1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41                             const APInt &In2, bool IsSigned = false) {
42   bool Overflow;
43   if (IsSigned)
44     Result = In1.sadd_ov(In2, Overflow);
45   else
46     Result = In1.uadd_ov(In2, Overflow);
47 
48   return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54                             const APInt &In2, bool IsSigned = false) {
55   bool Overflow;
56   if (IsSigned)
57     Result = In1.ssub_ov(In2, Overflow);
58   else
59     Result = In1.usub_ov(In2, Overflow);
60 
61   return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
66 static bool hasBranchUse(ICmpInst &I) {
67   for (auto *U : I.users())
68     if (isa<BranchInst>(U))
69       return true;
70   return false;
71 }
72 
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78   if (!ICmpInst::isSigned(Pred))
79     return false;
80 
81   if (C.isNullValue())
82     return ICmpInst::isRelational(Pred);
83 
84   if (C.isOneValue()) {
85     if (Pred == ICmpInst::ICMP_SLT) {
86       Pred = ICmpInst::ICMP_SLE;
87       return true;
88     }
89   } else if (C.isAllOnesValue()) {
90     if (Pred == ICmpInst::ICMP_SGT) {
91       Pred = ICmpInst::ICMP_SGE;
92       return true;
93     }
94   }
95 
96   return false;
97 }
98 
99 /// Given a signed integer type and a set of known zero and one bits, compute
100 /// the maximum and minimum values that could have the specified known zero and
101 /// known one bits, returning them in Min/Max.
102 /// TODO: Move to method on KnownBits struct?
103 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
104                                                    APInt &Min, APInt &Max) {
105   assert(Known.getBitWidth() == Min.getBitWidth() &&
106          Known.getBitWidth() == Max.getBitWidth() &&
107          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
108   APInt UnknownBits = ~(Known.Zero|Known.One);
109 
110   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
111   // bit if it is unknown.
112   Min = Known.One;
113   Max = Known.One|UnknownBits;
114 
115   if (UnknownBits.isNegative()) { // Sign bit is unknown
116     Min.setSignBit();
117     Max.clearSignBit();
118   }
119 }
120 
121 /// Given an unsigned integer type and a set of known zero and one bits, compute
122 /// the maximum and minimum values that could have the specified known zero and
123 /// known one bits, returning them in Min/Max.
124 /// TODO: Move to method on KnownBits struct?
125 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
126                                                      APInt &Min, APInt &Max) {
127   assert(Known.getBitWidth() == Min.getBitWidth() &&
128          Known.getBitWidth() == Max.getBitWidth() &&
129          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
130   APInt UnknownBits = ~(Known.Zero|Known.One);
131 
132   // The minimum value is when the unknown bits are all zeros.
133   Min = Known.One;
134   // The maximum value is when the unknown bits are all ones.
135   Max = Known.One|UnknownBits;
136 }
137 
138 /// This is called when we see this pattern:
139 ///   cmp pred (load (gep GV, ...)), cmpcst
140 /// where GV is a global variable with a constant initializer. Try to simplify
141 /// this into some simple computation that does not need the load. For example
142 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
143 ///
144 /// If AndCst is non-null, then the loaded value is masked with that constant
145 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
146 Instruction *
147 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
148                                                GlobalVariable *GV, CmpInst &ICI,
149                                                ConstantInt *AndCst) {
150   Constant *Init = GV->getInitializer();
151   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
152     return nullptr;
153 
154   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
155   // Don't blow up on huge arrays.
156   if (ArrayElementCount > MaxArraySizeForCombine)
157     return nullptr;
158 
159   // There are many forms of this optimization we can handle, for now, just do
160   // the simple index into a single-dimensional array.
161   //
162   // Require: GEP GV, 0, i {{, constant indices}}
163   if (GEP->getNumOperands() < 3 ||
164       !isa<ConstantInt>(GEP->getOperand(1)) ||
165       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
166       isa<Constant>(GEP->getOperand(2)))
167     return nullptr;
168 
169   // Check that indices after the variable are constants and in-range for the
170   // type they index.  Collect the indices.  This is typically for arrays of
171   // structs.
172   SmallVector<unsigned, 4> LaterIndices;
173 
174   Type *EltTy = Init->getType()->getArrayElementType();
175   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
176     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
177     if (!Idx) return nullptr;  // Variable index.
178 
179     uint64_t IdxVal = Idx->getZExtValue();
180     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
181 
182     if (StructType *STy = dyn_cast<StructType>(EltTy))
183       EltTy = STy->getElementType(IdxVal);
184     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
185       if (IdxVal >= ATy->getNumElements()) return nullptr;
186       EltTy = ATy->getElementType();
187     } else {
188       return nullptr; // Unknown type.
189     }
190 
191     LaterIndices.push_back(IdxVal);
192   }
193 
194   enum { Overdefined = -3, Undefined = -2 };
195 
196   // Variables for our state machines.
197 
198   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
199   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
200   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
201   // undefined, otherwise set to the first true element.  SecondTrueElement is
202   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
203   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
204 
205   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
206   // form "i != 47 & i != 87".  Same state transitions as for true elements.
207   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
208 
209   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
210   /// define a state machine that triggers for ranges of values that the index
211   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
212   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
213   /// index in the range (inclusive).  We use -2 for undefined here because we
214   /// use relative comparisons and don't want 0-1 to match -1.
215   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
216 
217   // MagicBitvector - This is a magic bitvector where we set a bit if the
218   // comparison is true for element 'i'.  If there are 64 elements or less in
219   // the array, this will fully represent all the comparison results.
220   uint64_t MagicBitvector = 0;
221 
222   // Scan the array and see if one of our patterns matches.
223   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
224   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
225     Constant *Elt = Init->getAggregateElement(i);
226     if (!Elt) return nullptr;
227 
228     // If this is indexing an array of structures, get the structure element.
229     if (!LaterIndices.empty())
230       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
231 
232     // If the element is masked, handle it.
233     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
234 
235     // Find out if the comparison would be true or false for the i'th element.
236     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
237                                                   CompareRHS, DL, &TLI);
238     // If the result is undef for this element, ignore it.
239     if (isa<UndefValue>(C)) {
240       // Extend range state machines to cover this element in case there is an
241       // undef in the middle of the range.
242       if (TrueRangeEnd == (int)i-1)
243         TrueRangeEnd = i;
244       if (FalseRangeEnd == (int)i-1)
245         FalseRangeEnd = i;
246       continue;
247     }
248 
249     // If we can't compute the result for any of the elements, we have to give
250     // up evaluating the entire conditional.
251     if (!isa<ConstantInt>(C)) return nullptr;
252 
253     // Otherwise, we know if the comparison is true or false for this element,
254     // update our state machines.
255     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
256 
257     // State machine for single/double/range index comparison.
258     if (IsTrueForElt) {
259       // Update the TrueElement state machine.
260       if (FirstTrueElement == Undefined)
261         FirstTrueElement = TrueRangeEnd = i;  // First true element.
262       else {
263         // Update double-compare state machine.
264         if (SecondTrueElement == Undefined)
265           SecondTrueElement = i;
266         else
267           SecondTrueElement = Overdefined;
268 
269         // Update range state machine.
270         if (TrueRangeEnd == (int)i-1)
271           TrueRangeEnd = i;
272         else
273           TrueRangeEnd = Overdefined;
274       }
275     } else {
276       // Update the FalseElement state machine.
277       if (FirstFalseElement == Undefined)
278         FirstFalseElement = FalseRangeEnd = i; // First false element.
279       else {
280         // Update double-compare state machine.
281         if (SecondFalseElement == Undefined)
282           SecondFalseElement = i;
283         else
284           SecondFalseElement = Overdefined;
285 
286         // Update range state machine.
287         if (FalseRangeEnd == (int)i-1)
288           FalseRangeEnd = i;
289         else
290           FalseRangeEnd = Overdefined;
291       }
292     }
293 
294     // If this element is in range, update our magic bitvector.
295     if (i < 64 && IsTrueForElt)
296       MagicBitvector |= 1ULL << i;
297 
298     // If all of our states become overdefined, bail out early.  Since the
299     // predicate is expensive, only check it every 8 elements.  This is only
300     // really useful for really huge arrays.
301     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
302         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
303         FalseRangeEnd == Overdefined)
304       return nullptr;
305   }
306 
307   // Now that we've scanned the entire array, emit our new comparison(s).  We
308   // order the state machines in complexity of the generated code.
309   Value *Idx = GEP->getOperand(2);
310 
311   // If the index is larger than the pointer size of the target, truncate the
312   // index down like the GEP would do implicitly.  We don't have to do this for
313   // an inbounds GEP because the index can't be out of range.
314   if (!GEP->isInBounds()) {
315     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
316     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
317     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
318       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
319   }
320 
321   // If the comparison is only true for one or two elements, emit direct
322   // comparisons.
323   if (SecondTrueElement != Overdefined) {
324     // None true -> false.
325     if (FirstTrueElement == Undefined)
326       return replaceInstUsesWith(ICI, Builder.getFalse());
327 
328     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
329 
330     // True for one element -> 'i == 47'.
331     if (SecondTrueElement == Undefined)
332       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
333 
334     // True for two elements -> 'i == 47 | i == 72'.
335     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
336     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
337     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
338     return BinaryOperator::CreateOr(C1, C2);
339   }
340 
341   // If the comparison is only false for one or two elements, emit direct
342   // comparisons.
343   if (SecondFalseElement != Overdefined) {
344     // None false -> true.
345     if (FirstFalseElement == Undefined)
346       return replaceInstUsesWith(ICI, Builder.getTrue());
347 
348     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
349 
350     // False for one element -> 'i != 47'.
351     if (SecondFalseElement == Undefined)
352       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
353 
354     // False for two elements -> 'i != 47 & i != 72'.
355     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
356     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
357     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
358     return BinaryOperator::CreateAnd(C1, C2);
359   }
360 
361   // If the comparison can be replaced with a range comparison for the elements
362   // where it is true, emit the range check.
363   if (TrueRangeEnd != Overdefined) {
364     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
365 
366     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
367     if (FirstTrueElement) {
368       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
369       Idx = Builder.CreateAdd(Idx, Offs);
370     }
371 
372     Value *End = ConstantInt::get(Idx->getType(),
373                                   TrueRangeEnd-FirstTrueElement+1);
374     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
375   }
376 
377   // False range check.
378   if (FalseRangeEnd != Overdefined) {
379     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
380     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
381     if (FirstFalseElement) {
382       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
383       Idx = Builder.CreateAdd(Idx, Offs);
384     }
385 
386     Value *End = ConstantInt::get(Idx->getType(),
387                                   FalseRangeEnd-FirstFalseElement);
388     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
389   }
390 
391   // If a magic bitvector captures the entire comparison state
392   // of this load, replace it with computation that does:
393   //   ((magic_cst >> i) & 1) != 0
394   {
395     Type *Ty = nullptr;
396 
397     // Look for an appropriate type:
398     // - The type of Idx if the magic fits
399     // - The smallest fitting legal type
400     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
401       Ty = Idx->getType();
402     else
403       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
404 
405     if (Ty) {
406       Value *V = Builder.CreateIntCast(Idx, Ty, false);
407       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
408       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
409       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
410     }
411   }
412 
413   return nullptr;
414 }
415 
416 /// Return a value that can be used to compare the *offset* implied by a GEP to
417 /// zero. For example, if we have &A[i], we want to return 'i' for
418 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
419 /// are involved. The above expression would also be legal to codegen as
420 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
421 /// This latter form is less amenable to optimization though, and we are allowed
422 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
423 ///
424 /// If we can't emit an optimized form for this expression, this returns null.
425 ///
426 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
427                                           const DataLayout &DL) {
428   gep_type_iterator GTI = gep_type_begin(GEP);
429 
430   // Check to see if this gep only has a single variable index.  If so, and if
431   // any constant indices are a multiple of its scale, then we can compute this
432   // in terms of the scale of the variable index.  For example, if the GEP
433   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
434   // because the expression will cross zero at the same point.
435   unsigned i, e = GEP->getNumOperands();
436   int64_t Offset = 0;
437   for (i = 1; i != e; ++i, ++GTI) {
438     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
439       // Compute the aggregate offset of constant indices.
440       if (CI->isZero()) continue;
441 
442       // Handle a struct index, which adds its field offset to the pointer.
443       if (StructType *STy = GTI.getStructTypeOrNull()) {
444         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
445       } else {
446         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
447         Offset += Size*CI->getSExtValue();
448       }
449     } else {
450       // Found our variable index.
451       break;
452     }
453   }
454 
455   // If there are no variable indices, we must have a constant offset, just
456   // evaluate it the general way.
457   if (i == e) return nullptr;
458 
459   Value *VariableIdx = GEP->getOperand(i);
460   // Determine the scale factor of the variable element.  For example, this is
461   // 4 if the variable index is into an array of i32.
462   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
463 
464   // Verify that there are no other variable indices.  If so, emit the hard way.
465   for (++i, ++GTI; i != e; ++i, ++GTI) {
466     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
467     if (!CI) return nullptr;
468 
469     // Compute the aggregate offset of constant indices.
470     if (CI->isZero()) continue;
471 
472     // Handle a struct index, which adds its field offset to the pointer.
473     if (StructType *STy = GTI.getStructTypeOrNull()) {
474       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
475     } else {
476       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
477       Offset += Size*CI->getSExtValue();
478     }
479   }
480 
481   // Okay, we know we have a single variable index, which must be a
482   // pointer/array/vector index.  If there is no offset, life is simple, return
483   // the index.
484   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
485   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
486   if (Offset == 0) {
487     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
488     // we don't need to bother extending: the extension won't affect where the
489     // computation crosses zero.
490     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
491       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
492     }
493     return VariableIdx;
494   }
495 
496   // Otherwise, there is an index.  The computation we will do will be modulo
497   // the pointer size.
498   Offset = SignExtend64(Offset, IntPtrWidth);
499   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
500 
501   // To do this transformation, any constant index must be a multiple of the
502   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
503   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
504   // multiple of the variable scale.
505   int64_t NewOffs = Offset / (int64_t)VariableScale;
506   if (Offset != NewOffs*(int64_t)VariableScale)
507     return nullptr;
508 
509   // Okay, we can do this evaluation.  Start by converting the index to intptr.
510   if (VariableIdx->getType() != IntPtrTy)
511     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
512                                             true /*Signed*/);
513   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
514   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
515 }
516 
517 /// Returns true if we can rewrite Start as a GEP with pointer Base
518 /// and some integer offset. The nodes that need to be re-written
519 /// for this transformation will be added to Explored.
520 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
521                                   const DataLayout &DL,
522                                   SetVector<Value *> &Explored) {
523   SmallVector<Value *, 16> WorkList(1, Start);
524   Explored.insert(Base);
525 
526   // The following traversal gives us an order which can be used
527   // when doing the final transformation. Since in the final
528   // transformation we create the PHI replacement instructions first,
529   // we don't have to get them in any particular order.
530   //
531   // However, for other instructions we will have to traverse the
532   // operands of an instruction first, which means that we have to
533   // do a post-order traversal.
534   while (!WorkList.empty()) {
535     SetVector<PHINode *> PHIs;
536 
537     while (!WorkList.empty()) {
538       if (Explored.size() >= 100)
539         return false;
540 
541       Value *V = WorkList.back();
542 
543       if (Explored.count(V) != 0) {
544         WorkList.pop_back();
545         continue;
546       }
547 
548       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
549           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
550         // We've found some value that we can't explore which is different from
551         // the base. Therefore we can't do this transformation.
552         return false;
553 
554       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
555         auto *CI = dyn_cast<CastInst>(V);
556         if (!CI->isNoopCast(DL))
557           return false;
558 
559         if (Explored.count(CI->getOperand(0)) == 0)
560           WorkList.push_back(CI->getOperand(0));
561       }
562 
563       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
564         // We're limiting the GEP to having one index. This will preserve
565         // the original pointer type. We could handle more cases in the
566         // future.
567         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
568             GEP->getType() != Start->getType())
569           return false;
570 
571         if (Explored.count(GEP->getOperand(0)) == 0)
572           WorkList.push_back(GEP->getOperand(0));
573       }
574 
575       if (WorkList.back() == V) {
576         WorkList.pop_back();
577         // We've finished visiting this node, mark it as such.
578         Explored.insert(V);
579       }
580 
581       if (auto *PN = dyn_cast<PHINode>(V)) {
582         // We cannot transform PHIs on unsplittable basic blocks.
583         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
584           return false;
585         Explored.insert(PN);
586         PHIs.insert(PN);
587       }
588     }
589 
590     // Explore the PHI nodes further.
591     for (auto *PN : PHIs)
592       for (Value *Op : PN->incoming_values())
593         if (Explored.count(Op) == 0)
594           WorkList.push_back(Op);
595   }
596 
597   // Make sure that we can do this. Since we can't insert GEPs in a basic
598   // block before a PHI node, we can't easily do this transformation if
599   // we have PHI node users of transformed instructions.
600   for (Value *Val : Explored) {
601     for (Value *Use : Val->uses()) {
602 
603       auto *PHI = dyn_cast<PHINode>(Use);
604       auto *Inst = dyn_cast<Instruction>(Val);
605 
606       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
607           Explored.count(PHI) == 0)
608         continue;
609 
610       if (PHI->getParent() == Inst->getParent())
611         return false;
612     }
613   }
614   return true;
615 }
616 
617 // Sets the appropriate insert point on Builder where we can add
618 // a replacement Instruction for V (if that is possible).
619 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
620                               bool Before = true) {
621   if (auto *PHI = dyn_cast<PHINode>(V)) {
622     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
623     return;
624   }
625   if (auto *I = dyn_cast<Instruction>(V)) {
626     if (!Before)
627       I = &*std::next(I->getIterator());
628     Builder.SetInsertPoint(I);
629     return;
630   }
631   if (auto *A = dyn_cast<Argument>(V)) {
632     // Set the insertion point in the entry block.
633     BasicBlock &Entry = A->getParent()->getEntryBlock();
634     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
635     return;
636   }
637   // Otherwise, this is a constant and we don't need to set a new
638   // insertion point.
639   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
640 }
641 
642 /// Returns a re-written value of Start as an indexed GEP using Base as a
643 /// pointer.
644 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
645                                  const DataLayout &DL,
646                                  SetVector<Value *> &Explored) {
647   // Perform all the substitutions. This is a bit tricky because we can
648   // have cycles in our use-def chains.
649   // 1. Create the PHI nodes without any incoming values.
650   // 2. Create all the other values.
651   // 3. Add the edges for the PHI nodes.
652   // 4. Emit GEPs to get the original pointers.
653   // 5. Remove the original instructions.
654   Type *IndexType = IntegerType::get(
655       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
656 
657   DenseMap<Value *, Value *> NewInsts;
658   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
659 
660   // Create the new PHI nodes, without adding any incoming values.
661   for (Value *Val : Explored) {
662     if (Val == Base)
663       continue;
664     // Create empty phi nodes. This avoids cyclic dependencies when creating
665     // the remaining instructions.
666     if (auto *PHI = dyn_cast<PHINode>(Val))
667       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
668                                       PHI->getName() + ".idx", PHI);
669   }
670   IRBuilder<> Builder(Base->getContext());
671 
672   // Create all the other instructions.
673   for (Value *Val : Explored) {
674 
675     if (NewInsts.find(Val) != NewInsts.end())
676       continue;
677 
678     if (auto *CI = dyn_cast<CastInst>(Val)) {
679       // Don't get rid of the intermediate variable here; the store can grow
680       // the map which will invalidate the reference to the input value.
681       Value *V = NewInsts[CI->getOperand(0)];
682       NewInsts[CI] = V;
683       continue;
684     }
685     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
686       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
687                                                   : GEP->getOperand(1);
688       setInsertionPoint(Builder, GEP);
689       // Indices might need to be sign extended. GEPs will magically do
690       // this, but we need to do it ourselves here.
691       if (Index->getType()->getScalarSizeInBits() !=
692           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
693         Index = Builder.CreateSExtOrTrunc(
694             Index, NewInsts[GEP->getOperand(0)]->getType(),
695             GEP->getOperand(0)->getName() + ".sext");
696       }
697 
698       auto *Op = NewInsts[GEP->getOperand(0)];
699       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
700         NewInsts[GEP] = Index;
701       else
702         NewInsts[GEP] = Builder.CreateNSWAdd(
703             Op, Index, GEP->getOperand(0)->getName() + ".add");
704       continue;
705     }
706     if (isa<PHINode>(Val))
707       continue;
708 
709     llvm_unreachable("Unexpected instruction type");
710   }
711 
712   // Add the incoming values to the PHI nodes.
713   for (Value *Val : Explored) {
714     if (Val == Base)
715       continue;
716     // All the instructions have been created, we can now add edges to the
717     // phi nodes.
718     if (auto *PHI = dyn_cast<PHINode>(Val)) {
719       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
720       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
721         Value *NewIncoming = PHI->getIncomingValue(I);
722 
723         if (NewInsts.find(NewIncoming) != NewInsts.end())
724           NewIncoming = NewInsts[NewIncoming];
725 
726         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
727       }
728     }
729   }
730 
731   for (Value *Val : Explored) {
732     if (Val == Base)
733       continue;
734 
735     // Depending on the type, for external users we have to emit
736     // a GEP or a GEP + ptrtoint.
