1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isZero()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOne()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnes()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// This is called when we see this pattern: 99 /// cmp pred (load (gep GV, ...)), cmpcst 100 /// where GV is a global variable with a constant initializer. Try to simplify 101 /// this into some simple computation that does not need the load. For example 102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 103 /// 104 /// If AndCst is non-null, then the loaded value is masked with that constant 105 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 107 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 108 ConstantInt *AndCst) { 109 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 110 GV->getValueType() != GEP->getSourceElementType() || 111 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 112 return nullptr; 113 114 Constant *Init = GV->getInitializer(); 115 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 116 return nullptr; 117 118 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 119 // Don't blow up on huge arrays. 120 if (ArrayElementCount > MaxArraySizeForCombine) 121 return nullptr; 122 123 // There are many forms of this optimization we can handle, for now, just do 124 // the simple index into a single-dimensional array. 125 // 126 // Require: GEP GV, 0, i {{, constant indices}} 127 if (GEP->getNumOperands() < 3 || 128 !isa<ConstantInt>(GEP->getOperand(1)) || 129 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 130 isa<Constant>(GEP->getOperand(2))) 131 return nullptr; 132 133 // Check that indices after the variable are constants and in-range for the 134 // type they index. Collect the indices. This is typically for arrays of 135 // structs. 136 SmallVector<unsigned, 4> LaterIndices; 137 138 Type *EltTy = Init->getType()->getArrayElementType(); 139 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 140 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 141 if (!Idx) return nullptr; // Variable index. 142 143 uint64_t IdxVal = Idx->getZExtValue(); 144 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 145 146 if (StructType *STy = dyn_cast<StructType>(EltTy)) 147 EltTy = STy->getElementType(IdxVal); 148 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 149 if (IdxVal >= ATy->getNumElements()) return nullptr; 150 EltTy = ATy->getElementType(); 151 } else { 152 return nullptr; // Unknown type. 153 } 154 155 LaterIndices.push_back(IdxVal); 156 } 157 158 enum { Overdefined = -3, Undefined = -2 }; 159 160 // Variables for our state machines. 161 162 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 163 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 164 // and 87 is the second (and last) index. FirstTrueElement is -2 when 165 // undefined, otherwise set to the first true element. SecondTrueElement is 166 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 167 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 168 169 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 170 // form "i != 47 & i != 87". Same state transitions as for true elements. 171 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 172 173 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 174 /// define a state machine that triggers for ranges of values that the index 175 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 176 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 177 /// index in the range (inclusive). We use -2 for undefined here because we 178 /// use relative comparisons and don't want 0-1 to match -1. 179 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 180 181 // MagicBitvector - This is a magic bitvector where we set a bit if the 182 // comparison is true for element 'i'. If there are 64 elements or less in 183 // the array, this will fully represent all the comparison results. 184 uint64_t MagicBitvector = 0; 185 186 // Scan the array and see if one of our patterns matches. 187 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 188 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 189 Constant *Elt = Init->getAggregateElement(i); 190 if (!Elt) return nullptr; 191 192 // If this is indexing an array of structures, get the structure element. 193 if (!LaterIndices.empty()) { 194 Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices); 195 if (!Elt) 196 return nullptr; 197 } 198 199 // If the element is masked, handle it. 200 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 201 202 // Find out if the comparison would be true or false for the i'th element. 203 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 204 CompareRHS, DL, &TLI); 205 // If the result is undef for this element, ignore it. 206 if (isa<UndefValue>(C)) { 207 // Extend range state machines to cover this element in case there is an 208 // undef in the middle of the range. 209 if (TrueRangeEnd == (int)i-1) 210 TrueRangeEnd = i; 211 if (FalseRangeEnd == (int)i-1) 212 FalseRangeEnd = i; 213 continue; 214 } 215 216 // If we can't compute the result for any of the elements, we have to give 217 // up evaluating the entire conditional. 218 if (!isa<ConstantInt>(C)) return nullptr; 219 220 // Otherwise, we know if the comparison is true or false for this element, 221 // update our state machines. 222 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 223 224 // State machine for single/double/range index comparison. 225 if (IsTrueForElt) { 226 // Update the TrueElement state machine. 227 if (FirstTrueElement == Undefined) 228 FirstTrueElement = TrueRangeEnd = i; // First true element. 229 else { 230 // Update double-compare state machine. 231 if (SecondTrueElement == Undefined) 232 SecondTrueElement = i; 233 else 234 SecondTrueElement = Overdefined; 235 236 // Update range state machine. 237 if (TrueRangeEnd == (int)i-1) 238 TrueRangeEnd = i; 239 else 240 TrueRangeEnd = Overdefined; 241 } 242 } else { 243 // Update the FalseElement state machine. 244 if (FirstFalseElement == Undefined) 245 FirstFalseElement = FalseRangeEnd = i; // First false element. 246 else { 247 // Update double-compare state machine. 248 if (SecondFalseElement == Undefined) 249 SecondFalseElement = i; 250 else 251 SecondFalseElement = Overdefined; 252 253 // Update range state machine. 254 if (FalseRangeEnd == (int)i-1) 255 FalseRangeEnd = i; 256 else 257 FalseRangeEnd = Overdefined; 258 } 259 } 260 261 // If this element is in range, update our magic bitvector. 262 if (i < 64 && IsTrueForElt) 263 MagicBitvector |= 1ULL << i; 264 265 // If all of our states become overdefined, bail out early. Since the 266 // predicate is expensive, only check it every 8 elements. This is only 267 // really useful for really huge arrays. 268 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 269 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 270 FalseRangeEnd == Overdefined) 271 return nullptr; 272 } 273 274 // Now that we've scanned the entire array, emit our new comparison(s). We 275 // order the state machines in complexity of the generated code. 276 Value *Idx = GEP->getOperand(2); 277 278 // If the index is larger than the pointer size of the target, truncate the 279 // index down like the GEP would do implicitly. We don't have to do this for 280 // an inbounds GEP because the index can't be out of range. 281 if (!GEP->isInBounds()) { 282 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 283 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 284 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 285 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 286 } 287 288 // If inbounds keyword is not present, Idx * ElementSize can overflow. 289 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 290 // Then, there are two possible values for Idx to match offset 0: 291 // 0x00..00, 0x80..00. 292 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 293 // comparison is false if Idx was 0x80..00. 294 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 295 unsigned ElementSize = 296 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 297 auto MaskIdx = [&](Value* Idx){ 298 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 299 Value *Mask = ConstantInt::get(Idx->getType(), -1); 300 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 301 Idx = Builder.CreateAnd(Idx, Mask); 302 } 303 return Idx; 304 }; 305 306 // If the comparison is only true for one or two elements, emit direct 307 // comparisons. 308 if (SecondTrueElement != Overdefined) { 309 Idx = MaskIdx(Idx); 310 // None true -> false. 311 if (FirstTrueElement == Undefined) 312 return replaceInstUsesWith(ICI, Builder.getFalse()); 313 314 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 315 316 // True for one element -> 'i == 47'. 317 if (SecondTrueElement == Undefined) 318 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 319 320 // True for two elements -> 'i == 47 | i == 72'. 321 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 322 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 323 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 324 return BinaryOperator::CreateOr(C1, C2); 325 } 326 327 // If the comparison is only false for one or two elements, emit direct 328 // comparisons. 329 if (SecondFalseElement != Overdefined) { 330 Idx = MaskIdx(Idx); 331 // None false -> true. 332 if (FirstFalseElement == Undefined) 333 return replaceInstUsesWith(ICI, Builder.getTrue()); 334 335 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 336 337 // False for one element -> 'i != 47'. 338 if (SecondFalseElement == Undefined) 339 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 340 341 // False for two elements -> 'i != 47 & i != 72'. 342 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 343 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 344 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 345 return BinaryOperator::CreateAnd(C1, C2); 346 } 347 348 // If the comparison can be replaced with a range comparison for the elements 349 // where it is true, emit the range check. 350 if (TrueRangeEnd != Overdefined) { 351 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 352 Idx = MaskIdx(Idx); 353 354 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 355 if (FirstTrueElement) { 356 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 357 Idx = Builder.CreateAdd(Idx, Offs); 358 } 359 360 Value *End = ConstantInt::get(Idx->getType(), 361 TrueRangeEnd-FirstTrueElement+1); 362 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 363 } 364 365 // False range check. 366 if (FalseRangeEnd != Overdefined) { 367 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 368 Idx = MaskIdx(Idx); 369 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 370 if (FirstFalseElement) { 371 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 372 Idx = Builder.CreateAdd(Idx, Offs); 373 } 374 375 Value *End = ConstantInt::get(Idx->getType(), 376 FalseRangeEnd-FirstFalseElement); 377 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 378 } 379 380 // If a magic bitvector captures the entire comparison state 381 // of this load, replace it with computation that does: 382 // ((magic_cst >> i) & 1) != 0 383 { 384 Type *Ty = nullptr; 385 386 // Look for an appropriate type: 387 // - The type of Idx if the magic fits 388 // - The smallest fitting legal type 389 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 390 Ty = Idx->getType(); 391 else 392 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 393 394 if (Ty) { 395 Idx = MaskIdx(Idx); 396 Value *V = Builder.CreateIntCast(Idx, Ty, false); 397 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 398 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 399 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 400 } 401 } 402 403 return nullptr; 404 } 405 406 /// Return a value that can be used to compare the *offset* implied by a GEP to 407 /// zero. For example, if we have &A[i], we want to return 'i' for 408 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 409 /// are involved. The above expression would also be legal to codegen as 410 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 411 /// This latter form is less amenable to optimization though, and we are allowed 412 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 413 /// 414 /// If we can't emit an optimized form for this expression, this returns null. 415 /// 416 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 417 const DataLayout &DL) { 418 gep_type_iterator GTI = gep_type_begin(GEP); 419 420 // Check to see if this gep only has a single variable index. If so, and if 421 // any constant indices are a multiple of its scale, then we can compute this 422 // in terms of the scale of the variable index. For example, if the GEP 423 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 424 // because the expression will cross zero at the same point. 425 unsigned i, e = GEP->getNumOperands(); 426 int64_t Offset = 0; 427 for (i = 1; i != e; ++i, ++GTI) { 428 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 429 // Compute the aggregate offset of constant indices. 430 if (CI->isZero()) continue; 431 432 // Handle a struct index, which adds its field offset to the pointer. 433 if (StructType *STy = GTI.getStructTypeOrNull()) { 434 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 435 } else { 436 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 437 Offset += Size*CI->getSExtValue(); 438 } 439 } else { 440 // Found our variable index. 441 break; 442 } 443 } 444 445 // If there are no variable indices, we must have a constant offset, just 446 // evaluate it the general way. 447 if (i == e) return nullptr; 448 449 Value *VariableIdx = GEP->getOperand(i); 450 // Determine the scale factor of the variable element. For example, this is 451 // 4 if the variable index is into an array of i32. 452 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 453 454 // Verify that there are no other variable indices. If so, emit the hard way. 455 for (++i, ++GTI; i != e; ++i, ++GTI) { 456 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 457 if (!CI) return nullptr; 458 459 // Compute the aggregate offset of constant indices. 460 if (CI->isZero()) continue; 461 462 // Handle a struct index, which adds its field offset to the pointer. 463 if (StructType *STy = GTI.getStructTypeOrNull()) { 464 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 465 } else { 466 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 467 Offset += Size*CI->getSExtValue(); 468 } 469 } 470 471 // Okay, we know we have a single variable index, which must be a 472 // pointer/array/vector index. If there is no offset, life is simple, return 473 // the index. 474 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 475 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 476 if (Offset == 0) { 477 // Cast to intptrty in case a truncation occurs. If an extension is needed, 478 // we don't need to bother extending: the extension won't affect where the 479 // computation crosses zero. 480 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 481 IntPtrWidth) { 482 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 483 } 484 return VariableIdx; 485 } 486 487 // Otherwise, there is an index. The computation we will do will be modulo 488 // the pointer size. 489 Offset = SignExtend64(Offset, IntPtrWidth); 490 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 491 492 // To do this transformation, any constant index must be a multiple of the 493 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 494 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 495 // multiple of the variable scale. 496 int64_t NewOffs = Offset / (int64_t)VariableScale; 497 if (Offset != NewOffs*(int64_t)VariableScale) 498 return nullptr; 499 500 // Okay, we can do this evaluation. Start by converting the index to intptr. 501 if (VariableIdx->getType() != IntPtrTy) 502 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 503 true /*Signed*/); 504 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 505 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 506 } 507 508 /// Returns true if we can rewrite Start as a GEP with pointer Base 509 /// and some integer offset. The nodes that need to be re-written 510 /// for this transformation will be added to Explored. 511 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 512 const DataLayout &DL, 513 SetVector<Value *> &Explored) { 514 SmallVector<Value *, 16> WorkList(1, Start); 515 Explored.insert(Base); 516 517 // The following traversal gives us an order which can be used 518 // when doing the final transformation. Since in the final 519 // transformation we create the PHI replacement instructions first, 520 // we don't have to get them in any particular order. 521 // 522 // However, for other instructions we will have to traverse the 523 // operands of an instruction first, which means that we have to 524 // do a post-order traversal. 525 while (!WorkList.empty()) { 526 SetVector<PHINode *> PHIs; 527 528 while (!WorkList.empty()) { 529 if (Explored.size() >= 100) 530 return false; 531 532 Value *V = WorkList.back(); 533 534 if (Explored.contains(V)) { 535 WorkList.pop_back(); 536 continue; 537 } 538 539 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 540 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 541 // We've found some value that we can't explore which is different from 542 // the base. Therefore we can't do this transformation. 543 return false; 544 545 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 546 auto *CI = cast<CastInst>(V); 547 if (!CI->isNoopCast(DL)) 548 return false; 549 550 if (!Explored.contains(CI->getOperand(0))) 551 WorkList.push_back(CI->getOperand(0)); 552 } 553 554 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 555 // We're limiting the GEP to having one index. This will preserve 556 // the original pointer type. We could handle more cases in the 557 // future. 558 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 559 GEP->getSourceElementType() != ElemTy) 560 return false; 561 562 if (!Explored.contains(GEP->getOperand(0))) 563 WorkList.push_back(GEP->getOperand(0)); 564 } 565 566 if (WorkList.back() == V) { 567 WorkList.pop_back(); 568 // We've finished visiting this node, mark it as such. 569 Explored.insert(V); 570 } 571 572 if (auto *PN = dyn_cast<PHINode>(V)) { 573 // We cannot transform PHIs on unsplittable basic blocks. 574 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 575 return false; 576 Explored.insert(PN); 577 PHIs.insert(PN); 578 } 579 } 580 581 // Explore the PHI nodes further. 582 for (auto *PN : PHIs) 583 for (Value *Op : PN->incoming_values()) 584 if (!Explored.contains(Op)) 585 WorkList.push_back(Op); 586 } 587 588 // Make sure that we can do this. Since we can't insert GEPs in a basic 589 // block before a PHI node, we can't easily do this transformation if 590 // we have PHI node users of transformed instructions. 591 for (Value *Val : Explored) { 592 for (Value *Use : Val->uses()) { 593 594 auto *PHI = dyn_cast<PHINode>(Use); 595 auto *Inst = dyn_cast<Instruction>(Val); 596 597 if (Inst == Base || Inst == PHI || !Inst || !PHI || 598 !Explored.contains(PHI)) 599 continue; 600 601 if (PHI->getParent() == Inst->getParent()) 602 return false; 603 } 604 } 605 return true; 606 } 607 608 // Sets the appropriate insert point on Builder where we can add 609 // a replacement Instruction for V (if that is possible). 610 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 611 bool Before = true) { 612 if (auto *PHI = dyn_cast<PHINode>(V)) { 613 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 614 return; 615 } 616 if (auto *I = dyn_cast<Instruction>(V)) { 617 if (!Before) 618 I = &*std::next(I->getIterator()); 619 Builder.SetInsertPoint(I); 620 return; 621 } 622 if (auto *A = dyn_cast<Argument>(V)) { 623 // Set the insertion point in the entry block. 624 BasicBlock &Entry = A->getParent()->getEntryBlock(); 625 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 626 return; 627 } 628 // Otherwise, this is a constant and we don't need to set a new 629 // insertion point. 630 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 631 } 632 633 /// Returns a re-written value of Start as an indexed GEP using Base as a 634 /// pointer. 635 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 636 const DataLayout &DL, 637 SetVector<Value *> &Explored) { 638 // Perform all the substitutions. This is a bit tricky because we can 639 // have cycles in our use-def chains. 640 // 1. Create the PHI nodes without any incoming values. 641 // 2. Create all the other values. 642 // 3. Add the edges for the PHI nodes. 643 // 4. Emit GEPs to get the original pointers. 644 // 5. Remove the original instructions. 645 Type *IndexType = IntegerType::get( 646 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 647 648 DenseMap<Value *, Value *> NewInsts; 649 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 650 651 // Create the new PHI nodes, without adding any incoming values. 652 for (Value *Val : Explored) { 653 if (Val == Base) 654 continue; 655 // Create empty phi nodes. This avoids cyclic dependencies when creating 656 // the remaining instructions. 657 if (auto *PHI = dyn_cast<PHINode>(Val)) 658 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 659 PHI->getName() + ".idx", PHI); 660 } 661 IRBuilder<> Builder(Base->getContext()); 662 663 // Create all the other instructions. 664 for (Value *Val : Explored) { 665 666 if (NewInsts.find(Val) != NewInsts.end()) 667 continue; 668 669 if (auto *CI = dyn_cast<CastInst>(Val)) { 670 // Don't get rid of the intermediate variable here; the store can grow 671 // the map which will invalidate the reference to the input value. 672 Value *V = NewInsts[CI->getOperand(0)]; 673 NewInsts[CI] = V; 674 continue; 675 } 676 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 677 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 678 : GEP->getOperand(1); 679 setInsertionPoint(Builder, GEP); 680 // Indices might need to be sign extended. GEPs will magically do 681 // this, but we need to do it ourselves here. 682 if (Index->getType()->getScalarSizeInBits() != 683 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 684 Index = Builder.CreateSExtOrTrunc( 685 Index, NewInsts[GEP->getOperand(0)]->getType(), 686 GEP->getOperand(0)->getName() + ".sext"); 687 } 688 689 auto *Op = NewInsts[GEP->getOperand(0)]; 690 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 691 NewInsts[GEP] = Index; 692 else 693 NewInsts[GEP] = Builder.CreateNSWAdd( 694 Op, Index, GEP->getOperand(0)->getName() + ".add"); 695 continue; 696 } 697 if (isa<PHINode>(Val)) 698 continue; 699 700 llvm_unreachable("Unexpected instruction type"); 701 } 702 703 // Add the incoming values to the PHI nodes. 704 for (Value *Val : Explored) { 705 if (Val == Base) 706 continue; 707 // All the instructions have been created, we can now add edges to the 708 // phi nodes. 709 if (auto *PHI = dyn_cast<PHINode>(Val)) { 710 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 711 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 712 Value *NewIncoming = PHI->getIncomingValue(I); 713 714 if (NewInsts.find(NewIncoming) != NewInsts.end()) 715 NewIncoming = NewInsts[NewIncoming]; 716 717 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 718 } 719 } 720 } 721 722 PointerType *PtrTy = 723 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 724 for (Value *Val : Explored) { 725 if (Val == Base) 726 continue; 727 728 // Depending on the type, for external users we have to emit 729 // a GEP or a GEP + ptrtoint. 730 setInsertionPoint(Builder, Val, false); 731 732 // Cast base to the expected type. 733 Value *NewVal = Builder.CreateBitOrPointerCast( 734 Base, PtrTy, Start->getName() + "to.ptr"); 735 NewVal = Builder.CreateInBoundsGEP( 736 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 737 NewVal = Builder.CreateBitOrPointerCast( 738 NewVal, Val->getType(), Val->getName() + ".conv"); 739 Val->replaceAllUsesWith(NewVal); 740 } 741 742 return NewInsts[Start]; 743 } 744 745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 746 /// the input Value as a constant indexed GEP. Returns a pair containing 747 /// the GEPs Pointer and Index. 748 static std::pair<Value *, Value *> 749 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 750 Type *IndexType = IntegerType::get(V->getContext(), 751 DL.getIndexTypeSizeInBits(V->getType())); 752 753 Constant *Index = ConstantInt::getNullValue(IndexType); 754 while (true) { 755 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 756 // We accept only inbouds GEPs here to exclude the possibility of 757 // overflow. 758 if (!GEP->isInBounds()) 759 break; 760 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 761 GEP->getSourceElementType() == ElemTy) { 762 V = GEP->getOperand(0); 763 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 764 Index = ConstantExpr::getAdd( 765 Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType)); 766 continue; 767 } 768 break; 769 } 770 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 771 if (!CI->isNoopCast(DL)) 772 break; 773 V = CI->getOperand(0); 774 continue; 775 } 776 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 777 if (!CI->isNoopCast(DL)) 778 break; 779 V = CI->getOperand(0); 780 continue; 781 } 782 break; 783 } 784 return {V, Index}; 785 } 786 787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 788 /// We can look through PHIs, GEPs and casts in order to determine a common base 789 /// between GEPLHS and RHS. 790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 791 ICmpInst::Predicate Cond, 792 const DataLayout &DL) { 793 // FIXME: Support vector of pointers. 794 if (GEPLHS->getType()->isVectorTy()) 795 return nullptr; 796 797 if (!GEPLHS->hasAllConstantIndices()) 798 return nullptr; 799 800 Type *ElemTy = GEPLHS->getSourceElementType(); 801 Value *PtrBase, *Index; 802 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 803 804 // The set of nodes that will take part in this transformation. 805 SetVector<Value *> Nodes; 806 807 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 808 return nullptr; 809 810 // We know we can re-write this as 811 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 812 // Since we've only looked through inbouds GEPs we know that we 813 // can't have overflow on either side. We can therefore re-write 814 // this as: 815 // OFFSET1 cmp OFFSET2 816 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 817 818 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 819 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 820 // offset. Since Index is the offset of LHS to the base pointer, we will now 821 // compare the offsets instead of comparing the pointers. 822 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 823 } 824 825 /// Fold comparisons between a GEP instruction and something else. At this point 826 /// we know that the GEP is on the LHS of the comparison. 827 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 828 ICmpInst::Predicate Cond, 829 Instruction &I) { 830 // Don't transform signed compares of GEPs into index compares. Even if the 831 // GEP is inbounds, the final add of the base pointer can have signed overflow 832 // and would change the result of the icmp. 833 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 834 // the maximum signed value for the pointer type. 835 if (ICmpInst::isSigned(Cond)) 836 return nullptr; 837 838 // Look through bitcasts and addrspacecasts. We do not however want to remove 839 // 0 GEPs. 840 if (!isa<GetElementPtrInst>(RHS)) 841 RHS = RHS->stripPointerCasts(); 842 843 Value *PtrBase = GEPLHS->getOperand(0); 844 // FIXME: Support vector pointer GEPs. 845 if (PtrBase == RHS && GEPLHS->isInBounds() && 846 !GEPLHS->getType()->isVectorTy()) { 847 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 848 // This transformation (ignoring the base and scales) is valid because we 849 // know pointers can't overflow since the gep is inbounds. See if we can 850 // output an optimized form. 851 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 852 853 // If not, synthesize the offset the hard way. 854 if (!Offset) 855 Offset = EmitGEPOffset(GEPLHS); 856 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 857 Constant::getNullValue(Offset->getType())); 858 } 859 860 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 861 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 862 !NullPointerIsDefined(I.getFunction(), 863 RHS->getType()->getPointerAddressSpace())) { 864 // For most address spaces, an allocation can't be placed at null, but null 865 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 866 // the only valid inbounds address derived from null, is null itself. 867 // Thus, we have four cases to consider: 868 // 1) Base == nullptr, Offset == 0 -> inbounds, null 869 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 870 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 871 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 872 // 873 // (Note if we're indexing a type of size 0, that simply collapses into one 874 // of the buckets above.) 875 // 876 // In general, we're allowed to make values less poison (i.e. remove 877 // sources of full UB), so in this case, we just select between the two 878 // non-poison cases (1 and 4 above). 879 // 880 // For vectors, we apply the same reasoning on a per-lane basis. 881 auto *Base = GEPLHS->getPointerOperand(); 882 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 883 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 884 Base = Builder.CreateVectorSplat(EC, Base); 885 } 886 return new ICmpInst(Cond, Base, 887 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 888 cast<Constant>(RHS), Base->getType())); 889 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 890 // If the base pointers are different, but the indices are the same, just 891 // compare the base pointer. 892 if (PtrBase != GEPRHS->getOperand(0)) { 893 bool IndicesTheSame = 894 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 895 GEPLHS->getPointerOperand()->getType() == 896 GEPRHS->getPointerOperand()->getType() && 897 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 898 if (IndicesTheSame) 899 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 900 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 901 IndicesTheSame = false; 902 break; 903 } 904 905 // If all indices are the same, just compare the base pointers. 906 Type *BaseType = GEPLHS->getOperand(0)->getType(); 907 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 908 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 909 910 // If we're comparing GEPs with two base pointers that only differ in type 911 // and both GEPs have only constant indices or just one use, then fold 912 // the compare with the adjusted indices. 913 // FIXME: Support vector of pointers. 914 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 915 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 916 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 917 PtrBase->stripPointerCasts() == 918 GEPRHS->getOperand(0)->stripPointerCasts() && 919 !GEPLHS->getType()->isVectorTy()) { 920 Value *LOffset = EmitGEPOffset(GEPLHS); 921 Value *ROffset = EmitGEPOffset(GEPRHS); 922 923 // If we looked through an addrspacecast between different sized address 924 // spaces, the LHS and RHS pointers are different sized 925 // integers. Truncate to the smaller one. 926 Type *LHSIndexTy = LOffset->getType(); 927 Type *RHSIndexTy = ROffset->getType(); 928 if (LHSIndexTy != RHSIndexTy) { 929 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 930 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 931 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 932 } else 933 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 934 } 935 936 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 937 LOffset, ROffset); 938 return replaceInstUsesWith(I, Cmp); 939 } 940 941 // Otherwise, the base pointers are different and the indices are 942 // different. Try convert this to an indexed compare by looking through 943 // PHIs/casts. 