1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 #include "llvm/Transforms/InstCombine/InstCombiner.h" 28 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 // How many times is a select replaced by one of its operands? 35 STATISTIC(NumSel, "Number of select opts"); 36 37 38 /// Compute Result = In1+In2, returning true if the result overflowed for this 39 /// type. 40 static bool addWithOverflow(APInt &Result, const APInt &In1, 41 const APInt &In2, bool IsSigned = false) { 42 bool Overflow; 43 if (IsSigned) 44 Result = In1.sadd_ov(In2, Overflow); 45 else 46 Result = In1.uadd_ov(In2, Overflow); 47 48 return Overflow; 49 } 50 51 /// Compute Result = In1-In2, returning true if the result overflowed for this 52 /// type. 53 static bool subWithOverflow(APInt &Result, const APInt &In1, 54 const APInt &In2, bool IsSigned = false) { 55 bool Overflow; 56 if (IsSigned) 57 Result = In1.ssub_ov(In2, Overflow); 58 else 59 Result = In1.usub_ov(In2, Overflow); 60 61 return Overflow; 62 } 63 64 /// Given an icmp instruction, return true if any use of this comparison is a 65 /// branch on sign bit comparison. 66 static bool hasBranchUse(ICmpInst &I) { 67 for (auto *U : I.users()) 68 if (isa<BranchInst>(U)) 69 return true; 70 return false; 71 } 72 73 /// Returns true if the exploded icmp can be expressed as a signed comparison 74 /// to zero and updates the predicate accordingly. 75 /// The signedness of the comparison is preserved. 76 /// TODO: Refactor with decomposeBitTestICmp()? 77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 78 if (!ICmpInst::isSigned(Pred)) 79 return false; 80 81 if (C.isNullValue()) 82 return ICmpInst::isRelational(Pred); 83 84 if (C.isOneValue()) { 85 if (Pred == ICmpInst::ICMP_SLT) { 86 Pred = ICmpInst::ICMP_SLE; 87 return true; 88 } 89 } else if (C.isAllOnesValue()) { 90 if (Pred == ICmpInst::ICMP_SGT) { 91 Pred = ICmpInst::ICMP_SGE; 92 return true; 93 } 94 } 95 96 return false; 97 } 98 99 /// Given a signed integer type and a set of known zero and one bits, compute 100 /// the maximum and minimum values that could have the specified known zero and 101 /// known one bits, returning them in Min/Max. 102 /// TODO: Move to method on KnownBits struct? 103 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 104 APInt &Min, APInt &Max) { 105 assert(Known.getBitWidth() == Min.getBitWidth() && 106 Known.getBitWidth() == Max.getBitWidth() && 107 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 108 APInt UnknownBits = ~(Known.Zero|Known.One); 109 110 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 111 // bit if it is unknown. 112 Min = Known.One; 113 Max = Known.One|UnknownBits; 114 115 if (UnknownBits.isNegative()) { // Sign bit is unknown 116 Min.setSignBit(); 117 Max.clearSignBit(); 118 } 119 } 120 121 /// Given an unsigned integer type and a set of known zero and one bits, compute 122 /// the maximum and minimum values that could have the specified known zero and 123 /// known one bits, returning them in Min/Max. 124 /// TODO: Move to method on KnownBits struct? 125 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 126 APInt &Min, APInt &Max) { 127 assert(Known.getBitWidth() == Min.getBitWidth() && 128 Known.getBitWidth() == Max.getBitWidth() && 129 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 130 APInt UnknownBits = ~(Known.Zero|Known.One); 131 132 // The minimum value is when the unknown bits are all zeros. 133 Min = Known.One; 134 // The maximum value is when the unknown bits are all ones. 135 Max = Known.One|UnknownBits; 136 } 137 138 /// This is called when we see this pattern: 139 /// cmp pred (load (gep GV, ...)), cmpcst 140 /// where GV is a global variable with a constant initializer. Try to simplify 141 /// this into some simple computation that does not need the load. For example 142 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 143 /// 144 /// If AndCst is non-null, then the loaded value is masked with that constant 145 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 146 Instruction * 147 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 148 GlobalVariable *GV, CmpInst &ICI, 149 ConstantInt *AndCst) { 150 Constant *Init = GV->getInitializer(); 151 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 152 return nullptr; 153 154 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 155 // Don't blow up on huge arrays. 156 if (ArrayElementCount > MaxArraySizeForCombine) 157 return nullptr; 158 159 // There are many forms of this optimization we can handle, for now, just do 160 // the simple index into a single-dimensional array. 161 // 162 // Require: GEP GV, 0, i {{, constant indices}} 163 if (GEP->getNumOperands() < 3 || 164 !isa<ConstantInt>(GEP->getOperand(1)) || 165 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 166 isa<Constant>(GEP->getOperand(2))) 167 return nullptr; 168 169 // Check that indices after the variable are constants and in-range for the 170 // type they index. Collect the indices. This is typically for arrays of 171 // structs. 172 SmallVector<unsigned, 4> LaterIndices; 173 174 Type *EltTy = Init->getType()->getArrayElementType(); 175 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 176 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 177 if (!Idx) return nullptr; // Variable index. 178 179 uint64_t IdxVal = Idx->getZExtValue(); 180 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 181 182 if (StructType *STy = dyn_cast<StructType>(EltTy)) 183 EltTy = STy->getElementType(IdxVal); 184 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 185 if (IdxVal >= ATy->getNumElements()) return nullptr; 186 EltTy = ATy->getElementType(); 187 } else { 188 return nullptr; // Unknown type. 189 } 190 191 LaterIndices.push_back(IdxVal); 192 } 193 194 enum { Overdefined = -3, Undefined = -2 }; 195 196 // Variables for our state machines. 197 198 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 199 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 200 // and 87 is the second (and last) index. FirstTrueElement is -2 when 201 // undefined, otherwise set to the first true element. SecondTrueElement is 202 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 203 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 204 205 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 206 // form "i != 47 & i != 87". Same state transitions as for true elements. 207 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 208 209 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 210 /// define a state machine that triggers for ranges of values that the index 211 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 212 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 213 /// index in the range (inclusive). We use -2 for undefined here because we 214 /// use relative comparisons and don't want 0-1 to match -1. 215 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 216 217 // MagicBitvector - This is a magic bitvector where we set a bit if the 218 // comparison is true for element 'i'. If there are 64 elements or less in 219 // the array, this will fully represent all the comparison results. 220 uint64_t MagicBitvector = 0; 221 222 // Scan the array and see if one of our patterns matches. 223 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 224 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 225 Constant *Elt = Init->getAggregateElement(i); 226 if (!Elt) return nullptr; 227 228 // If this is indexing an array of structures, get the structure element. 229 if (!LaterIndices.empty()) 230 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 231 232 // If the element is masked, handle it. 233 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 234 235 // Find out if the comparison would be true or false for the i'th element. 236 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 237 CompareRHS, DL, &TLI); 238 // If the result is undef for this element, ignore it. 239 if (isa<UndefValue>(C)) { 240 // Extend range state machines to cover this element in case there is an 241 // undef in the middle of the range. 242 if (TrueRangeEnd == (int)i-1) 243 TrueRangeEnd = i; 244 if (FalseRangeEnd == (int)i-1) 245 FalseRangeEnd = i; 246 continue; 247 } 248 249 // If we can't compute the result for any of the elements, we have to give 250 // up evaluating the entire conditional. 251 if (!isa<ConstantInt>(C)) return nullptr; 252 253 // Otherwise, we know if the comparison is true or false for this element, 254 // update our state machines. 255 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 256 257 // State machine for single/double/range index comparison. 258 if (IsTrueForElt) { 259 // Update the TrueElement state machine. 260 if (FirstTrueElement == Undefined) 261 FirstTrueElement = TrueRangeEnd = i; // First true element. 262 else { 263 // Update double-compare state machine. 264 if (SecondTrueElement == Undefined) 265 SecondTrueElement = i; 266 else 267 SecondTrueElement = Overdefined; 268 269 // Update range state machine. 270 if (TrueRangeEnd == (int)i-1) 271 TrueRangeEnd = i; 272 else 273 TrueRangeEnd = Overdefined; 274 } 275 } else { 276 // Update the FalseElement state machine. 277 if (FirstFalseElement == Undefined) 278 FirstFalseElement = FalseRangeEnd = i; // First false element. 279 else { 280 // Update double-compare state machine. 281 if (SecondFalseElement == Undefined) 282 SecondFalseElement = i; 283 else 284 SecondFalseElement = Overdefined; 285 286 // Update range state machine. 287 if (FalseRangeEnd == (int)i-1) 288 FalseRangeEnd = i; 289 else 290 FalseRangeEnd = Overdefined; 291 } 292 } 293 294 // If this element is in range, update our magic bitvector. 295 if (i < 64 && IsTrueForElt) 296 MagicBitvector |= 1ULL << i; 297 298 // If all of our states become overdefined, bail out early. Since the 299 // predicate is expensive, only check it every 8 elements. This is only 300 // really useful for really huge arrays. 301 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 302 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 303 FalseRangeEnd == Overdefined) 304 return nullptr; 305 } 306 307 // Now that we've scanned the entire array, emit our new comparison(s). We 308 // order the state machines in complexity of the generated code. 309 Value *Idx = GEP->getOperand(2); 310 311 // If the index is larger than the pointer size of the target, truncate the 312 // index down like the GEP would do implicitly. We don't have to do this for 313 // an inbounds GEP because the index can't be out of range. 314 if (!GEP->isInBounds()) { 315 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 316 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 317 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 318 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 319 } 320 321 // If the comparison is only true for one or two elements, emit direct 322 // comparisons. 323 if (SecondTrueElement != Overdefined) { 324 // None true -> false. 325 if (FirstTrueElement == Undefined) 326 return replaceInstUsesWith(ICI, Builder.getFalse()); 327 328 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 329 330 // True for one element -> 'i == 47'. 331 if (SecondTrueElement == Undefined) 332 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 333 334 // True for two elements -> 'i == 47 | i == 72'. 335 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 336 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 337 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 338 return BinaryOperator::CreateOr(C1, C2); 339 } 340 341 // If the comparison is only false for one or two elements, emit direct 342 // comparisons. 343 if (SecondFalseElement != Overdefined) { 344 // None false -> true. 345 if (FirstFalseElement == Undefined) 346 return replaceInstUsesWith(ICI, Builder.getTrue()); 347 348 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 349 350 // False for one element -> 'i != 47'. 351 if (SecondFalseElement == Undefined) 352 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 353 354 // False for two elements -> 'i != 47 & i != 72'. 355 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 356 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 357 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 358 return BinaryOperator::CreateAnd(C1, C2); 359 } 360 361 // If the comparison can be replaced with a range comparison for the elements 362 // where it is true, emit the range check. 363 if (TrueRangeEnd != Overdefined) { 364 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 365 366 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 367 if (FirstTrueElement) { 368 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 369 Idx = Builder.CreateAdd(Idx, Offs); 370 } 371 372 Value *End = ConstantInt::get(Idx->getType(), 373 TrueRangeEnd-FirstTrueElement+1); 374 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 375 } 376 377 // False range check. 378 if (FalseRangeEnd != Overdefined) { 379 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 380 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 381 if (FirstFalseElement) { 382 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 383 Idx = Builder.CreateAdd(Idx, Offs); 384 } 385 386 Value *End = ConstantInt::get(Idx->getType(), 387 FalseRangeEnd-FirstFalseElement); 388 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 389 } 390 391 // If a magic bitvector captures the entire comparison state 392 // of this load, replace it with computation that does: 393 // ((magic_cst >> i) & 1) != 0 394 { 395 Type *Ty = nullptr; 396 397 // Look for an appropriate type: 398 // - The type of Idx if the magic fits 399 // - The smallest fitting legal type 400 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 401 Ty = Idx->getType(); 402 else 403 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 404 405 if (Ty) { 406 Value *V = Builder.CreateIntCast(Idx, Ty, false); 407 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 408 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 409 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 410 } 411 } 412 413 return nullptr; 414 } 415 416 /// Return a value that can be used to compare the *offset* implied by a GEP to 417 /// zero. For example, if we have &A[i], we want to return 'i' for 418 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 419 /// are involved. The above expression would also be legal to codegen as 420 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 421 /// This latter form is less amenable to optimization though, and we are allowed 422 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 423 /// 424 /// If we can't emit an optimized form for this expression, this returns null. 425 /// 426 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 427 const DataLayout &DL) { 428 gep_type_iterator GTI = gep_type_begin(GEP); 429 430 // Check to see if this gep only has a single variable index. If so, and if 431 // any constant indices are a multiple of its scale, then we can compute this 432 // in terms of the scale of the variable index. For example, if the GEP 433 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 434 // because the expression will cross zero at the same point. 435 unsigned i, e = GEP->getNumOperands(); 436 int64_t Offset = 0; 437 for (i = 1; i != e; ++i, ++GTI) { 438 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 439 // Compute the aggregate offset of constant indices. 440 if (CI->isZero()) continue; 441 442 // Handle a struct index, which adds its field offset to the pointer. 443 if (StructType *STy = GTI.getStructTypeOrNull()) { 444 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 445 } else { 446 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 447 Offset += Size*CI->getSExtValue(); 448 } 449 } else { 450 // Found our variable index. 451 break; 452 } 453 } 454 455 // If there are no variable indices, we must have a constant offset, just 456 // evaluate it the general way. 457 if (i == e) return nullptr; 458 459 Value *VariableIdx = GEP->getOperand(i); 460 // Determine the scale factor of the variable element. For example, this is 461 // 4 if the variable index is into an array of i32. 462 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 463 464 // Verify that there are no other variable indices. If so, emit the hard way. 465 for (++i, ++GTI; i != e; ++i, ++GTI) { 466 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 467 if (!CI) return nullptr; 468 469 // Compute the aggregate offset of constant indices. 470 if (CI->isZero()) continue; 471 472 // Handle a struct index, which adds its field offset to the pointer. 473 if (StructType *STy = GTI.getStructTypeOrNull()) { 474 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 475 } else { 476 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 477 Offset += Size*CI->getSExtValue(); 478 } 479 } 480 481 // Okay, we know we have a single variable index, which must be a 482 // pointer/array/vector index. If there is no offset, life is simple, return 483 // the index. 484 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 485 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 486 if (Offset == 0) { 487 // Cast to intptrty in case a truncation occurs. If an extension is needed, 488 // we don't need to bother extending: the extension won't affect where the 489 // computation crosses zero. 490 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 491 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 492 } 493 return VariableIdx; 494 } 495 496 // Otherwise, there is an index. The computation we will do will be modulo 497 // the pointer size. 498 Offset = SignExtend64(Offset, IntPtrWidth); 499 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 500 501 // To do this transformation, any constant index must be a multiple of the 502 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 503 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 504 // multiple of the variable scale. 505 int64_t NewOffs = Offset / (int64_t)VariableScale; 506 if (Offset != NewOffs*(int64_t)VariableScale) 507 return nullptr; 508 509 // Okay, we can do this evaluation. Start by converting the index to intptr. 510 if (VariableIdx->getType() != IntPtrTy) 511 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 512 true /*Signed*/); 513 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 514 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 515 } 516 517 /// Returns true if we can rewrite Start as a GEP with pointer Base 518 /// and some integer offset. The nodes that need to be re-written 519 /// for this transformation will be added to Explored. 520 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 521 const DataLayout &DL, 522 SetVector<Value *> &Explored) { 523 SmallVector<Value *, 16> WorkList(1, Start); 524 Explored.insert(Base); 525 526 // The following traversal gives us an order which can be used 527 // when doing the final transformation. Since in the final 528 // transformation we create the PHI replacement instructions first, 529 // we don't have to get them in any particular order. 530 // 531 // However, for other instructions we will have to traverse the 532 // operands of an instruction first, which means that we have to 533 // do a post-order traversal. 534 while (!WorkList.empty()) { 535 SetVector<PHINode *> PHIs; 536 537 while (!WorkList.empty()) { 538 if (Explored.size() >= 100) 539 return false; 540 541 Value *V = WorkList.back(); 542 543 if (Explored.count(V) != 0) { 544 WorkList.pop_back(); 545 continue; 546 } 547 548 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 549 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 550 // We've found some value that we can't explore which is different from 551 // the base. Therefore we can't do this transformation. 552 return false; 553 554 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 555 auto *CI = dyn_cast<CastInst>(V); 556 if (!CI->isNoopCast(DL)) 557 return false; 558 559 if (Explored.count(CI->getOperand(0)) == 0) 560 WorkList.push_back(CI->getOperand(0)); 561 } 562 563 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 564 // We're limiting the GEP to having one index. This will preserve 565 // the original pointer type. We could handle more cases in the 566 // future. 567 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 568 GEP->getType() != Start->getType()) 569 return false; 570 571 if (Explored.count(GEP->getOperand(0)) == 0) 572 WorkList.push_back(GEP->getOperand(0)); 573 } 574 575 if (WorkList.back() == V) { 576 WorkList.pop_back(); 577 // We've finished visiting this node, mark it as such. 578 Explored.insert(V); 579 } 580 581 if (auto *PN = dyn_cast<PHINode>(V)) { 582 // We cannot transform PHIs on unsplittable basic blocks. 583 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 584 return false; 585 Explored.insert(PN); 586 PHIs.insert(PN); 587 } 588 } 589 590 // Explore the PHI nodes further. 591 for (auto *PN : PHIs) 592 for (Value *Op : PN->incoming_values()) 593 if (Explored.count(Op) == 0) 594 WorkList.push_back(Op); 595 } 596 597 // Make sure that we can do this. Since we can't insert GEPs in a basic 598 // block before a PHI node, we can't easily do this transformation if 599 // we have PHI node users of transformed instructions. 600 for (Value *Val : Explored) { 601 for (Value *Use : Val->uses()) { 602 603 auto *PHI = dyn_cast<PHINode>(Use); 604 auto *Inst = dyn_cast<Instruction>(Val); 605 606 if (Inst == Base || Inst == PHI || !Inst || !PHI || 607 Explored.count(PHI) == 0) 608 continue; 609 610 if (PHI->getParent() == Inst->getParent()) 611 return false; 612 } 613 } 614 return true; 615 } 616 617 // Sets the appropriate insert point on Builder where we can add 618 // a replacement Instruction for V (if that is possible). 619 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 620 bool Before = true) { 621 if (auto *PHI = dyn_cast<PHINode>(V)) { 622 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 623 return; 624 } 625 if (auto *I = dyn_cast<Instruction>(V)) { 626 if (!Before) 627 I = &*std::next(I->getIterator()); 628 Builder.SetInsertPoint(I); 629 return; 630 } 631 if (auto *A = dyn_cast<Argument>(V)) { 632 // Set the insertion point in the entry block. 633 BasicBlock &Entry = A->getParent()->getEntryBlock(); 634 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 635 return; 636 } 637 // Otherwise, this is a constant and we don't need to set a new 638 // insertion point. 639 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 640 } 641 642 /// Returns a re-written value of Start as an indexed GEP using Base as a 643 /// pointer. 644 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 645 const DataLayout &DL, 646 SetVector<Value *> &Explored) { 647 // Perform all the substitutions. This is a bit tricky because we can 648 // have cycles in our use-def chains. 649 // 1. Create the PHI nodes without any incoming values. 650 // 2. Create all the other values. 651 // 3. Add the edges for the PHI nodes. 652 // 4. Emit GEPs to get the original pointers. 653 // 5. Remove the original instructions. 654 Type *IndexType = IntegerType::get( 655 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 656 657 DenseMap<Value *, Value *> NewInsts; 658 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 659 660 // Create the new PHI nodes, without adding any incoming values. 661 for (Value *Val : Explored) { 662 if (Val == Base) 663 continue; 664 // Create empty phi nodes. This avoids cyclic dependencies when creating 665 // the remaining instructions. 666 if (auto *PHI = dyn_cast<PHINode>(Val)) 667 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 668 PHI->getName() + ".idx", PHI); 669 } 670 IRBuilder<> Builder(Base->getContext()); 671 672 // Create all the other instructions. 673 for (Value *Val : Explored) { 674 675 if (NewInsts.find(Val) != NewInsts.end()) 676 continue; 677 678 if (auto *CI = dyn_cast<CastInst>(Val)) { 679 // Don't get rid of the intermediate variable here; the store can grow 680 // the map which will invalidate the reference to the input value. 681 Value *V = NewInsts[CI->getOperand(0)]; 682 NewInsts[CI] = V; 683 continue; 684 } 685 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 686 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 687 : GEP->getOperand(1); 688 setInsertionPoint(Builder, GEP); 689 // Indices might need to be sign extended. GEPs will magically do 690 // this, but we need to do it ourselves here. 691 if (Index->getType()->getScalarSizeInBits() != 692 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 693 Index = Builder.CreateSExtOrTrunc( 694 Index, NewInsts[GEP->getOperand(0)]->getType(), 695 GEP->getOperand(0)->getName() + ".sext"); 696 } 697 698 auto *Op = NewInsts[GEP->getOperand(0)]; 699 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 700 NewInsts[GEP] = Index; 701 else 702 NewInsts[GEP] = Builder.CreateNSWAdd( 703 Op, Index, GEP->getOperand(0)->getName() + ".add"); 704 continue; 705 } 706 if (isa<PHINode>(Val)) 707 continue; 708 709 llvm_unreachable("Unexpected instruction type"); 710 } 711 712 // Add the incoming values to the PHI nodes. 713 for (Value *Val : Explored) { 714 if (Val == Base) 715 continue; 716 // All the instructions have been created, we can now add edges to the 717 // phi nodes. 718 if (auto *PHI = dyn_cast<PHINode>(Val)) { 719 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 720 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 721 Value *NewIncoming = PHI->getIncomingValue(I); 722 723 if (NewInsts.find(NewIncoming) != NewInsts.end()) 724 NewIncoming = NewInsts[NewIncoming]; 725 726 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 727 } 728 } 729 } 730 731 for (Value *Val : Explored) { 732 if (Val == Base) 733 continue; 734 735 // Depending on the type, for external users we have to emit 736 // a GEP or a GEP + ptrtoint. 737 setInsertionPoint(Builder, Val, false); 738 739 // If required, create an inttoptr instruction for Base. 740 Value *NewBase = Base; 741 if (!Base->getType()->isPointerTy()) 742 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 743 Start->getName() + "to.ptr"); 744 745 Value *GEP = Builder.CreateInBoundsGEP( 746 Start->getType()->getPointerElementType(), NewBase, 747 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 748 749 if (!Val->getType()->isPointerTy()) { 750 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 751 Val->getName() + ".conv"); 752 GEP = Cast; 753 } 754 Val->replaceAllUsesWith(GEP); 755 } 756 757 return NewInsts[Start]; 758 } 759 760 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 761 /// the input Value as a constant indexed GEP. Returns a pair containing 762 /// the GEPs Pointer and Index. 763 static std::pair<Value *, Value *> 764 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 765 Type *IndexType = IntegerType::get(V->getContext(), 766 DL.getIndexTypeSizeInBits(V->getType())); 767 768 Constant *Index = ConstantInt::getNullValue(IndexType); 769 while (true) { 770 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 771 // We accept only inbouds GEPs here to exclude the possibility of 772 // overflow. 773 if (!GEP->isInBounds()) 774 break; 775 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 776 GEP->getType() == V->getType()) { 777 V = GEP->getOperand(0); 778 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 779 Index = ConstantExpr::getAdd( 780 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 781 continue; 782 } 783 break; 784 } 785 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 786 if (!CI->isNoopCast(DL)) 787 break; 788 V = CI->getOperand(0); 789 continue; 790 } 791 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 792 if (!CI->isNoopCast(DL)) 793 break; 794 V = CI->getOperand(0); 795 continue; 796 } 797 break; 798 } 799 return {V, Index}; 800 } 801 802 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 803 /// We can look through PHIs, GEPs and casts in order to determine a common base 804 /// between GEPLHS and RHS. 805 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 806 ICmpInst::Predicate Cond, 807 const DataLayout &DL) { 808 // FIXME: Support vector of pointers. 809 if (GEPLHS->getType()->isVectorTy()) 810 return nullptr; 811 812 if (!GEPLHS->hasAllConstantIndices()) 813 return nullptr; 814 815 // Make sure the pointers have the same type. 816 if (GEPLHS->getType() != RHS->getType()) 817 return nullptr; 818 819 Value *PtrBase, *Index; 820 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 821 822 // The set of nodes that will take part in this transformation. 823 SetVector<Value *> Nodes; 824 825 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 826 return nullptr; 827 828 // We know we can re-write this as 829 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 830 // Since we've only looked through inbouds GEPs we know that we 831 // can't have overflow on either side. We can therefore re-write 832 // this as: 833 // OFFSET1 cmp OFFSET2 834 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 835 836 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 837 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 838 // offset. Since Index is the offset of LHS to the base pointer, we will now 839 // compare the offsets instead of comparing the pointers. 840 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 841 } 842 843 /// Fold comparisons between a GEP instruction and something else. At this point 844 /// we know that the GEP is on the LHS of the comparison. 