(Idx);
331     // None false -> true.
332     if (FirstFalseElement == Undefined)
333       return replaceInstUsesWith(ICI, Builder.getTrue());
334 
335     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
336 
337     // False for one element -> 'i != 47'.
338     if (SecondFalseElement == Undefined)
339       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
340 
341     // False for two elements -> 'i != 47 & i != 72'.
342     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
343     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
344     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
345     return BinaryOperator::CreateAnd(C1, C2);
346   }
347 
348   // If the comparison can be replaced with a range comparison for the elements
349   // where it is true, emit the range check.
350   if (TrueRangeEnd != Overdefined) {
351     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
352     Idx = MaskIdx(Idx);
353 
354     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
355     if (FirstTrueElement) {
356       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
357       Idx = Builder.CreateAdd(Idx, Offs);
358     }
359 
360     Value *End = ConstantInt::get(Idx->getType(),
361                                   TrueRangeEnd-FirstTrueElement+1);
362     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
363   }
364 
365   // False range check.
366   if (FalseRangeEnd != Overdefined) {
367     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
368     Idx = MaskIdx(Idx);
369     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
370     if (FirstFalseElement) {
371       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
372       Idx = Builder.CreateAdd(Idx, Offs);
373     }
374 
375     Value *End = ConstantInt::get(Idx->getType(),
376                                   FalseRangeEnd-FirstFalseElement);
377     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
378   }
379 
380   // If a magic bitvector captures the entire comparison state
381   // of this load, replace it with computation that does:
382   //   ((magic_cst >> i) & 1) != 0
383   {
384     Type *Ty = nullptr;
385 
386     // Look for an appropriate type:
387     // - The type of Idx if the magic fits
388     // - The smallest fitting legal type
389     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
390       Ty = Idx->getType();
391     else
392       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
393 
394     if (Ty) {
395       Idx = MaskIdx(Idx);
396       Value *V = Builder.CreateIntCast(Idx, Ty, false);
397       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
398       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
399       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
400     }
401   }
402 
403   return nullptr;
404 }
405 
406 /// Return a value that can be used to compare the *offset* implied by a GEP to
407 /// zero. For example, if we have &A[i], we want to return 'i' for
408 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
409 /// are involved. The above expression would also be legal to codegen as
410 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
411 /// This latter form is less amenable to optimization though, and we are allowed
412 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
413 ///
414 /// If we can't emit an optimized form for this expression, this returns null.
415 ///
416 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
417                                           const DataLayout &DL) {
418   gep_type_iterator GTI = gep_type_begin(GEP);
419 
420   // Check to see if this gep only has a single variable index.  If so, and if
421   // any constant indices are a multiple of its scale, then we can compute this
422   // in terms of the scale of the variable index.  For example, if the GEP
423   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
424   // because the expression will cross zero at the same point.
425   unsigned i, e = GEP->getNumOperands();
426   int64_t Offset = 0;
427   for (i = 1; i != e; ++i, ++GTI) {
428     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
429       // Compute the aggregate offset of constant indices.
430       if (CI->isZero()) continue;
431 
432       // Handle a struct index, which adds its field offset to the pointer.
433       if (StructType *STy = GTI.getStructTypeOrNull()) {
434         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
435       } else {
436         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
437         Offset += Size*CI->getSExtValue();
438       }
439     } else {
440       // Found our variable index.
441       break;
442     }
443   }
444 
445   // If there are no variable indices, we must have a constant offset, just
446   // evaluate it the general way.
447   if (i == e) return nullptr;
448 
449   Value *VariableIdx = GEP->getOperand(i);
450   // Determine the scale factor of the variable element.  For example, this is
451   // 4 if the variable index is into an array of i32.
452   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
453 
454   // Verify that there are no other variable indices.  If so, emit the hard way.
455   for (++i, ++GTI; i != e; ++i, ++GTI) {
456     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
457     if (!CI) return nullptr;
458 
459     // Compute the aggregate offset of constant indices.
460     if (CI->isZero()) continue;
461 
462     // Handle a struct index, which adds its field offset to the pointer.
463     if (StructType *STy = GTI.getStructTypeOrNull()) {
464       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
465     } else {
466       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
467       Offset += Size*CI->getSExtValue();
468     }
469   }
470 
471   // Okay, we know we have a single variable index, which must be a
472   // pointer/array/vector index.  If there is no offset, life is simple, return
473   // the index.
474   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
475   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
476   if (Offset == 0) {
477     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
478     // we don't need to bother extending: the extension won't affect where the
479     // computation crosses zero.
480     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
481         IntPtrWidth) {
482       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
483     }
484     return VariableIdx;
485   }
486 
487   // Otherwise, there is an index.  The computation we will do will be modulo
488   // the pointer size.
489   Offset = SignExtend64(Offset, IntPtrWidth);
490   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
491 
492   // To do this transformation, any constant index must be a multiple of the
493   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
494   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
495   // multiple of the variable scale.
496   int64_t NewOffs = Offset / (int64_t)VariableScale;
497   if (Offset != NewOffs*(int64_t)VariableScale)
498     return nullptr;
499 
500   // Okay, we can do this evaluation.  Start by converting the index to intptr.
501   if (VariableIdx->getType() != IntPtrTy)
502     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
503                                             true /*Signed*/);
504   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
505   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
506 }
507 
508 /// Returns true if we can rewrite Start as a GEP with pointer Base
509 /// and some integer offset. The nodes that need to be re-written
510 /// for this transformation will be added to Explored.
511 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
512                                   const DataLayout &DL,
513                                   SetVector<Value *> &Explored) {
514   SmallVector<Value *, 16> WorkList(1, Start);
515   Explored.insert(Base);
516 
517   // The following traversal gives us an order which can be used
518   // when doing the final transformation. Since in the final
519   // transformation we create the PHI replacement instructions first,
520   // we don't have to get them in any particular order.
521   //
522   // However, for other instructions we will have to traverse the
523   // operands of an instruction first, which means that we have to
524   // do a post-order traversal.
525   while (!WorkList.empty()) {
526     SetVector<PHINode *> PHIs;
527 
528     while (!WorkList.empty()) {
529       if (Explored.size() >= 100)
530         return false;
531 
532       Value *V = WorkList.back();
533 
534       if (Explored.contains(V)) {
535         WorkList.pop_back();
536         continue;
537       }
538 
539       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
540           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
541         // We've found some value that we can't explore which is different from
542         // the base. Therefore we can't do this transformation.
543         return false;
544 
545       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
546         auto *CI = cast<CastInst>(V);
547         if (!CI->isNoopCast(DL))
548           return false;
549 
550         if (!Explored.contains(CI->getOperand(0)))
551           WorkList.push_back(CI->getOperand(0));
552       }
553 
554       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
555         // We're limiting the GEP to having one index. This will preserve
556         // the original pointer type. We could handle more cases in the
557         // future.
558         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
559             GEP->getSourceElementType() != ElemTy)
560           return false;
561 
562         if (!Explored.contains(GEP->getOperand(0)))
563           WorkList.push_back(GEP->getOperand(0));
564       }
565 
566       if (WorkList.back() == V) {
567         WorkList.pop_back();
568         // We've finished visiting this node, mark it as such.
569         Explored.insert(V);
570       }
571 
572       if (auto *PN = dyn_cast<PHINode>(V)) {
573         // We cannot transform PHIs on unsplittable basic blocks.
574         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
575           return false;
576         Explored.insert(PN);
577         PHIs.insert(PN);
578       }
579     }
580 
581     // Explore the PHI nodes further.
582     for (auto *PN : PHIs)
583       for (Value *Op : PN->incoming_values())
584         if (!Explored.contains(Op))
585           WorkList.push_back(Op);
586   }
587 
588   // Make sure that we can do this. Since we can't insert GEPs in a basic
589   // block before a PHI node, we can't easily do this transformation if
590   // we have PHI node users of transformed instructions.
591   for (Value *Val : Explored) {
592     for (Value *Use : Val->uses()) {
593 
594       auto *PHI = dyn_cast<PHINode>(Use);
595       auto *Inst = dyn_cast<Instruction>(Val);
596 
597       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
598           !Explored.contains(PHI))
599         continue;
600 
601       if (PHI->getParent() == Inst->getParent())
602         return false;
603     }
604   }
605   return true;
606 }
607 
608 // Sets the appropriate insert point on Builder where we can add
609 // a replacement Instruction for V (if that is possible).
610 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
611                               bool Before = true) {
612   if (auto *PHI = dyn_cast<PHINode>(V)) {
613     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
614     return;
615   }
616   if (auto *I = dyn_cast<Instruction>(V)) {
617     if (!Before)
618       I = &*std::next(I->getIterator());
619     Builder.SetInsertPoint(I);
620     return;
621   }
622   if (auto *A = dyn_cast<Argument>(V)) {
623     // Set the insertion point in the entry block.
624     BasicBlock &Entry = A->getParent()->getEntryBlock();
625     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
626     return;
627   }
628   // Otherwise, this is a constant and we don't need to set a new
629   // insertion point.
630   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
631 }
632 
633 /// Returns a re-written value of Start as an indexed GEP using Base as a
634 /// pointer.
635 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
636                                  const DataLayout &DL,
637                                  SetVector<Value *> &Explored) {
638   // Perform all the substitutions. This is a bit tricky because we can
639   // have cycles in our use-def chains.
640   // 1. Create the PHI nodes without any incoming values.
641   // 2. Create all the other values.
642   // 3. Add the edges for the PHI nodes.
643   // 4. Emit GEPs to get the original pointers.
644   // 5. Remove the original instructions.
645   Type *IndexType = IntegerType::get(
646       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
647 
648   DenseMap<Value *, Value *> NewInsts;
649   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
650 
651   // Create the new PHI nodes, without adding any incoming values.
652   for (Value *Val : Explored) {
653     if (Val == Base)
654       continue;
655     // Create empty phi nodes. This avoids cyclic dependencies when creating
656     // the remaining instructions.
657     if (auto *PHI = dyn_cast<PHINode>(Val))
658       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
659                                       PHI->getName() + ".idx", PHI);
660   }
661   IRBuilder<> Builder(Base->getContext());
662 
663   // Create all the other instructions.
664   for (Value *Val : Explored) {
665 
666     if (NewInsts.find(Val) != NewInsts.end())
667       continue;
668 
669     if (auto *CI = dyn_cast<CastInst>(Val)) {
670       // Don't get rid of the intermediate variable here; the store can grow
671       // the map which will invalidate the reference to the input value.
672       Value *V = NewInsts[CI->getOperand(0)];
673       NewInsts[CI] = V;
674       continue;
675     }
676     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
677       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
678                                                   : GEP->getOperand(1);
679       setInsertionPoint(Builder, GEP);
680       // Indices might need to be sign extended. GEPs will magically do
681       // this, but we need to do it ourselves here.
682       if (Index->getType()->getScalarSizeInBits() !=
683           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
684         Index = Builder.CreateSExtOrTrunc(
685             Index, NewInsts[GEP->getOperand(0)]->getType(),
686             GEP->getOperand(0)->getName() + ".sext");
687       }
688 
689       auto *Op = NewInsts[GEP->getOperand(0)];
690       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
691         NewInsts[GEP] = Index;
692       else
693         NewInsts[GEP] = Builder.CreateNSWAdd(
694             Op, Index, GEP->getOperand(0)->getName() + ".add");
695       continue;
696     }
697     if (isa<PHINode>(Val))
698       continue;
699 
700     llvm_unreachable("Unexpected instruction type");
701   }
702 
703   // Add the incoming values to the PHI nodes.
704   for (Value *Val : Explored) {
705     if (Val == Base)
706       continue;
707     // All the instructions have been created, we can now add edges to the
708     // phi nodes.
709     if (auto *PHI = dyn_cast<PHINode>(Val)) {
710       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
711       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
712         Value *NewIncoming = PHI->getIncomingValue(I);
713 
714         if (NewInsts.find(NewIncoming) != NewInsts.end())
715           NewIncoming = NewInsts[NewIncoming];
716 
717         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
718       }
719     }
720   }
721 
722   PointerType *PtrTy =
723       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
724   for (Value *Val : Explored) {
725     if (Val == Base)
726       continue;
727 
728     // Depending on the type, for external users we have to emit
729     // a GEP or a GEP + ptrtoint.
730     setInsertionPoint(Builder, Val, false);
731 
732     // Cast base to the expected type.
733     Value *NewVal = Builder.CreateBitOrPointerCast(
734         Base, PtrTy, Start->getName() + "to.ptr");
735     NewVal = Builder.CreateInBoundsGEP(
736         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
737     NewVal = Builder.CreateBitOrPointerCast(
738         NewVal, Val->getType(), Val->getName() + ".conv");
739     Val->replaceAllUsesWith(NewVal);
740   }
741 
742   return NewInsts[Start];
743 }
744 
745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
746 /// the input Value as a constant indexed GEP. Returns a pair containing
747 /// the GEPs Pointer and Index.
748 static std::pair<Value *, Value *>
749 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
750   Type *IndexType = IntegerType::get(V->getContext(),
751                                      DL.getIndexTypeSizeInBits(V->getType()));
752 
753   Constant *Index = ConstantInt::getNullValue(IndexType);
754   while (true) {
755     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
756       // We accept only inbouds GEPs here to exclude the possibility of
757       // overflow.
758       if (!GEP->isInBounds())
759         break;
760       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
761           GEP->getSourceElementType() == ElemTy) {
762         V = GEP->getOperand(0);
763         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
764         Index = ConstantExpr::getAdd(
765             Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType));
766         continue;
767       }
768       break;
769     }
770     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
771       if (!CI->isNoopCast(DL))
772         break;
773       V = CI->getOperand(0);
774       continue;
775     }
776     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
777       if (!CI->isNoopCast(DL))
778         break;
779       V = CI->getOperand(0);
780       continue;
781     }
782     break;
783   }
784   return {V, Index};
785 }
786 
787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
788 /// We can look through PHIs, GEPs and casts in order to determine a common base
789 /// between GEPLHS and RHS.
790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
791                                               ICmpInst::Predicate Cond,
792                                               const DataLayout &DL) {
793   // FIXME: Support vector of pointers.
794   if (GEPLHS->getType()->isVectorTy())
795     return nullptr;
796 
797   if (!GEPLHS->hasAllConstantIndices())
798     return nullptr;
799 
800   Type *ElemTy = GEPLHS->getSourceElementType();
801   Value *PtrBase, *Index;
802   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
803 
804   // The set of nodes that will take part in this transformation.
805   SetVector<Value *> Nodes;
806 
807   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
808     return nullptr;
809 
810   // We know we can re-write this as
811   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
812   // Since we've only looked through inbouds GEPs we know that we
813   // can't have overflow on either side. We can therefore re-write
814   // this as:
815   //   OFFSET1 cmp OFFSET2
816   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
817 
818   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
819   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
820   // offset. Since Index is the offset of LHS to the base pointer, we will now
821   // compare the offsets instead of comparing the pointers.
822   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
823 }
824 
825 /// Fold comparisons between a GEP instruction and something else. At this point
826 /// we know that the GEP is on the LHS of the comparison.
827 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
828                                            ICmpInst::Predicate Cond,
829                                            Instruction &I) {
830   // Don't transform signed compares of GEPs into index compares. Even if the
831   // GEP is inbounds, the final add of the base pointer can have signed overflow
832   // and would change the result of the icmp.
833   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
834   // the maximum signed value for the pointer type.
835   if (ICmpInst::isSigned(Cond))
836     return nullptr;
837 
838   // Look through bitcasts and addrspacecasts. We do not however want to remove
839   // 0 GEPs.
840   if (!isa<GetElementPtrInst>(RHS))
841     RHS = RHS->stripPointerCasts();
842 
843   Value *PtrBase = GEPLHS->getOperand(0);
844   // FIXME: Support vector pointer GEPs.
845   if (PtrBase == RHS && GEPLHS->isInBounds() &&
846       !GEPLHS->getType()->isVectorTy()) {
847     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
848     // This transformation (ignoring the base and scales) is valid because we
849     // know pointers can't overflow since the gep is inbounds.  See if we can
850     // output an optimized form.
851     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
852 
853     // If not, synthesize the offset the hard way.
854     if (!Offset)
855       Offset = EmitGEPOffset(GEPLHS);
856     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
857                         Constant::getNullValue(Offset->getType()));
858   }
859 
860   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
861       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
862       !NullPointerIsDefined(I.getFunction(),
863                             RHS->getType()->getPointerAddressSpace())) {
864     // For most address spaces, an allocation can't be placed at null, but null
865     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
866     // the only valid inbounds address derived from null, is null itself.
867     // Thus, we have four cases to consider:
868     // 1) Base == nullptr, Offset == 0 -> inbounds, null
869     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
870     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
871     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
872     //
873     // (Note if we're indexing a type of size 0, that simply collapses into one
874     //  of the buckets above.)
875     //
876     // In general, we're allowed to make values less poison (i.e. remove
877     //   sources of full UB), so in this case, we just select between the two
878     //   non-poison cases (1 and 4 above).
879     //
880     // For vectors, we apply the same reasoning on a per-lane basis.
881     auto *Base = GEPLHS->getPointerOperand();
882     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
883       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
884       Base = Builder.CreateVectorSplat(EC, Base);
885     }
886     return new ICmpInst(Cond, Base,
887                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
888                             cast<Constant>(RHS), Base->getType()));
889   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
890     // If the base pointers are different, but the indices are the same, just
891     // compare the base pointer.
892     if (PtrBase != GEPRHS->getOperand(0)) {
893       bool IndicesTheSame =
894           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
895           GEPLHS->getPointerOperand()->getType() ==
896               GEPRHS->getPointerOperand()->getType() &&
897           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
898       if (IndicesTheSame)
899         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
900           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
901             IndicesTheSame = false;
902             break;
903           }
904 
905       // If all indices are the same, just compare the base pointers.
906       Type *BaseType = GEPLHS->getOperand(0)->getType();
907       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
908         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
909 
910       // If we're comparing GEPs with two base pointers that only differ in type
911       // and both GEPs have only constant indices or just one use, then fold
912       // the compare with the adjusted indices.
913       // FIXME: Support vector of pointers.
914       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
915           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
916           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
917           PtrBase->stripPointerCasts() ==
918               GEPRHS->getOperand(0)->stripPointerCasts() &&
919           !GEPLHS->getType()->isVectorTy()) {
920         Value *LOffset = EmitGEPOffset(GEPLHS);
921         Value *ROffset = EmitGEPOffset(GEPRHS);
922 
923         // If we looked through an addrspacecast between different sized address
924         // spaces, the LHS and RHS pointers are different sized
925         // integers. Truncate to the smaller one.
926         Type *LHSIndexTy = LOffset->getType();
927         Type *RHSIndexTy = ROffset->getType();
928         if (LHSIndexTy != RHSIndexTy) {
929           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
930               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
931             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
932           } else
933             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
934         }
935 
936         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
937                                         LOffset, ROffset);
938         return replaceInstUsesWith(I, Cmp);
939       }
940 
941       // Otherwise, the base pointers are different and the indices are
942       // different. Try convert this to an indexed compare by looking through
943       // PHIs/casts.
944       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
945     }
946 
947     // If one of the GEPs has all zero indices, recurse.
948     // FIXME: Handle vector of pointers.
949     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
950       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
951                          ICmpInst::getSwappedPredicate(Cond), I);
952 
953     // If the other GEP has all zero indices, recurse.
954     // FIXME: Handle vector of pointers.
955     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
956       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
957 
958     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
959     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
960         GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
961       // If the GEPs only differ by one index, compare it.
962       unsigned NumDifferences = 0;  // Keep track of # differences.
963       unsigned DiffOperand = 0;     // The operand that differs.
964       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
965         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
966           Type *LHSType = GEPLHS->getOperand(i)->getType();
967           Type *RHSType = GEPRHS->getOperand(i)->getType();
968           // FIXME: Better support for vector of pointers.
969           if (LHSType->getPrimitiveSizeInBits() !=
970                    RHSType->getPrimitiveSizeInBits() ||
971               (GEPLHS->getType()->isVectorTy() &&
972                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
973             // Irreconcilable differences.
974             NumDifferences = 2;
975             break;
976           }
977 
978           if (NumDifferences++) break;
979           DiffOperand = i;
980         }
981 
982       if (NumDifferences == 0)   // SAME GEP?
983         return replaceInstUsesWith(I, // No comparison is needed here.
984           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
985 
986       else if (NumDifferences == 1 && GEPsInBounds) {
987         Value *LHSV = GEPLHS->getOperand(DiffOperand);
988         Value *RHSV = GEPRHS->getOperand(DiffOperand);
989         // Make sure we do a signed comparison here.
990         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
991       }
992     }
993 
994     // Only lower this if the icmp is the only user of the GEP or if we expect
995     // the result to fold to a constant!
996     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
997         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
998       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
999       Value *L = EmitGEPOffset(GEPLHS);
1000       Value *R = EmitGEPOffset(GEPRHS);
1001       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1002     }
1003   }
1004 
1005   // Try convert this to an indexed compare by looking through PHIs/casts as a
1006   // last resort.
1007   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1008 }
1009 
1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1011                                              const AllocaInst *Alloca) {
1012   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1013 
1014   // It would be tempting to fold away comparisons between allocas and any
1015   // pointer not based on that alloca (e.g. an argument). However, even
1016   // though such pointers cannot alias, they can still compare equal.
1017   //
1018   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1019   // doesn't escape we can argue that it's impossible to guess its value, and we
1020   // can therefore act as if any such guesses are wrong.
1021   //
1022   // The code below checks that the alloca doesn't escape, and that it's only
1023   // used in a comparison once (the current instruction). The
1024   // single-comparison-use condition ensures that we're trivially folding all
1025   // comparisons against the alloca consistently, and avoids the risk of
1026   // erroneously folding a comparison of the pointer with itself.
1027 
1028   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1029 
1030   SmallVector<const Use *, 32> Worklist;
1031   for (const Use &U : Alloca->uses()) {
1032     if (Worklist.size() >= MaxIter)
1033       return nullptr;
1034     Worklist.push_back(&U);
1035   }
1036 
1037   unsigned NumCmps = 0;
1038   while (!Worklist.empty()) {
1039     assert(Worklist.size() <= MaxIter);
1040     const Use *U = Worklist.pop_back_val();
1041     const Value *V = U->getUser();
1042     --MaxIter;
1043 
1044     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1045         isa<SelectInst>(V)) {
1046       // Track the uses.
1047     } else if (isa<LoadInst>(V)) {
1048       // Loading from the pointer doesn't escape it.
1049       continue;
1050     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1051       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1052       if (SI->getValueOperand() == U->get())
1053         return nullptr;
1054       continue;
1055     } else if (isa<ICmpInst>(V)) {
1056       if (NumCmps++)
1057         return nullptr; // Found more than one cmp.
1058       continue;
1059     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1060       switch (Intrin->getIntrinsicID()) {
1061         // These intrinsics don't escape or compare the pointer. Memset is safe
1062         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1063         // we don't allow stores, so src cannot point to V.
1064         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1065         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1066           continue;
1067         default:
1068           return nullptr;
1069       }
1070     } else {
1071       return nullptr;
1072     }
1073     for (const Use &U : V->uses()) {
1074       if (Worklist.size() >= MaxIter)
1075         return nullptr;
1076       Worklist.push_back(&U);
1077     }
1078   }
1079 
1080   auto *Res = ConstantInt::get(ICI.getType(),
1081                                !CmpInst::isTrueWhenEqual(ICI.getPredicate()));
1082   return replaceInstUsesWith(ICI, Res);
1083 }
1084 
1085 /// Fold "icmp pred (X+C), X".
1086 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1087                                                   ICmpInst::Predicate Pred) {
1088   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1089   // so the values can never be equal.  Similarly for all other "or equals"
1090   // operators.
1091   assert(!!C && "C should not be zero!");
1092 
1093   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1094   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1095   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1096   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1097     Constant *R = ConstantInt::get(X->getType(),
1098                                    APInt::getMaxValue(C.getBitWidth()) - C);
1099     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1100   }
1101 
1102   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1103   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1104   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1105   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1106     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1107                         ConstantInt::get(X->getType(), -C));
1108 
1109   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1110 
1111   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1112   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1113   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1114   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1115   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1116   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1117   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1118     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1119                         ConstantInt::get(X->getType(), SMax - C));
1120 
1121   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1122   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1123   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1124   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1125   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1126   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1127 
1128   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1129   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1130                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1131 }
1132 
1133 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1134 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1135 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1136 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1137                                                      const APInt &AP1,
1138                                                      const APInt &AP2) {
1139   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1140 
1141   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1142     if (I.getPredicate() == I.ICMP_NE)
1143       Pred = CmpInst::getInversePredicate(Pred);
1144     return new ICmpInst(Pred, LHS, RHS);
1145   };
1146 
1147   // Don't bother doing any work for cases which InstSimplify handles.