944 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 945 } 946 947 // If one of the GEPs has all zero indices, recurse. 948 // FIXME: Handle vector of pointers. 949 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 950 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 951 ICmpInst::getSwappedPredicate(Cond), I); 952 953 // If the other GEP has all zero indices, recurse. 954 // FIXME: Handle vector of pointers. 955 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 956 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 957 958 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 959 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 960 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 961 // If the GEPs only differ by one index, compare it. 962 unsigned NumDifferences = 0; // Keep track of # differences. 963 unsigned DiffOperand = 0; // The operand that differs. 964 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 965 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 966 Type *LHSType = GEPLHS->getOperand(i)->getType(); 967 Type *RHSType = GEPRHS->getOperand(i)->getType(); 968 // FIXME: Better support for vector of pointers. 969 if (LHSType->getPrimitiveSizeInBits() != 970 RHSType->getPrimitiveSizeInBits() || 971 (GEPLHS->getType()->isVectorTy() && 972 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 973 // Irreconcilable differences. 974 NumDifferences = 2; 975 break; 976 } 977 978 if (NumDifferences++) break; 979 DiffOperand = i; 980 } 981 982 if (NumDifferences == 0) // SAME GEP? 983 return replaceInstUsesWith(I, // No comparison is needed here. 984 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 985 986 else if (NumDifferences == 1 && GEPsInBounds) { 987 Value *LHSV = GEPLHS->getOperand(DiffOperand); 988 Value *RHSV = GEPRHS->getOperand(DiffOperand); 989 // Make sure we do a signed comparison here. 990 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 991 } 992 } 993 994 // Only lower this if the icmp is the only user of the GEP or if we expect 995 // the result to fold to a constant! 996 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 997 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 998 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 999 Value *L = EmitGEPOffset(GEPLHS); 1000 Value *R = EmitGEPOffset(GEPRHS); 1001 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1002 } 1003 } 1004 1005 // Try convert this to an indexed compare by looking through PHIs/casts as a 1006 // last resort. 1007 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1008 } 1009 1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1011 const AllocaInst *Alloca) { 1012 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1013 1014 // It would be tempting to fold away comparisons between allocas and any 1015 // pointer not based on that alloca (e.g. an argument). However, even 1016 // though such pointers cannot alias, they can still compare equal. 1017 // 1018 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1019 // doesn't escape we can argue that it's impossible to guess its value, and we 1020 // can therefore act as if any such guesses are wrong. 1021 // 1022 // The code below checks that the alloca doesn't escape, and that it's only 1023 // used in a comparison once (the current instruction). The 1024 // single-comparison-use condition ensures that we're trivially folding all 1025 // comparisons against the alloca consistently, and avoids the risk of 1026 // erroneously folding a comparison of the pointer with itself. 1027 1028 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1029 1030 SmallVector<const Use *, 32> Worklist; 1031 for (const Use &U : Alloca->uses()) { 1032 if (Worklist.size() >= MaxIter) 1033 return nullptr; 1034 Worklist.push_back(&U); 1035 } 1036 1037 unsigned NumCmps = 0; 1038 while (!Worklist.empty()) { 1039 assert(Worklist.size() <= MaxIter); 1040 const Use *U = Worklist.pop_back_val(); 1041 const Value *V = U->getUser(); 1042 --MaxIter; 1043 1044 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1045 isa<SelectInst>(V)) { 1046 // Track the uses. 1047 } else if (isa<LoadInst>(V)) { 1048 // Loading from the pointer doesn't escape it. 1049 continue; 1050 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1051 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1052 if (SI->getValueOperand() == U->get()) 1053 return nullptr; 1054 continue; 1055 } else if (isa<ICmpInst>(V)) { 1056 if (NumCmps++) 1057 return nullptr; // Found more than one cmp. 1058 continue; 1059 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1060 switch (Intrin->getIntrinsicID()) { 1061 // These intrinsics don't escape or compare the pointer. Memset is safe 1062 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1063 // we don't allow stores, so src cannot point to V. 1064 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1065 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1066 continue; 1067 default: 1068 return nullptr; 1069 } 1070 } else { 1071 return nullptr; 1072 } 1073 for (const Use &U : V->uses()) { 1074 if (Worklist.size() >= MaxIter) 1075 return nullptr; 1076 Worklist.push_back(&U); 1077 } 1078 } 1079 1080 auto *Res = ConstantInt::get(ICI.getType(), 1081 !CmpInst::isTrueWhenEqual(ICI.getPredicate())); 1082 return replaceInstUsesWith(ICI, Res); 1083 } 1084 1085 /// Fold "icmp pred (X+C), X". 1086 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1087 ICmpInst::Predicate Pred) { 1088 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1089 // so the values can never be equal. Similarly for all other "or equals" 1090 // operators. 1091 assert(!!C && "C should not be zero!"); 1092 1093 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1094 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1095 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1096 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1097 Constant *R = ConstantInt::get(X->getType(), 1098 APInt::getMaxValue(C.getBitWidth()) - C); 1099 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1100 } 1101 1102 // (X+1) >u X --> X <u (0-1) --> X != 255 1103 // (X+2) >u X --> X <u (0-2) --> X <u 254 1104 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1105 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1106 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1107 ConstantInt::get(X->getType(), -C)); 1108 1109 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1110 1111 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1112 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1113 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1114 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1115 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1116 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1117 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1118 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1119 ConstantInt::get(X->getType(), SMax - C)); 1120 1121 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1122 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1123 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1124 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1125 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1126 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1127 1128 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1129 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1130 ConstantInt::get(X->getType(), SMax - (C - 1))); 1131 } 1132 1133 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1134 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1135 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1136 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1137 const APInt &AP1, 1138 const APInt &AP2) { 1139 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1140 1141 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1142 if (I.getPredicate() == I.ICMP_NE) 1143 Pred = CmpInst::getInversePredicate(Pred); 1144 return new ICmpInst(Pred, LHS, RHS); 1145 }; 1146 1147 // Don't bother doing any work for cases which InstSimplify handles. 1148 if (AP2.isZero()) 1149 return nullptr; 1150 1151 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1152 if (IsAShr) { 1153 if (AP2.isAllOnes()) 1154 return nullptr; 1155 if (AP2.isNegative() != AP1.isNegative()) 1156 return nullptr; 1157 if (AP2.sgt(AP1)) 1158 return nullptr; 1159 } 1160 1161 if (!AP1) 1162 // 'A' must be large enough to shift out the highest set bit. 1163 return getICmp(I.ICMP_UGT, A, 1164 ConstantInt::get(A->getType(), AP2.logBase2())); 1165 1166 if (AP1 == AP2) 1167 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1168 1169 int Shift; 1170 if (IsAShr && AP1.isNegative()) 1171 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1172 else 1173 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1174 1175 if (Shift > 0) { 1176 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1177 // There are multiple solutions if we are comparing against -1 and the LHS 1178 // of the ashr is not a power of two. 1179 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1180 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1181 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1182 } else if (AP1 == AP2.lshr(Shift)) { 1183 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1184 } 1185 } 1186 1187 // Shifting const2 will never be equal to const1. 1188 // FIXME: This should always be handled by InstSimplify? 1189 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1190 return replaceInstUsesWith(I, TorF); 1191 } 1192 1193 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1194 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1195 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1196 const APInt &AP1, 1197 const APInt &AP2) { 1198 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1199 1200 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1201 if (I.getPredicate() == I.ICMP_NE) 1202 Pred = CmpInst::getInversePredicate(Pred); 1203 return new ICmpInst(Pred, LHS, RHS); 1204 }; 1205 1206 // Don't bother doing any work for cases which InstSimplify handles. 1207 if (AP2.isZero()) 1208 return nullptr; 1209 1210 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1211 1212 if (!AP1 && AP2TrailingZeros != 0) 1213 return getICmp( 1214 I.ICMP_UGE, A, 1215 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1216 1217 if (AP1 == AP2) 1218 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1219 1220 // Get the distance between the lowest bits that are set. 1221 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1222 1223 if (Shift > 0 && AP2.shl(Shift) == AP1) 1224 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1225 1226 // Shifting const2 will never be equal to const1. 1227 // FIXME: This should always be handled by InstSimplify? 1228 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1229 return replaceInstUsesWith(I, TorF); 1230 } 1231 1232 /// The caller has matched a pattern of the form: 1233 /// I = icmp ugt (add (add A, B), CI2), CI1 1234 /// If this is of the form: 1235 /// sum = a + b 1236 /// if (sum+128 >u 255) 1237 /// Then replace it with llvm.sadd.with.overflow.i8. 1238 /// 1239 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1240 ConstantInt *CI2, ConstantInt *CI1, 1241 InstCombinerImpl &IC) { 1242 // The transformation we're trying to do here is to transform this into an 1243 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1244 // with a narrower add, and discard the add-with-constant that is part of the 1245 // range check (if we can't eliminate it, this isn't profitable). 1246 1247 // In order to eliminate the add-with-constant, the compare can be its only 1248 // use. 1249 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1250 if (!AddWithCst->hasOneUse()) 1251 return nullptr; 1252 1253 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1254 if (!CI2->getValue().isPowerOf2()) 1255 return nullptr; 1256 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1257 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1258 return nullptr; 1259 1260 // The width of the new add formed is 1 more than the bias. 1261 ++NewWidth; 1262 1263 // Check to see that CI1 is an all-ones value with NewWidth bits. 1264 if (CI1->getBitWidth() == NewWidth || 1265 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1266 return nullptr; 1267 1268 // This is only really a signed overflow check if the inputs have been 1269 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1270 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1271 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1272 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1273 return nullptr; 1274 1275 // In order to replace the original add with a narrower 1276 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1277 // and truncates that discard the high bits of the add. Verify that this is 1278 // the case. 1279 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1280 for (User *U : OrigAdd->users()) { 1281 if (U == AddWithCst) 1282 continue; 1283 1284 // Only accept truncates for now. We would really like a nice recursive 1285 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1286 // chain to see which bits of a value are actually demanded. If the 1287 // original add had another add which was then immediately truncated, we 1288 // could still do the transformation. 1289 TruncInst *TI = dyn_cast<TruncInst>(U); 1290 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1291 return nullptr; 1292 } 1293 1294 // If the pattern matches, truncate the inputs to the narrower type and 1295 // use the sadd_with_overflow intrinsic to efficiently compute both the 1296 // result and the overflow bit. 1297 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1298 Function *F = Intrinsic::getDeclaration( 1299 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1300 1301 InstCombiner::BuilderTy &Builder = IC.Builder; 1302 1303 // Put the new code above the original add, in case there are any uses of the 1304 // add between the add and the compare. 1305 Builder.SetInsertPoint(OrigAdd); 1306 1307 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1308 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1309 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1310 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1311 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1312 1313 // The inner add was the result of the narrow add, zero extended to the 1314 // wider type. Replace it with the result computed by the intrinsic. 1315 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1316 IC.eraseInstFromFunction(*OrigAdd); 1317 1318 // The original icmp gets replaced with the overflow value. 1319 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1320 } 1321 1322 /// If we have: 1323 /// icmp eq/ne (urem/srem %x, %y), 0 1324 /// iff %y is a power-of-two, we can replace this with a bit test: 1325 /// icmp eq/ne (and %x, (add %y, -1)), 0 1326 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1327 // This fold is only valid for equality predicates. 1328 if (!I.isEquality()) 1329 return nullptr; 1330 ICmpInst::Predicate Pred; 1331 Value *X, *Y, *Zero; 1332 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1333 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1334 return nullptr; 1335 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1336 return nullptr; 1337 // This may increase instruction count, we don't enforce that Y is a constant. 1338 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1339 Value *Masked = Builder.CreateAnd(X, Mask); 1340 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1341 } 1342 1343 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1344 /// by one-less-than-bitwidth into a sign test on the original value. 1345 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1346 Instruction *Val; 1347 ICmpInst::Predicate Pred; 1348 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1349 return nullptr; 1350 1351 Value *X; 1352 Type *XTy; 1353 1354 Constant *C; 1355 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1356 XTy = X->getType(); 1357 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1358 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1359 APInt(XBitWidth, XBitWidth - 1)))) 1360 return nullptr; 1361 } else if (isa<BinaryOperator>(Val) && 1362 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1363 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1364 /*AnalyzeForSignBitExtraction=*/true))) { 1365 XTy = X->getType(); 1366 } else 1367 return nullptr; 1368 1369 return ICmpInst::Create(Instruction::ICmp, 1370 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1371 : ICmpInst::ICMP_SLT, 1372 X, ConstantInt::getNullValue(XTy)); 1373 } 1374 1375 // Handle icmp pred X, 0 1376 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1377 CmpInst::Predicate Pred = Cmp.getPredicate(); 1378 if (!match(Cmp.getOperand(1), m_Zero())) 1379 return nullptr; 1380 1381 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1382 if (Pred == ICmpInst::ICMP_SGT) { 1383 Value *A, *B; 1384 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1385 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1386 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1387 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1388 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1389 } 1390 } 1391 1392 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1393 return New; 1394 1395 // Given: 1396 // icmp eq/ne (urem %x, %y), 0 1397 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1398 // icmp eq/ne %x, 0 1399 Value *X, *Y; 1400 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1401 ICmpInst::isEquality(Pred)) { 1402 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1403 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1404 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1405 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1406 } 1407 1408 return nullptr; 1409 } 1410 1411 /// Fold icmp Pred X, C. 1412 /// TODO: This code structure does not make sense. The saturating add fold 1413 /// should be moved to some other helper and extended as noted below (it is also 1414 /// possible that code has been made unnecessary - do we canonicalize IR to 1415 /// overflow/saturating intrinsics or not?). 1416 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1417 // Match the following pattern, which is a common idiom when writing 1418 // overflow-safe integer arithmetic functions. The source performs an addition 1419 // in wider type and explicitly checks for overflow using comparisons against 1420 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1421 // 1422 // TODO: This could probably be generalized to handle other overflow-safe 1423 // operations if we worked out the formulas to compute the appropriate magic 1424 // constants. 1425 // 1426 // sum = a + b 1427 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1428 CmpInst::Predicate Pred = Cmp.getPredicate(); 1429 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1430 Value *A, *B; 1431 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1432 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1433 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1434 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1435 return Res; 1436 1437 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1438 Constant *C = dyn_cast<Constant>(Op1); 1439 if (!C || C->canTrap()) 1440 return nullptr; 1441 1442 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1443 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1444 Type *Ty = Cmp.getType(); 1445 Builder.SetInsertPoint(Phi); 1446 PHINode *NewPhi = 1447 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1448 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1449 auto *Input = 1450 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1451 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1452 NewPhi->addIncoming(BoolInput, Predecessor); 1453 } 1454 NewPhi->takeName(&Cmp); 1455 return replaceInstUsesWith(Cmp, NewPhi); 1456 } 1457 1458 return nullptr; 1459 } 1460 1461 /// Canonicalize icmp instructions based on dominating conditions. 1462 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1463 // This is a cheap/incomplete check for dominance - just match a single 1464 // predecessor with a conditional branch. 1465 BasicBlock *CmpBB = Cmp.getParent(); 1466 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1467 if (!DomBB) 1468 return nullptr; 1469 1470 Value *DomCond; 1471 BasicBlock *TrueBB, *FalseBB; 1472 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1473 return nullptr; 1474 1475 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1476 "Predecessor block does not point to successor?"); 1477 1478 // The branch should get simplified. Don't bother simplifying this condition. 1479 if (TrueBB == FalseBB) 1480 return nullptr; 1481 1482 // Try to simplify this compare to T/F based on the dominating condition. 1483 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1484 if (Imp) 1485 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1486 1487 CmpInst::Predicate Pred = Cmp.getPredicate(); 1488 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1489 ICmpInst::Predicate DomPred; 1490 const APInt *C, *DomC; 1491 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1492 match(Y, m_APInt(C))) { 1493 // We have 2 compares of a variable with constants. Calculate the constant 1494 // ranges of those compares to see if we can transform the 2nd compare: 1495 // DomBB: 1496 // DomCond = icmp DomPred X, DomC 1497 // br DomCond, CmpBB, FalseBB 1498 // CmpBB: 1499 // Cmp = icmp Pred X, C 1500 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1501 ConstantRange DominatingCR = 1502 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1503 : ConstantRange::makeExactICmpRegion( 1504 CmpInst::getInversePredicate(DomPred), *DomC); 1505 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1506 ConstantRange Difference = DominatingCR.difference(CR); 1507 if (Intersection.isEmptySet()) 1508 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1509 if (Difference.isEmptySet()) 1510 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1511 1512 // Canonicalizing a sign bit comparison that gets used in a branch, 1513 // pessimizes codegen by generating branch on zero instruction instead 1514 // of a test and branch. So we avoid canonicalizing in such situations 1515 // because test and branch instruction has better branch displacement 1516 // than compare and branch instruction. 1517 bool UnusedBit; 1518 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1519 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1520 return nullptr; 1521 1522 // Avoid an infinite loop with min/max canonicalization. 1523 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1524 if (Cmp.hasOneUse() && 1525 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1526 return nullptr; 1527 1528 if (const APInt *EqC = Intersection.getSingleElement()) 1529 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1530 if (const APInt *NeC = Difference.getSingleElement()) 1531 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1532 } 1533 1534 return nullptr; 1535 } 1536 1537 /// Fold icmp (trunc X, Y), C. 1538 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1539 TruncInst *Trunc, 1540 const APInt &C) { 1541 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1542 Value *X = Trunc->getOperand(0); 1543 if (C.isOne() && C.getBitWidth() > 1) { 1544 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1545 Value *V = nullptr; 1546 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1547 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1548 ConstantInt::get(V->getType(), 1)); 1549 } 1550 1551 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1552 SrcBits = X->getType()->getScalarSizeInBits(); 1553 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1554 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1555 // of the high bits truncated out of x are known. 1556 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1557 1558 // If all the high bits are known, we can do this xform. 1559 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1560 // Pull in the high bits from known-ones set. 1561 APInt NewRHS = C.zext(SrcBits); 1562 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1563 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1564 } 1565 } 1566 1567 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1568 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1569 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1570 Value *ShOp; 1571 const APInt *ShAmtC; 1572 bool TrueIfSigned; 1573 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1574 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1575 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1576 return TrueIfSigned 1577 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1578 ConstantInt::getNullValue(X->getType())) 1579 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1580 ConstantInt::getAllOnesValue(X->getType())); 1581 } 1582 1583 return nullptr; 1584 } 1585 1586 /// Fold icmp (xor X, Y), C. 1587 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1588 BinaryOperator *Xor, 1589 const APInt &C) { 1590 Value *X = Xor->getOperand(0); 1591 Value *Y = Xor->getOperand(1); 1592 const APInt *XorC; 1593 if (!match(Y, m_APInt(XorC))) 1594 return nullptr; 1595 1596 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1597 // fold the xor. 1598 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1599 bool TrueIfSigned = false; 1600 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1601 1602 // If the sign bit of the XorCst is not set, there is no change to 1603 // the operation, just stop using the Xor. 1604 if (!XorC->isNegative()) 1605 return replaceOperand(Cmp, 0, X); 1606 1607 // Emit the opposite comparison. 1608 if (TrueIfSigned) 1609 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1610 ConstantInt::getAllOnesValue(X->getType())); 1611 else 1612 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1613 ConstantInt::getNullValue(X->getType())); 1614 } 1615 1616 if (Xor->hasOneUse()) { 1617 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1618 if (!Cmp.isEquality() && XorC->isSignMask()) { 1619 Pred = Cmp.getFlippedSignednessPredicate(); 1620 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1621 } 1622 1623 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1624 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1625 Pred = Cmp.getFlippedSignednessPredicate(); 1626 Pred = Cmp.getSwappedPredicate(Pred); 1627 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1628 } 1629 } 1630 1631 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1632 if (Pred == ICmpInst::ICMP_UGT) { 1633 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1634 if (*XorC == ~C && (C + 1).isPowerOf2()) 1635 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1636 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1637 if (*XorC == C && (C + 1).isPowerOf2()) 1638 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1639 } 1640 if (Pred == ICmpInst::ICMP_ULT) { 1641 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1642 if (*XorC == -C && C.isPowerOf2()) 1643 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1644 ConstantInt::get(X->getType(), ~C)); 1645 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1646 if (*XorC == C && (-C).isPowerOf2()) 1647 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1648 ConstantInt::get(X->getType(), ~C)); 1649 } 1650 return nullptr; 1651 } 1652 1653 /// Fold icmp (and (sh X, Y), C2), C1. 1654 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1655 BinaryOperator *And, 1656 const APInt &C1, 1657 const APInt &C2) { 1658 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1659 if (!Shift || !Shift->isShift()) 1660 return nullptr; 1661 1662 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1663 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1664 // code produced by the clang front-end, for bitfield access. 1665 // This seemingly simple opportunity to fold away a shift turns out to be 1666 // rather complicated. See PR17827 for details. 1667 unsigned ShiftOpcode = Shift->getOpcode(); 1668 bool IsShl = ShiftOpcode == Instruction::Shl; 1669 const APInt *C3; 1670 if (match(Shift->getOperand(1), m_APInt(C3))) { 1671 APInt NewAndCst, NewCmpCst; 1672 bool AnyCmpCstBitsShiftedOut; 1673 if (ShiftOpcode == Instruction::Shl) { 1674 // For a left shift, we can fold if the comparison is not signed. We can 1675 // also fold a signed comparison if the mask value and comparison value 1676 // are not negative. These constraints may not be obvious, but we can 1677 // prove that they are correct using an SMT solver. 1678 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1679 return nullptr; 1680 1681 NewCmpCst = C1.lshr(*C3); 1682 NewAndCst = C2.lshr(*C3); 1683 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1684 } else if (ShiftOpcode == Instruction::LShr) { 1685 // For a logical right shift, we can fold if the comparison is not signed. 1686 // We can also fold a signed comparison if the shifted mask value and the 1687 // shifted comparison value are not negative. These constraints may not be 1688 // obvious, but we can prove that they are correct using an SMT solver. 1689 NewCmpCst = C1.shl(*C3); 1690 NewAndCst = C2.shl(*C3); 1691 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1692 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1693 return nullptr; 1694 } else { 1695 // For an arithmetic shift, check that both constants don't use (in a 1696 // signed sense) the top bits being shifted out. 1697 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1698 NewCmpCst = C1.shl(*C3); 1699 NewAndCst = C2.shl(*C3); 1700 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1701 if (NewAndCst.ashr(*C3) != C2) 1702 return nullptr; 1703 } 1704 1705 if (AnyCmpCstBitsShiftedOut) { 1706 // If we shifted bits out, the fold is not going to work out. As a 1707 // special case, check to see if this means that the result is always 1708 // true or false now. 1709 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1710 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1711 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1712 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1713 } else { 1714 Value *NewAnd = Builder.CreateAnd( 1715 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1716 return new ICmpInst(Cmp.getPredicate(), 1717 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1718 } 1719 } 1720 1721 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1722 // preferable because it allows the C2 << Y expression to be hoisted out of a 1723 // loop if Y is invariant and X is not. 1724 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1725 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1726 // Compute C2 << Y. 1727 Value *NewShift = 1728 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1729 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1730 1731 // Compute X & (C2 << Y). 1732 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1733 return replaceOperand(Cmp, 0, NewAnd); 1734 } 1735 1736 return nullptr; 1737 } 1738 1739 /// Fold icmp (and X, C2), C1. 1740 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1741 BinaryOperator *And, 1742 const APInt &C1) { 1743 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1744 1745 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1746 // TODO: We canonicalize to the longer form for scalars because we have 1747 // better analysis/folds for icmp, and codegen may be better with icmp. 1748 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1749 match(And->getOperand(1), m_One())) 1750 return new TruncInst(And->getOperand(0), Cmp.getType()); 1751 1752 const APInt *C2; 1753 Value *X; 1754 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1755 return nullptr; 1756 1757 // Don't perform the following transforms if the AND has multiple uses 1758 if (!And->hasOneUse()) 1759 return nullptr; 1760 1761 if (Cmp.isEquality() && C1.isZero()) { 1762 // Restrict this fold to single-use 'and' (PR10267). 