737     setInsertionPoint(Builder, Val, false);
738 
739     // If required, create an inttoptr instruction for Base.
740     Value *NewBase = Base;
741     if (!Base->getType()->isPointerTy())
742       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
743                                                Start->getName() + "to.ptr");
744 
745     Value *GEP = Builder.CreateInBoundsGEP(
746         Start->getType()->getPointerElementType(), NewBase,
747         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
748 
749     if (!Val->getType()->isPointerTy()) {
750       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
751                                               Val->getName() + ".conv");
752       GEP = Cast;
753     }
754     Val->replaceAllUsesWith(GEP);
755   }
756 
757   return NewInsts[Start];
758 }
759 
760 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
761 /// the input Value as a constant indexed GEP. Returns a pair containing
762 /// the GEPs Pointer and Index.
763 static std::pair<Value *, Value *>
764 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
765   Type *IndexType = IntegerType::get(V->getContext(),
766                                      DL.getIndexTypeSizeInBits(V->getType()));
767 
768   Constant *Index = ConstantInt::getNullValue(IndexType);
769   while (true) {
770     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
771       // We accept only inbouds GEPs here to exclude the possibility of
772       // overflow.
773       if (!GEP->isInBounds())
774         break;
775       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
776           GEP->getType() == V->getType()) {
777         V = GEP->getOperand(0);
778         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
779         Index = ConstantExpr::getAdd(
780             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
781         continue;
782       }
783       break;
784     }
785     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
786       if (!CI->isNoopCast(DL))
787         break;
788       V = CI->getOperand(0);
789       continue;
790     }
791     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
792       if (!CI->isNoopCast(DL))
793         break;
794       V = CI->getOperand(0);
795       continue;
796     }
797     break;
798   }
799   return {V, Index};
800 }
801 
802 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
803 /// We can look through PHIs, GEPs and casts in order to determine a common base
804 /// between GEPLHS and RHS.
805 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
806                                               ICmpInst::Predicate Cond,
807                                               const DataLayout &DL) {
808   // FIXME: Support vector of pointers.
809   if (GEPLHS->getType()->isVectorTy())
810     return nullptr;
811 
812   if (!GEPLHS->hasAllConstantIndices())
813     return nullptr;
814 
815   // Make sure the pointers have the same type.
816   if (GEPLHS->getType() != RHS->getType())
817     return nullptr;
818 
819   Value *PtrBase, *Index;
820   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
821 
822   // The set of nodes that will take part in this transformation.
823   SetVector<Value *> Nodes;
824 
825   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
826     return nullptr;
827 
828   // We know we can re-write this as
829   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
830   // Since we've only looked through inbouds GEPs we know that we
831   // can't have overflow on either side. We can therefore re-write
832   // this as:
833   //   OFFSET1 cmp OFFSET2
834   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
835 
836   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
837   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
838   // offset. Since Index is the offset of LHS to the base pointer, we will now
839   // compare the offsets instead of comparing the pointers.
840   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
841 }
842 
843 /// Fold comparisons between a GEP instruction and something else. At this point
844 /// we know that the GEP is on the LHS of the comparison.
845 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
846                                            ICmpInst::Predicate Cond,
847                                            Instruction &I) {
848   // Don't transform signed compares of GEPs into index compares. Even if the
849   // GEP is inbounds, the final add of the base pointer can have signed overflow
850   // and would change the result of the icmp.
851   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
852   // the maximum signed value for the pointer type.
853   if (ICmpInst::isSigned(Cond))
854     return nullptr;
855 
856   // Look through bitcasts and addrspacecasts. We do not however want to remove
857   // 0 GEPs.
858   if (!isa<GetElementPtrInst>(RHS))
859     RHS = RHS->stripPointerCasts();
860 
861   Value *PtrBase = GEPLHS->getOperand(0);
862   // FIXME: Support vector pointer GEPs.
863   if (PtrBase == RHS && GEPLHS->isInBounds() &&
864       !GEPLHS->getType()->isVectorTy()) {
865     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
866     // This transformation (ignoring the base and scales) is valid because we
867     // know pointers can't overflow since the gep is inbounds.  See if we can
868     // output an optimized form.
869     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
870 
871     // If not, synthesize the offset the hard way.
872     if (!Offset)
873       Offset = EmitGEPOffset(GEPLHS);
874     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
875                         Constant::getNullValue(Offset->getType()));
876   }
877 
878   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
879       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
880       !NullPointerIsDefined(I.getFunction(),
881                             RHS->getType()->getPointerAddressSpace())) {
882     // For most address spaces, an allocation can't be placed at null, but null
883     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
884     // the only valid inbounds address derived from null, is null itself.
885     // Thus, we have four cases to consider:
886     // 1) Base == nullptr, Offset == 0 -> inbounds, null
887     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
888     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
889     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
890     //
891     // (Note if we're indexing a type of size 0, that simply collapses into one
892     //  of the buckets above.)
893     //
894     // In general, we're allowed to make values less poison (i.e. remove
895     //   sources of full UB), so in this case, we just select between the two
896     //   non-poison cases (1 and 4 above).
897     //
898     // For vectors, we apply the same reasoning on a per-lane basis.
899     auto *Base = GEPLHS->getPointerOperand();
900     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
901       int NumElts = cast<VectorType>(GEPLHS->getType())->getNumElements();
902       Base = Builder.CreateVectorSplat(NumElts, Base);
903     }
904     return new ICmpInst(Cond, Base,
905                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
906                             cast<Constant>(RHS), Base->getType()));
907   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
908     // If the base pointers are different, but the indices are the same, just
909     // compare the base pointer.
910     if (PtrBase != GEPRHS->getOperand(0)) {
911       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
912       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
913                         GEPRHS->getOperand(0)->getType();
914       if (IndicesTheSame)
915         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
916           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
917             IndicesTheSame = false;
918             break;
919           }
920 
921       // If all indices are the same, just compare the base pointers.
922       Type *BaseType = GEPLHS->getOperand(0)->getType();
923       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
924         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
925 
926       // If we're comparing GEPs with two base pointers that only differ in type
927       // and both GEPs have only constant indices or just one use, then fold
928       // the compare with the adjusted indices.
929       // FIXME: Support vector of pointers.
930       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
931           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
932           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
933           PtrBase->stripPointerCasts() ==
934               GEPRHS->getOperand(0)->stripPointerCasts() &&
935           !GEPLHS->getType()->isVectorTy()) {
936         Value *LOffset = EmitGEPOffset(GEPLHS);
937         Value *ROffset = EmitGEPOffset(GEPRHS);
938 
939         // If we looked through an addrspacecast between different sized address
940         // spaces, the LHS and RHS pointers are different sized
941         // integers. Truncate to the smaller one.
942         Type *LHSIndexTy = LOffset->getType();
943         Type *RHSIndexTy = ROffset->getType();
944         if (LHSIndexTy != RHSIndexTy) {
945           if (LHSIndexTy->getPrimitiveSizeInBits() <
946               RHSIndexTy->getPrimitiveSizeInBits()) {
947             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
948           } else
949             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
950         }
951 
952         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
953                                         LOffset, ROffset);
954         return replaceInstUsesWith(I, Cmp);
955       }
956 
957       // Otherwise, the base pointers are different and the indices are
958       // different. Try convert this to an indexed compare by looking through
959       // PHIs/casts.
960       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
961     }
962 
963     // If one of the GEPs has all zero indices, recurse.
964     // FIXME: Handle vector of pointers.
965     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
966       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
967                          ICmpInst::getSwappedPredicate(Cond), I);
968 
969     // If the other GEP has all zero indices, recurse.
970     // FIXME: Handle vector of pointers.
971     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
972       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
973 
974     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
975     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
976       // If the GEPs only differ by one index, compare it.
977       unsigned NumDifferences = 0;  // Keep track of # differences.
978       unsigned DiffOperand = 0;     // The operand that differs.
979       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
980         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
981           Type *LHSType = GEPLHS->getOperand(i)->getType();
982           Type *RHSType = GEPRHS->getOperand(i)->getType();
983           // FIXME: Better support for vector of pointers.
984           if (LHSType->getPrimitiveSizeInBits() !=
985                    RHSType->getPrimitiveSizeInBits() ||
986               (GEPLHS->getType()->isVectorTy() &&
987                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
988             // Irreconcilable differences.
989             NumDifferences = 2;
990             break;
991           }
992 
993           if (NumDifferences++) break;
994           DiffOperand = i;
995         }
996 
997       if (NumDifferences == 0)   // SAME GEP?
998         return replaceInstUsesWith(I, // No comparison is needed here.
999           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
1000 
1001       else if (NumDifferences == 1 && GEPsInBounds) {
1002         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1003         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1004         // Make sure we do a signed comparison here.
1005         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1006       }
1007     }
1008 
1009     // Only lower this if the icmp is the only user of the GEP or if we expect
1010     // the result to fold to a constant!
1011     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1012         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1013       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1014       Value *L = EmitGEPOffset(GEPLHS);
1015       Value *R = EmitGEPOffset(GEPRHS);
1016       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1017     }
1018   }
1019 
1020   // Try convert this to an indexed compare by looking through PHIs/casts as a
1021   // last resort.
1022   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1023 }
1024 
1025 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1026                                              const AllocaInst *Alloca,
1027                                              const Value *Other) {
1028   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1029 
1030   // It would be tempting to fold away comparisons between allocas and any
1031   // pointer not based on that alloca (e.g. an argument). However, even
1032   // though such pointers cannot alias, they can still compare equal.
1033   //
1034   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1035   // doesn't escape we can argue that it's impossible to guess its value, and we
1036   // can therefore act as if any such guesses are wrong.
1037   //
1038   // The code below checks that the alloca doesn't escape, and that it's only
1039   // used in a comparison once (the current instruction). The
1040   // single-comparison-use condition ensures that we're trivially folding all
1041   // comparisons against the alloca consistently, and avoids the risk of
1042   // erroneously folding a comparison of the pointer with itself.
1043 
1044   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1045 
1046   SmallVector<const Use *, 32> Worklist;
1047   for (const Use &U : Alloca->uses()) {
1048     if (Worklist.size() >= MaxIter)
1049       return nullptr;
1050     Worklist.push_back(&U);
1051   }
1052 
1053   unsigned NumCmps = 0;
1054   while (!Worklist.empty()) {
1055     assert(Worklist.size() <= MaxIter);
1056     const Use *U = Worklist.pop_back_val();
1057     const Value *V = U->getUser();
1058     --MaxIter;
1059 
1060     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1061         isa<SelectInst>(V)) {
1062       // Track the uses.
1063     } else if (isa<LoadInst>(V)) {
1064       // Loading from the pointer doesn't escape it.
1065       continue;
1066     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1067       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1068       if (SI->getValueOperand() == U->get())
1069         return nullptr;
1070       continue;
1071     } else if (isa<ICmpInst>(V)) {
1072       if (NumCmps++)
1073         return nullptr; // Found more than one cmp.
1074       continue;
1075     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1076       switch (Intrin->getIntrinsicID()) {
1077         // These intrinsics don't escape or compare the pointer. Memset is safe
1078         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1079         // we don't allow stores, so src cannot point to V.
1080         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1081         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1082           continue;
1083         default:
1084           return nullptr;
1085       }
1086     } else {
1087       return nullptr;
1088     }
1089     for (const Use &U : V->uses()) {
1090       if (Worklist.size() >= MaxIter)
1091         return nullptr;
1092       Worklist.push_back(&U);
1093     }
1094   }
1095 
1096   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1097   return replaceInstUsesWith(
1098       ICI,
1099       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1100 }
1101 
1102 /// Fold "icmp pred (X+C), X".
1103 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1104                                                   ICmpInst::Predicate Pred) {
1105   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1106   // so the values can never be equal.  Similarly for all other "or equals"
1107   // operators.
1108   assert(!!C && "C should not be zero!");
1109 
1110   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1111   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1112   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1113   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1114     Constant *R = ConstantInt::get(X->getType(),
1115                                    APInt::getMaxValue(C.getBitWidth()) - C);
1116     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1117   }
1118 
1119   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1120   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1121   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1122   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1123     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1124                         ConstantInt::get(X->getType(), -C));
1125 
1126   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1127 
1128   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1129   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1130   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1131   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1132   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1133   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1134   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1135     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1136                         ConstantInt::get(X->getType(), SMax - C));
1137 
1138   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1139   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1140   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1141   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1142   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1143   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1144 
1145   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1146   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1147                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1148 }
1149 
1150 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1151 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1152 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1153 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1154                                                      const APInt &AP1,
1155                                                      const APInt &AP2) {
1156   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1157 
1158   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1159     if (I.getPredicate() == I.ICMP_NE)
1160       Pred = CmpInst::getInversePredicate(Pred);
1161     return new ICmpInst(Pred, LHS, RHS);
1162   };
1163 
1164   // Don't bother doing any work for cases which InstSimplify handles.
1165   if (AP2.isNullValue())
1166     return nullptr;
1167 
1168   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1169   if (IsAShr) {
1170     if (AP2.isAllOnesValue())
1171       return nullptr;
1172     if (AP2.isNegative() != AP1.isNegative())
1173       return nullptr;
1174     if (AP2.sgt(AP1))
1175       return nullptr;
1176   }
1177 
1178   if (!AP1)
1179     // 'A' must be large enough to shift out the highest set bit.
1180     return getICmp(I.ICMP_UGT, A,
1181                    ConstantInt::get(A->getType(), AP2.logBase2()));
1182 
1183   if (AP1 == AP2)
1184     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1185 
1186   int Shift;
1187   if (IsAShr && AP1.isNegative())
1188     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1189   else
1190     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1191 
1192   if (Shift > 0) {
1193     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1194       // There are multiple solutions if we are comparing against -1 and the LHS
1195       // of the ashr is not a power of two.
1196       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1197         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1198       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1199     } else if (AP1 == AP2.lshr(Shift)) {
1200       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1201     }
1202   }
1203 
1204   // Shifting const2 will never be equal to const1.
1205   // FIXME: This should always be handled by InstSimplify?
1206   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1207   return replaceInstUsesWith(I, TorF);
1208 }
1209 
1210 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1211 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1212 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1213                                                      const APInt &AP1,
1214                                                      const APInt &AP2) {
1215   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1216 
1217   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1218     if (I.getPredicate() == I.ICMP_NE)
1219       Pred = CmpInst::getInversePredicate(Pred);
1220     return new ICmpInst(Pred, LHS, RHS);
1221   };
1222 
1223   // Don't bother doing any work for cases which InstSimplify handles.
1224   if (AP2.isNullValue())
1225     return nullptr;
1226 
1227   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1228 
1229   if (!AP1 && AP2TrailingZeros != 0)
1230     return getICmp(
1231         I.ICMP_UGE, A,
1232         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1233 
1234   if (AP1 == AP2)
1235     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1236 
1237   // Get the distance between the lowest bits that are set.
1238   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1239 
1240   if (Shift > 0 && AP2.shl(Shift) == AP1)
1241     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1242 
1243   // Shifting const2 will never be equal to const1.
1244   // FIXME: This should always be handled by InstSimplify?
1245   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1246   return replaceInstUsesWith(I, TorF);
1247 }
1248 
1249 /// The caller has matched a pattern of the form:
1250 ///   I = icmp ugt (add (add A, B), CI2), CI1
1251 /// If this is of the form:
1252 ///   sum = a + b
1253 ///   if (sum+128 >u 255)
1254 /// Then replace it with llvm.sadd.with.overflow.i8.
1255 ///
1256 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1257                                           ConstantInt *CI2, ConstantInt *CI1,
1258                                           InstCombinerImpl &IC) {
1259   // The transformation we're trying to do here is to transform this into an
1260   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1261   // with a narrower add, and discard the add-with-constant that is part of the
1262   // range check (if we can't eliminate it, this isn't profitable).
1263 
1264   // In order to eliminate the add-with-constant, the compare can be its only
1265   // use.
1266   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1267   if (!AddWithCst->hasOneUse())
1268     return nullptr;
1269 
1270   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1271   if (!CI2->getValue().isPowerOf2())
1272     return nullptr;
1273   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1274   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1275     return nullptr;
1276 
1277   // The width of the new add formed is 1 more than the bias.
1278   ++NewWidth;
1279 
1280   // Check to see that CI1 is an all-ones value with NewWidth bits.
1281   if (CI1->getBitWidth() == NewWidth ||
1282       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1283     return nullptr;
1284 
1285   // This is only really a signed overflow check if the inputs have been
1286   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1287   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1288   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1289   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1290       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1291     return nullptr;
1292 
1293   // In order to replace the original add with a narrower
1294   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1295   // and truncates that discard the high bits of the add.  Verify that this is
1296   // the case.
1297   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1298   for (User *U : OrigAdd->users()) {
1299     if (U == AddWithCst)
1300       continue;
1301 
1302     // Only accept truncates for now.  We would really like a nice recursive
1303     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1304     // chain to see which bits of a value are actually demanded.  If the
1305     // original add had another add which was then immediately truncated, we
1306     // could still do the transformation.
1307     TruncInst *TI = dyn_cast<TruncInst>(U);
1308     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1309       return nullptr;
1310   }
1311 
1312   // If the pattern matches, truncate the inputs to the narrower type and
1313   // use the sadd_with_overflow intrinsic to efficiently compute both the
1314   // result and the overflow bit.
1315   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1316   Function *F = Intrinsic::getDeclaration(
1317       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1318 
1319   InstCombiner::BuilderTy &Builder = IC.Builder;
1320 
1321   // Put the new code above the original add, in case there are any uses of the
1322   // add between the add and the compare.
1323   Builder.SetInsertPoint(OrigAdd);
1324 
1325   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1326   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1327   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1328   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1329   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1330 
1331   // The inner add was the result of the narrow add, zero extended to the
1332   // wider type.  Replace it with the result computed by the intrinsic.
1333   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1334   IC.eraseInstFromFunction(*OrigAdd);
1335 
1336   // The original icmp gets replaced with the overflow value.
1337   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1338 }
1339 
1340 /// If we have:
1341 ///   icmp eq/ne (urem/srem %x, %y), 0
1342 /// iff %y is a power-of-two, we can replace this with a bit test:
1343 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1344 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1345   // This fold is only valid for equality predicates.
1346   if (!I.isEquality())
1347     return nullptr;
1348   ICmpInst::Predicate Pred;
1349   Value *X, *Y, *Zero;
1350   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1351                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1352     return nullptr;
1353   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1354     return nullptr;
1355   // This may increase instruction count, we don't enforce that Y is a constant.
1356   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1357   Value *Masked = Builder.CreateAnd(X, Mask);
1358   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1359 }
1360 
1361 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1362 /// by one-less-than-bitwidth into a sign test on the original value.
1363 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1364   Instruction *Val;
1365   ICmpInst::Predicate Pred;
1366   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1367     return nullptr;
1368 
1369   Value *X;
1370   Type *XTy;
1371 
1372   Constant *C;
1373   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1374     XTy = X->getType();
1375     unsigned XBitWidth = XTy->getScalarSizeInBits();
1376     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1377                                      APInt(XBitWidth, XBitWidth - 1))))
1378       return nullptr;
1379   } else if (isa<BinaryOperator>(Val) &&
1380              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1381                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1382                   /*AnalyzeForSignBitExtraction=*/true))) {
1383     XTy = X->getType();
1384   } else
1385     return nullptr;
1386 
1387   return ICmpInst::Create(Instruction::ICmp,
1388                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1389                                                     : ICmpInst::ICMP_SLT,
1390                           X, ConstantInt::getNullValue(XTy));
1391 }
1392 
1393 // Handle  icmp pred X, 0
1394 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1395   CmpInst::Predicate Pred = Cmp.getPredicate();
1396   if (!match(Cmp.getOperand(1), m_Zero()))
1397     return nullptr;
1398 
1399   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1400   if (Pred == ICmpInst::ICMP_SGT) {
1401     Value *A, *B;
1402     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1403     if (SPR.Flavor == SPF_SMIN) {
1404       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1405         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1406       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1407         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1408     }
1409   }
1410 
1411   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1412     return New;
1413 
1414   // Given:
1415   //   icmp eq/ne (urem %x, %y), 0
1416   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1417   //   icmp eq/ne %x, 0
1418   Value *X, *Y;
1419   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1420       ICmpInst::isEquality(Pred)) {
1421     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1422     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1423     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1424       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1425   }
1426 
1427   return nullptr;
1428 }
1429 
1430 /// Fold icmp Pred X, C.
1431 /// TODO: This code structure does not make sense. The saturating add fold
1432 /// should be moved to some other helper and extended as noted below (it is also
1433 /// possible that code has been made unnecessary - do we canonicalize IR to
1434 /// overflow/saturating intrinsics or not?).
1435 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1436   // Match the following pattern, which is a common idiom when writing
1437   // overflow-safe integer arithmetic functions. The source performs an addition
1438   // in wider type and explicitly checks for overflow using comparisons against
1439   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1440   //
1441   // TODO: This could probably be generalized to handle other overflow-safe
1442   // operations if we worked out the formulas to compute the appropriate magic
1443   // constants.