845 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 846 ICmpInst::Predicate Cond, 847 Instruction &I) { 848 // Don't transform signed compares of GEPs into index compares. Even if the 849 // GEP is inbounds, the final add of the base pointer can have signed overflow 850 // and would change the result of the icmp. 851 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 852 // the maximum signed value for the pointer type. 853 if (ICmpInst::isSigned(Cond)) 854 return nullptr; 855 856 // Look through bitcasts and addrspacecasts. We do not however want to remove 857 // 0 GEPs. 858 if (!isa<GetElementPtrInst>(RHS)) 859 RHS = RHS->stripPointerCasts(); 860 861 Value *PtrBase = GEPLHS->getOperand(0); 862 // FIXME: Support vector pointer GEPs. 863 if (PtrBase == RHS && GEPLHS->isInBounds() && 864 !GEPLHS->getType()->isVectorTy()) { 865 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 866 // This transformation (ignoring the base and scales) is valid because we 867 // know pointers can't overflow since the gep is inbounds. See if we can 868 // output an optimized form. 869 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 870 871 // If not, synthesize the offset the hard way. 872 if (!Offset) 873 Offset = EmitGEPOffset(GEPLHS); 874 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 875 Constant::getNullValue(Offset->getType())); 876 } 877 878 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 879 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 880 !NullPointerIsDefined(I.getFunction(), 881 RHS->getType()->getPointerAddressSpace())) { 882 // For most address spaces, an allocation can't be placed at null, but null 883 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 884 // the only valid inbounds address derived from null, is null itself. 885 // Thus, we have four cases to consider: 886 // 1) Base == nullptr, Offset == 0 -> inbounds, null 887 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 888 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 889 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 890 // 891 // (Note if we're indexing a type of size 0, that simply collapses into one 892 // of the buckets above.) 893 // 894 // In general, we're allowed to make values less poison (i.e. remove 895 // sources of full UB), so in this case, we just select between the two 896 // non-poison cases (1 and 4 above). 897 // 898 // For vectors, we apply the same reasoning on a per-lane basis. 899 auto *Base = GEPLHS->getPointerOperand(); 900 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 901 int NumElts = cast<VectorType>(GEPLHS->getType())->getNumElements(); 902 Base = Builder.CreateVectorSplat(NumElts, Base); 903 } 904 return new ICmpInst(Cond, Base, 905 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 906 cast<Constant>(RHS), Base->getType())); 907 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 908 // If the base pointers are different, but the indices are the same, just 909 // compare the base pointer. 910 if (PtrBase != GEPRHS->getOperand(0)) { 911 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 912 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 913 GEPRHS->getOperand(0)->getType(); 914 if (IndicesTheSame) 915 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 916 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 917 IndicesTheSame = false; 918 break; 919 } 920 921 // If all indices are the same, just compare the base pointers. 922 Type *BaseType = GEPLHS->getOperand(0)->getType(); 923 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 924 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 925 926 // If we're comparing GEPs with two base pointers that only differ in type 927 // and both GEPs have only constant indices or just one use, then fold 928 // the compare with the adjusted indices. 929 // FIXME: Support vector of pointers. 930 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 931 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 932 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 933 PtrBase->stripPointerCasts() == 934 GEPRHS->getOperand(0)->stripPointerCasts() && 935 !GEPLHS->getType()->isVectorTy()) { 936 Value *LOffset = EmitGEPOffset(GEPLHS); 937 Value *ROffset = EmitGEPOffset(GEPRHS); 938 939 // If we looked through an addrspacecast between different sized address 940 // spaces, the LHS and RHS pointers are different sized 941 // integers. Truncate to the smaller one. 942 Type *LHSIndexTy = LOffset->getType(); 943 Type *RHSIndexTy = ROffset->getType(); 944 if (LHSIndexTy != RHSIndexTy) { 945 if (LHSIndexTy->getPrimitiveSizeInBits() < 946 RHSIndexTy->getPrimitiveSizeInBits()) { 947 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 948 } else 949 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 950 } 951 952 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 953 LOffset, ROffset); 954 return replaceInstUsesWith(I, Cmp); 955 } 956 957 // Otherwise, the base pointers are different and the indices are 958 // different. Try convert this to an indexed compare by looking through 959 // PHIs/casts. 960 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 961 } 962 963 // If one of the GEPs has all zero indices, recurse. 964 // FIXME: Handle vector of pointers. 965 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 966 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 967 ICmpInst::getSwappedPredicate(Cond), I); 968 969 // If the other GEP has all zero indices, recurse. 970 // FIXME: Handle vector of pointers. 971 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 972 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 973 974 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 975 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 976 // If the GEPs only differ by one index, compare it. 977 unsigned NumDifferences = 0; // Keep track of # differences. 978 unsigned DiffOperand = 0; // The operand that differs. 979 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 980 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 981 Type *LHSType = GEPLHS->getOperand(i)->getType(); 982 Type *RHSType = GEPRHS->getOperand(i)->getType(); 983 // FIXME: Better support for vector of pointers. 984 if (LHSType->getPrimitiveSizeInBits() != 985 RHSType->getPrimitiveSizeInBits() || 986 (GEPLHS->getType()->isVectorTy() && 987 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 988 // Irreconcilable differences. 989 NumDifferences = 2; 990 break; 991 } 992 993 if (NumDifferences++) break; 994 DiffOperand = i; 995 } 996 997 if (NumDifferences == 0) // SAME GEP? 998 return replaceInstUsesWith(I, // No comparison is needed here. 999 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 1000 1001 else if (NumDifferences == 1 && GEPsInBounds) { 1002 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1003 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1004 // Make sure we do a signed comparison here. 1005 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1006 } 1007 } 1008 1009 // Only lower this if the icmp is the only user of the GEP or if we expect 1010 // the result to fold to a constant! 1011 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1012 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1013 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1014 Value *L = EmitGEPOffset(GEPLHS); 1015 Value *R = EmitGEPOffset(GEPRHS); 1016 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1017 } 1018 } 1019 1020 // Try convert this to an indexed compare by looking through PHIs/casts as a 1021 // last resort. 1022 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1023 } 1024 1025 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1026 const AllocaInst *Alloca, 1027 const Value *Other) { 1028 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1029 1030 // It would be tempting to fold away comparisons between allocas and any 1031 // pointer not based on that alloca (e.g. an argument). However, even 1032 // though such pointers cannot alias, they can still compare equal. 1033 // 1034 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1035 // doesn't escape we can argue that it's impossible to guess its value, and we 1036 // can therefore act as if any such guesses are wrong. 1037 // 1038 // The code below checks that the alloca doesn't escape, and that it's only 1039 // used in a comparison once (the current instruction). The 1040 // single-comparison-use condition ensures that we're trivially folding all 1041 // comparisons against the alloca consistently, and avoids the risk of 1042 // erroneously folding a comparison of the pointer with itself. 1043 1044 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1045 1046 SmallVector<const Use *, 32> Worklist; 1047 for (const Use &U : Alloca->uses()) { 1048 if (Worklist.size() >= MaxIter) 1049 return nullptr; 1050 Worklist.push_back(&U); 1051 } 1052 1053 unsigned NumCmps = 0; 1054 while (!Worklist.empty()) { 1055 assert(Worklist.size() <= MaxIter); 1056 const Use *U = Worklist.pop_back_val(); 1057 const Value *V = U->getUser(); 1058 --MaxIter; 1059 1060 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1061 isa<SelectInst>(V)) { 1062 // Track the uses. 1063 } else if (isa<LoadInst>(V)) { 1064 // Loading from the pointer doesn't escape it. 1065 continue; 1066 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1067 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1068 if (SI->getValueOperand() == U->get()) 1069 return nullptr; 1070 continue; 1071 } else if (isa<ICmpInst>(V)) { 1072 if (NumCmps++) 1073 return nullptr; // Found more than one cmp. 1074 continue; 1075 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1076 switch (Intrin->getIntrinsicID()) { 1077 // These intrinsics don't escape or compare the pointer. Memset is safe 1078 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1079 // we don't allow stores, so src cannot point to V. 1080 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1081 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1082 continue; 1083 default: 1084 return nullptr; 1085 } 1086 } else { 1087 return nullptr; 1088 } 1089 for (const Use &U : V->uses()) { 1090 if (Worklist.size() >= MaxIter) 1091 return nullptr; 1092 Worklist.push_back(&U); 1093 } 1094 } 1095 1096 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1097 return replaceInstUsesWith( 1098 ICI, 1099 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1100 } 1101 1102 /// Fold "icmp pred (X+C), X". 1103 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1104 ICmpInst::Predicate Pred) { 1105 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1106 // so the values can never be equal. Similarly for all other "or equals" 1107 // operators. 1108 assert(!!C && "C should not be zero!"); 1109 1110 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1111 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1112 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1113 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1114 Constant *R = ConstantInt::get(X->getType(), 1115 APInt::getMaxValue(C.getBitWidth()) - C); 1116 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1117 } 1118 1119 // (X+1) >u X --> X <u (0-1) --> X != 255 1120 // (X+2) >u X --> X <u (0-2) --> X <u 254 1121 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1122 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1123 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1124 ConstantInt::get(X->getType(), -C)); 1125 1126 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1127 1128 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1129 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1130 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1131 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1132 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1133 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1134 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1135 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1136 ConstantInt::get(X->getType(), SMax - C)); 1137 1138 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1139 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1140 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1141 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1142 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1143 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1144 1145 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1146 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1147 ConstantInt::get(X->getType(), SMax - (C - 1))); 1148 } 1149 1150 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1151 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1152 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1153 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1154 const APInt &AP1, 1155 const APInt &AP2) { 1156 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1157 1158 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1159 if (I.getPredicate() == I.ICMP_NE) 1160 Pred = CmpInst::getInversePredicate(Pred); 1161 return new ICmpInst(Pred, LHS, RHS); 1162 }; 1163 1164 // Don't bother doing any work for cases which InstSimplify handles. 1165 if (AP2.isNullValue()) 1166 return nullptr; 1167 1168 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1169 if (IsAShr) { 1170 if (AP2.isAllOnesValue()) 1171 return nullptr; 1172 if (AP2.isNegative() != AP1.isNegative()) 1173 return nullptr; 1174 if (AP2.sgt(AP1)) 1175 return nullptr; 1176 } 1177 1178 if (!AP1) 1179 // 'A' must be large enough to shift out the highest set bit. 1180 return getICmp(I.ICMP_UGT, A, 1181 ConstantInt::get(A->getType(), AP2.logBase2())); 1182 1183 if (AP1 == AP2) 1184 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1185 1186 int Shift; 1187 if (IsAShr && AP1.isNegative()) 1188 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1189 else 1190 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1191 1192 if (Shift > 0) { 1193 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1194 // There are multiple solutions if we are comparing against -1 and the LHS 1195 // of the ashr is not a power of two. 1196 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1197 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1198 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1199 } else if (AP1 == AP2.lshr(Shift)) { 1200 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1201 } 1202 } 1203 1204 // Shifting const2 will never be equal to const1. 1205 // FIXME: This should always be handled by InstSimplify? 1206 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1207 return replaceInstUsesWith(I, TorF); 1208 } 1209 1210 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1211 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1212 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1213 const APInt &AP1, 1214 const APInt &AP2) { 1215 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1216 1217 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1218 if (I.getPredicate() == I.ICMP_NE) 1219 Pred = CmpInst::getInversePredicate(Pred); 1220 return new ICmpInst(Pred, LHS, RHS); 1221 }; 1222 1223 // Don't bother doing any work for cases which InstSimplify handles. 1224 if (AP2.isNullValue()) 1225 return nullptr; 1226 1227 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1228 1229 if (!AP1 && AP2TrailingZeros != 0) 1230 return getICmp( 1231 I.ICMP_UGE, A, 1232 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1233 1234 if (AP1 == AP2) 1235 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1236 1237 // Get the distance between the lowest bits that are set. 1238 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1239 1240 if (Shift > 0 && AP2.shl(Shift) == AP1) 1241 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1242 1243 // Shifting const2 will never be equal to const1. 1244 // FIXME: This should always be handled by InstSimplify? 1245 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1246 return replaceInstUsesWith(I, TorF); 1247 } 1248 1249 /// The caller has matched a pattern of the form: 1250 /// I = icmp ugt (add (add A, B), CI2), CI1 1251 /// If this is of the form: 1252 /// sum = a + b 1253 /// if (sum+128 >u 255) 1254 /// Then replace it with llvm.sadd.with.overflow.i8. 1255 /// 1256 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1257 ConstantInt *CI2, ConstantInt *CI1, 1258 InstCombinerImpl &IC) { 1259 // The transformation we're trying to do here is to transform this into an 1260 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1261 // with a narrower add, and discard the add-with-constant that is part of the 1262 // range check (if we can't eliminate it, this isn't profitable). 1263 1264 // In order to eliminate the add-with-constant, the compare can be its only 1265 // use. 1266 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1267 if (!AddWithCst->hasOneUse()) 1268 return nullptr; 1269 1270 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1271 if (!CI2->getValue().isPowerOf2()) 1272 return nullptr; 1273 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1274 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1275 return nullptr; 1276 1277 // The width of the new add formed is 1 more than the bias. 1278 ++NewWidth; 1279 1280 // Check to see that CI1 is an all-ones value with NewWidth bits. 1281 if (CI1->getBitWidth() == NewWidth || 1282 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1283 return nullptr; 1284 1285 // This is only really a signed overflow check if the inputs have been 1286 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1287 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1288 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1289 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1290 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1291 return nullptr; 1292 1293 // In order to replace the original add with a narrower 1294 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1295 // and truncates that discard the high bits of the add. Verify that this is 1296 // the case. 1297 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1298 for (User *U : OrigAdd->users()) { 1299 if (U == AddWithCst) 1300 continue; 1301 1302 // Only accept truncates for now. We would really like a nice recursive 1303 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1304 // chain to see which bits of a value are actually demanded. If the 1305 // original add had another add which was then immediately truncated, we 1306 // could still do the transformation. 1307 TruncInst *TI = dyn_cast<TruncInst>(U); 1308 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1309 return nullptr; 1310 } 1311 1312 // If the pattern matches, truncate the inputs to the narrower type and 1313 // use the sadd_with_overflow intrinsic to efficiently compute both the 1314 // result and the overflow bit. 1315 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1316 Function *F = Intrinsic::getDeclaration( 1317 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1318 1319 InstCombiner::BuilderTy &Builder = IC.Builder; 1320 1321 // Put the new code above the original add, in case there are any uses of the 1322 // add between the add and the compare. 1323 Builder.SetInsertPoint(OrigAdd); 1324 1325 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1326 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1327 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1328 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1329 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1330 1331 // The inner add was the result of the narrow add, zero extended to the 1332 // wider type. Replace it with the result computed by the intrinsic. 1333 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1334 IC.eraseInstFromFunction(*OrigAdd); 1335 1336 // The original icmp gets replaced with the overflow value. 1337 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1338 } 1339 1340 /// If we have: 1341 /// icmp eq/ne (urem/srem %x, %y), 0 1342 /// iff %y is a power-of-two, we can replace this with a bit test: 1343 /// icmp eq/ne (and %x, (add %y, -1)), 0 1344 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1345 // This fold is only valid for equality predicates. 1346 if (!I.isEquality()) 1347 return nullptr; 1348 ICmpInst::Predicate Pred; 1349 Value *X, *Y, *Zero; 1350 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1351 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1352 return nullptr; 1353 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1354 return nullptr; 1355 // This may increase instruction count, we don't enforce that Y is a constant. 1356 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1357 Value *Masked = Builder.CreateAnd(X, Mask); 1358 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1359 } 1360 1361 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1362 /// by one-less-than-bitwidth into a sign test on the original value. 1363 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1364 Instruction *Val; 1365 ICmpInst::Predicate Pred; 1366 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1367 return nullptr; 1368 1369 Value *X; 1370 Type *XTy; 1371 1372 Constant *C; 1373 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1374 XTy = X->getType(); 1375 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1376 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1377 APInt(XBitWidth, XBitWidth - 1)))) 1378 return nullptr; 1379 } else if (isa<BinaryOperator>(Val) && 1380 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1381 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1382 /*AnalyzeForSignBitExtraction=*/true))) { 1383 XTy = X->getType(); 1384 } else 1385 return nullptr; 1386 1387 return ICmpInst::Create(Instruction::ICmp, 1388 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1389 : ICmpInst::ICMP_SLT, 1390 X, ConstantInt::getNullValue(XTy)); 1391 } 1392 1393 // Handle icmp pred X, 0 1394 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1395 CmpInst::Predicate Pred = Cmp.getPredicate(); 1396 if (!match(Cmp.getOperand(1), m_Zero())) 1397 return nullptr; 1398 1399 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1400 if (Pred == ICmpInst::ICMP_SGT) { 1401 Value *A, *B; 1402 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1403 if (SPR.Flavor == SPF_SMIN) { 1404 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1405 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1406 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1407 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1408 } 1409 } 1410 1411 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1412 return New; 1413 1414 // Given: 1415 // icmp eq/ne (urem %x, %y), 0 1416 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1417 // icmp eq/ne %x, 0 1418 Value *X, *Y; 1419 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1420 ICmpInst::isEquality(Pred)) { 1421 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1422 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1423 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1424 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1425 } 1426 1427 return nullptr; 1428 } 1429 1430 /// Fold icmp Pred X, C. 1431 /// TODO: This code structure does not make sense. The saturating add fold 1432 /// should be moved to some other helper and extended as noted below (it is also 1433 /// possible that code has been made unnecessary - do we canonicalize IR to 1434 /// overflow/saturating intrinsics or not?). 1435 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1436 // Match the following pattern, which is a common idiom when writing 1437 // overflow-safe integer arithmetic functions. The source performs an addition 1438 // in wider type and explicitly checks for overflow using comparisons against 1439 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1440 // 1441 // TODO: This could probably be generalized to handle other overflow-safe 1442 // operations if we worked out the formulas to compute the appropriate magic 1443 // constants. 1444 // 1445 // sum = a + b 1446 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1447 CmpInst::Predicate Pred = Cmp.getPredicate(); 1448 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1449 Value *A, *B; 1450 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1451 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1452 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1453 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1454 return Res; 1455 1456 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1457 Constant *C = dyn_cast<Constant>(Op1); 1458 if (!C) 1459 return nullptr; 1460 1461 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1462 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1463 Type *Ty = Cmp.getType(); 1464 Builder.SetInsertPoint(Phi); 1465 PHINode *NewPhi = 1466 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1467 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1468 auto *Input = 1469 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1470 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1471 NewPhi->addIncoming(BoolInput, Predecessor); 1472 } 1473 NewPhi->takeName(&Cmp); 1474 return replaceInstUsesWith(Cmp, NewPhi); 1475 } 1476 1477 return nullptr; 1478 } 1479 1480 /// Canonicalize icmp instructions based on dominating conditions. 1481 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1482 // This is a cheap/incomplete check for dominance - just match a single 1483 // predecessor with a conditional branch. 1484 BasicBlock *CmpBB = Cmp.getParent(); 1485 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1486 if (!DomBB) 1487 return nullptr; 1488 1489 Value *DomCond; 1490 BasicBlock *TrueBB, *FalseBB; 1491 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1492 return nullptr; 1493 1494 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1495 "Predecessor block does not point to successor?"); 1496 1497 // The branch should get simplified. Don't bother simplifying this condition. 1498 if (TrueBB == FalseBB) 1499 return nullptr; 1500 1501 // Try to simplify this compare to T/F based on the dominating condition. 1502 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1503 if (Imp) 1504 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1505 1506 CmpInst::Predicate Pred = Cmp.getPredicate(); 1507 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1508 ICmpInst::Predicate DomPred; 1509 const APInt *C, *DomC; 1510 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1511 match(Y, m_APInt(C))) { 1512 // We have 2 compares of a variable with constants. Calculate the constant 1513 // ranges of those compares to see if we can transform the 2nd compare: 1514 // DomBB: 1515 // DomCond = icmp DomPred X, DomC 1516 // br DomCond, CmpBB, FalseBB 1517 // CmpBB: 1518 // Cmp = icmp Pred X, C 1519 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1520 ConstantRange DominatingCR = 1521 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1522 : ConstantRange::makeExactICmpRegion( 1523 CmpInst::getInversePredicate(DomPred), *DomC); 1524 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1525 ConstantRange Difference = DominatingCR.difference(CR); 1526 if (Intersection.isEmptySet()) 1527 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1528 if (Difference.isEmptySet()) 1529 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1530 1531 // Canonicalizing a sign bit comparison that gets used in a branch, 1532 // pessimizes codegen by generating branch on zero instruction instead 1533 // of a test and branch. So we avoid canonicalizing in such situations 1534 // because test and branch instruction has better branch displacement 1535 // than compare and branch instruction. 1536 bool UnusedBit; 1537 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1538 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1539 return nullptr; 1540 1541 if (const APInt *EqC = Intersection.getSingleElement()) 1542 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1543 if (const APInt *NeC = Difference.getSingleElement()) 1544 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1545 } 1546 1547 return nullptr; 1548 } 1549 1550 /// Fold icmp (trunc X, Y), C. 1551 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1552 TruncInst *Trunc, 1553 const APInt &C) { 1554 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1555 Value *X = Trunc->getOperand(0); 1556 if (C.isOneValue() && C.getBitWidth() > 1) { 1557 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1558 Value *V = nullptr; 1559 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1560 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1561 ConstantInt::get(V->getType(), 1)); 1562 } 1563 1564 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1565 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1566 // of the high bits truncated out of x are known. 1567 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1568 SrcBits = X->getType()->getScalarSizeInBits(); 1569 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1570 1571 // If all the high bits are known, we can do this xform. 