1763 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1764 if (C2->isSignMask()) { 1765 Constant *Zero = Constant::getNullValue(X->getType()); 1766 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1767 return new ICmpInst(NewPred, X, Zero); 1768 } 1769 1770 // Restrict this fold only for single-use 'and' (PR10267). 1771 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1772 if ((~(*C2) + 1).isPowerOf2()) { 1773 Constant *NegBOC = 1774 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1775 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1776 return new ICmpInst(NewPred, X, NegBOC); 1777 } 1778 } 1779 1780 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1781 // the input width without changing the value produced, eliminate the cast: 1782 // 1783 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1784 // 1785 // We can do this transformation if the constants do not have their sign bits 1786 // set or if it is an equality comparison. Extending a relational comparison 1787 // when we're checking the sign bit would not work. 1788 Value *W; 1789 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1790 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1791 // TODO: Is this a good transform for vectors? Wider types may reduce 1792 // throughput. Should this transform be limited (even for scalars) by using 1793 // shouldChangeType()? 1794 if (!Cmp.getType()->isVectorTy()) { 1795 Type *WideType = W->getType(); 1796 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1797 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1798 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1799 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1800 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1801 } 1802 } 1803 1804 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1805 return I; 1806 1807 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1808 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1809 // 1810 // iff pred isn't signed 1811 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1812 match(And->getOperand(1), m_One())) { 1813 Constant *One = cast<Constant>(And->getOperand(1)); 1814 Value *Or = And->getOperand(0); 1815 Value *A, *B, *LShr; 1816 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1817 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1818 unsigned UsesRemoved = 0; 1819 if (And->hasOneUse()) 1820 ++UsesRemoved; 1821 if (Or->hasOneUse()) 1822 ++UsesRemoved; 1823 if (LShr->hasOneUse()) 1824 ++UsesRemoved; 1825 1826 // Compute A & ((1 << B) | 1) 1827 Value *NewOr = nullptr; 1828 if (auto *C = dyn_cast<Constant>(B)) { 1829 if (UsesRemoved >= 1) 1830 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1831 } else { 1832 if (UsesRemoved >= 3) 1833 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1834 /*HasNUW=*/true), 1835 One, Or->getName()); 1836 } 1837 if (NewOr) { 1838 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1839 return replaceOperand(Cmp, 0, NewAnd); 1840 } 1841 } 1842 } 1843 1844 return nullptr; 1845 } 1846 1847 /// Fold icmp (and X, Y), C. 1848 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1849 BinaryOperator *And, 1850 const APInt &C) { 1851 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1852 return I; 1853 1854 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1855 bool TrueIfNeg; 1856 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1857 // ((X - 1) & ~X) < 0 --> X == 0 1858 // ((X - 1) & ~X) >= 0 --> X != 0 1859 Value *X; 1860 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1861 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1862 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1863 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1864 } 1865 } 1866 1867 // TODO: These all require that Y is constant too, so refactor with the above. 1868 1869 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1870 Value *X = And->getOperand(0); 1871 Value *Y = And->getOperand(1); 1872 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1873 if (auto *LI = dyn_cast<LoadInst>(X)) 1874 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1875 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1876 if (Instruction *Res = 1877 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1878 return Res; 1879 1880 if (!Cmp.isEquality()) 1881 return nullptr; 1882 1883 // X & -C == -C -> X > u ~C 1884 // X & -C != -C -> X <= u ~C 1885 // iff C is a power of 2 1886 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1887 auto NewPred = 1888 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1889 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1890 } 1891 1892 return nullptr; 1893 } 1894 1895 /// Fold icmp (or X, Y), C. 1896 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1897 BinaryOperator *Or, 1898 const APInt &C) { 1899 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1900 if (C.isOne()) { 1901 // icmp slt signum(V) 1 --> icmp slt V, 1 1902 Value *V = nullptr; 1903 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1904 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1905 ConstantInt::get(V->getType(), 1)); 1906 } 1907 1908 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1909 const APInt *MaskC; 1910 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1911 if (*MaskC == C && (C + 1).isPowerOf2()) { 1912 // X | C == C --> X <=u C 1913 // X | C != C --> X >u C 1914 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1915 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1916 return new ICmpInst(Pred, OrOp0, OrOp1); 1917 } 1918 1919 // More general: canonicalize 'equality with set bits mask' to 1920 // 'equality with clear bits mask'. 1921 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1922 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1923 if (Or->hasOneUse()) { 1924 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1925 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1926 return new ICmpInst(Pred, And, NewC); 1927 } 1928 } 1929 1930 // (X | (X-1)) s< 0 --> X s< 1 1931 // (X | (X-1)) s> -1 --> X s> 0 1932 Value *X; 1933 bool TrueIfSigned; 1934 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1935 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1936 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1937 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1938 return new ICmpInst(NewPred, X, NewC); 1939 } 1940 1941 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1942 return nullptr; 1943 1944 Value *P, *Q; 1945 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1946 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1947 // -> and (icmp eq P, null), (icmp eq Q, null). 1948 Value *CmpP = 1949 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1950 Value *CmpQ = 1951 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1952 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1953 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1954 } 1955 1956 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1957 // a shorter form that has more potential to be folded even further. 1958 Value *X1, *X2, *X3, *X4; 1959 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1960 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1961 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1962 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1963 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1964 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1965 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1966 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1967 } 1968 1969 return nullptr; 1970 } 1971 1972 /// Fold icmp (mul X, Y), C. 1973 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1974 BinaryOperator *Mul, 1975 const APInt &C) { 1976 const APInt *MulC; 1977 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1978 return nullptr; 1979 1980 // If this is a test of the sign bit and the multiply is sign-preserving with 1981 // a constant operand, use the multiply LHS operand instead. 1982 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1983 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1984 if (MulC->isNegative()) 1985 Pred = ICmpInst::getSwappedPredicate(Pred); 1986 return new ICmpInst(Pred, Mul->getOperand(0), 1987 Constant::getNullValue(Mul->getType())); 1988 } 1989 1990 // If the multiply does not wrap, try to divide the compare constant by the 1991 // multiplication factor. 1992 if (Cmp.isEquality() && !MulC->isZero()) { 1993 // (mul nsw X, MulC) == C --> X == C /s MulC 1994 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 1995 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1996 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1997 } 1998 // (mul nuw X, MulC) == C --> X == C /u MulC 1999 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 2000 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 2001 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2002 } 2003 } 2004 2005 return nullptr; 2006 } 2007 2008 /// Fold icmp (shl 1, Y), C. 2009 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2010 const APInt &C) { 2011 Value *Y; 2012 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2013 return nullptr; 2014 2015 Type *ShiftType = Shl->getType(); 2016 unsigned TypeBits = C.getBitWidth(); 2017 bool CIsPowerOf2 = C.isPowerOf2(); 2018 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2019 if (Cmp.isUnsigned()) { 2020 // (1 << Y) pred C -> Y pred Log2(C) 2021 if (!CIsPowerOf2) { 2022 // (1 << Y) < 30 -> Y <= 4 2023 // (1 << Y) <= 30 -> Y <= 4 2024 // (1 << Y) >= 30 -> Y > 4 2025 // (1 << Y) > 30 -> Y > 4 2026 if (Pred == ICmpInst::ICMP_ULT) 2027 Pred = ICmpInst::ICMP_ULE; 2028 else if (Pred == ICmpInst::ICMP_UGE) 2029 Pred = ICmpInst::ICMP_UGT; 2030 } 2031 2032 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2033 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2034 unsigned CLog2 = C.logBase2(); 2035 if (CLog2 == TypeBits - 1) { 2036 if (Pred == ICmpInst::ICMP_UGE) 2037 Pred = ICmpInst::ICMP_EQ; 2038 else if (Pred == ICmpInst::ICMP_ULT) 2039 Pred = ICmpInst::ICMP_NE; 2040 } 2041 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2042 } else if (Cmp.isSigned()) { 2043 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2044 if (C.isAllOnes()) { 2045 // (1 << Y) <= -1 -> Y == 31 2046 if (Pred == ICmpInst::ICMP_SLE) 2047 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2048 2049 // (1 << Y) > -1 -> Y != 31 2050 if (Pred == ICmpInst::ICMP_SGT) 2051 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2052 } else if (!C) { 2053 // (1 << Y) < 0 -> Y == 31 2054 // (1 << Y) <= 0 -> Y == 31 2055 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2056 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2057 2058 // (1 << Y) >= 0 -> Y != 31 2059 // (1 << Y) > 0 -> Y != 31 2060 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2061 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2062 } 2063 } else if (Cmp.isEquality() && CIsPowerOf2) { 2064 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2065 } 2066 2067 return nullptr; 2068 } 2069 2070 /// Fold icmp (shl X, Y), C. 2071 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2072 BinaryOperator *Shl, 2073 const APInt &C) { 2074 const APInt *ShiftVal; 2075 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2076 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2077 2078 const APInt *ShiftAmt; 2079 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2080 return foldICmpShlOne(Cmp, Shl, C); 2081 2082 // Check that the shift amount is in range. If not, don't perform undefined 2083 // shifts. When the shift is visited, it will be simplified. 2084 unsigned TypeBits = C.getBitWidth(); 2085 if (ShiftAmt->uge(TypeBits)) 2086 return nullptr; 2087 2088 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2089 Value *X = Shl->getOperand(0); 2090 Type *ShType = Shl->getType(); 2091 2092 // NSW guarantees that we are only shifting out sign bits from the high bits, 2093 // so we can ASHR the compare constant without needing a mask and eliminate 2094 // the shift. 2095 if (Shl->hasNoSignedWrap()) { 2096 if (Pred == ICmpInst::ICMP_SGT) { 2097 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2098 APInt ShiftedC = C.ashr(*ShiftAmt); 2099 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2100 } 2101 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2102 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2103 APInt ShiftedC = C.ashr(*ShiftAmt); 2104 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2105 } 2106 if (Pred == ICmpInst::ICMP_SLT) { 2107 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2108 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2109 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2110 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2111 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2112 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2113 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2114 } 2115 // If this is a signed comparison to 0 and the shift is sign preserving, 2116 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2117 // do that if we're sure to not continue on in this function. 2118 if (isSignTest(Pred, C)) 2119 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2120 } 2121 2122 // NUW guarantees that we are only shifting out zero bits from the high bits, 2123 // so we can LSHR the compare constant without needing a mask and eliminate 2124 // the shift. 2125 if (Shl->hasNoUnsignedWrap()) { 2126 if (Pred == ICmpInst::ICMP_UGT) { 2127 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2128 APInt ShiftedC = C.lshr(*ShiftAmt); 2129 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2130 } 2131 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2132 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2133 APInt ShiftedC = C.lshr(*ShiftAmt); 2134 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2135 } 2136 if (Pred == ICmpInst::ICMP_ULT) { 2137 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2138 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2139 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2140 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2141 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2142 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2143 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2144 } 2145 } 2146 2147 if (Cmp.isEquality() && Shl->hasOneUse()) { 2148 // Strength-reduce the shift into an 'and'. 2149 Constant *Mask = ConstantInt::get( 2150 ShType, 2151 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2152 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2153 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2154 return new ICmpInst(Pred, And, LShrC); 2155 } 2156 2157 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2158 bool TrueIfSigned = false; 2159 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2160 // (X << 31) <s 0 --> (X & 1) != 0 2161 Constant *Mask = ConstantInt::get( 2162 ShType, 2163 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2164 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2165 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2166 And, Constant::getNullValue(ShType)); 2167 } 2168 2169 // Simplify 'shl' inequality test into 'and' equality test. 2170 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2171 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2172 if ((C + 1).isPowerOf2() && 2173 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2174 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2175 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2176 : ICmpInst::ICMP_NE, 2177 And, Constant::getNullValue(ShType)); 2178 } 2179 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2180 if (C.isPowerOf2() && 2181 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2182 Value *And = 2183 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2184 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2185 : ICmpInst::ICMP_NE, 2186 And, Constant::getNullValue(ShType)); 2187 } 2188 } 2189 2190 // Transform (icmp pred iM (shl iM %v, N), C) 2191 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2192 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2193 // This enables us to get rid of the shift in favor of a trunc that may be 2194 // free on the target. It has the additional benefit of comparing to a 2195 // smaller constant that may be more target-friendly. 2196 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2197 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2198 DL.isLegalInteger(TypeBits - Amt)) { 2199 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2200 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2201 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2202 Constant *NewC = 2203 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2204 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2205 } 2206 2207 return nullptr; 2208 } 2209 2210 /// Fold icmp ({al}shr X, Y), C. 2211 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2212 BinaryOperator *Shr, 2213 const APInt &C) { 2214 // An exact shr only shifts out zero bits, so: 2215 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2216 Value *X = Shr->getOperand(0); 2217 CmpInst::Predicate Pred = Cmp.getPredicate(); 2218 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2219 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2220 2221 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2222 const APInt *ShiftValC; 2223 if (match(Shr->getOperand(0), m_APInt(ShiftValC))) { 2224 if (Cmp.isEquality()) 2225 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC); 2226 2227 // If the shifted constant is a power-of-2, test the shift amount directly: 2228 // (ShiftValC >> X) >u C --> X <u (LZ(C) - LZ(ShiftValC)) 2229 // (ShiftValC >> X) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC)) 2230 if (!IsAShr && ShiftValC->isPowerOf2() && 2231 (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) { 2232 bool IsUGT = Pred == CmpInst::ICMP_UGT; 2233 assert(ShiftValC->ugt(C) && "Expected simplify of compare"); 2234 assert(IsUGT || !C.isZero() && "Expected X u< 0 to simplify"); 2235 2236 unsigned CmpLZ = 2237 IsUGT ? C.countLeadingZeros() : (C - 1).countLeadingZeros(); 2238 unsigned ShiftLZ = ShiftValC->countLeadingZeros(); 2239 Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ); 2240 auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 2241 return new ICmpInst(NewPred, Shr->getOperand(1), NewC); 2242 } 2243 } 2244 2245 const APInt *ShiftAmtC; 2246 if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC))) 2247 return nullptr; 2248 2249 // Check that the shift amount is in range. If not, don't perform undefined 2250 // shifts. When the shift is visited it will be simplified. 2251 unsigned TypeBits = C.getBitWidth(); 2252 unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits); 2253 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2254 return nullptr; 2255 2256 bool IsExact = Shr->isExact(); 2257 Type *ShrTy = Shr->getType(); 2258 // TODO: If we could guarantee that InstSimplify would handle all of the 2259 // constant-value-based preconditions in the folds below, then we could assert 2260 // those conditions rather than checking them. This is difficult because of 2261 // undef/poison (PR34838). 2262 if (IsAShr) { 2263 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2264 // When ShAmtC can be shifted losslessly: 2265 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2266 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2267 APInt ShiftedC = C.shl(ShAmtVal); 2268 if (ShiftedC.ashr(ShAmtVal) == C) 2269 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2270 } 2271 if (Pred == CmpInst::ICMP_SGT) { 2272 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2273 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2274 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2275 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2276 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2277 } 2278 if (Pred == CmpInst::ICMP_UGT) { 2279 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2280 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd 2281 // clause accounts for that pattern. 2282 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2283 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) || 2284 (C + 1).shl(ShAmtVal).isMinSignedValue()) 2285 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2286 } 2287 2288 // If the compare constant has significant bits above the lowest sign-bit, 2289 // then convert an unsigned cmp to a test of the sign-bit: 2290 // (ashr X, ShiftC) u> C --> X s< 0 2291 // (ashr X, ShiftC) u< C --> X s> -1 2292 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2293 if (Pred == CmpInst::ICMP_UGT) { 2294 return new ICmpInst(CmpInst::ICMP_SLT, X, 2295 ConstantInt::getNullValue(ShrTy)); 2296 } 2297 if (Pred == CmpInst::ICMP_ULT) { 2298 return new ICmpInst(CmpInst::ICMP_SGT, X, 2299 ConstantInt::getAllOnesValue(ShrTy)); 2300 } 2301 } 2302 } else { 2303 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2304 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2305 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2306 APInt ShiftedC = C.shl(ShAmtVal); 2307 if (ShiftedC.lshr(ShAmtVal) == C) 2308 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2309 } 2310 if (Pred == CmpInst::ICMP_UGT) { 2311 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2312 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2313 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2314 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2315 } 2316 } 2317 2318 if (!Cmp.isEquality()) 2319 return nullptr; 2320 2321 // Handle equality comparisons of shift-by-constant. 2322 2323 // If the comparison constant changes with the shift, the comparison cannot 2324 // succeed (bits of the comparison constant cannot match the shifted value). 2325 // This should be known by InstSimplify and already be folded to true/false. 2326 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2327 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2328 "Expected icmp+shr simplify did not occur."); 2329 2330 // If the bits shifted out are known zero, compare the unshifted value: 2331 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2332 if (Shr->isExact()) 2333 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2334 2335 if (C.isZero()) { 2336 // == 0 is u< 1. 2337 if (Pred == CmpInst::ICMP_EQ) 2338 return new ICmpInst(CmpInst::ICMP_ULT, X, 2339 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2340 else 2341 return new ICmpInst(CmpInst::ICMP_UGT, X, 2342 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2343 } 2344 2345 if (Shr->hasOneUse()) { 2346 // Canonicalize the shift into an 'and': 2347 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2348 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2349 Constant *Mask = ConstantInt::get(ShrTy, Val); 2350 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2351 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2352 } 2353 2354 return nullptr; 2355 } 2356 2357 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2358 BinaryOperator *SRem, 2359 const APInt &C) { 2360 // Match an 'is positive' or 'is negative' comparison of remainder by a 2361 // constant power-of-2 value: 2362 // (X % pow2C) sgt/slt 0 2363 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2364 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2365 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2366 return nullptr; 2367 2368 // TODO: The one-use check is standard because we do not typically want to 2369 // create longer instruction sequences, but this might be a special-case 2370 // because srem is not good for analysis or codegen. 2371 if (!SRem->hasOneUse()) 2372 return nullptr; 2373 2374 const APInt *DivisorC; 2375 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2376 return nullptr; 2377 2378 // For cmp_sgt/cmp_slt only zero valued C is handled. 2379 // For cmp_eq/cmp_ne only positive valued C is handled. 2380 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2381 !C.isZero()) || 2382 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2383 !C.isStrictlyPositive())) 2384 return nullptr; 2385 2386 // Mask off the sign bit and the modulo bits (low-bits). 2387 Type *Ty = SRem->getType(); 2388 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2389 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2390 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2391 2392 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2393 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2394 2395 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2396 // bit is set. Example: 2397 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2398 if (Pred == ICmpInst::ICMP_SGT) 2399 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2400 2401 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2402 // bit is set. Example: 2403 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2404 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2405 } 2406 2407 /// Fold icmp (udiv X, Y), C. 2408 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2409 BinaryOperator *UDiv, 2410 const APInt &C) { 2411 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2412 Value *X = UDiv->getOperand(0); 2413 Value *Y = UDiv->getOperand(1); 2414 Type *Ty = UDiv->getType(); 2415 2416 const APInt *C2; 2417 if (!match(X, m_APInt(C2))) 2418 return nullptr; 2419 2420 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2421 2422 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2423 if (Pred == ICmpInst::ICMP_UGT) { 2424 assert(!C.isMaxValue() && 2425 "icmp ugt X, UINT_MAX should have been simplified already."); 2426 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2427 ConstantInt::get(Ty, C2->udiv(C + 1))); 2428 } 2429 2430 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2431 if (Pred == ICmpInst::ICMP_ULT) { 2432 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2433 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2434 ConstantInt::get(Ty, C2->udiv(C))); 2435 } 2436 2437 return nullptr; 2438 } 2439 2440 /// Fold icmp ({su}div X, Y), C. 2441 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2442 BinaryOperator *Div, 2443 const APInt &C) { 2444 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2445 Value *X = Div->getOperand(0); 2446 Value *Y = Div->getOperand(1); 2447 Type *Ty = Div->getType(); 2448 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2449 2450 // If unsigned division and the compare constant is bigger than 2451 // UMAX/2 (negative), there's only one pair of values that satisfies an 2452 // equality check, so eliminate the division: 2453 // (X u/ Y) == C --> (X == C) && (Y == 1) 2454 // (X u/ Y) != C --> (X != C) || (Y != 1) 2455 // Similarly, if signed division and the compare constant is exactly SMIN: 2456 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) 2457 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) 2458 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && 2459 (!DivIsSigned || C.isMinSignedValue())) { 2460 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C)); 2461 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1)); 2462 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2463 return BinaryOperator::Create(Logic, XBig, YOne); 2464 } 2465 2466 // Fold: icmp pred ([us]div X, C2), C -> range test 2467 // Fold this div into the comparison, producing a range check. 2468 // Determine, based on the divide type, what the range is being 2469 // checked. If there is an overflow on the low or high side, remember 2470 // it, otherwise compute the range [low, hi) bounding the new value. 2471 // See: InsertRangeTest above for the kinds of replacements possible. 2472 const APInt *C2; 2473 if (!match(Y, m_APInt(C2))) 2474 return nullptr; 2475 2476 // FIXME: If the operand types don't match the type of the divide 2477 // then don't attempt this transform. The code below doesn't have the 2478 // logic to deal with a signed divide and an unsigned compare (and 2479 // vice versa). This is because (x /s C2) <s C produces different 2480 // results than (x /s C2) <u C or (x /u C2) <s C or even 2481 // (x /u C2) <u C. Simply casting the operands and result won't 2482 // work. :( The if statement below tests that condition and bails 2483 // if it finds it. 2484 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2485 return nullptr; 2486 2487 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2488 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2489 // division-by-constant cases should be present, we can not assert that they 2490 // have happened before we reach this icmp instruction. 2491 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2492 return nullptr; 2493 2494 // Compute Prod = C * C2. We are essentially solving an equation of 2495 // form X / C2 = C. We solve for X by multiplying C2 and C. 2496 // By solving for X, we can turn this into a range check instead of computing 2497 // a divide. 2498 APInt Prod = C * *C2; 2499 2500 // Determine if the product overflows by seeing if the product is not equal to 2501 // the divide. Make sure we do the same kind of divide as in the LHS 2502 // instruction that we're folding. 2503 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2504 2505 // If the division is known to be exact, then there is no remainder from the 2506 // divide, so the covered range size is unit, otherwise it is the divisor. 2507 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2508 2509 // Figure out the interval that is being checked. For example, a comparison 2510 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2511 // Compute this interval based on the constants involved and the signedness of 2512 // the compare/divide. This computes a half-open interval, keeping track of 2513 // whether either value in the interval overflows. After analysis each 2514 // overflow variable is set to 0 if it's corresponding bound variable is valid 2515 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2516 int LoOverflow = 0, HiOverflow = 0; 2517 APInt LoBound, HiBound; 2518 2519 if (!DivIsSigned) { // udiv 2520 // e.g. X/5 op 3 --> [15, 20) 2521 LoBound = Prod; 2522 HiOverflow = LoOverflow = ProdOV; 2523 if (!HiOverflow) { 2524 // If this is not an exact divide, then many values in the range collapse 2525 // to the same result value. 2526 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2527 } 2528 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2529 if (C.isZero()) { // (X / pos) op 0 2530 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2531 LoBound = -(RangeSize - 1); 2532 HiBound = RangeSize; 2533 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2534 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2535 HiOverflow = LoOverflow = ProdOV; 2536 if (!HiOverflow) 2537 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2538 } else { // (X / pos) op neg 2539 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2540 HiBound = Prod + 1; 2541 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2542 if (!LoOverflow) { 2543 APInt DivNeg = -RangeSize; 2544 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2545 } 2546 } 2547 } else if (C2->isNegative()) { // Divisor is < 0. 