1444   //
1445   // sum = a + b
1446   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1447   CmpInst::Predicate Pred = Cmp.getPredicate();
1448   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1449   Value *A, *B;
1450   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1451   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1452       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1453     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1454       return Res;
1455 
1456   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1457   Constant *C = dyn_cast<Constant>(Op1);
1458   if (!C)
1459     return nullptr;
1460 
1461   if (auto *Phi = dyn_cast<PHINode>(Op0))
1462     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1463       Type *Ty = Cmp.getType();
1464       Builder.SetInsertPoint(Phi);
1465       PHINode *NewPhi =
1466           Builder.CreatePHI(Ty, Phi->getNumOperands());
1467       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1468         auto *Input =
1469             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1470         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1471         NewPhi->addIncoming(BoolInput, Predecessor);
1472       }
1473       NewPhi->takeName(&Cmp);
1474       return replaceInstUsesWith(Cmp, NewPhi);
1475     }
1476 
1477   return nullptr;
1478 }
1479 
1480 /// Canonicalize icmp instructions based on dominating conditions.
1481 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1482   // This is a cheap/incomplete check for dominance - just match a single
1483   // predecessor with a conditional branch.
1484   BasicBlock *CmpBB = Cmp.getParent();
1485   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1486   if (!DomBB)
1487     return nullptr;
1488 
1489   Value *DomCond;
1490   BasicBlock *TrueBB, *FalseBB;
1491   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1492     return nullptr;
1493 
1494   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1495          "Predecessor block does not point to successor?");
1496 
1497   // The branch should get simplified. Don't bother simplifying this condition.
1498   if (TrueBB == FalseBB)
1499     return nullptr;
1500 
1501   // Try to simplify this compare to T/F based on the dominating condition.
1502   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1503   if (Imp)
1504     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1505 
1506   CmpInst::Predicate Pred = Cmp.getPredicate();
1507   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1508   ICmpInst::Predicate DomPred;
1509   const APInt *C, *DomC;
1510   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1511       match(Y, m_APInt(C))) {
1512     // We have 2 compares of a variable with constants. Calculate the constant
1513     // ranges of those compares to see if we can transform the 2nd compare:
1514     // DomBB:
1515     //   DomCond = icmp DomPred X, DomC
1516     //   br DomCond, CmpBB, FalseBB
1517     // CmpBB:
1518     //   Cmp = icmp Pred X, C
1519     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1520     ConstantRange DominatingCR =
1521         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1522                           : ConstantRange::makeExactICmpRegion(
1523                                 CmpInst::getInversePredicate(DomPred), *DomC);
1524     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1525     ConstantRange Difference = DominatingCR.difference(CR);
1526     if (Intersection.isEmptySet())
1527       return replaceInstUsesWith(Cmp, Builder.getFalse());
1528     if (Difference.isEmptySet())
1529       return replaceInstUsesWith(Cmp, Builder.getTrue());
1530 
1531     // Canonicalizing a sign bit comparison that gets used in a branch,
1532     // pessimizes codegen by generating branch on zero instruction instead
1533     // of a test and branch. So we avoid canonicalizing in such situations
1534     // because test and branch instruction has better branch displacement
1535     // than compare and branch instruction.
1536     bool UnusedBit;
1537     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1538     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1539       return nullptr;
1540 
1541     if (const APInt *EqC = Intersection.getSingleElement())
1542       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1543     if (const APInt *NeC = Difference.getSingleElement())
1544       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1545   }
1546 
1547   return nullptr;
1548 }
1549 
1550 /// Fold icmp (trunc X, Y), C.
1551 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1552                                                      TruncInst *Trunc,
1553                                                      const APInt &C) {
1554   ICmpInst::Predicate Pred = Cmp.getPredicate();
1555   Value *X = Trunc->getOperand(0);
1556   if (C.isOneValue() && C.getBitWidth() > 1) {
1557     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1558     Value *V = nullptr;
1559     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1560       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1561                           ConstantInt::get(V->getType(), 1));
1562   }
1563 
1564   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1565     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1566     // of the high bits truncated out of x are known.
1567     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1568              SrcBits = X->getType()->getScalarSizeInBits();
1569     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1570 
1571     // If all the high bits are known, we can do this xform.
1572     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1573       // Pull in the high bits from known-ones set.
1574       APInt NewRHS = C.zext(SrcBits);
1575       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1576       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1577     }
1578   }
1579 
1580   return nullptr;
1581 }
1582 
1583 /// Fold icmp (xor X, Y), C.
1584 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1585                                                    BinaryOperator *Xor,
1586                                                    const APInt &C) {
1587   Value *X = Xor->getOperand(0);
1588   Value *Y = Xor->getOperand(1);
1589   const APInt *XorC;
1590   if (!match(Y, m_APInt(XorC)))
1591     return nullptr;
1592 
1593   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1594   // fold the xor.
1595   ICmpInst::Predicate Pred = Cmp.getPredicate();
1596   bool TrueIfSigned = false;
1597   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1598 
1599     // If the sign bit of the XorCst is not set, there is no change to
1600     // the operation, just stop using the Xor.
1601     if (!XorC->isNegative())
1602       return replaceOperand(Cmp, 0, X);
1603 
1604     // Emit the opposite comparison.
1605     if (TrueIfSigned)
1606       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1607                           ConstantInt::getAllOnesValue(X->getType()));
1608     else
1609       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1610                           ConstantInt::getNullValue(X->getType()));
1611   }
1612 
1613   if (Xor->hasOneUse()) {
1614     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1615     if (!Cmp.isEquality() && XorC->isSignMask()) {
1616       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1617                             : Cmp.getSignedPredicate();
1618       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1619     }
1620 
1621     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1622     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1623       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1624                             : Cmp.getSignedPredicate();
1625       Pred = Cmp.getSwappedPredicate(Pred);
1626       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1627     }
1628   }
1629 
1630   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1631   if (Pred == ICmpInst::ICMP_UGT) {
1632     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1633     if (*XorC == ~C && (C + 1).isPowerOf2())
1634       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1635     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1636     if (*XorC == C && (C + 1).isPowerOf2())
1637       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1638   }
1639   if (Pred == ICmpInst::ICMP_ULT) {
1640     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1641     if (*XorC == -C && C.isPowerOf2())
1642       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1643                           ConstantInt::get(X->getType(), ~C));
1644     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1645     if (*XorC == C && (-C).isPowerOf2())
1646       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1647                           ConstantInt::get(X->getType(), ~C));
1648   }
1649   return nullptr;
1650 }
1651 
1652 /// Fold icmp (and (sh X, Y), C2), C1.
1653 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1654                                                 BinaryOperator *And,
1655                                                 const APInt &C1,
1656                                                 const APInt &C2) {
1657   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1658   if (!Shift || !Shift->isShift())
1659     return nullptr;
1660 
1661   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1662   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1663   // code produced by the clang front-end, for bitfield access.
1664   // This seemingly simple opportunity to fold away a shift turns out to be
1665   // rather complicated. See PR17827 for details.
1666   unsigned ShiftOpcode = Shift->getOpcode();
1667   bool IsShl = ShiftOpcode == Instruction::Shl;
1668   const APInt *C3;
1669   if (match(Shift->getOperand(1), m_APInt(C3))) {
1670     APInt NewAndCst, NewCmpCst;
1671     bool AnyCmpCstBitsShiftedOut;
1672     if (ShiftOpcode == Instruction::Shl) {
1673       // For a left shift, we can fold if the comparison is not signed. We can
1674       // also fold a signed comparison if the mask value and comparison value
1675       // are not negative. These constraints may not be obvious, but we can
1676       // prove that they are correct using an SMT solver.
1677       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1678         return nullptr;
1679 
1680       NewCmpCst = C1.lshr(*C3);
1681       NewAndCst = C2.lshr(*C3);
1682       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1683     } else if (ShiftOpcode == Instruction::LShr) {
1684       // For a logical right shift, we can fold if the comparison is not signed.
1685       // We can also fold a signed comparison if the shifted mask value and the
1686       // shifted comparison value are not negative. These constraints may not be
1687       // obvious, but we can prove that they are correct using an SMT solver.
1688       NewCmpCst = C1.shl(*C3);
1689       NewAndCst = C2.shl(*C3);
1690       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1691       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1692         return nullptr;
1693     } else {
1694       // For an arithmetic shift, check that both constants don't use (in a
1695       // signed sense) the top bits being shifted out.
1696       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1697       NewCmpCst = C1.shl(*C3);
1698       NewAndCst = C2.shl(*C3);
1699       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1700       if (NewAndCst.ashr(*C3) != C2)
1701         return nullptr;
1702     }
1703 
1704     if (AnyCmpCstBitsShiftedOut) {
1705       // If we shifted bits out, the fold is not going to work out. As a
1706       // special case, check to see if this means that the result is always
1707       // true or false now.
1708       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1709         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1710       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1711         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1712     } else {
1713       Value *NewAnd = Builder.CreateAnd(
1714           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1715       return new ICmpInst(Cmp.getPredicate(),
1716           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1717     }
1718   }
1719 
1720   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1721   // preferable because it allows the C2 << Y expression to be hoisted out of a
1722   // loop if Y is invariant and X is not.
1723   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1724       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1725     // Compute C2 << Y.
1726     Value *NewShift =
1727         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1728               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1729 
1730     // Compute X & (C2 << Y).
1731     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1732     return replaceOperand(Cmp, 0, NewAnd);
1733   }
1734 
1735   return nullptr;
1736 }
1737 
1738 /// Fold icmp (and X, C2), C1.
1739 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1740                                                      BinaryOperator *And,
1741                                                      const APInt &C1) {
1742   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1743 
1744   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1745   // TODO: We canonicalize to the longer form for scalars because we have
1746   // better analysis/folds for icmp, and codegen may be better with icmp.
1747   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1748       match(And->getOperand(1), m_One()))
1749     return new TruncInst(And->getOperand(0), Cmp.getType());
1750 
1751   const APInt *C2;
1752   Value *X;
1753   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1754     return nullptr;
1755 
1756   // Don't perform the following transforms if the AND has multiple uses
1757   if (!And->hasOneUse())
1758     return nullptr;
1759 
1760   if (Cmp.isEquality() && C1.isNullValue()) {
1761     // Restrict this fold to single-use 'and' (PR10267).
1762     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1763     if (C2->isSignMask()) {
1764       Constant *Zero = Constant::getNullValue(X->getType());
1765       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1766       return new ICmpInst(NewPred, X, Zero);
1767     }
1768 
1769     // Restrict this fold only for single-use 'and' (PR10267).
1770     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1771     if ((~(*C2) + 1).isPowerOf2()) {
1772       Constant *NegBOC =
1773           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1774       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1775       return new ICmpInst(NewPred, X, NegBOC);
1776     }
1777   }
1778 
1779   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1780   // the input width without changing the value produced, eliminate the cast:
1781   //
1782   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1783   //
1784   // We can do this transformation if the constants do not have their sign bits
1785   // set or if it is an equality comparison. Extending a relational comparison
1786   // when we're checking the sign bit would not work.
1787   Value *W;
1788   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1789       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1790     // TODO: Is this a good transform for vectors? Wider types may reduce
1791     // throughput. Should this transform be limited (even for scalars) by using
1792     // shouldChangeType()?
1793     if (!Cmp.getType()->isVectorTy()) {
1794       Type *WideType = W->getType();
1795       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1796       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1797       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1798       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1799       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1800     }
1801   }
1802 
1803   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1804     return I;
1805 
1806   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1807   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1808   //
1809   // iff pred isn't signed
1810   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1811       match(And->getOperand(1), m_One())) {
1812     Constant *One = cast<Constant>(And->getOperand(1));
1813     Value *Or = And->getOperand(0);
1814     Value *A, *B, *LShr;
1815     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1816         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1817       unsigned UsesRemoved = 0;
1818       if (And->hasOneUse())
1819         ++UsesRemoved;
1820       if (Or->hasOneUse())
1821         ++UsesRemoved;
1822       if (LShr->hasOneUse())
1823         ++UsesRemoved;
1824 
1825       // Compute A & ((1 << B) | 1)
1826       Value *NewOr = nullptr;
1827       if (auto *C = dyn_cast<Constant>(B)) {
1828         if (UsesRemoved >= 1)
1829           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1830       } else {
1831         if (UsesRemoved >= 3)
1832           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1833                                                      /*HasNUW=*/true),
1834                                    One, Or->getName());
1835       }
1836       if (NewOr) {
1837         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1838         return replaceOperand(Cmp, 0, NewAnd);
1839       }
1840     }
1841   }
1842 
1843   return nullptr;
1844 }
1845 
1846 /// Fold icmp (and X, Y), C.
1847 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1848                                                    BinaryOperator *And,
1849                                                    const APInt &C) {
1850   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1851     return I;
1852 
1853   // TODO: These all require that Y is constant too, so refactor with the above.
1854 
1855   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1856   Value *X = And->getOperand(0);
1857   Value *Y = And->getOperand(1);
1858   if (auto *LI = dyn_cast<LoadInst>(X))
1859     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1860       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1861         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1862             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1863           ConstantInt *C2 = cast<ConstantInt>(Y);
1864           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1865             return Res;
1866         }
1867 
1868   if (!Cmp.isEquality())
1869     return nullptr;
1870 
1871   // X & -C == -C -> X >  u ~C
1872   // X & -C != -C -> X <= u ~C
1873   //   iff C is a power of 2
1874   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1875     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1876                                                           : CmpInst::ICMP_ULE;
1877     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1878   }
1879 
1880   // (X & C2) == 0 -> (trunc X) >= 0
1881   // (X & C2) != 0 -> (trunc X) <  0
1882   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1883   const APInt *C2;
1884   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1885     int32_t ExactLogBase2 = C2->exactLogBase2();
1886     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1887       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1888       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1889         NTy = FixedVectorType::get(NTy, AndVTy->getNumElements());
1890       Value *Trunc = Builder.CreateTrunc(X, NTy);
1891       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1892                                                             : CmpInst::ICMP_SLT;
1893       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1894     }
1895   }
1896 
1897   return nullptr;
1898 }
1899 
1900 /// Fold icmp (or X, Y), C.
1901 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1902                                                   BinaryOperator *Or,
1903                                                   const APInt &C) {
1904   ICmpInst::Predicate Pred = Cmp.getPredicate();
1905   if (C.isOneValue()) {
1906     // icmp slt signum(V) 1 --> icmp slt V, 1
1907     Value *V = nullptr;
1908     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1909       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1910                           ConstantInt::get(V->getType(), 1));
1911   }
1912 
1913   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1914   const APInt *MaskC;
1915   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1916     if (*MaskC == C && (C + 1).isPowerOf2()) {
1917       // X | C == C --> X <=u C
1918       // X | C != C --> X  >u C
1919       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1920       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1921       return new ICmpInst(Pred, OrOp0, OrOp1);
1922     }
1923 
1924     // More general: canonicalize 'equality with set bits mask' to
1925     // 'equality with clear bits mask'.
1926     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1927     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1928     if (Or->hasOneUse()) {
1929       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1930       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1931       return new ICmpInst(Pred, And, NewC);
1932     }
1933   }
1934 
1935   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1936     return nullptr;
1937 
1938   Value *P, *Q;
1939   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1940     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1941     // -> and (icmp eq P, null), (icmp eq Q, null).
1942     Value *CmpP =
1943         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1944     Value *CmpQ =
1945         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1946     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1947     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1948   }
1949 
1950   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1951   // a shorter form that has more potential to be folded even further.
1952   Value *X1, *X2, *X3, *X4;
1953   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1954       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1955     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1956     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1957     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1958     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1959     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1960     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1961   }
1962 
1963   return nullptr;
1964 }
1965 
1966 /// Fold icmp (mul X, Y), C.
1967 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1968                                                    BinaryOperator *Mul,
1969                                                    const APInt &C) {
1970   const APInt *MulC;
1971   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1972     return nullptr;
1973 
1974   // If this is a test of the sign bit and the multiply is sign-preserving with
1975   // a constant operand, use the multiply LHS operand instead.
1976   ICmpInst::Predicate Pred = Cmp.getPredicate();
1977   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1978     if (MulC->isNegative())
1979       Pred = ICmpInst::getSwappedPredicate(Pred);
1980     return new ICmpInst(Pred, Mul->getOperand(0),
1981                         Constant::getNullValue(Mul->getType()));
1982   }
1983 
1984   // If the multiply does not wrap, try to divide the compare constant by the
1985   // multiplication factor.
1986   if (Cmp.isEquality() && !MulC->isNullValue()) {
1987     // (mul nsw X, MulC) == C --> X == C /s MulC
1988     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
1989       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1990       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1991     }
1992     // (mul nuw X, MulC) == C --> X == C /u MulC
1993     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
1994       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1995       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1996     }
1997   }
1998 
1999   return nullptr;
2000 }
2001 
2002 /// Fold icmp (shl 1, Y), C.
2003 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2004                                    const APInt &C) {
2005   Value *Y;
2006   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2007     return nullptr;
2008 
2009   Type *ShiftType = Shl->getType();
2010   unsigned TypeBits = C.getBitWidth();
2011   bool CIsPowerOf2 = C.isPowerOf2();
2012   ICmpInst::Predicate Pred = Cmp.getPredicate();
2013   if (Cmp.isUnsigned()) {
2014     // (1 << Y) pred C -> Y pred Log2(C)
2015     if (!CIsPowerOf2) {
2016       // (1 << Y) <  30 -> Y <= 4
2017       // (1 << Y) <= 30 -> Y <= 4
2018       // (1 << Y) >= 30 -> Y >  4
2019       // (1 << Y) >  30 -> Y >  4
2020       if (Pred == ICmpInst::ICMP_ULT)
2021         Pred = ICmpInst::ICMP_ULE;
2022       else if (Pred == ICmpInst::ICMP_UGE)
2023         Pred = ICmpInst::ICMP_UGT;
2024     }
2025 
2026     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2027     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2028     unsigned CLog2 = C.logBase2();
2029     if (CLog2 == TypeBits - 1) {
2030       if (Pred == ICmpInst::ICMP_UGE)
2031         Pred = ICmpInst::ICMP_EQ;
2032       else if (Pred == ICmpInst::ICMP_ULT)
2033         Pred = ICmpInst::ICMP_NE;
2034     }
2035     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2036   } else if (Cmp.isSigned()) {
2037     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2038     if (C.isAllOnesValue()) {
2039       // (1 << Y) <= -1 -> Y == 31
2040       if (Pred == ICmpInst::ICMP_SLE)
2041         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2042 
2043       // (1 << Y) >  -1 -> Y != 31
2044       if (Pred == ICmpInst::ICMP_SGT)
2045         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2046     } else if (!C) {
2047       // (1 << Y) <  0 -> Y == 31
2048       // (1 << Y) <= 0 -> Y == 31
2049       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2050         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2051 
2052       // (1 << Y) >= 0 -> Y != 31
2053       // (1 << Y) >  0 -> Y != 31
2054       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2055         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2056     }
2057   } else if (Cmp.isEquality() && CIsPowerOf2) {
2058     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2059   }
2060 
2061   return nullptr;
2062 }
2063 
2064 /// Fold icmp (shl X, Y), C.
2065 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2066                                                    BinaryOperator *Shl,
2067                                                    const APInt &C) {
2068   const APInt *ShiftVal;
2069   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2070     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2071 
2072   const APInt *ShiftAmt;
2073   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2074     return foldICmpShlOne(Cmp, Shl, C);
2075 
2076   // Check that the shift amount is in range. If not, don't perform undefined
2077   // shifts. When the shift is visited, it will be simplified.
2078   unsigned TypeBits = C.getBitWidth();
2079   if (ShiftAmt->uge(TypeBits))
2080     return nullptr;
2081 
2082   ICmpInst::Predicate Pred = Cmp.getPredicate();
2083   Value *X = Shl->getOperand(0);
2084   Type *ShType = Shl->getType();
2085 
2086   // NSW guarantees that we are only shifting out sign bits from the high bits,
2087   // so we can ASHR the compare constant without needing a mask and eliminate
2088   // the shift.
2089   if (Shl->hasNoSignedWrap()) {
2090     if (Pred == ICmpInst::ICMP_SGT) {
2091       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2092       APInt ShiftedC = C.ashr(*ShiftAmt);
2093       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2094     }
2095     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2096         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2097       APInt ShiftedC = C.ashr(*ShiftAmt);
2098       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2099     }
2100     if (Pred == ICmpInst::ICMP_SLT) {
2101       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2102       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2103       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2104       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2105       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2106       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2107       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2108     }
2109     // If this is a signed comparison to 0 and the shift is sign preserving,
2110     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2111     // do that if we're sure to not continue on in this function.
2112     if (isSignTest(Pred, C))
2113       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2114   }
2115 
2116   // NUW guarantees that we are only shifting out zero bits from the high bits,
2117   // so we can LSHR the compare constant without needing a mask and eliminate
2118   // the shift.