1572 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1573 // Pull in the high bits from known-ones set. 1574 APInt NewRHS = C.zext(SrcBits); 1575 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1576 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1577 } 1578 } 1579 1580 return nullptr; 1581 } 1582 1583 /// Fold icmp (xor X, Y), C. 1584 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1585 BinaryOperator *Xor, 1586 const APInt &C) { 1587 Value *X = Xor->getOperand(0); 1588 Value *Y = Xor->getOperand(1); 1589 const APInt *XorC; 1590 if (!match(Y, m_APInt(XorC))) 1591 return nullptr; 1592 1593 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1594 // fold the xor. 1595 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1596 bool TrueIfSigned = false; 1597 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1598 1599 // If the sign bit of the XorCst is not set, there is no change to 1600 // the operation, just stop using the Xor. 1601 if (!XorC->isNegative()) 1602 return replaceOperand(Cmp, 0, X); 1603 1604 // Emit the opposite comparison. 1605 if (TrueIfSigned) 1606 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1607 ConstantInt::getAllOnesValue(X->getType())); 1608 else 1609 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1610 ConstantInt::getNullValue(X->getType())); 1611 } 1612 1613 if (Xor->hasOneUse()) { 1614 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1615 if (!Cmp.isEquality() && XorC->isSignMask()) { 1616 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1617 : Cmp.getSignedPredicate(); 1618 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1619 } 1620 1621 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1622 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1623 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1624 : Cmp.getSignedPredicate(); 1625 Pred = Cmp.getSwappedPredicate(Pred); 1626 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1627 } 1628 } 1629 1630 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1631 if (Pred == ICmpInst::ICMP_UGT) { 1632 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1633 if (*XorC == ~C && (C + 1).isPowerOf2()) 1634 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1635 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1636 if (*XorC == C && (C + 1).isPowerOf2()) 1637 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1638 } 1639 if (Pred == ICmpInst::ICMP_ULT) { 1640 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1641 if (*XorC == -C && C.isPowerOf2()) 1642 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1643 ConstantInt::get(X->getType(), ~C)); 1644 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1645 if (*XorC == C && (-C).isPowerOf2()) 1646 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1647 ConstantInt::get(X->getType(), ~C)); 1648 } 1649 return nullptr; 1650 } 1651 1652 /// Fold icmp (and (sh X, Y), C2), C1. 1653 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1654 BinaryOperator *And, 1655 const APInt &C1, 1656 const APInt &C2) { 1657 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1658 if (!Shift || !Shift->isShift()) 1659 return nullptr; 1660 1661 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1662 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1663 // code produced by the clang front-end, for bitfield access. 1664 // This seemingly simple opportunity to fold away a shift turns out to be 1665 // rather complicated. See PR17827 for details. 1666 unsigned ShiftOpcode = Shift->getOpcode(); 1667 bool IsShl = ShiftOpcode == Instruction::Shl; 1668 const APInt *C3; 1669 if (match(Shift->getOperand(1), m_APInt(C3))) { 1670 APInt NewAndCst, NewCmpCst; 1671 bool AnyCmpCstBitsShiftedOut; 1672 if (ShiftOpcode == Instruction::Shl) { 1673 // For a left shift, we can fold if the comparison is not signed. We can 1674 // also fold a signed comparison if the mask value and comparison value 1675 // are not negative. These constraints may not be obvious, but we can 1676 // prove that they are correct using an SMT solver. 1677 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1678 return nullptr; 1679 1680 NewCmpCst = C1.lshr(*C3); 1681 NewAndCst = C2.lshr(*C3); 1682 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1683 } else if (ShiftOpcode == Instruction::LShr) { 1684 // For a logical right shift, we can fold if the comparison is not signed. 1685 // We can also fold a signed comparison if the shifted mask value and the 1686 // shifted comparison value are not negative. These constraints may not be 1687 // obvious, but we can prove that they are correct using an SMT solver. 1688 NewCmpCst = C1.shl(*C3); 1689 NewAndCst = C2.shl(*C3); 1690 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1691 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1692 return nullptr; 1693 } else { 1694 // For an arithmetic shift, check that both constants don't use (in a 1695 // signed sense) the top bits being shifted out. 1696 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1697 NewCmpCst = C1.shl(*C3); 1698 NewAndCst = C2.shl(*C3); 1699 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1700 if (NewAndCst.ashr(*C3) != C2) 1701 return nullptr; 1702 } 1703 1704 if (AnyCmpCstBitsShiftedOut) { 1705 // If we shifted bits out, the fold is not going to work out. As a 1706 // special case, check to see if this means that the result is always 1707 // true or false now. 1708 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1709 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1710 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1711 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1712 } else { 1713 Value *NewAnd = Builder.CreateAnd( 1714 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1715 return new ICmpInst(Cmp.getPredicate(), 1716 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1717 } 1718 } 1719 1720 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1721 // preferable because it allows the C2 << Y expression to be hoisted out of a 1722 // loop if Y is invariant and X is not. 1723 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1724 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1725 // Compute C2 << Y. 1726 Value *NewShift = 1727 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1728 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1729 1730 // Compute X & (C2 << Y). 1731 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1732 return replaceOperand(Cmp, 0, NewAnd); 1733 } 1734 1735 return nullptr; 1736 } 1737 1738 /// Fold icmp (and X, C2), C1. 1739 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1740 BinaryOperator *And, 1741 const APInt &C1) { 1742 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1743 1744 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1745 // TODO: We canonicalize to the longer form for scalars because we have 1746 // better analysis/folds for icmp, and codegen may be better with icmp. 1747 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1748 match(And->getOperand(1), m_One())) 1749 return new TruncInst(And->getOperand(0), Cmp.getType()); 1750 1751 const APInt *C2; 1752 Value *X; 1753 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1754 return nullptr; 1755 1756 // Don't perform the following transforms if the AND has multiple uses 1757 if (!And->hasOneUse()) 1758 return nullptr; 1759 1760 if (Cmp.isEquality() && C1.isNullValue()) { 1761 // Restrict this fold to single-use 'and' (PR10267). 1762 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1763 if (C2->isSignMask()) { 1764 Constant *Zero = Constant::getNullValue(X->getType()); 1765 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1766 return new ICmpInst(NewPred, X, Zero); 1767 } 1768 1769 // Restrict this fold only for single-use 'and' (PR10267). 1770 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1771 if ((~(*C2) + 1).isPowerOf2()) { 1772 Constant *NegBOC = 1773 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1774 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1775 return new ICmpInst(NewPred, X, NegBOC); 1776 } 1777 } 1778 1779 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1780 // the input width without changing the value produced, eliminate the cast: 1781 // 1782 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1783 // 1784 // We can do this transformation if the constants do not have their sign bits 1785 // set or if it is an equality comparison. Extending a relational comparison 1786 // when we're checking the sign bit would not work. 1787 Value *W; 1788 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1789 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1790 // TODO: Is this a good transform for vectors? Wider types may reduce 1791 // throughput. Should this transform be limited (even for scalars) by using 1792 // shouldChangeType()? 1793 if (!Cmp.getType()->isVectorTy()) { 1794 Type *WideType = W->getType(); 1795 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1796 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1797 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1798 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1799 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1800 } 1801 } 1802 1803 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1804 return I; 1805 1806 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1807 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1808 // 1809 // iff pred isn't signed 1810 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1811 match(And->getOperand(1), m_One())) { 1812 Constant *One = cast<Constant>(And->getOperand(1)); 1813 Value *Or = And->getOperand(0); 1814 Value *A, *B, *LShr; 1815 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1816 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1817 unsigned UsesRemoved = 0; 1818 if (And->hasOneUse()) 1819 ++UsesRemoved; 1820 if (Or->hasOneUse()) 1821 ++UsesRemoved; 1822 if (LShr->hasOneUse()) 1823 ++UsesRemoved; 1824 1825 // Compute A & ((1 << B) | 1) 1826 Value *NewOr = nullptr; 1827 if (auto *C = dyn_cast<Constant>(B)) { 1828 if (UsesRemoved >= 1) 1829 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1830 } else { 1831 if (UsesRemoved >= 3) 1832 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1833 /*HasNUW=*/true), 1834 One, Or->getName()); 1835 } 1836 if (NewOr) { 1837 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1838 return replaceOperand(Cmp, 0, NewAnd); 1839 } 1840 } 1841 } 1842 1843 return nullptr; 1844 } 1845 1846 /// Fold icmp (and X, Y), C. 1847 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1848 BinaryOperator *And, 1849 const APInt &C) { 1850 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1851 return I; 1852 1853 // TODO: These all require that Y is constant too, so refactor with the above. 1854 1855 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1856 Value *X = And->getOperand(0); 1857 Value *Y = And->getOperand(1); 1858 if (auto *LI = dyn_cast<LoadInst>(X)) 1859 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1860 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1861 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1862 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1863 ConstantInt *C2 = cast<ConstantInt>(Y); 1864 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1865 return Res; 1866 } 1867 1868 if (!Cmp.isEquality()) 1869 return nullptr; 1870 1871 // X & -C == -C -> X > u ~C 1872 // X & -C != -C -> X <= u ~C 1873 // iff C is a power of 2 1874 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1875 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1876 : CmpInst::ICMP_ULE; 1877 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1878 } 1879 1880 // (X & C2) == 0 -> (trunc X) >= 0 1881 // (X & C2) != 0 -> (trunc X) < 0 1882 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1883 const APInt *C2; 1884 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1885 int32_t ExactLogBase2 = C2->exactLogBase2(); 1886 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1887 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1888 if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) 1889 NTy = FixedVectorType::get(NTy, AndVTy->getNumElements()); 1890 Value *Trunc = Builder.CreateTrunc(X, NTy); 1891 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1892 : CmpInst::ICMP_SLT; 1893 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1894 } 1895 } 1896 1897 return nullptr; 1898 } 1899 1900 /// Fold icmp (or X, Y), C. 1901 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1902 BinaryOperator *Or, 1903 const APInt &C) { 1904 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1905 if (C.isOneValue()) { 1906 // icmp slt signum(V) 1 --> icmp slt V, 1 1907 Value *V = nullptr; 1908 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1909 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1910 ConstantInt::get(V->getType(), 1)); 1911 } 1912 1913 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1914 const APInt *MaskC; 1915 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1916 if (*MaskC == C && (C + 1).isPowerOf2()) { 1917 // X | C == C --> X <=u C 1918 // X | C != C --> X >u C 1919 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1920 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1921 return new ICmpInst(Pred, OrOp0, OrOp1); 1922 } 1923 1924 // More general: canonicalize 'equality with set bits mask' to 1925 // 'equality with clear bits mask'. 1926 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1927 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1928 if (Or->hasOneUse()) { 1929 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1930 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1931 return new ICmpInst(Pred, And, NewC); 1932 } 1933 } 1934 1935 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1936 return nullptr; 1937 1938 Value *P, *Q; 1939 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1940 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1941 // -> and (icmp eq P, null), (icmp eq Q, null). 1942 Value *CmpP = 1943 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1944 Value *CmpQ = 1945 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1946 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1947 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1948 } 1949 1950 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1951 // a shorter form that has more potential to be folded even further. 1952 Value *X1, *X2, *X3, *X4; 1953 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1954 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1955 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1956 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1957 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1958 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1959 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1960 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1961 } 1962 1963 return nullptr; 1964 } 1965 1966 /// Fold icmp (mul X, Y), C. 1967 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1968 BinaryOperator *Mul, 1969 const APInt &C) { 1970 const APInt *MulC; 1971 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1972 return nullptr; 1973 1974 // If this is a test of the sign bit and the multiply is sign-preserving with 1975 // a constant operand, use the multiply LHS operand instead. 1976 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1977 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1978 if (MulC->isNegative()) 1979 Pred = ICmpInst::getSwappedPredicate(Pred); 1980 return new ICmpInst(Pred, Mul->getOperand(0), 1981 Constant::getNullValue(Mul->getType())); 1982 } 1983 1984 // If the multiply does not wrap, try to divide the compare constant by the 1985 // multiplication factor. 1986 if (Cmp.isEquality() && !MulC->isNullValue()) { 1987 // (mul nsw X, MulC) == C --> X == C /s MulC 1988 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) { 1989 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1990 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1991 } 1992 // (mul nuw X, MulC) == C --> X == C /u MulC 1993 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) { 1994 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1995 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1996 } 1997 } 1998 1999 return nullptr; 2000 } 2001 2002 /// Fold icmp (shl 1, Y), C. 2003 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2004 const APInt &C) { 2005 Value *Y; 2006 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2007 return nullptr; 2008 2009 Type *ShiftType = Shl->getType(); 2010 unsigned TypeBits = C.getBitWidth(); 2011 bool CIsPowerOf2 = C.isPowerOf2(); 2012 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2013 if (Cmp.isUnsigned()) { 2014 // (1 << Y) pred C -> Y pred Log2(C) 2015 if (!CIsPowerOf2) { 2016 // (1 << Y) < 30 -> Y <= 4 2017 // (1 << Y) <= 30 -> Y <= 4 2018 // (1 << Y) >= 30 -> Y > 4 2019 // (1 << Y) > 30 -> Y > 4 2020 if (Pred == ICmpInst::ICMP_ULT) 2021 Pred = ICmpInst::ICMP_ULE; 2022 else if (Pred == ICmpInst::ICMP_UGE) 2023 Pred = ICmpInst::ICMP_UGT; 2024 } 2025 2026 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2027 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2028 unsigned CLog2 = C.logBase2(); 2029 if (CLog2 == TypeBits - 1) { 2030 if (Pred == ICmpInst::ICMP_UGE) 2031 Pred = ICmpInst::ICMP_EQ; 2032 else if (Pred == ICmpInst::ICMP_ULT) 2033 Pred = ICmpInst::ICMP_NE; 2034 } 2035 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2036 } else if (Cmp.isSigned()) { 2037 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2038 if (C.isAllOnesValue()) { 2039 // (1 << Y) <= -1 -> Y == 31 2040 if (Pred == ICmpInst::ICMP_SLE) 2041 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2042 2043 // (1 << Y) > -1 -> Y != 31 2044 if (Pred == ICmpInst::ICMP_SGT) 2045 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2046 } else if (!C) { 2047 // (1 << Y) < 0 -> Y == 31 2048 // (1 << Y) <= 0 -> Y == 31 2049 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2050 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2051 2052 // (1 << Y) >= 0 -> Y != 31 2053 // (1 << Y) > 0 -> Y != 31 2054 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2055 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2056 } 2057 } else if (Cmp.isEquality() && CIsPowerOf2) { 2058 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2059 } 2060 2061 return nullptr; 2062 } 2063 2064 /// Fold icmp (shl X, Y), C. 2065 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2066 BinaryOperator *Shl, 2067 const APInt &C) { 2068 const APInt *ShiftVal; 2069 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2070 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2071 2072 const APInt *ShiftAmt; 2073 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2074 return foldICmpShlOne(Cmp, Shl, C); 2075 2076 // Check that the shift amount is in range. If not, don't perform undefined 2077 // shifts. When the shift is visited, it will be simplified. 2078 unsigned TypeBits = C.getBitWidth(); 2079 if (ShiftAmt->uge(TypeBits)) 2080 return nullptr; 2081 2082 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2083 Value *X = Shl->getOperand(0); 2084 Type *ShType = Shl->getType(); 2085 2086 // NSW guarantees that we are only shifting out sign bits from the high bits, 2087 // so we can ASHR the compare constant without needing a mask and eliminate 2088 // the shift. 2089 if (Shl->hasNoSignedWrap()) { 2090 if (Pred == ICmpInst::ICMP_SGT) { 2091 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2092 APInt ShiftedC = C.ashr(*ShiftAmt); 2093 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2094 } 2095 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2096 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2097 APInt ShiftedC = C.ashr(*ShiftAmt); 2098 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2099 } 2100 if (Pred == ICmpInst::ICMP_SLT) { 2101 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2102 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2103 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2104 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2105 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2106 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2107 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2108 } 2109 // If this is a signed comparison to 0 and the shift is sign preserving, 2110 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2111 // do that if we're sure to not continue on in this function. 2112 if (isSignTest(Pred, C)) 2113 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2114 } 2115 2116 // NUW guarantees that we are only shifting out zero bits from the high bits, 2117 // so we can LSHR the compare constant without needing a mask and eliminate 2118 // the shift. 2119 if (Shl->hasNoUnsignedWrap()) { 2120 if (Pred == ICmpInst::ICMP_UGT) { 2121 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2122 APInt ShiftedC = C.lshr(*ShiftAmt); 2123 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2124 } 2125 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2126 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2127 APInt ShiftedC = C.lshr(*ShiftAmt); 2128 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2129 } 2130 if (Pred == ICmpInst::ICMP_ULT) { 2131 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2132 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2133 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2134 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2135 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2136 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2137 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2138 } 2139 } 2140 2141 if (Cmp.isEquality() && Shl->hasOneUse()) { 2142 // Strength-reduce the shift into an 'and'. 2143 Constant *Mask = ConstantInt::get( 2144 ShType, 2145 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2146 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2147 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2148 return new ICmpInst(Pred, And, LShrC); 2149 } 2150 2151 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2152 bool TrueIfSigned = false; 2153 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2154 // (X << 31) <s 0 --> (X & 1) != 0 2155 Constant *Mask = ConstantInt::get( 2156 ShType, 2157 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2158 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2159 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2160 And, Constant::getNullValue(ShType)); 2161 } 2162 2163 // Simplify 'shl' inequality test into 'and' equality test. 2164 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2165 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2166 if ((C + 1).isPowerOf2() && 2167 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2168 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2169 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2170 : ICmpInst::ICMP_NE, 2171 And, Constant::getNullValue(ShType)); 2172 } 2173 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2174 if (C.isPowerOf2() && 2175 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2176 Value *And = 2177 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2178 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2179 : ICmpInst::ICMP_NE, 2180 And, Constant::getNullValue(ShType)); 2181 } 2182 } 2183 2184 // Transform (icmp pred iM (shl iM %v, N), C) 2185 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2186 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2187 // This enables us to get rid of the shift in favor of a trunc that may be 2188 // free on the target. It has the additional benefit of comparing to a 2189 // smaller constant that may be more target-friendly. 2190 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2191 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2192 DL.isLegalInteger(TypeBits - Amt)) { 2193 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2194 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2195 TruncTy = FixedVectorType::get(TruncTy, ShVTy->getNumElements()); 2196 Constant *NewC = 2197 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2198 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2199 } 2200 2201 return nullptr; 2202 } 2203 2204 /// Fold icmp ({al}shr X, Y), C. 2205 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2206 BinaryOperator *Shr, 2207 const APInt &C) { 2208 // An exact shr only shifts out zero bits, so: 2209 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2210 Value *X = Shr->getOperand(0); 2211 CmpInst::Predicate Pred = Cmp.getPredicate(); 2212 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2213 C.isNullValue()) 2214 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2215 2216 const APInt *ShiftVal; 2217 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2218 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2219 2220 const APInt *ShiftAmt; 2221 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2222 return nullptr; 2223 2224 // Check that the shift amount is in range. If not, don't perform undefined 2225 // shifts. When the shift is visited it will be simplified. 2226 unsigned TypeBits = C.getBitWidth(); 2227 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2228 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2229 return nullptr; 2230 2231 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2232 bool IsExact = Shr->isExact(); 2233 Type *ShrTy = Shr->getType(); 2234 // TODO: If we could guarantee that InstSimplify would handle all of the 2235 // constant-value-based preconditions in the folds below, then we could assert 2236 // those conditions rather than checking them. This is difficult because of 2237 // undef/poison (PR34838). 2238 if (IsAShr) { 2239 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2240 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2241 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2242 APInt ShiftedC = C.shl(ShAmtVal); 2243 if (ShiftedC.ashr(ShAmtVal) == C) 2244 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2245 } 2246 if (Pred == CmpInst::ICMP_SGT) { 2247 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2248 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2249 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2250 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2251 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2252 } 2253 } else { 2254 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2255 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2256 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2257 APInt ShiftedC = C.shl(ShAmtVal); 2258 if (ShiftedC.lshr(ShAmtVal) == C) 2259 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2260 } 2261 if (Pred == CmpInst::ICMP_UGT) { 2262 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2263 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2264 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2265 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2266 } 2267 } 2268 2269 if (!Cmp.isEquality()) 2270 return nullptr; 2271 2272 // Handle equality comparisons of shift-by-constant. 2273 2274 // If the comparison constant changes with the shift, the comparison cannot 2275 // succeed (bits of the comparison constant cannot match the shifted value). 2276 // This should be known by InstSimplify and already be folded to true/false. 2277 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2278 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2279 "Expected icmp+shr simplify did not occur."); 2280 2281 // If the bits shifted out are known zero, compare the unshifted value: 2282 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2283 if (Shr->isExact()) 2284 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2285 2286 if (Shr->hasOneUse()) { 2287 // Canonicalize the shift into an 'and': 2288 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2289 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2290 Constant *Mask = ConstantInt::get(ShrTy, Val); 2291 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2292 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2293 } 2294 2295 return nullptr; 2296 } 2297 2298 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2299 BinaryOperator *SRem, 2300 const APInt &C) { 2301 // Match an 'is positive' or 'is negative' comparison of remainder by a 2302 // constant power-of-2 value: 2303 // (X % pow2C) sgt/slt 0 2304 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2305 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2306 return nullptr; 2307 2308 // TODO: The one-use check is standard because we do not typically want to 2309 // create longer instruction sequences, but this might be a special-case 2310 // because srem is not good for analysis or codegen. 2311 if (!SRem->hasOneUse()) 2312 return nullptr; 2313 2314 const APInt *DivisorC; 2315 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2316 return nullptr; 2317 2318 // Mask off the sign bit and the modulo bits (low-bits). 