2548 if (Div->isExact()) 2549 RangeSize.negate(); 2550 if (C.isZero()) { // (X / neg) op 0 2551 // e.g. X/-5 op 0 --> [-4, 5) 2552 LoBound = RangeSize + 1; 2553 HiBound = -RangeSize; 2554 if (HiBound == *C2) { // -INTMIN = INTMIN 2555 HiOverflow = 1; // [INTMIN+1, overflow) 2556 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2557 } 2558 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2559 // e.g. X/-5 op 3 --> [-19, -14) 2560 HiBound = Prod + 1; 2561 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2562 if (!LoOverflow) 2563 LoOverflow = 2564 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0; 2565 } else { // (X / neg) op neg 2566 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2567 LoOverflow = HiOverflow = ProdOV; 2568 if (!HiOverflow) 2569 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2570 } 2571 2572 // Dividing by a negative swaps the condition. LT <-> GT 2573 Pred = ICmpInst::getSwappedPredicate(Pred); 2574 } 2575 2576 switch (Pred) { 2577 default: 2578 llvm_unreachable("Unhandled icmp predicate!"); 2579 case ICmpInst::ICMP_EQ: 2580 if (LoOverflow && HiOverflow) 2581 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2582 if (HiOverflow) 2583 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2584 X, ConstantInt::get(Ty, LoBound)); 2585 if (LoOverflow) 2586 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2587 X, ConstantInt::get(Ty, HiBound)); 2588 return replaceInstUsesWith( 2589 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2590 case ICmpInst::ICMP_NE: 2591 if (LoOverflow && HiOverflow) 2592 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2593 if (HiOverflow) 2594 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2595 X, ConstantInt::get(Ty, LoBound)); 2596 if (LoOverflow) 2597 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2598 X, ConstantInt::get(Ty, HiBound)); 2599 return replaceInstUsesWith( 2600 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); 2601 case ICmpInst::ICMP_ULT: 2602 case ICmpInst::ICMP_SLT: 2603 if (LoOverflow == +1) // Low bound is greater than input range. 2604 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2605 if (LoOverflow == -1) // Low bound is less than input range. 2606 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2607 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound)); 2608 case ICmpInst::ICMP_UGT: 2609 case ICmpInst::ICMP_SGT: 2610 if (HiOverflow == +1) // High bound greater than input range. 2611 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2612 if (HiOverflow == -1) // High bound less than input range. 2613 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2614 if (Pred == ICmpInst::ICMP_UGT) 2615 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); 2616 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound)); 2617 } 2618 2619 return nullptr; 2620 } 2621 2622 /// Fold icmp (sub X, Y), C. 2623 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2624 BinaryOperator *Sub, 2625 const APInt &C) { 2626 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2627 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2628 Type *Ty = Sub->getType(); 2629 2630 // (SubC - Y) == C) --> Y == (SubC - C) 2631 // (SubC - Y) != C) --> Y != (SubC - C) 2632 Constant *SubC; 2633 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2634 return new ICmpInst(Pred, Y, 2635 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2636 } 2637 2638 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2639 const APInt *C2; 2640 APInt SubResult; 2641 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2642 bool HasNSW = Sub->hasNoSignedWrap(); 2643 bool HasNUW = Sub->hasNoUnsignedWrap(); 2644 if (match(X, m_APInt(C2)) && 2645 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2646 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2647 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2648 2649 // X - Y == 0 --> X == Y. 2650 // X - Y != 0 --> X != Y. 2651 // TODO: We allow this with multiple uses as long as the other uses are not 2652 // in phis. The phi use check is guarding against a codegen regression 2653 // for a loop test. If the backend could undo this (and possibly 2654 // subsequent transforms), we would not need this hack. 2655 if (Cmp.isEquality() && C.isZero() && 2656 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2657 return new ICmpInst(Pred, X, Y); 2658 2659 // The following transforms are only worth it if the only user of the subtract 2660 // is the icmp. 2661 // TODO: This is an artificial restriction for all of the transforms below 2662 // that only need a single replacement icmp. Can these use the phi test 2663 // like the transform above here? 2664 if (!Sub->hasOneUse()) 2665 return nullptr; 2666 2667 if (Sub->hasNoSignedWrap()) { 2668 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2669 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2670 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2671 2672 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2673 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2674 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2675 2676 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2677 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2678 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2679 2680 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2681 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2682 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2683 } 2684 2685 if (!match(X, m_APInt(C2))) 2686 return nullptr; 2687 2688 // C2 - Y <u C -> (Y | (C - 1)) == C2 2689 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2690 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2691 (*C2 & (C - 1)) == (C - 1)) 2692 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2693 2694 // C2 - Y >u C -> (Y | C) != C2 2695 // iff C2 & C == C and C + 1 is a power of 2 2696 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2697 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2698 2699 // We have handled special cases that reduce. 2700 // Canonicalize any remaining sub to add as: 2701 // (C2 - Y) > C --> (Y + ~C2) < ~C 2702 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2703 HasNUW, HasNSW); 2704 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2705 } 2706 2707 /// Fold icmp (add X, Y), C. 2708 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2709 BinaryOperator *Add, 2710 const APInt &C) { 2711 Value *Y = Add->getOperand(1); 2712 const APInt *C2; 2713 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2714 return nullptr; 2715 2716 // Fold icmp pred (add X, C2), C. 2717 Value *X = Add->getOperand(0); 2718 Type *Ty = Add->getType(); 2719 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2720 2721 // If the add does not wrap, we can always adjust the compare by subtracting 2722 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2723 // are canonicalized to SGT/SLT/UGT/ULT. 2724 if ((Add->hasNoSignedWrap() && 2725 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2726 (Add->hasNoUnsignedWrap() && 2727 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2728 bool Overflow; 2729 APInt NewC = 2730 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2731 // If there is overflow, the result must be true or false. 2732 // TODO: Can we assert there is no overflow because InstSimplify always 2733 // handles those cases? 2734 if (!Overflow) 2735 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2736 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2737 } 2738 2739 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2740 const APInt &Upper = CR.getUpper(); 2741 const APInt &Lower = CR.getLower(); 2742 if (Cmp.isSigned()) { 2743 if (Lower.isSignMask()) 2744 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2745 if (Upper.isSignMask()) 2746 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2747 } else { 2748 if (Lower.isMinValue()) 2749 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2750 if (Upper.isMinValue()) 2751 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2752 } 2753 2754 // This set of folds is intentionally placed after folds that use no-wrapping 2755 // flags because those folds are likely better for later analysis/codegen. 2756 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2757 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2758 2759 // Fold compare with offset to opposite sign compare if it eliminates offset: 2760 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2761 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2762 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2763 2764 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2765 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2766 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2767 2768 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2769 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2770 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2771 2772 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2773 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2774 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2775 2776 if (!Add->hasOneUse()) 2777 return nullptr; 2778 2779 // X+C <u C2 -> (X & -C2) == C 2780 // iff C & (C2-1) == 0 2781 // C2 is a power of 2 2782 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2783 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2784 ConstantExpr::getNeg(cast<Constant>(Y))); 2785 2786 // X+C >u C2 -> (X & ~C2) != C 2787 // iff C & C2 == 0 2788 // C2+1 is a power of 2 2789 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2790 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2791 ConstantExpr::getNeg(cast<Constant>(Y))); 2792 2793 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2794 // to the ult form. 2795 // X+C2 >u C -> X+(C2-C-1) <u ~C 2796 if (Pred == ICmpInst::ICMP_UGT) 2797 return new ICmpInst(ICmpInst::ICMP_ULT, 2798 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2799 ConstantInt::get(Ty, ~C)); 2800 2801 return nullptr; 2802 } 2803 2804 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2805 Value *&RHS, ConstantInt *&Less, 2806 ConstantInt *&Equal, 2807 ConstantInt *&Greater) { 2808 // TODO: Generalize this to work with other comparison idioms or ensure 2809 // they get canonicalized into this form. 2810 2811 // select i1 (a == b), 2812 // i32 Equal, 2813 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2814 // where Equal, Less and Greater are placeholders for any three constants. 2815 ICmpInst::Predicate PredA; 2816 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2817 !ICmpInst::isEquality(PredA)) 2818 return false; 2819 Value *EqualVal = SI->getTrueValue(); 2820 Value *UnequalVal = SI->getFalseValue(); 2821 // We still can get non-canonical predicate here, so canonicalize. 2822 if (PredA == ICmpInst::ICMP_NE) 2823 std::swap(EqualVal, UnequalVal); 2824 if (!match(EqualVal, m_ConstantInt(Equal))) 2825 return false; 2826 ICmpInst::Predicate PredB; 2827 Value *LHS2, *RHS2; 2828 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2829 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2830 return false; 2831 // We can get predicate mismatch here, so canonicalize if possible: 2832 // First, ensure that 'LHS' match. 2833 if (LHS2 != LHS) { 2834 // x sgt y <--> y slt x 2835 std::swap(LHS2, RHS2); 2836 PredB = ICmpInst::getSwappedPredicate(PredB); 2837 } 2838 if (LHS2 != LHS) 2839 return false; 2840 // We also need to canonicalize 'RHS'. 2841 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2842 // x sgt C-1 <--> x sge C <--> not(x slt C) 2843 auto FlippedStrictness = 2844 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2845 PredB, cast<Constant>(RHS2)); 2846 if (!FlippedStrictness) 2847 return false; 2848 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2849 "basic correctness failure"); 2850 RHS2 = FlippedStrictness->second; 2851 // And kind-of perform the result swap. 2852 std::swap(Less, Greater); 2853 PredB = ICmpInst::ICMP_SLT; 2854 } 2855 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2856 } 2857 2858 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2859 SelectInst *Select, 2860 ConstantInt *C) { 2861 2862 assert(C && "Cmp RHS should be a constant int!"); 2863 // If we're testing a constant value against the result of a three way 2864 // comparison, the result can be expressed directly in terms of the 2865 // original values being compared. Note: We could possibly be more 2866 // aggressive here and remove the hasOneUse test. The original select is 2867 // really likely to simplify or sink when we remove a test of the result. 2868 Value *OrigLHS, *OrigRHS; 2869 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2870 if (Cmp.hasOneUse() && 2871 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2872 C3GreaterThan)) { 2873 assert(C1LessThan && C2Equal && C3GreaterThan); 2874 2875 bool TrueWhenLessThan = 2876 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2877 ->isAllOnesValue(); 2878 bool TrueWhenEqual = 2879 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2880 ->isAllOnesValue(); 2881 bool TrueWhenGreaterThan = 2882 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2883 ->isAllOnesValue(); 2884 2885 // This generates the new instruction that will replace the original Cmp 2886 // Instruction. Instead of enumerating the various combinations when 2887 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2888 // false, we rely on chaining of ORs and future passes of InstCombine to 2889 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2890 2891 // When none of the three constants satisfy the predicate for the RHS (C), 2892 // the entire original Cmp can be simplified to a false. 2893 Value *Cond = Builder.getFalse(); 2894 if (TrueWhenLessThan) 2895 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2896 OrigLHS, OrigRHS)); 2897 if (TrueWhenEqual) 2898 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2899 OrigLHS, OrigRHS)); 2900 if (TrueWhenGreaterThan) 2901 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2902 OrigLHS, OrigRHS)); 2903 2904 return replaceInstUsesWith(Cmp, Cond); 2905 } 2906 return nullptr; 2907 } 2908 2909 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2910 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2911 if (!Bitcast) 2912 return nullptr; 2913 2914 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2915 Value *Op1 = Cmp.getOperand(1); 2916 Value *BCSrcOp = Bitcast->getOperand(0); 2917 Type *SrcType = Bitcast->getSrcTy(); 2918 Type *DstType = Bitcast->getType(); 2919 2920 // Make sure the bitcast doesn't change between scalar and vector and 2921 // doesn't change the number of vector elements. 2922 if (SrcType->isVectorTy() == DstType->isVectorTy() && 2923 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { 2924 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2925 Value *X; 2926 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2927 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2928 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2929 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2930 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2931 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2932 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2933 match(Op1, m_Zero())) 2934 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2935 2936 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2937 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2938 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2939 2940 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2941 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2942 return new ICmpInst(Pred, X, 2943 ConstantInt::getAllOnesValue(X->getType())); 2944 } 2945 2946 // Zero-equality checks are preserved through unsigned floating-point casts: 2947 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2948 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2949 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2950 if (Cmp.isEquality() && match(Op1, m_Zero())) 2951 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2952 2953 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2954 // the FP extend/truncate because that cast does not change the sign-bit. 2955 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2956 // The sign-bit is always the most significant bit in those types. 2957 const APInt *C; 2958 bool TrueIfSigned; 2959 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2960 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2961 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2962 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2963 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2964 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2965 Type *XType = X->getType(); 2966 2967 // We can't currently handle Power style floating point operations here. 2968 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { 2969 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2970 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2971 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2972 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2973 if (TrueIfSigned) 2974 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2975 ConstantInt::getNullValue(NewType)); 2976 else 2977 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2978 ConstantInt::getAllOnesValue(NewType)); 2979 } 2980 } 2981 } 2982 } 2983 2984 // Test to see if the operands of the icmp are casted versions of other 2985 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2986 if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2987 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2988 // so eliminate it as well. 2989 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2990 Op1 = BC2->getOperand(0); 2991 2992 Op1 = Builder.CreateBitCast(Op1, SrcType); 2993 return new ICmpInst(Pred, BCSrcOp, Op1); 2994 } 2995 2996 const APInt *C; 2997 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || 2998 !SrcType->isIntOrIntVectorTy()) 2999 return nullptr; 3000 3001 // If this is checking if all elements of a vector compare are set or not, 3002 // invert the casted vector equality compare and test if all compare 3003 // elements are clear or not. Compare against zero is generally easier for 3004 // analysis and codegen. 3005 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 3006 // Example: are all elements equal? --> are zero elements not equal? 3007 // TODO: Try harder to reduce compare of 2 freely invertible operands? 3008 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 3009 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 3010 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType); 3011 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); 3012 } 3013 3014 // If this is checking if all elements of an extended vector are clear or not, 3015 // compare in a narrow type to eliminate the extend: 3016 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 3017 Value *X; 3018 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 3019 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 3020 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 3021 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 3022 Value *NewCast = Builder.CreateBitCast(X, NewType); 3023 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 3024 } 3025 } 3026 3027 // Folding: icmp <pred> iN X, C 3028 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 3029 // and C is a splat of a K-bit pattern 3030 // and SC is a constant vector = <C', C', C', ..., C'> 3031 // Into: 3032 // %E = extractelement <M x iK> %vec, i32 C' 3033 // icmp <pred> iK %E, trunc(C) 3034 Value *Vec; 3035 ArrayRef<int> Mask; 3036 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 3037 // Check whether every element of Mask is the same constant 3038 if (is_splat(Mask)) { 3039 auto *VecTy = cast<VectorType>(SrcType); 3040 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 3041 if (C->isSplat(EltTy->getBitWidth())) { 3042 // Fold the icmp based on the value of C 3043 // If C is M copies of an iK sized bit pattern, 3044 // then: 3045 // => %E = extractelement <N x iK> %vec, i32 Elem 3046 // icmp <pred> iK %SplatVal, <pattern> 3047 Value *Elem = Builder.getInt32(Mask[0]); 3048 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3049 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3050 return new ICmpInst(Pred, Extract, NewC); 3051 } 3052 } 3053 } 3054 return nullptr; 3055 } 3056 3057 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3058 /// where X is some kind of instruction. 3059 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3060 const APInt *C; 3061 3062 if (match(Cmp.getOperand(1), m_APInt(C))) { 3063 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) 3064 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) 3065 return I; 3066 3067 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) 3068 // For now, we only support constant integers while folding the 3069 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3070 // similar to the cases handled by binary ops above. 3071 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3072 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3073 return I; 3074 3075 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) 3076 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3077 return I; 3078 3079 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3080 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3081 return I; 3082 } 3083 3084 if (match(Cmp.getOperand(1), m_APIntAllowUndef(C))) 3085 return foldICmpInstWithConstantAllowUndef(Cmp, *C); 3086 3087 return nullptr; 3088 } 3089 3090 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3091 /// icmp eq/ne BO, C. 3092 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3093 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3094 // TODO: Some of these folds could work with arbitrary constants, but this 3095 // function is limited to scalar and vector splat constants. 3096 if (!Cmp.isEquality()) 3097 return nullptr; 3098 3099 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3100 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3101 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3102 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3103 3104 switch (BO->getOpcode()) { 3105 case Instruction::SRem: 3106 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3107 if (C.isZero() && BO->hasOneUse()) { 3108 const APInt *BOC; 3109 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3110 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3111 return new ICmpInst(Pred, NewRem, 3112 Constant::getNullValue(BO->getType())); 3113 } 3114 } 3115 break; 3116 case Instruction::Add: { 3117 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3118 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3119 if (BO->hasOneUse()) 3120 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3121 } else if (C.isZero()) { 3122 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3123 // efficiently invertible, or if the add has just this one use. 3124 if (Value *NegVal = dyn_castNegVal(BOp1)) 3125 return new ICmpInst(Pred, BOp0, NegVal); 3126 if (Value *NegVal = dyn_castNegVal(BOp0)) 3127 return new ICmpInst(Pred, NegVal, BOp1); 3128 if (BO->hasOneUse()) { 3129 Value *Neg = Builder.CreateNeg(BOp1); 3130 Neg->takeName(BO); 3131 return new ICmpInst(Pred, BOp0, Neg); 3132 } 3133 } 3134 break; 3135 } 3136 case Instruction::Xor: 3137 if (BO->hasOneUse()) { 3138 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3139 // For the xor case, we can xor two constants together, eliminating 3140 // the explicit xor. 3141 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3142 } else if (C.isZero()) { 3143 // Replace ((xor A, B) != 0) with (A != B) 3144 return new ICmpInst(Pred, BOp0, BOp1); 3145 } 3146 } 3147 break; 3148 case Instruction::Or: { 3149 const APInt *BOC; 3150 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3151 // Comparing if all bits outside of a constant mask are set? 3152 // Replace (X | C) == -1 with (X & ~C) == ~C. 3153 // This removes the -1 constant. 3154 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3155 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3156 return new ICmpInst(Pred, And, NotBOC); 3157 } 3158 break; 3159 } 3160 case Instruction::And: { 3161 const APInt *BOC; 3162 if (match(BOp1, m_APInt(BOC))) { 3163 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3164 if (C == *BOC && C.isPowerOf2()) 3165 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3166 BO, Constant::getNullValue(RHS->getType())); 3167 } 3168 break; 3169 } 3170 case Instruction::UDiv: 3171 if (C.isZero()) { 3172 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3173 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3174 return new ICmpInst(NewPred, BOp1, BOp0); 3175 } 3176 break; 3177 default: 3178 break; 3179 } 3180 return nullptr; 3181 } 3182 3183 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3184 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3185 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3186 Type *Ty = II->getType(); 3187 unsigned BitWidth = C.getBitWidth(); 3188 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3189 3190 switch (II->getIntrinsicID()) { 3191 case Intrinsic::abs: 3192 // abs(A) == 0 -> A == 0 3193 // abs(A) == INT_MIN -> A == INT_MIN 3194 if (C.isZero() || C.isMinSignedValue()) 3195 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3196 break; 3197 3198 case Intrinsic::bswap: 3199 // bswap(A) == C -> A == bswap(C) 3200 return new ICmpInst(Pred, II->getArgOperand(0), 3201 ConstantInt::get(Ty, C.byteSwap())); 3202 3203 case Intrinsic::ctlz: 3204 case Intrinsic::cttz: { 3205 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3206 if (C == BitWidth) 3207 return new ICmpInst(Pred, II->getArgOperand(0), 3208 ConstantInt::getNullValue(Ty)); 3209 3210 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3211 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3212 // Limit to one use to ensure we don't increase instruction count. 3213 unsigned Num = C.getLimitedValue(BitWidth); 3214 if (Num != BitWidth && II->hasOneUse()) { 3215 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3216 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3217 : APInt::getHighBitsSet(BitWidth, Num + 1); 3218 APInt Mask2 = IsTrailing 3219 ? APInt::getOneBitSet(BitWidth, Num) 3220 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3221 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3222 ConstantInt::get(Ty, Mask2)); 3223 } 3224 break; 3225 } 3226 3227 case Intrinsic::ctpop: { 3228 // popcount(A) == 0 -> A == 0 and likewise for != 3229 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3230 bool IsZero = C.isZero(); 3231 if (IsZero || C == BitWidth) 3232 return new ICmpInst(Pred, II->getArgOperand(0), 3233 IsZero ? Constant::getNullValue(Ty) 3234 : Constant::getAllOnesValue(Ty)); 3235 3236 break; 3237 } 3238 3239 case Intrinsic::fshl: 3240 case Intrinsic::fshr: 3241 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3242 const APInt *RotAmtC; 3243 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3244 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3245 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3246 return new ICmpInst(Pred, II->getArgOperand(0), 3247 II->getIntrinsicID() == Intrinsic::fshl 3248 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3249 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3250 } 3251 break; 3252 3253 case Intrinsic::uadd_sat: { 3254 // uadd.sat(a, b) == 0 -> (a | b) == 0 3255 if (C.isZero()) { 3256 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3257 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3258 } 3259 break; 3260 } 3261 3262 case Intrinsic::usub_sat: { 3263 // usub.sat(a, b) == 0 -> a <= b 3264 if (C.isZero()) { 3265 ICmpInst::Predicate NewPred = 3266 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3267 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3268 } 3269 break; 3270 } 3271 default: 3272 break; 3273 } 3274 3275 return nullptr; 3276 } 3277 3278 /// Fold an icmp with LLVM intrinsics 3279 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3280 assert(Cmp.isEquality()); 3281 3282 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3283 Value *Op0 = Cmp.getOperand(0); 3284 Value *Op1 = Cmp.getOperand(1); 3285 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3286 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3287 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3288 return nullptr; 3289 3290 switch (IIOp0->getIntrinsicID()) { 3291 case Intrinsic::bswap: 3292 case Intrinsic::bitreverse: 3293 // If both operands are byte-swapped or bit-reversed, just compare the 3294 // original values. 3295 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3296 case Intrinsic::fshl: 3297 case Intrinsic::fshr: 3298 // If both operands are rotated by same amount, just compare the 3299 // original values. 3300 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3301 break; 3302 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3303 break; 3304 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3305 break; 3306 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3307 default: 3308 break; 3309 } 3310 3311 return nullptr; 3312 } 3313 3314 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3315 /// where X is some kind of instruction and C is AllowUndef. 3316 /// TODO: Move more folds which allow undef to this function. 3317 Instruction * 3318 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp, 3319 const APInt &C) { 3320 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3321 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) { 3322 switch (II->getIntrinsicID()) { 3323 default: 3324 break; 3325 case Intrinsic::fshl: 3326 case Intrinsic::fshr: 3327 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { 3328 // (rot X, ?) == 0/-1 --> X == 0/-1 3329 if (C.isZero() || C.isAllOnes()) 3330 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3331 } 3332 break; 3333 } 3334 } 3335 3336 return nullptr; 3337 } 3338 3339 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. 3340 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, 3341 BinaryOperator *BO, 3342 const APInt &C) { 3343 switch (BO->getOpcode()) { 3344 case Instruction::Xor: 3345 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 3346 return I; 3347 break; 3348 case Instruction::And: 3349 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 3350 return I; 3351 break; 3352 case Instruction::Or: 3353 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 3354 return I; 3355 break; 3356 case Instruction::Mul: 3357 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 3358 return I; 3359 break; 3360 case Instruction::Shl: 3361 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 3362 return I; 3363 break; 3364 case Instruction::LShr: 3365 case Instruction::AShr: 3366 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 3367 return I; 3368 break; 3369 case Instruction::SRem: 3370 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) 3371 return I; 3372 break; 3373 case Instruction::UDiv: 3374 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 3375 return I; 3376 LLVM_FALLTHROUGH; 3377 case Instruction::SDiv: 3378 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 3379 return I; 3380 break; 3381 case Instruction::Sub: 3382 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 3383 return I; 3384 break; 3385 case Instruction::Add: 3386 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 3387 return I; 3388 break; 3389 default: 3390 break; 3391 } 3392 3393 // TODO: These folds could be refactored to be part of the above calls. 3394 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); 3395 } 3396 3397 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3398 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3399 IntrinsicInst *II, 3400 const APInt &C) { 3401 if (Cmp.isEquality()) 3402 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3403 3404 Type *Ty = II->getType(); 3405 unsigned BitWidth = C.getBitWidth(); 3406 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3407 switch (II->getIntrinsicID()) { 3408 case Intrinsic::ctpop: { 3409 // (ctpop X > BitWidth - 1) --> X == -1 3410 Value *X = II->getArgOperand(0); 3411 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3412 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3413 ConstantInt::getAllOnesValue(Ty)); 3414 // (ctpop X < BitWidth) --> X != -1 3415 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3416 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3417 ConstantInt::getAllOnesValue(Ty)); 3418 break; 3419 } 3420 case Intrinsic::ctlz: { 3421 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3422 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3423 unsigned Num = C.getLimitedValue(); 3424 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3425 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3426 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3427 } 3428 3429 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3430 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3431 unsigned Num = C.getLimitedValue(); 3432 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3433 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3434 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3435 } 3436 break; 3437 } 3438 case Intrinsic::cttz: { 3439 // Limit to one use to ensure we don't increase instruction count. 