2119   if (Shl->hasNoUnsignedWrap()) {
2120     if (Pred == ICmpInst::ICMP_UGT) {
2121       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2122       APInt ShiftedC = C.lshr(*ShiftAmt);
2123       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2124     }
2125     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2126         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2127       APInt ShiftedC = C.lshr(*ShiftAmt);
2128       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2129     }
2130     if (Pred == ICmpInst::ICMP_ULT) {
2131       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2132       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2133       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2134       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2135       assert(C.ugt(0) && "ult 0 should have been eliminated");
2136       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2137       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2138     }
2139   }
2140 
2141   if (Cmp.isEquality() && Shl->hasOneUse()) {
2142     // Strength-reduce the shift into an 'and'.
2143     Constant *Mask = ConstantInt::get(
2144         ShType,
2145         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2146     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2147     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2148     return new ICmpInst(Pred, And, LShrC);
2149   }
2150 
2151   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2152   bool TrueIfSigned = false;
2153   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2154     // (X << 31) <s 0  --> (X & 1) != 0
2155     Constant *Mask = ConstantInt::get(
2156         ShType,
2157         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2158     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2159     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2160                         And, Constant::getNullValue(ShType));
2161   }
2162 
2163   // Simplify 'shl' inequality test into 'and' equality test.
2164   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2165     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2166     if ((C + 1).isPowerOf2() &&
2167         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2168       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2169       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2170                                                      : ICmpInst::ICMP_NE,
2171                           And, Constant::getNullValue(ShType));
2172     }
2173     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2174     if (C.isPowerOf2() &&
2175         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2176       Value *And =
2177           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2178       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2179                                                      : ICmpInst::ICMP_NE,
2180                           And, Constant::getNullValue(ShType));
2181     }
2182   }
2183 
2184   // Transform (icmp pred iM (shl iM %v, N), C)
2185   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2186   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2187   // This enables us to get rid of the shift in favor of a trunc that may be
2188   // free on the target. It has the additional benefit of comparing to a
2189   // smaller constant that may be more target-friendly.
2190   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2191   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2192       DL.isLegalInteger(TypeBits - Amt)) {
2193     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2194     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2195       TruncTy = FixedVectorType::get(TruncTy, ShVTy->getNumElements());
2196     Constant *NewC =
2197         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2198     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2199   }
2200 
2201   return nullptr;
2202 }
2203 
2204 /// Fold icmp ({al}shr X, Y), C.
2205 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2206                                                    BinaryOperator *Shr,
2207                                                    const APInt &C) {
2208   // An exact shr only shifts out zero bits, so:
2209   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2210   Value *X = Shr->getOperand(0);
2211   CmpInst::Predicate Pred = Cmp.getPredicate();
2212   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2213       C.isNullValue())
2214     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2215 
2216   const APInt *ShiftVal;
2217   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2218     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2219 
2220   const APInt *ShiftAmt;
2221   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2222     return nullptr;
2223 
2224   // Check that the shift amount is in range. If not, don't perform undefined
2225   // shifts. When the shift is visited it will be simplified.
2226   unsigned TypeBits = C.getBitWidth();
2227   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2228   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2229     return nullptr;
2230 
2231   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2232   bool IsExact = Shr->isExact();
2233   Type *ShrTy = Shr->getType();
2234   // TODO: If we could guarantee that InstSimplify would handle all of the
2235   // constant-value-based preconditions in the folds below, then we could assert
2236   // those conditions rather than checking them. This is difficult because of
2237   // undef/poison (PR34838).
2238   if (IsAShr) {
2239     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2240       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2241       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2242       APInt ShiftedC = C.shl(ShAmtVal);
2243       if (ShiftedC.ashr(ShAmtVal) == C)
2244         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2245     }
2246     if (Pred == CmpInst::ICMP_SGT) {
2247       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2248       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2249       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2250           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2251         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2252     }
2253   } else {
2254     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2255       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2256       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2257       APInt ShiftedC = C.shl(ShAmtVal);
2258       if (ShiftedC.lshr(ShAmtVal) == C)
2259         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2260     }
2261     if (Pred == CmpInst::ICMP_UGT) {
2262       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2263       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2264       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2265         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2266     }
2267   }
2268 
2269   if (!Cmp.isEquality())
2270     return nullptr;
2271 
2272   // Handle equality comparisons of shift-by-constant.
2273 
2274   // If the comparison constant changes with the shift, the comparison cannot
2275   // succeed (bits of the comparison constant cannot match the shifted value).
2276   // This should be known by InstSimplify and already be folded to true/false.
2277   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2278           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2279          "Expected icmp+shr simplify did not occur.");
2280 
2281   // If the bits shifted out are known zero, compare the unshifted value:
2282   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2283   if (Shr->isExact())
2284     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2285 
2286   if (Shr->hasOneUse()) {
2287     // Canonicalize the shift into an 'and':
2288     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2289     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2290     Constant *Mask = ConstantInt::get(ShrTy, Val);
2291     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2292     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2293   }
2294 
2295   return nullptr;
2296 }
2297 
2298 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2299                                                     BinaryOperator *SRem,
2300                                                     const APInt &C) {
2301   // Match an 'is positive' or 'is negative' comparison of remainder by a
2302   // constant power-of-2 value:
2303   // (X % pow2C) sgt/slt 0
2304   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2305   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2306     return nullptr;
2307 
2308   // TODO: The one-use check is standard because we do not typically want to
2309   //       create longer instruction sequences, but this might be a special-case
2310   //       because srem is not good for analysis or codegen.
2311   if (!SRem->hasOneUse())
2312     return nullptr;
2313 
2314   const APInt *DivisorC;
2315   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2316     return nullptr;
2317 
2318   // Mask off the sign bit and the modulo bits (low-bits).
2319   Type *Ty = SRem->getType();
2320   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2321   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2322   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2323 
2324   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2325   // bit is set. Example:
2326   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2327   if (Pred == ICmpInst::ICMP_SGT)
2328     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2329 
2330   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2331   // bit is set. Example:
2332   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2333   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2334 }
2335 
2336 /// Fold icmp (udiv X, Y), C.
2337 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2338                                                     BinaryOperator *UDiv,
2339                                                     const APInt &C) {
2340   const APInt *C2;
2341   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2342     return nullptr;
2343 
2344   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2345 
2346   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2347   Value *Y = UDiv->getOperand(1);
2348   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2349     assert(!C.isMaxValue() &&
2350            "icmp ugt X, UINT_MAX should have been simplified already.");
2351     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2352                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2353   }
2354 
2355   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2356   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2357     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2358     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2359                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2360   }
2361 
2362   return nullptr;
2363 }
2364 
2365 /// Fold icmp ({su}div X, Y), C.
2366 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2367                                                    BinaryOperator *Div,
2368                                                    const APInt &C) {
2369   // Fold: icmp pred ([us]div X, C2), C -> range test
2370   // Fold this div into the comparison, producing a range check.
2371   // Determine, based on the divide type, what the range is being
2372   // checked.  If there is an overflow on the low or high side, remember
2373   // it, otherwise compute the range [low, hi) bounding the new value.
2374   // See: InsertRangeTest above for the kinds of replacements possible.
2375   const APInt *C2;
2376   if (!match(Div->getOperand(1), m_APInt(C2)))
2377     return nullptr;
2378 
2379   // FIXME: If the operand types don't match the type of the divide
2380   // then don't attempt this transform. The code below doesn't have the
2381   // logic to deal with a signed divide and an unsigned compare (and
2382   // vice versa). This is because (x /s C2) <s C  produces different
2383   // results than (x /s C2) <u C or (x /u C2) <s C or even
2384   // (x /u C2) <u C.  Simply casting the operands and result won't
2385   // work. :(  The if statement below tests that condition and bails
2386   // if it finds it.
2387   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2388   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2389     return nullptr;
2390 
2391   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2392   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2393   // division-by-constant cases should be present, we can not assert that they
2394   // have happened before we reach this icmp instruction.
2395   if (C2->isNullValue() || C2->isOneValue() ||
2396       (DivIsSigned && C2->isAllOnesValue()))
2397     return nullptr;
2398 
2399   // Compute Prod = C * C2. We are essentially solving an equation of
2400   // form X / C2 = C. We solve for X by multiplying C2 and C.
2401   // By solving for X, we can turn this into a range check instead of computing
2402   // a divide.
2403   APInt Prod = C * *C2;
2404 
2405   // Determine if the product overflows by seeing if the product is not equal to
2406   // the divide. Make sure we do the same kind of divide as in the LHS
2407   // instruction that we're folding.
2408   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2409 
2410   ICmpInst::Predicate Pred = Cmp.getPredicate();
2411 
2412   // If the division is known to be exact, then there is no remainder from the
2413   // divide, so the covered range size is unit, otherwise it is the divisor.
2414   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2415 
2416   // Figure out the interval that is being checked.  For example, a comparison
2417   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2418   // Compute this interval based on the constants involved and the signedness of
2419   // the compare/divide.  This computes a half-open interval, keeping track of
2420   // whether either value in the interval overflows.  After analysis each
2421   // overflow variable is set to 0 if it's corresponding bound variable is valid
2422   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2423   int LoOverflow = 0, HiOverflow = 0;
2424   APInt LoBound, HiBound;
2425 
2426   if (!DivIsSigned) {  // udiv
2427     // e.g. X/5 op 3  --> [15, 20)
2428     LoBound = Prod;
2429     HiOverflow = LoOverflow = ProdOV;
2430     if (!HiOverflow) {
2431       // If this is not an exact divide, then many values in the range collapse
2432       // to the same result value.
2433       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2434     }
2435   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2436     if (C.isNullValue()) {       // (X / pos) op 0
2437       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2438       LoBound = -(RangeSize - 1);
2439       HiBound = RangeSize;
2440     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2441       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2442       HiOverflow = LoOverflow = ProdOV;
2443       if (!HiOverflow)
2444         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2445     } else {                       // (X / pos) op neg
2446       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2447       HiBound = Prod + 1;
2448       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2449       if (!LoOverflow) {
2450         APInt DivNeg = -RangeSize;
2451         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2452       }
2453     }
2454   } else if (C2->isNegative()) { // Divisor is < 0.
2455     if (Div->isExact())
2456       RangeSize.negate();
2457     if (C.isNullValue()) { // (X / neg) op 0
2458       // e.g. X/-5 op 0  --> [-4, 5)
2459       LoBound = RangeSize + 1;
2460       HiBound = -RangeSize;
2461       if (HiBound == *C2) {        // -INTMIN = INTMIN
2462         HiOverflow = 1;            // [INTMIN+1, overflow)
2463         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2464       }
2465     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2466       // e.g. X/-5 op 3  --> [-19, -14)
2467       HiBound = Prod + 1;
2468       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2469       if (!LoOverflow)
2470         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2471     } else {                       // (X / neg) op neg
2472       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2473       LoOverflow = HiOverflow = ProdOV;
2474       if (!HiOverflow)
2475         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2476     }
2477 
2478     // Dividing by a negative swaps the condition.  LT <-> GT
2479     Pred = ICmpInst::getSwappedPredicate(Pred);
2480   }
2481 
2482   Value *X = Div->getOperand(0);
2483   switch (Pred) {
2484     default: llvm_unreachable("Unhandled icmp opcode!");
2485     case ICmpInst::ICMP_EQ:
2486       if (LoOverflow && HiOverflow)
2487         return replaceInstUsesWith(Cmp, Builder.getFalse());
2488       if (HiOverflow)
2489         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2490                             ICmpInst::ICMP_UGE, X,
2491                             ConstantInt::get(Div->getType(), LoBound));
2492       if (LoOverflow)
2493         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2494                             ICmpInst::ICMP_ULT, X,
2495                             ConstantInt::get(Div->getType(), HiBound));
2496       return replaceInstUsesWith(
2497           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2498     case ICmpInst::ICMP_NE:
2499       if (LoOverflow && HiOverflow)
2500         return replaceInstUsesWith(Cmp, Builder.getTrue());
2501       if (HiOverflow)
2502         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2503                             ICmpInst::ICMP_ULT, X,
2504                             ConstantInt::get(Div->getType(), LoBound));
2505       if (LoOverflow)
2506         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2507                             ICmpInst::ICMP_UGE, X,
2508                             ConstantInt::get(Div->getType(), HiBound));
2509       return replaceInstUsesWith(Cmp,
2510                                  insertRangeTest(X, LoBound, HiBound,
2511                                                  DivIsSigned, false));
2512     case ICmpInst::ICMP_ULT:
2513     case ICmpInst::ICMP_SLT:
2514       if (LoOverflow == +1)   // Low bound is greater than input range.
2515         return replaceInstUsesWith(Cmp, Builder.getTrue());
2516       if (LoOverflow == -1)   // Low bound is less than input range.
2517         return replaceInstUsesWith(Cmp, Builder.getFalse());
2518       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2519     case ICmpInst::ICMP_UGT:
2520     case ICmpInst::ICMP_SGT:
2521       if (HiOverflow == +1)       // High bound greater than input range.
2522         return replaceInstUsesWith(Cmp, Builder.getFalse());
2523       if (HiOverflow == -1)       // High bound less than input range.
2524         return replaceInstUsesWith(Cmp, Builder.getTrue());
2525       if (Pred == ICmpInst::ICMP_UGT)
2526         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2527                             ConstantInt::get(Div->getType(), HiBound));
2528       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2529                           ConstantInt::get(Div->getType(), HiBound));
2530   }
2531 
2532   return nullptr;
2533 }
2534 
2535 /// Fold icmp (sub X, Y), C.
2536 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2537                                                    BinaryOperator *Sub,
2538                                                    const APInt &C) {
2539   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2540   ICmpInst::Predicate Pred = Cmp.getPredicate();
2541   const APInt *C2;
2542   APInt SubResult;
2543 
2544   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2545   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2546     return new ICmpInst(Cmp.getPredicate(), Y,
2547                         ConstantInt::get(Y->getType(), 0));
2548 
2549   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2550   if (match(X, m_APInt(C2)) &&
2551       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2552        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2553       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2554     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2555                         ConstantInt::get(Y->getType(), SubResult));
2556 
2557   // The following transforms are only worth it if the only user of the subtract
2558   // is the icmp.
2559   if (!Sub->hasOneUse())
2560     return nullptr;
2561 
2562   if (Sub->hasNoSignedWrap()) {
2563     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2564     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2565       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2566 
2567     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2568     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2569       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2570 
2571     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2572     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2573       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2574 
2575     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2576     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2577       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2578   }
2579 
2580   if (!match(X, m_APInt(C2)))
2581     return nullptr;
2582 
2583   // C2 - Y <u C -> (Y | (C - 1)) == C2
2584   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2585   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2586       (*C2 & (C - 1)) == (C - 1))
2587     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2588 
2589   // C2 - Y >u C -> (Y | C) != C2
2590   //   iff C2 & C == C and C + 1 is a power of 2
2591   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2592     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2593 
2594   return nullptr;
2595 }
2596 
2597 /// Fold icmp (add X, Y), C.
2598 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2599                                                    BinaryOperator *Add,
2600                                                    const APInt &C) {
2601   Value *Y = Add->getOperand(1);
2602   const APInt *C2;
2603   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2604     return nullptr;
2605 
2606   // Fold icmp pred (add X, C2), C.
2607   Value *X = Add->getOperand(0);
2608   Type *Ty = Add->getType();
2609   CmpInst::Predicate Pred = Cmp.getPredicate();
2610 
2611   // If the add does not wrap, we can always adjust the compare by subtracting
2612   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2613   // are canonicalized to SGT/SLT/UGT/ULT.
2614   if ((Add->hasNoSignedWrap() &&
2615        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2616       (Add->hasNoUnsignedWrap() &&
2617        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2618     bool Overflow;
2619     APInt NewC =
2620         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2621     // If there is overflow, the result must be true or false.
2622     // TODO: Can we assert there is no overflow because InstSimplify always
2623     // handles those cases?
2624     if (!Overflow)
2625       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2626       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2627   }
2628 
2629   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2630   const APInt &Upper = CR.getUpper();
2631   const APInt &Lower = CR.getLower();
2632   if (Cmp.isSigned()) {
2633     if (Lower.isSignMask())
2634       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2635     if (Upper.isSignMask())
2636       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2637   } else {
2638     if (Lower.isMinValue())
2639       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2640     if (Upper.isMinValue())
2641       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2642   }
2643 
2644   if (!Add->hasOneUse())
2645     return nullptr;
2646 
2647   // X+C <u C2 -> (X & -C2) == C
2648   //   iff C & (C2-1) == 0
2649   //       C2 is a power of 2
2650   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2651     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2652                         ConstantExpr::getNeg(cast<Constant>(Y)));
2653 
2654   // X+C >u C2 -> (X & ~C2) != C
2655   //   iff C & C2 == 0
2656   //       C2+1 is a power of 2
2657   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2658     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2659                         ConstantExpr::getNeg(cast<Constant>(Y)));
2660 
2661   return nullptr;
2662 }
2663 
2664 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2665                                                Value *&RHS, ConstantInt *&Less,
2666                                                ConstantInt *&Equal,
2667                                                ConstantInt *&Greater) {
2668   // TODO: Generalize this to work with other comparison idioms or ensure
2669   // they get canonicalized into this form.
2670 
2671   // select i1 (a == b),
2672   //        i32 Equal,
2673   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2674   // where Equal, Less and Greater are placeholders for any three constants.
2675   ICmpInst::Predicate PredA;
2676   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2677       !ICmpInst::isEquality(PredA))
2678     return false;
2679   Value *EqualVal = SI->getTrueValue();
2680   Value *UnequalVal = SI->getFalseValue();
2681   // We still can get non-canonical predicate here, so canonicalize.
2682   if (PredA == ICmpInst::ICMP_NE)
2683     std::swap(EqualVal, UnequalVal);
2684   if (!match(EqualVal, m_ConstantInt(Equal)))
2685     return false;
2686   ICmpInst::Predicate PredB;
2687   Value *LHS2, *RHS2;
2688   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2689                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2690     return false;
2691   // We can get predicate mismatch here, so canonicalize if possible:
2692   // First, ensure that 'LHS' match.
2693   if (LHS2 != LHS) {
2694     // x sgt y <--> y slt x
2695     std::swap(LHS2, RHS2);
2696     PredB = ICmpInst::getSwappedPredicate(PredB);
2697   }
2698   if (LHS2 != LHS)
2699     return false;
2700   // We also need to canonicalize 'RHS'.
2701   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2702     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2703     auto FlippedStrictness =
2704         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2705             PredB, cast<Constant>(RHS2));
2706     if (!FlippedStrictness)
2707       return false;
2708     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2709     RHS2 = FlippedStrictness->second;
2710     // And kind-of perform the result swap.
2711     std::swap(Less, Greater);
2712     PredB = ICmpInst::ICMP_SLT;
2713   }
2714   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2715 }
2716 
2717 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2718                                                       SelectInst *Select,
2719                                                       ConstantInt *C) {
2720 
2721   assert(C && "Cmp RHS should be a constant int!");
2722   // If we're testing a constant value against the result of a three way
2723   // comparison, the result can be expressed directly in terms of the
2724   // original values being compared.  Note: We could possibly be more
2725   // aggressive here and remove the hasOneUse test. The original select is
2726   // really likely to simplify or sink when we remove a test of the result.
2727   Value *OrigLHS, *OrigRHS;
2728   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2729   if (Cmp.hasOneUse() &&
2730       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2731                               C3GreaterThan)) {
2732     assert(C1LessThan && C2Equal && C3GreaterThan);
2733 
2734     bool TrueWhenLessThan =
2735         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2736             ->isAllOnesValue();
2737     bool TrueWhenEqual =
2738         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2739             ->isAllOnesValue();
2740     bool TrueWhenGreaterThan =
2741         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2742             ->isAllOnesValue();
2743 
2744     // This generates the new instruction that will replace the original Cmp
2745     // Instruction. Instead of enumerating the various combinations when
2746     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2747     // false, we rely on chaining of ORs and future passes of InstCombine to
2748     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2749 
2750     // When none of the three constants satisfy the predicate for the RHS (C),
2751     // the entire original Cmp can be simplified to a false.
2752     Value *Cond = Builder.getFalse();
2753     if (TrueWhenLessThan)
2754       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2755                                                        OrigLHS, OrigRHS));
2756     if (TrueWhenEqual)
2757       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2758                                                        OrigLHS, OrigRHS));
2759     if (TrueWhenGreaterThan)
2760       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2761                                                        OrigLHS, OrigRHS));
2762 
2763     return replaceInstUsesWith(Cmp, Cond);
2764   }
2765   return nullptr;
2766 }
2767 
2768 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2769                                     InstCombiner::BuilderTy &Builder) {
2770   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2771   if (!Bitcast)
2772     return nullptr;
2773 
2774   ICmpInst::Predicate Pred = Cmp.getPredicate();
2775   Value *Op1 = Cmp.getOperand(1);
2776   Value *BCSrcOp = Bitcast->getOperand(0);
2777 
2778   // Make sure the bitcast doesn't change the number of vector elements.
2779   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2780           Bitcast->getDestTy()->getScalarSizeInBits()) {
2781     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2782     Value *X;
2783     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2784       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2785       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2786       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2787       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2788       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2789            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2790           match(Op1, m_Zero()))
2791         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2792 
2793       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2794       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2795         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2796 
2797       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2798       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2799         return new ICmpInst(Pred, X,
2800                             ConstantInt::getAllOnesValue(X->getType()));
2801     }
2802 
2803     // Zero-equality checks are preserved through unsigned floating-point casts:
2804     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2805     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2806     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2807       if (Cmp.isEquality() && match(Op1, m_Zero()))
2808         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2809 
2810     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2811     // the FP extend/truncate because that cast does not change the sign-bit.