2319 Type *Ty = SRem->getType(); 2320 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2321 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2322 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2323 2324 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2325 // bit is set. Example: 2326 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2327 if (Pred == ICmpInst::ICMP_SGT) 2328 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2329 2330 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2331 // bit is set. Example: 2332 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2333 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2334 } 2335 2336 /// Fold icmp (udiv X, Y), C. 2337 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2338 BinaryOperator *UDiv, 2339 const APInt &C) { 2340 const APInt *C2; 2341 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2342 return nullptr; 2343 2344 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2345 2346 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2347 Value *Y = UDiv->getOperand(1); 2348 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2349 assert(!C.isMaxValue() && 2350 "icmp ugt X, UINT_MAX should have been simplified already."); 2351 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2352 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2353 } 2354 2355 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2356 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2357 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2358 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2359 ConstantInt::get(Y->getType(), C2->udiv(C))); 2360 } 2361 2362 return nullptr; 2363 } 2364 2365 /// Fold icmp ({su}div X, Y), C. 2366 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2367 BinaryOperator *Div, 2368 const APInt &C) { 2369 // Fold: icmp pred ([us]div X, C2), C -> range test 2370 // Fold this div into the comparison, producing a range check. 2371 // Determine, based on the divide type, what the range is being 2372 // checked. If there is an overflow on the low or high side, remember 2373 // it, otherwise compute the range [low, hi) bounding the new value. 2374 // See: InsertRangeTest above for the kinds of replacements possible. 2375 const APInt *C2; 2376 if (!match(Div->getOperand(1), m_APInt(C2))) 2377 return nullptr; 2378 2379 // FIXME: If the operand types don't match the type of the divide 2380 // then don't attempt this transform. The code below doesn't have the 2381 // logic to deal with a signed divide and an unsigned compare (and 2382 // vice versa). This is because (x /s C2) <s C produces different 2383 // results than (x /s C2) <u C or (x /u C2) <s C or even 2384 // (x /u C2) <u C. Simply casting the operands and result won't 2385 // work. :( The if statement below tests that condition and bails 2386 // if it finds it. 2387 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2388 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2389 return nullptr; 2390 2391 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2392 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2393 // division-by-constant cases should be present, we can not assert that they 2394 // have happened before we reach this icmp instruction. 2395 if (C2->isNullValue() || C2->isOneValue() || 2396 (DivIsSigned && C2->isAllOnesValue())) 2397 return nullptr; 2398 2399 // Compute Prod = C * C2. We are essentially solving an equation of 2400 // form X / C2 = C. We solve for X by multiplying C2 and C. 2401 // By solving for X, we can turn this into a range check instead of computing 2402 // a divide. 2403 APInt Prod = C * *C2; 2404 2405 // Determine if the product overflows by seeing if the product is not equal to 2406 // the divide. Make sure we do the same kind of divide as in the LHS 2407 // instruction that we're folding. 2408 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2409 2410 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2411 2412 // If the division is known to be exact, then there is no remainder from the 2413 // divide, so the covered range size is unit, otherwise it is the divisor. 2414 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2415 2416 // Figure out the interval that is being checked. For example, a comparison 2417 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2418 // Compute this interval based on the constants involved and the signedness of 2419 // the compare/divide. This computes a half-open interval, keeping track of 2420 // whether either value in the interval overflows. After analysis each 2421 // overflow variable is set to 0 if it's corresponding bound variable is valid 2422 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2423 int LoOverflow = 0, HiOverflow = 0; 2424 APInt LoBound, HiBound; 2425 2426 if (!DivIsSigned) { // udiv 2427 // e.g. X/5 op 3 --> [15, 20) 2428 LoBound = Prod; 2429 HiOverflow = LoOverflow = ProdOV; 2430 if (!HiOverflow) { 2431 // If this is not an exact divide, then many values in the range collapse 2432 // to the same result value. 2433 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2434 } 2435 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2436 if (C.isNullValue()) { // (X / pos) op 0 2437 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2438 LoBound = -(RangeSize - 1); 2439 HiBound = RangeSize; 2440 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2441 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2442 HiOverflow = LoOverflow = ProdOV; 2443 if (!HiOverflow) 2444 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2445 } else { // (X / pos) op neg 2446 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2447 HiBound = Prod + 1; 2448 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2449 if (!LoOverflow) { 2450 APInt DivNeg = -RangeSize; 2451 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2452 } 2453 } 2454 } else if (C2->isNegative()) { // Divisor is < 0. 2455 if (Div->isExact()) 2456 RangeSize.negate(); 2457 if (C.isNullValue()) { // (X / neg) op 0 2458 // e.g. X/-5 op 0 --> [-4, 5) 2459 LoBound = RangeSize + 1; 2460 HiBound = -RangeSize; 2461 if (HiBound == *C2) { // -INTMIN = INTMIN 2462 HiOverflow = 1; // [INTMIN+1, overflow) 2463 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2464 } 2465 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2466 // e.g. X/-5 op 3 --> [-19, -14) 2467 HiBound = Prod + 1; 2468 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2469 if (!LoOverflow) 2470 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2471 } else { // (X / neg) op neg 2472 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2473 LoOverflow = HiOverflow = ProdOV; 2474 if (!HiOverflow) 2475 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2476 } 2477 2478 // Dividing by a negative swaps the condition. LT <-> GT 2479 Pred = ICmpInst::getSwappedPredicate(Pred); 2480 } 2481 2482 Value *X = Div->getOperand(0); 2483 switch (Pred) { 2484 default: llvm_unreachable("Unhandled icmp opcode!"); 2485 case ICmpInst::ICMP_EQ: 2486 if (LoOverflow && HiOverflow) 2487 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2488 if (HiOverflow) 2489 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2490 ICmpInst::ICMP_UGE, X, 2491 ConstantInt::get(Div->getType(), LoBound)); 2492 if (LoOverflow) 2493 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2494 ICmpInst::ICMP_ULT, X, 2495 ConstantInt::get(Div->getType(), HiBound)); 2496 return replaceInstUsesWith( 2497 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2498 case ICmpInst::ICMP_NE: 2499 if (LoOverflow && HiOverflow) 2500 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2501 if (HiOverflow) 2502 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2503 ICmpInst::ICMP_ULT, X, 2504 ConstantInt::get(Div->getType(), LoBound)); 2505 if (LoOverflow) 2506 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2507 ICmpInst::ICMP_UGE, X, 2508 ConstantInt::get(Div->getType(), HiBound)); 2509 return replaceInstUsesWith(Cmp, 2510 insertRangeTest(X, LoBound, HiBound, 2511 DivIsSigned, false)); 2512 case ICmpInst::ICMP_ULT: 2513 case ICmpInst::ICMP_SLT: 2514 if (LoOverflow == +1) // Low bound is greater than input range. 2515 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2516 if (LoOverflow == -1) // Low bound is less than input range. 2517 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2518 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2519 case ICmpInst::ICMP_UGT: 2520 case ICmpInst::ICMP_SGT: 2521 if (HiOverflow == +1) // High bound greater than input range. 2522 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2523 if (HiOverflow == -1) // High bound less than input range. 2524 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2525 if (Pred == ICmpInst::ICMP_UGT) 2526 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2527 ConstantInt::get(Div->getType(), HiBound)); 2528 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2529 ConstantInt::get(Div->getType(), HiBound)); 2530 } 2531 2532 return nullptr; 2533 } 2534 2535 /// Fold icmp (sub X, Y), C. 2536 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2537 BinaryOperator *Sub, 2538 const APInt &C) { 2539 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2540 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2541 const APInt *C2; 2542 APInt SubResult; 2543 2544 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2545 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2546 return new ICmpInst(Cmp.getPredicate(), Y, 2547 ConstantInt::get(Y->getType(), 0)); 2548 2549 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2550 if (match(X, m_APInt(C2)) && 2551 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2552 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2553 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2554 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2555 ConstantInt::get(Y->getType(), SubResult)); 2556 2557 // The following transforms are only worth it if the only user of the subtract 2558 // is the icmp. 2559 if (!Sub->hasOneUse()) 2560 return nullptr; 2561 2562 if (Sub->hasNoSignedWrap()) { 2563 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2564 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2565 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2566 2567 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2568 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2569 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2570 2571 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2572 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2573 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2574 2575 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2576 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2577 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2578 } 2579 2580 if (!match(X, m_APInt(C2))) 2581 return nullptr; 2582 2583 // C2 - Y <u C -> (Y | (C - 1)) == C2 2584 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2585 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2586 (*C2 & (C - 1)) == (C - 1)) 2587 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2588 2589 // C2 - Y >u C -> (Y | C) != C2 2590 // iff C2 & C == C and C + 1 is a power of 2 2591 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2592 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2593 2594 return nullptr; 2595 } 2596 2597 /// Fold icmp (add X, Y), C. 2598 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2599 BinaryOperator *Add, 2600 const APInt &C) { 2601 Value *Y = Add->getOperand(1); 2602 const APInt *C2; 2603 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2604 return nullptr; 2605 2606 // Fold icmp pred (add X, C2), C. 2607 Value *X = Add->getOperand(0); 2608 Type *Ty = Add->getType(); 2609 CmpInst::Predicate Pred = Cmp.getPredicate(); 2610 2611 // If the add does not wrap, we can always adjust the compare by subtracting 2612 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2613 // are canonicalized to SGT/SLT/UGT/ULT. 2614 if ((Add->hasNoSignedWrap() && 2615 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2616 (Add->hasNoUnsignedWrap() && 2617 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2618 bool Overflow; 2619 APInt NewC = 2620 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2621 // If there is overflow, the result must be true or false. 2622 // TODO: Can we assert there is no overflow because InstSimplify always 2623 // handles those cases? 2624 if (!Overflow) 2625 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2626 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2627 } 2628 2629 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2630 const APInt &Upper = CR.getUpper(); 2631 const APInt &Lower = CR.getLower(); 2632 if (Cmp.isSigned()) { 2633 if (Lower.isSignMask()) 2634 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2635 if (Upper.isSignMask()) 2636 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2637 } else { 2638 if (Lower.isMinValue()) 2639 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2640 if (Upper.isMinValue()) 2641 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2642 } 2643 2644 if (!Add->hasOneUse()) 2645 return nullptr; 2646 2647 // X+C <u C2 -> (X & -C2) == C 2648 // iff C & (C2-1) == 0 2649 // C2 is a power of 2 2650 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2651 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2652 ConstantExpr::getNeg(cast<Constant>(Y))); 2653 2654 // X+C >u C2 -> (X & ~C2) != C 2655 // iff C & C2 == 0 2656 // C2+1 is a power of 2 2657 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2658 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2659 ConstantExpr::getNeg(cast<Constant>(Y))); 2660 2661 return nullptr; 2662 } 2663 2664 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2665 Value *&RHS, ConstantInt *&Less, 2666 ConstantInt *&Equal, 2667 ConstantInt *&Greater) { 2668 // TODO: Generalize this to work with other comparison idioms or ensure 2669 // they get canonicalized into this form. 2670 2671 // select i1 (a == b), 2672 // i32 Equal, 2673 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2674 // where Equal, Less and Greater are placeholders for any three constants. 2675 ICmpInst::Predicate PredA; 2676 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2677 !ICmpInst::isEquality(PredA)) 2678 return false; 2679 Value *EqualVal = SI->getTrueValue(); 2680 Value *UnequalVal = SI->getFalseValue(); 2681 // We still can get non-canonical predicate here, so canonicalize. 2682 if (PredA == ICmpInst::ICMP_NE) 2683 std::swap(EqualVal, UnequalVal); 2684 if (!match(EqualVal, m_ConstantInt(Equal))) 2685 return false; 2686 ICmpInst::Predicate PredB; 2687 Value *LHS2, *RHS2; 2688 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2689 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2690 return false; 2691 // We can get predicate mismatch here, so canonicalize if possible: 2692 // First, ensure that 'LHS' match. 2693 if (LHS2 != LHS) { 2694 // x sgt y <--> y slt x 2695 std::swap(LHS2, RHS2); 2696 PredB = ICmpInst::getSwappedPredicate(PredB); 2697 } 2698 if (LHS2 != LHS) 2699 return false; 2700 // We also need to canonicalize 'RHS'. 2701 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2702 // x sgt C-1 <--> x sge C <--> not(x slt C) 2703 auto FlippedStrictness = 2704 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2705 PredB, cast<Constant>(RHS2)); 2706 if (!FlippedStrictness) 2707 return false; 2708 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2709 RHS2 = FlippedStrictness->second; 2710 // And kind-of perform the result swap. 2711 std::swap(Less, Greater); 2712 PredB = ICmpInst::ICMP_SLT; 2713 } 2714 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2715 } 2716 2717 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2718 SelectInst *Select, 2719 ConstantInt *C) { 2720 2721 assert(C && "Cmp RHS should be a constant int!"); 2722 // If we're testing a constant value against the result of a three way 2723 // comparison, the result can be expressed directly in terms of the 2724 // original values being compared. Note: We could possibly be more 2725 // aggressive here and remove the hasOneUse test. The original select is 2726 // really likely to simplify or sink when we remove a test of the result. 2727 Value *OrigLHS, *OrigRHS; 2728 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2729 if (Cmp.hasOneUse() && 2730 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2731 C3GreaterThan)) { 2732 assert(C1LessThan && C2Equal && C3GreaterThan); 2733 2734 bool TrueWhenLessThan = 2735 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2736 ->isAllOnesValue(); 2737 bool TrueWhenEqual = 2738 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2739 ->isAllOnesValue(); 2740 bool TrueWhenGreaterThan = 2741 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2742 ->isAllOnesValue(); 2743 2744 // This generates the new instruction that will replace the original Cmp 2745 // Instruction. Instead of enumerating the various combinations when 2746 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2747 // false, we rely on chaining of ORs and future passes of InstCombine to 2748 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2749 2750 // When none of the three constants satisfy the predicate for the RHS (C), 2751 // the entire original Cmp can be simplified to a false. 2752 Value *Cond = Builder.getFalse(); 2753 if (TrueWhenLessThan) 2754 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2755 OrigLHS, OrigRHS)); 2756 if (TrueWhenEqual) 2757 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2758 OrigLHS, OrigRHS)); 2759 if (TrueWhenGreaterThan) 2760 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2761 OrigLHS, OrigRHS)); 2762 2763 return replaceInstUsesWith(Cmp, Cond); 2764 } 2765 return nullptr; 2766 } 2767 2768 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2769 InstCombiner::BuilderTy &Builder) { 2770 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2771 if (!Bitcast) 2772 return nullptr; 2773 2774 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2775 Value *Op1 = Cmp.getOperand(1); 2776 Value *BCSrcOp = Bitcast->getOperand(0); 2777 2778 // Make sure the bitcast doesn't change the number of vector elements. 2779 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2780 Bitcast->getDestTy()->getScalarSizeInBits()) { 2781 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2782 Value *X; 2783 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2784 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2785 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2786 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2787 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2788 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2789 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2790 match(Op1, m_Zero())) 2791 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2792 2793 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2794 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2795 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2796 2797 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2798 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2799 return new ICmpInst(Pred, X, 2800 ConstantInt::getAllOnesValue(X->getType())); 2801 } 2802 2803 // Zero-equality checks are preserved through unsigned floating-point casts: 2804 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2805 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2806 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2807 if (Cmp.isEquality() && match(Op1, m_Zero())) 2808 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2809 2810 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2811 // the FP extend/truncate because that cast does not change the sign-bit. 2812 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2813 // The sign-bit is always the most significant bit in those types. 2814 const APInt *C; 2815 bool TrueIfSigned; 2816 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2817 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2818 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2819 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2820 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2821 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2822 Type *XType = X->getType(); 2823 2824 // We can't currently handle Power style floating point operations here. 2825 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2826 2827 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2828 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2829 NewType = FixedVectorType::get(NewType, XVTy->getNumElements()); 2830 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2831 if (TrueIfSigned) 2832 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2833 ConstantInt::getNullValue(NewType)); 2834 else 2835 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2836 ConstantInt::getAllOnesValue(NewType)); 2837 } 2838 } 2839 } 2840 } 2841 2842 // Test to see if the operands of the icmp are casted versions of other 2843 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2844 if (Bitcast->getType()->isPointerTy() && 2845 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2846 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2847 // so eliminate it as well. 2848 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2849 Op1 = BC2->getOperand(0); 2850 2851 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2852 return new ICmpInst(Pred, BCSrcOp, Op1); 2853 } 2854 2855 // Folding: icmp <pred> iN X, C 2856 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2857 // and C is a splat of a K-bit pattern 2858 // and SC is a constant vector = <C', C', C', ..., C'> 2859 // Into: 2860 // %E = extractelement <M x iK> %vec, i32 C' 2861 // icmp <pred> iK %E, trunc(C) 2862 const APInt *C; 2863 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2864 !Bitcast->getType()->isIntegerTy() || 2865 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2866 return nullptr; 2867 2868 Value *Vec; 2869 ArrayRef<int> Mask; 2870 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2871 // Check whether every element of Mask is the same constant 2872 if (is_splat(Mask)) { 2873 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2874 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2875 if (C->isSplat(EltTy->getBitWidth())) { 2876 // Fold the icmp based on the value of C 2877 // If C is M copies of an iK sized bit pattern, 2878 // then: 2879 // => %E = extractelement <N x iK> %vec, i32 Elem 2880 // icmp <pred> iK %SplatVal, <pattern> 2881 Value *Elem = Builder.getInt32(Mask[0]); 2882 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2883 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2884 return new ICmpInst(Pred, Extract, NewC); 2885 } 2886 } 2887 } 2888 return nullptr; 2889 } 2890 2891 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2892 /// where X is some kind of instruction. 2893 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 2894 const APInt *C; 2895 if (!match(Cmp.getOperand(1), m_APInt(C))) 2896 return nullptr; 2897 2898 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2899 switch (BO->getOpcode()) { 2900 case Instruction::Xor: 2901 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2902 return I; 2903 break; 2904 case Instruction::And: 2905 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2906 return I; 2907 break; 2908 case Instruction::Or: 2909 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2910 return I; 2911 break; 2912 case Instruction::Mul: 2913 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2914 return I; 2915 break; 2916 case Instruction::Shl: 2917 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2918 return I; 2919 break; 2920 case Instruction::LShr: 2921 case Instruction::AShr: 2922 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2923 return I; 2924 break; 2925 case Instruction::SRem: 2926 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 2927 return I; 2928 break; 2929 case Instruction::UDiv: 2930 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2931 return I; 2932 LLVM_FALLTHROUGH; 2933 case Instruction::SDiv: 2934 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2935 return I; 2936 break; 2937 case Instruction::Sub: 2938 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2939 return I; 2940 break; 2941 case Instruction::Add: 2942 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2943 return I; 2944 break; 2945 default: 2946 break; 2947 } 2948 // TODO: These folds could be refactored to be part of the above calls. 2949 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2950 return I; 2951 } 2952 2953 // Match against CmpInst LHS being instructions other than binary operators. 2954 2955 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2956 // For now, we only support constant integers while folding the 2957 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2958 // similar to the cases handled by binary ops above. 2959 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2960 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2961 return I; 2962 } 2963 2964 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2965 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2966 return I; 2967 } 2968 2969 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2970 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2971 return I; 2972 2973 return nullptr; 2974 } 2975 2976 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2977 /// icmp eq/ne BO, C. 2978 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 2979 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 2980 // TODO: Some of these folds could work with arbitrary constants, but this 2981 // function is limited to scalar and vector splat constants. 2982 if (!Cmp.isEquality()) 2983 return nullptr; 2984 2985 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2986 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2987 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2988 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2989 2990 switch (BO->getOpcode()) { 2991 case Instruction::SRem: 2992 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2993 if (C.isNullValue() && BO->hasOneUse()) { 2994 const APInt *BOC; 2995 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2996 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2997 return new ICmpInst(Pred, NewRem, 2998 Constant::getNullValue(BO->getType())); 2999 } 3000 } 3001 break; 3002 case Instruction::Add: { 3003 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3004 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3005 if (BO->hasOneUse()) 3006 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3007 } else if (C.isNullValue()) { 3008 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3009 // efficiently invertible, or if the add has just this one use. 3010 if (Value *NegVal = dyn_castNegVal(BOp1)) 3011 return new ICmpInst(Pred, BOp0, NegVal); 3012 if (Value *NegVal = dyn_castNegVal(BOp0)) 3013 return new ICmpInst(Pred, NegVal, BOp1); 3014 if (BO->hasOneUse()) { 3015 Value *Neg = Builder.CreateNeg(BOp1); 3016 Neg->takeName(BO); 3017 return new ICmpInst(Pred, BOp0, Neg); 3018 } 3019 } 3020 break; 3021 } 3022 case Instruction::Xor: 3023 if (BO->hasOneUse()) { 3024 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3025 // For the xor case, we can xor two constants together, eliminating 3026 // the explicit xor. 3027 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3028 } else if (C.isNullValue()) { 3029 // Replace ((xor A, B) != 0) with (A != B) 3030 return new ICmpInst(Pred, BOp0, BOp1); 3031 } 3032 } 3033 break; 3034 case Instruction::Sub: 3035 if (BO->hasOneUse()) { 3036 // Only check for constant LHS here, as constant RHS will be canonicalized 3037 // to add and use the fold above. 3038 if (Constant *BOC = dyn_cast<Constant>(BOp0)) { 3039 // Replace ((sub BOC, B) != C) with (B != BOC-C). 3040 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); 3041 } else if (C.isNullValue()) { 3042 // Replace ((sub A, B) != 0) with (A != B). 3043 return new ICmpInst(Pred, BOp0, BOp1); 3044 } 3045 } 3046 break; 3047 case Instruction::Or: { 3048 const APInt *BOC; 3049 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3050 // Comparing if all bits outside of a constant mask are set? 3051 // Replace (X | C) == -1 with (X & ~C) == ~C. 3052 // This removes the -1 constant. 3053 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3054 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3055 return new ICmpInst(Pred, And, NotBOC); 3056 } 3057 break; 3058 } 3059 case Instruction::And: { 3060 const APInt *BOC; 3061 if (match(BOp1, m_APInt(BOC))) { 3062 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3063 if (C == *BOC && C.isPowerOf2()) 3064 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3065 BO, Constant::getNullValue(RHS->getType())); 3066 } 3067 break; 3068 } 3069 case Instruction::UDiv: 3070 if (C.isNullValue()) { 3071 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3072 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3073 return new ICmpInst(NewPred, BOp1, BOp0); 3074 } 3075 break; 3076 default: 3077 break; 3078 } 3079 return nullptr; 3080 } 3081 3082 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3083 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3084 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3085 Type *Ty = II->getType(); 3086 unsigned BitWidth = C.getBitWidth(); 3087 switch (II->getIntrinsicID()) { 3088 case Intrinsic::bswap: 3089 // bswap(A) == C -> A == bswap(C) 3090 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3091 ConstantInt::get(Ty, C.byteSwap())); 3092 3093 case Intrinsic::ctlz: 3094 case Intrinsic::cttz: { 3095 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3096 if (C == BitWidth) 3097 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3098 ConstantInt::getNullValue(Ty)); 3099 3100 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3101 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3102 // Limit to one use to ensure we don't increase instruction count. 