3440 if (!II->hasOneUse()) 3441 return nullptr; 3442 3443 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3444 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3445 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3446 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3447 Builder.CreateAnd(II->getArgOperand(0), Mask), 3448 ConstantInt::getNullValue(Ty)); 3449 } 3450 3451 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3452 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3453 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3454 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3455 Builder.CreateAnd(II->getArgOperand(0), Mask), 3456 ConstantInt::getNullValue(Ty)); 3457 } 3458 break; 3459 } 3460 default: 3461 break; 3462 } 3463 3464 return nullptr; 3465 } 3466 3467 /// Handle icmp with constant (but not simple integer constant) RHS. 3468 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3469 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3470 Constant *RHSC = dyn_cast<Constant>(Op1); 3471 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3472 if (!RHSC || !LHSI) 3473 return nullptr; 3474 3475 switch (LHSI->getOpcode()) { 3476 case Instruction::GetElementPtr: 3477 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3478 if (RHSC->isNullValue() && 3479 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3480 return new ICmpInst( 3481 I.getPredicate(), LHSI->getOperand(0), 3482 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3483 break; 3484 case Instruction::PHI: 3485 // Only fold icmp into the PHI if the phi and icmp are in the same 3486 // block. If in the same block, we're encouraging jump threading. If 3487 // not, we are just pessimizing the code by making an i1 phi. 3488 if (LHSI->getParent() == I.getParent()) 3489 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3490 return NV; 3491 break; 3492 case Instruction::IntToPtr: 3493 // icmp pred inttoptr(X), null -> icmp pred X, 0 3494 if (RHSC->isNullValue() && 3495 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3496 return new ICmpInst( 3497 I.getPredicate(), LHSI->getOperand(0), 3498 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3499 break; 3500 3501 case Instruction::Load: 3502 // Try to optimize things like "A[i] > 4" to index computations. 3503 if (GetElementPtrInst *GEP = 3504 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3505 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3506 if (Instruction *Res = 3507 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3508 return Res; 3509 break; 3510 } 3511 3512 return nullptr; 3513 } 3514 3515 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 3516 SelectInst *SI, Value *RHS, 3517 const ICmpInst &I) { 3518 // Try to fold the comparison into the select arms, which will cause the 3519 // select to be converted into a logical and/or. 3520 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 3521 if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ)) 3522 return Res; 3523 if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op, 3524 RHS, DL, SelectCondIsTrue)) 3525 return ConstantInt::get(I.getType(), *Impl); 3526 return nullptr; 3527 }; 3528 3529 ConstantInt *CI = nullptr; 3530 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 3531 if (Op1) 3532 CI = dyn_cast<ConstantInt>(Op1); 3533 3534 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 3535 if (Op2) 3536 CI = dyn_cast<ConstantInt>(Op2); 3537 3538 // We only want to perform this transformation if it will not lead to 3539 // additional code. This is true if either both sides of the select 3540 // fold to a constant (in which case the icmp is replaced with a select 3541 // which will usually simplify) or this is the only user of the 3542 // select (in which case we are trading a select+icmp for a simpler 3543 // select+icmp) or all uses of the select can be replaced based on 3544 // dominance information ("Global cases"). 3545 bool Transform = false; 3546 if (Op1 && Op2) 3547 Transform = true; 3548 else if (Op1 || Op2) { 3549 // Local case 3550 if (SI->hasOneUse()) 3551 Transform = true; 3552 // Global cases 3553 else if (CI && !CI->isZero()) 3554 // When Op1 is constant try replacing select with second operand. 3555 // Otherwise Op2 is constant and try replacing select with first 3556 // operand. 3557 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 3558 } 3559 if (Transform) { 3560 if (!Op1) 3561 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 3562 if (!Op2) 3563 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 3564 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 3565 } 3566 3567 return nullptr; 3568 } 3569 3570 /// Some comparisons can be simplified. 3571 /// In this case, we are looking for comparisons that look like 3572 /// a check for a lossy truncation. 3573 /// Folds: 3574 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3575 /// Where Mask is some pattern that produces all-ones in low bits: 3576 /// (-1 >> y) 3577 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3578 /// ~(-1 << y) 3579 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3580 /// The Mask can be a constant, too. 3581 /// For some predicates, the operands are commutative. 3582 /// For others, x can only be on a specific side. 3583 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3584 InstCombiner::BuilderTy &Builder) { 3585 ICmpInst::Predicate SrcPred; 3586 Value *X, *M, *Y; 3587 auto m_VariableMask = m_CombineOr( 3588 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3589 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3590 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3591 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3592 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3593 if (!match(&I, m_c_ICmp(SrcPred, 3594 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3595 m_Deferred(X)))) 3596 return nullptr; 3597 3598 ICmpInst::Predicate DstPred; 3599 switch (SrcPred) { 3600 case ICmpInst::Predicate::ICMP_EQ: 3601 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3602 DstPred = ICmpInst::Predicate::ICMP_ULE; 3603 break; 3604 case ICmpInst::Predicate::ICMP_NE: 3605 // x & (-1 >> y) != x -> x u> (-1 >> y) 3606 DstPred = ICmpInst::Predicate::ICMP_UGT; 3607 break; 3608 case ICmpInst::Predicate::ICMP_ULT: 3609 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3610 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3611 DstPred = ICmpInst::Predicate::ICMP_UGT; 3612 break; 3613 case ICmpInst::Predicate::ICMP_UGE: 3614 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3615 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3616 DstPred = ICmpInst::Predicate::ICMP_ULE; 3617 break; 3618 case ICmpInst::Predicate::ICMP_SLT: 3619 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3620 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3621 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3622 return nullptr; 3623 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3624 return nullptr; 3625 DstPred = ICmpInst::Predicate::ICMP_SGT; 3626 break; 3627 case ICmpInst::Predicate::ICMP_SGE: 3628 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3629 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3630 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3631 return nullptr; 3632 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3633 return nullptr; 3634 DstPred = ICmpInst::Predicate::ICMP_SLE; 3635 break; 3636 case ICmpInst::Predicate::ICMP_SGT: 3637 case ICmpInst::Predicate::ICMP_SLE: 3638 return nullptr; 3639 case ICmpInst::Predicate::ICMP_UGT: 3640 case ICmpInst::Predicate::ICMP_ULE: 3641 llvm_unreachable("Instsimplify took care of commut. variant"); 3642 break; 3643 default: 3644 llvm_unreachable("All possible folds are handled."); 3645 } 3646 3647 // The mask value may be a vector constant that has undefined elements. But it 3648 // may not be safe to propagate those undefs into the new compare, so replace 3649 // those elements by copying an existing, defined, and safe scalar constant. 3650 Type *OpTy = M->getType(); 3651 auto *VecC = dyn_cast<Constant>(M); 3652 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3653 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3654 Constant *SafeReplacementConstant = nullptr; 3655 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3656 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3657 SafeReplacementConstant = VecC->getAggregateElement(i); 3658 break; 3659 } 3660 } 3661 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3662 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3663 } 3664 3665 return Builder.CreateICmp(DstPred, X, M); 3666 } 3667 3668 /// Some comparisons can be simplified. 3669 /// In this case, we are looking for comparisons that look like 3670 /// a check for a lossy signed truncation. 3671 /// Folds: (MaskedBits is a constant.) 3672 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3673 /// Into: 3674 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3675 /// Where KeptBits = bitwidth(%x) - MaskedBits 3676 static Value * 3677 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3678 InstCombiner::BuilderTy &Builder) { 3679 ICmpInst::Predicate SrcPred; 3680 Value *X; 3681 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3682 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3683 if (!match(&I, m_c_ICmp(SrcPred, 3684 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3685 m_APInt(C1))), 3686 m_Deferred(X)))) 3687 return nullptr; 3688 3689 // Potential handling of non-splats: for each element: 3690 // * if both are undef, replace with constant 0. 3691 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3692 // * if both are not undef, and are different, bailout. 3693 // * else, only one is undef, then pick the non-undef one. 3694 3695 // The shift amount must be equal. 3696 if (*C0 != *C1) 3697 return nullptr; 3698 const APInt &MaskedBits = *C0; 3699 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3700 3701 ICmpInst::Predicate DstPred; 3702 switch (SrcPred) { 3703 case ICmpInst::Predicate::ICMP_EQ: 3704 // ((%x << MaskedBits) a>> MaskedBits) == %x 3705 // => 3706 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3707 DstPred = ICmpInst::Predicate::ICMP_ULT; 3708 break; 3709 case ICmpInst::Predicate::ICMP_NE: 3710 // ((%x << MaskedBits) a>> MaskedBits) != %x 3711 // => 3712 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3713 DstPred = ICmpInst::Predicate::ICMP_UGE; 3714 break; 3715 // FIXME: are more folds possible? 3716 default: 3717 return nullptr; 3718 } 3719 3720 auto *XType = X->getType(); 3721 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3722 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3723 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3724 3725 // KeptBits = bitwidth(%x) - MaskedBits 3726 const APInt KeptBits = BitWidth - MaskedBits; 3727 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3728 // ICmpCst = (1 << KeptBits) 3729 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3730 assert(ICmpCst.isPowerOf2()); 3731 // AddCst = (1 << (KeptBits-1)) 3732 const APInt AddCst = ICmpCst.lshr(1); 3733 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3734 3735 // T0 = add %x, AddCst 3736 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3737 // T1 = T0 DstPred ICmpCst 3738 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3739 3740 return T1; 3741 } 3742 3743 // Given pattern: 3744 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3745 // we should move shifts to the same hand of 'and', i.e. rewrite as 3746 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3747 // We are only interested in opposite logical shifts here. 3748 // One of the shifts can be truncated. 3749 // If we can, we want to end up creating 'lshr' shift. 3750 static Value * 3751 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3752 InstCombiner::BuilderTy &Builder) { 3753 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3754 !I.getOperand(0)->hasOneUse()) 3755 return nullptr; 3756 3757 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3758 3759 // Look for an 'and' of two logical shifts, one of which may be truncated. 3760 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3761 Instruction *XShift, *MaybeTruncation, *YShift; 3762 if (!match( 3763 I.getOperand(0), 3764 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3765 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3766 m_AnyLogicalShift, m_Instruction(YShift))), 3767 m_Instruction(MaybeTruncation))))) 3768 return nullptr; 3769 3770 // We potentially looked past 'trunc', but only when matching YShift, 3771 // therefore YShift must have the widest type. 3772 Instruction *WidestShift = YShift; 3773 // Therefore XShift must have the shallowest type. 3774 // Or they both have identical types if there was no truncation. 3775 Instruction *NarrowestShift = XShift; 3776 3777 Type *WidestTy = WidestShift->getType(); 3778 Type *NarrowestTy = NarrowestShift->getType(); 3779 assert(NarrowestTy == I.getOperand(0)->getType() && 3780 "We did not look past any shifts while matching XShift though."); 3781 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3782 3783 // If YShift is a 'lshr', swap the shifts around. 3784 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3785 std::swap(XShift, YShift); 3786 3787 // The shifts must be in opposite directions. 3788 auto XShiftOpcode = XShift->getOpcode(); 3789 if (XShiftOpcode == YShift->getOpcode()) 3790 return nullptr; // Do not care about same-direction shifts here. 3791 3792 Value *X, *XShAmt, *Y, *YShAmt; 3793 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3794 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3795 3796 // If one of the values being shifted is a constant, then we will end with 3797 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3798 // however, we will need to ensure that we won't increase instruction count. 3799 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3800 // At least one of the hands of the 'and' should be one-use shift. 3801 if (!match(I.getOperand(0), 3802 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3803 return nullptr; 3804 if (HadTrunc) { 3805 // Due to the 'trunc', we will need to widen X. For that either the old 3806 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3807 if (!MaybeTruncation->hasOneUse() && 3808 !NarrowestShift->getOperand(1)->hasOneUse()) 3809 return nullptr; 3810 } 3811 } 3812 3813 // We have two shift amounts from two different shifts. The types of those 3814 // shift amounts may not match. If that's the case let's bailout now. 3815 if (XShAmt->getType() != YShAmt->getType()) 3816 return nullptr; 3817 3818 // As input, we have the following pattern: 3819 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3820 // We want to rewrite that as: 3821 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3822 // While we know that originally (Q+K) would not overflow 3823 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3824 // shift amounts. so it may now overflow in smaller bitwidth. 3825 // To ensure that does not happen, we need to ensure that the total maximal 3826 // shift amount is still representable in that smaller bit width. 3827 unsigned MaximalPossibleTotalShiftAmount = 3828 (WidestTy->getScalarSizeInBits() - 1) + 3829 (NarrowestTy->getScalarSizeInBits() - 1); 3830 APInt MaximalRepresentableShiftAmount = 3831 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3832 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3833 return nullptr; 3834 3835 // Can we fold (XShAmt+YShAmt) ? 3836 auto *NewShAmt = dyn_cast_or_null<Constant>( 3837 simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3838 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3839 if (!NewShAmt) 3840 return nullptr; 3841 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3842 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3843 3844 // Is the new shift amount smaller than the bit width? 3845 // FIXME: could also rely on ConstantRange. 3846 if (!match(NewShAmt, 3847 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3848 APInt(WidestBitWidth, WidestBitWidth)))) 3849 return nullptr; 3850 3851 // An extra legality check is needed if we had trunc-of-lshr. 3852 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3853 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3854 WidestShift]() { 3855 // It isn't obvious whether it's worth it to analyze non-constants here. 3856 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3857 // If *any* of these preconditions matches we can perform the fold. 3858 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3859 ? NewShAmt->getSplatValue() 3860 : NewShAmt; 3861 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3862 if (NewShAmtSplat && 3863 (NewShAmtSplat->isNullValue() || 3864 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3865 return true; 3866 // We consider *min* leading zeros so a single outlier 3867 // blocks the transform as opposed to allowing it. 3868 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3869 KnownBits Known = computeKnownBits(C, SQ.DL); 3870 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3871 // If the value being shifted has at most lowest bit set we can fold. 3872 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3873 if (MaxActiveBits <= 1) 3874 return true; 3875 // Precondition: NewShAmt u<= countLeadingZeros(C) 3876 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3877 return true; 3878 } 3879 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3880 KnownBits Known = computeKnownBits(C, SQ.DL); 3881 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3882 // If the value being shifted has at most lowest bit set we can fold. 3883 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3884 if (MaxActiveBits <= 1) 3885 return true; 3886 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3887 if (NewShAmtSplat) { 3888 APInt AdjNewShAmt = 3889 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3890 if (AdjNewShAmt.ule(MinLeadZero)) 3891 return true; 3892 } 3893 } 3894 return false; // Can't tell if it's ok. 3895 }; 3896 if (!CanFold()) 3897 return nullptr; 3898 } 3899 3900 // All good, we can do this fold. 3901 X = Builder.CreateZExt(X, WidestTy); 3902 Y = Builder.CreateZExt(Y, WidestTy); 3903 // The shift is the same that was for X. 3904 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3905 ? Builder.CreateLShr(X, NewShAmt) 3906 : Builder.CreateShl(X, NewShAmt); 3907 Value *T1 = Builder.CreateAnd(T0, Y); 3908 return Builder.CreateICmp(I.getPredicate(), T1, 3909 Constant::getNullValue(WidestTy)); 3910 } 3911 3912 /// Fold 3913 /// (-1 u/ x) u< y 3914 /// ((x * y) ?/ x) != y 3915 /// to 3916 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3917 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3918 /// will mean that we are looking for the opposite answer. 3919 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3920 ICmpInst::Predicate Pred; 3921 Value *X, *Y; 3922 Instruction *Mul; 3923 Instruction *Div; 3924 bool NeedNegation; 3925 // Look for: (-1 u/ x) u</u>= y 3926 if (!I.isEquality() && 3927 match(&I, m_c_ICmp(Pred, 3928 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3929 m_Instruction(Div)), 3930 m_Value(Y)))) { 3931 Mul = nullptr; 3932 3933 // Are we checking that overflow does not happen, or does happen? 3934 switch (Pred) { 3935 case ICmpInst::Predicate::ICMP_ULT: 3936 NeedNegation = false; 3937 break; // OK 3938 case ICmpInst::Predicate::ICMP_UGE: 3939 NeedNegation = true; 3940 break; // OK 3941 default: 3942 return nullptr; // Wrong predicate. 3943 } 3944 } else // Look for: ((x * y) / x) !=/== y 3945 if (I.isEquality() && 3946 match(&I, 3947 m_c_ICmp(Pred, m_Value(Y), 3948 m_CombineAnd( 3949 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3950 m_Value(X)), 3951 m_Instruction(Mul)), 3952 m_Deferred(X))), 3953 m_Instruction(Div))))) { 3954 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3955 } else 3956 return nullptr; 3957 3958 BuilderTy::InsertPointGuard Guard(Builder); 3959 // If the pattern included (x * y), we'll want to insert new instructions 3960 // right before that original multiplication so that we can replace it. 3961 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3962 if (MulHadOtherUses) 3963 Builder.SetInsertPoint(Mul); 3964 3965 Function *F = Intrinsic::getDeclaration(I.getModule(), 3966 Div->getOpcode() == Instruction::UDiv 3967 ? Intrinsic::umul_with_overflow 3968 : Intrinsic::smul_with_overflow, 3969 X->getType()); 3970 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3971 3972 // If the multiplication was used elsewhere, to ensure that we don't leave 3973 // "duplicate" instructions, replace uses of that original multiplication 3974 // with the multiplication result from the with.overflow intrinsic. 3975 if (MulHadOtherUses) 3976 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3977 3978 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3979 if (NeedNegation) // This technically increases instruction count. 3980 Res = Builder.CreateNot(Res, "mul.not.ov"); 3981 3982 // If we replaced the mul, erase it. Do this after all uses of Builder, 3983 // as the mul is used as insertion point. 3984 if (MulHadOtherUses) 3985 eraseInstFromFunction(*Mul); 3986 3987 return Res; 3988 } 3989 3990 static Instruction *foldICmpXNegX(ICmpInst &I) { 3991 CmpInst::Predicate Pred; 3992 Value *X; 3993 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3994 return nullptr; 3995 3996 if (ICmpInst::isSigned(Pred)) 3997 Pred = ICmpInst::getSwappedPredicate(Pred); 3998 else if (ICmpInst::isUnsigned(Pred)) 3999 Pred = ICmpInst::getSignedPredicate(Pred); 4000 // else for equality-comparisons just keep the predicate. 4001 4002 return ICmpInst::Create(Instruction::ICmp, Pred, X, 4003 Constant::getNullValue(X->getType()), I.getName()); 4004 } 4005 4006 /// Try to fold icmp (binop), X or icmp X, (binop). 4007 /// TODO: A large part of this logic is duplicated in InstSimplify's 4008 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 4009 /// duplication. 4010 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 4011 const SimplifyQuery &SQ) { 4012 const SimplifyQuery Q = SQ.getWithInstruction(&I); 4013 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4014 4015 // Special logic for binary operators. 4016 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 4017 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 4018 if (!BO0 && !BO1) 4019 return nullptr; 4020 4021 if (Instruction *NewICmp = foldICmpXNegX(I)) 4022 return NewICmp; 4023 4024 const CmpInst::Predicate Pred = I.getPredicate(); 4025 Value *X; 4026 4027 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 4028 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 4029 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 4030 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4031 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 4032 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 4033 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 4034 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4035 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 4036 4037 { 4038 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 4039 Constant *C; 4040 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 4041 m_ImmConstant(C)))) && 4042 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 4043 Constant *C2 = ConstantExpr::getNot(C); 4044 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 4045 } 4046 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 4047 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 4048 m_ImmConstant(C)))) && 4049 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 4050 Constant *C2 = ConstantExpr::getNot(C); 4051 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 4052 } 4053 } 4054 4055 { 4056 // Similar to above: an unsigned overflow comparison may use offset + mask: 4057 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 4058 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 4059 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 4060 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 4061 BinaryOperator *BO; 4062 const APInt *C; 4063 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 4064 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4065 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 4066 CmpInst::Predicate NewPred = 4067 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4068 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4069 return new ICmpInst(NewPred, Op1, Zero); 4070 } 4071 4072 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4073 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4074 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 4075 CmpInst::Predicate NewPred = 4076 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4077 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4078 return new ICmpInst(NewPred, Op0, Zero); 4079 } 4080 } 4081 4082 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4083 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 4084 NoOp0WrapProblem = 4085 ICmpInst::isEquality(Pred) || 4086 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 4087 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 4088 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 4089 NoOp1WrapProblem = 4090 ICmpInst::isEquality(Pred) || 4091 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 4092 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 4093 4094 // Analyze the case when either Op0 or Op1 is an add instruction. 4095 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4096 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4097 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4098 A = BO0->getOperand(0); 4099 B = BO0->getOperand(1); 4100 } 4101 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4102 C = BO1->getOperand(0); 4103 D = BO1->getOperand(1); 4104 } 4105 4106 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4107 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4108 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4109 return new ICmpInst(Pred, A == Op1 ? B : A, 4110 Constant::getNullValue(Op1->getType())); 4111 4112 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4113 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4114 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4115 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4116 C == Op0 ? D : C); 4117 4118 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4119 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4120 NoOp1WrapProblem) { 4121 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4122 Value *Y, *Z; 4123 if (A == C) { 4124 // C + B == C + D -> B == D 4125 Y = B; 4126 Z = D; 4127 } else if (A == D) { 4128 // D + B == C + D -> B == C 4129 Y = B; 4130 Z = C; 4131 } else if (B == C) { 4132 // A + C == C + D -> A == D 4133 Y = A; 4134 Z = D; 4135 } else { 4136 assert(B == D); 4137 // A + D == C + D -> A == C 4138 Y = A; 4139 Z = C; 4140 } 4141 return new ICmpInst(Pred, Y, Z); 4142 } 4143 4144 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4145 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4146 match(B, m_AllOnes())) 4147 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4148 4149 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4150 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4151 match(B, m_AllOnes())) 4152 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4153 4154 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4155 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4156 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4157 4158 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4159 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4160 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4161 4162 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4163 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4164 match(D, m_AllOnes())) 4165 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4166 4167 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4168 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4169 match(D, m_AllOnes())) 4170 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4171 4172 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4173 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4174 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4175 4176 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4177 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4178 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4179 4180 // TODO: The subtraction-related identities shown below also hold, but 4181 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4182 // wouldn't happen even if they were implemented. 4183 // 4184 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4185 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4186 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4187 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4188 4189 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4190 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4191 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4192 4193 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4194 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4195 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4196 4197 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4198 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4199 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4200 4201 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4202 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4203 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4204 4205 // if C1 has greater magnitude than C2: 4206 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4207 // s.t. C3 = C1 - C2 4208 // 4209 // if C2 has greater magnitude than C1: 4210 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4211 // s.t. C3 = C2 - C1 4212 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4213 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4214 const APInt *AP1, *AP2; 4215 // TODO: Support non-uniform vectors. 4216 // TODO: Allow undef passthrough if B AND D's element is undef. 4217 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4218 AP1->isNegative() == AP2->isNegative()) { 4219 APInt AP1Abs = AP1->abs(); 4220 APInt AP2Abs = AP2->abs(); 4221 if (AP1Abs.uge(AP2Abs)) { 4222 APInt Diff = *AP1 - *AP2; 4223 bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1); 4224 bool HasNSW = BO0->hasNoSignedWrap(); 4225 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4226 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4227 return new ICmpInst(Pred, NewAdd, C); 4228 } else { 4229 APInt Diff = *AP2 - *AP1; 4230 bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2); 4231 bool HasNSW = BO1->hasNoSignedWrap(); 4232 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4233 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4234 return new ICmpInst(Pred, A, NewAdd); 4235 } 4236 } 4237 Constant *Cst1, *Cst2; 4238 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4239 ICmpInst::isEquality(Pred)) { 4240 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4241 Value *NewAdd = Builder.CreateAdd(C, Diff); 4242 return new ICmpInst(Pred, A, NewAdd); 4243 } 4244 } 4245 4246 // Analyze the case when either Op0 or Op1 is a sub instruction. 