2812     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2813     // The sign-bit is always the most significant bit in those types.
2814     const APInt *C;
2815     bool TrueIfSigned;
2816     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2817         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2818       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2819           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2820         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2821         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2822         Type *XType = X->getType();
2823 
2824         // We can't currently handle Power style floating point operations here.
2825         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2826 
2827           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2828           if (auto *XVTy = dyn_cast<VectorType>(XType))
2829             NewType = FixedVectorType::get(NewType, XVTy->getNumElements());
2830           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2831           if (TrueIfSigned)
2832             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2833                                 ConstantInt::getNullValue(NewType));
2834           else
2835             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2836                                 ConstantInt::getAllOnesValue(NewType));
2837         }
2838       }
2839     }
2840   }
2841 
2842   // Test to see if the operands of the icmp are casted versions of other
2843   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2844   if (Bitcast->getType()->isPointerTy() &&
2845       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2846     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2847     // so eliminate it as well.
2848     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2849       Op1 = BC2->getOperand(0);
2850 
2851     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2852     return new ICmpInst(Pred, BCSrcOp, Op1);
2853   }
2854 
2855   // Folding: icmp <pred> iN X, C
2856   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2857   //    and C is a splat of a K-bit pattern
2858   //    and SC is a constant vector = <C', C', C', ..., C'>
2859   // Into:
2860   //   %E = extractelement <M x iK> %vec, i32 C'
2861   //   icmp <pred> iK %E, trunc(C)
2862   const APInt *C;
2863   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2864       !Bitcast->getType()->isIntegerTy() ||
2865       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2866     return nullptr;
2867 
2868   Value *Vec;
2869   ArrayRef<int> Mask;
2870   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2871     // Check whether every element of Mask is the same constant
2872     if (is_splat(Mask)) {
2873       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2874       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2875       if (C->isSplat(EltTy->getBitWidth())) {
2876         // Fold the icmp based on the value of C
2877         // If C is M copies of an iK sized bit pattern,
2878         // then:
2879         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2880         //       icmp <pred> iK %SplatVal, <pattern>
2881         Value *Elem = Builder.getInt32(Mask[0]);
2882         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2883         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2884         return new ICmpInst(Pred, Extract, NewC);
2885       }
2886     }
2887   }
2888   return nullptr;
2889 }
2890 
2891 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2892 /// where X is some kind of instruction.
2893 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2894   const APInt *C;
2895   if (!match(Cmp.getOperand(1), m_APInt(C)))
2896     return nullptr;
2897 
2898   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2899     switch (BO->getOpcode()) {
2900     case Instruction::Xor:
2901       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2902         return I;
2903       break;
2904     case Instruction::And:
2905       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2906         return I;
2907       break;
2908     case Instruction::Or:
2909       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2910         return I;
2911       break;
2912     case Instruction::Mul:
2913       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2914         return I;
2915       break;
2916     case Instruction::Shl:
2917       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2918         return I;
2919       break;
2920     case Instruction::LShr:
2921     case Instruction::AShr:
2922       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2923         return I;
2924       break;
2925     case Instruction::SRem:
2926       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2927         return I;
2928       break;
2929     case Instruction::UDiv:
2930       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2931         return I;
2932       LLVM_FALLTHROUGH;
2933     case Instruction::SDiv:
2934       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2935         return I;
2936       break;
2937     case Instruction::Sub:
2938       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2939         return I;
2940       break;
2941     case Instruction::Add:
2942       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2943         return I;
2944       break;
2945     default:
2946       break;
2947     }
2948     // TODO: These folds could be refactored to be part of the above calls.
2949     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2950       return I;
2951   }
2952 
2953   // Match against CmpInst LHS being instructions other than binary operators.
2954 
2955   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2956     // For now, we only support constant integers while folding the
2957     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2958     // similar to the cases handled by binary ops above.
2959     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2960       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2961         return I;
2962   }
2963 
2964   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2965     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2966       return I;
2967   }
2968 
2969   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2970     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2971       return I;
2972 
2973   return nullptr;
2974 }
2975 
2976 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2977 /// icmp eq/ne BO, C.
2978 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
2979     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
2980   // TODO: Some of these folds could work with arbitrary constants, but this
2981   // function is limited to scalar and vector splat constants.
2982   if (!Cmp.isEquality())
2983     return nullptr;
2984 
2985   ICmpInst::Predicate Pred = Cmp.getPredicate();
2986   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2987   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2988   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2989 
2990   switch (BO->getOpcode()) {
2991   case Instruction::SRem:
2992     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2993     if (C.isNullValue() && BO->hasOneUse()) {
2994       const APInt *BOC;
2995       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2996         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2997         return new ICmpInst(Pred, NewRem,
2998                             Constant::getNullValue(BO->getType()));
2999       }
3000     }
3001     break;
3002   case Instruction::Add: {
3003     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3004     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3005       if (BO->hasOneUse())
3006         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3007     } else if (C.isNullValue()) {
3008       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3009       // efficiently invertible, or if the add has just this one use.
3010       if (Value *NegVal = dyn_castNegVal(BOp1))
3011         return new ICmpInst(Pred, BOp0, NegVal);
3012       if (Value *NegVal = dyn_castNegVal(BOp0))
3013         return new ICmpInst(Pred, NegVal, BOp1);
3014       if (BO->hasOneUse()) {
3015         Value *Neg = Builder.CreateNeg(BOp1);
3016         Neg->takeName(BO);
3017         return new ICmpInst(Pred, BOp0, Neg);
3018       }
3019     }
3020     break;
3021   }
3022   case Instruction::Xor:
3023     if (BO->hasOneUse()) {
3024       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3025         // For the xor case, we can xor two constants together, eliminating
3026         // the explicit xor.
3027         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3028       } else if (C.isNullValue()) {
3029         // Replace ((xor A, B) != 0) with (A != B)
3030         return new ICmpInst(Pred, BOp0, BOp1);
3031       }
3032     }
3033     break;
3034   case Instruction::Sub:
3035     if (BO->hasOneUse()) {
3036       // Only check for constant LHS here, as constant RHS will be canonicalized
3037       // to add and use the fold above.
3038       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3039         // Replace ((sub BOC, B) != C) with (B != BOC-C).
3040         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3041       } else if (C.isNullValue()) {
3042         // Replace ((sub A, B) != 0) with (A != B).
3043         return new ICmpInst(Pred, BOp0, BOp1);
3044       }
3045     }
3046     break;
3047   case Instruction::Or: {
3048     const APInt *BOC;
3049     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3050       // Comparing if all bits outside of a constant mask are set?
3051       // Replace (X | C) == -1 with (X & ~C) == ~C.
3052       // This removes the -1 constant.
3053       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3054       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3055       return new ICmpInst(Pred, And, NotBOC);
3056     }
3057     break;
3058   }
3059   case Instruction::And: {
3060     const APInt *BOC;
3061     if (match(BOp1, m_APInt(BOC))) {
3062       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3063       if (C == *BOC && C.isPowerOf2())
3064         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3065                             BO, Constant::getNullValue(RHS->getType()));
3066     }
3067     break;
3068   }
3069   case Instruction::UDiv:
3070     if (C.isNullValue()) {
3071       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3072       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3073       return new ICmpInst(NewPred, BOp1, BOp0);
3074     }
3075     break;
3076   default:
3077     break;
3078   }
3079   return nullptr;
3080 }
3081 
3082 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3083 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3084     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3085   Type *Ty = II->getType();
3086   unsigned BitWidth = C.getBitWidth();
3087   switch (II->getIntrinsicID()) {
3088   case Intrinsic::bswap:
3089     // bswap(A) == C  ->  A == bswap(C)
3090     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3091                         ConstantInt::get(Ty, C.byteSwap()));
3092 
3093   case Intrinsic::ctlz:
3094   case Intrinsic::cttz: {
3095     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3096     if (C == BitWidth)
3097       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3098                           ConstantInt::getNullValue(Ty));
3099 
3100     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3101     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3102     // Limit to one use to ensure we don't increase instruction count.
3103     unsigned Num = C.getLimitedValue(BitWidth);
3104     if (Num != BitWidth && II->hasOneUse()) {
3105       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3106       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3107                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3108       APInt Mask2 = IsTrailing
3109         ? APInt::getOneBitSet(BitWidth, Num)
3110         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3111       return new ICmpInst(Cmp.getPredicate(),
3112           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3113           ConstantInt::get(Ty, Mask2));
3114     }
3115     break;
3116   }
3117 
3118   case Intrinsic::ctpop: {
3119     // popcount(A) == 0  ->  A == 0 and likewise for !=
3120     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3121     bool IsZero = C.isNullValue();
3122     if (IsZero || C == BitWidth)
3123       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3124           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3125 
3126     break;
3127   }
3128 
3129   case Intrinsic::uadd_sat: {
3130     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3131     if (C.isNullValue()) {
3132       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3133       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3134     }
3135     break;
3136   }
3137 
3138   case Intrinsic::usub_sat: {
3139     // usub.sat(a, b) == 0  ->  a <= b
3140     if (C.isNullValue()) {
3141       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3142           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3143       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3144     }
3145     break;
3146   }
3147   default:
3148     break;
3149   }
3150 
3151   return nullptr;
3152 }
3153 
3154 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3155 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3156                                                              IntrinsicInst *II,
3157                                                              const APInt &C) {
3158   if (Cmp.isEquality())
3159     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3160 
3161   Type *Ty = II->getType();
3162   unsigned BitWidth = C.getBitWidth();
3163   switch (II->getIntrinsicID()) {
3164   case Intrinsic::ctlz: {
3165     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3166     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3167       unsigned Num = C.getLimitedValue();
3168       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3169       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3170                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3171     }
3172 
3173     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3174     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3175         C.uge(1) && C.ule(BitWidth)) {
3176       unsigned Num = C.getLimitedValue();
3177       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3178       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3179                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3180     }
3181     break;
3182   }
3183   case Intrinsic::cttz: {
3184     // Limit to one use to ensure we don't increase instruction count.
3185     if (!II->hasOneUse())
3186       return nullptr;
3187 
3188     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3189     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3190       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3191       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3192                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3193                              ConstantInt::getNullValue(Ty));
3194     }
3195 
3196     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3197     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3198         C.uge(1) && C.ule(BitWidth)) {
3199       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3200       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3201                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3202                              ConstantInt::getNullValue(Ty));
3203     }
3204     break;
3205   }
3206   default:
3207     break;
3208   }
3209 
3210   return nullptr;
3211 }
3212 
3213 /// Handle icmp with constant (but not simple integer constant) RHS.
3214 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3215   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3216   Constant *RHSC = dyn_cast<Constant>(Op1);
3217   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3218   if (!RHSC || !LHSI)
3219     return nullptr;
3220 
3221   switch (LHSI->getOpcode()) {
3222   case Instruction::GetElementPtr:
3223     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3224     if (RHSC->isNullValue() &&
3225         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3226       return new ICmpInst(
3227           I.getPredicate(), LHSI->getOperand(0),
3228           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3229     break;
3230   case Instruction::PHI:
3231     // Only fold icmp into the PHI if the phi and icmp are in the same
3232     // block.  If in the same block, we're encouraging jump threading.  If
3233     // not, we are just pessimizing the code by making an i1 phi.
3234     if (LHSI->getParent() == I.getParent())
3235       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3236         return NV;
3237     break;
3238   case Instruction::Select: {
3239     // If either operand of the select is a constant, we can fold the
3240     // comparison into the select arms, which will cause one to be
3241     // constant folded and the select turned into a bitwise or.
3242     Value *Op1 = nullptr, *Op2 = nullptr;
3243     ConstantInt *CI = nullptr;
3244     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3245       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3246       CI = dyn_cast<ConstantInt>(Op1);
3247     }
3248     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3249       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3250       CI = dyn_cast<ConstantInt>(Op2);
3251     }
3252 
3253     // We only want to perform this transformation if it will not lead to
3254     // additional code. This is true if either both sides of the select
3255     // fold to a constant (in which case the icmp is replaced with a select
3256     // which will usually simplify) or this is the only user of the
3257     // select (in which case we are trading a select+icmp for a simpler
3258     // select+icmp) or all uses of the select can be replaced based on
3259     // dominance information ("Global cases").
3260     bool Transform = false;
3261     if (Op1 && Op2)
3262       Transform = true;
3263     else if (Op1 || Op2) {
3264       // Local case
3265       if (LHSI->hasOneUse())
3266         Transform = true;
3267       // Global cases
3268       else if (CI && !CI->isZero())
3269         // When Op1 is constant try replacing select with second operand.
3270         // Otherwise Op2 is constant and try replacing select with first
3271         // operand.
3272         Transform =
3273             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3274     }
3275     if (Transform) {
3276       if (!Op1)
3277         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3278                                  I.getName());
3279       if (!Op2)
3280         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3281                                  I.getName());
3282       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3283     }
3284     break;
3285   }
3286   case Instruction::IntToPtr:
3287     // icmp pred inttoptr(X), null -> icmp pred X, 0
3288     if (RHSC->isNullValue() &&
3289         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3290       return new ICmpInst(
3291           I.getPredicate(), LHSI->getOperand(0),
3292           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3293     break;
3294 
3295   case Instruction::Load:
3296     // Try to optimize things like "A[i] > 4" to index computations.
3297     if (GetElementPtrInst *GEP =
3298             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3299       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3300         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3301             !cast<LoadInst>(LHSI)->isVolatile())
3302           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3303             return Res;
3304     }
3305     break;
3306   }
3307 
3308   return nullptr;
3309 }
3310 
3311 /// Some comparisons can be simplified.
3312 /// In this case, we are looking for comparisons that look like
3313 /// a check for a lossy truncation.
3314 /// Folds:
3315 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3316 /// Where Mask is some pattern that produces all-ones in low bits:
3317 ///    (-1 >> y)
3318 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3319 ///   ~(-1 << y)
3320 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3321 /// The Mask can be a constant, too.
3322 /// For some predicates, the operands are commutative.
3323 /// For others, x can only be on a specific side.
3324 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3325                                           InstCombiner::BuilderTy &Builder) {
3326   ICmpInst::Predicate SrcPred;
3327   Value *X, *M, *Y;
3328   auto m_VariableMask = m_CombineOr(
3329       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3330                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3331       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3332                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3333   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3334   if (!match(&I, m_c_ICmp(SrcPred,
3335                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3336                           m_Deferred(X))))
3337     return nullptr;
3338 
3339   ICmpInst::Predicate DstPred;
3340   switch (SrcPred) {
3341   case ICmpInst::Predicate::ICMP_EQ:
3342     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3343     DstPred = ICmpInst::Predicate::ICMP_ULE;
3344     break;
3345   case ICmpInst::Predicate::ICMP_NE:
3346     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3347     DstPred = ICmpInst::Predicate::ICMP_UGT;
3348     break;
3349   case ICmpInst::Predicate::ICMP_ULT:
3350     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3351     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3352     DstPred = ICmpInst::Predicate::ICMP_UGT;
3353     break;
3354   case ICmpInst::Predicate::ICMP_UGE:
3355     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3356     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3357     DstPred = ICmpInst::Predicate::ICMP_ULE;
3358     break;
3359   case ICmpInst::Predicate::ICMP_SLT:
3360     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3361     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3362     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3363       return nullptr;
3364     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3365       return nullptr;
3366     DstPred = ICmpInst::Predicate::ICMP_SGT;
3367     break;
3368   case ICmpInst::Predicate::ICMP_SGE:
3369     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3370     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3371     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3372       return nullptr;
3373     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3374       return nullptr;
3375     DstPred = ICmpInst::Predicate::ICMP_SLE;
3376     break;
3377   case ICmpInst::Predicate::ICMP_SGT:
3378   case ICmpInst::Predicate::ICMP_SLE:
3379     return nullptr;
3380   case ICmpInst::Predicate::ICMP_UGT:
3381   case ICmpInst::Predicate::ICMP_ULE:
3382     llvm_unreachable("Instsimplify took care of commut. variant");
3383     break;
3384   default:
3385     llvm_unreachable("All possible folds are handled.");
3386   }
3387 
3388   // The mask value may be a vector constant that has undefined elements. But it
3389   // may not be safe to propagate those undefs into the new compare, so replace
3390   // those elements by copying an existing, defined, and safe scalar constant.
3391   Type *OpTy = M->getType();
3392   auto *VecC = dyn_cast<Constant>(M);
3393   if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3394     auto *OpVTy = cast<VectorType>(OpTy);
3395     Constant *SafeReplacementConstant = nullptr;
3396     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3397       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3398         SafeReplacementConstant = VecC->getAggregateElement(i);
3399         break;
3400       }
3401     }
3402     assert(SafeReplacementConstant && "Failed to find undef replacement");
3403     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3404   }
3405 
3406   return Builder.CreateICmp(DstPred, X, M);
3407 }
3408 
3409 /// Some comparisons can be simplified.
3410 /// In this case, we are looking for comparisons that look like
3411 /// a check for a lossy signed truncation.
3412 /// Folds:   (MaskedBits is a constant.)
3413 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3414 /// Into:
3415 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3416 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3417 static Value *
3418 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3419                                  InstCombiner::BuilderTy &Builder) {
3420   ICmpInst::Predicate SrcPred;
3421   Value *X;
3422   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3423   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3424   if (!match(&I, m_c_ICmp(SrcPred,
3425                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3426                                           m_APInt(C1))),
3427                           m_Deferred(X))))
3428     return nullptr;
3429 
3430   // Potential handling of non-splats: for each element:
3431   //  * if both are undef, replace with constant 0.
3432   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3433   //  * if both are not undef, and are different, bailout.
3434   //  * else, only one is undef, then pick the non-undef one.
3435 
3436   // The shift amount must be equal.
3437   if (*C0 != *C1)
3438     return nullptr;
3439   const APInt &MaskedBits = *C0;
3440   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3441 
3442   ICmpInst::Predicate DstPred;
3443   switch (SrcPred) {
3444   case ICmpInst::Predicate::ICMP_EQ:
3445     // ((%x << MaskedBits) a>> MaskedBits) == %x
3446     //   =>
3447     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3448     DstPred = ICmpInst::Predicate::ICMP_ULT;
3449     break;
3450   case ICmpInst::Predicate::ICMP_NE:
3451     // ((%x << MaskedBits) a>> MaskedBits) != %x
3452     //   =>
3453     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3454     DstPred = ICmpInst::Predicate::ICMP_UGE;
3455     break;
3456   // FIXME: are more folds possible?
3457   default:
3458     return nullptr;
3459   }
3460 
3461   auto *XType = X->getType();
3462   const unsigned XBitWidth = XType->getScalarSizeInBits();
3463   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3464   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3465 
3466   // KeptBits = bitwidth(%x) - MaskedBits
3467   const APInt KeptBits = BitWidth - MaskedBits;
3468   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3469   // ICmpCst = (1 << KeptBits)
3470   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3471   assert(ICmpCst.isPowerOf2());
3472   // AddCst = (1 << (KeptBits-1))
3473   const APInt AddCst = ICmpCst.lshr(1);
3474   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3475 
3476   // T0 = add %x, AddCst
3477   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3478   // T1 = T0 DstPred ICmpCst
3479   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3480 
3481   return T1;
3482 }
3483 
3484 // Given pattern:
3485 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3486 // we should move shifts to the same hand of 'and', i.e. rewrite as
3487 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3488 // We are only interested in opposite logical shifts here.
3489 // One of the shifts can be truncated.
3490 // If we can, we want to end up creating 'lshr' shift.
3491 static Value *
3492 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3493                                            InstCombiner::BuilderTy &Builder) {
3494   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3495       !I.getOperand(0)->hasOneUse())
3496     return nullptr;
3497 
3498   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3499 
3500   // Look for an 'and' of two logical shifts, one of which may be truncated.
3501   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3502   Instruction *XShift, *MaybeTruncation, *YShift;
3503   if (!match(
3504           I.getOperand(0),
3505           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3506                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3507                                    m_AnyLogicalShift, m_Instruction(YShift))),
3508                                m_Instruction(MaybeTruncation)))))
3509     return nullptr;
3510 
3511   // We potentially looked past 'trunc', but only when matching YShift,
3512   // therefore YShift must have the widest type.
3513   Instruction *WidestShift = YShift;
3514   // Therefore XShift must have the shallowest type.
3515   // Or they both have identical types if there was no truncation.
3516   Instruction *NarrowestShift = XShift;
3517 
3518   Type *WidestTy = WidestShift->getType();
3519   Type *NarrowestTy = NarrowestShift->getType();
3520   assert(NarrowestTy == I.getOperand(0)->getType() &&
3521          "We did not look past any shifts while matching XShift though.");
3522   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3523 
3524   // If YShift is a 'lshr', swap the shifts around.
3525   if (match(YShift, m_LShr(m_Value(), m_Value())))
3526     std::swap(XShift, YShift);
3527 
3528   // The shifts must be in opposite directions.