3103 unsigned Num = C.getLimitedValue(BitWidth); 3104 if (Num != BitWidth && II->hasOneUse()) { 3105 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3106 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3107 : APInt::getHighBitsSet(BitWidth, Num + 1); 3108 APInt Mask2 = IsTrailing 3109 ? APInt::getOneBitSet(BitWidth, Num) 3110 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3111 return new ICmpInst(Cmp.getPredicate(), 3112 Builder.CreateAnd(II->getArgOperand(0), Mask1), 3113 ConstantInt::get(Ty, Mask2)); 3114 } 3115 break; 3116 } 3117 3118 case Intrinsic::ctpop: { 3119 // popcount(A) == 0 -> A == 0 and likewise for != 3120 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3121 bool IsZero = C.isNullValue(); 3122 if (IsZero || C == BitWidth) 3123 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3124 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); 3125 3126 break; 3127 } 3128 3129 case Intrinsic::uadd_sat: { 3130 // uadd.sat(a, b) == 0 -> (a | b) == 0 3131 if (C.isNullValue()) { 3132 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3133 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); 3134 } 3135 break; 3136 } 3137 3138 case Intrinsic::usub_sat: { 3139 // usub.sat(a, b) == 0 -> a <= b 3140 if (C.isNullValue()) { 3141 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ 3142 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3143 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3144 } 3145 break; 3146 } 3147 default: 3148 break; 3149 } 3150 3151 return nullptr; 3152 } 3153 3154 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3155 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3156 IntrinsicInst *II, 3157 const APInt &C) { 3158 if (Cmp.isEquality()) 3159 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3160 3161 Type *Ty = II->getType(); 3162 unsigned BitWidth = C.getBitWidth(); 3163 switch (II->getIntrinsicID()) { 3164 case Intrinsic::ctlz: { 3165 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3166 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3167 unsigned Num = C.getLimitedValue(); 3168 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3169 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3170 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3171 } 3172 3173 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3174 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3175 C.uge(1) && C.ule(BitWidth)) { 3176 unsigned Num = C.getLimitedValue(); 3177 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3178 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3179 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3180 } 3181 break; 3182 } 3183 case Intrinsic::cttz: { 3184 // Limit to one use to ensure we don't increase instruction count. 3185 if (!II->hasOneUse()) 3186 return nullptr; 3187 3188 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3189 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3190 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3191 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3192 Builder.CreateAnd(II->getArgOperand(0), Mask), 3193 ConstantInt::getNullValue(Ty)); 3194 } 3195 3196 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3197 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3198 C.uge(1) && C.ule(BitWidth)) { 3199 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3200 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3201 Builder.CreateAnd(II->getArgOperand(0), Mask), 3202 ConstantInt::getNullValue(Ty)); 3203 } 3204 break; 3205 } 3206 default: 3207 break; 3208 } 3209 3210 return nullptr; 3211 } 3212 3213 /// Handle icmp with constant (but not simple integer constant) RHS. 3214 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3215 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3216 Constant *RHSC = dyn_cast<Constant>(Op1); 3217 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3218 if (!RHSC || !LHSI) 3219 return nullptr; 3220 3221 switch (LHSI->getOpcode()) { 3222 case Instruction::GetElementPtr: 3223 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3224 if (RHSC->isNullValue() && 3225 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3226 return new ICmpInst( 3227 I.getPredicate(), LHSI->getOperand(0), 3228 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3229 break; 3230 case Instruction::PHI: 3231 // Only fold icmp into the PHI if the phi and icmp are in the same 3232 // block. If in the same block, we're encouraging jump threading. If 3233 // not, we are just pessimizing the code by making an i1 phi. 3234 if (LHSI->getParent() == I.getParent()) 3235 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3236 return NV; 3237 break; 3238 case Instruction::Select: { 3239 // If either operand of the select is a constant, we can fold the 3240 // comparison into the select arms, which will cause one to be 3241 // constant folded and the select turned into a bitwise or. 3242 Value *Op1 = nullptr, *Op2 = nullptr; 3243 ConstantInt *CI = nullptr; 3244 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3245 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3246 CI = dyn_cast<ConstantInt>(Op1); 3247 } 3248 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3249 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3250 CI = dyn_cast<ConstantInt>(Op2); 3251 } 3252 3253 // We only want to perform this transformation if it will not lead to 3254 // additional code. This is true if either both sides of the select 3255 // fold to a constant (in which case the icmp is replaced with a select 3256 // which will usually simplify) or this is the only user of the 3257 // select (in which case we are trading a select+icmp for a simpler 3258 // select+icmp) or all uses of the select can be replaced based on 3259 // dominance information ("Global cases"). 3260 bool Transform = false; 3261 if (Op1 && Op2) 3262 Transform = true; 3263 else if (Op1 || Op2) { 3264 // Local case 3265 if (LHSI->hasOneUse()) 3266 Transform = true; 3267 // Global cases 3268 else if (CI && !CI->isZero()) 3269 // When Op1 is constant try replacing select with second operand. 3270 // Otherwise Op2 is constant and try replacing select with first 3271 // operand. 3272 Transform = 3273 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3274 } 3275 if (Transform) { 3276 if (!Op1) 3277 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3278 I.getName()); 3279 if (!Op2) 3280 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3281 I.getName()); 3282 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3283 } 3284 break; 3285 } 3286 case Instruction::IntToPtr: 3287 // icmp pred inttoptr(X), null -> icmp pred X, 0 3288 if (RHSC->isNullValue() && 3289 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3290 return new ICmpInst( 3291 I.getPredicate(), LHSI->getOperand(0), 3292 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3293 break; 3294 3295 case Instruction::Load: 3296 // Try to optimize things like "A[i] > 4" to index computations. 3297 if (GetElementPtrInst *GEP = 3298 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3299 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3300 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3301 !cast<LoadInst>(LHSI)->isVolatile()) 3302 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3303 return Res; 3304 } 3305 break; 3306 } 3307 3308 return nullptr; 3309 } 3310 3311 /// Some comparisons can be simplified. 3312 /// In this case, we are looking for comparisons that look like 3313 /// a check for a lossy truncation. 3314 /// Folds: 3315 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3316 /// Where Mask is some pattern that produces all-ones in low bits: 3317 /// (-1 >> y) 3318 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3319 /// ~(-1 << y) 3320 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3321 /// The Mask can be a constant, too. 3322 /// For some predicates, the operands are commutative. 3323 /// For others, x can only be on a specific side. 3324 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3325 InstCombiner::BuilderTy &Builder) { 3326 ICmpInst::Predicate SrcPred; 3327 Value *X, *M, *Y; 3328 auto m_VariableMask = m_CombineOr( 3329 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3330 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3331 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3332 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3333 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3334 if (!match(&I, m_c_ICmp(SrcPred, 3335 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3336 m_Deferred(X)))) 3337 return nullptr; 3338 3339 ICmpInst::Predicate DstPred; 3340 switch (SrcPred) { 3341 case ICmpInst::Predicate::ICMP_EQ: 3342 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3343 DstPred = ICmpInst::Predicate::ICMP_ULE; 3344 break; 3345 case ICmpInst::Predicate::ICMP_NE: 3346 // x & (-1 >> y) != x -> x u> (-1 >> y) 3347 DstPred = ICmpInst::Predicate::ICMP_UGT; 3348 break; 3349 case ICmpInst::Predicate::ICMP_ULT: 3350 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3351 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3352 DstPred = ICmpInst::Predicate::ICMP_UGT; 3353 break; 3354 case ICmpInst::Predicate::ICMP_UGE: 3355 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3356 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3357 DstPred = ICmpInst::Predicate::ICMP_ULE; 3358 break; 3359 case ICmpInst::Predicate::ICMP_SLT: 3360 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3361 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3362 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3363 return nullptr; 3364 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3365 return nullptr; 3366 DstPred = ICmpInst::Predicate::ICMP_SGT; 3367 break; 3368 case ICmpInst::Predicate::ICMP_SGE: 3369 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3370 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3371 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3372 return nullptr; 3373 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3374 return nullptr; 3375 DstPred = ICmpInst::Predicate::ICMP_SLE; 3376 break; 3377 case ICmpInst::Predicate::ICMP_SGT: 3378 case ICmpInst::Predicate::ICMP_SLE: 3379 return nullptr; 3380 case ICmpInst::Predicate::ICMP_UGT: 3381 case ICmpInst::Predicate::ICMP_ULE: 3382 llvm_unreachable("Instsimplify took care of commut. variant"); 3383 break; 3384 default: 3385 llvm_unreachable("All possible folds are handled."); 3386 } 3387 3388 // The mask value may be a vector constant that has undefined elements. But it 3389 // may not be safe to propagate those undefs into the new compare, so replace 3390 // those elements by copying an existing, defined, and safe scalar constant. 3391 Type *OpTy = M->getType(); 3392 auto *VecC = dyn_cast<Constant>(M); 3393 if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) { 3394 auto *OpVTy = cast<VectorType>(OpTy); 3395 Constant *SafeReplacementConstant = nullptr; 3396 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3397 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3398 SafeReplacementConstant = VecC->getAggregateElement(i); 3399 break; 3400 } 3401 } 3402 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3403 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3404 } 3405 3406 return Builder.CreateICmp(DstPred, X, M); 3407 } 3408 3409 /// Some comparisons can be simplified. 3410 /// In this case, we are looking for comparisons that look like 3411 /// a check for a lossy signed truncation. 3412 /// Folds: (MaskedBits is a constant.) 3413 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3414 /// Into: 3415 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3416 /// Where KeptBits = bitwidth(%x) - MaskedBits 3417 static Value * 3418 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3419 InstCombiner::BuilderTy &Builder) { 3420 ICmpInst::Predicate SrcPred; 3421 Value *X; 3422 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3423 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3424 if (!match(&I, m_c_ICmp(SrcPred, 3425 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3426 m_APInt(C1))), 3427 m_Deferred(X)))) 3428 return nullptr; 3429 3430 // Potential handling of non-splats: for each element: 3431 // * if both are undef, replace with constant 0. 3432 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3433 // * if both are not undef, and are different, bailout. 3434 // * else, only one is undef, then pick the non-undef one. 3435 3436 // The shift amount must be equal. 3437 if (*C0 != *C1) 3438 return nullptr; 3439 const APInt &MaskedBits = *C0; 3440 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3441 3442 ICmpInst::Predicate DstPred; 3443 switch (SrcPred) { 3444 case ICmpInst::Predicate::ICMP_EQ: 3445 // ((%x << MaskedBits) a>> MaskedBits) == %x 3446 // => 3447 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3448 DstPred = ICmpInst::Predicate::ICMP_ULT; 3449 break; 3450 case ICmpInst::Predicate::ICMP_NE: 3451 // ((%x << MaskedBits) a>> MaskedBits) != %x 3452 // => 3453 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3454 DstPred = ICmpInst::Predicate::ICMP_UGE; 3455 break; 3456 // FIXME: are more folds possible? 3457 default: 3458 return nullptr; 3459 } 3460 3461 auto *XType = X->getType(); 3462 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3463 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3464 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3465 3466 // KeptBits = bitwidth(%x) - MaskedBits 3467 const APInt KeptBits = BitWidth - MaskedBits; 3468 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3469 // ICmpCst = (1 << KeptBits) 3470 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3471 assert(ICmpCst.isPowerOf2()); 3472 // AddCst = (1 << (KeptBits-1)) 3473 const APInt AddCst = ICmpCst.lshr(1); 3474 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3475 3476 // T0 = add %x, AddCst 3477 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3478 // T1 = T0 DstPred ICmpCst 3479 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3480 3481 return T1; 3482 } 3483 3484 // Given pattern: 3485 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3486 // we should move shifts to the same hand of 'and', i.e. rewrite as 3487 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3488 // We are only interested in opposite logical shifts here. 3489 // One of the shifts can be truncated. 3490 // If we can, we want to end up creating 'lshr' shift. 3491 static Value * 3492 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3493 InstCombiner::BuilderTy &Builder) { 3494 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3495 !I.getOperand(0)->hasOneUse()) 3496 return nullptr; 3497 3498 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3499 3500 // Look for an 'and' of two logical shifts, one of which may be truncated. 3501 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3502 Instruction *XShift, *MaybeTruncation, *YShift; 3503 if (!match( 3504 I.getOperand(0), 3505 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3506 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3507 m_AnyLogicalShift, m_Instruction(YShift))), 3508 m_Instruction(MaybeTruncation))))) 3509 return nullptr; 3510 3511 // We potentially looked past 'trunc', but only when matching YShift, 3512 // therefore YShift must have the widest type. 3513 Instruction *WidestShift = YShift; 3514 // Therefore XShift must have the shallowest type. 3515 // Or they both have identical types if there was no truncation. 3516 Instruction *NarrowestShift = XShift; 3517 3518 Type *WidestTy = WidestShift->getType(); 3519 Type *NarrowestTy = NarrowestShift->getType(); 3520 assert(NarrowestTy == I.getOperand(0)->getType() && 3521 "We did not look past any shifts while matching XShift though."); 3522 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3523 3524 // If YShift is a 'lshr', swap the shifts around. 3525 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3526 std::swap(XShift, YShift); 3527 3528 // The shifts must be in opposite directions. 3529 auto XShiftOpcode = XShift->getOpcode(); 3530 if (XShiftOpcode == YShift->getOpcode()) 3531 return nullptr; // Do not care about same-direction shifts here. 3532 3533 Value *X, *XShAmt, *Y, *YShAmt; 3534 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3535 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3536 3537 // If one of the values being shifted is a constant, then we will end with 3538 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3539 // however, we will need to ensure that we won't increase instruction count. 3540 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3541 // At least one of the hands of the 'and' should be one-use shift. 3542 if (!match(I.getOperand(0), 3543 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3544 return nullptr; 3545 if (HadTrunc) { 3546 // Due to the 'trunc', we will need to widen X. For that either the old 3547 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3548 if (!MaybeTruncation->hasOneUse() && 3549 !NarrowestShift->getOperand(1)->hasOneUse()) 3550 return nullptr; 3551 } 3552 } 3553 3554 // We have two shift amounts from two different shifts. The types of those 3555 // shift amounts may not match. If that's the case let's bailout now. 3556 if (XShAmt->getType() != YShAmt->getType()) 3557 return nullptr; 3558 3559 // As input, we have the following pattern: 3560 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3561 // We want to rewrite that as: 3562 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3563 // While we know that originally (Q+K) would not overflow 3564 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3565 // shift amounts. so it may now overflow in smaller bitwidth. 3566 // To ensure that does not happen, we need to ensure that the total maximal 3567 // shift amount is still representable in that smaller bit width. 3568 unsigned MaximalPossibleTotalShiftAmount = 3569 (WidestTy->getScalarSizeInBits() - 1) + 3570 (NarrowestTy->getScalarSizeInBits() - 1); 3571 APInt MaximalRepresentableShiftAmount = 3572 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); 3573 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3574 return nullptr; 3575 3576 // Can we fold (XShAmt+YShAmt) ? 3577 auto *NewShAmt = dyn_cast_or_null<Constant>( 3578 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3579 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3580 if (!NewShAmt) 3581 return nullptr; 3582 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3583 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3584 3585 // Is the new shift amount smaller than the bit width? 3586 // FIXME: could also rely on ConstantRange. 3587 if (!match(NewShAmt, 3588 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3589 APInt(WidestBitWidth, WidestBitWidth)))) 3590 return nullptr; 3591 3592 // An extra legality check is needed if we had trunc-of-lshr. 3593 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3594 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3595 WidestShift]() { 3596 // It isn't obvious whether it's worth it to analyze non-constants here. 3597 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3598 // If *any* of these preconditions matches we can perform the fold. 3599 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3600 ? NewShAmt->getSplatValue() 3601 : NewShAmt; 3602 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3603 if (NewShAmtSplat && 3604 (NewShAmtSplat->isNullValue() || 3605 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3606 return true; 3607 // We consider *min* leading zeros so a single outlier 3608 // blocks the transform as opposed to allowing it. 3609 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3610 KnownBits Known = computeKnownBits(C, SQ.DL); 3611 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3612 // If the value being shifted has at most lowest bit set we can fold. 3613 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3614 if (MaxActiveBits <= 1) 3615 return true; 3616 // Precondition: NewShAmt u<= countLeadingZeros(C) 3617 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3618 return true; 3619 } 3620 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3621 KnownBits Known = computeKnownBits(C, SQ.DL); 3622 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3623 // If the value being shifted has at most lowest bit set we can fold. 3624 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3625 if (MaxActiveBits <= 1) 3626 return true; 3627 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3628 if (NewShAmtSplat) { 3629 APInt AdjNewShAmt = 3630 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3631 if (AdjNewShAmt.ule(MinLeadZero)) 3632 return true; 3633 } 3634 } 3635 return false; // Can't tell if it's ok. 3636 }; 3637 if (!CanFold()) 3638 return nullptr; 3639 } 3640 3641 // All good, we can do this fold. 3642 X = Builder.CreateZExt(X, WidestTy); 3643 Y = Builder.CreateZExt(Y, WidestTy); 3644 // The shift is the same that was for X. 3645 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3646 ? Builder.CreateLShr(X, NewShAmt) 3647 : Builder.CreateShl(X, NewShAmt); 3648 Value *T1 = Builder.CreateAnd(T0, Y); 3649 return Builder.CreateICmp(I.getPredicate(), T1, 3650 Constant::getNullValue(WidestTy)); 3651 } 3652 3653 /// Fold 3654 /// (-1 u/ x) u< y 3655 /// ((x * y) u/ x) != y 3656 /// to 3657 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit 3658 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3659 /// will mean that we are looking for the opposite answer. 3660 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { 3661 ICmpInst::Predicate Pred; 3662 Value *X, *Y; 3663 Instruction *Mul; 3664 bool NeedNegation; 3665 // Look for: (-1 u/ x) u</u>= y 3666 if (!I.isEquality() && 3667 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3668 m_Value(Y)))) { 3669 Mul = nullptr; 3670 3671 // Are we checking that overflow does not happen, or does happen? 3672 switch (Pred) { 3673 case ICmpInst::Predicate::ICMP_ULT: 3674 NeedNegation = false; 3675 break; // OK 3676 case ICmpInst::Predicate::ICMP_UGE: 3677 NeedNegation = true; 3678 break; // OK 3679 default: 3680 return nullptr; // Wrong predicate. 3681 } 3682 } else // Look for: ((x * y) u/ x) !=/== y 3683 if (I.isEquality() && 3684 match(&I, m_c_ICmp(Pred, m_Value(Y), 3685 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3686 m_Value(X)), 3687 m_Instruction(Mul)), 3688 m_Deferred(X)))))) { 3689 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3690 } else 3691 return nullptr; 3692 3693 BuilderTy::InsertPointGuard Guard(Builder); 3694 // If the pattern included (x * y), we'll want to insert new instructions 3695 // right before that original multiplication so that we can replace it. 3696 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3697 if (MulHadOtherUses) 3698 Builder.SetInsertPoint(Mul); 3699 3700 Function *F = Intrinsic::getDeclaration( 3701 I.getModule(), Intrinsic::umul_with_overflow, X->getType()); 3702 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); 3703 3704 // If the multiplication was used elsewhere, to ensure that we don't leave 3705 // "duplicate" instructions, replace uses of that original multiplication 3706 // with the multiplication result from the with.overflow intrinsic. 3707 if (MulHadOtherUses) 3708 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); 3709 3710 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); 3711 if (NeedNegation) // This technically increases instruction count. 3712 Res = Builder.CreateNot(Res, "umul.not.ov"); 3713 3714 // If we replaced the mul, erase it. Do this after all uses of Builder, 3715 // as the mul is used as insertion point. 3716 if (MulHadOtherUses) 3717 eraseInstFromFunction(*Mul); 3718 3719 return Res; 3720 } 3721 3722 Instruction *foldICmpXNegX(ICmpInst &I) { 3723 CmpInst::Predicate Pred; 3724 Value *X; 3725 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3726 return nullptr; 3727 3728 if (ICmpInst::isSigned(Pred)) 3729 Pred = ICmpInst::getSwappedPredicate(Pred); 3730 else if (ICmpInst::isUnsigned(Pred)) 3731 Pred = ICmpInst::getSignedPredicate(Pred); 3732 // else for equality-comparisons just keep the predicate. 3733 3734 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3735 Constant::getNullValue(X->getType()), I.getName()); 3736 } 3737 3738 /// Try to fold icmp (binop), X or icmp X, (binop). 3739 /// TODO: A large part of this logic is duplicated in InstSimplify's 3740 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3741 /// duplication. 3742 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3743 const SimplifyQuery &SQ) { 3744 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3745 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3746 3747 // Special logic for binary operators. 3748 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3749 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3750 if (!BO0 && !BO1) 3751 return nullptr; 3752 3753 if (Instruction *NewICmp = foldICmpXNegX(I)) 3754 return NewICmp; 3755 3756 const CmpInst::Predicate Pred = I.getPredicate(); 3757 Value *X; 3758 3759 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3760 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3761 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3762 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3763 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3764 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3765 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3766 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3767 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3768 3769 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3770 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3771 NoOp0WrapProblem = 3772 ICmpInst::isEquality(Pred) || 3773 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3774 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3775 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3776 NoOp1WrapProblem = 3777 ICmpInst::isEquality(Pred) || 3778 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3779 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3780 3781 // Analyze the case when either Op0 or Op1 is an add instruction. 3782 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3783 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3784 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3785 A = BO0->getOperand(0); 3786 B = BO0->getOperand(1); 3787 } 3788 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3789 C = BO1->getOperand(0); 3790 D = BO1->getOperand(1); 3791 } 3792 3793 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3794 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3795 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3796 return new ICmpInst(Pred, A == Op1 ? B : A, 3797 Constant::getNullValue(Op1->getType())); 3798 3799 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3800 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3801 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3802 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3803 C == Op0 ? D : C); 3804 3805 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3806 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3807 NoOp1WrapProblem) { 3808 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3809 Value *Y, *Z; 3810 if (A == C) { 3811 // C + B == C + D -> B == D 3812 Y = B; 3813 Z = D; 3814 } else if (A == D) { 3815 // D + B == C + D -> B == C 3816 Y = B; 3817 Z = C; 3818 } else if (B == C) { 3819 // A + C == C + D -> A == D 3820 Y = A; 3821 Z = D; 3822 } else { 3823 assert(B == D); 3824 // A + D == C + D -> A == C 3825 Y = A; 3826 Z = C; 3827 } 3828 return new ICmpInst(Pred, Y, Z); 3829 } 3830 3831 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 3832 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3833 match(B, m_AllOnes())) 3834 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3835 3836 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 3837 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3838 match(B, m_AllOnes())) 3839 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3840 3841 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 3842 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3843 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3844 3845 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 3846 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3847 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3848 3849 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 3850 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3851 match(D, m_AllOnes())) 3852 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3853 3854 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 3855 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3856 match(D, m_AllOnes())) 3857 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3858 3859 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 3860 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3861 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3862 3863 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 3864 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3865 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3866 3867 // TODO: The subtraction-related identities shown below also hold, but 3868 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3869 // wouldn't happen even if they were implemented. 