1148   if (AP2.isZero())
1149     return nullptr;
1150 
1151   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1152   if (IsAShr) {
1153     if (AP2.isAllOnes())
1154       return nullptr;
1155     if (AP2.isNegative() != AP1.isNegative())
1156       return nullptr;
1157     if (AP2.sgt(AP1))
1158       return nullptr;
1159   }
1160 
1161   if (!AP1)
1162     // 'A' must be large enough to shift out the highest set bit.
1163     return getICmp(I.ICMP_UGT, A,
1164                    ConstantInt::get(A->getType(), AP2.logBase2()));
1165 
1166   if (AP1 == AP2)
1167     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1168 
1169   int Shift;
1170   if (IsAShr && AP1.isNegative())
1171     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1172   else
1173     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1174 
1175   if (Shift > 0) {
1176     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1177       // There are multiple solutions if we are comparing against -1 and the LHS
1178       // of the ashr is not a power of two.
1179       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1180         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1181       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1182     } else if (AP1 == AP2.lshr(Shift)) {
1183       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1184     }
1185   }
1186 
1187   // Shifting const2 will never be equal to const1.
1188   // FIXME: This should always be handled by InstSimplify?
1189   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1190   return replaceInstUsesWith(I, TorF);
1191 }
1192 
1193 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1194 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1195 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1196                                                      const APInt &AP1,
1197                                                      const APInt &AP2) {
1198   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1199 
1200   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1201     if (I.getPredicate() == I.ICMP_NE)
1202       Pred = CmpInst::getInversePredicate(Pred);
1203     return new ICmpInst(Pred, LHS, RHS);
1204   };
1205 
1206   // Don't bother doing any work for cases which InstSimplify handles.
1207   if (AP2.isZero())
1208     return nullptr;
1209 
1210   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1211 
1212   if (!AP1 && AP2TrailingZeros != 0)
1213     return getICmp(
1214         I.ICMP_UGE, A,
1215         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1216 
1217   if (AP1 == AP2)
1218     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1219 
1220   // Get the distance between the lowest bits that are set.
1221   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1222 
1223   if (Shift > 0 && AP2.shl(Shift) == AP1)
1224     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1225 
1226   // Shifting const2 will never be equal to const1.
1227   // FIXME: This should always be handled by InstSimplify?
1228   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1229   return replaceInstUsesWith(I, TorF);
1230 }
1231 
1232 /// The caller has matched a pattern of the form:
1233 ///   I = icmp ugt (add (add A, B), CI2), CI1
1234 /// If this is of the form:
1235 ///   sum = a + b
1236 ///   if (sum+128 >u 255)
1237 /// Then replace it with llvm.sadd.with.overflow.i8.
1238 ///
1239 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1240                                           ConstantInt *CI2, ConstantInt *CI1,
1241                                           InstCombinerImpl &IC) {
1242   // The transformation we're trying to do here is to transform this into an
1243   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1244   // with a narrower add, and discard the add-with-constant that is part of the
1245   // range check (if we can't eliminate it, this isn't profitable).
1246 
1247   // In order to eliminate the add-with-constant, the compare can be its only
1248   // use.
1249   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1250   if (!AddWithCst->hasOneUse())
1251     return nullptr;
1252 
1253   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1254   if (!CI2->getValue().isPowerOf2())
1255     return nullptr;
1256   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1257   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1258     return nullptr;
1259 
1260   // The width of the new add formed is 1 more than the bias.
1261   ++NewWidth;
1262 
1263   // Check to see that CI1 is an all-ones value with NewWidth bits.
1264   if (CI1->getBitWidth() == NewWidth ||
1265       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1266     return nullptr;
1267 
1268   // This is only really a signed overflow check if the inputs have been
1269   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1270   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1271   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1272       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1273     return nullptr;
1274 
1275   // In order to replace the original add with a narrower
1276   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1277   // and truncates that discard the high bits of the add.  Verify that this is
1278   // the case.
1279   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1280   for (User *U : OrigAdd->users()) {
1281     if (U == AddWithCst)
1282       continue;
1283 
1284     // Only accept truncates for now.  We would really like a nice recursive
1285     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1286     // chain to see which bits of a value are actually demanded.  If the
1287     // original add had another add which was then immediately truncated, we
1288     // could still do the transformation.
1289     TruncInst *TI = dyn_cast<TruncInst>(U);
1290     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1291       return nullptr;
1292   }
1293 
1294   // If the pattern matches, truncate the inputs to the narrower type and
1295   // use the sadd_with_overflow intrinsic to efficiently compute both the
1296   // result and the overflow bit.
1297   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1298   Function *F = Intrinsic::getDeclaration(
1299       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1300 
1301   InstCombiner::BuilderTy &Builder = IC.Builder;
1302 
1303   // Put the new code above the original add, in case there are any uses of the
1304   // add between the add and the compare.
1305   Builder.SetInsertPoint(OrigAdd);
1306 
1307   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1308   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1309   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1310   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1311   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1312 
1313   // The inner add was the result of the narrow add, zero extended to the
1314   // wider type.  Replace it with the result computed by the intrinsic.
1315   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1316   IC.eraseInstFromFunction(*OrigAdd);
1317 
1318   // The original icmp gets replaced with the overflow value.
1319   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1320 }
1321 
1322 /// If we have:
1323 ///   icmp eq/ne (urem/srem %x, %y), 0
1324 /// iff %y is a power-of-two, we can replace this with a bit test:
1325 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1326 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1327   // This fold is only valid for equality predicates.
1328   if (!I.isEquality())
1329     return nullptr;
1330   ICmpInst::Predicate Pred;
1331   Value *X, *Y, *Zero;
1332   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1333                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1334     return nullptr;
1335   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1336     return nullptr;
1337   // This may increase instruction count, we don't enforce that Y is a constant.
1338   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1339   Value *Masked = Builder.CreateAnd(X, Mask);
1340   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1341 }
1342 
1343 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1344 /// by one-less-than-bitwidth into a sign test on the original value.
1345 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1346   Instruction *Val;
1347   ICmpInst::Predicate Pred;
1348   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1349     return nullptr;
1350 
1351   Value *X;
1352   Type *XTy;
1353 
1354   Constant *C;
1355   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1356     XTy = X->getType();
1357     unsigned XBitWidth = XTy->getScalarSizeInBits();
1358     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1359                                      APInt(XBitWidth, XBitWidth - 1))))
1360       return nullptr;
1361   } else if (isa<BinaryOperator>(Val) &&
1362              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1363                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1364                   /*AnalyzeForSignBitExtraction=*/true))) {
1365     XTy = X->getType();
1366   } else
1367     return nullptr;
1368 
1369   return ICmpInst::Create(Instruction::ICmp,
1370                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1371                                                     : ICmpInst::ICMP_SLT,
1372                           X, ConstantInt::getNullValue(XTy));
1373 }
1374 
1375 // Handle  icmp pred X, 0
1376 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1377   CmpInst::Predicate Pred = Cmp.getPredicate();
1378   if (!match(Cmp.getOperand(1), m_Zero()))
1379     return nullptr;
1380 
1381   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1382   if (Pred == ICmpInst::ICMP_SGT) {
1383     Value *A, *B;
1384     if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1385       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1386         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1387       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1388         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1389     }
1390   }
1391 
1392   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1393     return New;
1394 
1395   // Given:
1396   //   icmp eq/ne (urem %x, %y), 0
1397   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1398   //   icmp eq/ne %x, 0
1399   Value *X, *Y;
1400   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1401       ICmpInst::isEquality(Pred)) {
1402     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1403     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1404     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1405       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1406   }
1407 
1408   return nullptr;
1409 }
1410 
1411 /// Fold icmp Pred X, C.
1412 /// TODO: This code structure does not make sense. The saturating add fold
1413 /// should be moved to some other helper and extended as noted below (it is also
1414 /// possible that code has been made unnecessary - do we canonicalize IR to
1415 /// overflow/saturating intrinsics or not?).
1416 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1417   // Match the following pattern, which is a common idiom when writing
1418   // overflow-safe integer arithmetic functions. The source performs an addition
1419   // in wider type and explicitly checks for overflow using comparisons against
1420   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1421   //
1422   // TODO: This could probably be generalized to handle other overflow-safe
1423   // operations if we worked out the formulas to compute the appropriate magic
1424   // constants.
1425   //
1426   // sum = a + b
1427   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1428   CmpInst::Predicate Pred = Cmp.getPredicate();
1429   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1430   Value *A, *B;
1431   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1432   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1433       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1434     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1435       return Res;
1436 
1437   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1438   Constant *C = dyn_cast<Constant>(Op1);
1439   if (!C || C->canTrap())
1440     return nullptr;
1441 
1442   if (auto *Phi = dyn_cast<PHINode>(Op0))
1443     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1444       Type *Ty = Cmp.getType();
1445       Builder.SetInsertPoint(Phi);
1446       PHINode *NewPhi =
1447           Builder.CreatePHI(Ty, Phi->getNumOperands());
1448       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1449         auto *Input =
1450             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1451         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1452         NewPhi->addIncoming(BoolInput, Predecessor);
1453       }
1454       NewPhi->takeName(&Cmp);
1455       return replaceInstUsesWith(Cmp, NewPhi);
1456     }
1457 
1458   return nullptr;
1459 }
1460 
1461 /// Canonicalize icmp instructions based on dominating conditions.
1462 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1463   // This is a cheap/incomplete check for dominance - just match a single
1464   // predecessor with a conditional branch.
1465   BasicBlock *CmpBB = Cmp.getParent();
1466   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1467   if (!DomBB)
1468     return nullptr;
1469 
1470   Value *DomCond;
1471   BasicBlock *TrueBB, *FalseBB;
1472   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1473     return nullptr;
1474 
1475   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1476          "Predecessor block does not point to successor?");
1477 
1478   // The branch should get simplified. Don't bother simplifying this condition.
1479   if (TrueBB == FalseBB)
1480     return nullptr;
1481 
1482   // Try to simplify this compare to T/F based on the dominating condition.
1483   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1484   if (Imp)
1485     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1486 
1487   CmpInst::Predicate Pred = Cmp.getPredicate();
1488   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1489   ICmpInst::Predicate DomPred;
1490   const APInt *C, *DomC;
1491   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1492       match(Y, m_APInt(C))) {
1493     // We have 2 compares of a variable with constants. Calculate the constant
1494     // ranges of those compares to see if we can transform the 2nd compare:
1495     // DomBB:
1496     //   DomCond = icmp DomPred X, DomC
1497     //   br DomCond, CmpBB, FalseBB
1498     // CmpBB:
1499     //   Cmp = icmp Pred X, C
1500     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1501     ConstantRange DominatingCR =
1502         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1503                           : ConstantRange::makeExactICmpRegion(
1504                                 CmpInst::getInversePredicate(DomPred), *DomC);
1505     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1506     ConstantRange Difference = DominatingCR.difference(CR);
1507     if (Intersection.isEmptySet())
1508       return replaceInstUsesWith(Cmp, Builder.getFalse());
1509     if (Difference.isEmptySet())
1510       return replaceInstUsesWith(Cmp, Builder.getTrue());
1511 
1512     // Canonicalizing a sign bit comparison that gets used in a branch,
1513     // pessimizes codegen by generating branch on zero instruction instead
1514     // of a test and branch. So we avoid canonicalizing in such situations
1515     // because test and branch instruction has better branch displacement
1516     // than compare and branch instruction.
1517     bool UnusedBit;
1518     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1519     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1520       return nullptr;
1521 
1522     // Avoid an infinite loop with min/max canonicalization.
1523     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1524     if (Cmp.hasOneUse() &&
1525         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1526       return nullptr;
1527 
1528     if (const APInt *EqC = Intersection.getSingleElement())
1529       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1530     if (const APInt *NeC = Difference.getSingleElement())
1531       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1532   }
1533 
1534   return nullptr;
1535 }
1536 
1537 /// Fold icmp (trunc X, Y), C.
1538 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1539                                                      TruncInst *Trunc,
1540                                                      const APInt &C) {
1541   ICmpInst::Predicate Pred = Cmp.getPredicate();
1542   Value *X = Trunc->getOperand(0);
1543   if (C.isOne() && C.getBitWidth() > 1) {
1544     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1545     Value *V = nullptr;
1546     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1547       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1548                           ConstantInt::get(V->getType(), 1));
1549   }
1550 
1551   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1552            SrcBits = X->getType()->getScalarSizeInBits();
1553   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1554     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1555     // of the high bits truncated out of x are known.
1556     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1557 
1558     // If all the high bits are known, we can do this xform.
1559     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1560       // Pull in the high bits from known-ones set.
1561       APInt NewRHS = C.zext(SrcBits);
1562       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1563       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1564     }
1565   }
1566 
1567   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1568   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1569   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1570   Value *ShOp;
1571   const APInt *ShAmtC;
1572   bool TrueIfSigned;
1573   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1574       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1575       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1576     return TrueIfSigned
1577                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1578                               ConstantInt::getNullValue(X->getType()))
1579                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1580                               ConstantInt::getAllOnesValue(X->getType()));
1581   }
1582 
1583   return nullptr;
1584 }
1585 
1586 /// Fold icmp (xor X, Y), C.
1587 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1588                                                    BinaryOperator *Xor,
1589                                                    const APInt &C) {
1590   Value *X = Xor->getOperand(0);
1591   Value *Y = Xor->getOperand(1);
1592   const APInt *XorC;
1593   if (!match(Y, m_APInt(XorC)))
1594     return nullptr;
1595 
1596   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1597   // fold the xor.
1598   ICmpInst::Predicate Pred = Cmp.getPredicate();
1599   bool TrueIfSigned = false;
1600   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1601 
1602     // If the sign bit of the XorCst is not set, there is no change to
1603     // the operation, just stop using the Xor.
1604     if (!XorC->isNegative())
1605       return replaceOperand(Cmp, 0, X);
1606 
1607     // Emit the opposite comparison.
1608     if (TrueIfSigned)
1609       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1610                           ConstantInt::getAllOnesValue(X->getType()));
1611     else
1612       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1613                           ConstantInt::getNullValue(X->getType()));
1614   }
1615 
1616   if (Xor->hasOneUse()) {
1617     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1618     if (!Cmp.isEquality() && XorC->isSignMask()) {
1619       Pred = Cmp.getFlippedSignednessPredicate();
1620       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1621     }
1622 
1623     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1624     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1625       Pred = Cmp.getFlippedSignednessPredicate();
1626       Pred = Cmp.getSwappedPredicate(Pred);
1627       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1628     }
1629   }
1630 
1631   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1632   if (Pred == ICmpInst::ICMP_UGT) {
1633     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1634     if (*XorC == ~C && (C + 1).isPowerOf2())
1635       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1636     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1637     if (*XorC == C && (C + 1).isPowerOf2())
1638       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1639   }
1640   if (Pred == ICmpInst::ICMP_ULT) {
1641     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1642     if (*XorC == -C && C.isPowerOf2())
1643       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1644                           ConstantInt::get(X->getType(), ~C));
1645     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1646     if (*XorC == C && (-C).isPowerOf2())
1647       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1648                           ConstantInt::get(X->getType(), ~C));
1649   }
1650   return nullptr;
1651 }
1652 
1653 /// Fold icmp (and (sh X, Y), C2), C1.
1654 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1655                                                 BinaryOperator *And,
1656                                                 const APInt &C1,
1657                                                 const APInt &C2) {
1658   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1659   if (!Shift || !Shift->isShift())
1660     return nullptr;
1661 
1662   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1663   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1664   // code produced by the clang front-end, for bitfield access.
1665   // This seemingly simple opportunity to fold away a shift turns out to be
1666   // rather complicated. See PR17827 for details.
1667   unsigned ShiftOpcode = Shift->getOpcode();
1668   bool IsShl = ShiftOpcode == Instruction::Shl;
1669   const APInt *C3;
1670   if (match(Shift->getOperand(1), m_APInt(C3))) {
1671     APInt NewAndCst, NewCmpCst;
1672     bool AnyCmpCstBitsShiftedOut;
1673     if (ShiftOpcode == Instruction::Shl) {
1674       // For a left shift, we can fold if the comparison is not signed. We can
1675       // also fold a signed comparison if the mask value and comparison value
1676       // are not negative. These constraints may not be obvious, but we can
1677       // prove that they are correct using an SMT solver.
1678       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1679         return nullptr;
1680 
1681       NewCmpCst = C1.lshr(*C3);
1682       NewAndCst = C2.lshr(*C3);
1683       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1684     } else if (ShiftOpcode == Instruction::LShr) {
1685       // For a logical right shift, we can fold if the comparison is not signed.
1686       // We can also fold a signed comparison if the shifted mask value and the
1687       // shifted comparison value are not negative. These constraints may not be
1688       // obvious, but we can prove that they are correct using an SMT solver.
1689       NewCmpCst = C1.shl(*C3);
1690       NewAndCst = C2.shl(*C3);
1691       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1692       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1693         return nullptr;
1694     } else {
1695       // For an arithmetic shift, check that both constants don't use (in a
1696       // signed sense) the top bits being shifted out.
1697       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1698       NewCmpCst = C1.shl(*C3);
1699       NewAndCst = C2.shl(*C3);
1700       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1701       if (NewAndCst.ashr(*C3) != C2)
1702         return nullptr;
1703     }
1704 
1705     if (AnyCmpCstBitsShiftedOut) {
1706       // If we shifted bits out, the fold is not going to work out. As a
1707       // special case, check to see if this means that the result is always
1708       // true or false now.
1709       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1710         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1711       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1712         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1713     } else {
1714       Value *NewAnd = Builder.CreateAnd(
1715           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1716       return new ICmpInst(Cmp.getPredicate(),
1717           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1718     }
1719   }
1720 
1721   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1722   // preferable because it allows the C2 << Y expression to be hoisted out of a
1723   // loop if Y is invariant and X is not.
1724   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1725       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1726     // Compute C2 << Y.
1727     Value *NewShift =
1728         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1729               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1730 
1731     // Compute X & (C2 << Y).
1732     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1733     return replaceOperand(Cmp, 0, NewAnd);
1734   }
1735 
1736   return nullptr;
1737 }
1738 
1739 /// Fold icmp (and X, C2), C1.
1740 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1741                                                      BinaryOperator *And,
1742                                                      const APInt &C1) {
1743   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1744 
1745   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1746   // TODO: We canonicalize to the longer form for scalars because we have
1747   // better analysis/folds for icmp, and codegen may be better with icmp.
1748   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1749       match(And->getOperand(1), m_One()))
1750     return new TruncInst(And->getOperand(0), Cmp.getType());
1751 
1752   const APInt *C2;
1753   Value *X;
1754   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1755     return nullptr;
1756 
1757   // Don't perform the following transforms if the AND has multiple uses
1758   if (!And->hasOneUse())
1759     return nullptr;
1760 
1761   if (Cmp.isEquality() && C1.isZero()) {
1762     // Restrict this fold to single-use 'and' (PR10267).
1763     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1764     if (C2->isSignMask()) {
1765       Constant *Zero = Constant::getNullValue(X->getType());
1766       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1767       return new ICmpInst(NewPred, X, Zero);
1768     }
1769 
1770     // Restrict this fold only for single-use 'and' (PR10267).
1771     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1772     if ((~(*C2) + 1).isPowerOf2()) {
1773       Constant *NegBOC =
1774           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1775       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1776       return new ICmpInst(NewPred, X, NegBOC);
1777     }
1778   }
1779 
1780   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1781   // the input width without changing the value produced, eliminate the cast:
1782   //
1783   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1784   //
1785   // We can do this transformation if the constants do not have their sign bits
1786   // set or if it is an equality comparison. Extending a relational comparison
1787   // when we're checking the sign bit would not work.
1788   Value *W;
1789   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1790       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1791     // TODO: Is this a good transform for vectors? Wider types may reduce
1792     // throughput. Should this transform be limited (even for scalars) by using
1793     // shouldChangeType()?
1794     if (!Cmp.getType()->isVectorTy()) {
1795       Type *WideType = W->getType();
1796       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1797       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1798       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1799       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1800       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1801     }
1802   }
1803 
1804   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1805     return I;
1806 
1807   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1808   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1809   //
1810   // iff pred isn't signed
1811   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1812       match(And->getOperand(1), m_One())) {
1813     Constant *One = cast<Constant>(And->getOperand(1));
1814     Value *Or = And->getOperand(0);
1815     Value *A, *B, *LShr;
1816     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1817         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1818       unsigned UsesRemoved = 0;
1819       if (And->hasOneUse())
1820         ++UsesRemoved;
1821       if (Or->hasOneUse())
1822         ++UsesRemoved;
1823       if (LShr->hasOneUse())
1824         ++UsesRemoved;
1825 
1826       // Compute A & ((1 << B) | 1)
1827       Value *NewOr = nullptr;
1828       if (auto *C = dyn_cast<Constant>(B)) {
1829         if (UsesRemoved >= 1)
1830           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1831       } else {
1832         if (UsesRemoved >= 3)
1833           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1834                                                      /*HasNUW=*/true),
1835                                    One, Or->getName());
1836       }
1837       if (NewOr) {
1838         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1839         return replaceOperand(Cmp, 0, NewAnd);
1840       }
1841     }
1842   }
1843 
1844   return nullptr;
1845 }
1846 
1847 /// Fold icmp (and X, Y), C.
1848 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1849                                                    BinaryOperator *And,
1850                                                    const APInt &C) {
1851   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1852     return I;
1853 
1854   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1855   bool TrueIfNeg;
1856   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1857     // ((X - 1) & ~X) <  0 --> X == 0
1858     // ((X - 1) & ~X) >= 0 --> X != 0
1859     Value *X;
1860     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1861         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1862       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1863       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1864     }
1865   }
1866 
1867   // TODO: These all require that Y is constant too, so refactor with the above.
1868 
1869   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1870   Value *X = And->getOperand(0);
1871   Value *Y = And->getOperand(1);
1872   if (auto *C2 = dyn_cast<ConstantInt>(Y))
1873     if (auto *LI = dyn_cast<LoadInst>(X))
1874       if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1875         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1876           if (Instruction *Res =
1877                   foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1878             return Res;
1879 
1880   if (!Cmp.isEquality())
1881     return nullptr;
1882 
1883   // X & -C == -C -> X >  u ~C
1884   // X & -C != -C -> X <= u ~C
1885   //   iff C is a power of 2
1886   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1887     auto NewPred =
1888         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1889     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1890   }
1891 
1892   return nullptr;
1893 }
1894 
1895 /// Fold icmp (or X, Y), C.
1896 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1897                                                   BinaryOperator *Or,
1898                                                   const APInt &C) {
1899   ICmpInst::Predicate Pred = Cmp.getPredicate();
1900   if (C.isOne()) {
1901     // icmp slt signum(V) 1 --> icmp slt V, 1
1902     Value *V = nullptr;
1903     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1904       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1905                           ConstantInt::get(V->getType(), 1));
1906   }
1907 
1908   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1909   const APInt *MaskC;
1910   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1911     if (*MaskC == C && (C + 1).isPowerOf2()) {
1912       // X | C == C --> X <=u C
1913       // X | C != C --> X  >u C
1914       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1915       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1916       return new ICmpInst(Pred, OrOp0, OrOp1);
1917     }
1918 
1919     // More general: canonicalize 'equality with set bits mask' to
1920     // 'equality with clear bits mask'.
1921     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1922     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1923     if (Or->hasOneUse()) {
1924       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1925       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1926       return new ICmpInst(Pred, And, NewC);
1927     }
1928   }
1929 
1930   // (X | (X-1)) s<  0 --> X s< 1
1931   // (X | (X-1)) s> -1 --> X s> 0
1932   Value *X;
1933   bool TrueIfSigned;
1934   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1935       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1936     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1937     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1938     return new ICmpInst(NewPred, X, NewC);
1939   }
1940 
1941   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1942     return nullptr;
1943 
1944   Value *P, *Q;
1945   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1946     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1947     // -> and (icmp eq P, null), (icmp eq Q, null).
1948     Value *CmpP =
1949         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1950     Value *CmpQ =
1951         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1952     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1953     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1954   }
1955 
1956   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1957   // a shorter form that has more potential to be folded even further.
1958   Value *X1, *X2, *X3, *X4;
1959   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1960       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1961     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1962     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1963     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1964     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1965     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1966     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1967   }
1968 
1969   return nullptr;
1970 }
1971 
1972 /// Fold icmp (mul X, Y), C.
1973 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1974                                                    BinaryOperator *Mul,
1975                                                    const APInt &C) {
1976   const APInt *MulC;
1977   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1978     return nullptr;
1979 
1980   // If this is a test of the sign bit and the multiply is sign-preserving with
1981   // a constant operand, use the multiply LHS operand instead.
1982   ICmpInst::Predicate Pred = Cmp.getPredicate();
1983   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1984     if (MulC->isNegative())
1985       Pred = ICmpInst::getSwappedPredicate(Pred);
1986     return new ICmpInst(Pred, Mul->getOperand(0),
1987                         Constant::getNullValue(Mul->getType()));
1988   }
1989 
1990   // If the multiply does not wrap, try to divide the compare constant by the
1991   // multiplication factor.