3529   auto XShiftOpcode = XShift->getOpcode();
3530   if (XShiftOpcode == YShift->getOpcode())
3531     return nullptr; // Do not care about same-direction shifts here.
3532 
3533   Value *X, *XShAmt, *Y, *YShAmt;
3534   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3535   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3536 
3537   // If one of the values being shifted is a constant, then we will end with
3538   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3539   // however, we will need to ensure that we won't increase instruction count.
3540   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3541     // At least one of the hands of the 'and' should be one-use shift.
3542     if (!match(I.getOperand(0),
3543                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3544       return nullptr;
3545     if (HadTrunc) {
3546       // Due to the 'trunc', we will need to widen X. For that either the old
3547       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3548       if (!MaybeTruncation->hasOneUse() &&
3549           !NarrowestShift->getOperand(1)->hasOneUse())
3550         return nullptr;
3551     }
3552   }
3553 
3554   // We have two shift amounts from two different shifts. The types of those
3555   // shift amounts may not match. If that's the case let's bailout now.
3556   if (XShAmt->getType() != YShAmt->getType())
3557     return nullptr;
3558 
3559   // As input, we have the following pattern:
3560   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3561   // We want to rewrite that as:
3562   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3563   // While we know that originally (Q+K) would not overflow
3564   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3565   // shift amounts. so it may now overflow in smaller bitwidth.
3566   // To ensure that does not happen, we need to ensure that the total maximal
3567   // shift amount is still representable in that smaller bit width.
3568   unsigned MaximalPossibleTotalShiftAmount =
3569       (WidestTy->getScalarSizeInBits() - 1) +
3570       (NarrowestTy->getScalarSizeInBits() - 1);
3571   APInt MaximalRepresentableShiftAmount =
3572       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3573   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3574     return nullptr;
3575 
3576   // Can we fold (XShAmt+YShAmt) ?
3577   auto *NewShAmt = dyn_cast_or_null<Constant>(
3578       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3579                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3580   if (!NewShAmt)
3581     return nullptr;
3582   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3583   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3584 
3585   // Is the new shift amount smaller than the bit width?
3586   // FIXME: could also rely on ConstantRange.
3587   if (!match(NewShAmt,
3588              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3589                                 APInt(WidestBitWidth, WidestBitWidth))))
3590     return nullptr;
3591 
3592   // An extra legality check is needed if we had trunc-of-lshr.
3593   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3594     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3595                     WidestShift]() {
3596       // It isn't obvious whether it's worth it to analyze non-constants here.
3597       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3598       // If *any* of these preconditions matches we can perform the fold.
3599       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3600                                     ? NewShAmt->getSplatValue()
3601                                     : NewShAmt;
3602       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3603       if (NewShAmtSplat &&
3604           (NewShAmtSplat->isNullValue() ||
3605            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3606         return true;
3607       // We consider *min* leading zeros so a single outlier
3608       // blocks the transform as opposed to allowing it.
3609       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3610         KnownBits Known = computeKnownBits(C, SQ.DL);
3611         unsigned MinLeadZero = Known.countMinLeadingZeros();
3612         // If the value being shifted has at most lowest bit set we can fold.
3613         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3614         if (MaxActiveBits <= 1)
3615           return true;
3616         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3617         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3618           return true;
3619       }
3620       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3621         KnownBits Known = computeKnownBits(C, SQ.DL);
3622         unsigned MinLeadZero = Known.countMinLeadingZeros();
3623         // If the value being shifted has at most lowest bit set we can fold.
3624         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3625         if (MaxActiveBits <= 1)
3626           return true;
3627         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3628         if (NewShAmtSplat) {
3629           APInt AdjNewShAmt =
3630               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3631           if (AdjNewShAmt.ule(MinLeadZero))
3632             return true;
3633         }
3634       }
3635       return false; // Can't tell if it's ok.
3636     };
3637     if (!CanFold())
3638       return nullptr;
3639   }
3640 
3641   // All good, we can do this fold.
3642   X = Builder.CreateZExt(X, WidestTy);
3643   Y = Builder.CreateZExt(Y, WidestTy);
3644   // The shift is the same that was for X.
3645   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3646                   ? Builder.CreateLShr(X, NewShAmt)
3647                   : Builder.CreateShl(X, NewShAmt);
3648   Value *T1 = Builder.CreateAnd(T0, Y);
3649   return Builder.CreateICmp(I.getPredicate(), T1,
3650                             Constant::getNullValue(WidestTy));
3651 }
3652 
3653 /// Fold
3654 ///   (-1 u/ x) u< y
3655 ///   ((x * y) u/ x) != y
3656 /// to
3657 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3658 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3659 /// will mean that we are looking for the opposite answer.
3660 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3661   ICmpInst::Predicate Pred;
3662   Value *X, *Y;
3663   Instruction *Mul;
3664   bool NeedNegation;
3665   // Look for: (-1 u/ x) u</u>= y
3666   if (!I.isEquality() &&
3667       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3668                          m_Value(Y)))) {
3669     Mul = nullptr;
3670 
3671     // Are we checking that overflow does not happen, or does happen?
3672     switch (Pred) {
3673     case ICmpInst::Predicate::ICMP_ULT:
3674       NeedNegation = false;
3675       break; // OK
3676     case ICmpInst::Predicate::ICMP_UGE:
3677       NeedNegation = true;
3678       break; // OK
3679     default:
3680       return nullptr; // Wrong predicate.
3681     }
3682   } else // Look for: ((x * y) u/ x) !=/== y
3683       if (I.isEquality() &&
3684           match(&I, m_c_ICmp(Pred, m_Value(Y),
3685                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3686                                                                   m_Value(X)),
3687                                                           m_Instruction(Mul)),
3688                                              m_Deferred(X)))))) {
3689     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3690   } else
3691     return nullptr;
3692 
3693   BuilderTy::InsertPointGuard Guard(Builder);
3694   // If the pattern included (x * y), we'll want to insert new instructions
3695   // right before that original multiplication so that we can replace it.
3696   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3697   if (MulHadOtherUses)
3698     Builder.SetInsertPoint(Mul);
3699 
3700   Function *F = Intrinsic::getDeclaration(
3701       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3702   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3703 
3704   // If the multiplication was used elsewhere, to ensure that we don't leave
3705   // "duplicate" instructions, replace uses of that original multiplication
3706   // with the multiplication result from the with.overflow intrinsic.
3707   if (MulHadOtherUses)
3708     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3709 
3710   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3711   if (NeedNegation) // This technically increases instruction count.
3712     Res = Builder.CreateNot(Res, "umul.not.ov");
3713 
3714   // If we replaced the mul, erase it. Do this after all uses of Builder,
3715   // as the mul is used as insertion point.
3716   if (MulHadOtherUses)
3717     eraseInstFromFunction(*Mul);
3718 
3719   return Res;
3720 }
3721 
3722 Instruction *foldICmpXNegX(ICmpInst &I) {
3723   CmpInst::Predicate Pred;
3724   Value *X;
3725   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3726     return nullptr;
3727 
3728   if (ICmpInst::isSigned(Pred))
3729     Pred = ICmpInst::getSwappedPredicate(Pred);
3730   else if (ICmpInst::isUnsigned(Pred))
3731     Pred = ICmpInst::getSignedPredicate(Pred);
3732   // else for equality-comparisons just keep the predicate.
3733 
3734   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3735                           Constant::getNullValue(X->getType()), I.getName());
3736 }
3737 
3738 /// Try to fold icmp (binop), X or icmp X, (binop).
3739 /// TODO: A large part of this logic is duplicated in InstSimplify's
3740 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3741 /// duplication.
3742 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3743                                              const SimplifyQuery &SQ) {
3744   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3745   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3746 
3747   // Special logic for binary operators.
3748   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3749   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3750   if (!BO0 && !BO1)
3751     return nullptr;
3752 
3753   if (Instruction *NewICmp = foldICmpXNegX(I))
3754     return NewICmp;
3755 
3756   const CmpInst::Predicate Pred = I.getPredicate();
3757   Value *X;
3758 
3759   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3760   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3761   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3762       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3763     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3764   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3765   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3766       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3767     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3768 
3769   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3770   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3771     NoOp0WrapProblem =
3772         ICmpInst::isEquality(Pred) ||
3773         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3774         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3775   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3776     NoOp1WrapProblem =
3777         ICmpInst::isEquality(Pred) ||
3778         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3779         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3780 
3781   // Analyze the case when either Op0 or Op1 is an add instruction.
3782   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3783   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3784   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3785     A = BO0->getOperand(0);
3786     B = BO0->getOperand(1);
3787   }
3788   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3789     C = BO1->getOperand(0);
3790     D = BO1->getOperand(1);
3791   }
3792 
3793   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3794   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3795   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3796     return new ICmpInst(Pred, A == Op1 ? B : A,
3797                         Constant::getNullValue(Op1->getType()));
3798 
3799   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3800   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3801   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3802     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3803                         C == Op0 ? D : C);
3804 
3805   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3806   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3807       NoOp1WrapProblem) {
3808     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3809     Value *Y, *Z;
3810     if (A == C) {
3811       // C + B == C + D  ->  B == D
3812       Y = B;
3813       Z = D;
3814     } else if (A == D) {
3815       // D + B == C + D  ->  B == C
3816       Y = B;
3817       Z = C;
3818     } else if (B == C) {
3819       // A + C == C + D  ->  A == D
3820       Y = A;
3821       Z = D;
3822     } else {
3823       assert(B == D);
3824       // A + D == C + D  ->  A == C
3825       Y = A;
3826       Z = C;
3827     }
3828     return new ICmpInst(Pred, Y, Z);
3829   }
3830 
3831   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3832   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3833       match(B, m_AllOnes()))
3834     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3835 
3836   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3837   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3838       match(B, m_AllOnes()))
3839     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3840 
3841   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3842   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3843     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3844 
3845   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3846   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3847     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3848 
3849   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3850   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3851       match(D, m_AllOnes()))
3852     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3853 
3854   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3855   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3856       match(D, m_AllOnes()))
3857     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3858 
3859   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3860   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3861     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3862 
3863   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3864   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3865     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3866 
3867   // TODO: The subtraction-related identities shown below also hold, but
3868   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3869   // wouldn't happen even if they were implemented.
3870   //
3871   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3872   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3873   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3874   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3875 
3876   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3877   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3878     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3879 
3880   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3881   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3882     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3883 
3884   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3885   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3886     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3887 
3888   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3889   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3890     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3891 
3892   // if C1 has greater magnitude than C2:
3893   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3894   //  s.t. C3 = C1 - C2
3895   //
3896   // if C2 has greater magnitude than C1:
3897   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3898   //  s.t. C3 = C2 - C1
3899   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3900       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3901     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3902       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3903         const APInt &AP1 = C1->getValue();
3904         const APInt &AP2 = C2->getValue();
3905         if (AP1.isNegative() == AP2.isNegative()) {
3906           APInt AP1Abs = C1->getValue().abs();
3907           APInt AP2Abs = C2->getValue().abs();
3908           if (AP1Abs.uge(AP2Abs)) {
3909             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3910             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3911             return new ICmpInst(Pred, NewAdd, C);
3912           } else {
3913             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3914             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3915             return new ICmpInst(Pred, A, NewAdd);
3916           }
3917         }
3918       }
3919 
3920   // Analyze the case when either Op0 or Op1 is a sub instruction.
3921   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3922   A = nullptr;
3923   B = nullptr;
3924   C = nullptr;
3925   D = nullptr;
3926   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3927     A = BO0->getOperand(0);
3928     B = BO0->getOperand(1);
3929   }
3930   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3931     C = BO1->getOperand(0);
3932     D = BO1->getOperand(1);
3933   }
3934 
3935   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3936   if (A == Op1 && NoOp0WrapProblem)
3937     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3938   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3939   if (C == Op0 && NoOp1WrapProblem)
3940     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3941 
3942   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3943   // (A - B) u>/u<= A --> B u>/u<= A
3944   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3945     return new ICmpInst(Pred, B, A);
3946   // C u</u>= (C - D) --> C u</u>= D
3947   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3948     return new ICmpInst(Pred, C, D);
3949   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3950   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3951       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3952     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3953   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3954   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3955       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3956     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3957 
3958   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3959   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3960     return new ICmpInst(Pred, A, C);
3961 
3962   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3963   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3964     return new ICmpInst(Pred, D, B);
3965 
3966   // icmp (0-X) < cst --> x > -cst
3967   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3968     Value *X;
3969     if (match(BO0, m_Neg(m_Value(X))))
3970       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3971         if (RHSC->isNotMinSignedValue())
3972           return new ICmpInst(I.getSwappedPredicate(), X,
3973                               ConstantExpr::getNeg(RHSC));
3974   }
3975 
3976   BinaryOperator *SRem = nullptr;
3977   // icmp (srem X, Y), Y
3978   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3979     SRem = BO0;
3980   // icmp Y, (srem X, Y)
3981   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3982            Op0 == BO1->getOperand(1))
3983     SRem = BO1;
3984   if (SRem) {
3985     // We don't check hasOneUse to avoid increasing register pressure because
3986     // the value we use is the same value this instruction was already using.
3987     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3988     default:
3989       break;
3990     case ICmpInst::ICMP_EQ:
3991       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3992     case ICmpInst::ICMP_NE:
3993       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3994     case ICmpInst::ICMP_SGT:
3995     case ICmpInst::ICMP_SGE:
3996       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3997                           Constant::getAllOnesValue(SRem->getType()));
3998     case ICmpInst::ICMP_SLT:
3999     case ICmpInst::ICMP_SLE:
4000       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4001                           Constant::getNullValue(SRem->getType()));
4002     }
4003   }
4004 
4005   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4006       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4007     switch (BO0->getOpcode()) {
4008     default:
4009       break;
4010     case Instruction::Add:
4011     case Instruction::Sub:
4012     case Instruction::Xor: {
4013       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4014         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4015 
4016       const APInt *C;
4017       if (match(BO0->getOperand(1), m_APInt(C))) {
4018         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4019         if (C->isSignMask()) {
4020           ICmpInst::Predicate NewPred =
4021               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
4022           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4023         }
4024 
4025         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4026         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4027           ICmpInst::Predicate NewPred =
4028               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
4029           NewPred = I.getSwappedPredicate(NewPred);
4030           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4031         }
4032       }
4033       break;
4034     }
4035     case Instruction::Mul: {
4036       if (!I.isEquality())
4037         break;
4038 
4039       const APInt *C;
4040       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4041           !C->isOneValue()) {
4042         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4043         // Mask = -1 >> count-trailing-zeros(C).
4044         if (unsigned TZs = C->countTrailingZeros()) {
4045           Constant *Mask = ConstantInt::get(
4046               BO0->getType(),
4047               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4048           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4049           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4050           return new ICmpInst(Pred, And1, And2);
4051         }
4052         // If there are no trailing zeros in the multiplier, just eliminate
4053         // the multiplies (no masking is needed):
4054         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
4055         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4056       }
4057       break;
4058     }
4059     case Instruction::UDiv:
4060     case Instruction::LShr:
4061       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4062         break;
4063       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4064 
4065     case Instruction::SDiv:
4066       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4067         break;
4068       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4069 
4070     case Instruction::AShr:
4071       if (!BO0->isExact() || !BO1->isExact())
4072         break;
4073       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4074 
4075     case Instruction::Shl: {
4076       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4077       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4078       if (!NUW && !NSW)
4079         break;
4080       if (!NSW && I.isSigned())
4081         break;
4082       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4083     }
4084     }
4085   }
4086 
4087   if (BO0) {
4088     // Transform  A & (L - 1) `ult` L --> L != 0
4089     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4090     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4091 
4092     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4093       auto *Zero = Constant::getNullValue(BO0->getType());
4094       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4095     }
4096   }
4097 
4098   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4099     return replaceInstUsesWith(I, V);
4100 
4101   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4102     return replaceInstUsesWith(I, V);
4103 
4104   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4105     return replaceInstUsesWith(I, V);
4106 
4107   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4108     return replaceInstUsesWith(I, V);
4109 
4110   return nullptr;
4111 }
4112 
4113 /// Fold icmp Pred min|max(X, Y), X.
4114 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4115   ICmpInst::Predicate Pred = Cmp.getPredicate();
4116   Value *Op0 = Cmp.getOperand(0);
4117   Value *X = Cmp.getOperand(1);
4118 
4119   // Canonicalize minimum or maximum operand to LHS of the icmp.
4120   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4121       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4122       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4123       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4124     std::swap(Op0, X);
4125     Pred = Cmp.getSwappedPredicate();
4126   }
4127 
4128   Value *Y;
4129   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4130     // smin(X, Y)  == X --> X s<= Y
4131     // smin(X, Y) s>= X --> X s<= Y
4132     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4133       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4134 
4135     // smin(X, Y) != X --> X s> Y
4136     // smin(X, Y) s< X --> X s> Y
4137     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4138       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4139 
4140     // These cases should be handled in InstSimplify:
4141     // smin(X, Y) s<= X --> true
4142     // smin(X, Y) s> X --> false
4143     return nullptr;
4144   }
4145 
4146   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4147     // smax(X, Y)  == X --> X s>= Y
4148     // smax(X, Y) s<= X --> X s>= Y
4149     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4150       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4151 
4152     // smax(X, Y) != X --> X s< Y
4153     // smax(X, Y) s> X --> X s< Y
4154     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4155       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4156 
4157     // These cases should be handled in InstSimplify:
4158     // smax(X, Y) s>= X --> true
4159     // smax(X, Y) s< X --> false
4160     return nullptr;
4161   }
4162 
4163   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4164     // umin(X, Y)  == X --> X u<= Y
4165     // umin(X, Y) u>= X --> X u<= Y
4166     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4167       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4168 
4169     // umin(X, Y) != X --> X u> Y
4170     // umin(X, Y) u< X --> X u> Y
4171     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4172       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4173 
4174     // These cases should be handled in InstSimplify:
4175     // umin(X, Y) u<= X --> true
4176     // umin(X, Y) u> X --> false
4177     return nullptr;
4178   }
4179 
4180   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4181     // umax(X, Y)  == X --> X u>= Y
4182     // umax(X, Y) u<= X --> X u>= Y
4183     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4184       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4185 
4186     // umax(X, Y) != X --> X u< Y
4187     // umax(X, Y) u> X --> X u< Y
4188     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4189       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4190 
4191     // These cases should be handled in InstSimplify:
4192     // umax(X, Y) u>= X --> true
4193     // umax(X, Y) u< X --> false
4194     return nullptr;
4195   }
4196 
4197   return nullptr;
4198 }
4199 
4200 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4201   if (!I.isEquality())
4202     return nullptr;
4203 
4204   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4205   const CmpInst::Predicate Pred = I.getPredicate();
4206   Value *A, *B, *C, *D;
4207   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4208     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4209       Value *OtherVal = A == Op1 ? B : A;
4210       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4211     }
4212 
4213     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4214       // A^c1 == C^c2 --> A == C^(c1^c2)
4215       ConstantInt *C1, *C2;
4216       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4217           Op1->hasOneUse()) {
4218         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4219         Value *Xor = Builder.CreateXor(C, NC);
4220         return new ICmpInst(Pred, A, Xor);
4221       }
4222 
4223       // A^B == A^D -> B == D
4224       if (A == C)
4225         return new ICmpInst(Pred, B, D);
4226       if (A == D)
4227         return new ICmpInst(Pred, B, C);
4228       if (B == C)
4229         return new ICmpInst(Pred, A, D);
4230       if (B == D)
4231         return new ICmpInst(Pred, A, C);
4232     }
4233   }
4234 
4235   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4236     // A == (A^B)  ->  B == 0
4237     Value *OtherVal = A == Op0 ? B : A;
4238     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4239   }
4240 
4241   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4242   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4243       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4244     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4245 
4246     if (A == C) {
4247       X = B;
4248       Y = D;
4249       Z = A;
4250     } else if (A == D) {
4251       X = B;
4252       Y = C;
4253       Z = A;
4254     } else if (B == C) {
4255       X = A;
4256       Y = D;
4257       Z = B;
4258     } else if (B == D) {
4259       X = A;
4260       Y = C;
4261       Z = B;
4262     }
4263 
4264     if (X) { // Build (X^Y) & Z
4265       Op1 = Builder.CreateXor(X, Y);
4266       Op1 = Builder.CreateAnd(Op1, Z);
4267       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4268     }
4269   }
4270 
4271   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4272   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4273   ConstantInt *Cst1;
4274   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4275        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4276       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4277        match(Op1, m_ZExt(m_Value(A))))) {
4278     APInt Pow2 = Cst1->getValue() + 1;
4279     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4280         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4281       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4282   }
4283 
4284   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4285   // For lshr and ashr pairs.
4286   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4287        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4288       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4289        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4290     unsigned TypeBits = Cst1->getBitWidth();
4291     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4292     if (ShAmt < TypeBits && ShAmt != 0) {
4293       ICmpInst::Predicate NewPred =
4294           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4295       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4296       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4297       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4298     }
4299   }
4300 
4301   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4302   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4303       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4304     unsigned TypeBits = Cst1->getBitWidth();
4305     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4306     if (ShAmt < TypeBits && ShAmt != 0) {
4307       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4308       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4309       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4310                                       I.getName() + ".mask");
4311       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4312     }
4313   }
4314 
4315   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4316   // "icmp (and X, mask), cst"
4317   uint64_t ShAmt = 0;
4318   if (Op0->hasOneUse() &&
4319       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4320       match(Op1, m_ConstantInt(Cst1)) &&
4321       // Only do this when A has multiple uses.  This is most important to do
4322       // when it exposes other optimizations.