3870 // 3871 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 3872 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 3873 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 3874 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 3875 3876 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 3877 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3878 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3879 3880 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 3881 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3882 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3883 3884 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 3885 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3886 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3887 3888 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 3889 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3890 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3891 3892 // if C1 has greater magnitude than C2: 3893 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 3894 // s.t. C3 = C1 - C2 3895 // 3896 // if C2 has greater magnitude than C1: 3897 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 3898 // s.t. C3 = C2 - C1 3899 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3900 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3901 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3902 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3903 const APInt &AP1 = C1->getValue(); 3904 const APInt &AP2 = C2->getValue(); 3905 if (AP1.isNegative() == AP2.isNegative()) { 3906 APInt AP1Abs = C1->getValue().abs(); 3907 APInt AP2Abs = C2->getValue().abs(); 3908 if (AP1Abs.uge(AP2Abs)) { 3909 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3910 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3911 return new ICmpInst(Pred, NewAdd, C); 3912 } else { 3913 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3914 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3915 return new ICmpInst(Pred, A, NewAdd); 3916 } 3917 } 3918 } 3919 3920 // Analyze the case when either Op0 or Op1 is a sub instruction. 3921 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3922 A = nullptr; 3923 B = nullptr; 3924 C = nullptr; 3925 D = nullptr; 3926 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3927 A = BO0->getOperand(0); 3928 B = BO0->getOperand(1); 3929 } 3930 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3931 C = BO1->getOperand(0); 3932 D = BO1->getOperand(1); 3933 } 3934 3935 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 3936 if (A == Op1 && NoOp0WrapProblem) 3937 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3938 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 3939 if (C == Op0 && NoOp1WrapProblem) 3940 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3941 3942 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 3943 // (A - B) u>/u<= A --> B u>/u<= A 3944 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3945 return new ICmpInst(Pred, B, A); 3946 // C u</u>= (C - D) --> C u</u>= D 3947 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3948 return new ICmpInst(Pred, C, D); 3949 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 3950 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 3951 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3952 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 3953 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 3954 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 3955 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3956 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 3957 3958 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 3959 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 3960 return new ICmpInst(Pred, A, C); 3961 3962 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 3963 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 3964 return new ICmpInst(Pred, D, B); 3965 3966 // icmp (0-X) < cst --> x > -cst 3967 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3968 Value *X; 3969 if (match(BO0, m_Neg(m_Value(X)))) 3970 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3971 if (RHSC->isNotMinSignedValue()) 3972 return new ICmpInst(I.getSwappedPredicate(), X, 3973 ConstantExpr::getNeg(RHSC)); 3974 } 3975 3976 BinaryOperator *SRem = nullptr; 3977 // icmp (srem X, Y), Y 3978 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3979 SRem = BO0; 3980 // icmp Y, (srem X, Y) 3981 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3982 Op0 == BO1->getOperand(1)) 3983 SRem = BO1; 3984 if (SRem) { 3985 // We don't check hasOneUse to avoid increasing register pressure because 3986 // the value we use is the same value this instruction was already using. 3987 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3988 default: 3989 break; 3990 case ICmpInst::ICMP_EQ: 3991 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3992 case ICmpInst::ICMP_NE: 3993 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3994 case ICmpInst::ICMP_SGT: 3995 case ICmpInst::ICMP_SGE: 3996 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3997 Constant::getAllOnesValue(SRem->getType())); 3998 case ICmpInst::ICMP_SLT: 3999 case ICmpInst::ICMP_SLE: 4000 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4001 Constant::getNullValue(SRem->getType())); 4002 } 4003 } 4004 4005 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4006 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4007 switch (BO0->getOpcode()) { 4008 default: 4009 break; 4010 case Instruction::Add: 4011 case Instruction::Sub: 4012 case Instruction::Xor: { 4013 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4014 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4015 4016 const APInt *C; 4017 if (match(BO0->getOperand(1), m_APInt(C))) { 4018 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4019 if (C->isSignMask()) { 4020 ICmpInst::Predicate NewPred = 4021 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 4022 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4023 } 4024 4025 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4026 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4027 ICmpInst::Predicate NewPred = 4028 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 4029 NewPred = I.getSwappedPredicate(NewPred); 4030 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4031 } 4032 } 4033 break; 4034 } 4035 case Instruction::Mul: { 4036 if (!I.isEquality()) 4037 break; 4038 4039 const APInt *C; 4040 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 4041 !C->isOneValue()) { 4042 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4043 // Mask = -1 >> count-trailing-zeros(C). 4044 if (unsigned TZs = C->countTrailingZeros()) { 4045 Constant *Mask = ConstantInt::get( 4046 BO0->getType(), 4047 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4048 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4049 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4050 return new ICmpInst(Pred, And1, And2); 4051 } 4052 // If there are no trailing zeros in the multiplier, just eliminate 4053 // the multiplies (no masking is needed): 4054 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 4055 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4056 } 4057 break; 4058 } 4059 case Instruction::UDiv: 4060 case Instruction::LShr: 4061 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4062 break; 4063 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4064 4065 case Instruction::SDiv: 4066 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4067 break; 4068 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4069 4070 case Instruction::AShr: 4071 if (!BO0->isExact() || !BO1->isExact()) 4072 break; 4073 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4074 4075 case Instruction::Shl: { 4076 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4077 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4078 if (!NUW && !NSW) 4079 break; 4080 if (!NSW && I.isSigned()) 4081 break; 4082 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4083 } 4084 } 4085 } 4086 4087 if (BO0) { 4088 // Transform A & (L - 1) `ult` L --> L != 0 4089 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4090 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4091 4092 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4093 auto *Zero = Constant::getNullValue(BO0->getType()); 4094 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4095 } 4096 } 4097 4098 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) 4099 return replaceInstUsesWith(I, V); 4100 4101 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4102 return replaceInstUsesWith(I, V); 4103 4104 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4105 return replaceInstUsesWith(I, V); 4106 4107 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4108 return replaceInstUsesWith(I, V); 4109 4110 return nullptr; 4111 } 4112 4113 /// Fold icmp Pred min|max(X, Y), X. 4114 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4115 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4116 Value *Op0 = Cmp.getOperand(0); 4117 Value *X = Cmp.getOperand(1); 4118 4119 // Canonicalize minimum or maximum operand to LHS of the icmp. 4120 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4121 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4122 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4123 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4124 std::swap(Op0, X); 4125 Pred = Cmp.getSwappedPredicate(); 4126 } 4127 4128 Value *Y; 4129 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4130 // smin(X, Y) == X --> X s<= Y 4131 // smin(X, Y) s>= X --> X s<= Y 4132 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4133 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4134 4135 // smin(X, Y) != X --> X s> Y 4136 // smin(X, Y) s< X --> X s> Y 4137 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4138 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4139 4140 // These cases should be handled in InstSimplify: 4141 // smin(X, Y) s<= X --> true 4142 // smin(X, Y) s> X --> false 4143 return nullptr; 4144 } 4145 4146 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4147 // smax(X, Y) == X --> X s>= Y 4148 // smax(X, Y) s<= X --> X s>= Y 4149 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4150 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4151 4152 // smax(X, Y) != X --> X s< Y 4153 // smax(X, Y) s> X --> X s< Y 4154 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4155 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4156 4157 // These cases should be handled in InstSimplify: 4158 // smax(X, Y) s>= X --> true 4159 // smax(X, Y) s< X --> false 4160 return nullptr; 4161 } 4162 4163 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4164 // umin(X, Y) == X --> X u<= Y 4165 // umin(X, Y) u>= X --> X u<= Y 4166 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4167 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4168 4169 // umin(X, Y) != X --> X u> Y 4170 // umin(X, Y) u< X --> X u> Y 4171 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4172 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4173 4174 // These cases should be handled in InstSimplify: 4175 // umin(X, Y) u<= X --> true 4176 // umin(X, Y) u> X --> false 4177 return nullptr; 4178 } 4179 4180 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4181 // umax(X, Y) == X --> X u>= Y 4182 // umax(X, Y) u<= X --> X u>= Y 4183 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4184 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4185 4186 // umax(X, Y) != X --> X u< Y 4187 // umax(X, Y) u> X --> X u< Y 4188 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4189 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4190 4191 // These cases should be handled in InstSimplify: 4192 // umax(X, Y) u>= X --> true 4193 // umax(X, Y) u< X --> false 4194 return nullptr; 4195 } 4196 4197 return nullptr; 4198 } 4199 4200 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4201 if (!I.isEquality()) 4202 return nullptr; 4203 4204 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4205 const CmpInst::Predicate Pred = I.getPredicate(); 4206 Value *A, *B, *C, *D; 4207 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4208 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4209 Value *OtherVal = A == Op1 ? B : A; 4210 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4211 } 4212 4213 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4214 // A^c1 == C^c2 --> A == C^(c1^c2) 4215 ConstantInt *C1, *C2; 4216 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4217 Op1->hasOneUse()) { 4218 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4219 Value *Xor = Builder.CreateXor(C, NC); 4220 return new ICmpInst(Pred, A, Xor); 4221 } 4222 4223 // A^B == A^D -> B == D 4224 if (A == C) 4225 return new ICmpInst(Pred, B, D); 4226 if (A == D) 4227 return new ICmpInst(Pred, B, C); 4228 if (B == C) 4229 return new ICmpInst(Pred, A, D); 4230 if (B == D) 4231 return new ICmpInst(Pred, A, C); 4232 } 4233 } 4234 4235 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4236 // A == (A^B) -> B == 0 4237 Value *OtherVal = A == Op0 ? B : A; 4238 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4239 } 4240 4241 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4242 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4243 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4244 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4245 4246 if (A == C) { 4247 X = B; 4248 Y = D; 4249 Z = A; 4250 } else if (A == D) { 4251 X = B; 4252 Y = C; 4253 Z = A; 4254 } else if (B == C) { 4255 X = A; 4256 Y = D; 4257 Z = B; 4258 } else if (B == D) { 4259 X = A; 4260 Y = C; 4261 Z = B; 4262 } 4263 4264 if (X) { // Build (X^Y) & Z 4265 Op1 = Builder.CreateXor(X, Y); 4266 Op1 = Builder.CreateAnd(Op1, Z); 4267 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4268 } 4269 } 4270 4271 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4272 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4273 ConstantInt *Cst1; 4274 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4275 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4276 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4277 match(Op1, m_ZExt(m_Value(A))))) { 4278 APInt Pow2 = Cst1->getValue() + 1; 4279 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4280 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4281 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4282 } 4283 4284 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4285 // For lshr and ashr pairs. 4286 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4287 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4288 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4289 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4290 unsigned TypeBits = Cst1->getBitWidth(); 4291 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4292 if (ShAmt < TypeBits && ShAmt != 0) { 4293 ICmpInst::Predicate NewPred = 4294 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4295 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4296 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4297 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4298 } 4299 } 4300 4301 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4302 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4303 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4304 unsigned TypeBits = Cst1->getBitWidth(); 4305 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4306 if (ShAmt < TypeBits && ShAmt != 0) { 4307 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4308 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4309 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4310 I.getName() + ".mask"); 4311 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4312 } 4313 } 4314 4315 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4316 // "icmp (and X, mask), cst" 4317 uint64_t ShAmt = 0; 4318 if (Op0->hasOneUse() && 4319 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4320 match(Op1, m_ConstantInt(Cst1)) && 4321 // Only do this when A has multiple uses. This is most important to do 4322 // when it exposes other optimizations. 4323 !A->hasOneUse()) { 4324 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4325 4326 if (ShAmt < ASize) { 4327 APInt MaskV = 4328 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4329 MaskV <<= ShAmt; 4330 4331 APInt CmpV = Cst1->getValue().zext(ASize); 4332 CmpV <<= ShAmt; 4333 4334 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4335 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4336 } 4337 } 4338 4339 // If both operands are byte-swapped or bit-reversed, just compare the 4340 // original values. 4341 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 4342 // and handle more intrinsics. 4343 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 4344 (match(Op0, m_BitReverse(m_Value(A))) && 4345 match(Op1, m_BitReverse(m_Value(B))))) 4346 return new ICmpInst(Pred, A, B); 4347 4348 // Canonicalize checking for a power-of-2-or-zero value: 4349 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4350 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4351 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4352 m_Deferred(A)))) || 4353 !match(Op1, m_ZeroInt())) 4354 A = nullptr; 4355 4356 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4357 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4358 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4359 A = Op1; 4360 else if (match(Op1, 4361 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4362 A = Op0; 4363 4364 if (A) { 4365 Type *Ty = A->getType(); 4366 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4367 return Pred == ICmpInst::ICMP_EQ 4368 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4369 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4370 } 4371 4372 return nullptr; 4373 } 4374 4375 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4376 InstCombiner::BuilderTy &Builder) { 4377 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4378 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4379 Value *X; 4380 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4381 return nullptr; 4382 4383 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4384 bool IsSignedCmp = ICmp.isSigned(); 4385 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4386 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4387 // and the other is a zext), then we can't handle this. 4388 // TODO: This is too strict. We can handle some predicates (equality?). 4389 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4390 return nullptr; 4391 4392 // Not an extension from the same type? 4393 Value *Y = CastOp1->getOperand(0); 4394 Type *XTy = X->getType(), *YTy = Y->getType(); 4395 if (XTy != YTy) { 4396 // One of the casts must have one use because we are creating a new cast. 4397 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4398 return nullptr; 4399 // Extend the narrower operand to the type of the wider operand. 4400 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4401 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4402 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4403 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4404 else 4405 return nullptr; 4406 } 4407 4408 // (zext X) == (zext Y) --> X == Y 4409 // (sext X) == (sext Y) --> X == Y 4410 if (ICmp.isEquality()) 4411 return new ICmpInst(ICmp.getPredicate(), X, Y); 4412 4413 // A signed comparison of sign extended values simplifies into a 4414 // signed comparison. 4415 if (IsSignedCmp && IsSignedExt) 4416 return new ICmpInst(ICmp.getPredicate(), X, Y); 4417 4418 // The other three cases all fold into an unsigned comparison. 4419 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4420 } 4421 4422 // Below here, we are only folding a compare with constant. 4423 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4424 if (!C) 4425 return nullptr; 4426 4427 // Compute the constant that would happen if we truncated to SrcTy then 4428 // re-extended to DestTy. 4429 Type *SrcTy = CastOp0->getSrcTy(); 4430 Type *DestTy = CastOp0->getDestTy(); 4431 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4432 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4433 4434 // If the re-extended constant didn't change... 4435 if (Res2 == C) { 4436 if (ICmp.isEquality()) 4437 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4438 4439 // A signed comparison of sign extended values simplifies into a 4440 // signed comparison. 4441 if (IsSignedExt && IsSignedCmp) 4442 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4443 4444 // The other three cases all fold into an unsigned comparison. 4445 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4446 } 4447 4448 // The re-extended constant changed, partly changed (in the case of a vector), 4449 // or could not be determined to be equal (in the case of a constant 4450 // expression), so the constant cannot be represented in the shorter type. 4451 // All the cases that fold to true or false will have already been handled 4452 // by SimplifyICmpInst, so only deal with the tricky case. 4453 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4454 return nullptr; 4455 4456 // Is source op positive? 4457 // icmp ult (sext X), C --> icmp sgt X, -1 4458 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4459 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4460 4461 // Is source op negative? 4462 // icmp ugt (sext X), C --> icmp slt X, 0 4463 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4464 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4465 } 4466 4467 /// Handle icmp (cast x), (cast or constant). 4468 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4469 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4470 if (!CastOp0) 4471 return nullptr; 4472 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4473 return nullptr; 4474 4475 Value *Op0Src = CastOp0->getOperand(0); 4476 Type *SrcTy = CastOp0->getSrcTy(); 4477 Type *DestTy = CastOp0->getDestTy(); 4478 4479 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4480 // integer type is the same size as the pointer type. 4481 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4482 if (isa<VectorType>(SrcTy)) { 4483 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4484 DestTy = cast<VectorType>(DestTy)->getElementType(); 4485 } 4486 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4487 }; 4488 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4489 CompatibleSizes(SrcTy, DestTy)) { 4490 Value *NewOp1 = nullptr; 4491 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4492 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4493 if (PtrSrc->getType()->getPointerAddressSpace() == 4494 Op0Src->getType()->getPointerAddressSpace()) { 4495 NewOp1 = PtrToIntOp1->getOperand(0); 4496 // If the pointer types don't match, insert a bitcast. 4497 if (Op0Src->getType() != NewOp1->getType()) 4498 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4499 } 4500 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4501 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4502 } 4503 4504 if (NewOp1) 4505 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4506 } 4507 4508 return foldICmpWithZextOrSext(ICmp, Builder); 4509 } 4510 4511 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4512 switch (BinaryOp) { 4513 default: 4514 llvm_unreachable("Unsupported binary op"); 4515 case Instruction::Add: 4516 case Instruction::Sub: 4517 return match(RHS, m_Zero()); 4518 case Instruction::Mul: 4519 return match(RHS, m_One()); 4520 } 4521 } 4522 4523 OverflowResult 4524 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4525 bool IsSigned, Value *LHS, Value *RHS, 4526 Instruction *CxtI) const { 4527 switch (BinaryOp) { 4528 default: 4529 llvm_unreachable("Unsupported binary op"); 4530 case Instruction::Add: 4531 if (IsSigned) 4532 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4533 else 4534 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4535 case Instruction::Sub: 4536 if (IsSigned) 4537 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4538 else 4539 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4540 case Instruction::Mul: 4541 if (IsSigned) 4542 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4543 else 4544 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4545 } 4546 } 4547 4548 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4549 bool IsSigned, Value *LHS, 4550 Value *RHS, Instruction &OrigI, 4551 Value *&Result, 4552 Constant *&Overflow) { 4553 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4554 std::swap(LHS, RHS); 4555 4556 // If the overflow check was an add followed by a compare, the insertion point 4557 // may be pointing to the compare. We want to insert the new instructions 4558 // before the add in case there are uses of the add between the add and the 4559 // compare. 4560 Builder.SetInsertPoint(&OrigI); 4561 4562 if (isNeutralValue(BinaryOp, RHS)) { 4563 Result = LHS; 4564 Overflow = Builder.getFalse(); 4565 return true; 4566 } 4567 4568 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4569 case OverflowResult::MayOverflow: 4570 return false; 4571 case OverflowResult::AlwaysOverflowsLow: 4572 case OverflowResult::AlwaysOverflowsHigh: 4573 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4574 Result->takeName(&OrigI); 4575 Overflow = Builder.getTrue(); 4576 return true; 4577 case OverflowResult::NeverOverflows: 4578 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4579 Result->takeName(&OrigI); 4580 Overflow = Builder.getFalse(); 4581 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4582 if (IsSigned) 4583 Inst->setHasNoSignedWrap(); 4584 else 4585 Inst->setHasNoUnsignedWrap(); 4586 } 4587 return true; 4588 } 4589 4590 llvm_unreachable("Unexpected overflow result"); 4591 } 4592 4593 /// Recognize and process idiom involving test for multiplication 4594 /// overflow. 4595 /// 4596 /// The caller has matched a pattern of the form: 4597 /// I = cmp u (mul(zext A, zext B), V 4598 /// The function checks if this is a test for overflow and if so replaces 4599 /// multiplication with call to 'mul.with.overflow' intrinsic. 4600 /// 4601 /// \param I Compare instruction. 4602 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4603 /// the compare instruction. Must be of integer type. 4604 /// \param OtherVal The other argument of compare instruction. 4605 /// \returns Instruction which must replace the compare instruction, NULL if no 4606 /// replacement required. 4607 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4608 Value *OtherVal, 4609 InstCombinerImpl &IC) { 4610 // Don't bother doing this transformation for pointers, don't do it for 4611 // vectors. 4612 if (!isa<IntegerType>(MulVal->getType())) 4613 return nullptr; 4614 4615 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4616 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4617 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4618 if (!MulInstr) 4619 return nullptr; 4620 assert(MulInstr->getOpcode() == Instruction::Mul); 4621 4622 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4623 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4624 assert(LHS->getOpcode() == Instruction::ZExt); 4625 assert(RHS->getOpcode() == Instruction::ZExt); 4626 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4627 4628 // Calculate type and width of the result produced by mul.with.overflow. 4629 Type *TyA = A->getType(), *TyB = B->getType(); 4630 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4631 WidthB = TyB->getPrimitiveSizeInBits(); 4632 unsigned MulWidth; 4633 Type *MulType; 4634 if (WidthB > WidthA) { 4635 MulWidth = WidthB; 4636 MulType = TyB; 4637 } else { 4638 MulWidth = WidthA; 4639 MulType = TyA; 4640 } 4641 4642 // In order to replace the original mul with a narrower mul.with.overflow, 4643 // all uses must ignore upper bits of the product. The number of used low 4644 // bits must be not greater than the width of mul.with.overflow. 4645 if (MulVal->hasNUsesOrMore(2)) 4646 for (User *U : MulVal->users()) { 4647 if (U == &I) 4648 continue; 4649 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4650 // Check if truncation ignores bits above MulWidth. 4651 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4652 if (TruncWidth > MulWidth) 4653 return nullptr; 4654 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4655 // Check if AND ignores bits above MulWidth. 4656 if (BO->getOpcode() != Instruction::And) 4657 return nullptr; 4658 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4659 const APInt &CVal = CI->getValue(); 4660 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4661 return nullptr; 4662 } else { 4663 // In this case we could have the operand of the binary operation 4664 // being defined in another block, and performing the replacement 4665 // could break the dominance relation. 4666 return nullptr; 4667 } 4668 } else { 4669 // Other uses prohibit this transformation. 