4247 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4248 A = nullptr; 4249 B = nullptr; 4250 C = nullptr; 4251 D = nullptr; 4252 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4253 A = BO0->getOperand(0); 4254 B = BO0->getOperand(1); 4255 } 4256 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4257 C = BO1->getOperand(0); 4258 D = BO1->getOperand(1); 4259 } 4260 4261 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4262 if (A == Op1 && NoOp0WrapProblem) 4263 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4264 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4265 if (C == Op0 && NoOp1WrapProblem) 4266 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4267 4268 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4269 // (A - B) u>/u<= A --> B u>/u<= A 4270 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4271 return new ICmpInst(Pred, B, A); 4272 // C u</u>= (C - D) --> C u</u>= D 4273 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4274 return new ICmpInst(Pred, C, D); 4275 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4276 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4277 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4278 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4279 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4280 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4281 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4282 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4283 4284 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4285 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4286 return new ICmpInst(Pred, A, C); 4287 4288 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4289 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4290 return new ICmpInst(Pred, D, B); 4291 4292 // icmp (0-X) < cst --> x > -cst 4293 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4294 Value *X; 4295 if (match(BO0, m_Neg(m_Value(X)))) 4296 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4297 if (RHSC->isNotMinSignedValue()) 4298 return new ICmpInst(I.getSwappedPredicate(), X, 4299 ConstantExpr::getNeg(RHSC)); 4300 } 4301 4302 { 4303 // Try to remove shared constant multiplier from equality comparison: 4304 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4305 Value *X, *Y; 4306 const APInt *C; 4307 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4308 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4309 if (!C->countTrailingZeros() || 4310 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4311 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4312 return new ICmpInst(Pred, X, Y); 4313 } 4314 4315 BinaryOperator *SRem = nullptr; 4316 // icmp (srem X, Y), Y 4317 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4318 SRem = BO0; 4319 // icmp Y, (srem X, Y) 4320 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4321 Op0 == BO1->getOperand(1)) 4322 SRem = BO1; 4323 if (SRem) { 4324 // We don't check hasOneUse to avoid increasing register pressure because 4325 // the value we use is the same value this instruction was already using. 4326 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4327 default: 4328 break; 4329 case ICmpInst::ICMP_EQ: 4330 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4331 case ICmpInst::ICMP_NE: 4332 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4333 case ICmpInst::ICMP_SGT: 4334 case ICmpInst::ICMP_SGE: 4335 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4336 Constant::getAllOnesValue(SRem->getType())); 4337 case ICmpInst::ICMP_SLT: 4338 case ICmpInst::ICMP_SLE: 4339 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4340 Constant::getNullValue(SRem->getType())); 4341 } 4342 } 4343 4344 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4345 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4346 switch (BO0->getOpcode()) { 4347 default: 4348 break; 4349 case Instruction::Add: 4350 case Instruction::Sub: 4351 case Instruction::Xor: { 4352 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4353 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4354 4355 const APInt *C; 4356 if (match(BO0->getOperand(1), m_APInt(C))) { 4357 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4358 if (C->isSignMask()) { 4359 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4360 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4361 } 4362 4363 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4364 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4365 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4366 NewPred = I.getSwappedPredicate(NewPred); 4367 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4368 } 4369 } 4370 break; 4371 } 4372 case Instruction::Mul: { 4373 if (!I.isEquality()) 4374 break; 4375 4376 const APInt *C; 4377 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4378 !C->isOne()) { 4379 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4380 // Mask = -1 >> count-trailing-zeros(C). 4381 if (unsigned TZs = C->countTrailingZeros()) { 4382 Constant *Mask = ConstantInt::get( 4383 BO0->getType(), 4384 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4385 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4386 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4387 return new ICmpInst(Pred, And1, And2); 4388 } 4389 } 4390 break; 4391 } 4392 case Instruction::UDiv: 4393 case Instruction::LShr: 4394 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4395 break; 4396 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4397 4398 case Instruction::SDiv: 4399 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4400 break; 4401 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4402 4403 case Instruction::AShr: 4404 if (!BO0->isExact() || !BO1->isExact()) 4405 break; 4406 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4407 4408 case Instruction::Shl: { 4409 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4410 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4411 if (!NUW && !NSW) 4412 break; 4413 if (!NSW && I.isSigned()) 4414 break; 4415 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4416 } 4417 } 4418 } 4419 4420 if (BO0) { 4421 // Transform A & (L - 1) `ult` L --> L != 0 4422 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4423 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4424 4425 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4426 auto *Zero = Constant::getNullValue(BO0->getType()); 4427 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4428 } 4429 } 4430 4431 if (Value *V = foldMultiplicationOverflowCheck(I)) 4432 return replaceInstUsesWith(I, V); 4433 4434 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4435 return replaceInstUsesWith(I, V); 4436 4437 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4438 return replaceInstUsesWith(I, V); 4439 4440 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4441 return replaceInstUsesWith(I, V); 4442 4443 return nullptr; 4444 } 4445 4446 /// Fold icmp Pred min|max(X, Y), X. 4447 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4448 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4449 Value *Op0 = Cmp.getOperand(0); 4450 Value *X = Cmp.getOperand(1); 4451 4452 // Canonicalize minimum or maximum operand to LHS of the icmp. 4453 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4454 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4455 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4456 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4457 std::swap(Op0, X); 4458 Pred = Cmp.getSwappedPredicate(); 4459 } 4460 4461 Value *Y; 4462 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4463 // smin(X, Y) == X --> X s<= Y 4464 // smin(X, Y) s>= X --> X s<= Y 4465 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4466 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4467 4468 // smin(X, Y) != X --> X s> Y 4469 // smin(X, Y) s< X --> X s> Y 4470 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4471 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4472 4473 // These cases should be handled in InstSimplify: 4474 // smin(X, Y) s<= X --> true 4475 // smin(X, Y) s> X --> false 4476 return nullptr; 4477 } 4478 4479 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4480 // smax(X, Y) == X --> X s>= Y 4481 // smax(X, Y) s<= X --> X s>= Y 4482 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4483 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4484 4485 // smax(X, Y) != X --> X s< Y 4486 // smax(X, Y) s> X --> X s< Y 4487 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4488 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4489 4490 // These cases should be handled in InstSimplify: 4491 // smax(X, Y) s>= X --> true 4492 // smax(X, Y) s< X --> false 4493 return nullptr; 4494 } 4495 4496 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4497 // umin(X, Y) == X --> X u<= Y 4498 // umin(X, Y) u>= X --> X u<= Y 4499 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4500 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4501 4502 // umin(X, Y) != X --> X u> Y 4503 // umin(X, Y) u< X --> X u> Y 4504 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4505 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4506 4507 // These cases should be handled in InstSimplify: 4508 // umin(X, Y) u<= X --> true 4509 // umin(X, Y) u> X --> false 4510 return nullptr; 4511 } 4512 4513 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4514 // umax(X, Y) == X --> X u>= Y 4515 // umax(X, Y) u<= X --> X u>= Y 4516 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4517 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4518 4519 // umax(X, Y) != X --> X u< Y 4520 // umax(X, Y) u> X --> X u< Y 4521 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4522 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4523 4524 // These cases should be handled in InstSimplify: 4525 // umax(X, Y) u>= X --> true 4526 // umax(X, Y) u< X --> false 4527 return nullptr; 4528 } 4529 4530 return nullptr; 4531 } 4532 4533 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4534 if (!I.isEquality()) 4535 return nullptr; 4536 4537 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4538 const CmpInst::Predicate Pred = I.getPredicate(); 4539 Value *A, *B, *C, *D; 4540 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4541 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4542 Value *OtherVal = A == Op1 ? B : A; 4543 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4544 } 4545 4546 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4547 // A^c1 == C^c2 --> A == C^(c1^c2) 4548 ConstantInt *C1, *C2; 4549 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4550 Op1->hasOneUse()) { 4551 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4552 Value *Xor = Builder.CreateXor(C, NC); 4553 return new ICmpInst(Pred, A, Xor); 4554 } 4555 4556 // A^B == A^D -> B == D 4557 if (A == C) 4558 return new ICmpInst(Pred, B, D); 4559 if (A == D) 4560 return new ICmpInst(Pred, B, C); 4561 if (B == C) 4562 return new ICmpInst(Pred, A, D); 4563 if (B == D) 4564 return new ICmpInst(Pred, A, C); 4565 } 4566 } 4567 4568 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4569 // A == (A^B) -> B == 0 4570 Value *OtherVal = A == Op0 ? B : A; 4571 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4572 } 4573 4574 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4575 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4576 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4577 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4578 4579 if (A == C) { 4580 X = B; 4581 Y = D; 4582 Z = A; 4583 } else if (A == D) { 4584 X = B; 4585 Y = C; 4586 Z = A; 4587 } else if (B == C) { 4588 X = A; 4589 Y = D; 4590 Z = B; 4591 } else if (B == D) { 4592 X = A; 4593 Y = C; 4594 Z = B; 4595 } 4596 4597 if (X) { // Build (X^Y) & Z 4598 Op1 = Builder.CreateXor(X, Y); 4599 Op1 = Builder.CreateAnd(Op1, Z); 4600 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4601 } 4602 } 4603 4604 { 4605 // Similar to above, but specialized for constant because invert is needed: 4606 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4607 Value *X, *Y; 4608 Constant *C; 4609 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4610 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4611 Value *Xor = Builder.CreateXor(X, Y); 4612 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4613 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4614 } 4615 } 4616 4617 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4618 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4619 ConstantInt *Cst1; 4620 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4621 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4622 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4623 match(Op1, m_ZExt(m_Value(A))))) { 4624 APInt Pow2 = Cst1->getValue() + 1; 4625 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4626 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4627 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4628 } 4629 4630 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4631 // For lshr and ashr pairs. 4632 const APInt *AP1, *AP2; 4633 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 4634 match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) || 4635 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 4636 match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) { 4637 if (AP1 != AP2) 4638 return nullptr; 4639 unsigned TypeBits = AP1->getBitWidth(); 4640 unsigned ShAmt = AP1->getLimitedValue(TypeBits); 4641 if (ShAmt < TypeBits && ShAmt != 0) { 4642 ICmpInst::Predicate NewPred = 4643 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4644 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4645 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4646 return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal)); 4647 } 4648 } 4649 4650 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4651 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4652 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4653 unsigned TypeBits = Cst1->getBitWidth(); 4654 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4655 if (ShAmt < TypeBits && ShAmt != 0) { 4656 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4657 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4658 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4659 I.getName() + ".mask"); 4660 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4661 } 4662 } 4663 4664 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4665 // "icmp (and X, mask), cst" 4666 uint64_t ShAmt = 0; 4667 if (Op0->hasOneUse() && 4668 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4669 match(Op1, m_ConstantInt(Cst1)) && 4670 // Only do this when A has multiple uses. This is most important to do 4671 // when it exposes other optimizations. 4672 !A->hasOneUse()) { 4673 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4674 4675 if (ShAmt < ASize) { 4676 APInt MaskV = 4677 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4678 MaskV <<= ShAmt; 4679 4680 APInt CmpV = Cst1->getValue().zext(ASize); 4681 CmpV <<= ShAmt; 4682 4683 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4684 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4685 } 4686 } 4687 4688 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4689 return ICmp; 4690 4691 // Canonicalize checking for a power-of-2-or-zero value: 4692 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4693 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4694 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4695 m_Deferred(A)))) || 4696 !match(Op1, m_ZeroInt())) 4697 A = nullptr; 4698 4699 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4700 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4701 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4702 A = Op1; 4703 else if (match(Op1, 4704 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4705 A = Op0; 4706 4707 if (A) { 4708 Type *Ty = A->getType(); 4709 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4710 return Pred == ICmpInst::ICMP_EQ 4711 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4712 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4713 } 4714 4715 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4716 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4717 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4718 // of instcombine. 4719 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4720 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4721 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4722 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4723 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4724 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4725 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4726 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4727 : ICmpInst::ICMP_UGE, 4728 Add, ConstantInt::get(A->getType(), C.shl(1))); 4729 } 4730 4731 return nullptr; 4732 } 4733 4734 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4735 InstCombiner::BuilderTy &Builder) { 4736 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4737 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4738 4739 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4740 // The trunc masks high bits while the compare may effectively mask low bits. 4741 Value *X; 4742 const APInt *C; 4743 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4744 return nullptr; 4745 4746 // This matches patterns corresponding to tests of the signbit as well as: 4747 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4748 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4749 APInt Mask; 4750 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4751 Value *And = Builder.CreateAnd(X, Mask); 4752 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4753 return new ICmpInst(Pred, And, Zero); 4754 } 4755 4756 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4757 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4758 // If C is a negative power-of-2 (high-bit mask): 4759 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4760 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4761 Value *And = Builder.CreateAnd(X, MaskC); 4762 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4763 } 4764 4765 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4766 // If C is not-of-power-of-2 (one clear bit): 4767 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4768 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4769 Value *And = Builder.CreateAnd(X, MaskC); 4770 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4771 } 4772 4773 return nullptr; 4774 } 4775 4776 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 4777 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4778 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4779 Value *X; 4780 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4781 return nullptr; 4782 4783 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4784 bool IsSignedCmp = ICmp.isSigned(); 4785 4786 // icmp Pred (ext X), (ext Y) 4787 Value *Y; 4788 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 4789 bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0)); 4790 bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1)); 4791 4792 // If we have mismatched casts, treat the zext of a non-negative source as 4793 // a sext to simulate matching casts. Otherwise, we are done. 4794 // TODO: Can we handle some predicates (equality) without non-negative? 4795 if (IsZext0 != IsZext1) { 4796 if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) || 4797 (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT))) 4798 IsSignedExt = true; 4799 else 4800 return nullptr; 4801 } 4802 4803 // Not an extension from the same type? 4804 Type *XTy = X->getType(), *YTy = Y->getType(); 4805 if (XTy != YTy) { 4806 // One of the casts must have one use because we are creating a new cast. 4807 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 4808 return nullptr; 4809 // Extend the narrower operand to the type of the wider operand. 4810 CastInst::CastOps CastOpcode = 4811 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 4812 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4813 X = Builder.CreateCast(CastOpcode, X, YTy); 4814 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4815 Y = Builder.CreateCast(CastOpcode, Y, XTy); 4816 else 4817 return nullptr; 4818 } 4819 4820 // (zext X) == (zext Y) --> X == Y 4821 // (sext X) == (sext Y) --> X == Y 4822 if (ICmp.isEquality()) 4823 return new ICmpInst(ICmp.getPredicate(), X, Y); 4824 4825 // A signed comparison of sign extended values simplifies into a 4826 // signed comparison. 4827 if (IsSignedCmp && IsSignedExt) 4828 return new ICmpInst(ICmp.getPredicate(), X, Y); 4829 4830 // The other three cases all fold into an unsigned comparison. 4831 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4832 } 4833 4834 // Below here, we are only folding a compare with constant. 4835 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4836 if (!C) 4837 return nullptr; 4838 4839 // Compute the constant that would happen if we truncated to SrcTy then 4840 // re-extended to DestTy. 4841 Type *SrcTy = CastOp0->getSrcTy(); 4842 Type *DestTy = CastOp0->getDestTy(); 4843 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4844 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4845 4846 // If the re-extended constant didn't change... 4847 if (Res2 == C) { 4848 if (ICmp.isEquality()) 4849 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4850 4851 // A signed comparison of sign extended values simplifies into a 4852 // signed comparison. 4853 if (IsSignedExt && IsSignedCmp) 4854 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4855 4856 // The other three cases all fold into an unsigned comparison. 4857 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4858 } 4859 4860 // The re-extended constant changed, partly changed (in the case of a vector), 4861 // or could not be determined to be equal (in the case of a constant 4862 // expression), so the constant cannot be represented in the shorter type. 4863 // All the cases that fold to true or false will have already been handled 4864 // by simplifyICmpInst, so only deal with the tricky case. 4865 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4866 return nullptr; 4867 4868 // Is source op positive? 4869 // icmp ult (sext X), C --> icmp sgt X, -1 4870 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4871 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4872 4873 // Is source op negative? 4874 // icmp ugt (sext X), C --> icmp slt X, 0 4875 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4876 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4877 } 4878 4879 /// Handle icmp (cast x), (cast or constant). 4880 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4881 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4882 // icmp compares only pointer's value. 4883 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4884 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4885 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4886 if (SimplifiedOp0 || SimplifiedOp1) 4887 return new ICmpInst(ICmp.getPredicate(), 4888 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4889 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4890 4891 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4892 if (!CastOp0) 4893 return nullptr; 4894 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4895 return nullptr; 4896 4897 Value *Op0Src = CastOp0->getOperand(0); 4898 Type *SrcTy = CastOp0->getSrcTy(); 4899 Type *DestTy = CastOp0->getDestTy(); 4900 4901 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4902 // integer type is the same size as the pointer type. 4903 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4904 if (isa<VectorType>(SrcTy)) { 4905 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4906 DestTy = cast<VectorType>(DestTy)->getElementType(); 4907 } 4908 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4909 }; 4910 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4911 CompatibleSizes(SrcTy, DestTy)) { 4912 Value *NewOp1 = nullptr; 4913 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4914 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4915 if (PtrSrc->getType()->getPointerAddressSpace() == 4916 Op0Src->getType()->getPointerAddressSpace()) { 4917 NewOp1 = PtrToIntOp1->getOperand(0); 4918 // If the pointer types don't match, insert a bitcast. 4919 if (Op0Src->getType() != NewOp1->getType()) 4920 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4921 } 4922 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4923 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4924 } 4925 4926 if (NewOp1) 4927 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4928 } 4929 4930 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4931 return R; 4932 4933 return foldICmpWithZextOrSext(ICmp); 4934 } 4935 4936 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4937 switch (BinaryOp) { 4938 default: 4939 llvm_unreachable("Unsupported binary op"); 4940 case Instruction::Add: 4941 case Instruction::Sub: 4942 return match(RHS, m_Zero()); 4943 case Instruction::Mul: 4944 return match(RHS, m_One()); 4945 } 4946 } 4947 4948 OverflowResult 4949 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4950 bool IsSigned, Value *LHS, Value *RHS, 4951 Instruction *CxtI) const { 4952 switch (BinaryOp) { 4953 default: 4954 llvm_unreachable("Unsupported binary op"); 4955 case Instruction::Add: 4956 if (IsSigned) 4957 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4958 else 4959 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4960 case Instruction::Sub: 4961 if (IsSigned) 4962 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4963 else 4964 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4965 case Instruction::Mul: 4966 if (IsSigned) 4967 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4968 else 4969 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4970 } 4971 } 4972 4973 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4974 bool IsSigned, Value *LHS, 4975 Value *RHS, Instruction &OrigI, 4976 Value *&Result, 4977 Constant *&Overflow) { 4978 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4979 std::swap(LHS, RHS); 4980 4981 // If the overflow check was an add followed by a compare, the insertion point 4982 // may be pointing to the compare. We want to insert the new instructions 4983 // before the add in case there are uses of the add between the add and the 4984 // compare. 4985 Builder.SetInsertPoint(&OrigI); 4986 4987 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4988 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4989 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4990 4991 if (isNeutralValue(BinaryOp, RHS)) { 4992 Result = LHS; 4993 Overflow = ConstantInt::getFalse(OverflowTy); 4994 return true; 4995 } 4996 4997 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4998 case OverflowResult::MayOverflow: 4999 return false; 5000 case OverflowResult::AlwaysOverflowsLow: 5001 case OverflowResult::AlwaysOverflowsHigh: 5002 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5003 Result->takeName(&OrigI); 5004 Overflow = ConstantInt::getTrue(OverflowTy); 5005 return true; 5006 case OverflowResult::NeverOverflows: 5007 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5008 Result->takeName(&OrigI); 5009 Overflow = ConstantInt::getFalse(OverflowTy); 5010 if (auto *Inst = dyn_cast<Instruction>(Result)) { 5011 if (IsSigned) 5012 Inst->setHasNoSignedWrap(); 5013 else 5014 Inst->setHasNoUnsignedWrap(); 5015 } 5016 return true; 5017 } 5018 5019 llvm_unreachable("Unexpected overflow result"); 5020 } 5021 5022 /// Recognize and process idiom involving test for multiplication 5023 /// overflow. 5024 /// 5025 /// The caller has matched a pattern of the form: 5026 /// I = cmp u (mul(zext A, zext B), V 5027 /// The function checks if this is a test for overflow and if so replaces 5028 /// multiplication with call to 'mul.with.overflow' intrinsic. 5029 /// 5030 /// \param I Compare instruction. 5031 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 5032 /// the compare instruction. Must be of integer type. 5033 /// \param OtherVal The other argument of compare instruction. 5034 /// \returns Instruction which must replace the compare instruction, NULL if no 5035 /// replacement required. 5036 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 5037 Value *OtherVal, 5038 InstCombinerImpl &IC) { 5039 // Don't bother doing this transformation for pointers, don't do it for 5040 // vectors. 5041 if (!isa<IntegerType>(MulVal->getType())) 5042 return nullptr; 5043 5044 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 5045 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 5046 auto *MulInstr = dyn_cast<Instruction>(MulVal); 5047 if (!MulInstr) 5048 return nullptr; 5049 assert(MulInstr->getOpcode() == Instruction::Mul); 5050 5051 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 5052 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 5053 assert(LHS->getOpcode() == Instruction::ZExt); 5054 assert(RHS->getOpcode() == Instruction::ZExt); 5055 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 5056 5057 // Calculate type and width of the result produced by mul.with.overflow. 5058 Type *TyA = A->getType(), *TyB = B->getType(); 5059 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 5060 WidthB = TyB->getPrimitiveSizeInBits(); 5061 unsigned MulWidth; 5062 Type *MulType; 5063 if (WidthB > WidthA) { 5064 MulWidth = WidthB; 5065 MulType = TyB; 5066 } else { 5067 MulWidth = WidthA; 5068 MulType = TyA; 5069 } 5070 5071 // In order to replace the original mul with a narrower mul.with.overflow, 5072 // all uses must ignore upper bits of the product. The number of used low 5073 // bits must be not greater than the width of mul.with.overflow. 5074 if (MulVal->hasNUsesOrMore(2)) 5075 for (User *U : MulVal->users()) { 5076 if (U == &I) 5077 continue; 5078 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5079 // Check if truncation ignores bits above MulWidth. 5080 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 5081 if (TruncWidth > MulWidth) 5082 return nullptr; 5083 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5084 // Check if AND ignores bits above MulWidth. 5085 if (BO->getOpcode() != Instruction::And) 5086 return nullptr; 5087 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 5088 const APInt &CVal = CI->getValue(); 5089 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 5090 return nullptr; 5091 } else { 5092 // In this case we could have the operand of the binary operation 5093 // being defined in another block, and performing the replacement 5094 // could break the dominance relation. 5095 return nullptr; 5096 } 5097 } else { 5098 // Other uses prohibit this transformation. 