4323       !A->hasOneUse()) {
4324     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4325 
4326     if (ShAmt < ASize) {
4327       APInt MaskV =
4328           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4329       MaskV <<= ShAmt;
4330 
4331       APInt CmpV = Cst1->getValue().zext(ASize);
4332       CmpV <<= ShAmt;
4333 
4334       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4335       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4336     }
4337   }
4338 
4339   // If both operands are byte-swapped or bit-reversed, just compare the
4340   // original values.
4341   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4342   // and handle more intrinsics.
4343   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4344       (match(Op0, m_BitReverse(m_Value(A))) &&
4345        match(Op1, m_BitReverse(m_Value(B)))))
4346     return new ICmpInst(Pred, A, B);
4347 
4348   // Canonicalize checking for a power-of-2-or-zero value:
4349   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4350   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4351   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4352                                    m_Deferred(A)))) ||
4353       !match(Op1, m_ZeroInt()))
4354     A = nullptr;
4355 
4356   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4357   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4358   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4359     A = Op1;
4360   else if (match(Op1,
4361                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4362     A = Op0;
4363 
4364   if (A) {
4365     Type *Ty = A->getType();
4366     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4367     return Pred == ICmpInst::ICMP_EQ
4368         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4369         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4370   }
4371 
4372   return nullptr;
4373 }
4374 
4375 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4376                                            InstCombiner::BuilderTy &Builder) {
4377   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4378   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4379   Value *X;
4380   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4381     return nullptr;
4382 
4383   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4384   bool IsSignedCmp = ICmp.isSigned();
4385   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4386     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4387     // and the other is a zext), then we can't handle this.
4388     // TODO: This is too strict. We can handle some predicates (equality?).
4389     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4390       return nullptr;
4391 
4392     // Not an extension from the same type?
4393     Value *Y = CastOp1->getOperand(0);
4394     Type *XTy = X->getType(), *YTy = Y->getType();
4395     if (XTy != YTy) {
4396       // One of the casts must have one use because we are creating a new cast.
4397       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4398         return nullptr;
4399       // Extend the narrower operand to the type of the wider operand.
4400       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4401         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4402       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4403         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4404       else
4405         return nullptr;
4406     }
4407 
4408     // (zext X) == (zext Y) --> X == Y
4409     // (sext X) == (sext Y) --> X == Y
4410     if (ICmp.isEquality())
4411       return new ICmpInst(ICmp.getPredicate(), X, Y);
4412 
4413     // A signed comparison of sign extended values simplifies into a
4414     // signed comparison.
4415     if (IsSignedCmp && IsSignedExt)
4416       return new ICmpInst(ICmp.getPredicate(), X, Y);
4417 
4418     // The other three cases all fold into an unsigned comparison.
4419     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4420   }
4421 
4422   // Below here, we are only folding a compare with constant.
4423   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4424   if (!C)
4425     return nullptr;
4426 
4427   // Compute the constant that would happen if we truncated to SrcTy then
4428   // re-extended to DestTy.
4429   Type *SrcTy = CastOp0->getSrcTy();
4430   Type *DestTy = CastOp0->getDestTy();
4431   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4432   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4433 
4434   // If the re-extended constant didn't change...
4435   if (Res2 == C) {
4436     if (ICmp.isEquality())
4437       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4438 
4439     // A signed comparison of sign extended values simplifies into a
4440     // signed comparison.
4441     if (IsSignedExt && IsSignedCmp)
4442       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4443 
4444     // The other three cases all fold into an unsigned comparison.
4445     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4446   }
4447 
4448   // The re-extended constant changed, partly changed (in the case of a vector),
4449   // or could not be determined to be equal (in the case of a constant
4450   // expression), so the constant cannot be represented in the shorter type.
4451   // All the cases that fold to true or false will have already been handled
4452   // by SimplifyICmpInst, so only deal with the tricky case.
4453   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4454     return nullptr;
4455 
4456   // Is source op positive?
4457   // icmp ult (sext X), C --> icmp sgt X, -1
4458   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4459     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4460 
4461   // Is source op negative?
4462   // icmp ugt (sext X), C --> icmp slt X, 0
4463   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4464   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4465 }
4466 
4467 /// Handle icmp (cast x), (cast or constant).
4468 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4469   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4470   if (!CastOp0)
4471     return nullptr;
4472   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4473     return nullptr;
4474 
4475   Value *Op0Src = CastOp0->getOperand(0);
4476   Type *SrcTy = CastOp0->getSrcTy();
4477   Type *DestTy = CastOp0->getDestTy();
4478 
4479   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4480   // integer type is the same size as the pointer type.
4481   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4482     if (isa<VectorType>(SrcTy)) {
4483       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4484       DestTy = cast<VectorType>(DestTy)->getElementType();
4485     }
4486     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4487   };
4488   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4489       CompatibleSizes(SrcTy, DestTy)) {
4490     Value *NewOp1 = nullptr;
4491     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4492       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4493       if (PtrSrc->getType()->getPointerAddressSpace() ==
4494           Op0Src->getType()->getPointerAddressSpace()) {
4495         NewOp1 = PtrToIntOp1->getOperand(0);
4496         // If the pointer types don't match, insert a bitcast.
4497         if (Op0Src->getType() != NewOp1->getType())
4498           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4499       }
4500     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4501       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4502     }
4503 
4504     if (NewOp1)
4505       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4506   }
4507 
4508   return foldICmpWithZextOrSext(ICmp, Builder);
4509 }
4510 
4511 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4512   switch (BinaryOp) {
4513     default:
4514       llvm_unreachable("Unsupported binary op");
4515     case Instruction::Add:
4516     case Instruction::Sub:
4517       return match(RHS, m_Zero());
4518     case Instruction::Mul:
4519       return match(RHS, m_One());
4520   }
4521 }
4522 
4523 OverflowResult
4524 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4525                                   bool IsSigned, Value *LHS, Value *RHS,
4526                                   Instruction *CxtI) const {
4527   switch (BinaryOp) {
4528     default:
4529       llvm_unreachable("Unsupported binary op");
4530     case Instruction::Add:
4531       if (IsSigned)
4532         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4533       else
4534         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4535     case Instruction::Sub:
4536       if (IsSigned)
4537         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4538       else
4539         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4540     case Instruction::Mul:
4541       if (IsSigned)
4542         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4543       else
4544         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4545   }
4546 }
4547 
4548 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4549                                              bool IsSigned, Value *LHS,
4550                                              Value *RHS, Instruction &OrigI,
4551                                              Value *&Result,
4552                                              Constant *&Overflow) {
4553   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4554     std::swap(LHS, RHS);
4555 
4556   // If the overflow check was an add followed by a compare, the insertion point
4557   // may be pointing to the compare.  We want to insert the new instructions
4558   // before the add in case there are uses of the add between the add and the
4559   // compare.
4560   Builder.SetInsertPoint(&OrigI);
4561 
4562   if (isNeutralValue(BinaryOp, RHS)) {
4563     Result = LHS;
4564     Overflow = Builder.getFalse();
4565     return true;
4566   }
4567 
4568   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4569     case OverflowResult::MayOverflow:
4570       return false;
4571     case OverflowResult::AlwaysOverflowsLow:
4572     case OverflowResult::AlwaysOverflowsHigh:
4573       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4574       Result->takeName(&OrigI);
4575       Overflow = Builder.getTrue();
4576       return true;
4577     case OverflowResult::NeverOverflows:
4578       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4579       Result->takeName(&OrigI);
4580       Overflow = Builder.getFalse();
4581       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4582         if (IsSigned)
4583           Inst->setHasNoSignedWrap();
4584         else
4585           Inst->setHasNoUnsignedWrap();
4586       }
4587       return true;
4588   }
4589 
4590   llvm_unreachable("Unexpected overflow result");
4591 }
4592 
4593 /// Recognize and process idiom involving test for multiplication
4594 /// overflow.
4595 ///
4596 /// The caller has matched a pattern of the form:
4597 ///   I = cmp u (mul(zext A, zext B), V
4598 /// The function checks if this is a test for overflow and if so replaces
4599 /// multiplication with call to 'mul.with.overflow' intrinsic.
4600 ///
4601 /// \param I Compare instruction.
4602 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4603 ///               the compare instruction.  Must be of integer type.
4604 /// \param OtherVal The other argument of compare instruction.
4605 /// \returns Instruction which must replace the compare instruction, NULL if no
4606 ///          replacement required.
4607 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4608                                          Value *OtherVal,
4609                                          InstCombinerImpl &IC) {
4610   // Don't bother doing this transformation for pointers, don't do it for
4611   // vectors.
4612   if (!isa<IntegerType>(MulVal->getType()))
4613     return nullptr;
4614 
4615   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4616   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4617   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4618   if (!MulInstr)
4619     return nullptr;
4620   assert(MulInstr->getOpcode() == Instruction::Mul);
4621 
4622   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4623        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4624   assert(LHS->getOpcode() == Instruction::ZExt);
4625   assert(RHS->getOpcode() == Instruction::ZExt);
4626   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4627 
4628   // Calculate type and width of the result produced by mul.with.overflow.
4629   Type *TyA = A->getType(), *TyB = B->getType();
4630   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4631            WidthB = TyB->getPrimitiveSizeInBits();
4632   unsigned MulWidth;
4633   Type *MulType;
4634   if (WidthB > WidthA) {
4635     MulWidth = WidthB;
4636     MulType = TyB;
4637   } else {
4638     MulWidth = WidthA;
4639     MulType = TyA;
4640   }
4641 
4642   // In order to replace the original mul with a narrower mul.with.overflow,
4643   // all uses must ignore upper bits of the product.  The number of used low
4644   // bits must be not greater than the width of mul.with.overflow.
4645   if (MulVal->hasNUsesOrMore(2))
4646     for (User *U : MulVal->users()) {
4647       if (U == &I)
4648         continue;
4649       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4650         // Check if truncation ignores bits above MulWidth.
4651         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4652         if (TruncWidth > MulWidth)
4653           return nullptr;
4654       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4655         // Check if AND ignores bits above MulWidth.
4656         if (BO->getOpcode() != Instruction::And)
4657           return nullptr;
4658         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4659           const APInt &CVal = CI->getValue();
4660           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4661             return nullptr;
4662         } else {
4663           // In this case we could have the operand of the binary operation
4664           // being defined in another block, and performing the replacement
4665           // could break the dominance relation.
4666           return nullptr;
4667         }
4668       } else {
4669         // Other uses prohibit this transformation.
4670         return nullptr;
4671       }
4672     }
4673 
4674   // Recognize patterns
4675   switch (I.getPredicate()) {
4676   case ICmpInst::ICMP_EQ:
4677   case ICmpInst::ICMP_NE:
4678     // Recognize pattern:
4679     //   mulval = mul(zext A, zext B)
4680     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4681     ConstantInt *CI;
4682     Value *ValToMask;
4683     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4684       if (ValToMask != MulVal)
4685         return nullptr;
4686       const APInt &CVal = CI->getValue() + 1;
4687       if (CVal.isPowerOf2()) {
4688         unsigned MaskWidth = CVal.logBase2();
4689         if (MaskWidth == MulWidth)
4690           break; // Recognized
4691       }
4692     }
4693     return nullptr;
4694 
4695   case ICmpInst::ICMP_UGT:
4696     // Recognize pattern:
4697     //   mulval = mul(zext A, zext B)
4698     //   cmp ugt mulval, max
4699     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4700       APInt MaxVal = APInt::getMaxValue(MulWidth);
4701       MaxVal = MaxVal.zext(CI->getBitWidth());
4702       if (MaxVal.eq(CI->getValue()))
4703         break; // Recognized
4704     }
4705     return nullptr;
4706 
4707   case ICmpInst::ICMP_UGE:
4708     // Recognize pattern:
4709     //   mulval = mul(zext A, zext B)
4710     //   cmp uge mulval, max+1
4711     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4712       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4713       if (MaxVal.eq(CI->getValue()))
4714         break; // Recognized
4715     }
4716     return nullptr;
4717 
4718   case ICmpInst::ICMP_ULE:
4719     // Recognize pattern:
4720     //   mulval = mul(zext A, zext B)
4721     //   cmp ule mulval, max
4722     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4723       APInt MaxVal = APInt::getMaxValue(MulWidth);
4724       MaxVal = MaxVal.zext(CI->getBitWidth());
4725       if (MaxVal.eq(CI->getValue()))
4726         break; // Recognized
4727     }
4728     return nullptr;
4729 
4730   case ICmpInst::ICMP_ULT:
4731     // Recognize pattern:
4732     //   mulval = mul(zext A, zext B)
4733     //   cmp ule mulval, max + 1
4734     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4735       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4736       if (MaxVal.eq(CI->getValue()))
4737         break; // Recognized
4738     }
4739     return nullptr;
4740 
4741   default:
4742     return nullptr;
4743   }
4744 
4745   InstCombiner::BuilderTy &Builder = IC.Builder;
4746   Builder.SetInsertPoint(MulInstr);
4747 
4748   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4749   Value *MulA = A, *MulB = B;
4750   if (WidthA < MulWidth)
4751     MulA = Builder.CreateZExt(A, MulType);
4752   if (WidthB < MulWidth)
4753     MulB = Builder.CreateZExt(B, MulType);
4754   Function *F = Intrinsic::getDeclaration(
4755       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4756   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4757   IC.addToWorklist(MulInstr);
4758 
4759   // If there are uses of mul result other than the comparison, we know that
4760   // they are truncation or binary AND. Change them to use result of
4761   // mul.with.overflow and adjust properly mask/size.
4762   if (MulVal->hasNUsesOrMore(2)) {
4763     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4764     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4765       User *U = *UI++;
4766       if (U == &I || U == OtherVal)
4767         continue;
4768       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4769         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4770           IC.replaceInstUsesWith(*TI, Mul);
4771         else
4772           TI->setOperand(0, Mul);
4773       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4774         assert(BO->getOpcode() == Instruction::And);
4775         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4776         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4777         APInt ShortMask = CI->getValue().trunc(MulWidth);
4778         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4779         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4780         IC.replaceInstUsesWith(*BO, Zext);
4781       } else {
4782         llvm_unreachable("Unexpected Binary operation");
4783       }
4784       IC.addToWorklist(cast<Instruction>(U));
4785     }
4786   }
4787   if (isa<Instruction>(OtherVal))
4788     IC.addToWorklist(cast<Instruction>(OtherVal));
4789 
4790   // The original icmp gets replaced with the overflow value, maybe inverted
4791   // depending on predicate.
4792   bool Inverse = false;
4793   switch (I.getPredicate()) {
4794   case ICmpInst::ICMP_NE:
4795     break;
4796   case ICmpInst::ICMP_EQ:
4797     Inverse = true;
4798     break;
4799   case ICmpInst::ICMP_UGT:
4800   case ICmpInst::ICMP_UGE:
4801     if (I.getOperand(0) == MulVal)
4802       break;
4803     Inverse = true;
4804     break;
4805   case ICmpInst::ICMP_ULT:
4806   case ICmpInst::ICMP_ULE:
4807     if (I.getOperand(1) == MulVal)
4808       break;
4809     Inverse = true;
4810     break;
4811   default:
4812     llvm_unreachable("Unexpected predicate");
4813   }
4814   if (Inverse) {
4815     Value *Res = Builder.CreateExtractValue(Call, 1);
4816     return BinaryOperator::CreateNot(Res);
4817   }
4818 
4819   return ExtractValueInst::Create(Call, 1);
4820 }
4821 
4822 /// When performing a comparison against a constant, it is possible that not all
4823 /// the bits in the LHS are demanded. This helper method computes the mask that
4824 /// IS demanded.
4825 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4826   const APInt *RHS;
4827   if (!match(I.getOperand(1), m_APInt(RHS)))
4828     return APInt::getAllOnesValue(BitWidth);
4829 
4830   // If this is a normal comparison, it demands all bits. If it is a sign bit
4831   // comparison, it only demands the sign bit.
4832   bool UnusedBit;
4833   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4834     return APInt::getSignMask(BitWidth);
4835 
4836   switch (I.getPredicate()) {
4837   // For a UGT comparison, we don't care about any bits that
4838   // correspond to the trailing ones of the comparand.  The value of these
4839   // bits doesn't impact the outcome of the comparison, because any value
4840   // greater than the RHS must differ in a bit higher than these due to carry.
4841   case ICmpInst::ICMP_UGT:
4842     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4843 
4844   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4845   // Any value less than the RHS must differ in a higher bit because of carries.
4846   case ICmpInst::ICMP_ULT:
4847     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4848 
4849   default:
4850     return APInt::getAllOnesValue(BitWidth);
4851   }
4852 }
4853 
4854 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4855 /// should be swapped.
4856 /// The decision is based on how many times these two operands are reused
4857 /// as subtract operands and their positions in those instructions.
4858 /// The rationale is that several architectures use the same instruction for
4859 /// both subtract and cmp. Thus, it is better if the order of those operands
4860 /// match.
4861 /// \return true if Op0 and Op1 should be swapped.
4862 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4863   // Filter out pointer values as those cannot appear directly in subtract.
4864   // FIXME: we may want to go through inttoptrs or bitcasts.
4865   if (Op0->getType()->isPointerTy())
4866     return false;
4867   // If a subtract already has the same operands as a compare, swapping would be
4868   // bad. If a subtract has the same operands as a compare but in reverse order,
4869   // then swapping is good.
4870   int GoodToSwap = 0;
4871   for (const User *U : Op0->users()) {
4872     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4873       GoodToSwap++;
4874     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4875       GoodToSwap--;
4876   }
4877   return GoodToSwap > 0;
4878 }
4879 
4880 /// Check that one use is in the same block as the definition and all
4881 /// other uses are in blocks dominated by a given block.
4882 ///
4883 /// \param DI Definition
4884 /// \param UI Use
4885 /// \param DB Block that must dominate all uses of \p DI outside
4886 ///           the parent block
4887 /// \return true when \p UI is the only use of \p DI in the parent block
4888 /// and all other uses of \p DI are in blocks dominated by \p DB.
4889 ///
4890 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
4891                                         const Instruction *UI,
4892                                         const BasicBlock *DB) const {
4893   assert(DI && UI && "Instruction not defined\n");
4894   // Ignore incomplete definitions.
4895   if (!DI->getParent())
4896     return false;
4897   // DI and UI must be in the same block.
4898   if (DI->getParent() != UI->getParent())
4899     return false;
4900   // Protect from self-referencing blocks.
4901   if (DI->getParent() == DB)
4902     return false;
4903   for (const User *U : DI->users()) {
4904     auto *Usr = cast<Instruction>(U);
4905     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4906       return false;
4907   }
4908   return true;
4909 }
4910 
4911 /// Return true when the instruction sequence within a block is select-cmp-br.
4912 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4913   const BasicBlock *BB = SI->getParent();
4914   if (!BB)
4915     return false;
4916   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4917   if (!BI || BI->getNumSuccessors() != 2)
4918     return false;
4919   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4920   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4921     return false;
4922   return true;
4923 }
4924 
4925 /// True when a select result is replaced by one of its operands
4926 /// in select-icmp sequence. This will eventually result in the elimination
4927 /// of the select.
4928 ///
4929 /// \param SI    Select instruction
4930 /// \param Icmp  Compare instruction
4931 /// \param SIOpd Operand that replaces the select
4932 ///
4933 /// Notes:
4934 /// - The replacement is global and requires dominator information
4935 /// - The caller is responsible for the actual replacement
4936 ///
4937 /// Example:
4938 ///
4939 /// entry:
4940 ///  %4 = select i1 %3, %C* %0, %C* null
4941 ///  %5 = icmp eq %C* %4, null
4942 ///  br i1 %5, label %9, label %7
4943 ///  ...
4944 ///  ; <label>:7                                       ; preds = %entry
4945 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4946 ///  ...
4947 ///
4948 /// can be transformed to
4949 ///
4950 ///  %5 = icmp eq %C* %0, null
4951 ///  %6 = select i1 %3, i1 %5, i1 true
4952 ///  br i1 %6, label %9, label %7
4953 ///  ...
4954 ///  ; <label>:7                                       ; preds = %entry
4955 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4956 ///
4957 /// Similar when the first operand of the select is a constant or/and
4958 /// the compare is for not equal rather than equal.
4959 ///
4960 /// NOTE: The function is only called when the select and compare constants
4961 /// are equal, the optimization can work only for EQ predicates. This is not a
4962 /// major restriction since a NE compare should be 'normalized' to an equal
4963 /// compare, which usually happens in the combiner and test case
4964 /// select-cmp-br.ll checks for it.