4670 return nullptr; 4671 } 4672 } 4673 4674 // Recognize patterns 4675 switch (I.getPredicate()) { 4676 case ICmpInst::ICMP_EQ: 4677 case ICmpInst::ICMP_NE: 4678 // Recognize pattern: 4679 // mulval = mul(zext A, zext B) 4680 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4681 ConstantInt *CI; 4682 Value *ValToMask; 4683 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4684 if (ValToMask != MulVal) 4685 return nullptr; 4686 const APInt &CVal = CI->getValue() + 1; 4687 if (CVal.isPowerOf2()) { 4688 unsigned MaskWidth = CVal.logBase2(); 4689 if (MaskWidth == MulWidth) 4690 break; // Recognized 4691 } 4692 } 4693 return nullptr; 4694 4695 case ICmpInst::ICMP_UGT: 4696 // Recognize pattern: 4697 // mulval = mul(zext A, zext B) 4698 // cmp ugt mulval, max 4699 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4700 APInt MaxVal = APInt::getMaxValue(MulWidth); 4701 MaxVal = MaxVal.zext(CI->getBitWidth()); 4702 if (MaxVal.eq(CI->getValue())) 4703 break; // Recognized 4704 } 4705 return nullptr; 4706 4707 case ICmpInst::ICMP_UGE: 4708 // Recognize pattern: 4709 // mulval = mul(zext A, zext B) 4710 // cmp uge mulval, max+1 4711 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4712 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4713 if (MaxVal.eq(CI->getValue())) 4714 break; // Recognized 4715 } 4716 return nullptr; 4717 4718 case ICmpInst::ICMP_ULE: 4719 // Recognize pattern: 4720 // mulval = mul(zext A, zext B) 4721 // cmp ule mulval, max 4722 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4723 APInt MaxVal = APInt::getMaxValue(MulWidth); 4724 MaxVal = MaxVal.zext(CI->getBitWidth()); 4725 if (MaxVal.eq(CI->getValue())) 4726 break; // Recognized 4727 } 4728 return nullptr; 4729 4730 case ICmpInst::ICMP_ULT: 4731 // Recognize pattern: 4732 // mulval = mul(zext A, zext B) 4733 // cmp ule mulval, max + 1 4734 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4735 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4736 if (MaxVal.eq(CI->getValue())) 4737 break; // Recognized 4738 } 4739 return nullptr; 4740 4741 default: 4742 return nullptr; 4743 } 4744 4745 InstCombiner::BuilderTy &Builder = IC.Builder; 4746 Builder.SetInsertPoint(MulInstr); 4747 4748 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4749 Value *MulA = A, *MulB = B; 4750 if (WidthA < MulWidth) 4751 MulA = Builder.CreateZExt(A, MulType); 4752 if (WidthB < MulWidth) 4753 MulB = Builder.CreateZExt(B, MulType); 4754 Function *F = Intrinsic::getDeclaration( 4755 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4756 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4757 IC.addToWorklist(MulInstr); 4758 4759 // If there are uses of mul result other than the comparison, we know that 4760 // they are truncation or binary AND. Change them to use result of 4761 // mul.with.overflow and adjust properly mask/size. 4762 if (MulVal->hasNUsesOrMore(2)) { 4763 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4764 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4765 User *U = *UI++; 4766 if (U == &I || U == OtherVal) 4767 continue; 4768 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4769 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4770 IC.replaceInstUsesWith(*TI, Mul); 4771 else 4772 TI->setOperand(0, Mul); 4773 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4774 assert(BO->getOpcode() == Instruction::And); 4775 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4776 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4777 APInt ShortMask = CI->getValue().trunc(MulWidth); 4778 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4779 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 4780 IC.replaceInstUsesWith(*BO, Zext); 4781 } else { 4782 llvm_unreachable("Unexpected Binary operation"); 4783 } 4784 IC.addToWorklist(cast<Instruction>(U)); 4785 } 4786 } 4787 if (isa<Instruction>(OtherVal)) 4788 IC.addToWorklist(cast<Instruction>(OtherVal)); 4789 4790 // The original icmp gets replaced with the overflow value, maybe inverted 4791 // depending on predicate. 4792 bool Inverse = false; 4793 switch (I.getPredicate()) { 4794 case ICmpInst::ICMP_NE: 4795 break; 4796 case ICmpInst::ICMP_EQ: 4797 Inverse = true; 4798 break; 4799 case ICmpInst::ICMP_UGT: 4800 case ICmpInst::ICMP_UGE: 4801 if (I.getOperand(0) == MulVal) 4802 break; 4803 Inverse = true; 4804 break; 4805 case ICmpInst::ICMP_ULT: 4806 case ICmpInst::ICMP_ULE: 4807 if (I.getOperand(1) == MulVal) 4808 break; 4809 Inverse = true; 4810 break; 4811 default: 4812 llvm_unreachable("Unexpected predicate"); 4813 } 4814 if (Inverse) { 4815 Value *Res = Builder.CreateExtractValue(Call, 1); 4816 return BinaryOperator::CreateNot(Res); 4817 } 4818 4819 return ExtractValueInst::Create(Call, 1); 4820 } 4821 4822 /// When performing a comparison against a constant, it is possible that not all 4823 /// the bits in the LHS are demanded. This helper method computes the mask that 4824 /// IS demanded. 4825 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4826 const APInt *RHS; 4827 if (!match(I.getOperand(1), m_APInt(RHS))) 4828 return APInt::getAllOnesValue(BitWidth); 4829 4830 // If this is a normal comparison, it demands all bits. If it is a sign bit 4831 // comparison, it only demands the sign bit. 4832 bool UnusedBit; 4833 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4834 return APInt::getSignMask(BitWidth); 4835 4836 switch (I.getPredicate()) { 4837 // For a UGT comparison, we don't care about any bits that 4838 // correspond to the trailing ones of the comparand. The value of these 4839 // bits doesn't impact the outcome of the comparison, because any value 4840 // greater than the RHS must differ in a bit higher than these due to carry. 4841 case ICmpInst::ICMP_UGT: 4842 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4843 4844 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4845 // Any value less than the RHS must differ in a higher bit because of carries. 4846 case ICmpInst::ICMP_ULT: 4847 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4848 4849 default: 4850 return APInt::getAllOnesValue(BitWidth); 4851 } 4852 } 4853 4854 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4855 /// should be swapped. 4856 /// The decision is based on how many times these two operands are reused 4857 /// as subtract operands and their positions in those instructions. 4858 /// The rationale is that several architectures use the same instruction for 4859 /// both subtract and cmp. Thus, it is better if the order of those operands 4860 /// match. 4861 /// \return true if Op0 and Op1 should be swapped. 4862 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4863 // Filter out pointer values as those cannot appear directly in subtract. 4864 // FIXME: we may want to go through inttoptrs or bitcasts. 4865 if (Op0->getType()->isPointerTy()) 4866 return false; 4867 // If a subtract already has the same operands as a compare, swapping would be 4868 // bad. If a subtract has the same operands as a compare but in reverse order, 4869 // then swapping is good. 4870 int GoodToSwap = 0; 4871 for (const User *U : Op0->users()) { 4872 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4873 GoodToSwap++; 4874 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4875 GoodToSwap--; 4876 } 4877 return GoodToSwap > 0; 4878 } 4879 4880 /// Check that one use is in the same block as the definition and all 4881 /// other uses are in blocks dominated by a given block. 4882 /// 4883 /// \param DI Definition 4884 /// \param UI Use 4885 /// \param DB Block that must dominate all uses of \p DI outside 4886 /// the parent block 4887 /// \return true when \p UI is the only use of \p DI in the parent block 4888 /// and all other uses of \p DI are in blocks dominated by \p DB. 4889 /// 4890 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 4891 const Instruction *UI, 4892 const BasicBlock *DB) const { 4893 assert(DI && UI && "Instruction not defined\n"); 4894 // Ignore incomplete definitions. 4895 if (!DI->getParent()) 4896 return false; 4897 // DI and UI must be in the same block. 4898 if (DI->getParent() != UI->getParent()) 4899 return false; 4900 // Protect from self-referencing blocks. 4901 if (DI->getParent() == DB) 4902 return false; 4903 for (const User *U : DI->users()) { 4904 auto *Usr = cast<Instruction>(U); 4905 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4906 return false; 4907 } 4908 return true; 4909 } 4910 4911 /// Return true when the instruction sequence within a block is select-cmp-br. 4912 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4913 const BasicBlock *BB = SI->getParent(); 4914 if (!BB) 4915 return false; 4916 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4917 if (!BI || BI->getNumSuccessors() != 2) 4918 return false; 4919 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4920 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4921 return false; 4922 return true; 4923 } 4924 4925 /// True when a select result is replaced by one of its operands 4926 /// in select-icmp sequence. This will eventually result in the elimination 4927 /// of the select. 4928 /// 4929 /// \param SI Select instruction 4930 /// \param Icmp Compare instruction 4931 /// \param SIOpd Operand that replaces the select 4932 /// 4933 /// Notes: 4934 /// - The replacement is global and requires dominator information 4935 /// - The caller is responsible for the actual replacement 4936 /// 4937 /// Example: 4938 /// 4939 /// entry: 4940 /// %4 = select i1 %3, %C* %0, %C* null 4941 /// %5 = icmp eq %C* %4, null 4942 /// br i1 %5, label %9, label %7 4943 /// ... 4944 /// ; <label>:7 ; preds = %entry 4945 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4946 /// ... 4947 /// 4948 /// can be transformed to 4949 /// 4950 /// %5 = icmp eq %C* %0, null 4951 /// %6 = select i1 %3, i1 %5, i1 true 4952 /// br i1 %6, label %9, label %7 4953 /// ... 4954 /// ; <label>:7 ; preds = %entry 4955 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4956 /// 4957 /// Similar when the first operand of the select is a constant or/and 4958 /// the compare is for not equal rather than equal. 4959 /// 4960 /// NOTE: The function is only called when the select and compare constants 4961 /// are equal, the optimization can work only for EQ predicates. This is not a 4962 /// major restriction since a NE compare should be 'normalized' to an equal 4963 /// compare, which usually happens in the combiner and test case 4964 /// select-cmp-br.ll checks for it. 4965 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 4966 const ICmpInst *Icmp, 4967 const unsigned SIOpd) { 4968 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4969 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4970 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4971 // The check for the single predecessor is not the best that can be 4972 // done. But it protects efficiently against cases like when SI's 4973 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4974 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4975 // replaced can be reached on either path. So the uniqueness check 4976 // guarantees that the path all uses of SI (outside SI's parent) are on 4977 // is disjoint from all other paths out of SI. But that information 4978 // is more expensive to compute, and the trade-off here is in favor 4979 // of compile-time. It should also be noticed that we check for a single 4980 // predecessor and not only uniqueness. This to handle the situation when 4981 // Succ and Succ1 points to the same basic block. 4982 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4983 NumSel++; 4984 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4985 return true; 4986 } 4987 } 4988 return false; 4989 } 4990 4991 /// Try to fold the comparison based on range information we can get by checking 4992 /// whether bits are known to be zero or one in the inputs. 4993 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 4994 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4995 Type *Ty = Op0->getType(); 4996 ICmpInst::Predicate Pred = I.getPredicate(); 4997 4998 // Get scalar or pointer size. 4999 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5000 ? Ty->getScalarSizeInBits() 5001 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5002 5003 if (!BitWidth) 5004 return nullptr; 5005 5006 KnownBits Op0Known(BitWidth); 5007 KnownBits Op1Known(BitWidth); 5008 5009 if (SimplifyDemandedBits(&I, 0, 5010 getDemandedBitsLHSMask(I, BitWidth), 5011 Op0Known, 0)) 5012 return &I; 5013 5014 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 5015 Op1Known, 0)) 5016 return &I; 5017 5018 // Given the known and unknown bits, compute a range that the LHS could be 5019 // in. Compute the Min, Max and RHS values based on the known bits. For the 5020 // EQ and NE we use unsigned values. 5021 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5022 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5023 if (I.isSigned()) { 5024 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 5025 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 5026 } else { 5027 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 5028 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 5029 } 5030 5031 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5032 // out that the LHS or RHS is a constant. Constant fold this now, so that 5033 // code below can assume that Min != Max. 5034 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5035 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5036 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5037 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5038 5039 // Based on the range information we know about the LHS, see if we can 5040 // simplify this comparison. For example, (x&4) < 8 is always true. 5041 switch (Pred) { 5042 default: 5043 llvm_unreachable("Unknown icmp opcode!"); 5044 case ICmpInst::ICMP_EQ: 5045 case ICmpInst::ICMP_NE: { 5046 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 5047 return Pred == CmpInst::ICMP_EQ 5048 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 5049 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5050 } 5051 5052 // If all bits are known zero except for one, then we know at most one bit 5053 // is set. If the comparison is against zero, then this is a check to see if 5054 // *that* bit is set. 5055 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5056 if (Op1Known.isZero()) { 5057 // If the LHS is an AND with the same constant, look through it. 5058 Value *LHS = nullptr; 5059 const APInt *LHSC; 5060 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5061 *LHSC != Op0KnownZeroInverted) 5062 LHS = Op0; 5063 5064 Value *X; 5065 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5066 APInt ValToCheck = Op0KnownZeroInverted; 5067 Type *XTy = X->getType(); 5068 if (ValToCheck.isPowerOf2()) { 5069 // ((1 << X) & 8) == 0 -> X != 3 5070 // ((1 << X) & 8) != 0 -> X == 3 5071 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5072 auto NewPred = ICmpInst::getInversePredicate(Pred); 5073 return new ICmpInst(NewPred, X, CmpC); 5074 } else if ((++ValToCheck).isPowerOf2()) { 5075 // ((1 << X) & 7) == 0 -> X >= 3 5076 // ((1 << X) & 7) != 0 -> X < 3 5077 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5078 auto NewPred = 5079 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5080 return new ICmpInst(NewPred, X, CmpC); 5081 } 5082 } 5083 5084 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5085 const APInt *CI; 5086 if (Op0KnownZeroInverted.isOneValue() && 5087 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5088 // ((8 >>u X) & 1) == 0 -> X != 3 5089 // ((8 >>u X) & 1) != 0 -> X == 3 5090 unsigned CmpVal = CI->countTrailingZeros(); 5091 auto NewPred = ICmpInst::getInversePredicate(Pred); 5092 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5093 } 5094 } 5095 break; 5096 } 5097 case ICmpInst::ICMP_ULT: { 5098 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5099 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5100 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5101 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5102 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5103 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5104 5105 const APInt *CmpC; 5106 if (match(Op1, m_APInt(CmpC))) { 5107 // A <u C -> A == C-1 if min(A)+1 == C 5108 if (*CmpC == Op0Min + 1) 5109 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5110 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5111 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5112 // exceeds the log2 of C. 5113 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5114 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5115 Constant::getNullValue(Op1->getType())); 5116 } 5117 break; 5118 } 5119 case ICmpInst::ICMP_UGT: { 5120 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5121 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5122 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5123 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5124 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5125 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5126 5127 const APInt *CmpC; 5128 if (match(Op1, m_APInt(CmpC))) { 5129 // A >u C -> A == C+1 if max(a)-1 == C 5130 if (*CmpC == Op0Max - 1) 5131 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5132 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5133 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5134 // exceeds the log2 of C. 5135 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5136 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5137 Constant::getNullValue(Op1->getType())); 5138 } 5139 break; 5140 } 5141 case ICmpInst::ICMP_SLT: { 5142 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5143 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5144 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5145 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5146 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5147 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5148 const APInt *CmpC; 5149 if (match(Op1, m_APInt(CmpC))) { 5150 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5151 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5152 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5153 } 5154 break; 5155 } 5156 case ICmpInst::ICMP_SGT: { 5157 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5158 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5159 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5160 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5161 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5162 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5163 const APInt *CmpC; 5164 if (match(Op1, m_APInt(CmpC))) { 5165 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5166 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5167 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5168 } 5169 break; 5170 } 5171 case ICmpInst::ICMP_SGE: 5172 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5173 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5174 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5175 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5176 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5177 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5178 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5179 break; 5180 case ICmpInst::ICMP_SLE: 5181 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5182 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5183 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5184 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5185 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5186 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5187 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5188 break; 5189 case ICmpInst::ICMP_UGE: 5190 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5191 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5192 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5193 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5194 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5195 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5196 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5197 break; 5198 case ICmpInst::ICMP_ULE: 5199 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5200 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5201 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5202 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5203 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5204 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5205 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5206 break; 5207 } 5208 5209 // Turn a signed comparison into an unsigned one if both operands are known to 5210 // have the same sign. 5211 if (I.isSigned() && 5212 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5213 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5214 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5215 5216 return nullptr; 5217 } 5218 5219 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5220 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5221 Constant *C) { 5222 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5223 "Only for relational integer predicates."); 5224 5225 Type *Type = C->getType(); 5226 bool IsSigned = ICmpInst::isSigned(Pred); 5227 5228 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5229 bool WillIncrement = 5230 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5231 5232 // Check if the constant operand can be safely incremented/decremented 5233 // without overflowing/underflowing. 5234 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5235 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5236 }; 5237 5238 Constant *SafeReplacementConstant = nullptr; 5239 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5240 // Bail out if the constant can't be safely incremented/decremented. 5241 if (!ConstantIsOk(CI)) 5242 return llvm::None; 5243 } else if (auto *VTy = dyn_cast<VectorType>(Type)) { 5244 unsigned NumElts = VTy->getNumElements(); 5245 for (unsigned i = 0; i != NumElts; ++i) { 5246 Constant *Elt = C->getAggregateElement(i); 5247 if (!Elt) 5248 return llvm::None; 5249 5250 if (isa<UndefValue>(Elt)) 5251 continue; 5252 5253 // Bail out if we can't determine if this constant is min/max or if we 5254 // know that this constant is min/max. 5255 auto *CI = dyn_cast<ConstantInt>(Elt); 5256 if (!CI || !ConstantIsOk(CI)) 5257 return llvm::None; 5258 5259 if (!SafeReplacementConstant) 5260 SafeReplacementConstant = CI; 5261 } 5262 } else { 5263 // ConstantExpr? 5264 return llvm::None; 5265 } 5266 5267 // It may not be safe to change a compare predicate in the presence of 5268 // undefined elements, so replace those elements with the first safe constant 5269 // that we found. 5270 if (C->containsUndefElement()) { 5271 assert(SafeReplacementConstant && "Replacement constant not set"); 5272 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5273 } 5274 5275 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5276 5277 // Increment or decrement the constant. 5278 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5279 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5280 5281 return std::make_pair(NewPred, NewC); 5282 } 5283 5284 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5285 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5286 /// allows them to be folded in visitICmpInst. 5287 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5288 ICmpInst::Predicate Pred = I.getPredicate(); 5289 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5290 InstCombiner::isCanonicalPredicate(Pred)) 5291 return nullptr; 5292 5293 Value *Op0 = I.getOperand(0); 5294 Value *Op1 = I.getOperand(1); 5295 auto *Op1C = dyn_cast<Constant>(Op1); 5296 if (!Op1C) 5297 return nullptr; 5298 5299 auto FlippedStrictness = 5300 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5301 if (!FlippedStrictness) 5302 return nullptr; 5303 5304 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5305 } 5306 5307 /// If we have a comparison with a non-canonical predicate, if we can update 5308 /// all the users, invert the predicate and adjust all the users. 5309 static CmpInst *canonicalizeICmpPredicate(CmpInst &I) { 5310 // Is the predicate already canonical? 5311 CmpInst::Predicate Pred = I.getPredicate(); 5312 if (InstCombiner::isCanonicalPredicate(Pred)) 5313 return nullptr; 5314 5315 // Can all users be adjusted to predicate inversion? 5316 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5317 return nullptr; 5318 5319 // Ok, we can canonicalize comparison! 5320 // Let's first invert the comparison's predicate. 5321 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5322 I.setName(I.getName() + ".not"); 5323 5324 // And now let's adjust every user. 5325 for (User *U : I.users()) { 5326 switch (cast<Instruction>(U)->getOpcode()) { 5327 case Instruction::Select: { 5328 auto *SI = cast<SelectInst>(U); 5329 SI->swapValues(); 5330 SI->swapProfMetadata(); 5331 break; 5332 } 5333 case Instruction::Br: 5334 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 5335 break; 5336 case Instruction::Xor: 5337 U->replaceAllUsesWith(&I); 5338 break; 5339 default: 5340 llvm_unreachable("Got unexpected user - out of sync with " 5341 "canFreelyInvertAllUsersOf() ?"); 5342 } 5343 } 5344 5345 return &I; 5346 } 5347 5348 /// Integer compare with boolean values can always be turned into bitwise ops. 5349 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5350 InstCombiner::BuilderTy &Builder) { 5351 Value *A = I.getOperand(0), *B = I.getOperand(1); 5352 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5353 5354 // A boolean compared to true/false can be simplified to Op0/true/false in 5355 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5356 // Cases not handled by InstSimplify are always 'not' of Op0. 5357 if (match(B, m_Zero())) { 5358 switch (I.getPredicate()) { 5359 case CmpInst::ICMP_EQ: // A == 0 -> !A 5360 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5361 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5362 return BinaryOperator::CreateNot(A); 5363 default: 5364 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5365 } 5366 } else if (match(B, m_One())) { 5367 switch (I.getPredicate()) { 5368 case CmpInst::ICMP_NE: // A != 1 -> !A 5369 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5370 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5371 return BinaryOperator::CreateNot(A); 5372 default: 5373 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5374 } 5375 } 5376 5377 switch (I.getPredicate()) { 5378 default: 5379 llvm_unreachable("Invalid icmp instruction!"); 5380 case ICmpInst::ICMP_EQ: 5381 // icmp eq i1 A, B -> ~(A ^ B) 5382 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5383 5384 case ICmpInst::ICMP_NE: 5385 // icmp ne i1 A, B -> A ^ B 5386 return BinaryOperator::CreateXor(A, B); 5387 5388 case ICmpInst::ICMP_UGT: 5389 // icmp ugt -> icmp ult 5390 std::swap(A, B); 5391 LLVM_FALLTHROUGH; 5392 case ICmpInst::ICMP_ULT: 5393 // icmp ult i1 A, B -> ~A & B 5394 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5395 5396 case ICmpInst::ICMP_SGT: 5397 // icmp sgt -> icmp slt 5398 std::swap(A, B); 5399 LLVM_FALLTHROUGH; 5400 case ICmpInst::ICMP_SLT: 5401 // icmp slt i1 A, B -> A & ~B 5402 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5403 5404 case ICmpInst::ICMP_UGE: 5405 // icmp uge -> icmp ule 5406 std::swap(A, B); 5407 LLVM_FALLTHROUGH; 5408 case ICmpInst::ICMP_ULE: 5409 // icmp ule i1 A, B -> ~A | B 5410 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5411 5412 case ICmpInst::ICMP_SGE: 5413 // icmp sge -> icmp sle 5414 std::swap(A, B); 5415 LLVM_FALLTHROUGH; 5416 case ICmpInst::ICMP_SLE: 5417 // icmp sle i1 A, B -> A | ~B 5418 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5419 } 5420 } 5421 5422 // Transform pattern like: 5423 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5424 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5425 // Into: 5426 // (X l>> Y) != 0 5427 // (X l>> Y) == 0 5428 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5429 InstCombiner::BuilderTy &Builder) { 5430 ICmpInst::Predicate Pred, NewPred; 5431 Value *X, *Y; 5432 if (match(&Cmp, 5433 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5434 switch (Pred) { 5435 case ICmpInst::ICMP_ULE: 5436 NewPred = ICmpInst::ICMP_NE; 5437 break; 5438 case ICmpInst::ICMP_UGT: 5439 NewPred = ICmpInst::ICMP_EQ; 5440 break; 5441 default: 5442 return nullptr; 5443 } 5444 } else if (match(&Cmp, m_c_ICmp(Pred, 5445 m_OneUse(m_CombineOr( 5446 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5447 m_Add(m_Shl(m_One(), m_Value(Y)), 5448 m_AllOnes()))), 5449 m_Value(X)))) { 5450 // The variant with 'add' is not canonical, (the variant with 'not' is) 5451 // we only get it because it has extra uses, and can't be canonicalized, 5452 5453 switch (Pred) { 5454 case ICmpInst::ICMP_ULT: 5455 NewPred = ICmpInst::ICMP_NE; 5456 break; 5457 case ICmpInst::ICMP_UGE: 5458 NewPred = ICmpInst::ICMP_EQ; 5459 break; 5460 default: 5461 return nullptr; 5462 } 5463 } else 5464 return nullptr; 5465 5466 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5467 Constant *Zero = Constant::getNullValue(NewX->getType()); 5468 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5469 } 5470 5471 static Instruction *foldVectorCmp(CmpInst &Cmp, 5472 InstCombiner::BuilderTy &Builder) { 5473 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5474 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5475 Value *V1, *V2; 5476 ArrayRef<int> M; 5477 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5478 return nullptr; 5479 5480 // If both arguments of the cmp are shuffles that use the same mask and 5481 // shuffle within a single vector, move the shuffle after the cmp: 5482 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5483 Type *V1Ty = V1->getType(); 5484 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5485 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5486 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5487 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5488 } 5489 5490 // Try to canonicalize compare with splatted operand and splat constant. 