1992   if (Cmp.isEquality() && !MulC->isZero()) {
1993     // (mul nsw X, MulC) == C --> X == C /s MulC
1994     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
1995       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1996       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1997     }
1998     // (mul nuw X, MulC) == C --> X == C /u MulC
1999     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
2000       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
2001       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2002     }
2003   }
2004 
2005   return nullptr;
2006 }
2007 
2008 /// Fold icmp (shl 1, Y), C.
2009 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2010                                    const APInt &C) {
2011   Value *Y;
2012   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2013     return nullptr;
2014 
2015   Type *ShiftType = Shl->getType();
2016   unsigned TypeBits = C.getBitWidth();
2017   bool CIsPowerOf2 = C.isPowerOf2();
2018   ICmpInst::Predicate Pred = Cmp.getPredicate();
2019   if (Cmp.isUnsigned()) {
2020     // (1 << Y) pred C -> Y pred Log2(C)
2021     if (!CIsPowerOf2) {
2022       // (1 << Y) <  30 -> Y <= 4
2023       // (1 << Y) <= 30 -> Y <= 4
2024       // (1 << Y) >= 30 -> Y >  4
2025       // (1 << Y) >  30 -> Y >  4
2026       if (Pred == ICmpInst::ICMP_ULT)
2027         Pred = ICmpInst::ICMP_ULE;
2028       else if (Pred == ICmpInst::ICMP_UGE)
2029         Pred = ICmpInst::ICMP_UGT;
2030     }
2031 
2032     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2033     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2034     unsigned CLog2 = C.logBase2();
2035     if (CLog2 == TypeBits - 1) {
2036       if (Pred == ICmpInst::ICMP_UGE)
2037         Pred = ICmpInst::ICMP_EQ;
2038       else if (Pred == ICmpInst::ICMP_ULT)
2039         Pred = ICmpInst::ICMP_NE;
2040     }
2041     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2042   } else if (Cmp.isSigned()) {
2043     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2044     if (C.isAllOnes()) {
2045       // (1 << Y) <= -1 -> Y == 31
2046       if (Pred == ICmpInst::ICMP_SLE)
2047         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2048 
2049       // (1 << Y) >  -1 -> Y != 31
2050       if (Pred == ICmpInst::ICMP_SGT)
2051         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2052     } else if (!C) {
2053       // (1 << Y) <  0 -> Y == 31
2054       // (1 << Y) <= 0 -> Y == 31
2055       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2056         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2057 
2058       // (1 << Y) >= 0 -> Y != 31
2059       // (1 << Y) >  0 -> Y != 31
2060       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2061         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2062     }
2063   } else if (Cmp.isEquality() && CIsPowerOf2) {
2064     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2065   }
2066 
2067   return nullptr;
2068 }
2069 
2070 /// Fold icmp (shl X, Y), C.
2071 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2072                                                    BinaryOperator *Shl,
2073                                                    const APInt &C) {
2074   const APInt *ShiftVal;
2075   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2076     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2077 
2078   const APInt *ShiftAmt;
2079   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2080     return foldICmpShlOne(Cmp, Shl, C);
2081 
2082   // Check that the shift amount is in range. If not, don't perform undefined
2083   // shifts. When the shift is visited, it will be simplified.
2084   unsigned TypeBits = C.getBitWidth();
2085   if (ShiftAmt->uge(TypeBits))
2086     return nullptr;
2087 
2088   ICmpInst::Predicate Pred = Cmp.getPredicate();
2089   Value *X = Shl->getOperand(0);
2090   Type *ShType = Shl->getType();
2091 
2092   // NSW guarantees that we are only shifting out sign bits from the high bits,
2093   // so we can ASHR the compare constant without needing a mask and eliminate
2094   // the shift.
2095   if (Shl->hasNoSignedWrap()) {
2096     if (Pred == ICmpInst::ICMP_SGT) {
2097       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2098       APInt ShiftedC = C.ashr(*ShiftAmt);
2099       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2100     }
2101     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2102         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2103       APInt ShiftedC = C.ashr(*ShiftAmt);
2104       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2105     }
2106     if (Pred == ICmpInst::ICMP_SLT) {
2107       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2108       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2109       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2110       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2111       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2112       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2113       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2114     }
2115     // If this is a signed comparison to 0 and the shift is sign preserving,
2116     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2117     // do that if we're sure to not continue on in this function.
2118     if (isSignTest(Pred, C))
2119       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2120   }
2121 
2122   // NUW guarantees that we are only shifting out zero bits from the high bits,
2123   // so we can LSHR the compare constant without needing a mask and eliminate
2124   // the shift.
2125   if (Shl->hasNoUnsignedWrap()) {
2126     if (Pred == ICmpInst::ICMP_UGT) {
2127       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2128       APInt ShiftedC = C.lshr(*ShiftAmt);
2129       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2130     }
2131     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2132         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2133       APInt ShiftedC = C.lshr(*ShiftAmt);
2134       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2135     }
2136     if (Pred == ICmpInst::ICMP_ULT) {
2137       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2138       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2139       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2140       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2141       assert(C.ugt(0) && "ult 0 should have been eliminated");
2142       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2143       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2144     }
2145   }
2146 
2147   if (Cmp.isEquality() && Shl->hasOneUse()) {
2148     // Strength-reduce the shift into an 'and'.
2149     Constant *Mask = ConstantInt::get(
2150         ShType,
2151         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2152     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2153     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2154     return new ICmpInst(Pred, And, LShrC);
2155   }
2156 
2157   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2158   bool TrueIfSigned = false;
2159   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2160     // (X << 31) <s 0  --> (X & 1) != 0
2161     Constant *Mask = ConstantInt::get(
2162         ShType,
2163         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2164     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2165     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2166                         And, Constant::getNullValue(ShType));
2167   }
2168 
2169   // Simplify 'shl' inequality test into 'and' equality test.
2170   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2171     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2172     if ((C + 1).isPowerOf2() &&
2173         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2174       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2175       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2176                                                      : ICmpInst::ICMP_NE,
2177                           And, Constant::getNullValue(ShType));
2178     }
2179     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2180     if (C.isPowerOf2() &&
2181         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2182       Value *And =
2183           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2184       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2185                                                      : ICmpInst::ICMP_NE,
2186                           And, Constant::getNullValue(ShType));
2187     }
2188   }
2189 
2190   // Transform (icmp pred iM (shl iM %v, N), C)
2191   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2192   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2193   // This enables us to get rid of the shift in favor of a trunc that may be
2194   // free on the target. It has the additional benefit of comparing to a
2195   // smaller constant that may be more target-friendly.
2196   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2197   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2198       DL.isLegalInteger(TypeBits - Amt)) {
2199     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2200     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2201       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2202     Constant *NewC =
2203         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2204     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2205   }
2206 
2207   return nullptr;
2208 }
2209 
2210 /// Fold icmp ({al}shr X, Y), C.
2211 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2212                                                    BinaryOperator *Shr,
2213                                                    const APInt &C) {
2214   // An exact shr only shifts out zero bits, so:
2215   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2216   Value *X = Shr->getOperand(0);
2217   CmpInst::Predicate Pred = Cmp.getPredicate();
2218   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2219     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2220 
2221   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2222   const APInt *ShiftValC;
2223   if (match(Shr->getOperand(0), m_APInt(ShiftValC))) {
2224     if (Cmp.isEquality())
2225       return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC);
2226 
2227     // If the shifted constant is a power-of-2, test the shift amount directly:
2228     // (ShiftValC >> X) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2229     // (ShiftValC >> X) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
2230     if (!IsAShr && ShiftValC->isPowerOf2() &&
2231         (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) {
2232       bool IsUGT = Pred == CmpInst::ICMP_UGT;
2233       assert(ShiftValC->ugt(C) && "Expected simplify of compare");
2234       assert(IsUGT || !C.isZero() && "Expected X u< 0 to simplify");
2235 
2236       unsigned CmpLZ =
2237           IsUGT ? C.countLeadingZeros() : (C - 1).countLeadingZeros();
2238       unsigned ShiftLZ = ShiftValC->countLeadingZeros();
2239       Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ);
2240       auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
2241       return new ICmpInst(NewPred, Shr->getOperand(1), NewC);
2242     }
2243   }
2244 
2245   const APInt *ShiftAmtC;
2246   if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC)))
2247     return nullptr;
2248 
2249   // Check that the shift amount is in range. If not, don't perform undefined
2250   // shifts. When the shift is visited it will be simplified.
2251   unsigned TypeBits = C.getBitWidth();
2252   unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits);
2253   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2254     return nullptr;
2255 
2256   bool IsExact = Shr->isExact();
2257   Type *ShrTy = Shr->getType();
2258   // TODO: If we could guarantee that InstSimplify would handle all of the
2259   // constant-value-based preconditions in the folds below, then we could assert
2260   // those conditions rather than checking them. This is difficult because of
2261   // undef/poison (PR34838).
2262   if (IsAShr) {
2263     if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2264       // When ShAmtC can be shifted losslessly:
2265       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2266       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2267       APInt ShiftedC = C.shl(ShAmtVal);
2268       if (ShiftedC.ashr(ShAmtVal) == C)
2269         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2270     }
2271     if (Pred == CmpInst::ICMP_SGT) {
2272       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2273       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2274       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2275           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2276         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2277     }
2278     if (Pred == CmpInst::ICMP_UGT) {
2279       // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2280       // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2281       // clause accounts for that pattern.
2282       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2283       if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) ||
2284           (C + 1).shl(ShAmtVal).isMinSignedValue())
2285         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2286     }
2287 
2288     // If the compare constant has significant bits above the lowest sign-bit,
2289     // then convert an unsigned cmp to a test of the sign-bit:
2290     // (ashr X, ShiftC) u> C --> X s< 0
2291     // (ashr X, ShiftC) u< C --> X s> -1
2292     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2293       if (Pred == CmpInst::ICMP_UGT) {
2294         return new ICmpInst(CmpInst::ICMP_SLT, X,
2295                             ConstantInt::getNullValue(ShrTy));
2296       }
2297       if (Pred == CmpInst::ICMP_ULT) {
2298         return new ICmpInst(CmpInst::ICMP_SGT, X,
2299                             ConstantInt::getAllOnesValue(ShrTy));
2300       }
2301     }
2302   } else {
2303     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2304       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2305       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2306       APInt ShiftedC = C.shl(ShAmtVal);
2307       if (ShiftedC.lshr(ShAmtVal) == C)
2308         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2309     }
2310     if (Pred == CmpInst::ICMP_UGT) {
2311       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2312       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2313       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2314         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2315     }
2316   }
2317 
2318   if (!Cmp.isEquality())
2319     return nullptr;
2320 
2321   // Handle equality comparisons of shift-by-constant.
2322 
2323   // If the comparison constant changes with the shift, the comparison cannot
2324   // succeed (bits of the comparison constant cannot match the shifted value).
2325   // This should be known by InstSimplify and already be folded to true/false.
2326   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2327           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2328          "Expected icmp+shr simplify did not occur.");
2329 
2330   // If the bits shifted out are known zero, compare the unshifted value:
2331   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2332   if (Shr->isExact())
2333     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2334 
2335   if (C.isZero()) {
2336     // == 0 is u< 1.
2337     if (Pred == CmpInst::ICMP_EQ)
2338       return new ICmpInst(CmpInst::ICMP_ULT, X,
2339                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2340     else
2341       return new ICmpInst(CmpInst::ICMP_UGT, X,
2342                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2343   }
2344 
2345   if (Shr->hasOneUse()) {
2346     // Canonicalize the shift into an 'and':
2347     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2348     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2349     Constant *Mask = ConstantInt::get(ShrTy, Val);
2350     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2351     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2352   }
2353 
2354   return nullptr;
2355 }
2356 
2357 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2358                                                     BinaryOperator *SRem,
2359                                                     const APInt &C) {
2360   // Match an 'is positive' or 'is negative' comparison of remainder by a
2361   // constant power-of-2 value:
2362   // (X % pow2C) sgt/slt 0
2363   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2364   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
2365       Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2366     return nullptr;
2367 
2368   // TODO: The one-use check is standard because we do not typically want to
2369   //       create longer instruction sequences, but this might be a special-case
2370   //       because srem is not good for analysis or codegen.
2371   if (!SRem->hasOneUse())
2372     return nullptr;
2373 
2374   const APInt *DivisorC;
2375   if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
2376     return nullptr;
2377 
2378   // For cmp_sgt/cmp_slt only zero valued C is handled.
2379   // For cmp_eq/cmp_ne only positive valued C is handled.
2380   if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
2381        !C.isZero()) ||
2382       ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2383        !C.isStrictlyPositive()))
2384     return nullptr;
2385 
2386   // Mask off the sign bit and the modulo bits (low-bits).
2387   Type *Ty = SRem->getType();
2388   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2389   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2390   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2391 
2392   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
2393     return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
2394 
2395   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2396   // bit is set. Example:
2397   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2398   if (Pred == ICmpInst::ICMP_SGT)
2399     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2400 
2401   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2402   // bit is set. Example:
2403   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2404   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2405 }
2406 
2407 /// Fold icmp (udiv X, Y), C.
2408 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2409                                                     BinaryOperator *UDiv,
2410                                                     const APInt &C) {
2411   ICmpInst::Predicate Pred = Cmp.getPredicate();
2412   Value *X = UDiv->getOperand(0);
2413   Value *Y = UDiv->getOperand(1);
2414   Type *Ty = UDiv->getType();
2415 
2416   const APInt *C2;
2417   if (!match(X, m_APInt(C2)))
2418     return nullptr;
2419 
2420   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2421 
2422   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2423   if (Pred == ICmpInst::ICMP_UGT) {
2424     assert(!C.isMaxValue() &&
2425            "icmp ugt X, UINT_MAX should have been simplified already.");
2426     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2427                         ConstantInt::get(Ty, C2->udiv(C + 1)));
2428   }
2429 
2430   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2431   if (Pred == ICmpInst::ICMP_ULT) {
2432     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2433     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2434                         ConstantInt::get(Ty, C2->udiv(C)));
2435   }
2436 
2437   return nullptr;
2438 }
2439 
2440 /// Fold icmp ({su}div X, Y), C.
2441 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2442                                                    BinaryOperator *Div,
2443                                                    const APInt &C) {
2444   ICmpInst::Predicate Pred = Cmp.getPredicate();
2445   Value *X = Div->getOperand(0);
2446   Value *Y = Div->getOperand(1);
2447   Type *Ty = Div->getType();
2448   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2449 
2450   // If unsigned division and the compare constant is bigger than
2451   // UMAX/2 (negative), there's only one pair of values that satisfies an
2452   // equality check, so eliminate the division:
2453   // (X u/ Y) == C --> (X == C) && (Y == 1)
2454   // (X u/ Y) != C --> (X != C) || (Y != 1)
2455   // Similarly, if signed division and the compare constant is exactly SMIN:
2456   // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2457   // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2458   if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() &&
2459       (!DivIsSigned || C.isMinSignedValue()))   {
2460     Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C));
2461     Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1));
2462     auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2463     return BinaryOperator::Create(Logic, XBig, YOne);
2464   }
2465 
2466   // Fold: icmp pred ([us]div X, C2), C -> range test
2467   // Fold this div into the comparison, producing a range check.
2468   // Determine, based on the divide type, what the range is being
2469   // checked.  If there is an overflow on the low or high side, remember
2470   // it, otherwise compute the range [low, hi) bounding the new value.
2471   // See: InsertRangeTest above for the kinds of replacements possible.
2472   const APInt *C2;
2473   if (!match(Y, m_APInt(C2)))
2474     return nullptr;
2475 
2476   // FIXME: If the operand types don't match the type of the divide
2477   // then don't attempt this transform. The code below doesn't have the
2478   // logic to deal with a signed divide and an unsigned compare (and
2479   // vice versa). This is because (x /s C2) <s C  produces different
2480   // results than (x /s C2) <u C or (x /u C2) <s C or even
2481   // (x /u C2) <u C.  Simply casting the operands and result won't
2482   // work. :(  The if statement below tests that condition and bails
2483   // if it finds it.
2484   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2485     return nullptr;
2486 
2487   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2488   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2489   // division-by-constant cases should be present, we can not assert that they
2490   // have happened before we reach this icmp instruction.
2491   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2492     return nullptr;
2493 
2494   // Compute Prod = C * C2. We are essentially solving an equation of
2495   // form X / C2 = C. We solve for X by multiplying C2 and C.
2496   // By solving for X, we can turn this into a range check instead of computing
2497   // a divide.
2498   APInt Prod = C * *C2;
2499 
2500   // Determine if the product overflows by seeing if the product is not equal to
2501   // the divide. Make sure we do the same kind of divide as in the LHS
2502   // instruction that we're folding.
2503   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2504 
2505   // If the division is known to be exact, then there is no remainder from the
2506   // divide, so the covered range size is unit, otherwise it is the divisor.
2507   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2508 
2509   // Figure out the interval that is being checked.  For example, a comparison
2510   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2511   // Compute this interval based on the constants involved and the signedness of
2512   // the compare/divide.  This computes a half-open interval, keeping track of
2513   // whether either value in the interval overflows.  After analysis each
2514   // overflow variable is set to 0 if it's corresponding bound variable is valid
2515   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2516   int LoOverflow = 0, HiOverflow = 0;
2517   APInt LoBound, HiBound;
2518 
2519   if (!DivIsSigned) { // udiv
2520     // e.g. X/5 op 3  --> [15, 20)
2521     LoBound = Prod;
2522     HiOverflow = LoOverflow = ProdOV;
2523     if (!HiOverflow) {
2524       // If this is not an exact divide, then many values in the range collapse
2525       // to the same result value.
2526       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2527     }
2528   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2529     if (C.isZero()) {                    // (X / pos) op 0
2530       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2531       LoBound = -(RangeSize - 1);
2532       HiBound = RangeSize;
2533     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2534       LoBound = Prod;                    // e.g.   X/5 op 3 --> [15, 20)
2535       HiOverflow = LoOverflow = ProdOV;
2536       if (!HiOverflow)
2537         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2538     } else { // (X / pos) op neg
2539       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2540       HiBound = Prod + 1;
2541       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2542       if (!LoOverflow) {
2543         APInt DivNeg = -RangeSize;
2544         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2545       }
2546     }
2547   } else if (C2->isNegative()) { // Divisor is < 0.
2548     if (Div->isExact())
2549       RangeSize.negate();
2550     if (C.isZero()) { // (X / neg) op 0
2551       // e.g. X/-5 op 0  --> [-4, 5)
2552       LoBound = RangeSize + 1;
2553       HiBound = -RangeSize;
2554       if (HiBound == *C2) { // -INTMIN = INTMIN
2555         HiOverflow = 1;     // [INTMIN+1, overflow)
2556         HiBound = APInt();  // e.g. X/INTMIN = 0 --> X > INTMIN
2557       }
2558     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2559       // e.g. X/-5 op 3  --> [-19, -14)
2560       HiBound = Prod + 1;
2561       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2562       if (!LoOverflow)
2563         LoOverflow =
2564             addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0;
2565     } else {          // (X / neg) op neg
2566       LoBound = Prod; // e.g. X/-5 op -3  --> [15, 20)
2567       LoOverflow = HiOverflow = ProdOV;
2568       if (!HiOverflow)
2569         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2570     }
2571 
2572     // Dividing by a negative swaps the condition.  LT <-> GT
2573     Pred = ICmpInst::getSwappedPredicate(Pred);
2574   }
2575 
2576   switch (Pred) {
2577   default:
2578     llvm_unreachable("Unhandled icmp predicate!");
2579   case ICmpInst::ICMP_EQ:
2580     if (LoOverflow && HiOverflow)
2581       return replaceInstUsesWith(Cmp, Builder.getFalse());
2582     if (HiOverflow)
2583       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2584                           X, ConstantInt::get(Ty, LoBound));
2585     if (LoOverflow)
2586       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2587                           X, ConstantInt::get(Ty, HiBound));
2588     return replaceInstUsesWith(
2589         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2590   case ICmpInst::ICMP_NE:
2591     if (LoOverflow && HiOverflow)
2592       return replaceInstUsesWith(Cmp, Builder.getTrue());
2593     if (HiOverflow)
2594       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2595                           X, ConstantInt::get(Ty, LoBound));
2596     if (LoOverflow)
2597       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2598                           X, ConstantInt::get(Ty, HiBound));
2599     return replaceInstUsesWith(
2600         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false));
2601   case ICmpInst::ICMP_ULT:
2602   case ICmpInst::ICMP_SLT:
2603     if (LoOverflow == +1) // Low bound is greater than input range.
2604       return replaceInstUsesWith(Cmp, Builder.getTrue());
2605     if (LoOverflow == -1) // Low bound is less than input range.
2606       return replaceInstUsesWith(Cmp, Builder.getFalse());
2607     return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound));
2608   case ICmpInst::ICMP_UGT:
2609   case ICmpInst::ICMP_SGT:
2610     if (HiOverflow == +1) // High bound greater than input range.
2611       return replaceInstUsesWith(Cmp, Builder.getFalse());
2612     if (HiOverflow == -1) // High bound less than input range.
2613       return replaceInstUsesWith(Cmp, Builder.getTrue());
2614     if (Pred == ICmpInst::ICMP_UGT)
2615       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound));
2616     return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound));
2617   }
2618 
2619   return nullptr;
2620 }
2621 
2622 /// Fold icmp (sub X, Y), C.
2623 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2624                                                    BinaryOperator *Sub,
2625                                                    const APInt &C) {
2626   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2627   ICmpInst::Predicate Pred = Cmp.getPredicate();
2628   Type *Ty = Sub->getType();
2629 
2630   // (SubC - Y) == C) --> Y == (SubC - C)
2631   // (SubC - Y) != C) --> Y != (SubC - C)
2632   Constant *SubC;
2633   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2634     return new ICmpInst(Pred, Y,
2635                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2636   }
2637 
2638   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2639   const APInt *C2;
2640   APInt SubResult;
2641   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2642   bool HasNSW = Sub->hasNoSignedWrap();
2643   bool HasNUW = Sub->hasNoUnsignedWrap();
2644   if (match(X, m_APInt(C2)) &&
2645       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2646       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2647     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2648 
2649   // X - Y == 0 --> X == Y.
2650   // X - Y != 0 --> X != Y.
2651   // TODO: We allow this with multiple uses as long as the other uses are not
2652   //       in phis. The phi use check is guarding against a codegen regression
2653   //       for a loop test. If the backend could undo this (and possibly
2654   //       subsequent transforms), we would not need this hack.
2655   if (Cmp.isEquality() && C.isZero() &&
2656       none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
2657     return new ICmpInst(Pred, X, Y);
2658 
2659   // The following transforms are only worth it if the only user of the subtract
2660   // is the icmp.
2661   // TODO: This is an artificial restriction for all of the transforms below
2662   //       that only need a single replacement icmp. Can these use the phi test
2663   //       like the transform above here?
2664   if (!Sub->hasOneUse())
2665     return nullptr;
2666 
2667   if (Sub->hasNoSignedWrap()) {
2668     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2669     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2670       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2671 
2672     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2673     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2674       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2675 
2676     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2677     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2678       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2679 
2680     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2681     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2682       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2683   }
2684 
2685   if (!match(X, m_APInt(C2)))
2686     return nullptr;
2687 
2688   // C2 - Y <u C -> (Y | (C - 1)) == C2
2689   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2690   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2691       (*C2 & (C - 1)) == (C - 1))
2692     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2693 
2694   // C2 - Y >u C -> (Y | C) != C2
2695   //   iff C2 & C == C and C + 1 is a power of 2
2696   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2697     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2698 
2699   // We have handled special cases that reduce.
2700   // Canonicalize any remaining sub to add as:
2701   // (C2 - Y) > C --> (Y + ~C2) < ~C
2702   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2703                                  HasNUW, HasNSW);
2704   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2705 }
2706 
2707 /// Fold icmp (add X, Y), C.
2708 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2709                                                    BinaryOperator *Add,
2710                                                    const APInt &C) {
2711   Value *Y = Add->getOperand(1);
2712   const APInt *C2;
2713   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2714     return nullptr;
2715 
2716   // Fold icmp pred (add X, C2), C.
2717   Value *X = Add->getOperand(0);
2718   Type *Ty = Add->getType();
2719   const CmpInst::Predicate Pred = Cmp.getPredicate();
2720 
2721   // If the add does not wrap, we can always adjust the compare by subtracting
2722   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2723   // are canonicalized to SGT/SLT/UGT/ULT.
2724   if ((Add->hasNoSignedWrap() &&
2725        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2726       (Add->hasNoUnsignedWrap() &&
2727        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2728     bool Overflow;
2729     APInt NewC =
2730         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2731     // If there is overflow, the result must be true or false.
2732     // TODO: Can we assert there is no overflow because InstSimplify always
2733     // handles those cases?
2734     if (!Overflow)
2735       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2736       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2737   }
2738 
2739   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2740   const APInt &Upper = CR.getUpper();
2741   const APInt &Lower = CR.getLower();
2742   if (Cmp.isSigned()) {
2743     if (Lower.isSignMask())
2744       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2745     if (Upper.isSignMask())
2746       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2747   } else {
2748     if (Lower.isMinValue())
2749       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2750     if (Upper.isMinValue())
2751       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2752   }
2753 
2754   // This set of folds is intentionally placed after folds that use no-wrapping
2755   // flags because those folds are likely better for later analysis/codegen.