5099 return nullptr; 5100 } 5101 } 5102 5103 // Recognize patterns 5104 switch (I.getPredicate()) { 5105 case ICmpInst::ICMP_EQ: 5106 case ICmpInst::ICMP_NE: 5107 // Recognize pattern: 5108 // mulval = mul(zext A, zext B) 5109 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 5110 ConstantInt *CI; 5111 Value *ValToMask; 5112 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 5113 if (ValToMask != MulVal) 5114 return nullptr; 5115 const APInt &CVal = CI->getValue() + 1; 5116 if (CVal.isPowerOf2()) { 5117 unsigned MaskWidth = CVal.logBase2(); 5118 if (MaskWidth == MulWidth) 5119 break; // Recognized 5120 } 5121 } 5122 return nullptr; 5123 5124 case ICmpInst::ICMP_UGT: 5125 // Recognize pattern: 5126 // mulval = mul(zext A, zext B) 5127 // cmp ugt mulval, max 5128 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5129 APInt MaxVal = APInt::getMaxValue(MulWidth); 5130 MaxVal = MaxVal.zext(CI->getBitWidth()); 5131 if (MaxVal.eq(CI->getValue())) 5132 break; // Recognized 5133 } 5134 return nullptr; 5135 5136 case ICmpInst::ICMP_UGE: 5137 // Recognize pattern: 5138 // mulval = mul(zext A, zext B) 5139 // cmp uge mulval, max+1 5140 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5141 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5142 if (MaxVal.eq(CI->getValue())) 5143 break; // Recognized 5144 } 5145 return nullptr; 5146 5147 case ICmpInst::ICMP_ULE: 5148 // Recognize pattern: 5149 // mulval = mul(zext A, zext B) 5150 // cmp ule mulval, max 5151 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5152 APInt MaxVal = APInt::getMaxValue(MulWidth); 5153 MaxVal = MaxVal.zext(CI->getBitWidth()); 5154 if (MaxVal.eq(CI->getValue())) 5155 break; // Recognized 5156 } 5157 return nullptr; 5158 5159 case ICmpInst::ICMP_ULT: 5160 // Recognize pattern: 5161 // mulval = mul(zext A, zext B) 5162 // cmp ule mulval, max + 1 5163 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5164 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5165 if (MaxVal.eq(CI->getValue())) 5166 break; // Recognized 5167 } 5168 return nullptr; 5169 5170 default: 5171 return nullptr; 5172 } 5173 5174 InstCombiner::BuilderTy &Builder = IC.Builder; 5175 Builder.SetInsertPoint(MulInstr); 5176 5177 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5178 Value *MulA = A, *MulB = B; 5179 if (WidthA < MulWidth) 5180 MulA = Builder.CreateZExt(A, MulType); 5181 if (WidthB < MulWidth) 5182 MulB = Builder.CreateZExt(B, MulType); 5183 Function *F = Intrinsic::getDeclaration( 5184 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5185 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5186 IC.addToWorklist(MulInstr); 5187 5188 // If there are uses of mul result other than the comparison, we know that 5189 // they are truncation or binary AND. Change them to use result of 5190 // mul.with.overflow and adjust properly mask/size. 5191 if (MulVal->hasNUsesOrMore(2)) { 5192 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5193 for (User *U : make_early_inc_range(MulVal->users())) { 5194 if (U == &I || U == OtherVal) 5195 continue; 5196 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5197 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5198 IC.replaceInstUsesWith(*TI, Mul); 5199 else 5200 TI->setOperand(0, Mul); 5201 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5202 assert(BO->getOpcode() == Instruction::And); 5203 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5204 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5205 APInt ShortMask = CI->getValue().trunc(MulWidth); 5206 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5207 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5208 IC.replaceInstUsesWith(*BO, Zext); 5209 } else { 5210 llvm_unreachable("Unexpected Binary operation"); 5211 } 5212 IC.addToWorklist(cast<Instruction>(U)); 5213 } 5214 } 5215 if (isa<Instruction>(OtherVal)) 5216 IC.addToWorklist(cast<Instruction>(OtherVal)); 5217 5218 // The original icmp gets replaced with the overflow value, maybe inverted 5219 // depending on predicate. 5220 bool Inverse = false; 5221 switch (I.getPredicate()) { 5222 case ICmpInst::ICMP_NE: 5223 break; 5224 case ICmpInst::ICMP_EQ: 5225 Inverse = true; 5226 break; 5227 case ICmpInst::ICMP_UGT: 5228 case ICmpInst::ICMP_UGE: 5229 if (I.getOperand(0) == MulVal) 5230 break; 5231 Inverse = true; 5232 break; 5233 case ICmpInst::ICMP_ULT: 5234 case ICmpInst::ICMP_ULE: 5235 if (I.getOperand(1) == MulVal) 5236 break; 5237 Inverse = true; 5238 break; 5239 default: 5240 llvm_unreachable("Unexpected predicate"); 5241 } 5242 if (Inverse) { 5243 Value *Res = Builder.CreateExtractValue(Call, 1); 5244 return BinaryOperator::CreateNot(Res); 5245 } 5246 5247 return ExtractValueInst::Create(Call, 1); 5248 } 5249 5250 /// When performing a comparison against a constant, it is possible that not all 5251 /// the bits in the LHS are demanded. This helper method computes the mask that 5252 /// IS demanded. 5253 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5254 const APInt *RHS; 5255 if (!match(I.getOperand(1), m_APInt(RHS))) 5256 return APInt::getAllOnes(BitWidth); 5257 5258 // If this is a normal comparison, it demands all bits. If it is a sign bit 5259 // comparison, it only demands the sign bit. 5260 bool UnusedBit; 5261 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5262 return APInt::getSignMask(BitWidth); 5263 5264 switch (I.getPredicate()) { 5265 // For a UGT comparison, we don't care about any bits that 5266 // correspond to the trailing ones of the comparand. The value of these 5267 // bits doesn't impact the outcome of the comparison, because any value 5268 // greater than the RHS must differ in a bit higher than these due to carry. 5269 case ICmpInst::ICMP_UGT: 5270 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5271 5272 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5273 // Any value less than the RHS must differ in a higher bit because of carries. 5274 case ICmpInst::ICMP_ULT: 5275 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5276 5277 default: 5278 return APInt::getAllOnes(BitWidth); 5279 } 5280 } 5281 5282 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5283 /// should be swapped. 5284 /// The decision is based on how many times these two operands are reused 5285 /// as subtract operands and their positions in those instructions. 5286 /// The rationale is that several architectures use the same instruction for 5287 /// both subtract and cmp. Thus, it is better if the order of those operands 5288 /// match. 5289 /// \return true if Op0 and Op1 should be swapped. 5290 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5291 // Filter out pointer values as those cannot appear directly in subtract. 5292 // FIXME: we may want to go through inttoptrs or bitcasts. 5293 if (Op0->getType()->isPointerTy()) 5294 return false; 5295 // If a subtract already has the same operands as a compare, swapping would be 5296 // bad. If a subtract has the same operands as a compare but in reverse order, 5297 // then swapping is good. 5298 int GoodToSwap = 0; 5299 for (const User *U : Op0->users()) { 5300 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5301 GoodToSwap++; 5302 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5303 GoodToSwap--; 5304 } 5305 return GoodToSwap > 0; 5306 } 5307 5308 /// Check that one use is in the same block as the definition and all 5309 /// other uses are in blocks dominated by a given block. 5310 /// 5311 /// \param DI Definition 5312 /// \param UI Use 5313 /// \param DB Block that must dominate all uses of \p DI outside 5314 /// the parent block 5315 /// \return true when \p UI is the only use of \p DI in the parent block 5316 /// and all other uses of \p DI are in blocks dominated by \p DB. 5317 /// 5318 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5319 const Instruction *UI, 5320 const BasicBlock *DB) const { 5321 assert(DI && UI && "Instruction not defined\n"); 5322 // Ignore incomplete definitions. 5323 if (!DI->getParent()) 5324 return false; 5325 // DI and UI must be in the same block. 5326 if (DI->getParent() != UI->getParent()) 5327 return false; 5328 // Protect from self-referencing blocks. 5329 if (DI->getParent() == DB) 5330 return false; 5331 for (const User *U : DI->users()) { 5332 auto *Usr = cast<Instruction>(U); 5333 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5334 return false; 5335 } 5336 return true; 5337 } 5338 5339 /// Return true when the instruction sequence within a block is select-cmp-br. 5340 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5341 const BasicBlock *BB = SI->getParent(); 5342 if (!BB) 5343 return false; 5344 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5345 if (!BI || BI->getNumSuccessors() != 2) 5346 return false; 5347 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5348 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5349 return false; 5350 return true; 5351 } 5352 5353 /// True when a select result is replaced by one of its operands 5354 /// in select-icmp sequence. This will eventually result in the elimination 5355 /// of the select. 5356 /// 5357 /// \param SI Select instruction 5358 /// \param Icmp Compare instruction 5359 /// \param SIOpd Operand that replaces the select 5360 /// 5361 /// Notes: 5362 /// - The replacement is global and requires dominator information 5363 /// - The caller is responsible for the actual replacement 5364 /// 5365 /// Example: 5366 /// 5367 /// entry: 5368 /// %4 = select i1 %3, %C* %0, %C* null 5369 /// %5 = icmp eq %C* %4, null 5370 /// br i1 %5, label %9, label %7 5371 /// ... 5372 /// ; <label>:7 ; preds = %entry 5373 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5374 /// ... 5375 /// 5376 /// can be transformed to 5377 /// 5378 /// %5 = icmp eq %C* %0, null 5379 /// %6 = select i1 %3, i1 %5, i1 true 5380 /// br i1 %6, label %9, label %7 5381 /// ... 5382 /// ; <label>:7 ; preds = %entry 5383 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5384 /// 5385 /// Similar when the first operand of the select is a constant or/and 5386 /// the compare is for not equal rather than equal. 5387 /// 5388 /// NOTE: The function is only called when the select and compare constants 5389 /// are equal, the optimization can work only for EQ predicates. This is not a 5390 /// major restriction since a NE compare should be 'normalized' to an equal 5391 /// compare, which usually happens in the combiner and test case 5392 /// select-cmp-br.ll checks for it. 5393 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5394 const ICmpInst *Icmp, 5395 const unsigned SIOpd) { 5396 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5397 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5398 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5399 // The check for the single predecessor is not the best that can be 5400 // done. But it protects efficiently against cases like when SI's 5401 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5402 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5403 // replaced can be reached on either path. So the uniqueness check 5404 // guarantees that the path all uses of SI (outside SI's parent) are on 5405 // is disjoint from all other paths out of SI. But that information 5406 // is more expensive to compute, and the trade-off here is in favor 5407 // of compile-time. It should also be noticed that we check for a single 5408 // predecessor and not only uniqueness. This to handle the situation when 5409 // Succ and Succ1 points to the same basic block. 5410 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5411 NumSel++; 5412 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5413 return true; 5414 } 5415 } 5416 return false; 5417 } 5418 5419 /// Try to fold the comparison based on range information we can get by checking 5420 /// whether bits are known to be zero or one in the inputs. 5421 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5422 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5423 Type *Ty = Op0->getType(); 5424 ICmpInst::Predicate Pred = I.getPredicate(); 5425 5426 // Get scalar or pointer size. 5427 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5428 ? Ty->getScalarSizeInBits() 5429 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5430 5431 if (!BitWidth) 5432 return nullptr; 5433 5434 KnownBits Op0Known(BitWidth); 5435 KnownBits Op1Known(BitWidth); 5436 5437 if (SimplifyDemandedBits(&I, 0, 5438 getDemandedBitsLHSMask(I, BitWidth), 5439 Op0Known, 0)) 5440 return &I; 5441 5442 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5443 return &I; 5444 5445 // Given the known and unknown bits, compute a range that the LHS could be 5446 // in. Compute the Min, Max and RHS values based on the known bits. For the 5447 // EQ and NE we use unsigned values. 5448 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5449 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5450 if (I.isSigned()) { 5451 Op0Min = Op0Known.getSignedMinValue(); 5452 Op0Max = Op0Known.getSignedMaxValue(); 5453 Op1Min = Op1Known.getSignedMinValue(); 5454 Op1Max = Op1Known.getSignedMaxValue(); 5455 } else { 5456 Op0Min = Op0Known.getMinValue(); 5457 Op0Max = Op0Known.getMaxValue(); 5458 Op1Min = Op1Known.getMinValue(); 5459 Op1Max = Op1Known.getMaxValue(); 5460 } 5461 5462 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5463 // out that the LHS or RHS is a constant. Constant fold this now, so that 5464 // code below can assume that Min != Max. 5465 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5466 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5467 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5468 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5469 5470 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5471 // min/max canonical compare with some other compare. That could lead to 5472 // conflict with select canonicalization and infinite looping. 5473 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5474 auto isMinMaxCmp = [&](Instruction &Cmp) { 5475 if (!Cmp.hasOneUse()) 5476 return false; 5477 Value *A, *B; 5478 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5479 if (!SelectPatternResult::isMinOrMax(SPF)) 5480 return false; 5481 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5482 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5483 }; 5484 if (!isMinMaxCmp(I)) { 5485 switch (Pred) { 5486 default: 5487 break; 5488 case ICmpInst::ICMP_ULT: { 5489 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5490 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5491 const APInt *CmpC; 5492 if (match(Op1, m_APInt(CmpC))) { 5493 // A <u C -> A == C-1 if min(A)+1 == C 5494 if (*CmpC == Op0Min + 1) 5495 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5496 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5497 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5498 // exceeds the log2 of C. 5499 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5500 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5501 Constant::getNullValue(Op1->getType())); 5502 } 5503 break; 5504 } 5505 case ICmpInst::ICMP_UGT: { 5506 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5507 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5508 const APInt *CmpC; 5509 if (match(Op1, m_APInt(CmpC))) { 5510 // A >u C -> A == C+1 if max(a)-1 == C 5511 if (*CmpC == Op0Max - 1) 5512 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5513 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5514 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5515 // exceeds the log2 of C. 5516 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5517 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5518 Constant::getNullValue(Op1->getType())); 5519 } 5520 break; 5521 } 5522 case ICmpInst::ICMP_SLT: { 5523 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5524 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5525 const APInt *CmpC; 5526 if (match(Op1, m_APInt(CmpC))) { 5527 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5528 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5529 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5530 } 5531 break; 5532 } 5533 case ICmpInst::ICMP_SGT: { 5534 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5535 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5536 const APInt *CmpC; 5537 if (match(Op1, m_APInt(CmpC))) { 5538 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5539 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5540 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5541 } 5542 break; 5543 } 5544 } 5545 } 5546 5547 // Based on the range information we know about the LHS, see if we can 5548 // simplify this comparison. For example, (x&4) < 8 is always true. 5549 switch (Pred) { 5550 default: 5551 llvm_unreachable("Unknown icmp opcode!"); 5552 case ICmpInst::ICMP_EQ: 5553 case ICmpInst::ICMP_NE: { 5554 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5555 return replaceInstUsesWith( 5556 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5557 5558 // If all bits are known zero except for one, then we know at most one bit 5559 // is set. If the comparison is against zero, then this is a check to see if 5560 // *that* bit is set. 5561 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5562 if (Op1Known.isZero()) { 5563 // If the LHS is an AND with the same constant, look through it. 5564 Value *LHS = nullptr; 5565 const APInt *LHSC; 5566 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5567 *LHSC != Op0KnownZeroInverted) 5568 LHS = Op0; 5569 5570 Value *X; 5571 const APInt *C1; 5572 if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) { 5573 Type *XTy = X->getType(); 5574 unsigned Log2C1 = C1->countTrailingZeros(); 5575 APInt C2 = Op0KnownZeroInverted; 5576 APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1; 5577 if (C2Pow2.isPowerOf2()) { 5578 // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2): 5579 // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1)) 5580 // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1)) 5581 unsigned Log2C2 = C2Pow2.countTrailingZeros(); 5582 auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1); 5583 auto NewPred = 5584 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5585 return new ICmpInst(NewPred, X, CmpC); 5586 } 5587 } 5588 } 5589 break; 5590 } 5591 case ICmpInst::ICMP_ULT: { 5592 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5593 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5594 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5595 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5596 break; 5597 } 5598 case ICmpInst::ICMP_UGT: { 5599 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5600 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5601 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5602 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5603 break; 5604 } 5605 case ICmpInst::ICMP_SLT: { 5606 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5607 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5608 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5609 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5610 break; 5611 } 5612 case ICmpInst::ICMP_SGT: { 5613 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5614 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5615 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5616 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5617 break; 5618 } 5619 case ICmpInst::ICMP_SGE: 5620 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5621 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5622 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5623 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5624 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5625 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5626 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5627 break; 5628 case ICmpInst::ICMP_SLE: 5629 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5630 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5631 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5632 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5633 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5634 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5635 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5636 break; 5637 case ICmpInst::ICMP_UGE: 5638 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5639 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5640 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5641 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5642 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5643 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5644 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5645 break; 5646 case ICmpInst::ICMP_ULE: 5647 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5648 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5649 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5650 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5651 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5652 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5653 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5654 break; 5655 } 5656 5657 // Turn a signed comparison into an unsigned one if both operands are known to 5658 // have the same sign. 5659 if (I.isSigned() && 5660 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5661 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5662 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5663 5664 return nullptr; 5665 } 5666 5667 /// If one operand of an icmp is effectively a bool (value range of {0,1}), 5668 /// then try to reduce patterns based on that limit. 5669 static Instruction *foldICmpUsingBoolRange(ICmpInst &I, 5670 InstCombiner::BuilderTy &Builder) { 5671 Value *X, *Y; 5672 ICmpInst::Predicate Pred; 5673 5674 // X must be 0 and bool must be true for "ULT": 5675 // X <u (zext i1 Y) --> (X == 0) & Y 5676 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) && 5677 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT) 5678 return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y); 5679 5680 // X must be 0 or bool must be true for "ULE": 5681 // X <=u (sext i1 Y) --> (X == 0) | Y 5682 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) && 5683 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE) 5684 return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y); 5685 5686 return nullptr; 5687 } 5688 5689 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5690 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5691 Constant *C) { 5692 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5693 "Only for relational integer predicates."); 5694 5695 Type *Type = C->getType(); 5696 bool IsSigned = ICmpInst::isSigned(Pred); 5697 5698 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5699 bool WillIncrement = 5700 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5701 5702 // Check if the constant operand can be safely incremented/decremented 5703 // without overflowing/underflowing. 5704 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5705 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5706 }; 5707 5708 Constant *SafeReplacementConstant = nullptr; 5709 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5710 // Bail out if the constant can't be safely incremented/decremented. 5711 if (!ConstantIsOk(CI)) 5712 return llvm::None; 5713 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5714 unsigned NumElts = FVTy->getNumElements(); 5715 for (unsigned i = 0; i != NumElts; ++i) { 5716 Constant *Elt = C->getAggregateElement(i); 5717 if (!Elt) 5718 return llvm::None; 5719 5720 if (isa<UndefValue>(Elt)) 5721 continue; 5722 5723 // Bail out if we can't determine if this constant is min/max or if we 5724 // know that this constant is min/max. 5725 auto *CI = dyn_cast<ConstantInt>(Elt); 5726 if (!CI || !ConstantIsOk(CI)) 5727 return llvm::None; 5728 5729 if (!SafeReplacementConstant) 5730 SafeReplacementConstant = CI; 5731 } 5732 } else { 5733 // ConstantExpr? 5734 return llvm::None; 5735 } 5736 5737 // It may not be safe to change a compare predicate in the presence of 5738 // undefined elements, so replace those elements with the first safe constant 5739 // that we found. 5740 // TODO: in case of poison, it is safe; let's replace undefs only. 5741 if (C->containsUndefOrPoisonElement()) { 5742 assert(SafeReplacementConstant && "Replacement constant not set"); 5743 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5744 } 5745 5746 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5747 5748 // Increment or decrement the constant. 5749 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5750 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5751 5752 return std::make_pair(NewPred, NewC); 5753 } 5754 5755 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5756 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5757 /// allows them to be folded in visitICmpInst. 5758 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5759 ICmpInst::Predicate Pred = I.getPredicate(); 5760 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5761 InstCombiner::isCanonicalPredicate(Pred)) 5762 return nullptr; 5763 5764 Value *Op0 = I.getOperand(0); 5765 Value *Op1 = I.getOperand(1); 5766 auto *Op1C = dyn_cast<Constant>(Op1); 5767 if (!Op1C) 5768 return nullptr; 5769 5770 auto FlippedStrictness = 5771 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5772 if (!FlippedStrictness) 5773 return nullptr; 5774 5775 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5776 } 5777 5778 /// If we have a comparison with a non-canonical predicate, if we can update 5779 /// all the users, invert the predicate and adjust all the users. 5780 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5781 // Is the predicate already canonical? 5782 CmpInst::Predicate Pred = I.getPredicate(); 5783 if (InstCombiner::isCanonicalPredicate(Pred)) 5784 return nullptr; 5785 5786 // Can all users be adjusted to predicate inversion? 5787 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5788 return nullptr; 5789 5790 // Ok, we can canonicalize comparison! 5791 // Let's first invert the comparison's predicate. 5792 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5793 I.setName(I.getName() + ".not"); 5794 5795 // And, adapt users. 5796 freelyInvertAllUsersOf(&I); 5797 5798 return &I; 5799 } 5800 5801 /// Integer compare with boolean values can always be turned into bitwise ops. 5802 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5803 InstCombiner::BuilderTy &Builder) { 5804 Value *A = I.getOperand(0), *B = I.getOperand(1); 5805 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5806 5807 // A boolean compared to true/false can be simplified to Op0/true/false in 5808 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5809 // Cases not handled by InstSimplify are always 'not' of Op0. 5810 if (match(B, m_Zero())) { 5811 switch (I.getPredicate()) { 5812 case CmpInst::ICMP_EQ: // A == 0 -> !A 5813 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5814 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5815 return BinaryOperator::CreateNot(A); 5816 default: 5817 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5818 } 5819 } else if (match(B, m_One())) { 5820 switch (I.getPredicate()) { 5821 case CmpInst::ICMP_NE: // A != 1 -> !A 5822 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5823 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5824 return BinaryOperator::CreateNot(A); 5825 default: 5826 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5827 } 5828 } 5829 5830 switch (I.getPredicate()) { 5831 default: 5832 llvm_unreachable("Invalid icmp instruction!"); 5833 case ICmpInst::ICMP_EQ: 5834 // icmp eq i1 A, B -> ~(A ^ B) 5835 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5836 5837 case ICmpInst::ICMP_NE: 5838 // icmp ne i1 A, B -> A ^ B 5839 return BinaryOperator::CreateXor(A, B); 5840 5841 case ICmpInst::ICMP_UGT: 5842 // icmp ugt -> icmp ult 5843 std::swap(A, B); 5844 LLVM_FALLTHROUGH; 5845 case ICmpInst::ICMP_ULT: 5846 // icmp ult i1 A, B -> ~A & B 5847 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5848 5849 case ICmpInst::ICMP_SGT: 5850 // icmp sgt -> icmp slt 5851 std::swap(A, B); 5852 LLVM_FALLTHROUGH; 5853 case ICmpInst::ICMP_SLT: 5854 // icmp slt i1 A, B -> A & ~B 5855 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5856 5857 case ICmpInst::ICMP_UGE: 5858 // icmp uge -> icmp ule 5859 std::swap(A, B); 5860 LLVM_FALLTHROUGH; 5861 case ICmpInst::ICMP_ULE: 5862 // icmp ule i1 A, B -> ~A | B 5863 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5864 5865 case ICmpInst::ICMP_SGE: 5866 // icmp sge -> icmp sle 5867 std::swap(A, B); 5868 LLVM_FALLTHROUGH; 5869 case ICmpInst::ICMP_SLE: 5870 // icmp sle i1 A, B -> A | ~B 5871 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5872 } 5873 } 5874 5875 // Transform pattern like: 5876 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5877 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5878 // Into: 5879 // (X l>> Y) != 0 5880 // (X l>> Y) == 0 5881 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5882 InstCombiner::BuilderTy &Builder) { 5883 ICmpInst::Predicate Pred, NewPred; 5884 Value *X, *Y; 5885 if (match(&Cmp, 5886 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5887 switch (Pred) { 5888 case ICmpInst::ICMP_ULE: 5889 NewPred = ICmpInst::ICMP_NE; 5890 break; 5891 case ICmpInst::ICMP_UGT: 5892 NewPred = ICmpInst::ICMP_EQ; 5893 break; 5894 default: 5895 return nullptr; 5896 } 5897 } else if (match(&Cmp, m_c_ICmp(Pred, 5898 m_OneUse(m_CombineOr( 5899 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5900 m_Add(m_Shl(m_One(), m_Value(Y)), 5901 m_AllOnes()))), 5902 m_Value(X)))) { 5903 // The variant with 'add' is not canonical, (the variant with 'not' is) 5904 // we only get it because it has extra uses, and can't be canonicalized, 5905 5906 switch (Pred) { 5907 case ICmpInst::ICMP_ULT: 5908 NewPred = ICmpInst::ICMP_NE; 5909 break; 5910 case ICmpInst::ICMP_UGE: 5911 NewPred = ICmpInst::ICMP_EQ; 5912 break; 5913 default: 5914 return nullptr; 5915 } 5916 } else 5917 return nullptr; 5918 5919 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5920 Constant *Zero = Constant::getNullValue(NewX->getType()); 5921 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5922 } 5923 5924 static Instruction *foldVectorCmp(CmpInst &Cmp, 5925 InstCombiner::BuilderTy &Builder) { 5926 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5927 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5928 Value *V1, *V2; 5929 ArrayRef<int> M; 5930 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5931 return nullptr; 5932 5933 // If both arguments of the cmp are shuffles that use the same mask and 5934 // shuffle within a single vector, move the shuffle after the cmp: 5935 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5936 Type *V1Ty = V1->getType(); 5937 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5938 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5939 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5940 return new ShuffleVectorInst(NewCmp, M); 5941 } 5942 5943 // Try to canonicalize compare with splatted operand and splat constant. 5944 // TODO: We could generalize this for more than splats. See/use the code in 5945 // InstCombiner::foldVectorBinop(). 5946 Constant *C; 5947 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5948 return nullptr; 5949 5950 // Length-changing splats are ok, so adjust the constants as needed: 5951 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5952 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5953 int MaskSplatIndex; 5954 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5955 // We allow undefs in matching, but this transform removes those for safety. 5956 // Demanded elements analysis should be able to recover some/all of that. 5957 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5958 ScalarC); 5959 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5960 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5961 return new ShuffleVectorInst(NewCmp, NewM); 5962 } 5963 5964 return nullptr; 5965 } 5966 5967 // extract(uadd.with.overflow(A, B), 0) ult A 5968 // -> extract(uadd.with.overflow(A, B), 1) 5969 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5970 CmpInst::Predicate Pred = I.getPredicate(); 5971 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5972 5973 Value *UAddOv; 5974 Value *A, *B; 5975 auto UAddOvResultPat = m_ExtractValue<0>( 5976 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5977 if (match(Op0, UAddOvResultPat) && 5978 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5979 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5980 (match(A, m_One()) || match(B, m_One()))) || 5981 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5982 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5983 // extract(uadd.with.overflow(A, B), 0) < A 5984 // extract(uadd.with.overflow(A, 1), 0) == 0 5985 // extract(uadd.with.overflow(A, -1), 0) != -1 5986 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5987 else if (match(Op1, UAddOvResultPat) && 5988 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5989 // A > extract(uadd.with.overflow(A, B), 0) 5990 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5991 else 5992 return nullptr; 5993 5994 return ExtractValueInst::Create(UAddOv, 1); 5995 } 5996 5997 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5998 if (!I.getOperand(0)->getType()->isPointerTy() || 5999 NullPointerIsDefined( 6000 I.getParent()->getParent(), 6001 I.getOperand(0)->getType()->getPointerAddressSpace())) { 6002 return nullptr; 6003 } 6004 Instruction *Op; 6005 if (match(I.getOperand(0), m_Instruction(Op)) && 6006 match(I.getOperand(1), m_Zero()) && 6007 Op->isLaunderOrStripInvariantGroup()) { 6008 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 6009 Op->getOperand(0), I.getOperand(1)); 6010 } 6011 return nullptr; 6012 } 6013 6014 /// This function folds patterns produced by lowering of reduce idioms, such as 6015 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 6016 /// attempts to generate fewer number of scalar comparisons instead of vector 6017 /// comparisons when possible. 