5491 // TODO: We could generalize this for more than splats. See/use the code in 5492 // InstCombiner::foldVectorBinop(). 5493 Constant *C; 5494 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5495 return nullptr; 5496 5497 // Length-changing splats are ok, so adjust the constants as needed: 5498 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5499 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5500 int MaskSplatIndex; 5501 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5502 // We allow undefs in matching, but this transform removes those for safety. 5503 // Demanded elements analysis should be able to recover some/all of that. 5504 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5505 ScalarC); 5506 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5507 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5508 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), 5509 NewM); 5510 } 5511 5512 return nullptr; 5513 } 5514 5515 // extract(uadd.with.overflow(A, B), 0) ult A 5516 // -> extract(uadd.with.overflow(A, B), 1) 5517 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5518 CmpInst::Predicate Pred = I.getPredicate(); 5519 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5520 5521 Value *UAddOv; 5522 Value *A, *B; 5523 auto UAddOvResultPat = m_ExtractValue<0>( 5524 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5525 if (match(Op0, UAddOvResultPat) && 5526 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5527 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5528 (match(A, m_One()) || match(B, m_One()))) || 5529 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5530 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5531 // extract(uadd.with.overflow(A, B), 0) < A 5532 // extract(uadd.with.overflow(A, 1), 0) == 0 5533 // extract(uadd.with.overflow(A, -1), 0) != -1 5534 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5535 else if (match(Op1, UAddOvResultPat) && 5536 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5537 // A > extract(uadd.with.overflow(A, B), 0) 5538 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5539 else 5540 return nullptr; 5541 5542 return ExtractValueInst::Create(UAddOv, 1); 5543 } 5544 5545 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5546 bool Changed = false; 5547 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5548 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5549 unsigned Op0Cplxity = getComplexity(Op0); 5550 unsigned Op1Cplxity = getComplexity(Op1); 5551 5552 /// Orders the operands of the compare so that they are listed from most 5553 /// complex to least complex. This puts constants before unary operators, 5554 /// before binary operators. 5555 if (Op0Cplxity < Op1Cplxity || 5556 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5557 I.swapOperands(); 5558 std::swap(Op0, Op1); 5559 Changed = true; 5560 } 5561 5562 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5563 return replaceInstUsesWith(I, V); 5564 5565 // Comparing -val or val with non-zero is the same as just comparing val 5566 // ie, abs(val) != 0 -> val != 0 5567 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5568 Value *Cond, *SelectTrue, *SelectFalse; 5569 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5570 m_Value(SelectFalse)))) { 5571 if (Value *V = dyn_castNegVal(SelectTrue)) { 5572 if (V == SelectFalse) 5573 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5574 } 5575 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5576 if (V == SelectTrue) 5577 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5578 } 5579 } 5580 } 5581 5582 if (Op0->getType()->isIntOrIntVectorTy(1)) 5583 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5584 return Res; 5585 5586 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5587 return Res; 5588 5589 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5590 return Res; 5591 5592 if (Instruction *Res = foldICmpWithConstant(I)) 5593 return Res; 5594 5595 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5596 return Res; 5597 5598 if (Instruction *Res = foldICmpBinOp(I, Q)) 5599 return Res; 5600 5601 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5602 return Res; 5603 5604 // Test if the ICmpInst instruction is used exclusively by a select as 5605 // part of a minimum or maximum operation. If so, refrain from doing 5606 // any other folding. This helps out other analyses which understand 5607 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5608 // and CodeGen. And in this case, at least one of the comparison 5609 // operands has at least one user besides the compare (the select), 5610 // which would often largely negate the benefit of folding anyway. 5611 // 5612 // Do the same for the other patterns recognized by matchSelectPattern. 5613 if (I.hasOneUse()) 5614 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5615 Value *A, *B; 5616 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5617 if (SPR.Flavor != SPF_UNKNOWN) 5618 return nullptr; 5619 } 5620 5621 // Do this after checking for min/max to prevent infinite looping. 5622 if (Instruction *Res = foldICmpWithZero(I)) 5623 return Res; 5624 5625 // FIXME: We only do this after checking for min/max to prevent infinite 5626 // looping caused by a reverse canonicalization of these patterns for min/max. 5627 // FIXME: The organization of folds is a mess. These would naturally go into 5628 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5629 // down here after the min/max restriction. 5630 ICmpInst::Predicate Pred = I.getPredicate(); 5631 const APInt *C; 5632 if (match(Op1, m_APInt(C))) { 5633 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5634 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5635 Constant *Zero = Constant::getNullValue(Op0->getType()); 5636 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5637 } 5638 5639 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5640 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5641 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5642 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5643 } 5644 } 5645 5646 if (Instruction *Res = foldICmpInstWithConstant(I)) 5647 return Res; 5648 5649 // Try to match comparison as a sign bit test. Intentionally do this after 5650 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5651 if (Instruction *New = foldSignBitTest(I)) 5652 return New; 5653 5654 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5655 return Res; 5656 5657 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5658 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5659 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5660 return NI; 5661 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5662 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5663 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5664 return NI; 5665 5666 // Try to optimize equality comparisons against alloca-based pointers. 5667 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5668 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5669 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 5670 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5671 return New; 5672 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 5673 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5674 return New; 5675 } 5676 5677 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5678 return Res; 5679 5680 // TODO: Hoist this above the min/max bailout. 5681 if (Instruction *R = foldICmpWithCastOp(I)) 5682 return R; 5683 5684 if (Instruction *Res = foldICmpWithMinMax(I)) 5685 return Res; 5686 5687 { 5688 Value *A, *B; 5689 // Transform (A & ~B) == 0 --> (A & B) != 0 5690 // and (A & ~B) != 0 --> (A & B) == 0 5691 // if A is a power of 2. 5692 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5693 match(Op1, m_Zero()) && 5694 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5695 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5696 Op1); 5697 5698 // ~X < ~Y --> Y < X 5699 // ~X < C --> X > ~C 5700 if (match(Op0, m_Not(m_Value(A)))) { 5701 if (match(Op1, m_Not(m_Value(B)))) 5702 return new ICmpInst(I.getPredicate(), B, A); 5703 5704 const APInt *C; 5705 if (match(Op1, m_APInt(C))) 5706 return new ICmpInst(I.getSwappedPredicate(), A, 5707 ConstantInt::get(Op1->getType(), ~(*C))); 5708 } 5709 5710 Instruction *AddI = nullptr; 5711 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5712 m_Instruction(AddI))) && 5713 isa<IntegerType>(A->getType())) { 5714 Value *Result; 5715 Constant *Overflow; 5716 // m_UAddWithOverflow can match patterns that do not include an explicit 5717 // "add" instruction, so check the opcode of the matched op. 5718 if (AddI->getOpcode() == Instruction::Add && 5719 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 5720 Result, Overflow)) { 5721 replaceInstUsesWith(*AddI, Result); 5722 eraseInstFromFunction(*AddI); 5723 return replaceInstUsesWith(I, Overflow); 5724 } 5725 } 5726 5727 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5728 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5729 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5730 return R; 5731 } 5732 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5733 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5734 return R; 5735 } 5736 } 5737 5738 if (Instruction *Res = foldICmpEquality(I)) 5739 return Res; 5740 5741 if (Instruction *Res = foldICmpOfUAddOv(I)) 5742 return Res; 5743 5744 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5745 // an i1 which indicates whether or not we successfully did the swap. 5746 // 5747 // Replace comparisons between the old value and the expected value with the 5748 // indicator that 'cmpxchg' returns. 5749 // 5750 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5751 // spuriously fail. In those cases, the old value may equal the expected 5752 // value but it is possible for the swap to not occur. 5753 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5754 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5755 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5756 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5757 !ACXI->isWeak()) 5758 return ExtractValueInst::Create(ACXI, 1); 5759 5760 { 5761 Value *X; 5762 const APInt *C; 5763 // icmp X+Cst, X 5764 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5765 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5766 5767 // icmp X, X+Cst 5768 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5769 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5770 } 5771 5772 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5773 return Res; 5774 5775 if (I.getType()->isVectorTy()) 5776 if (Instruction *Res = foldVectorCmp(I, Builder)) 5777 return Res; 5778 5779 return Changed ? &I : nullptr; 5780 } 5781 5782 /// Fold fcmp ([us]itofp x, cst) if possible. 5783 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 5784 Instruction *LHSI, 5785 Constant *RHSC) { 5786 if (!isa<ConstantFP>(RHSC)) return nullptr; 5787 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5788 5789 // Get the width of the mantissa. We don't want to hack on conversions that 5790 // might lose information from the integer, e.g. "i64 -> float" 5791 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5792 if (MantissaWidth == -1) return nullptr; // Unknown. 5793 5794 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5795 5796 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5797 5798 if (I.isEquality()) { 5799 FCmpInst::Predicate P = I.getPredicate(); 5800 bool IsExact = false; 5801 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5802 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5803 5804 // If the floating point constant isn't an integer value, we know if we will 5805 // ever compare equal / not equal to it. 5806 if (!IsExact) { 5807 // TODO: Can never be -0.0 and other non-representable values 5808 APFloat RHSRoundInt(RHS); 5809 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5810 if (RHS != RHSRoundInt) { 5811 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5812 return replaceInstUsesWith(I, Builder.getFalse()); 5813 5814 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5815 return replaceInstUsesWith(I, Builder.getTrue()); 5816 } 5817 } 5818 5819 // TODO: If the constant is exactly representable, is it always OK to do 5820 // equality compares as integer? 5821 } 5822 5823 // Check to see that the input is converted from an integer type that is small 5824 // enough that preserves all bits. TODO: check here for "known" sign bits. 5825 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5826 unsigned InputSize = IntTy->getScalarSizeInBits(); 5827 5828 // Following test does NOT adjust InputSize downwards for signed inputs, 5829 // because the most negative value still requires all the mantissa bits 5830 // to distinguish it from one less than that value. 5831 if ((int)InputSize > MantissaWidth) { 5832 // Conversion would lose accuracy. Check if loss can impact comparison. 5833 int Exp = ilogb(RHS); 5834 if (Exp == APFloat::IEK_Inf) { 5835 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5836 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5837 // Conversion could create infinity. 5838 return nullptr; 5839 } else { 5840 // Note that if RHS is zero or NaN, then Exp is negative 5841 // and first condition is trivially false. 5842 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5843 // Conversion could affect comparison. 5844 return nullptr; 5845 } 5846 } 5847 5848 // Otherwise, we can potentially simplify the comparison. We know that it 5849 // will always come through as an integer value and we know the constant is 5850 // not a NAN (it would have been previously simplified). 5851 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5852 5853 ICmpInst::Predicate Pred; 5854 switch (I.getPredicate()) { 5855 default: llvm_unreachable("Unexpected predicate!"); 5856 case FCmpInst::FCMP_UEQ: 5857 case FCmpInst::FCMP_OEQ: 5858 Pred = ICmpInst::ICMP_EQ; 5859 break; 5860 case FCmpInst::FCMP_UGT: 5861 case FCmpInst::FCMP_OGT: 5862 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5863 break; 5864 case FCmpInst::FCMP_UGE: 5865 case FCmpInst::FCMP_OGE: 5866 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5867 break; 5868 case FCmpInst::FCMP_ULT: 5869 case FCmpInst::FCMP_OLT: 5870 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5871 break; 5872 case FCmpInst::FCMP_ULE: 5873 case FCmpInst::FCMP_OLE: 5874 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5875 break; 5876 case FCmpInst::FCMP_UNE: 5877 case FCmpInst::FCMP_ONE: 5878 Pred = ICmpInst::ICMP_NE; 5879 break; 5880 case FCmpInst::FCMP_ORD: 5881 return replaceInstUsesWith(I, Builder.getTrue()); 5882 case FCmpInst::FCMP_UNO: 5883 return replaceInstUsesWith(I, Builder.getFalse()); 5884 } 5885 5886 // Now we know that the APFloat is a normal number, zero or inf. 5887 5888 // See if the FP constant is too large for the integer. For example, 5889 // comparing an i8 to 300.0. 5890 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5891 5892 if (!LHSUnsigned) { 5893 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5894 // and large values. 5895 APFloat SMax(RHS.getSemantics()); 5896 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5897 APFloat::rmNearestTiesToEven); 5898 if (SMax < RHS) { // smax < 13123.0 5899 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5900 Pred == ICmpInst::ICMP_SLE) 5901 return replaceInstUsesWith(I, Builder.getTrue()); 5902 return replaceInstUsesWith(I, Builder.getFalse()); 5903 } 5904 } else { 5905 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5906 // +INF and large values. 5907 APFloat UMax(RHS.getSemantics()); 5908 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5909 APFloat::rmNearestTiesToEven); 5910 if (UMax < RHS) { // umax < 13123.0 5911 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5912 Pred == ICmpInst::ICMP_ULE) 5913 return replaceInstUsesWith(I, Builder.getTrue()); 5914 return replaceInstUsesWith(I, Builder.getFalse()); 5915 } 5916 } 5917 5918 if (!LHSUnsigned) { 5919 // See if the RHS value is < SignedMin. 5920 APFloat SMin(RHS.getSemantics()); 5921 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5922 APFloat::rmNearestTiesToEven); 5923 if (SMin > RHS) { // smin > 12312.0 5924 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5925 Pred == ICmpInst::ICMP_SGE) 5926 return replaceInstUsesWith(I, Builder.getTrue()); 5927 return replaceInstUsesWith(I, Builder.getFalse()); 5928 } 5929 } else { 5930 // See if the RHS value is < UnsignedMin. 5931 APFloat UMin(RHS.getSemantics()); 5932 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 5933 APFloat::rmNearestTiesToEven); 5934 if (UMin > RHS) { // umin > 12312.0 5935 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5936 Pred == ICmpInst::ICMP_UGE) 5937 return replaceInstUsesWith(I, Builder.getTrue()); 5938 return replaceInstUsesWith(I, Builder.getFalse()); 5939 } 5940 } 5941 5942 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5943 // [0, UMAX], but it may still be fractional. See if it is fractional by 5944 // casting the FP value to the integer value and back, checking for equality. 5945 // Don't do this for zero, because -0.0 is not fractional. 5946 Constant *RHSInt = LHSUnsigned 5947 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5948 : ConstantExpr::getFPToSI(RHSC, IntTy); 5949 if (!RHS.isZero()) { 5950 bool Equal = LHSUnsigned 5951 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5952 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5953 if (!Equal) { 5954 // If we had a comparison against a fractional value, we have to adjust 5955 // the compare predicate and sometimes the value. RHSC is rounded towards 5956 // zero at this point. 5957 switch (Pred) { 5958 default: llvm_unreachable("Unexpected integer comparison!"); 5959 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5960 return replaceInstUsesWith(I, Builder.getTrue()); 5961 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5962 return replaceInstUsesWith(I, Builder.getFalse()); 5963 case ICmpInst::ICMP_ULE: 5964 // (float)int <= 4.4 --> int <= 4 5965 // (float)int <= -4.4 --> false 5966 if (RHS.isNegative()) 5967 return replaceInstUsesWith(I, Builder.getFalse()); 5968 break; 5969 case ICmpInst::ICMP_SLE: 5970 // (float)int <= 4.4 --> int <= 4 5971 // (float)int <= -4.4 --> int < -4 5972 if (RHS.isNegative()) 5973 Pred = ICmpInst::ICMP_SLT; 5974 break; 5975 case ICmpInst::ICMP_ULT: 5976 // (float)int < -4.4 --> false 5977 // (float)int < 4.4 --> int <= 4 5978 if (RHS.isNegative()) 5979 return replaceInstUsesWith(I, Builder.getFalse()); 5980 Pred = ICmpInst::ICMP_ULE; 5981 break; 5982 case ICmpInst::ICMP_SLT: 5983 // (float)int < -4.4 --> int < -4 5984 // (float)int < 4.4 --> int <= 4 5985 if (!RHS.isNegative()) 5986 Pred = ICmpInst::ICMP_SLE; 5987 break; 5988 case ICmpInst::ICMP_UGT: 5989 // (float)int > 4.4 --> int > 4 5990 // (float)int > -4.4 --> true 5991 if (RHS.isNegative()) 5992 return replaceInstUsesWith(I, Builder.getTrue()); 5993 break; 5994 case ICmpInst::ICMP_SGT: 5995 // (float)int > 4.4 --> int > 4 5996 // (float)int > -4.4 --> int >= -4 5997 if (RHS.isNegative()) 5998 Pred = ICmpInst::ICMP_SGE; 5999 break; 6000 case ICmpInst::ICMP_UGE: 6001 // (float)int >= -4.4 --> true 6002 // (float)int >= 4.4 --> int > 4 6003 if (RHS.isNegative()) 6004 return replaceInstUsesWith(I, Builder.getTrue()); 6005 Pred = ICmpInst::ICMP_UGT; 6006 break; 6007 case ICmpInst::ICMP_SGE: 6008 // (float)int >= -4.4 --> int >= -4 6009 // (float)int >= 4.4 --> int > 4 6010 if (!RHS.isNegative()) 6011 Pred = ICmpInst::ICMP_SGT; 6012 break; 6013 } 6014 } 6015 } 6016 6017 // Lower this FP comparison into an appropriate integer version of the 6018 // comparison. 6019 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6020 } 6021 6022 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6023 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6024 Constant *RHSC) { 6025 // When C is not 0.0 and infinities are not allowed: 6026 // (C / X) < 0.0 is a sign-bit test of X 6027 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6028 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6029 // 6030 // Proof: 6031 // Multiply (C / X) < 0.0 by X * X / C. 6032 // - X is non zero, if it is the flag 'ninf' is violated. 6033 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6034 // the predicate. C is also non zero by definition. 6035 // 6036 // Thus X * X / C is non zero and the transformation is valid. [qed] 6037 6038 FCmpInst::Predicate Pred = I.getPredicate(); 6039 6040 // Check that predicates are valid. 6041 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6042 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6043 return nullptr; 6044 6045 // Check that RHS operand is zero. 6046 if (!match(RHSC, m_AnyZeroFP())) 6047 return nullptr; 6048 6049 // Check fastmath flags ('ninf'). 6050 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6051 return nullptr; 6052 6053 // Check the properties of the dividend. It must not be zero to avoid a 6054 // division by zero (see Proof). 6055 const APFloat *C; 6056 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6057 return nullptr; 6058 6059 if (C->isZero()) 6060 return nullptr; 6061 6062 // Get swapped predicate if necessary. 6063 if (C->isNegative()) 6064 Pred = I.getSwappedPredicate(); 6065 6066 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6067 } 6068 6069 /// Optimize fabs(X) compared with zero. 6070 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6071 Value *X; 6072 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 6073 !match(I.getOperand(1), m_PosZeroFP())) 6074 return nullptr; 6075 6076 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6077 I->setPredicate(P); 6078 return IC.replaceOperand(*I, 0, X); 6079 }; 6080 6081 switch (I.getPredicate()) { 6082 case FCmpInst::FCMP_UGE: 6083 case FCmpInst::FCMP_OLT: 6084 // fabs(X) >= 0.0 --> true 6085 // fabs(X) < 0.0 --> false 6086 llvm_unreachable("fcmp should have simplified"); 6087 6088 case FCmpInst::FCMP_OGT: 6089 // fabs(X) > 0.0 --> X != 0.0 6090 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6091 6092 case FCmpInst::FCMP_UGT: 6093 // fabs(X) u> 0.0 --> X u!= 0.0 6094 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6095 6096 case FCmpInst::FCMP_OLE: 6097 // fabs(X) <= 0.0 --> X == 0.0 6098 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6099 6100 case FCmpInst::FCMP_ULE: 6101 // fabs(X) u<= 0.0 --> X u== 0.0 6102 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6103 6104 case FCmpInst::FCMP_OGE: 6105 // fabs(X) >= 0.0 --> !isnan(X) 6106 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6107 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6108 6109 case FCmpInst::FCMP_ULT: 6110 // fabs(X) u< 0.0 --> isnan(X) 6111 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6112 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6113 6114 case FCmpInst::FCMP_OEQ: 6115 case FCmpInst::FCMP_UEQ: 6116 case FCmpInst::FCMP_ONE: 6117 case FCmpInst::FCMP_UNE: 6118 case FCmpInst::FCMP_ORD: 6119 case FCmpInst::FCMP_UNO: 6120 // Look through the fabs() because it doesn't change anything but the sign. 6121 // fabs(X) == 0.0 --> X == 0.0, 6122 // fabs(X) != 0.0 --> X != 0.0 6123 // isnan(fabs(X)) --> isnan(X) 6124 // !isnan(fabs(X) --> !isnan(X) 6125 return replacePredAndOp0(&I, I.getPredicate(), X); 6126 6127 default: 6128 return nullptr; 6129 } 6130 } 6131 6132 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6133 bool Changed = false; 6134 6135 /// Orders the operands of the compare so that they are listed from most 6136 /// complex to least complex. This puts constants before unary operators, 6137 /// before binary operators. 6138 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6139 I.swapOperands(); 6140 Changed = true; 6141 } 6142 6143 const CmpInst::Predicate Pred = I.getPredicate(); 6144 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6145 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6146 SQ.getWithInstruction(&I))) 6147 return replaceInstUsesWith(I, V); 6148 6149 // Simplify 'fcmp pred X, X' 6150 Type *OpType = Op0->getType(); 6151 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6152 if (Op0 == Op1) { 6153 switch (Pred) { 6154 default: break; 6155 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6156 case FCmpInst::FCMP_ULT: // True if unordered or less than 6157 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6158 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6159 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6160 I.setPredicate(FCmpInst::FCMP_UNO); 6161 I.setOperand(1, Constant::getNullValue(OpType)); 6162 return &I; 6163 6164 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6165 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6166 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6167 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6168 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6169 I.setPredicate(FCmpInst::FCMP_ORD); 6170 I.setOperand(1, Constant::getNullValue(OpType)); 6171 return &I; 6172 } 6173 } 6174 6175 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6176 // then canonicalize the operand to 0.0. 6177 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6178 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6179 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6180 6181 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6182 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6183 } 6184 6185 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6186 Value *X, *Y; 6187 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6188 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6189 6190 // Test if the FCmpInst instruction is used exclusively by a select as 6191 // part of a minimum or maximum operation. If so, refrain from doing 6192 // any other folding. This helps out other analyses which understand 6193 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6194 // and CodeGen. And in this case, at least one of the comparison 6195 // operands has at least one user besides the compare (the select), 6196 // which would often largely negate the benefit of folding anyway. 6197 if (I.hasOneUse()) 6198 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6199 Value *A, *B; 6200 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6201 if (SPR.Flavor != SPF_UNKNOWN) 6202 return nullptr; 6203 } 6204 6205 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6206 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6207 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6208 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6209 6210 // Handle fcmp with instruction LHS and constant RHS. 6211 Instruction *LHSI; 6212 Constant *RHSC; 6213 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6214 switch (LHSI->getOpcode()) { 6215 case Instruction::PHI: 6216 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6217 // block. If in the same block, we're encouraging jump threading. If 6218 // not, we are just pessimizing the code by making an i1 phi. 6219 if (LHSI->getParent() == I.getParent()) 6220 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6221 return NV; 6222 break; 6223 case Instruction::SIToFP: 6224 case Instruction::UIToFP: 6225 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6226 return NV; 6227 break; 6228 case Instruction::FDiv: 6229 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6230 return NV; 6231 break; 6232 case Instruction::Load: 6233 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6234 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6235 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6236 !cast<LoadInst>(LHSI)->isVolatile()) 6237 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6238 return Res; 6239 break; 6240 } 6241 } 6242 6243 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6244 return R; 6245 6246 if (match(Op0, m_FNeg(m_Value(X)))) { 6247 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6248 Constant *C; 6249 if (match(Op1, m_Constant(C))) { 6250 Constant *NegC = ConstantExpr::getFNeg(C); 6251 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6252 } 6253 } 6254 6255 if (match(Op0, m_FPExt(m_Value(X)))) { 6256 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6257 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6258 return new FCmpInst(Pred, X, Y, "", &I); 6259 6260 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6261 const APFloat *C; 6262 if (match(Op1, m_APFloat(C))) { 6263 const fltSemantics &FPSem = 6264 X->getType()->getScalarType()->getFltSemantics(); 6265 bool Lossy; 6266 APFloat TruncC = *C; 6267 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6268 6269 // Avoid lossy conversions and denormals. 6270 // Zero is a special case that's OK to convert. 6271 APFloat Fabs = TruncC; 6272 Fabs.clearSign(); 6273 if (!Lossy && 6274 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6275 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6276 return new FCmpInst(Pred, X, NewC, "", &I); 6277 } 6278 } 6279 } 6280 6281 if (I.getType()->isVectorTy()) 6282 if (Instruction *Res = foldVectorCmp(I, Builder)) 6283 return Res; 6284 6285 return Changed ? &I : nullptr; 6286 } 6287