2756   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2757   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2758 
2759   // Fold compare with offset to opposite sign compare if it eliminates offset:
2760   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2761   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2762     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2763 
2764   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2765   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2766     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2767 
2768   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2769   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2770     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2771 
2772   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2773   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2774     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2775 
2776   if (!Add->hasOneUse())
2777     return nullptr;
2778 
2779   // X+C <u C2 -> (X & -C2) == C
2780   //   iff C & (C2-1) == 0
2781   //       C2 is a power of 2
2782   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2783     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2784                         ConstantExpr::getNeg(cast<Constant>(Y)));
2785 
2786   // X+C >u C2 -> (X & ~C2) != C
2787   //   iff C & C2 == 0
2788   //       C2+1 is a power of 2
2789   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2790     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2791                         ConstantExpr::getNeg(cast<Constant>(Y)));
2792 
2793   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2794   // to the ult form.
2795   // X+C2 >u C -> X+(C2-C-1) <u ~C
2796   if (Pred == ICmpInst::ICMP_UGT)
2797     return new ICmpInst(ICmpInst::ICMP_ULT,
2798                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2799                         ConstantInt::get(Ty, ~C));
2800 
2801   return nullptr;
2802 }
2803 
2804 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2805                                                Value *&RHS, ConstantInt *&Less,
2806                                                ConstantInt *&Equal,
2807                                                ConstantInt *&Greater) {
2808   // TODO: Generalize this to work with other comparison idioms or ensure
2809   // they get canonicalized into this form.
2810 
2811   // select i1 (a == b),
2812   //        i32 Equal,
2813   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2814   // where Equal, Less and Greater are placeholders for any three constants.
2815   ICmpInst::Predicate PredA;
2816   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2817       !ICmpInst::isEquality(PredA))
2818     return false;
2819   Value *EqualVal = SI->getTrueValue();
2820   Value *UnequalVal = SI->getFalseValue();
2821   // We still can get non-canonical predicate here, so canonicalize.
2822   if (PredA == ICmpInst::ICMP_NE)
2823     std::swap(EqualVal, UnequalVal);
2824   if (!match(EqualVal, m_ConstantInt(Equal)))
2825     return false;
2826   ICmpInst::Predicate PredB;
2827   Value *LHS2, *RHS2;
2828   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2829                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2830     return false;
2831   // We can get predicate mismatch here, so canonicalize if possible:
2832   // First, ensure that 'LHS' match.
2833   if (LHS2 != LHS) {
2834     // x sgt y <--> y slt x
2835     std::swap(LHS2, RHS2);
2836     PredB = ICmpInst::getSwappedPredicate(PredB);
2837   }
2838   if (LHS2 != LHS)
2839     return false;
2840   // We also need to canonicalize 'RHS'.
2841   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2842     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2843     auto FlippedStrictness =
2844         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2845             PredB, cast<Constant>(RHS2));
2846     if (!FlippedStrictness)
2847       return false;
2848     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2849            "basic correctness failure");
2850     RHS2 = FlippedStrictness->second;
2851     // And kind-of perform the result swap.
2852     std::swap(Less, Greater);
2853     PredB = ICmpInst::ICMP_SLT;
2854   }
2855   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2856 }
2857 
2858 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2859                                                       SelectInst *Select,
2860                                                       ConstantInt *C) {
2861 
2862   assert(C && "Cmp RHS should be a constant int!");
2863   // If we're testing a constant value against the result of a three way
2864   // comparison, the result can be expressed directly in terms of the
2865   // original values being compared.  Note: We could possibly be more
2866   // aggressive here and remove the hasOneUse test. The original select is
2867   // really likely to simplify or sink when we remove a test of the result.
2868   Value *OrigLHS, *OrigRHS;
2869   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2870   if (Cmp.hasOneUse() &&
2871       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2872                               C3GreaterThan)) {
2873     assert(C1LessThan && C2Equal && C3GreaterThan);
2874 
2875     bool TrueWhenLessThan =
2876         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2877             ->isAllOnesValue();
2878     bool TrueWhenEqual =
2879         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2880             ->isAllOnesValue();
2881     bool TrueWhenGreaterThan =
2882         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2883             ->isAllOnesValue();
2884 
2885     // This generates the new instruction that will replace the original Cmp
2886     // Instruction. Instead of enumerating the various combinations when
2887     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2888     // false, we rely on chaining of ORs and future passes of InstCombine to
2889     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2890 
2891     // When none of the three constants satisfy the predicate for the RHS (C),
2892     // the entire original Cmp can be simplified to a false.
2893     Value *Cond = Builder.getFalse();
2894     if (TrueWhenLessThan)
2895       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2896                                                        OrigLHS, OrigRHS));
2897     if (TrueWhenEqual)
2898       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2899                                                        OrigLHS, OrigRHS));
2900     if (TrueWhenGreaterThan)
2901       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2902                                                        OrigLHS, OrigRHS));
2903 
2904     return replaceInstUsesWith(Cmp, Cond);
2905   }
2906   return nullptr;
2907 }
2908 
2909 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2910   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2911   if (!Bitcast)
2912     return nullptr;
2913 
2914   ICmpInst::Predicate Pred = Cmp.getPredicate();
2915   Value *Op1 = Cmp.getOperand(1);
2916   Value *BCSrcOp = Bitcast->getOperand(0);
2917   Type *SrcType = Bitcast->getSrcTy();
2918   Type *DstType = Bitcast->getType();
2919 
2920   // Make sure the bitcast doesn't change between scalar and vector and
2921   // doesn't change the number of vector elements.
2922   if (SrcType->isVectorTy() == DstType->isVectorTy() &&
2923       SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
2924     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2925     Value *X;
2926     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2927       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2928       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2929       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2930       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2931       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2932            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2933           match(Op1, m_Zero()))
2934         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2935 
2936       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2937       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2938         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2939 
2940       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2941       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2942         return new ICmpInst(Pred, X,
2943                             ConstantInt::getAllOnesValue(X->getType()));
2944     }
2945 
2946     // Zero-equality checks are preserved through unsigned floating-point casts:
2947     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2948     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2949     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2950       if (Cmp.isEquality() && match(Op1, m_Zero()))
2951         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2952 
2953     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2954     // the FP extend/truncate because that cast does not change the sign-bit.
2955     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2956     // The sign-bit is always the most significant bit in those types.
2957     const APInt *C;
2958     bool TrueIfSigned;
2959     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2960         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2961       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2962           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2963         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2964         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2965         Type *XType = X->getType();
2966 
2967         // We can't currently handle Power style floating point operations here.
2968         if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
2969           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2970           if (auto *XVTy = dyn_cast<VectorType>(XType))
2971             NewType = VectorType::get(NewType, XVTy->getElementCount());
2972           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2973           if (TrueIfSigned)
2974             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2975                                 ConstantInt::getNullValue(NewType));
2976           else
2977             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2978                                 ConstantInt::getAllOnesValue(NewType));
2979         }
2980       }
2981     }
2982   }
2983 
2984   // Test to see if the operands of the icmp are casted versions of other
2985   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2986   if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2987     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2988     // so eliminate it as well.
2989     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2990       Op1 = BC2->getOperand(0);
2991 
2992     Op1 = Builder.CreateBitCast(Op1, SrcType);
2993     return new ICmpInst(Pred, BCSrcOp, Op1);
2994   }
2995 
2996   const APInt *C;
2997   if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() ||
2998       !SrcType->isIntOrIntVectorTy())
2999     return nullptr;
3000 
3001   // If this is checking if all elements of a vector compare are set or not,
3002   // invert the casted vector equality compare and test if all compare
3003   // elements are clear or not. Compare against zero is generally easier for
3004   // analysis and codegen.
3005   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
3006   // Example: are all elements equal? --> are zero elements not equal?
3007   // TODO: Try harder to reduce compare of 2 freely invertible operands?
3008   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
3009       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
3010     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType);
3011     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType));
3012   }
3013 
3014   // If this is checking if all elements of an extended vector are clear or not,
3015   // compare in a narrow type to eliminate the extend:
3016   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3017   Value *X;
3018   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
3019       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
3020     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
3021       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
3022       Value *NewCast = Builder.CreateBitCast(X, NewType);
3023       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
3024     }
3025   }
3026 
3027   // Folding: icmp <pred> iN X, C
3028   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3029   //    and C is a splat of a K-bit pattern
3030   //    and SC is a constant vector = <C', C', C', ..., C'>
3031   // Into:
3032   //   %E = extractelement <M x iK> %vec, i32 C'
3033   //   icmp <pred> iK %E, trunc(C)
3034   Value *Vec;
3035   ArrayRef<int> Mask;
3036   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
3037     // Check whether every element of Mask is the same constant
3038     if (is_splat(Mask)) {
3039       auto *VecTy = cast<VectorType>(SrcType);
3040       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
3041       if (C->isSplat(EltTy->getBitWidth())) {
3042         // Fold the icmp based on the value of C
3043         // If C is M copies of an iK sized bit pattern,
3044         // then:
3045         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
3046         //       icmp <pred> iK %SplatVal, <pattern>
3047         Value *Elem = Builder.getInt32(Mask[0]);
3048         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3049         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3050         return new ICmpInst(Pred, Extract, NewC);
3051       }
3052     }
3053   }
3054   return nullptr;
3055 }
3056 
3057 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3058 /// where X is some kind of instruction.
3059 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3060   const APInt *C;
3061 
3062   if (match(Cmp.getOperand(1), m_APInt(C))) {
3063     if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0)))
3064       if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C))
3065         return I;
3066 
3067     if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0)))
3068       // For now, we only support constant integers while folding the
3069       // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3070       // similar to the cases handled by binary ops above.
3071       if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3072         if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3073           return I;
3074 
3075     if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0)))
3076       if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3077         return I;
3078 
3079     if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3080       if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3081         return I;
3082   }
3083 
3084   if (match(Cmp.getOperand(1), m_APIntAllowUndef(C)))
3085     return foldICmpInstWithConstantAllowUndef(Cmp, *C);
3086 
3087   return nullptr;
3088 }
3089 
3090 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3091 /// icmp eq/ne BO, C.
3092 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3093     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3094   // TODO: Some of these folds could work with arbitrary constants, but this
3095   // function is limited to scalar and vector splat constants.
3096   if (!Cmp.isEquality())
3097     return nullptr;
3098 
3099   ICmpInst::Predicate Pred = Cmp.getPredicate();
3100   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3101   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3102   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3103 
3104   switch (BO->getOpcode()) {
3105   case Instruction::SRem:
3106     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3107     if (C.isZero() && BO->hasOneUse()) {
3108       const APInt *BOC;
3109       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3110         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3111         return new ICmpInst(Pred, NewRem,
3112                             Constant::getNullValue(BO->getType()));
3113       }
3114     }
3115     break;
3116   case Instruction::Add: {
3117     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3118     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3119       if (BO->hasOneUse())
3120         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3121     } else if (C.isZero()) {
3122       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3123       // efficiently invertible, or if the add has just this one use.
3124       if (Value *NegVal = dyn_castNegVal(BOp1))
3125         return new ICmpInst(Pred, BOp0, NegVal);
3126       if (Value *NegVal = dyn_castNegVal(BOp0))
3127         return new ICmpInst(Pred, NegVal, BOp1);
3128       if (BO->hasOneUse()) {
3129         Value *Neg = Builder.CreateNeg(BOp1);
3130         Neg->takeName(BO);
3131         return new ICmpInst(Pred, BOp0, Neg);
3132       }
3133     }
3134     break;
3135   }
3136   case Instruction::Xor:
3137     if (BO->hasOneUse()) {
3138       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3139         // For the xor case, we can xor two constants together, eliminating
3140         // the explicit xor.
3141         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3142       } else if (C.isZero()) {
3143         // Replace ((xor A, B) != 0) with (A != B)
3144         return new ICmpInst(Pred, BOp0, BOp1);
3145       }
3146     }
3147     break;
3148   case Instruction::Or: {
3149     const APInt *BOC;
3150     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3151       // Comparing if all bits outside of a constant mask are set?
3152       // Replace (X | C) == -1 with (X & ~C) == ~C.
3153       // This removes the -1 constant.
3154       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3155       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3156       return new ICmpInst(Pred, And, NotBOC);
3157     }
3158     break;
3159   }
3160   case Instruction::And: {
3161     const APInt *BOC;
3162     if (match(BOp1, m_APInt(BOC))) {
3163       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3164       if (C == *BOC && C.isPowerOf2())
3165         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3166                             BO, Constant::getNullValue(RHS->getType()));
3167     }
3168     break;
3169   }
3170   case Instruction::UDiv:
3171     if (C.isZero()) {
3172       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3173       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3174       return new ICmpInst(NewPred, BOp1, BOp0);
3175     }
3176     break;
3177   default:
3178     break;
3179   }
3180   return nullptr;
3181 }
3182 
3183 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3184 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3185     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3186   Type *Ty = II->getType();
3187   unsigned BitWidth = C.getBitWidth();
3188   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3189 
3190   switch (II->getIntrinsicID()) {
3191   case Intrinsic::abs:
3192     // abs(A) == 0  ->  A == 0
3193     // abs(A) == INT_MIN  ->  A == INT_MIN
3194     if (C.isZero() || C.isMinSignedValue())
3195       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3196     break;
3197 
3198   case Intrinsic::bswap:
3199     // bswap(A) == C  ->  A == bswap(C)
3200     return new ICmpInst(Pred, II->getArgOperand(0),
3201                         ConstantInt::get(Ty, C.byteSwap()));
3202 
3203   case Intrinsic::ctlz:
3204   case Intrinsic::cttz: {
3205     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3206     if (C == BitWidth)
3207       return new ICmpInst(Pred, II->getArgOperand(0),
3208                           ConstantInt::getNullValue(Ty));
3209 
3210     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3211     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3212     // Limit to one use to ensure we don't increase instruction count.
3213     unsigned Num = C.getLimitedValue(BitWidth);
3214     if (Num != BitWidth && II->hasOneUse()) {
3215       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3216       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3217                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3218       APInt Mask2 = IsTrailing
3219         ? APInt::getOneBitSet(BitWidth, Num)
3220         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3221       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3222                           ConstantInt::get(Ty, Mask2));
3223     }
3224     break;
3225   }
3226 
3227   case Intrinsic::ctpop: {
3228     // popcount(A) == 0  ->  A == 0 and likewise for !=
3229     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3230     bool IsZero = C.isZero();
3231     if (IsZero || C == BitWidth)
3232       return new ICmpInst(Pred, II->getArgOperand(0),
3233                           IsZero ? Constant::getNullValue(Ty)
3234                                  : Constant::getAllOnesValue(Ty));
3235 
3236     break;
3237   }
3238 
3239   case Intrinsic::fshl:
3240   case Intrinsic::fshr:
3241     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3242       const APInt *RotAmtC;
3243       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3244       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3245       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3246         return new ICmpInst(Pred, II->getArgOperand(0),
3247                             II->getIntrinsicID() == Intrinsic::fshl
3248                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3249                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3250     }
3251     break;
3252 
3253   case Intrinsic::uadd_sat: {
3254     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3255     if (C.isZero()) {
3256       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3257       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3258     }
3259     break;
3260   }
3261 
3262   case Intrinsic::usub_sat: {
3263     // usub.sat(a, b) == 0  ->  a <= b
3264     if (C.isZero()) {
3265       ICmpInst::Predicate NewPred =
3266           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3267       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3268     }
3269     break;
3270   }
3271   default:
3272     break;
3273   }
3274 
3275   return nullptr;
3276 }
3277 
3278 /// Fold an icmp with LLVM intrinsics
3279 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3280   assert(Cmp.isEquality());
3281 
3282   ICmpInst::Predicate Pred = Cmp.getPredicate();
3283   Value *Op0 = Cmp.getOperand(0);
3284   Value *Op1 = Cmp.getOperand(1);
3285   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3286   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3287   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3288     return nullptr;
3289 
3290   switch (IIOp0->getIntrinsicID()) {
3291   case Intrinsic::bswap:
3292   case Intrinsic::bitreverse:
3293     // If both operands are byte-swapped or bit-reversed, just compare the
3294     // original values.
3295     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3296   case Intrinsic::fshl:
3297   case Intrinsic::fshr:
3298     // If both operands are rotated by same amount, just compare the
3299     // original values.
3300     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3301       break;
3302     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3303       break;
3304     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3305       break;
3306     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3307   default:
3308     break;
3309   }
3310 
3311   return nullptr;
3312 }
3313 
3314 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3315 /// where X is some kind of instruction and C is AllowUndef.
3316 /// TODO: Move more folds which allow undef to this function.
3317 Instruction *
3318 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
3319                                                      const APInt &C) {
3320   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3321   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) {
3322     switch (II->getIntrinsicID()) {
3323     default:
3324       break;
3325     case Intrinsic::fshl:
3326     case Intrinsic::fshr:
3327       if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) {
3328         // (rot X, ?) == 0/-1 --> X == 0/-1
3329         if (C.isZero() || C.isAllOnes())
3330           return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3331       }
3332       break;
3333     }
3334   }
3335 
3336   return nullptr;
3337 }
3338 
3339 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3340 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp,
3341                                                          BinaryOperator *BO,
3342                                                          const APInt &C) {
3343   switch (BO->getOpcode()) {
3344   case Instruction::Xor:
3345     if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
3346       return I;
3347     break;
3348   case Instruction::And:
3349     if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
3350       return I;
3351     break;
3352   case Instruction::Or:
3353     if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
3354       return I;
3355     break;
3356   case Instruction::Mul:
3357     if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
3358       return I;
3359     break;
3360   case Instruction::Shl:
3361     if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
3362       return I;
3363     break;
3364   case Instruction::LShr:
3365   case Instruction::AShr:
3366     if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
3367       return I;
3368     break;
3369   case Instruction::SRem:
3370     if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C))
3371       return I;
3372     break;
3373   case Instruction::UDiv:
3374     if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
3375       return I;
3376     LLVM_FALLTHROUGH;
3377   case Instruction::SDiv:
3378     if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
3379       return I;
3380     break;
3381   case Instruction::Sub:
3382     if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
3383       return I;
3384     break;
3385   case Instruction::Add:
3386     if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
3387       return I;
3388     break;
3389   default:
3390     break;
3391   }
3392 
3393   // TODO: These folds could be refactored to be part of the above calls.
3394   return foldICmpBinOpEqualityWithConstant(Cmp, BO, C);
3395 }
3396 
3397 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3398 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3399                                                              IntrinsicInst *II,
3400                                                              const APInt &C) {
3401   if (Cmp.isEquality())
3402     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3403 
3404   Type *Ty = II->getType();
3405   unsigned BitWidth = C.getBitWidth();
3406   ICmpInst::Predicate Pred = Cmp.getPredicate();
3407   switch (II->getIntrinsicID()) {
3408   case Intrinsic::ctpop: {
3409     // (ctpop X > BitWidth - 1) --> X == -1
3410     Value *X = II->getArgOperand(0);
3411     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3412       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3413                              ConstantInt::getAllOnesValue(Ty));
3414     // (ctpop X < BitWidth) --> X != -1
3415     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3416       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3417                              ConstantInt::getAllOnesValue(Ty));
3418     break;
3419   }
3420   case Intrinsic::ctlz: {
3421     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3422     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3423       unsigned Num = C.getLimitedValue();
3424       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3425       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3426                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3427     }
3428 
3429     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3430     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3431       unsigned Num = C.getLimitedValue();
3432       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3433       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3434                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3435     }
3436     break;
3437   }
3438   case Intrinsic::cttz: {
3439     // Limit to one use to ensure we don't increase instruction count.
3440     if (!II->hasOneUse())
3441       return nullptr;
3442 
3443     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3444     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3445       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3446       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3447                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3448                              ConstantInt::getNullValue(Ty));
3449     }
3450 
3451     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3452     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3453       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3454       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3455                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3456                              ConstantInt::getNullValue(Ty));
3457     }
3458     break;
3459   }
3460   default:
3461     break;
3462   }
3463 
3464   return nullptr;
3465 }
3466 
3467 /// Handle icmp with constant (but not simple integer constant) RHS.
3468 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3469   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3470   Constant *RHSC = dyn_cast<Constant>(Op1);
3471   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3472   if (!RHSC || !LHSI)
3473     return nullptr;
3474 
3475   switch (LHSI->getOpcode()) {
3476   case Instruction::GetElementPtr:
3477     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3478     if (RHSC->isNullValue() &&
3479         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3480       return new ICmpInst(
3481           I.getPredicate(), LHSI->getOperand(0),
3482           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3483     break;
3484   case Instruction::PHI:
3485     // Only fold icmp into the PHI if the phi and icmp are in the same
3486     // block.  If in the same block, we're encouraging jump threading.  If
3487     // not, we are just pessimizing the code by making an i1 phi.
3488     if (LHSI->getParent() == I.getParent())
3489       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3490         return NV;
3491     break;
3492   case Instruction::IntToPtr:
3493     // icmp pred inttoptr(X), null -> icmp pred X, 0
3494     if (RHSC->isNullValue() &&
3495         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3496       return new ICmpInst(
3497           I.getPredicate(), LHSI->getOperand(0),
3498           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3499     break;
3500 
3501   case Instruction::Load:
3502     // Try to optimize things like "A[i] > 4" to index computations.
3503     if (GetElementPtrInst *GEP =
3504             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
3505       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3506         if (Instruction *Res =
3507                 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
3508           return Res;
3509     break;
3510   }
3511 
3512   return nullptr;
3513 }
3514 
3515 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred,
3516                                               SelectInst *SI, Value *RHS,
3517                                               const ICmpInst &I) {
3518   // Try to fold the comparison into the select arms, which will cause the
3519   // select to be converted into a logical and/or.
3520   auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
3521     if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ))
3522       return Res;
3523     if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op,
3524                                                  RHS, DL, SelectCondIsTrue))
3525       return ConstantInt::get(I.getType(), *Impl);
3526     return nullptr;
3527   };
3528 
3529   ConstantInt *CI = nullptr;
3530   Value *Op1 = SimplifyOp(SI->getOperand(1), true);
3531   if (Op1)
3532     CI = dyn_cast<ConstantInt>(Op1);
3533 
3534   Value *Op2 = SimplifyOp(SI->getOperand(2), false);
3535   if (Op2)
3536     CI = dyn_cast<ConstantInt>(Op2);
3537 
3538   // We only want to perform this transformation if it will not lead to
3539   // additional code. This is true if either both sides of the select
3540   // fold to a constant (in which case the icmp is replaced with a select
3541   // which will usually simplify) or this is the only user of the
3542   // select (in which case we are trading a select+icmp for a simpler
3543   // select+icmp) or all uses of the select can be replaced based on
3544   // dominance information ("Global cases").
3545   bool Transform = false;
3546   if (Op1 && Op2)
3547     Transform = true;
3548   else if (Op1 || Op2) {
3549     // Local case
3550     if (SI->hasOneUse())
3551       Transform = true;
3552     // Global cases
3553     else if (CI && !CI->isZero())
3554       // When Op1 is constant try replacing select with second operand.
3555       // Otherwise Op2 is constant and try replacing select with first
3556       // operand.
3557       Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1);
3558   }
3559   if (Transform) {
3560     if (!Op1)
3561       Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName());
3562     if (!Op2)
3563       Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName());
3564     return SelectInst::Create(SI->getOperand(0), Op1, Op2);
3565   }
3566 
3567   return nullptr;
3568 }
3569 
3570 /// Some comparisons can be simplified.
3571 /// In this case, we are looking for comparisons that look like
3572 /// a check for a lossy truncation.
3573 /// Folds:
3574 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3575 /// Where Mask is some pattern that produces all-ones in low bits:
3576 ///    (-1 >> y)
3577 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3578 ///   ~(-1 << y)
3579 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3580 /// The Mask can be a constant, too.
3581 /// For some predicates, the operands are commutative.
3582 /// For others, x can only be on a specific side.