6018 static Instruction *foldReductionIdiom(ICmpInst &I, 6019 InstCombiner::BuilderTy &Builder, 6020 const DataLayout &DL) { 6021 if (I.getType()->isVectorTy()) 6022 return nullptr; 6023 ICmpInst::Predicate OuterPred, InnerPred; 6024 Value *LHS, *RHS; 6025 6026 // Match lowering of @llvm.vector.reduce.and. Turn 6027 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 6028 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 6029 /// %res = icmp <pred> i8 %scalar_ne, 0 6030 /// 6031 /// into 6032 /// 6033 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 6034 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 6035 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 6036 /// 6037 /// for <pred> in {ne, eq}. 6038 if (!match(&I, m_ICmp(OuterPred, 6039 m_OneUse(m_BitCast(m_OneUse( 6040 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 6041 m_Zero()))) 6042 return nullptr; 6043 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 6044 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 6045 return nullptr; 6046 unsigned NumBits = 6047 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 6048 // TODO: Relax this to "not wider than max legal integer type"? 6049 if (!DL.isLegalInteger(NumBits)) 6050 return nullptr; 6051 6052 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 6053 auto *ScalarTy = Builder.getIntNTy(NumBits); 6054 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 6055 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 6056 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 6057 I.getName()); 6058 } 6059 6060 return nullptr; 6061 } 6062 6063 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 6064 bool Changed = false; 6065 const SimplifyQuery Q = SQ.getWithInstruction(&I); 6066 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6067 unsigned Op0Cplxity = getComplexity(Op0); 6068 unsigned Op1Cplxity = getComplexity(Op1); 6069 6070 /// Orders the operands of the compare so that they are listed from most 6071 /// complex to least complex. This puts constants before unary operators, 6072 /// before binary operators. 6073 if (Op0Cplxity < Op1Cplxity || 6074 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 6075 I.swapOperands(); 6076 std::swap(Op0, Op1); 6077 Changed = true; 6078 } 6079 6080 if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 6081 return replaceInstUsesWith(I, V); 6082 6083 // Comparing -val or val with non-zero is the same as just comparing val 6084 // ie, abs(val) != 0 -> val != 0 6085 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 6086 Value *Cond, *SelectTrue, *SelectFalse; 6087 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 6088 m_Value(SelectFalse)))) { 6089 if (Value *V = dyn_castNegVal(SelectTrue)) { 6090 if (V == SelectFalse) 6091 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6092 } 6093 else if (Value *V = dyn_castNegVal(SelectFalse)) { 6094 if (V == SelectTrue) 6095 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6096 } 6097 } 6098 } 6099 6100 if (Op0->getType()->isIntOrIntVectorTy(1)) 6101 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 6102 return Res; 6103 6104 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 6105 return Res; 6106 6107 if (Instruction *Res = canonicalizeICmpPredicate(I)) 6108 return Res; 6109 6110 if (Instruction *Res = foldICmpWithConstant(I)) 6111 return Res; 6112 6113 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 6114 return Res; 6115 6116 if (Instruction *Res = foldICmpUsingBoolRange(I, Builder)) 6117 return Res; 6118 6119 if (Instruction *Res = foldICmpUsingKnownBits(I)) 6120 return Res; 6121 6122 // Test if the ICmpInst instruction is used exclusively by a select as 6123 // part of a minimum or maximum operation. If so, refrain from doing 6124 // any other folding. This helps out other analyses which understand 6125 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6126 // and CodeGen. And in this case, at least one of the comparison 6127 // operands has at least one user besides the compare (the select), 6128 // which would often largely negate the benefit of folding anyway. 6129 // 6130 // Do the same for the other patterns recognized by matchSelectPattern. 6131 if (I.hasOneUse()) 6132 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6133 Value *A, *B; 6134 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6135 if (SPR.Flavor != SPF_UNKNOWN) 6136 return nullptr; 6137 } 6138 6139 // Do this after checking for min/max to prevent infinite looping. 6140 if (Instruction *Res = foldICmpWithZero(I)) 6141 return Res; 6142 6143 // FIXME: We only do this after checking for min/max to prevent infinite 6144 // looping caused by a reverse canonicalization of these patterns for min/max. 6145 // FIXME: The organization of folds is a mess. These would naturally go into 6146 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6147 // down here after the min/max restriction. 6148 ICmpInst::Predicate Pred = I.getPredicate(); 6149 const APInt *C; 6150 if (match(Op1, m_APInt(C))) { 6151 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6152 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6153 Constant *Zero = Constant::getNullValue(Op0->getType()); 6154 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6155 } 6156 6157 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6158 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6159 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6160 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6161 } 6162 } 6163 6164 // The folds in here may rely on wrapping flags and special constants, so 6165 // they can break up min/max idioms in some cases but not seemingly similar 6166 // patterns. 6167 // FIXME: It may be possible to enhance select folding to make this 6168 // unnecessary. It may also be moot if we canonicalize to min/max 6169 // intrinsics. 6170 if (Instruction *Res = foldICmpBinOp(I, Q)) 6171 return Res; 6172 6173 if (Instruction *Res = foldICmpInstWithConstant(I)) 6174 return Res; 6175 6176 // Try to match comparison as a sign bit test. Intentionally do this after 6177 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6178 if (Instruction *New = foldSignBitTest(I)) 6179 return New; 6180 6181 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6182 return Res; 6183 6184 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6185 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6186 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6187 return NI; 6188 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6189 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6190 return NI; 6191 6192 if (auto *SI = dyn_cast<SelectInst>(Op0)) 6193 if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I)) 6194 return NI; 6195 if (auto *SI = dyn_cast<SelectInst>(Op1)) 6196 if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I)) 6197 return NI; 6198 6199 // Try to optimize equality comparisons against alloca-based pointers. 6200 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6201 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6202 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6203 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6204 return New; 6205 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6206 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6207 return New; 6208 } 6209 6210 if (Instruction *Res = foldICmpBitCast(I)) 6211 return Res; 6212 6213 // TODO: Hoist this above the min/max bailout. 6214 if (Instruction *R = foldICmpWithCastOp(I)) 6215 return R; 6216 6217 if (Instruction *Res = foldICmpWithMinMax(I)) 6218 return Res; 6219 6220 { 6221 Value *A, *B; 6222 // Transform (A & ~B) == 0 --> (A & B) != 0 6223 // and (A & ~B) != 0 --> (A & B) == 0 6224 // if A is a power of 2. 6225 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6226 match(Op1, m_Zero()) && 6227 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6228 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6229 Op1); 6230 6231 // ~X < ~Y --> Y < X 6232 // ~X < C --> X > ~C 6233 if (match(Op0, m_Not(m_Value(A)))) { 6234 if (match(Op1, m_Not(m_Value(B)))) 6235 return new ICmpInst(I.getPredicate(), B, A); 6236 6237 const APInt *C; 6238 if (match(Op1, m_APInt(C))) 6239 return new ICmpInst(I.getSwappedPredicate(), A, 6240 ConstantInt::get(Op1->getType(), ~(*C))); 6241 } 6242 6243 Instruction *AddI = nullptr; 6244 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6245 m_Instruction(AddI))) && 6246 isa<IntegerType>(A->getType())) { 6247 Value *Result; 6248 Constant *Overflow; 6249 // m_UAddWithOverflow can match patterns that do not include an explicit 6250 // "add" instruction, so check the opcode of the matched op. 6251 if (AddI->getOpcode() == Instruction::Add && 6252 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6253 Result, Overflow)) { 6254 replaceInstUsesWith(*AddI, Result); 6255 eraseInstFromFunction(*AddI); 6256 return replaceInstUsesWith(I, Overflow); 6257 } 6258 } 6259 6260 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6261 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6262 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6263 return R; 6264 } 6265 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6266 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6267 return R; 6268 } 6269 } 6270 6271 if (Instruction *Res = foldICmpEquality(I)) 6272 return Res; 6273 6274 if (Instruction *Res = foldICmpOfUAddOv(I)) 6275 return Res; 6276 6277 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6278 // an i1 which indicates whether or not we successfully did the swap. 6279 // 6280 // Replace comparisons between the old value and the expected value with the 6281 // indicator that 'cmpxchg' returns. 6282 // 6283 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6284 // spuriously fail. In those cases, the old value may equal the expected 6285 // value but it is possible for the swap to not occur. 6286 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6287 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6288 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6289 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6290 !ACXI->isWeak()) 6291 return ExtractValueInst::Create(ACXI, 1); 6292 6293 { 6294 Value *X; 6295 const APInt *C; 6296 // icmp X+Cst, X 6297 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6298 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6299 6300 // icmp X, X+Cst 6301 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6302 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6303 } 6304 6305 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6306 return Res; 6307 6308 if (I.getType()->isVectorTy()) 6309 if (Instruction *Res = foldVectorCmp(I, Builder)) 6310 return Res; 6311 6312 if (Instruction *Res = foldICmpInvariantGroup(I)) 6313 return Res; 6314 6315 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 6316 return Res; 6317 6318 return Changed ? &I : nullptr; 6319 } 6320 6321 /// Fold fcmp ([us]itofp x, cst) if possible. 6322 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6323 Instruction *LHSI, 6324 Constant *RHSC) { 6325 if (!isa<ConstantFP>(RHSC)) return nullptr; 6326 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6327 6328 // Get the width of the mantissa. We don't want to hack on conversions that 6329 // might lose information from the integer, e.g. "i64 -> float" 6330 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6331 if (MantissaWidth == -1) return nullptr; // Unknown. 6332 6333 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6334 6335 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6336 6337 if (I.isEquality()) { 6338 FCmpInst::Predicate P = I.getPredicate(); 6339 bool IsExact = false; 6340 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6341 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6342 6343 // If the floating point constant isn't an integer value, we know if we will 6344 // ever compare equal / not equal to it. 6345 if (!IsExact) { 6346 // TODO: Can never be -0.0 and other non-representable values 6347 APFloat RHSRoundInt(RHS); 6348 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6349 if (RHS != RHSRoundInt) { 6350 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6351 return replaceInstUsesWith(I, Builder.getFalse()); 6352 6353 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6354 return replaceInstUsesWith(I, Builder.getTrue()); 6355 } 6356 } 6357 6358 // TODO: If the constant is exactly representable, is it always OK to do 6359 // equality compares as integer? 6360 } 6361 6362 // Check to see that the input is converted from an integer type that is small 6363 // enough that preserves all bits. TODO: check here for "known" sign bits. 6364 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6365 unsigned InputSize = IntTy->getScalarSizeInBits(); 6366 6367 // Following test does NOT adjust InputSize downwards for signed inputs, 6368 // because the most negative value still requires all the mantissa bits 6369 // to distinguish it from one less than that value. 6370 if ((int)InputSize > MantissaWidth) { 6371 // Conversion would lose accuracy. Check if loss can impact comparison. 6372 int Exp = ilogb(RHS); 6373 if (Exp == APFloat::IEK_Inf) { 6374 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6375 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6376 // Conversion could create infinity. 6377 return nullptr; 6378 } else { 6379 // Note that if RHS is zero or NaN, then Exp is negative 6380 // and first condition is trivially false. 6381 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6382 // Conversion could affect comparison. 6383 return nullptr; 6384 } 6385 } 6386 6387 // Otherwise, we can potentially simplify the comparison. We know that it 6388 // will always come through as an integer value and we know the constant is 6389 // not a NAN (it would have been previously simplified). 6390 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6391 6392 ICmpInst::Predicate Pred; 6393 switch (I.getPredicate()) { 6394 default: llvm_unreachable("Unexpected predicate!"); 6395 case FCmpInst::FCMP_UEQ: 6396 case FCmpInst::FCMP_OEQ: 6397 Pred = ICmpInst::ICMP_EQ; 6398 break; 6399 case FCmpInst::FCMP_UGT: 6400 case FCmpInst::FCMP_OGT: 6401 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6402 break; 6403 case FCmpInst::FCMP_UGE: 6404 case FCmpInst::FCMP_OGE: 6405 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6406 break; 6407 case FCmpInst::FCMP_ULT: 6408 case FCmpInst::FCMP_OLT: 6409 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6410 break; 6411 case FCmpInst::FCMP_ULE: 6412 case FCmpInst::FCMP_OLE: 6413 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6414 break; 6415 case FCmpInst::FCMP_UNE: 6416 case FCmpInst::FCMP_ONE: 6417 Pred = ICmpInst::ICMP_NE; 6418 break; 6419 case FCmpInst::FCMP_ORD: 6420 return replaceInstUsesWith(I, Builder.getTrue()); 6421 case FCmpInst::FCMP_UNO: 6422 return replaceInstUsesWith(I, Builder.getFalse()); 6423 } 6424 6425 // Now we know that the APFloat is a normal number, zero or inf. 6426 6427 // See if the FP constant is too large for the integer. For example, 6428 // comparing an i8 to 300.0. 6429 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6430 6431 if (!LHSUnsigned) { 6432 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6433 // and large values. 6434 APFloat SMax(RHS.getSemantics()); 6435 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6436 APFloat::rmNearestTiesToEven); 6437 if (SMax < RHS) { // smax < 13123.0 6438 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6439 Pred == ICmpInst::ICMP_SLE) 6440 return replaceInstUsesWith(I, Builder.getTrue()); 6441 return replaceInstUsesWith(I, Builder.getFalse()); 6442 } 6443 } else { 6444 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6445 // +INF and large values. 6446 APFloat UMax(RHS.getSemantics()); 6447 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6448 APFloat::rmNearestTiesToEven); 6449 if (UMax < RHS) { // umax < 13123.0 6450 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6451 Pred == ICmpInst::ICMP_ULE) 6452 return replaceInstUsesWith(I, Builder.getTrue()); 6453 return replaceInstUsesWith(I, Builder.getFalse()); 6454 } 6455 } 6456 6457 if (!LHSUnsigned) { 6458 // See if the RHS value is < SignedMin. 6459 APFloat SMin(RHS.getSemantics()); 6460 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6461 APFloat::rmNearestTiesToEven); 6462 if (SMin > RHS) { // smin > 12312.0 6463 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6464 Pred == ICmpInst::ICMP_SGE) 6465 return replaceInstUsesWith(I, Builder.getTrue()); 6466 return replaceInstUsesWith(I, Builder.getFalse()); 6467 } 6468 } else { 6469 // See if the RHS value is < UnsignedMin. 6470 APFloat UMin(RHS.getSemantics()); 6471 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6472 APFloat::rmNearestTiesToEven); 6473 if (UMin > RHS) { // umin > 12312.0 6474 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6475 Pred == ICmpInst::ICMP_UGE) 6476 return replaceInstUsesWith(I, Builder.getTrue()); 6477 return replaceInstUsesWith(I, Builder.getFalse()); 6478 } 6479 } 6480 6481 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6482 // [0, UMAX], but it may still be fractional. See if it is fractional by 6483 // casting the FP value to the integer value and back, checking for equality. 6484 // Don't do this for zero, because -0.0 is not fractional. 6485 Constant *RHSInt = LHSUnsigned 6486 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6487 : ConstantExpr::getFPToSI(RHSC, IntTy); 6488 if (!RHS.isZero()) { 6489 bool Equal = LHSUnsigned 6490 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6491 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6492 if (!Equal) { 6493 // If we had a comparison against a fractional value, we have to adjust 6494 // the compare predicate and sometimes the value. RHSC is rounded towards 6495 // zero at this point. 6496 switch (Pred) { 6497 default: llvm_unreachable("Unexpected integer comparison!"); 6498 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6499 return replaceInstUsesWith(I, Builder.getTrue()); 6500 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6501 return replaceInstUsesWith(I, Builder.getFalse()); 6502 case ICmpInst::ICMP_ULE: 6503 // (float)int <= 4.4 --> int <= 4 6504 // (float)int <= -4.4 --> false 6505 if (RHS.isNegative()) 6506 return replaceInstUsesWith(I, Builder.getFalse()); 6507 break; 6508 case ICmpInst::ICMP_SLE: 6509 // (float)int <= 4.4 --> int <= 4 6510 // (float)int <= -4.4 --> int < -4 6511 if (RHS.isNegative()) 6512 Pred = ICmpInst::ICMP_SLT; 6513 break; 6514 case ICmpInst::ICMP_ULT: 6515 // (float)int < -4.4 --> false 6516 // (float)int < 4.4 --> int <= 4 6517 if (RHS.isNegative()) 6518 return replaceInstUsesWith(I, Builder.getFalse()); 6519 Pred = ICmpInst::ICMP_ULE; 6520 break; 6521 case ICmpInst::ICMP_SLT: 6522 // (float)int < -4.4 --> int < -4 6523 // (float)int < 4.4 --> int <= 4 6524 if (!RHS.isNegative()) 6525 Pred = ICmpInst::ICMP_SLE; 6526 break; 6527 case ICmpInst::ICMP_UGT: 6528 // (float)int > 4.4 --> int > 4 6529 // (float)int > -4.4 --> true 6530 if (RHS.isNegative()) 6531 return replaceInstUsesWith(I, Builder.getTrue()); 6532 break; 6533 case ICmpInst::ICMP_SGT: 6534 // (float)int > 4.4 --> int > 4 6535 // (float)int > -4.4 --> int >= -4 6536 if (RHS.isNegative()) 6537 Pred = ICmpInst::ICMP_SGE; 6538 break; 6539 case ICmpInst::ICMP_UGE: 6540 // (float)int >= -4.4 --> true 6541 // (float)int >= 4.4 --> int > 4 6542 if (RHS.isNegative()) 6543 return replaceInstUsesWith(I, Builder.getTrue()); 6544 Pred = ICmpInst::ICMP_UGT; 6545 break; 6546 case ICmpInst::ICMP_SGE: 6547 // (float)int >= -4.4 --> int >= -4 6548 // (float)int >= 4.4 --> int > 4 6549 if (!RHS.isNegative()) 6550 Pred = ICmpInst::ICMP_SGT; 6551 break; 6552 } 6553 } 6554 } 6555 6556 // Lower this FP comparison into an appropriate integer version of the 6557 // comparison. 6558 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6559 } 6560 6561 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6562 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6563 Constant *RHSC) { 6564 // When C is not 0.0 and infinities are not allowed: 6565 // (C / X) < 0.0 is a sign-bit test of X 6566 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6567 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6568 // 6569 // Proof: 6570 // Multiply (C / X) < 0.0 by X * X / C. 6571 // - X is non zero, if it is the flag 'ninf' is violated. 6572 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6573 // the predicate. C is also non zero by definition. 6574 // 6575 // Thus X * X / C is non zero and the transformation is valid. [qed] 6576 6577 FCmpInst::Predicate Pred = I.getPredicate(); 6578 6579 // Check that predicates are valid. 6580 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6581 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6582 return nullptr; 6583 6584 // Check that RHS operand is zero. 6585 if (!match(RHSC, m_AnyZeroFP())) 6586 return nullptr; 6587 6588 // Check fastmath flags ('ninf'). 6589 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6590 return nullptr; 6591 6592 // Check the properties of the dividend. It must not be zero to avoid a 6593 // division by zero (see Proof). 6594 const APFloat *C; 6595 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6596 return nullptr; 6597 6598 if (C->isZero()) 6599 return nullptr; 6600 6601 // Get swapped predicate if necessary. 6602 if (C->isNegative()) 6603 Pred = I.getSwappedPredicate(); 6604 6605 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6606 } 6607 6608 /// Optimize fabs(X) compared with zero. 6609 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6610 Value *X; 6611 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6612 !match(I.getOperand(1), m_PosZeroFP())) 6613 return nullptr; 6614 6615 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6616 I->setPredicate(P); 6617 return IC.replaceOperand(*I, 0, X); 6618 }; 6619 6620 switch (I.getPredicate()) { 6621 case FCmpInst::FCMP_UGE: 6622 case FCmpInst::FCMP_OLT: 6623 // fabs(X) >= 0.0 --> true 6624 // fabs(X) < 0.0 --> false 6625 llvm_unreachable("fcmp should have simplified"); 6626 6627 case FCmpInst::FCMP_OGT: 6628 // fabs(X) > 0.0 --> X != 0.0 6629 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6630 6631 case FCmpInst::FCMP_UGT: 6632 // fabs(X) u> 0.0 --> X u!= 0.0 6633 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6634 6635 case FCmpInst::FCMP_OLE: 6636 // fabs(X) <= 0.0 --> X == 0.0 6637 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6638 6639 case FCmpInst::FCMP_ULE: 6640 // fabs(X) u<= 0.0 --> X u== 0.0 6641 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6642 6643 case FCmpInst::FCMP_OGE: 6644 // fabs(X) >= 0.0 --> !isnan(X) 6645 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6646 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6647 6648 case FCmpInst::FCMP_ULT: 6649 // fabs(X) u< 0.0 --> isnan(X) 6650 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6651 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6652 6653 case FCmpInst::FCMP_OEQ: 6654 case FCmpInst::FCMP_UEQ: 6655 case FCmpInst::FCMP_ONE: 6656 case FCmpInst::FCMP_UNE: 6657 case FCmpInst::FCMP_ORD: 6658 case FCmpInst::FCMP_UNO: 6659 // Look through the fabs() because it doesn't change anything but the sign. 6660 // fabs(X) == 0.0 --> X == 0.0, 6661 // fabs(X) != 0.0 --> X != 0.0 6662 // isnan(fabs(X)) --> isnan(X) 6663 // !isnan(fabs(X) --> !isnan(X) 6664 return replacePredAndOp0(&I, I.getPredicate(), X); 6665 6666 default: 6667 return nullptr; 6668 } 6669 } 6670 6671 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 6672 CmpInst::Predicate Pred = I.getPredicate(); 6673 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6674 6675 // Canonicalize fneg as Op1. 6676 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 6677 std::swap(Op0, Op1); 6678 Pred = I.getSwappedPredicate(); 6679 } 6680 6681 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 6682 return nullptr; 6683 6684 // Replace the negated operand with 0.0: 6685 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 6686 Constant *Zero = ConstantFP::getNullValue(Op0->getType()); 6687 return new FCmpInst(Pred, Op0, Zero, "", &I); 6688 } 6689 6690 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6691 bool Changed = false; 6692 6693 /// Orders the operands of the compare so that they are listed from most 6694 /// complex to least complex. This puts constants before unary operators, 6695 /// before binary operators. 6696 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6697 I.swapOperands(); 6698 Changed = true; 6699 } 6700 6701 const CmpInst::Predicate Pred = I.getPredicate(); 6702 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6703 if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6704 SQ.getWithInstruction(&I))) 6705 return replaceInstUsesWith(I, V); 6706 6707 // Simplify 'fcmp pred X, X' 6708 Type *OpType = Op0->getType(); 6709 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6710 if (Op0 == Op1) { 6711 switch (Pred) { 6712 default: break; 6713 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6714 case FCmpInst::FCMP_ULT: // True if unordered or less than 6715 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6716 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6717 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6718 I.setPredicate(FCmpInst::FCMP_UNO); 6719 I.setOperand(1, Constant::getNullValue(OpType)); 6720 return &I; 6721 6722 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6723 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6724 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6725 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6726 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6727 I.setPredicate(FCmpInst::FCMP_ORD); 6728 I.setOperand(1, Constant::getNullValue(OpType)); 6729 return &I; 6730 } 6731 } 6732 6733 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6734 // then canonicalize the operand to 0.0. 6735 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6736 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6737 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6738 6739 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6740 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6741 } 6742 6743 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6744 Value *X, *Y; 6745 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6746 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6747 6748 if (Instruction *R = foldFCmpFNegCommonOp(I)) 6749 return R; 6750 6751 // Test if the FCmpInst instruction is used exclusively by a select as 6752 // part of a minimum or maximum operation. If so, refrain from doing 6753 // any other folding. This helps out other analyses which understand 6754 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6755 // and CodeGen. And in this case, at least one of the comparison 6756 // operands has at least one user besides the compare (the select), 6757 // which would often largely negate the benefit of folding anyway. 6758 if (I.hasOneUse()) 6759 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6760 Value *A, *B; 6761 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6762 if (SPR.Flavor != SPF_UNKNOWN) 6763 return nullptr; 6764 } 6765 6766 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6767 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6768 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6769 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6770 6771 // Handle fcmp with instruction LHS and constant RHS. 6772 Instruction *LHSI; 6773 Constant *RHSC; 6774 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6775 switch (LHSI->getOpcode()) { 6776 case Instruction::PHI: 6777 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6778 // block. If in the same block, we're encouraging jump threading. If 6779 // not, we are just pessimizing the code by making an i1 phi. 6780 if (LHSI->getParent() == I.getParent()) 6781 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6782 return NV; 6783 break; 6784 case Instruction::SIToFP: 6785 case Instruction::UIToFP: 6786 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6787 return NV; 6788 break; 6789 case Instruction::FDiv: 6790 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6791 return NV; 6792 break; 6793 case Instruction::Load: 6794 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6795 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6796 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 6797 cast<LoadInst>(LHSI), GEP, GV, I)) 6798 return Res; 6799 break; 6800 } 6801 } 6802 6803 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6804 return R; 6805 6806 if (match(Op0, m_FNeg(m_Value(X)))) { 6807 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6808 Constant *C; 6809 if (match(Op1, m_Constant(C))) { 6810 Constant *NegC = ConstantExpr::getFNeg(C); 6811 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6812 } 6813 } 6814 6815 if (match(Op0, m_FPExt(m_Value(X)))) { 6816 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6817 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6818 return new FCmpInst(Pred, X, Y, "", &I); 6819 6820 const APFloat *C; 6821 if (match(Op1, m_APFloat(C))) { 6822 const fltSemantics &FPSem = 6823 X->getType()->getScalarType()->getFltSemantics(); 6824 bool Lossy; 6825 APFloat TruncC = *C; 6826 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6827 6828 if (Lossy) { 6829 // X can't possibly equal the higher-precision constant, so reduce any 6830 // equality comparison. 6831 // TODO: Other predicates can be handled via getFCmpCode(). 6832 switch (Pred) { 6833 case FCmpInst::FCMP_OEQ: 6834 // X is ordered and equal to an impossible constant --> false 6835 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6836 case FCmpInst::FCMP_ONE: 6837 // X is ordered and not equal to an impossible constant --> ordered 6838 return new FCmpInst(FCmpInst::FCMP_ORD, X, 6839 ConstantFP::getNullValue(X->getType())); 6840 case FCmpInst::FCMP_UEQ: 6841 // X is unordered or equal to an impossible constant --> unordered 6842 return new FCmpInst(FCmpInst::FCMP_UNO, X, 6843 ConstantFP::getNullValue(X->getType())); 6844 case FCmpInst::FCMP_UNE: 6845 // X is unordered or not equal to an impossible constant --> true 6846 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6847 default: 6848 break; 6849 } 6850 } 6851 6852 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6853 // Avoid lossy conversions and denormals. 6854 // Zero is a special case that's OK to convert. 6855 APFloat Fabs = TruncC; 6856 Fabs.clearSign(); 6857 if (!Lossy && 6858 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6859 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6860 return new FCmpInst(Pred, X, NewC, "", &I); 6861 } 6862 } 6863 } 6864 6865 // Convert a sign-bit test of an FP value into a cast and integer compare. 6866 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6867 // TODO: Handle non-zero compare constants. 6868 // TODO: Handle other predicates. 6869 const APFloat *C; 6870 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6871 m_Value(X)))) && 6872 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6873 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6874 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6875 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6876 6877 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6878 if (Pred == FCmpInst::FCMP_OLT) { 6879 Value *IntX = Builder.CreateBitCast(X, IntType); 6880 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6881 ConstantInt::getNullValue(IntType)); 6882 } 6883 } 6884 6885 if (I.getType()->isVectorTy()) 6886 if (Instruction *Res = foldVectorCmp(I, Builder)) 6887 return Res; 6888 6889 return Changed ? &I : nullptr; 6890 } 6891