3583 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3584                                           InstCombiner::BuilderTy &Builder) {
3585   ICmpInst::Predicate SrcPred;
3586   Value *X, *M, *Y;
3587   auto m_VariableMask = m_CombineOr(
3588       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3589                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3590       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3591                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3592   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3593   if (!match(&I, m_c_ICmp(SrcPred,
3594                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3595                           m_Deferred(X))))
3596     return nullptr;
3597 
3598   ICmpInst::Predicate DstPred;
3599   switch (SrcPred) {
3600   case ICmpInst::Predicate::ICMP_EQ:
3601     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3602     DstPred = ICmpInst::Predicate::ICMP_ULE;
3603     break;
3604   case ICmpInst::Predicate::ICMP_NE:
3605     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3606     DstPred = ICmpInst::Predicate::ICMP_UGT;
3607     break;
3608   case ICmpInst::Predicate::ICMP_ULT:
3609     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3610     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3611     DstPred = ICmpInst::Predicate::ICMP_UGT;
3612     break;
3613   case ICmpInst::Predicate::ICMP_UGE:
3614     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3615     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3616     DstPred = ICmpInst::Predicate::ICMP_ULE;
3617     break;
3618   case ICmpInst::Predicate::ICMP_SLT:
3619     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3620     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3621     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3622       return nullptr;
3623     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3624       return nullptr;
3625     DstPred = ICmpInst::Predicate::ICMP_SGT;
3626     break;
3627   case ICmpInst::Predicate::ICMP_SGE:
3628     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3629     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3630     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3631       return nullptr;
3632     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3633       return nullptr;
3634     DstPred = ICmpInst::Predicate::ICMP_SLE;
3635     break;
3636   case ICmpInst::Predicate::ICMP_SGT:
3637   case ICmpInst::Predicate::ICMP_SLE:
3638     return nullptr;
3639   case ICmpInst::Predicate::ICMP_UGT:
3640   case ICmpInst::Predicate::ICMP_ULE:
3641     llvm_unreachable("Instsimplify took care of commut. variant");
3642     break;
3643   default:
3644     llvm_unreachable("All possible folds are handled.");
3645   }
3646 
3647   // The mask value may be a vector constant that has undefined elements. But it
3648   // may not be safe to propagate those undefs into the new compare, so replace
3649   // those elements by copying an existing, defined, and safe scalar constant.
3650   Type *OpTy = M->getType();
3651   auto *VecC = dyn_cast<Constant>(M);
3652   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3653   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3654     Constant *SafeReplacementConstant = nullptr;
3655     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3656       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3657         SafeReplacementConstant = VecC->getAggregateElement(i);
3658         break;
3659       }
3660     }
3661     assert(SafeReplacementConstant && "Failed to find undef replacement");
3662     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3663   }
3664 
3665   return Builder.CreateICmp(DstPred, X, M);
3666 }
3667 
3668 /// Some comparisons can be simplified.
3669 /// In this case, we are looking for comparisons that look like
3670 /// a check for a lossy signed truncation.
3671 /// Folds:   (MaskedBits is a constant.)
3672 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3673 /// Into:
3674 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3675 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3676 static Value *
3677 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3678                                  InstCombiner::BuilderTy &Builder) {
3679   ICmpInst::Predicate SrcPred;
3680   Value *X;
3681   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3682   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3683   if (!match(&I, m_c_ICmp(SrcPred,
3684                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3685                                           m_APInt(C1))),
3686                           m_Deferred(X))))
3687     return nullptr;
3688 
3689   // Potential handling of non-splats: for each element:
3690   //  * if both are undef, replace with constant 0.
3691   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3692   //  * if both are not undef, and are different, bailout.
3693   //  * else, only one is undef, then pick the non-undef one.
3694 
3695   // The shift amount must be equal.
3696   if (*C0 != *C1)
3697     return nullptr;
3698   const APInt &MaskedBits = *C0;
3699   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3700 
3701   ICmpInst::Predicate DstPred;
3702   switch (SrcPred) {
3703   case ICmpInst::Predicate::ICMP_EQ:
3704     // ((%x << MaskedBits) a>> MaskedBits) == %x
3705     //   =>
3706     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3707     DstPred = ICmpInst::Predicate::ICMP_ULT;
3708     break;
3709   case ICmpInst::Predicate::ICMP_NE:
3710     // ((%x << MaskedBits) a>> MaskedBits) != %x
3711     //   =>
3712     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3713     DstPred = ICmpInst::Predicate::ICMP_UGE;
3714     break;
3715   // FIXME: are more folds possible?
3716   default:
3717     return nullptr;
3718   }
3719 
3720   auto *XType = X->getType();
3721   const unsigned XBitWidth = XType->getScalarSizeInBits();
3722   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3723   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3724 
3725   // KeptBits = bitwidth(%x) - MaskedBits
3726   const APInt KeptBits = BitWidth - MaskedBits;
3727   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3728   // ICmpCst = (1 << KeptBits)
3729   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3730   assert(ICmpCst.isPowerOf2());
3731   // AddCst = (1 << (KeptBits-1))
3732   const APInt AddCst = ICmpCst.lshr(1);
3733   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3734 
3735   // T0 = add %x, AddCst
3736   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3737   // T1 = T0 DstPred ICmpCst
3738   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3739 
3740   return T1;
3741 }
3742 
3743 // Given pattern:
3744 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3745 // we should move shifts to the same hand of 'and', i.e. rewrite as
3746 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3747 // We are only interested in opposite logical shifts here.
3748 // One of the shifts can be truncated.
3749 // If we can, we want to end up creating 'lshr' shift.
3750 static Value *
3751 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3752                                            InstCombiner::BuilderTy &Builder) {
3753   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3754       !I.getOperand(0)->hasOneUse())
3755     return nullptr;
3756 
3757   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3758 
3759   // Look for an 'and' of two logical shifts, one of which may be truncated.
3760   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3761   Instruction *XShift, *MaybeTruncation, *YShift;
3762   if (!match(
3763           I.getOperand(0),
3764           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3765                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3766                                    m_AnyLogicalShift, m_Instruction(YShift))),
3767                                m_Instruction(MaybeTruncation)))))
3768     return nullptr;
3769 
3770   // We potentially looked past 'trunc', but only when matching YShift,
3771   // therefore YShift must have the widest type.
3772   Instruction *WidestShift = YShift;
3773   // Therefore XShift must have the shallowest type.
3774   // Or they both have identical types if there was no truncation.
3775   Instruction *NarrowestShift = XShift;
3776 
3777   Type *WidestTy = WidestShift->getType();
3778   Type *NarrowestTy = NarrowestShift->getType();
3779   assert(NarrowestTy == I.getOperand(0)->getType() &&
3780          "We did not look past any shifts while matching XShift though.");
3781   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3782 
3783   // If YShift is a 'lshr', swap the shifts around.
3784   if (match(YShift, m_LShr(m_Value(), m_Value())))
3785     std::swap(XShift, YShift);
3786 
3787   // The shifts must be in opposite directions.
3788   auto XShiftOpcode = XShift->getOpcode();
3789   if (XShiftOpcode == YShift->getOpcode())
3790     return nullptr; // Do not care about same-direction shifts here.
3791 
3792   Value *X, *XShAmt, *Y, *YShAmt;
3793   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3794   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3795 
3796   // If one of the values being shifted is a constant, then we will end with
3797   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3798   // however, we will need to ensure that we won't increase instruction count.
3799   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3800     // At least one of the hands of the 'and' should be one-use shift.
3801     if (!match(I.getOperand(0),
3802                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3803       return nullptr;
3804     if (HadTrunc) {
3805       // Due to the 'trunc', we will need to widen X. For that either the old
3806       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3807       if (!MaybeTruncation->hasOneUse() &&
3808           !NarrowestShift->getOperand(1)->hasOneUse())
3809         return nullptr;
3810     }
3811   }
3812 
3813   // We have two shift amounts from two different shifts. The types of those
3814   // shift amounts may not match. If that's the case let's bailout now.
3815   if (XShAmt->getType() != YShAmt->getType())
3816     return nullptr;
3817 
3818   // As input, we have the following pattern:
3819   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3820   // We want to rewrite that as:
3821   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3822   // While we know that originally (Q+K) would not overflow
3823   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3824   // shift amounts. so it may now overflow in smaller bitwidth.
3825   // To ensure that does not happen, we need to ensure that the total maximal
3826   // shift amount is still representable in that smaller bit width.
3827   unsigned MaximalPossibleTotalShiftAmount =
3828       (WidestTy->getScalarSizeInBits() - 1) +
3829       (NarrowestTy->getScalarSizeInBits() - 1);
3830   APInt MaximalRepresentableShiftAmount =
3831       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3832   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3833     return nullptr;
3834 
3835   // Can we fold (XShAmt+YShAmt) ?
3836   auto *NewShAmt = dyn_cast_or_null<Constant>(
3837       simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3838                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3839   if (!NewShAmt)
3840     return nullptr;
3841   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3842   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3843 
3844   // Is the new shift amount smaller than the bit width?
3845   // FIXME: could also rely on ConstantRange.
3846   if (!match(NewShAmt,
3847              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3848                                 APInt(WidestBitWidth, WidestBitWidth))))
3849     return nullptr;
3850 
3851   // An extra legality check is needed if we had trunc-of-lshr.
3852   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3853     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3854                     WidestShift]() {
3855       // It isn't obvious whether it's worth it to analyze non-constants here.
3856       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3857       // If *any* of these preconditions matches we can perform the fold.
3858       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3859                                     ? NewShAmt->getSplatValue()
3860                                     : NewShAmt;
3861       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3862       if (NewShAmtSplat &&
3863           (NewShAmtSplat->isNullValue() ||
3864            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3865         return true;
3866       // We consider *min* leading zeros so a single outlier
3867       // blocks the transform as opposed to allowing it.
3868       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3869         KnownBits Known = computeKnownBits(C, SQ.DL);
3870         unsigned MinLeadZero = Known.countMinLeadingZeros();
3871         // If the value being shifted has at most lowest bit set we can fold.
3872         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3873         if (MaxActiveBits <= 1)
3874           return true;
3875         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3876         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3877           return true;
3878       }
3879       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3880         KnownBits Known = computeKnownBits(C, SQ.DL);
3881         unsigned MinLeadZero = Known.countMinLeadingZeros();
3882         // If the value being shifted has at most lowest bit set we can fold.
3883         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3884         if (MaxActiveBits <= 1)
3885           return true;
3886         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3887         if (NewShAmtSplat) {
3888           APInt AdjNewShAmt =
3889               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3890           if (AdjNewShAmt.ule(MinLeadZero))
3891             return true;
3892         }
3893       }
3894       return false; // Can't tell if it's ok.
3895     };
3896     if (!CanFold())
3897       return nullptr;
3898   }
3899 
3900   // All good, we can do this fold.
3901   X = Builder.CreateZExt(X, WidestTy);
3902   Y = Builder.CreateZExt(Y, WidestTy);
3903   // The shift is the same that was for X.
3904   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3905                   ? Builder.CreateLShr(X, NewShAmt)
3906                   : Builder.CreateShl(X, NewShAmt);
3907   Value *T1 = Builder.CreateAnd(T0, Y);
3908   return Builder.CreateICmp(I.getPredicate(), T1,
3909                             Constant::getNullValue(WidestTy));
3910 }
3911 
3912 /// Fold
3913 ///   (-1 u/ x) u< y
3914 ///   ((x * y) ?/ x) != y
3915 /// to
3916 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3917 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3918 /// will mean that we are looking for the opposite answer.
3919 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3920   ICmpInst::Predicate Pred;
3921   Value *X, *Y;
3922   Instruction *Mul;
3923   Instruction *Div;
3924   bool NeedNegation;
3925   // Look for: (-1 u/ x) u</u>= y
3926   if (!I.isEquality() &&
3927       match(&I, m_c_ICmp(Pred,
3928                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3929                                       m_Instruction(Div)),
3930                          m_Value(Y)))) {
3931     Mul = nullptr;
3932 
3933     // Are we checking that overflow does not happen, or does happen?
3934     switch (Pred) {
3935     case ICmpInst::Predicate::ICMP_ULT:
3936       NeedNegation = false;
3937       break; // OK
3938     case ICmpInst::Predicate::ICMP_UGE:
3939       NeedNegation = true;
3940       break; // OK
3941     default:
3942       return nullptr; // Wrong predicate.
3943     }
3944   } else // Look for: ((x * y) / x) !=/== y
3945       if (I.isEquality() &&
3946           match(&I,
3947                 m_c_ICmp(Pred, m_Value(Y),
3948                          m_CombineAnd(
3949                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3950                                                                   m_Value(X)),
3951                                                           m_Instruction(Mul)),
3952                                              m_Deferred(X))),
3953                              m_Instruction(Div))))) {
3954     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3955   } else
3956     return nullptr;
3957 
3958   BuilderTy::InsertPointGuard Guard(Builder);
3959   // If the pattern included (x * y), we'll want to insert new instructions
3960   // right before that original multiplication so that we can replace it.
3961   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3962   if (MulHadOtherUses)
3963     Builder.SetInsertPoint(Mul);
3964 
3965   Function *F = Intrinsic::getDeclaration(I.getModule(),
3966                                           Div->getOpcode() == Instruction::UDiv
3967                                               ? Intrinsic::umul_with_overflow
3968                                               : Intrinsic::smul_with_overflow,
3969                                           X->getType());
3970   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3971 
3972   // If the multiplication was used elsewhere, to ensure that we don't leave
3973   // "duplicate" instructions, replace uses of that original multiplication
3974   // with the multiplication result from the with.overflow intrinsic.
3975   if (MulHadOtherUses)
3976     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3977 
3978   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3979   if (NeedNegation) // This technically increases instruction count.
3980     Res = Builder.CreateNot(Res, "mul.not.ov");
3981 
3982   // If we replaced the mul, erase it. Do this after all uses of Builder,
3983   // as the mul is used as insertion point.
3984   if (MulHadOtherUses)
3985     eraseInstFromFunction(*Mul);
3986 
3987   return Res;
3988 }
3989 
3990 static Instruction *foldICmpXNegX(ICmpInst &I) {
3991   CmpInst::Predicate Pred;
3992   Value *X;
3993   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3994     return nullptr;
3995 
3996   if (ICmpInst::isSigned(Pred))
3997     Pred = ICmpInst::getSwappedPredicate(Pred);
3998   else if (ICmpInst::isUnsigned(Pred))
3999     Pred = ICmpInst::getSignedPredicate(Pred);
4000   // else for equality-comparisons just keep the predicate.
4001 
4002   return ICmpInst::Create(Instruction::ICmp, Pred, X,
4003                           Constant::getNullValue(X->getType()), I.getName());
4004 }
4005 
4006 /// Try to fold icmp (binop), X or icmp X, (binop).
4007 /// TODO: A large part of this logic is duplicated in InstSimplify's
4008 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
4009 /// duplication.
4010 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
4011                                              const SimplifyQuery &SQ) {
4012   const SimplifyQuery Q = SQ.getWithInstruction(&I);
4013   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4014 
4015   // Special logic for binary operators.
4016   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
4017   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
4018   if (!BO0 && !BO1)
4019     return nullptr;
4020 
4021   if (Instruction *NewICmp = foldICmpXNegX(I))
4022     return NewICmp;
4023 
4024   const CmpInst::Predicate Pred = I.getPredicate();
4025   Value *X;
4026 
4027   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
4028   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
4029   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
4030       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4031     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
4032   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
4033   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
4034       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4035     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
4036 
4037   {
4038     // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
4039     Constant *C;
4040     if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)),
4041                                   m_ImmConstant(C)))) &&
4042         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
4043       Constant *C2 = ConstantExpr::getNot(C);
4044       return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1);
4045     }
4046     // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
4047     if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)),
4048                                   m_ImmConstant(C)))) &&
4049         (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) {
4050       Constant *C2 = ConstantExpr::getNot(C);
4051       return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X));
4052     }
4053   }
4054 
4055   {
4056     // Similar to above: an unsigned overflow comparison may use offset + mask:
4057     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
4058     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
4059     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
4060     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
4061     BinaryOperator *BO;
4062     const APInt *C;
4063     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
4064         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4065         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
4066       CmpInst::Predicate NewPred =
4067           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4068       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4069       return new ICmpInst(NewPred, Op1, Zero);
4070     }
4071 
4072     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
4073         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4074         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
4075       CmpInst::Predicate NewPred =
4076           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4077       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4078       return new ICmpInst(NewPred, Op0, Zero);
4079     }
4080   }
4081 
4082   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
4083   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
4084     NoOp0WrapProblem =
4085         ICmpInst::isEquality(Pred) ||
4086         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
4087         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
4088   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
4089     NoOp1WrapProblem =
4090         ICmpInst::isEquality(Pred) ||
4091         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
4092         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
4093 
4094   // Analyze the case when either Op0 or Op1 is an add instruction.
4095   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4096   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4097   if (BO0 && BO0->getOpcode() == Instruction::Add) {
4098     A = BO0->getOperand(0);
4099     B = BO0->getOperand(1);
4100   }
4101   if (BO1 && BO1->getOpcode() == Instruction::Add) {
4102     C = BO1->getOperand(0);
4103     D = BO1->getOperand(1);
4104   }
4105 
4106   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4107   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4108   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4109     return new ICmpInst(Pred, A == Op1 ? B : A,
4110                         Constant::getNullValue(Op1->getType()));
4111 
4112   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4113   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4114   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4115     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4116                         C == Op0 ? D : C);
4117 
4118   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4119   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4120       NoOp1WrapProblem) {
4121     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4122     Value *Y, *Z;
4123     if (A == C) {
4124       // C + B == C + D  ->  B == D
4125       Y = B;
4126       Z = D;
4127     } else if (A == D) {
4128       // D + B == C + D  ->  B == C
4129       Y = B;
4130       Z = C;
4131     } else if (B == C) {
4132       // A + C == C + D  ->  A == D
4133       Y = A;
4134       Z = D;
4135     } else {
4136       assert(B == D);
4137       // A + D == C + D  ->  A == C
4138       Y = A;
4139       Z = C;
4140     }
4141     return new ICmpInst(Pred, Y, Z);
4142   }
4143 
4144   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4145   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4146       match(B, m_AllOnes()))
4147     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4148 
4149   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4150   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4151       match(B, m_AllOnes()))
4152     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4153 
4154   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4155   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4156     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4157 
4158   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4159   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4160     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4161 
4162   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4163   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4164       match(D, m_AllOnes()))
4165     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4166 
4167   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4168   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4169       match(D, m_AllOnes()))
4170     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4171 
4172   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4173   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4174     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4175 
4176   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4177   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4178     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4179 
4180   // TODO: The subtraction-related identities shown below also hold, but
4181   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4182   // wouldn't happen even if they were implemented.
4183   //
4184   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4185   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4186   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4187   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4188 
4189   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4190   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4191     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4192 
4193   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4194   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4195     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4196 
4197   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4198   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4199     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4200 
4201   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4202   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4203     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4204 
4205   // if C1 has greater magnitude than C2:
4206   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4207   //  s.t. C3 = C1 - C2
4208   //
4209   // if C2 has greater magnitude than C1:
4210   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4211   //  s.t. C3 = C2 - C1
4212   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4213       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) {
4214     const APInt *AP1, *AP2;
4215     // TODO: Support non-uniform vectors.
4216     // TODO: Allow undef passthrough if B AND D's element is undef.
4217     if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) &&
4218         AP1->isNegative() == AP2->isNegative()) {
4219       APInt AP1Abs = AP1->abs();
4220       APInt AP2Abs = AP2->abs();
4221       if (AP1Abs.uge(AP2Abs)) {
4222         APInt Diff = *AP1 - *AP2;
4223         bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1);
4224         bool HasNSW = BO0->hasNoSignedWrap();
4225         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4226         Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4227         return new ICmpInst(Pred, NewAdd, C);
4228       } else {
4229         APInt Diff = *AP2 - *AP1;
4230         bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2);
4231         bool HasNSW = BO1->hasNoSignedWrap();
4232         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4233         Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4234         return new ICmpInst(Pred, A, NewAdd);
4235       }
4236     }
4237     Constant *Cst1, *Cst2;
4238     if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) &&
4239         ICmpInst::isEquality(Pred)) {
4240       Constant *Diff = ConstantExpr::getSub(Cst2, Cst1);
4241       Value *NewAdd = Builder.CreateAdd(C, Diff);
4242       return new ICmpInst(Pred, A, NewAdd);
4243     }
4244   }
4245 
4246   // Analyze the case when either Op0 or Op1 is a sub instruction.
4247   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4248   A = nullptr;
4249   B = nullptr;
4250   C = nullptr;
4251   D = nullptr;
4252   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4253     A = BO0->getOperand(0);
4254     B = BO0->getOperand(1);
4255   }
4256   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4257     C = BO1->getOperand(0);
4258     D = BO1->getOperand(1);
4259   }
4260 
4261   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4262   if (A == Op1 && NoOp0WrapProblem)
4263     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4264   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4265   if (C == Op0 && NoOp1WrapProblem)
4266     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4267 
4268   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4269   // (A - B) u>/u<= A --> B u>/u<= A
4270   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4271     return new ICmpInst(Pred, B, A);
4272   // C u</u>= (C - D) --> C u</u>= D
4273   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4274     return new ICmpInst(Pred, C, D);
4275   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4276   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4277       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4278     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4279   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4280   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4281       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4282     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4283 
4284   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4285   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4286     return new ICmpInst(Pred, A, C);
4287 
4288   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4289   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4290     return new ICmpInst(Pred, D, B);
4291 
4292   // icmp (0-X) < cst --> x > -cst
4293   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4294     Value *X;
4295     if (match(BO0, m_Neg(m_Value(X))))
4296       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4297         if (RHSC->isNotMinSignedValue())
4298           return new ICmpInst(I.getSwappedPredicate(), X,
4299                               ConstantExpr::getNeg(RHSC));
4300   }
4301 
4302   {
4303     // Try to remove shared constant multiplier from equality comparison:
4304     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4305     Value *X, *Y;
4306     const APInt *C;
4307     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4308         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4309       if (!C->countTrailingZeros() ||
4310           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4311           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4312       return new ICmpInst(Pred, X, Y);
4313   }
4314 
4315   BinaryOperator *SRem = nullptr;
4316   // icmp (srem X, Y), Y
4317   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4318     SRem = BO0;
4319   // icmp Y, (srem X, Y)
4320   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4321            Op0 == BO1->getOperand(1))
4322     SRem = BO1;
4323   if (SRem) {
4324     // We don't check hasOneUse to avoid increasing register pressure because
4325     // the value we use is the same value this instruction was already using.
4326     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4327     default:
4328       break;
4329     case ICmpInst::ICMP_EQ:
4330       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4331     case ICmpInst::ICMP_NE:
4332       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4333     case ICmpInst::ICMP_SGT:
4334     case ICmpInst::ICMP_SGE:
4335       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4336                           Constant::getAllOnesValue(SRem->getType()));
4337     case ICmpInst::ICMP_SLT:
4338     case ICmpInst::ICMP_SLE:
4339       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4340                           Constant::getNullValue(SRem->getType()));
4341     }
4342   }
4343 
4344   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4345       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4346     switch (BO0->getOpcode()) {
4347     default:
4348       break;
4349     case Instruction::Add:
4350     case Instruction::Sub:
4351     case Instruction::Xor: {
4352       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4353         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4354 
4355       const APInt *C;
4356       if (match(BO0->getOperand(1), m_APInt(C))) {
4357         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4358         if (C->isSignMask()) {
4359           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4360           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4361         }
4362 
4363         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4364         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4365           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4366           NewPred = I.getSwappedPredicate(NewPred);
4367           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4368         }
4369       }
4370       break;
4371     }
4372     case Instruction::Mul: {
4373       if (!I.isEquality())
4374         break;
4375 
4376       const APInt *C;
4377       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4378           !C->isOne()) {
4379         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4380         // Mask = -1 >> count-trailing-zeros(C).
4381         if (unsigned TZs = C->countTrailingZeros()) {
4382           Constant *Mask = ConstantInt::get(
4383               BO0->getType(),
4384               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4385           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4386           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4387           return new ICmpInst(Pred, And1, And2);
4388         }
4389       }
4390       break;
4391     }
4392     case Instruction::UDiv:
4393     case Instruction::LShr:
4394       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4395         break;
4396       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4397 
4398     case Instruction::SDiv:
4399       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4400         break;
4401       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4402 
4403     case Instruction::AShr:
4404       if (!BO0->isExact() || !BO1->isExact())
4405         break;
4406       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4407 
4408     case Instruction::Shl: {
4409       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4410       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4411       if (!NUW && !NSW)
4412         break;
4413       if (!NSW && I.isSigned())
4414         break;
4415       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4416     }
4417     }
4418   }
4419 
4420   if (BO0) {
4421     // Transform  A & (L - 1) `ult` L --> L != 0
4422     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4423     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4424 
4425     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4426       auto *Zero = Constant::getNullValue(BO0->getType());
4427       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4428     }
4429   }
4430 
4431   if (Value *V = foldMultiplicationOverflowCheck(I))
4432     return replaceInstUsesWith(I, V);
4433 
4434   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4435     return replaceInstUsesWith(I, V);
4436 
4437   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4438     return replaceInstUsesWith(I, V);
4439 
4440   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4441     return replaceInstUsesWith(I, V);
4442 
4443   return nullptr;
4444 }
4445 
4446 /// Fold icmp Pred min|max(X, Y), X.
4447 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4448   ICmpInst::Predicate Pred = Cmp.getPredicate();
4449   Value *Op0 = Cmp.getOperand(0);
4450   Value *X = Cmp.getOperand(1);
4451 
4452   // Canonicalize minimum or maximum operand to LHS of the icmp.
4453   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4454       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4455       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4456       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4457     std::swap(Op0, X);
4458     Pred = Cmp.getSwappedPredicate();
4459   }
4460 
4461   Value *Y;
4462   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4463     // smin(X, Y)  == X --> X s<= Y
4464     // smin(X, Y) s>= X --> X s<= Y
4465     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4466       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4467 
4468     // smin(X, Y) != X --> X s> Y
4469     // smin(X, Y) s< X --> X s> Y
4470     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4471       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4472 
4473     // These cases should be handled in InstSimplify:
4474     // smin(X, Y) s<= X --> true
4475     // smin(X, Y) s> X --> false
4476     return nullptr;
4477   }
4478 
4479   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4480     // smax(X, Y)  == X --> X s>= Y
4481     // smax(X, Y) s<= X --> X s>= Y
4482     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4483       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4484 
4485     // smax(X, Y) != X --> X s< Y
4486     // smax(X, Y) s> X --> X s< Y
4487     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4488       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4489 
4490     // These cases should be handled in InstSimplify:
4491     // smax(X, Y) s>= X --> true
4492     // smax(X, Y) s< X --> false
4493     return nullptr;
4494   }
4495 
4496   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4497     // umin(X, Y)  == X --> X u<= Y
4498     // umin(X, Y) u>= X --> X u<= Y
4499     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4500       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4501 
4502     // umin(X, Y) != X --> X u> Y
4503     // umin(X, Y) u< X --> X u> Y
4504     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4505       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4506 
4507     // These cases should be handled in InstSimplify:
4508     // umin(X, Y) u<= X --> true
4509     // umin(X, Y) u> X --> false
4510     return nullptr;
4511   }
4512 
4513   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4514     // umax(X, Y)  == X --> X u>= Y
4515     // umax(X, Y) u<= X --> X u>= Y
4516     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4517       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4518 
4519     // umax(X, Y) != X --> X u< Y
4520     // umax(X, Y) u> X --> X u< Y
4521     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4522       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4523 
4524     // These cases should be handled in InstSimplify:
4525     // umax(X, Y) u>= X --> true
4526     // umax(X, Y) u< X --> false
4527     return nullptr;
4528   }
4529 
4530   return nullptr;
4531 }
4532 
4533 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4534   if (!I.isEquality())
4535     return nullptr;
4536 
4537   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4538   const CmpInst::Predicate Pred = I.getPredicate();
4539   Value *A, *B, *C, *D;
4540   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4541     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4542       Value *OtherVal = A == Op1 ? B : A;
4543       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4544     }
4545 
4546     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4547       // A^c1 == C^c2 --> A == C^(c1^c2)
4548       ConstantInt *C1, *C2;
4549       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4550           Op1->hasOneUse()) {
4551         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4552         Value *Xor = Builder.CreateXor(C, NC);
4553         return new ICmpInst(Pred, A, Xor);
4554       }
4555 
4556       // A^B == A^D -> B == D
4557       if (A == C)
4558         return new ICmpInst(Pred, B, D);
4559       if (A == D)
4560         return new ICmpInst(Pred, B, C);
4561       if (B == C)
4562         return new ICmpInst(Pred, A, D);
4563       if (B == D)
4564         return new ICmpInst(Pred, A, C);
4565     }
4566   }
4567 
4568   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4569     // A == (A^B)  ->  B == 0
4570     Value *OtherVal = A == Op0 ? B : A;
4571     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4572   }
4573 
4574   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4575   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4576       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4577     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4578 
4579     if (A == C) {
4580       X = B;
4581       Y = D;
4582       Z = A;
4583     } else if (A == D) {
4584       X = B;
4585       Y = C;
4586       Z = A;
4587     } else if (B == C) {
4588       X = A;
4589       Y = D;
4590       Z = B;
4591     } else if (B == D) {
4592       X = A;
4593       Y = C;
4594       Z = B;
4595     }
4596 
4597     if (X) { // Build (X^Y) & Z
4598       Op1 = Builder.CreateXor(X, Y);
4599       Op1 = Builder.CreateAnd(Op1, Z);
4600       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4601     }
4602   }
4603 
4604   {
4605     // Similar to above, but specialized for constant because invert is needed:
4606     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4607     Value *X, *Y;
4608     Constant *C;
4609     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4610         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4611       Value *Xor = Builder.CreateXor(X, Y);
4612       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4613       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4614     }
4615   }
4616 
4617   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4618   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4619   ConstantInt *Cst1;
4620   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4621        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4622       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4623        match(Op1, m_ZExt(m_Value(A))))) {
4624     APInt Pow2 = Cst1->getValue() + 1;
4625     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4626         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4627       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4628   }
4629 
4630   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4631   // For lshr and ashr pairs.
4632   const APInt *AP1, *AP2;
4633   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
4634        match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) ||
4635       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
4636        match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) {
4637     if (AP1 != AP2)
4638       return nullptr;
4639     unsigned TypeBits = AP1->getBitWidth();
4640     unsigned ShAmt = AP1->getLimitedValue(TypeBits);
4641     if (ShAmt < TypeBits && ShAmt != 0) {
4642       ICmpInst::Predicate NewPred =
4643           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4644       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4645       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4646       return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal));
4647     }
4648   }
4649 
4650   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4651   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4652       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4653     unsigned TypeBits = Cst1->getBitWidth();
4654     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4655     if (ShAmt < TypeBits && ShAmt != 0) {
4656       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4657       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4658       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4659                                       I.getName() + ".mask");
4660       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4661     }
4662   }
4663 
4664   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4665   // "icmp (and X, mask), cst"
4666   uint64_t ShAmt = 0;
4667   if (Op0->hasOneUse() &&
4668       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4669       match(Op1, m_ConstantInt(Cst1)) &&
4670       // Only do this when A has multiple uses.  This is most important to do
4671       // when it exposes other optimizations.
4672       !A->hasOneUse()) {
4673     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4674 
4675     if (ShAmt < ASize) {
4676       APInt MaskV =
4677           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4678       MaskV <<= ShAmt;
4679 
4680       APInt CmpV = Cst1->getValue().zext(ASize);
4681       CmpV <<= ShAmt;
4682 
4683       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4684       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4685     }
4686   }
4687 
4688   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4689     return ICmp;
4690 
4691   // Canonicalize checking for a power-of-2-or-zero value:
4692   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4693   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4694   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4695                                    m_Deferred(A)))) ||
4696       !match(Op1, m_ZeroInt()))
4697     A = nullptr;
4698 
4699   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4700   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4701   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4702     A = Op1;
4703   else if (match(Op1,
4704                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4705     A = Op0;
4706 
4707   if (A) {
4708     Type *Ty = A->getType();
4709     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4710     return Pred == ICmpInst::ICMP_EQ
4711         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4712         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4713   }
4714 
4715   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4716   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4717   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4718   // of instcombine.
4719   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4720   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4721       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4722       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4723       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4724     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4725     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4726     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4727                                                   : ICmpInst::ICMP_UGE,
4728                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4729   }
4730 
4731   return nullptr;
4732 }
4733 
4734 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4735                                       InstCombiner::BuilderTy &Builder) {
4736   ICmpInst::Predicate Pred = ICmp.getPredicate();
4737   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4738 
4739   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4740   // The trunc masks high bits while the compare may effectively mask low bits.
4741   Value *X;
4742   const APInt *C;
4743   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4744     return nullptr;
4745 
4746   // This matches patterns corresponding to tests of the signbit as well as:
4747   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4748   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4749   APInt Mask;
4750   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4751     Value *And = Builder.CreateAnd(X, Mask);
4752     Constant *Zero = ConstantInt::getNullValue(X->getType());
4753     return new ICmpInst(Pred, And, Zero);
4754   }
4755 
4756   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4757   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4758     // If C is a negative power-of-2 (high-bit mask):
4759     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4760     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4761     Value *And = Builder.CreateAnd(X, MaskC);
4762     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4763   }
4764 
4765   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4766     // If C is not-of-power-of-2 (one clear bit):
4767     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4768     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4769     Value *And = Builder.CreateAnd(X, MaskC);
4770     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4771   }
4772 
4773   return nullptr;
4774 }
4775 
4776 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) {
4777   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4778   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4779   Value *X;
4780   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4781     return nullptr;
4782 
4783   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4784   bool IsSignedCmp = ICmp.isSigned();
4785 
4786   // icmp Pred (ext X), (ext Y)
4787   Value *Y;
4788   if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) {
4789     bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0));
4790     bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1));
4791 
4792     // If we have mismatched casts, treat the zext of a non-negative source as
4793     // a sext to simulate matching casts. Otherwise, we are done.
4794     // TODO: Can we handle some predicates (equality) without non-negative?
4795     if (IsZext0 != IsZext1) {
4796       if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) ||
4797           (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT)))
4798         IsSignedExt = true;
4799       else
4800         return nullptr;
4801     }
4802 
4803     // Not an extension from the same type?
4804     Type *XTy = X->getType(), *YTy = Y->getType();
4805     if (XTy != YTy) {
4806       // One of the casts must have one use because we are creating a new cast.
4807       if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse())
4808         return nullptr;
4809       // Extend the narrower operand to the type of the wider operand.
4810       CastInst::CastOps CastOpcode =
4811           IsSignedExt ? Instruction::SExt : Instruction::ZExt;
4812       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4813         X = Builder.CreateCast(CastOpcode, X, YTy);
4814       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4815         Y = Builder.CreateCast(CastOpcode, Y, XTy);
4816       else
4817         return nullptr;
4818     }
4819 
4820     // (zext X) == (zext Y) --> X == Y
4821     // (sext X) == (sext Y) --> X == Y
4822     if (ICmp.isEquality())
4823       return new ICmpInst(ICmp.getPredicate(), X, Y);
4824 
4825     // A signed comparison of sign extended values simplifies into a
4826     // signed comparison.
4827     if (IsSignedCmp && IsSignedExt)
4828       return new ICmpInst(ICmp.getPredicate(), X, Y);
4829 
4830     // The other three cases all fold into an unsigned comparison.
4831     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4832   }
4833 
4834   // Below here, we are only folding a compare with constant.
4835   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4836   if (!C)
4837     return nullptr;
4838 
4839   // Compute the constant that would happen if we truncated to SrcTy then
4840   // re-extended to DestTy.
4841   Type *SrcTy = CastOp0->getSrcTy();
4842   Type *DestTy = CastOp0->getDestTy();
4843   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4844   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4845 
4846   // If the re-extended constant didn't change...
4847   if (Res2 == C) {
4848     if (ICmp.isEquality())
4849       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4850 
4851     // A signed comparison of sign extended values simplifies into a
4852     // signed comparison.
4853     if (IsSignedExt && IsSignedCmp)
4854       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4855 
4856     // The other three cases all fold into an unsigned comparison.
4857     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4858   }
4859 
4860   // The re-extended constant changed, partly changed (in the case of a vector),
4861   // or could not be determined to be equal (in the case of a constant
4862   // expression), so the constant cannot be represented in the shorter type.
4863   // All the cases that fold to true or false will have already been handled
4864   // by simplifyICmpInst, so only deal with the tricky case.
4865   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4866     return nullptr;
4867 
4868   // Is source op positive?
4869   // icmp ult (sext X), C --> icmp sgt X, -1
4870   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4871     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4872 
4873   // Is source op negative?
4874   // icmp ugt (sext X), C --> icmp slt X, 0
4875   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4876   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4877 }
4878 
4879 /// Handle icmp (cast x), (cast or constant).
4880 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4881   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4882   // icmp compares only pointer's value.
4883   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4884   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4885   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4886   if (SimplifiedOp0 || SimplifiedOp1)
4887     return new ICmpInst(ICmp.getPredicate(),
4888                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4889                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4890 
4891   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4892   if (!CastOp0)
4893     return nullptr;
4894   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4895     return nullptr;
4896 
4897   Value *Op0Src = CastOp0->getOperand(0);
4898   Type *SrcTy = CastOp0->getSrcTy();
4899   Type *DestTy = CastOp0->getDestTy();
4900 
4901   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4902   // integer type is the same size as the pointer type.
4903   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4904     if (isa<VectorType>(SrcTy)) {
4905       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4906       DestTy = cast<VectorType>(DestTy)->getElementType();
4907     }
4908     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4909   };
4910   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4911       CompatibleSizes(SrcTy, DestTy)) {
4912     Value *NewOp1 = nullptr;
4913     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4914       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4915       if (PtrSrc->getType()->getPointerAddressSpace() ==
4916           Op0Src->getType()->getPointerAddressSpace()) {
4917         NewOp1 = PtrToIntOp1->getOperand(0);
4918         // If the pointer types don't match, insert a bitcast.
4919         if (Op0Src->getType() != NewOp1->getType())
4920           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4921       }
4922     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4923       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4924     }
4925 
4926     if (NewOp1)
4927       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4928   }
4929 
4930   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4931     return R;
4932 
4933   return foldICmpWithZextOrSext(ICmp);
4934 }
4935 
4936 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4937   switch (BinaryOp) {
4938     default:
4939       llvm_unreachable("Unsupported binary op");
4940     case Instruction::Add:
4941     case Instruction::Sub:
4942       return match(RHS, m_Zero());
4943     case Instruction::Mul:
4944       return match(RHS, m_One());
4945   }
4946 }
4947 
4948 OverflowResult
4949 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4950                                   bool IsSigned, Value *LHS, Value *RHS,
4951                                   Instruction *CxtI) const {
4952   switch (BinaryOp) {
4953     default:
4954       llvm_unreachable("Unsupported binary op");
4955     case Instruction::Add:
4956       if (IsSigned)
4957         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4958       else
4959         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4960     case Instruction::Sub:
4961       if (IsSigned)
4962         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4963       else
4964         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4965     case Instruction::Mul:
4966       if (IsSigned)
4967         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4968       else
4969         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4970   }
4971 }
4972 
4973 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4974                                              bool IsSigned, Value *LHS,
4975                                              Value *RHS, Instruction &OrigI,
4976                                              Value *&Result,
4977                                              Constant *&Overflow) {
4978   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4979     std::swap(LHS, RHS);
4980 
4981   // If the overflow check was an add followed by a compare, the insertion point
4982   // may be pointing to the compare.  We want to insert the new instructions
4983   // before the add in case there are uses of the add between the add and the
4984   // compare.
4985   Builder.SetInsertPoint(&OrigI);
4986 
4987   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4988   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4989     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4990 
4991   if (isNeutralValue(BinaryOp, RHS)) {
4992     Result = LHS;
4993     Overflow = ConstantInt::getFalse(OverflowTy);
4994     return true;
4995   }
4996 
4997   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4998     case OverflowResult::MayOverflow:
4999       return false;
5000     case OverflowResult::AlwaysOverflowsLow:
5001     case OverflowResult::AlwaysOverflowsHigh:
5002       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
5003       Result->takeName(&OrigI);
5004       Overflow = ConstantInt::getTrue(OverflowTy);
5005       return true;
5006     case OverflowResult::NeverOverflows:
5007       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
5008       Result->takeName(&OrigI);
5009       Overflow = ConstantInt::getFalse(OverflowTy);
5010       if (auto *Inst = dyn_cast<Instruction>(Result)) {
5011         if (IsSigned)
5012           Inst->setHasNoSignedWrap();
5013         else
5014           Inst->setHasNoUnsignedWrap();
5015       }
5016       return true;
5017   }
5018 
5019   llvm_unreachable("Unexpected overflow result");
5020 }
5021 
5022 /// Recognize and process idiom involving test for multiplication
5023 /// overflow.
5024 ///
5025 /// The caller has matched a pattern of the form:
5026 ///   I = cmp u (mul(zext A, zext B), V
5027 /// The function checks if this is a test for overflow and if so replaces
5028 /// multiplication with call to 'mul.with.overflow' intrinsic.
5029 ///
5030 /// \param I Compare instruction.
5031 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
5032 ///               the compare instruction.  Must be of integer type.
5033 /// \param OtherVal The other argument of compare instruction.
5034 /// \returns Instruction which must replace the compare instruction, NULL if no
5035 ///          replacement required.
5036 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
5037                                          Value *OtherVal,
5038                                          InstCombinerImpl &IC) {
5039   // Don't bother doing this transformation for pointers, don't do it for
5040   // vectors.
5041   if (!isa<IntegerType>(MulVal->getType()))
5042     return nullptr;
5043 
5044   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
5045   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
5046   auto *MulInstr = dyn_cast<Instruction>(MulVal);
5047   if (!MulInstr)
5048     return nullptr;
5049   assert(MulInstr->getOpcode() == Instruction::Mul);
5050 
5051   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
5052        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
5053   assert(LHS->getOpcode() == Instruction::ZExt);
5054   assert(RHS->getOpcode() == Instruction::ZExt);
5055   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
5056 
5057   // Calculate type and width of the result produced by mul.with.overflow.
5058   Type *TyA = A->getType(), *TyB = B->getType();
5059   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
5060            WidthB = TyB->getPrimitiveSizeInBits();
5061   unsigned MulWidth;
5062   Type *MulType;
5063   if (WidthB > WidthA) {
5064     MulWidth = WidthB;
5065     MulType = TyB;
5066   } else {
5067     MulWidth = WidthA;
5068     MulType = TyA;
5069   }
5070 
5071   // In order to replace the original mul with a narrower mul.with.overflow,
5072   // all uses must ignore upper bits of the product.  The number of used low
5073   // bits must be not greater than the width of mul.with.overflow.
5074   if (MulVal->hasNUsesOrMore(2))
5075     for (User *U : MulVal->users()) {
5076       if (U == &I)
5077         continue;
5078       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5079         // Check if truncation ignores bits above MulWidth.
5080         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
5081         if (TruncWidth > MulWidth)
5082           return nullptr;
5083       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5084         // Check if AND ignores bits above MulWidth.
5085         if (BO->getOpcode() != Instruction::And)
5086           return nullptr;
5087         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5088           const APInt &CVal = CI->getValue();
5089           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
5090             return nullptr;
5091         } else {
5092           // In this case we could have the operand of the binary operation
5093           // being defined in another block, and performing the replacement
5094           // could break the dominance relation.
5095           return nullptr;
5096         }
5097       } else {
5098         // Other uses prohibit this transformation.
5099         return nullptr;
5100       }
5101     }
5102 
5103   // Recognize patterns
5104   switch (I.getPredicate()) {
5105   case ICmpInst::ICMP_EQ:
5106   case ICmpInst::ICMP_NE:
5107     // Recognize pattern:
5108     //   mulval = mul(zext A, zext B)
5109     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
5110     ConstantInt *CI;
5111     Value *ValToMask;
5112     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
5113       if (ValToMask != MulVal)
5114         return nullptr;
5115       const APInt &CVal = CI->getValue() + 1;
5116       if (CVal.isPowerOf2()) {
5117         unsigned MaskWidth = CVal.logBase2();
5118         if (MaskWidth == MulWidth)
5119           break; // Recognized
5120       }
5121     }
5122     return nullptr;
5123 
5124   case ICmpInst::ICMP_UGT:
5125     // Recognize pattern:
5126     //   mulval = mul(zext A, zext B)
5127     //   cmp ugt mulval, max
5128     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5129       APInt MaxVal = APInt::getMaxValue(MulWidth);
5130       MaxVal = MaxVal.zext(CI->getBitWidth());
5131       if (MaxVal.eq(CI->getValue()))
5132         break; // Recognized
5133     }
5134     return nullptr;
5135 
5136   case ICmpInst::ICMP_UGE:
5137     // Recognize pattern:
5138     //   mulval = mul(zext A, zext B)
5139     //   cmp uge mulval, max+1
5140     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5141       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5142       if (MaxVal.eq(CI->getValue()))
5143         break; // Recognized
5144     }
5145     return nullptr;
5146 
5147   case ICmpInst::ICMP_ULE:
5148     // Recognize pattern:
5149     //   mulval = mul(zext A, zext B)
5150     //   cmp ule mulval, max
5151     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5152       APInt MaxVal = APInt::getMaxValue(MulWidth);
5153       MaxVal = MaxVal.zext(CI->getBitWidth());
5154       if (MaxVal.eq(CI->getValue()))
5155         break; // Recognized
5156     }
5157     return nullptr;
5158 
5159   case ICmpInst::ICMP_ULT:
5160     // Recognize pattern:
5161     //   mulval = mul(zext A, zext B)
5162     //   cmp ule mulval, max + 1
5163     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5164       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5165       if (MaxVal.eq(CI->getValue()))
5166         break; // Recognized
5167     }
5168     return nullptr;
5169 
5170   default:
5171     return nullptr;
5172   }
5173 
5174   InstCombiner::BuilderTy &Builder = IC.Builder;
5175   Builder.SetInsertPoint(MulInstr);
5176 
5177   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5178   Value *MulA = A, *MulB = B;
5179   if (WidthA < MulWidth)
5180     MulA = Builder.CreateZExt(A, MulType);
5181   if (WidthB < MulWidth)
5182     MulB = Builder.CreateZExt(B, MulType);
5183   Function *F = Intrinsic::getDeclaration(
5184       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5185   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5186   IC.addToWorklist(MulInstr);
5187 
5188   // If there are uses of mul result other than the comparison, we know that
5189   // they are truncation or binary AND. Change them to use result of
5190   // mul.with.overflow and adjust properly mask/size.
5191   if (MulVal->hasNUsesOrMore(2)) {
5192     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5193     for (User *U : make_early_inc_range(MulVal->users())) {
5194       if (U == &I || U == OtherVal)
5195         continue;
5196       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5197         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5198           IC.replaceInstUsesWith(*TI, Mul);
5199         else
5200           TI->setOperand(0, Mul);
5201       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5202         assert(BO->getOpcode() == Instruction::And);
5203         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5204         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5205         APInt ShortMask = CI->getValue().trunc(MulWidth);
5206         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5207         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5208         IC.replaceInstUsesWith(*BO, Zext);
5209       } else {
5210         llvm_unreachable("Unexpected Binary operation");
5211       }
5212       IC.addToWorklist(cast<Instruction>(U));
5213     }
5214   }
5215   if (isa<Instruction>(OtherVal))
5216     IC.addToWorklist(cast<Instruction>(OtherVal));
5217 
5218   // The original icmp gets replaced with the overflow value, maybe inverted
5219   // depending on predicate.
5220   bool Inverse = false;
5221   switch (I.getPredicate()) {
5222   case ICmpInst::ICMP_NE:
5223     break;
5224   case ICmpInst::ICMP_EQ:
5225     Inverse = true;
5226     break;
5227   case ICmpInst::ICMP_UGT:
5228   case ICmpInst::ICMP_UGE:
5229     if (I.getOperand(0) == MulVal)
5230       break;
5231     Inverse = true;
5232     break;
5233   case ICmpInst::ICMP_ULT:
5234   case ICmpInst::ICMP_ULE:
5235     if (I.getOperand(1) == MulVal)
5236       break;
5237     Inverse = true;
5238     break;
5239   default:
5240     llvm_unreachable("Unexpected predicate");
5241   }
5242   if (Inverse) {
5243     Value *Res = Builder.CreateExtractValue(Call, 1);
5244     return BinaryOperator::CreateNot(Res);
5245   }
5246 
5247   return ExtractValueInst::Create(Call, 1);
5248 }
5249 
5250 /// When performing a comparison against a constant, it is possible that not all
5251 /// the bits in the LHS are demanded. This helper method computes the mask that
5252 /// IS demanded.
5253 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5254   const APInt *RHS;
5255   if (!match(I.getOperand(1), m_APInt(RHS)))
5256     return APInt::getAllOnes(BitWidth);
5257 
5258   // If this is a normal comparison, it demands all bits. If it is a sign bit
5259   // comparison, it only demands the sign bit.
5260   bool UnusedBit;
5261   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5262     return APInt::getSignMask(BitWidth);
5263 
5264   switch (I.getPredicate()) {
5265   // For a UGT comparison, we don't care about any bits that
5266   // correspond to the trailing ones of the comparand.  The value of these
5267   // bits doesn't impact the outcome of the comparison, because any value
5268   // greater than the RHS must differ in a bit higher than these due to carry.
5269   case ICmpInst::ICMP_UGT:
5270     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5271 
5272   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5273   // Any value less than the RHS must differ in a higher bit because of carries.
5274   case ICmpInst::ICMP_ULT:
5275     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5276 
5277   default:
5278     return APInt::getAllOnes(BitWidth);
5279   }
5280 }
5281 
5282 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5283 /// should be swapped.
5284 /// The decision is based on how many times these two operands are reused
5285 /// as subtract operands and their positions in those instructions.
5286 /// The rationale is that several architectures use the same instruction for
5287 /// both subtract and cmp. Thus, it is better if the order of those operands
5288 /// match.
5289 /// \return true if Op0 and Op1 should be swapped.
5290 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5291   // Filter out pointer values as those cannot appear directly in subtract.
5292   // FIXME: we may want to go through inttoptrs or bitcasts.
5293   if (Op0->getType()->isPointerTy())
5294     return false;
5295   // If a subtract already has the same operands as a compare, swapping would be
5296   // bad. If a subtract has the same operands as a compare but in reverse order,
5297   // then swapping is good.
5298   int GoodToSwap = 0;
5299   for (const User *U : Op0->users()) {
5300     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5301       GoodToSwap++;
5302     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5303       GoodToSwap--;
5304   }
5305   return GoodToSwap > 0;
5306 }
5307 
5308 /// Check that one use is in the same block as the definition and all
5309 /// other uses are in blocks dominated by a given block.
5310 ///
5311 /// \param DI Definition
5312 /// \param UI Use
5313 /// \param DB Block that must dominate all uses of \p DI outside
5314 ///           the parent block
5315 /// \return true when \p UI is the only use of \p DI in the parent block
5316 /// and all other uses of \p DI are in blocks dominated by \p DB.
5317 ///
5318 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5319                                         const Instruction *UI,
5320                                         const BasicBlock *DB) const {
5321   assert(DI && UI && "Instruction not defined\n");
5322   // Ignore incomplete definitions.
5323   if (!DI->getParent())
5324     return false;
5325   // DI and UI must be in the same block.
5326   if (DI->getParent() != UI->getParent())
5327     return false;
5328   // Protect from self-referencing blocks.
5329   if (DI->getParent() == DB)
5330     return false;
5331   for (const User *U : DI->users()) {
5332     auto *Usr = cast<Instruction>(U);
5333     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5334       return false;
5335   }
5336   return true;
5337 }
5338 
5339 /// Return true when the instruction sequence within a block is select-cmp-br.
5340 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5341   const BasicBlock *BB = SI->getParent();
5342   if (!BB)
5343     return false;
5344   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5345   if (!BI || BI->getNumSuccessors() != 2)
5346     return false;
5347   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5348   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5349     return false;
5350   return true;
5351 }
5352 
5353 /// True when a select result is replaced by one of its operands
5354 /// in select-icmp sequence. This will eventually result in the elimination
5355 /// of the select.
5356 ///
5357 /// \param SI    Select instruction
5358 /// \param Icmp  Compare instruction
5359 /// \param SIOpd Operand that replaces the select
5360 ///
5361 /// Notes:
5362 /// - The replacement is global and requires dominator information
5363 /// - The caller is responsible for the actual replacement
5364 ///
5365 /// Example:
5366 ///
5367 /// entry:
5368 ///  %4 = select i1 %3, %C* %0, %C* null
5369 ///  %5 = icmp eq %C* %4, null
5370 ///  br i1 %5, label %9, label %7
5371 ///  ...
5372 ///  ; <label>:7                                       ; preds = %entry
5373 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5374 ///  ...
5375 ///
5376 /// can be transformed to
5377 ///
5378 ///  %5 = icmp eq %C* %0, null
5379 ///  %6 = select i1 %3, i1 %5, i1 true
5380 ///  br i1 %6, label %9, label %7
5381 ///  ...
5382 ///  ; <label>:7                                       ; preds = %entry
5383 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5384 ///
5385 /// Similar when the first operand of the select is a constant or/and
5386 /// the compare is for not equal rather than equal.
5387 ///
5388 /// NOTE: The function is only called when the select and compare constants
5389 /// are equal, the optimization can work only for EQ predicates. This is not a
5390 /// major restriction since a NE compare should be 'normalized' to an equal
5391 /// compare, which usually happens in the combiner and test case
5392 /// select-cmp-br.ll checks for it.
5393 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5394                                                  const ICmpInst *Icmp,
5395                                                  const unsigned SIOpd) {
5396   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5397   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5398     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5399     // The check for the single predecessor is not the best that can be
5400     // done. But it protects efficiently against cases like when SI's
5401     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5402     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5403     // replaced can be reached on either path. So the uniqueness check
5404     // guarantees that the path all uses of SI (outside SI's parent) are on
5405     // is disjoint from all other paths out of SI. But that information
5406     // is more expensive to compute, and the trade-off here is in favor
5407     // of compile-time. It should also be noticed that we check for a single
5408     // predecessor and not only uniqueness. This to handle the situation when
5409     // Succ and Succ1 points to the same basic block.
5410     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5411       NumSel++;
5412       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5413       return true;
5414     }
5415   }
5416   return false;
5417 }
5418 
5419 /// Try to fold the comparison based on range information we can get by checking
5420 /// whether bits are known to be zero or one in the inputs.
5421 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5422   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5423   Type *Ty = Op0->getType();
5424   ICmpInst::Predicate Pred = I.getPredicate();
5425 
5426   // Get scalar or pointer size.
5427   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5428                           ? Ty->getScalarSizeInBits()
5429                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5430 
5431   if (!BitWidth)
5432     return nullptr;
5433 
5434   KnownBits Op0Known(BitWidth);
5435   KnownBits Op1Known(BitWidth);
5436 
5437   if (SimplifyDemandedBits(&I, 0,
5438                            getDemandedBitsLHSMask(I, BitWidth),
5439                            Op0Known, 0))
5440     return &I;
5441 
5442   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5443     return &I;
5444 
5445   // Given the known and unknown bits, compute a range that the LHS could be
5446   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5447   // EQ and NE we use unsigned values.
5448   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5449   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5450   if (I.isSigned()) {
5451     Op0Min = Op0Known.getSignedMinValue();
5452     Op0Max = Op0Known.getSignedMaxValue();
5453     Op1Min = Op1Known.getSignedMinValue();
5454     Op1Max = Op1Known.getSignedMaxValue();
5455   } else {
5456     Op0Min = Op0Known.getMinValue();
5457     Op0Max = Op0Known.getMaxValue();
5458     Op1Min = Op1Known.getMinValue();
5459     Op1Max = Op1Known.getMaxValue();
5460   }
5461 
5462   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5463   // out that the LHS or RHS is a constant. Constant fold this now, so that
5464   // code below can assume that Min != Max.
5465   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5466     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5467   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5468     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5469 
5470   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5471   // min/max canonical compare with some other compare. That could lead to
5472   // conflict with select canonicalization and infinite looping.
5473   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5474   auto isMinMaxCmp = [&](Instruction &Cmp) {
5475     if (!Cmp.hasOneUse())
5476       return false;
5477     Value *A, *B;
5478     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5479     if (!SelectPatternResult::isMinOrMax(SPF))
5480       return false;
5481     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5482            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5483   };
5484   if (!isMinMaxCmp(I)) {
5485     switch (Pred) {
5486     default:
5487       break;
5488     case ICmpInst::ICMP_ULT: {
5489       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5490         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5491       const APInt *CmpC;
5492       if (match(Op1, m_APInt(CmpC))) {
5493         // A <u C -> A == C-1 if min(A)+1 == C
5494         if (*CmpC == Op0Min + 1)
5495           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5496                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5497         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5498         // exceeds the log2 of C.
5499         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5500           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5501                               Constant::getNullValue(Op1->getType()));
5502       }
5503       break;
5504     }
5505     case ICmpInst::ICMP_UGT: {
5506       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5507         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5508       const APInt *CmpC;
5509       if (match(Op1, m_APInt(CmpC))) {
5510         // A >u C -> A == C+1 if max(a)-1 == C
5511         if (*CmpC == Op0Max - 1)
5512           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5513                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5514         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5515         // exceeds the log2 of C.
5516         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5517           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5518                               Constant::getNullValue(Op1->getType()));
5519       }
5520       break;
5521     }
5522     case ICmpInst::ICMP_SLT: {
5523       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5524         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5525       const APInt *CmpC;
5526       if (match(Op1, m_APInt(CmpC))) {
5527         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5528           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5529                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5530       }
5531       break;
5532     }
5533     case ICmpInst::ICMP_SGT: {
5534       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5535         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5536       const APInt *CmpC;
5537       if (match(Op1, m_APInt(CmpC))) {
5538         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5539           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5540                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5541       }
5542       break;
5543     }
5544     }
5545   }
5546 
5547   // Based on the range information we know about the LHS, see if we can
5548   // simplify this comparison.  For example, (x&4) < 8 is always true.
5549   switch (Pred) {
5550   default:
5551     llvm_unreachable("Unknown icmp opcode!");
5552   case ICmpInst::ICMP_EQ:
5553   case ICmpInst::ICMP_NE: {
5554     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5555       return replaceInstUsesWith(
5556           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5557 
5558     // If all bits are known zero except for one, then we know at most one bit
5559     // is set. If the comparison is against zero, then this is a check to see if
5560     // *that* bit is set.
5561     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5562     if (Op1Known.isZero()) {
5563       // If the LHS is an AND with the same constant, look through it.
5564       Value *LHS = nullptr;
5565       const APInt *LHSC;
5566       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5567           *LHSC != Op0KnownZeroInverted)
5568         LHS = Op0;
5569 
5570       Value *X;
5571       const APInt *C1;
5572       if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) {
5573         Type *XTy = X->getType();
5574         unsigned Log2C1 = C1->countTrailingZeros();
5575         APInt C2 = Op0KnownZeroInverted;
5576         APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1;
5577         if (C2Pow2.isPowerOf2()) {
5578           // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
5579           // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
5580           // ((C1 << X) & C2) != 0 -> X  < (Log2(C2+C1) - Log2(C1))
5581           unsigned Log2C2 = C2Pow2.countTrailingZeros();
5582           auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1);
5583           auto NewPred =
5584               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5585           return new ICmpInst(NewPred, X, CmpC);
5586         }
5587       }
5588     }
5589     break;
5590   }
5591   case ICmpInst::ICMP_ULT: {
5592     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5593       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5594     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5595       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5596     break;
5597   }
5598   case ICmpInst::ICMP_UGT: {
5599     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5600       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5601     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5602       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5603     break;
5604   }
5605   case ICmpInst::ICMP_SLT: {
5606     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5607       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5608     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5609       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5610     break;
5611   }
5612   case ICmpInst::ICMP_SGT: {
5613     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5614       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5615     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5616       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5617     break;
5618   }
5619   case ICmpInst::ICMP_SGE:
5620     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5621     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5622       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5623     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5624       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5625     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5626       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5627     break;
5628   case ICmpInst::ICMP_SLE:
5629     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5630     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5631       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5632     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5633       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5634     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5635       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5636     break;
5637   case ICmpInst::ICMP_UGE:
5638     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5639     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5640       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5641     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5642       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5643     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5644       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5645     break;
5646   case ICmpInst::ICMP_ULE:
5647     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5648     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5649       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5650     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5651       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5652     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5653       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5654     break;
5655   }
5656 
5657   // Turn a signed comparison into an unsigned one if both operands are known to
5658   // have the same sign.
5659   if (I.isSigned() &&
5660       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5661        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5662     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5663 
5664   return nullptr;
5665 }
5666 
5667 /// If one operand of an icmp is effectively a bool (value range of {0,1}),
5668 /// then try to reduce patterns based on that limit.
5669 static Instruction *foldICmpUsingBoolRange(ICmpInst &I,
5670                                            InstCombiner::BuilderTy &Builder) {
5671   Value *X, *Y;
5672   ICmpInst::Predicate Pred;
5673 
5674   // X must be 0 and bool must be true for "ULT":
5675   // X <u (zext i1 Y) --> (X == 0) & Y
5676   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) &&
5677       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT)
5678     return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y);
5679 
5680   // X must be 0 or bool must be true for "ULE":
5681   // X <=u (sext i1 Y) --> (X == 0) | Y
5682   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) &&
5683       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE)
5684     return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y);
5685 
5686   return nullptr;
5687 }
5688 
5689 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5690 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5691                                                        Constant *C) {
5692   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5693          "Only for relational integer predicates.");
5694 
5695   Type *Type = C->getType();
5696   bool IsSigned = ICmpInst::isSigned(Pred);
5697 
5698   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5699   bool WillIncrement =
5700       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5701 
5702   // Check if the constant operand can be safely incremented/decremented
5703   // without overflowing/underflowing.
5704   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5705     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5706   };
5707 
5708   Constant *SafeReplacementConstant = nullptr;
5709   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5710     // Bail out if the constant can't be safely incremented/decremented.
5711     if (!ConstantIsOk(CI))
5712       return llvm::None;
5713   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5714     unsigned NumElts = FVTy->getNumElements();
5715     for (unsigned i = 0; i != NumElts; ++i) {
5716       Constant *Elt = C->getAggregateElement(i);
5717       if (!Elt)
5718         return llvm::None;
5719 
5720       if (isa<UndefValue>(Elt))
5721         continue;
5722 
5723       // Bail out if we can't determine if this constant is min/max or if we
5724       // know that this constant is min/max.
5725       auto *CI = dyn_cast<ConstantInt>(Elt);
5726       if (!CI || !ConstantIsOk(CI))
5727         return llvm::None;
5728 
5729       if (!SafeReplacementConstant)
5730         SafeReplacementConstant = CI;
5731     }
5732   } else {
5733     // ConstantExpr?
5734     return llvm::None;
5735   }
5736 
5737   // It may not be safe to change a compare predicate in the presence of
5738   // undefined elements, so replace those elements with the first safe constant
5739   // that we found.
5740   // TODO: in case of poison, it is safe; let's replace undefs only.
5741   if (C->containsUndefOrPoisonElement()) {
5742     assert(SafeReplacementConstant && "Replacement constant not set");
5743     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5744   }
5745 
5746   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5747 
5748   // Increment or decrement the constant.
5749   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5750   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5751 
5752   return std::make_pair(NewPred, NewC);
5753 }
5754 
5755 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5756 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5757 /// allows them to be folded in visitICmpInst.
5758 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5759   ICmpInst::Predicate Pred = I.getPredicate();
5760   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5761       InstCombiner::isCanonicalPredicate(Pred))
5762     return nullptr;
5763 
5764   Value *Op0 = I.getOperand(0);
5765   Value *Op1 = I.getOperand(1);
5766   auto *Op1C = dyn_cast<Constant>(Op1);
5767   if (!Op1C)
5768     return nullptr;
5769 
5770   auto FlippedStrictness =
5771       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5772   if (!FlippedStrictness)
5773     return nullptr;
5774 
5775   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5776 }
5777 
5778 /// If we have a comparison with a non-canonical predicate, if we can update
5779 /// all the users, invert the predicate and adjust all the users.
5780 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5781   // Is the predicate already canonical?
5782   CmpInst::Predicate Pred = I.getPredicate();
5783   if (InstCombiner::isCanonicalPredicate(Pred))
5784     return nullptr;
5785 
5786   // Can all users be adjusted to predicate inversion?
5787   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5788     return nullptr;
5789 
5790   // Ok, we can canonicalize comparison!
5791   // Let's first invert the comparison's predicate.
5792   I.setPredicate(CmpInst::getInversePredicate(Pred));
5793   I.setName(I.getName() + ".not");
5794 
5795   // And, adapt users.
5796   freelyInvertAllUsersOf(&I);
5797 
5798   return &I;
5799 }
5800 
5801 /// Integer compare with boolean values can always be turned into bitwise ops.
5802 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5803                                          InstCombiner::BuilderTy &Builder) {
5804   Value *A = I.getOperand(0), *B = I.getOperand(1);
5805   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5806 
5807   // A boolean compared to true/false can be simplified to Op0/true/false in
5808   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5809   // Cases not handled by InstSimplify are always 'not' of Op0.
5810   if (match(B, m_Zero())) {
5811     switch (I.getPredicate()) {
5812       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5813       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5814       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5815         return BinaryOperator::CreateNot(A);
5816       default:
5817         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5818     }
5819   } else if (match(B, m_One())) {
5820     switch (I.getPredicate()) {
5821       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5822       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5823       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5824         return BinaryOperator::CreateNot(A);
5825       default:
5826         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5827     }
5828   }
5829 
5830   switch (I.getPredicate()) {
5831   default:
5832     llvm_unreachable("Invalid icmp instruction!");
5833   case ICmpInst::ICMP_EQ:
5834     // icmp eq i1 A, B -> ~(A ^ B)
5835     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5836 
5837   case ICmpInst::ICMP_NE:
5838     // icmp ne i1 A, B -> A ^ B
5839     return BinaryOperator::CreateXor(A, B);
5840 
5841   case ICmpInst::ICMP_UGT:
5842     // icmp ugt -> icmp ult
5843     std::swap(A, B);
5844     LLVM_FALLTHROUGH;
5845   case ICmpInst::ICMP_ULT:
5846     // icmp ult i1 A, B -> ~A & B
5847     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5848 
5849   case ICmpInst::ICMP_SGT:
5850     // icmp sgt -> icmp slt
5851     std::swap(A, B);
5852     LLVM_FALLTHROUGH;
5853   case ICmpInst::ICMP_SLT:
5854     // icmp slt i1 A, B -> A & ~B
5855     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5856 
5857   case ICmpInst::ICMP_UGE:
5858     // icmp uge -> icmp ule
5859     std::swap(A, B);
5860     LLVM_FALLTHROUGH;
5861   case ICmpInst::ICMP_ULE:
5862     // icmp ule i1 A, B -> ~A | B
5863     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5864 
5865   case ICmpInst::ICMP_SGE:
5866     // icmp sge -> icmp sle
5867     std::swap(A, B);
5868     LLVM_FALLTHROUGH;
5869   case ICmpInst::ICMP_SLE:
5870     // icmp sle i1 A, B -> A | ~B
5871     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5872   }
5873 }
5874 
5875 // Transform pattern like:
5876 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5877 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5878 // Into:
5879 //   (X l>> Y) != 0
5880 //   (X l>> Y) == 0
5881 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5882                                             InstCombiner::BuilderTy &Builder) {
5883   ICmpInst::Predicate Pred, NewPred;
5884   Value *X, *Y;
5885   if (match(&Cmp,
5886             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5887     switch (Pred) {
5888     case ICmpInst::ICMP_ULE:
5889       NewPred = ICmpInst::ICMP_NE;
5890       break;
5891     case ICmpInst::ICMP_UGT:
5892       NewPred = ICmpInst::ICMP_EQ;
5893       break;
5894     default:
5895       return nullptr;
5896     }
5897   } else if (match(&Cmp, m_c_ICmp(Pred,
5898                                   m_OneUse(m_CombineOr(
5899                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5900                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5901                                             m_AllOnes()))),
5902                                   m_Value(X)))) {
5903     // The variant with 'add' is not canonical, (the variant with 'not' is)
5904     // we only get it because it has extra uses, and can't be canonicalized,
5905 
5906     switch (Pred) {
5907     case ICmpInst::ICMP_ULT:
5908       NewPred = ICmpInst::ICMP_NE;
5909       break;
5910     case ICmpInst::ICMP_UGE:
5911       NewPred = ICmpInst::ICMP_EQ;
5912       break;
5913     default:
5914       return nullptr;
5915     }
5916   } else
5917     return nullptr;
5918 
5919   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5920   Constant *Zero = Constant::getNullValue(NewX->getType());
5921   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5922 }
5923 
5924 static Instruction *foldVectorCmp(CmpInst &Cmp,
5925                                   InstCombiner::BuilderTy &Builder) {
5926   const CmpInst::Predicate Pred = Cmp.getPredicate();
5927   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5928   Value *V1, *V2;
5929   ArrayRef<int> M;
5930   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5931     return nullptr;
5932 
5933   // If both arguments of the cmp are shuffles that use the same mask and
5934   // shuffle within a single vector, move the shuffle after the cmp:
5935   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5936   Type *V1Ty = V1->getType();
5937   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5938       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5939     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5940     return new ShuffleVectorInst(NewCmp, M);
5941   }
5942 
5943   // Try to canonicalize compare with splatted operand and splat constant.
5944   // TODO: We could generalize this for more than splats. See/use the code in
5945   //       InstCombiner::foldVectorBinop().
5946   Constant *C;
5947   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5948     return nullptr;
5949 
5950   // Length-changing splats are ok, so adjust the constants as needed:
5951   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5952   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5953   int MaskSplatIndex;
5954   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5955     // We allow undefs in matching, but this transform removes those for safety.
5956     // Demanded elements analysis should be able to recover some/all of that.
5957     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5958                                  ScalarC);
5959     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5960     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5961     return new ShuffleVectorInst(NewCmp, NewM);
5962   }
5963 
5964   return nullptr;
5965 }
5966 
5967 // extract(uadd.with.overflow(A, B), 0) ult A
5968 //  -> extract(uadd.with.overflow(A, B), 1)
5969 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5970   CmpInst::Predicate Pred = I.getPredicate();
5971   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5972 
5973   Value *UAddOv;
5974   Value *A, *B;
5975   auto UAddOvResultPat = m_ExtractValue<0>(
5976       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5977   if (match(Op0, UAddOvResultPat) &&
5978       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5979        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5980         (match(A, m_One()) || match(B, m_One()))) ||
5981        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5982         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5983     // extract(uadd.with.overflow(A, B), 0) < A
5984     // extract(uadd.with.overflow(A, 1), 0) == 0
5985     // extract(uadd.with.overflow(A, -1), 0) != -1
5986     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5987   else if (match(Op1, UAddOvResultPat) &&
5988            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5989     // A > extract(uadd.with.overflow(A, B), 0)
5990     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5991   else
5992     return nullptr;
5993 
5994   return ExtractValueInst::Create(UAddOv, 1);
5995 }
5996 
5997 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5998   if (!I.getOperand(0)->getType()->isPointerTy() ||
5999       NullPointerIsDefined(
6000           I.getParent()->getParent(),
6001           I.getOperand(0)->getType()->getPointerAddressSpace())) {
6002     return nullptr;
6003   }
6004   Instruction *Op;
6005   if (match(I.getOperand(0), m_Instruction(Op)) &&
6006       match(I.getOperand(1), m_Zero()) &&
6007       Op->isLaunderOrStripInvariantGroup()) {
6008     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
6009                             Op->getOperand(0), I.getOperand(1));
6010   }
6011   return nullptr;
6012 }
6013 
6014 /// This function folds patterns produced by lowering of reduce idioms, such as
6015 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
6016 /// attempts to generate fewer number of scalar comparisons instead of vector
6017 /// comparisons when possible.
6018 static Instruction *foldReductionIdiom(ICmpInst &I,
6019                                        InstCombiner::BuilderTy &Builder,
6020                                        const DataLayout &DL) {
6021   if (I.getType()->isVectorTy())
6022     return nullptr;
6023   ICmpInst::Predicate OuterPred, InnerPred;
6024   Value *LHS, *RHS;
6025 
6026   // Match lowering of @llvm.vector.reduce.and. Turn
6027   ///   %vec_ne = icmp ne <8 x i8> %lhs, %rhs
6028   ///   %scalar_ne = bitcast <8 x i1> %vec_ne to i8
6029   ///   %res = icmp <pred> i8 %scalar_ne, 0
6030   ///
6031   /// into
6032   ///
6033   ///   %lhs.scalar = bitcast <8 x i8> %lhs to i64
6034   ///   %rhs.scalar = bitcast <8 x i8> %rhs to i64
6035   ///   %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
6036   ///
6037   /// for <pred> in {ne, eq}.
6038   if (!match(&I, m_ICmp(OuterPred,
6039                         m_OneUse(m_BitCast(m_OneUse(
6040                             m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
6041                         m_Zero())))
6042     return nullptr;
6043   auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
6044   if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
6045     return nullptr;
6046   unsigned NumBits =
6047       LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
6048   // TODO: Relax this to "not wider than max legal integer type"?
6049   if (!DL.isLegalInteger(NumBits))
6050     return nullptr;
6051 
6052   if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
6053     auto *ScalarTy = Builder.getIntNTy(NumBits);
6054     LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
6055     RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
6056     return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
6057                             I.getName());
6058   }
6059 
6060   return nullptr;
6061 }
6062 
6063 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
6064   bool Changed = false;
6065   const SimplifyQuery Q = SQ.getWithInstruction(&I);
6066   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6067   unsigned Op0Cplxity = getComplexity(Op0);
6068   unsigned Op1Cplxity = getComplexity(Op1);
6069 
6070   /// Orders the operands of the compare so that they are listed from most
6071   /// complex to least complex.  This puts constants before unary operators,
6072   /// before binary operators.
6073   if (Op0Cplxity < Op1Cplxity ||
6074       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
6075     I.swapOperands();
6076     std::swap(Op0, Op1);
6077     Changed = true;
6078   }
6079 
6080   if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
6081     return replaceInstUsesWith(I, V);
6082 
6083   // Comparing -val or val with non-zero is the same as just comparing val
6084   // ie, abs(val) != 0 -> val != 0
6085   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
6086     Value *Cond, *SelectTrue, *SelectFalse;
6087     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
6088                             m_Value(SelectFalse)))) {
6089       if (Value *V = dyn_castNegVal(SelectTrue)) {
6090         if (V == SelectFalse)
6091           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6092       }
6093       else if (Value *V = dyn_castNegVal(SelectFalse)) {
6094         if (V == SelectTrue)
6095           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6096       }
6097     }
6098   }
6099 
6100   if (Op0->getType()->isIntOrIntVectorTy(1))
6101     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
6102       return Res;
6103 
6104   if (Instruction *Res = canonicalizeCmpWithConstant(I))
6105     return Res;
6106 
6107   if (Instruction *Res = canonicalizeICmpPredicate(I))
6108     return Res;
6109 
6110   if (Instruction *Res = foldICmpWithConstant(I))
6111     return Res;
6112 
6113   if (Instruction *Res = foldICmpWithDominatingICmp(I))
6114     return Res;
6115 
6116   if (Instruction *Res = foldICmpUsingBoolRange(I, Builder))
6117     return Res;
6118 
6119   if (Instruction *Res = foldICmpUsingKnownBits(I))
6120     return Res;
6121 
6122   // Test if the ICmpInst instruction is used exclusively by a select as
6123   // part of a minimum or maximum operation. If so, refrain from doing
6124   // any other folding. This helps out other analyses which understand
6125   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6126   // and CodeGen. And in this case, at least one of the comparison
6127   // operands has at least one user besides the compare (the select),
6128   // which would often largely negate the benefit of folding anyway.
6129   //
6130   // Do the same for the other patterns recognized by matchSelectPattern.
6131   if (I.hasOneUse())
6132     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6133       Value *A, *B;
6134       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6135       if (SPR.Flavor != SPF_UNKNOWN)
6136         return nullptr;
6137     }
6138 
6139   // Do this after checking for min/max to prevent infinite looping.
6140   if (Instruction *Res = foldICmpWithZero(I))
6141     return Res;
6142 
6143   // FIXME: We only do this after checking for min/max to prevent infinite
6144   // looping caused by a reverse canonicalization of these patterns for min/max.
6145   // FIXME: The organization of folds is a mess. These would naturally go into
6146   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
6147   // down here after the min/max restriction.
6148   ICmpInst::Predicate Pred = I.getPredicate();
6149   const APInt *C;
6150   if (match(Op1, m_APInt(C))) {
6151     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
6152     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
6153       Constant *Zero = Constant::getNullValue(Op0->getType());
6154       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
6155     }
6156 
6157     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
6158     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
6159       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
6160       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
6161     }
6162   }
6163 
6164   // The folds in here may rely on wrapping flags and special constants, so
6165   // they can break up min/max idioms in some cases but not seemingly similar
6166   // patterns.
6167   // FIXME: It may be possible to enhance select folding to make this
6168   //        unnecessary. It may also be moot if we canonicalize to min/max
6169   //        intrinsics.
6170   if (Instruction *Res = foldICmpBinOp(I, Q))
6171     return Res;
6172 
6173   if (Instruction *Res = foldICmpInstWithConstant(I))
6174     return Res;
6175 
6176   // Try to match comparison as a sign bit test. Intentionally do this after
6177   // foldICmpInstWithConstant() to potentially let other folds to happen first.
6178   if (Instruction *New = foldSignBitTest(I))
6179     return New;
6180 
6181   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
6182     return Res;
6183 
6184   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6185   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6186     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6187       return NI;
6188   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6189     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6190       return NI;
6191 
6192   if (auto *SI = dyn_cast<SelectInst>(Op0))
6193     if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I))
6194       return NI;
6195   if (auto *SI = dyn_cast<SelectInst>(Op1))
6196     if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I))
6197       return NI;
6198 
6199   // Try to optimize equality comparisons against alloca-based pointers.
6200   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6201     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6202     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6203       if (Instruction *New = foldAllocaCmp(I, Alloca))
6204         return New;
6205     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6206       if (Instruction *New = foldAllocaCmp(I, Alloca))
6207         return New;
6208   }
6209 
6210   if (Instruction *Res = foldICmpBitCast(I))
6211     return Res;
6212 
6213   // TODO: Hoist this above the min/max bailout.
6214   if (Instruction *R = foldICmpWithCastOp(I))
6215     return R;
6216 
6217   if (Instruction *Res = foldICmpWithMinMax(I))
6218     return Res;
6219 
6220   {
6221     Value *A, *B;
6222     // Transform (A & ~B) == 0 --> (A & B) != 0
6223     // and       (A & ~B) != 0 --> (A & B) == 0
6224     // if A is a power of 2.
6225     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6226         match(Op1, m_Zero()) &&
6227         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6228       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6229                           Op1);
6230 
6231     // ~X < ~Y --> Y < X
6232     // ~X < C -->  X > ~C
6233     if (match(Op0, m_Not(m_Value(A)))) {
6234       if (match(Op1, m_Not(m_Value(B))))
6235         return new ICmpInst(I.getPredicate(), B, A);
6236 
6237       const APInt *C;
6238       if (match(Op1, m_APInt(C)))
6239         return new ICmpInst(I.getSwappedPredicate(), A,
6240                             ConstantInt::get(Op1->getType(), ~(*C)));
6241     }
6242 
6243     Instruction *AddI = nullptr;
6244     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6245                                      m_Instruction(AddI))) &&
6246         isa<IntegerType>(A->getType())) {
6247       Value *Result;
6248       Constant *Overflow;
6249       // m_UAddWithOverflow can match patterns that do not include  an explicit
6250       // "add" instruction, so check the opcode of the matched op.
6251       if (AddI->getOpcode() == Instruction::Add &&
6252           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6253                                 Result, Overflow)) {
6254         replaceInstUsesWith(*AddI, Result);
6255         eraseInstFromFunction(*AddI);
6256         return replaceInstUsesWith(I, Overflow);
6257       }
6258     }
6259 
6260     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6261     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6262       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6263         return R;
6264     }
6265     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6266       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6267         return R;
6268     }
6269   }
6270 
6271   if (Instruction *Res = foldICmpEquality(I))
6272     return Res;
6273 
6274   if (Instruction *Res = foldICmpOfUAddOv(I))
6275     return Res;
6276 
6277   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6278   // an i1 which indicates whether or not we successfully did the swap.
6279   //
6280   // Replace comparisons between the old value and the expected value with the
6281   // indicator that 'cmpxchg' returns.
6282   //
6283   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6284   // spuriously fail.  In those cases, the old value may equal the expected
6285   // value but it is possible for the swap to not occur.
6286   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6287     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6288       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6289         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6290             !ACXI->isWeak())
6291           return ExtractValueInst::Create(ACXI, 1);
6292 
6293   {
6294     Value *X;
6295     const APInt *C;
6296     // icmp X+Cst, X
6297     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6298       return foldICmpAddOpConst(X, *C, I.getPredicate());
6299 
6300     // icmp X, X+Cst
6301     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6302       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6303   }
6304 
6305   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6306     return Res;
6307 
6308   if (I.getType()->isVectorTy())
6309     if (Instruction *Res = foldVectorCmp(I, Builder))
6310       return Res;
6311 
6312   if (Instruction *Res = foldICmpInvariantGroup(I))
6313     return Res;
6314 
6315   if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
6316     return Res;
6317 
6318   return Changed ? &I : nullptr;
6319 }
6320 
6321 /// Fold fcmp ([us]itofp x, cst) if possible.
6322 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6323                                                     Instruction *LHSI,
6324                                                     Constant *RHSC) {
6325   if (!isa<ConstantFP>(RHSC)) return nullptr;
6326   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6327 
6328   // Get the width of the mantissa.  We don't want to hack on conversions that
6329   // might lose information from the integer, e.g. "i64 -> float"
6330   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6331   if (MantissaWidth == -1) return nullptr;  // Unknown.
6332 
6333   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6334 
6335   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6336 
6337   if (I.isEquality()) {
6338     FCmpInst::Predicate P = I.getPredicate();
6339     bool IsExact = false;
6340     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6341     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6342 
6343     // If the floating point constant isn't an integer value, we know if we will
6344     // ever compare equal / not equal to it.
6345     if (!IsExact) {
6346       // TODO: Can never be -0.0 and other non-representable values
6347       APFloat RHSRoundInt(RHS);
6348       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6349       if (RHS != RHSRoundInt) {
6350         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6351           return replaceInstUsesWith(I, Builder.getFalse());
6352 
6353         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6354         return replaceInstUsesWith(I, Builder.getTrue());
6355       }
6356     }
6357 
6358     // TODO: If the constant is exactly representable, is it always OK to do
6359     // equality compares as integer?
6360   }
6361 
6362   // Check to see that the input is converted from an integer type that is small
6363   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6364   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6365   unsigned InputSize = IntTy->getScalarSizeInBits();
6366 
6367   // Following test does NOT adjust InputSize downwards for signed inputs,
6368   // because the most negative value still requires all the mantissa bits
6369   // to distinguish it from one less than that value.
6370   if ((int)InputSize > MantissaWidth) {
6371     // Conversion would lose accuracy. Check if loss can impact comparison.
6372     int Exp = ilogb(RHS);
6373     if (Exp == APFloat::IEK_Inf) {
6374       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6375       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6376         // Conversion could create infinity.
6377         return nullptr;
6378     } else {
6379       // Note that if RHS is zero or NaN, then Exp is negative
6380       // and first condition is trivially false.
6381       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6382         // Conversion could affect comparison.
6383         return nullptr;
6384     }
6385   }
6386 
6387   // Otherwise, we can potentially simplify the comparison.  We know that it
6388   // will always come through as an integer value and we know the constant is
6389   // not a NAN (it would have been previously simplified).
6390   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6391 
6392   ICmpInst::Predicate Pred;
6393   switch (I.getPredicate()) {
6394   default: llvm_unreachable("Unexpected predicate!");
6395   case FCmpInst::FCMP_UEQ:
6396   case FCmpInst::FCMP_OEQ:
6397     Pred = ICmpInst::ICMP_EQ;
6398     break;
6399   case FCmpInst::FCMP_UGT:
6400   case FCmpInst::FCMP_OGT:
6401     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6402     break;
6403   case FCmpInst::FCMP_UGE:
6404   case FCmpInst::FCMP_OGE:
6405     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6406     break;
6407   case FCmpInst::FCMP_ULT:
6408   case FCmpInst::FCMP_OLT:
6409     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6410     break;
6411   case FCmpInst::FCMP_ULE:
6412   case FCmpInst::FCMP_OLE:
6413     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6414     break;
6415   case FCmpInst::FCMP_UNE:
6416   case FCmpInst::FCMP_ONE:
6417     Pred = ICmpInst::ICMP_NE;
6418     break;
6419   case FCmpInst::FCMP_ORD:
6420     return replaceInstUsesWith(I, Builder.getTrue());
6421   case FCmpInst::FCMP_UNO:
6422     return replaceInstUsesWith(I, Builder.getFalse());
6423   }
6424 
6425   // Now we know that the APFloat is a normal number, zero or inf.
6426 
6427   // See if the FP constant is too large for the integer.  For example,
6428   // comparing an i8 to 300.0.
6429   unsigned IntWidth = IntTy->getScalarSizeInBits();
6430 
6431   if (!LHSUnsigned) {
6432     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6433     // and large values.
6434     APFloat SMax(RHS.getSemantics());
6435     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6436                           APFloat::rmNearestTiesToEven);
6437     if (SMax < RHS) { // smax < 13123.0
6438       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6439           Pred == ICmpInst::ICMP_SLE)
6440         return replaceInstUsesWith(I, Builder.getTrue());
6441       return replaceInstUsesWith(I, Builder.getFalse());
6442     }
6443   } else {
6444     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6445     // +INF and large values.
6446     APFloat UMax(RHS.getSemantics());
6447     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6448                           APFloat::rmNearestTiesToEven);
6449     if (UMax < RHS) { // umax < 13123.0
6450       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6451           Pred == ICmpInst::ICMP_ULE)
6452         return replaceInstUsesWith(I, Builder.getTrue());
6453       return replaceInstUsesWith(I, Builder.getFalse());
6454     }
6455   }
6456 
6457   if (!LHSUnsigned) {
6458     // See if the RHS value is < SignedMin.
6459     APFloat SMin(RHS.getSemantics());
6460     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6461                           APFloat::rmNearestTiesToEven);
6462     if (SMin > RHS) { // smin > 12312.0
6463       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6464           Pred == ICmpInst::ICMP_SGE)
6465         return replaceInstUsesWith(I, Builder.getTrue());
6466       return replaceInstUsesWith(I, Builder.getFalse());
6467     }
6468   } else {
6469     // See if the RHS value is < UnsignedMin.
6470     APFloat UMin(RHS.getSemantics());
6471     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6472                           APFloat::rmNearestTiesToEven);
6473     if (UMin > RHS) { // umin > 12312.0
6474       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6475           Pred == ICmpInst::ICMP_UGE)
6476         return replaceInstUsesWith(I, Builder.getTrue());
6477       return replaceInstUsesWith(I, Builder.getFalse());
6478     }
6479   }
6480 
6481   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6482   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6483   // casting the FP value to the integer value and back, checking for equality.
6484   // Don't do this for zero, because -0.0 is not fractional.
6485   Constant *RHSInt = LHSUnsigned
6486     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6487     : ConstantExpr::getFPToSI(RHSC, IntTy);
6488   if (!RHS.isZero()) {
6489     bool Equal = LHSUnsigned
6490       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6491       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6492     if (!Equal) {
6493       // If we had a comparison against a fractional value, we have to adjust
6494       // the compare predicate and sometimes the value.  RHSC is rounded towards
6495       // zero at this point.
6496       switch (Pred) {
6497       default: llvm_unreachable("Unexpected integer comparison!");
6498       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6499         return replaceInstUsesWith(I, Builder.getTrue());
6500       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6501         return replaceInstUsesWith(I, Builder.getFalse());
6502       case ICmpInst::ICMP_ULE:
6503         // (float)int <= 4.4   --> int <= 4
6504         // (float)int <= -4.4  --> false
6505         if (RHS.isNegative())
6506           return replaceInstUsesWith(I, Builder.getFalse());
6507         break;
6508       case ICmpInst::ICMP_SLE:
6509         // (float)int <= 4.4   --> int <= 4
6510         // (float)int <= -4.4  --> int < -4
6511         if (RHS.isNegative())
6512           Pred = ICmpInst::ICMP_SLT;
6513         break;
6514       case ICmpInst::ICMP_ULT:
6515         // (float)int < -4.4   --> false
6516         // (float)int < 4.4    --> int <= 4
6517         if (RHS.isNegative())
6518           return replaceInstUsesWith(I, Builder.getFalse());
6519         Pred = ICmpInst::ICMP_ULE;
6520         break;
6521       case ICmpInst::ICMP_SLT:
6522         // (float)int < -4.4   --> int < -4
6523         // (float)int < 4.4    --> int <= 4
6524         if (!RHS.isNegative())
6525           Pred = ICmpInst::ICMP_SLE;
6526         break;
6527       case ICmpInst::ICMP_UGT:
6528         // (float)int > 4.4    --> int > 4
6529         // (float)int > -4.4   --> true
6530         if (RHS.isNegative())
6531           return replaceInstUsesWith(I, Builder.getTrue());
6532         break;
6533       case ICmpInst::ICMP_SGT:
6534         // (float)int > 4.4    --> int > 4
6535         // (float)int > -4.4   --> int >= -4
6536         if (RHS.isNegative())
6537           Pred = ICmpInst::ICMP_SGE;
6538         break;
6539       case ICmpInst::ICMP_UGE:
6540         // (float)int >= -4.4   --> true
6541         // (float)int >= 4.4    --> int > 4
6542         if (RHS.isNegative())
6543           return replaceInstUsesWith(I, Builder.getTrue());
6544         Pred = ICmpInst::ICMP_UGT;
6545         break;
6546       case ICmpInst::ICMP_SGE:
6547         // (float)int >= -4.4   --> int >= -4
6548         // (float)int >= 4.4    --> int > 4
6549         if (!RHS.isNegative())
6550           Pred = ICmpInst::ICMP_SGT;
6551         break;
6552       }
6553     }
6554   }
6555 
6556   // Lower this FP comparison into an appropriate integer version of the
6557   // comparison.
6558   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6559 }
6560 
6561 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6562 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6563                                               Constant *RHSC) {
6564   // When C is not 0.0 and infinities are not allowed:
6565   // (C / X) < 0.0 is a sign-bit test of X
6566   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6567   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6568   //
6569   // Proof:
6570   // Multiply (C / X) < 0.0 by X * X / C.
6571   // - X is non zero, if it is the flag 'ninf' is violated.
6572   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6573   //   the predicate. C is also non zero by definition.
6574   //
6575   // Thus X * X / C is non zero and the transformation is valid. [qed]
6576 
6577   FCmpInst::Predicate Pred = I.getPredicate();
6578 
6579   // Check that predicates are valid.
6580   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6581       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6582     return nullptr;
6583 
6584   // Check that RHS operand is zero.
6585   if (!match(RHSC, m_AnyZeroFP()))
6586     return nullptr;
6587 
6588   // Check fastmath flags ('ninf').
6589   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6590     return nullptr;
6591 
6592   // Check the properties of the dividend. It must not be zero to avoid a
6593   // division by zero (see Proof).
6594   const APFloat *C;
6595   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6596     return nullptr;
6597 
6598   if (C->isZero())
6599     return nullptr;
6600 
6601   // Get swapped predicate if necessary.
6602   if (C->isNegative())
6603     Pred = I.getSwappedPredicate();
6604 
6605   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6606 }
6607 
6608 /// Optimize fabs(X) compared with zero.
6609 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6610   Value *X;
6611   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6612       !match(I.getOperand(1), m_PosZeroFP()))
6613     return nullptr;
6614 
6615   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6616     I->setPredicate(P);
6617     return IC.replaceOperand(*I, 0, X);
6618   };
6619 
6620   switch (I.getPredicate()) {
6621   case FCmpInst::FCMP_UGE:
6622   case FCmpInst::FCMP_OLT:
6623     // fabs(X) >= 0.0 --> true
6624     // fabs(X) <  0.0 --> false
6625     llvm_unreachable("fcmp should have simplified");
6626 
6627   case FCmpInst::FCMP_OGT:
6628     // fabs(X) > 0.0 --> X != 0.0
6629     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6630 
6631   case FCmpInst::FCMP_UGT:
6632     // fabs(X) u> 0.0 --> X u!= 0.0
6633     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6634 
6635   case FCmpInst::FCMP_OLE:
6636     // fabs(X) <= 0.0 --> X == 0.0
6637     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6638 
6639   case FCmpInst::FCMP_ULE:
6640     // fabs(X) u<= 0.0 --> X u== 0.0
6641     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6642 
6643   case FCmpInst::FCMP_OGE:
6644     // fabs(X) >= 0.0 --> !isnan(X)
6645     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6646     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6647 
6648   case FCmpInst::FCMP_ULT:
6649     // fabs(X) u< 0.0 --> isnan(X)
6650     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6651     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6652 
6653   case FCmpInst::FCMP_OEQ:
6654   case FCmpInst::FCMP_UEQ:
6655   case FCmpInst::FCMP_ONE:
6656   case FCmpInst::FCMP_UNE:
6657   case FCmpInst::FCMP_ORD:
6658   case FCmpInst::FCMP_UNO:
6659     // Look through the fabs() because it doesn't change anything but the sign.
6660     // fabs(X) == 0.0 --> X == 0.0,
6661     // fabs(X) != 0.0 --> X != 0.0
6662     // isnan(fabs(X)) --> isnan(X)
6663     // !isnan(fabs(X) --> !isnan(X)
6664     return replacePredAndOp0(&I, I.getPredicate(), X);
6665 
6666   default:
6667     return nullptr;
6668   }
6669 }
6670 
6671 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) {
6672   CmpInst::Predicate Pred = I.getPredicate();
6673   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6674 
6675   // Canonicalize fneg as Op1.
6676   if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) {
6677     std::swap(Op0, Op1);
6678     Pred = I.getSwappedPredicate();
6679   }
6680 
6681   if (!match(Op1, m_FNeg(m_Specific(Op0))))
6682     return nullptr;
6683 
6684   // Replace the negated operand with 0.0:
6685   // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
6686   Constant *Zero = ConstantFP::getNullValue(Op0->getType());
6687   return new FCmpInst(Pred, Op0, Zero, "", &I);
6688 }
6689 
6690 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6691   bool Changed = false;
6692 
6693   /// Orders the operands of the compare so that they are listed from most
6694   /// complex to least complex.  This puts constants before unary operators,
6695   /// before binary operators.
6696   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6697     I.swapOperands();
6698     Changed = true;
6699   }
6700 
6701   const CmpInst::Predicate Pred = I.getPredicate();
6702   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6703   if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6704                                   SQ.getWithInstruction(&I)))
6705     return replaceInstUsesWith(I, V);
6706 
6707   // Simplify 'fcmp pred X, X'
6708   Type *OpType = Op0->getType();
6709   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6710   if (Op0 == Op1) {
6711     switch (Pred) {
6712       default: break;
6713     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6714     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6715     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6716     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6717       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6718       I.setPredicate(FCmpInst::FCMP_UNO);
6719       I.setOperand(1, Constant::getNullValue(OpType));
6720       return &I;
6721 
6722     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6723     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6724     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6725     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6726       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6727       I.setPredicate(FCmpInst::FCMP_ORD);
6728       I.setOperand(1, Constant::getNullValue(OpType));
6729       return &I;
6730     }
6731   }
6732 
6733   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6734   // then canonicalize the operand to 0.0.
6735   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6736     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6737       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6738 
6739     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6740       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6741   }
6742 
6743   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6744   Value *X, *Y;
6745   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6746     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6747 
6748   if (Instruction *R = foldFCmpFNegCommonOp(I))
6749     return R;
6750 
6751   // Test if the FCmpInst instruction is used exclusively by a select as
6752   // part of a minimum or maximum operation. If so, refrain from doing
6753   // any other folding. This helps out other analyses which understand
6754   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6755   // and CodeGen. And in this case, at least one of the comparison
6756   // operands has at least one user besides the compare (the select),
6757   // which would often largely negate the benefit of folding anyway.
6758   if (I.hasOneUse())
6759     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6760       Value *A, *B;
6761       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6762       if (SPR.Flavor != SPF_UNKNOWN)
6763         return nullptr;
6764     }
6765 
6766   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6767   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6768   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6769     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6770 
6771   // Handle fcmp with instruction LHS and constant RHS.
6772   Instruction *LHSI;
6773   Constant *RHSC;
6774   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6775     switch (LHSI->getOpcode()) {
6776     case Instruction::PHI:
6777       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6778       // block.  If in the same block, we're encouraging jump threading.  If
6779       // not, we are just pessimizing the code by making an i1 phi.
6780       if (LHSI->getParent() == I.getParent())
6781         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6782           return NV;
6783       break;
6784     case Instruction::SIToFP:
6785     case Instruction::UIToFP:
6786       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6787         return NV;
6788       break;
6789     case Instruction::FDiv:
6790       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6791         return NV;
6792       break;
6793     case Instruction::Load:
6794       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6795         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6796           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
6797                   cast<LoadInst>(LHSI), GEP, GV, I))
6798             return Res;
6799       break;
6800   }
6801   }
6802 
6803   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6804     return R;
6805 
6806   if (match(Op0, m_FNeg(m_Value(X)))) {
6807     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6808     Constant *C;
6809     if (match(Op1, m_Constant(C))) {
6810       Constant *NegC = ConstantExpr::getFNeg(C);
6811       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6812     }
6813   }
6814 
6815   if (match(Op0, m_FPExt(m_Value(X)))) {
6816     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6817     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6818       return new FCmpInst(Pred, X, Y, "", &I);
6819 
6820     const APFloat *C;
6821     if (match(Op1, m_APFloat(C))) {
6822       const fltSemantics &FPSem =
6823           X->getType()->getScalarType()->getFltSemantics();
6824       bool Lossy;
6825       APFloat TruncC = *C;
6826       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6827 
6828       if (Lossy) {
6829         // X can't possibly equal the higher-precision constant, so reduce any
6830         // equality comparison.
6831         // TODO: Other predicates can be handled via getFCmpCode().
6832         switch (Pred) {
6833         case FCmpInst::FCMP_OEQ:
6834           // X is ordered and equal to an impossible constant --> false
6835           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6836         case FCmpInst::FCMP_ONE:
6837           // X is ordered and not equal to an impossible constant --> ordered
6838           return new FCmpInst(FCmpInst::FCMP_ORD, X,
6839                               ConstantFP::getNullValue(X->getType()));
6840         case FCmpInst::FCMP_UEQ:
6841           // X is unordered or equal to an impossible constant --> unordered
6842           return new FCmpInst(FCmpInst::FCMP_UNO, X,
6843                               ConstantFP::getNullValue(X->getType()));
6844         case FCmpInst::FCMP_UNE:
6845           // X is unordered or not equal to an impossible constant --> true
6846           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6847         default:
6848           break;
6849         }
6850       }
6851 
6852       // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6853       // Avoid lossy conversions and denormals.
6854       // Zero is a special case that's OK to convert.
6855       APFloat Fabs = TruncC;
6856       Fabs.clearSign();
6857       if (!Lossy &&
6858           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6859         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6860         return new FCmpInst(Pred, X, NewC, "", &I);
6861       }
6862     }
6863   }
6864 
6865   // Convert a sign-bit test of an FP value into a cast and integer compare.
6866   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6867   // TODO: Handle non-zero compare constants.
6868   // TODO: Handle other predicates.
6869   const APFloat *C;
6870   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6871                                                            m_Value(X)))) &&
6872       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6873     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6874     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6875       IntType = VectorType::get(IntType, VecTy->getElementCount());
6876 
6877     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6878     if (Pred == FCmpInst::FCMP_OLT) {
6879       Value *IntX = Builder.CreateBitCast(X, IntType);
6880       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6881                           ConstantInt::getNullValue(IntType));
6882     }
6883   }
6884 
6885   if (I.getType()->isVectorTy())
6886     if (Instruction *Res = foldVectorCmp(I, Builder))
6887       return Res;
6888 
6889   return Changed ? &I : nullptr;
6890 }
6891