4965 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
4966                                                  const ICmpInst *Icmp,
4967                                                  const unsigned SIOpd) {
4968   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4969   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4970     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4971     // The check for the single predecessor is not the best that can be
4972     // done. But it protects efficiently against cases like when SI's
4973     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4974     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4975     // replaced can be reached on either path. So the uniqueness check
4976     // guarantees that the path all uses of SI (outside SI's parent) are on
4977     // is disjoint from all other paths out of SI. But that information
4978     // is more expensive to compute, and the trade-off here is in favor
4979     // of compile-time. It should also be noticed that we check for a single
4980     // predecessor and not only uniqueness. This to handle the situation when
4981     // Succ and Succ1 points to the same basic block.
4982     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4983       NumSel++;
4984       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4985       return true;
4986     }
4987   }
4988   return false;
4989 }
4990 
4991 /// Try to fold the comparison based on range information we can get by checking
4992 /// whether bits are known to be zero or one in the inputs.
4993 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
4994   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4995   Type *Ty = Op0->getType();
4996   ICmpInst::Predicate Pred = I.getPredicate();
4997 
4998   // Get scalar or pointer size.
4999   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5000                           ? Ty->getScalarSizeInBits()
5001                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5002 
5003   if (!BitWidth)
5004     return nullptr;
5005 
5006   KnownBits Op0Known(BitWidth);
5007   KnownBits Op1Known(BitWidth);
5008 
5009   if (SimplifyDemandedBits(&I, 0,
5010                            getDemandedBitsLHSMask(I, BitWidth),
5011                            Op0Known, 0))
5012     return &I;
5013 
5014   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5015                            Op1Known, 0))
5016     return &I;
5017 
5018   // Given the known and unknown bits, compute a range that the LHS could be
5019   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5020   // EQ and NE we use unsigned values.
5021   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5022   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5023   if (I.isSigned()) {
5024     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
5025     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
5026   } else {
5027     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
5028     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
5029   }
5030 
5031   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5032   // out that the LHS or RHS is a constant. Constant fold this now, so that
5033   // code below can assume that Min != Max.
5034   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5035     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5036   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5037     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5038 
5039   // Based on the range information we know about the LHS, see if we can
5040   // simplify this comparison.  For example, (x&4) < 8 is always true.
5041   switch (Pred) {
5042   default:
5043     llvm_unreachable("Unknown icmp opcode!");
5044   case ICmpInst::ICMP_EQ:
5045   case ICmpInst::ICMP_NE: {
5046     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
5047       return Pred == CmpInst::ICMP_EQ
5048                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
5049                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5050     }
5051 
5052     // If all bits are known zero except for one, then we know at most one bit
5053     // is set. If the comparison is against zero, then this is a check to see if
5054     // *that* bit is set.
5055     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5056     if (Op1Known.isZero()) {
5057       // If the LHS is an AND with the same constant, look through it.
5058       Value *LHS = nullptr;
5059       const APInt *LHSC;
5060       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5061           *LHSC != Op0KnownZeroInverted)
5062         LHS = Op0;
5063 
5064       Value *X;
5065       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5066         APInt ValToCheck = Op0KnownZeroInverted;
5067         Type *XTy = X->getType();
5068         if (ValToCheck.isPowerOf2()) {
5069           // ((1 << X) & 8) == 0 -> X != 3
5070           // ((1 << X) & 8) != 0 -> X == 3
5071           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5072           auto NewPred = ICmpInst::getInversePredicate(Pred);
5073           return new ICmpInst(NewPred, X, CmpC);
5074         } else if ((++ValToCheck).isPowerOf2()) {
5075           // ((1 << X) & 7) == 0 -> X >= 3
5076           // ((1 << X) & 7) != 0 -> X  < 3
5077           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5078           auto NewPred =
5079               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5080           return new ICmpInst(NewPred, X, CmpC);
5081         }
5082       }
5083 
5084       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5085       const APInt *CI;
5086       if (Op0KnownZeroInverted.isOneValue() &&
5087           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5088         // ((8 >>u X) & 1) == 0 -> X != 3
5089         // ((8 >>u X) & 1) != 0 -> X == 3
5090         unsigned CmpVal = CI->countTrailingZeros();
5091         auto NewPred = ICmpInst::getInversePredicate(Pred);
5092         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5093       }
5094     }
5095     break;
5096   }
5097   case ICmpInst::ICMP_ULT: {
5098     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5099       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5100     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5101       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5102     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5103       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5104 
5105     const APInt *CmpC;
5106     if (match(Op1, m_APInt(CmpC))) {
5107       // A <u C -> A == C-1 if min(A)+1 == C
5108       if (*CmpC == Op0Min + 1)
5109         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5110                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5111       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5112       // exceeds the log2 of C.
5113       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5114         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5115                             Constant::getNullValue(Op1->getType()));
5116     }
5117     break;
5118   }
5119   case ICmpInst::ICMP_UGT: {
5120     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5121       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5122     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5123       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5124     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5125       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5126 
5127     const APInt *CmpC;
5128     if (match(Op1, m_APInt(CmpC))) {
5129       // A >u C -> A == C+1 if max(a)-1 == C
5130       if (*CmpC == Op0Max - 1)
5131         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5132                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5133       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5134       // exceeds the log2 of C.
5135       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5136         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5137                             Constant::getNullValue(Op1->getType()));
5138     }
5139     break;
5140   }
5141   case ICmpInst::ICMP_SLT: {
5142     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5143       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5144     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5145       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5146     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5147       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5148     const APInt *CmpC;
5149     if (match(Op1, m_APInt(CmpC))) {
5150       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5151         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5152                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5153     }
5154     break;
5155   }
5156   case ICmpInst::ICMP_SGT: {
5157     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5158       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5159     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5160       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5161     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5162       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5163     const APInt *CmpC;
5164     if (match(Op1, m_APInt(CmpC))) {
5165       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5166         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5167                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5168     }
5169     break;
5170   }
5171   case ICmpInst::ICMP_SGE:
5172     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5173     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5174       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5175     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5176       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5177     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5178       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5179     break;
5180   case ICmpInst::ICMP_SLE:
5181     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5182     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5183       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5184     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5185       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5186     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5187       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5188     break;
5189   case ICmpInst::ICMP_UGE:
5190     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5191     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5192       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5193     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5194       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5195     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5196       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5197     break;
5198   case ICmpInst::ICMP_ULE:
5199     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5200     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5201       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5202     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5203       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5204     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5205       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5206     break;
5207   }
5208 
5209   // Turn a signed comparison into an unsigned one if both operands are known to
5210   // have the same sign.
5211   if (I.isSigned() &&
5212       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5213        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5214     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5215 
5216   return nullptr;
5217 }
5218 
5219 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5220 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5221                                                        Constant *C) {
5222   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5223          "Only for relational integer predicates.");
5224 
5225   Type *Type = C->getType();
5226   bool IsSigned = ICmpInst::isSigned(Pred);
5227 
5228   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5229   bool WillIncrement =
5230       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5231 
5232   // Check if the constant operand can be safely incremented/decremented
5233   // without overflowing/underflowing.
5234   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5235     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5236   };
5237 
5238   Constant *SafeReplacementConstant = nullptr;
5239   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5240     // Bail out if the constant can't be safely incremented/decremented.
5241     if (!ConstantIsOk(CI))
5242       return llvm::None;
5243   } else if (auto *VTy = dyn_cast<VectorType>(Type)) {
5244     unsigned NumElts = VTy->getNumElements();
5245     for (unsigned i = 0; i != NumElts; ++i) {
5246       Constant *Elt = C->getAggregateElement(i);
5247       if (!Elt)
5248         return llvm::None;
5249 
5250       if (isa<UndefValue>(Elt))
5251         continue;
5252 
5253       // Bail out if we can't determine if this constant is min/max or if we
5254       // know that this constant is min/max.
5255       auto *CI = dyn_cast<ConstantInt>(Elt);
5256       if (!CI || !ConstantIsOk(CI))
5257         return llvm::None;
5258 
5259       if (!SafeReplacementConstant)
5260         SafeReplacementConstant = CI;
5261     }
5262   } else {
5263     // ConstantExpr?
5264     return llvm::None;
5265   }
5266 
5267   // It may not be safe to change a compare predicate in the presence of
5268   // undefined elements, so replace those elements with the first safe constant
5269   // that we found.
5270   if (C->containsUndefElement()) {
5271     assert(SafeReplacementConstant && "Replacement constant not set");
5272     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5273   }
5274 
5275   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5276 
5277   // Increment or decrement the constant.
5278   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5279   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5280 
5281   return std::make_pair(NewPred, NewC);
5282 }
5283 
5284 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5285 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5286 /// allows them to be folded in visitICmpInst.
5287 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5288   ICmpInst::Predicate Pred = I.getPredicate();
5289   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5290       InstCombiner::isCanonicalPredicate(Pred))
5291     return nullptr;
5292 
5293   Value *Op0 = I.getOperand(0);
5294   Value *Op1 = I.getOperand(1);
5295   auto *Op1C = dyn_cast<Constant>(Op1);
5296   if (!Op1C)
5297     return nullptr;
5298 
5299   auto FlippedStrictness =
5300       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5301   if (!FlippedStrictness)
5302     return nullptr;
5303 
5304   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5305 }
5306 
5307 /// If we have a comparison with a non-canonical predicate, if we can update
5308 /// all the users, invert the predicate and adjust all the users.
5309 static CmpInst *canonicalizeICmpPredicate(CmpInst &I) {
5310   // Is the predicate already canonical?
5311   CmpInst::Predicate Pred = I.getPredicate();
5312   if (InstCombiner::isCanonicalPredicate(Pred))
5313     return nullptr;
5314 
5315   // Can all users be adjusted to predicate inversion?
5316   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5317     return nullptr;
5318 
5319   // Ok, we can canonicalize comparison!
5320   // Let's first invert the comparison's predicate.
5321   I.setPredicate(CmpInst::getInversePredicate(Pred));
5322   I.setName(I.getName() + ".not");
5323 
5324   // And now let's adjust every user.
5325   for (User *U : I.users()) {
5326     switch (cast<Instruction>(U)->getOpcode()) {
5327     case Instruction::Select: {
5328       auto *SI = cast<SelectInst>(U);
5329       SI->swapValues();
5330       SI->swapProfMetadata();
5331       break;
5332     }
5333     case Instruction::Br:
5334       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
5335       break;
5336     case Instruction::Xor:
5337       U->replaceAllUsesWith(&I);
5338       break;
5339     default:
5340       llvm_unreachable("Got unexpected user - out of sync with "
5341                        "canFreelyInvertAllUsersOf() ?");
5342     }
5343   }
5344 
5345   return &I;
5346 }
5347 
5348 /// Integer compare with boolean values can always be turned into bitwise ops.
5349 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5350                                          InstCombiner::BuilderTy &Builder) {
5351   Value *A = I.getOperand(0), *B = I.getOperand(1);
5352   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5353 
5354   // A boolean compared to true/false can be simplified to Op0/true/false in
5355   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5356   // Cases not handled by InstSimplify are always 'not' of Op0.
5357   if (match(B, m_Zero())) {
5358     switch (I.getPredicate()) {
5359       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5360       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5361       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5362         return BinaryOperator::CreateNot(A);
5363       default:
5364         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5365     }
5366   } else if (match(B, m_One())) {
5367     switch (I.getPredicate()) {
5368       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5369       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5370       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5371         return BinaryOperator::CreateNot(A);
5372       default:
5373         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5374     }
5375   }
5376 
5377   switch (I.getPredicate()) {
5378   default:
5379     llvm_unreachable("Invalid icmp instruction!");
5380   case ICmpInst::ICMP_EQ:
5381     // icmp eq i1 A, B -> ~(A ^ B)
5382     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5383 
5384   case ICmpInst::ICMP_NE:
5385     // icmp ne i1 A, B -> A ^ B
5386     return BinaryOperator::CreateXor(A, B);
5387 
5388   case ICmpInst::ICMP_UGT:
5389     // icmp ugt -> icmp ult
5390     std::swap(A, B);
5391     LLVM_FALLTHROUGH;
5392   case ICmpInst::ICMP_ULT:
5393     // icmp ult i1 A, B -> ~A & B
5394     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5395 
5396   case ICmpInst::ICMP_SGT:
5397     // icmp sgt -> icmp slt
5398     std::swap(A, B);
5399     LLVM_FALLTHROUGH;
5400   case ICmpInst::ICMP_SLT:
5401     // icmp slt i1 A, B -> A & ~B
5402     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5403 
5404   case ICmpInst::ICMP_UGE:
5405     // icmp uge -> icmp ule
5406     std::swap(A, B);
5407     LLVM_FALLTHROUGH;
5408   case ICmpInst::ICMP_ULE:
5409     // icmp ule i1 A, B -> ~A | B
5410     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5411 
5412   case ICmpInst::ICMP_SGE:
5413     // icmp sge -> icmp sle
5414     std::swap(A, B);
5415     LLVM_FALLTHROUGH;
5416   case ICmpInst::ICMP_SLE:
5417     // icmp sle i1 A, B -> A | ~B
5418     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5419   }
5420 }
5421 
5422 // Transform pattern like:
5423 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5424 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5425 // Into:
5426 //   (X l>> Y) != 0
5427 //   (X l>> Y) == 0
5428 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5429                                             InstCombiner::BuilderTy &Builder) {
5430   ICmpInst::Predicate Pred, NewPred;
5431   Value *X, *Y;
5432   if (match(&Cmp,
5433             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5434     switch (Pred) {
5435     case ICmpInst::ICMP_ULE:
5436       NewPred = ICmpInst::ICMP_NE;
5437       break;
5438     case ICmpInst::ICMP_UGT:
5439       NewPred = ICmpInst::ICMP_EQ;
5440       break;
5441     default:
5442       return nullptr;
5443     }
5444   } else if (match(&Cmp, m_c_ICmp(Pred,
5445                                   m_OneUse(m_CombineOr(
5446                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5447                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5448                                             m_AllOnes()))),
5449                                   m_Value(X)))) {
5450     // The variant with 'add' is not canonical, (the variant with 'not' is)
5451     // we only get it because it has extra uses, and can't be canonicalized,
5452 
5453     switch (Pred) {
5454     case ICmpInst::ICMP_ULT:
5455       NewPred = ICmpInst::ICMP_NE;
5456       break;
5457     case ICmpInst::ICMP_UGE:
5458       NewPred = ICmpInst::ICMP_EQ;
5459       break;
5460     default:
5461       return nullptr;
5462     }
5463   } else
5464     return nullptr;
5465 
5466   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5467   Constant *Zero = Constant::getNullValue(NewX->getType());
5468   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5469 }
5470 
5471 static Instruction *foldVectorCmp(CmpInst &Cmp,
5472                                   InstCombiner::BuilderTy &Builder) {
5473   const CmpInst::Predicate Pred = Cmp.getPredicate();
5474   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5475   Value *V1, *V2;
5476   ArrayRef<int> M;
5477   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5478     return nullptr;
5479 
5480   // If both arguments of the cmp are shuffles that use the same mask and
5481   // shuffle within a single vector, move the shuffle after the cmp:
5482   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5483   Type *V1Ty = V1->getType();
5484   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5485       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5486     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5487     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5488   }
5489 
5490   // Try to canonicalize compare with splatted operand and splat constant.
5491   // TODO: We could generalize this for more than splats. See/use the code in
5492   //       InstCombiner::foldVectorBinop().
5493   Constant *C;
5494   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5495     return nullptr;
5496 
5497   // Length-changing splats are ok, so adjust the constants as needed:
5498   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5499   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5500   int MaskSplatIndex;
5501   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5502     // We allow undefs in matching, but this transform removes those for safety.
5503     // Demanded elements analysis should be able to recover some/all of that.
5504     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5505                                  ScalarC);
5506     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5507     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5508     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5509                                  NewM);
5510   }
5511 
5512   return nullptr;
5513 }
5514 
5515 // extract(uadd.with.overflow(A, B), 0) ult A
5516 //  -> extract(uadd.with.overflow(A, B), 1)
5517 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5518   CmpInst::Predicate Pred = I.getPredicate();
5519   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5520 
5521   Value *UAddOv;
5522   Value *A, *B;
5523   auto UAddOvResultPat = m_ExtractValue<0>(
5524       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5525   if (match(Op0, UAddOvResultPat) &&
5526       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5527        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5528         (match(A, m_One()) || match(B, m_One()))) ||
5529        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5530         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5531     // extract(uadd.with.overflow(A, B), 0) < A
5532     // extract(uadd.with.overflow(A, 1), 0) == 0
5533     // extract(uadd.with.overflow(A, -1), 0) != -1
5534     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5535   else if (match(Op1, UAddOvResultPat) &&
5536            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5537     // A > extract(uadd.with.overflow(A, B), 0)
5538     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5539   else
5540     return nullptr;
5541 
5542   return ExtractValueInst::Create(UAddOv, 1);
5543 }
5544 
5545 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5546   bool Changed = false;
5547   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5548   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5549   unsigned Op0Cplxity = getComplexity(Op0);
5550   unsigned Op1Cplxity = getComplexity(Op1);
5551 
5552   /// Orders the operands of the compare so that they are listed from most
5553   /// complex to least complex.  This puts constants before unary operators,
5554   /// before binary operators.
5555   if (Op0Cplxity < Op1Cplxity ||
5556       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5557     I.swapOperands();
5558     std::swap(Op0, Op1);
5559     Changed = true;
5560   }
5561 
5562   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5563     return replaceInstUsesWith(I, V);
5564 
5565   // Comparing -val or val with non-zero is the same as just comparing val
5566   // ie, abs(val) != 0 -> val != 0
5567   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5568     Value *Cond, *SelectTrue, *SelectFalse;
5569     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5570                             m_Value(SelectFalse)))) {
5571       if (Value *V = dyn_castNegVal(SelectTrue)) {
5572         if (V == SelectFalse)
5573           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5574       }
5575       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5576         if (V == SelectTrue)
5577           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5578       }
5579     }
5580   }
5581 
5582   if (Op0->getType()->isIntOrIntVectorTy(1))
5583     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5584       return Res;
5585 
5586   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5587     return Res;
5588 
5589   if (Instruction *Res = canonicalizeICmpPredicate(I))
5590     return Res;
5591 
5592   if (Instruction *Res = foldICmpWithConstant(I))
5593     return Res;
5594 
5595   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5596     return Res;
5597 
5598   if (Instruction *Res = foldICmpBinOp(I, Q))
5599     return Res;
5600 
5601   if (Instruction *Res = foldICmpUsingKnownBits(I))
5602     return Res;
5603 
5604   // Test if the ICmpInst instruction is used exclusively by a select as
5605   // part of a minimum or maximum operation. If so, refrain from doing
5606   // any other folding. This helps out other analyses which understand
5607   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5608   // and CodeGen. And in this case, at least one of the comparison
5609   // operands has at least one user besides the compare (the select),
5610   // which would often largely negate the benefit of folding anyway.
5611   //
5612   // Do the same for the other patterns recognized by matchSelectPattern.
5613   if (I.hasOneUse())
5614     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5615       Value *A, *B;
5616       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5617       if (SPR.Flavor != SPF_UNKNOWN)
5618         return nullptr;
5619     }
5620 
5621   // Do this after checking for min/max to prevent infinite looping.
5622   if (Instruction *Res = foldICmpWithZero(I))
5623     return Res;
5624 
5625   // FIXME: We only do this after checking for min/max to prevent infinite
5626   // looping caused by a reverse canonicalization of these patterns for min/max.
5627   // FIXME: The organization of folds is a mess. These would naturally go into
5628   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5629   // down here after the min/max restriction.
5630   ICmpInst::Predicate Pred = I.getPredicate();
5631   const APInt *C;
5632   if (match(Op1, m_APInt(C))) {
5633     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5634     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5635       Constant *Zero = Constant::getNullValue(Op0->getType());
5636       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5637     }
5638 
5639     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5640     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5641       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5642       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5643     }
5644   }
5645 
5646   if (Instruction *Res = foldICmpInstWithConstant(I))
5647     return Res;
5648 
5649   // Try to match comparison as a sign bit test. Intentionally do this after
5650   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5651   if (Instruction *New = foldSignBitTest(I))
5652     return New;
5653 
5654   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5655     return Res;
5656 
5657   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5658   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5659     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5660       return NI;
5661   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5662     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5663                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5664       return NI;
5665 
5666   // Try to optimize equality comparisons against alloca-based pointers.
5667   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5668     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5669     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5670       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5671         return New;
5672     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5673       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5674         return New;
5675   }
5676 
5677   if (Instruction *Res = foldICmpBitCast(I, Builder))
5678     return Res;
5679 
5680   // TODO: Hoist this above the min/max bailout.
5681   if (Instruction *R = foldICmpWithCastOp(I))
5682     return R;
5683 
5684   if (Instruction *Res = foldICmpWithMinMax(I))
5685     return Res;
5686 
5687   {
5688     Value *A, *B;
5689     // Transform (A & ~B) == 0 --> (A & B) != 0
5690     // and       (A & ~B) != 0 --> (A & B) == 0
5691     // if A is a power of 2.
5692     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5693         match(Op1, m_Zero()) &&
5694         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5695       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5696                           Op1);
5697 
5698     // ~X < ~Y --> Y < X
5699     // ~X < C -->  X > ~C
5700     if (match(Op0, m_Not(m_Value(A)))) {
5701       if (match(Op1, m_Not(m_Value(B))))
5702         return new ICmpInst(I.getPredicate(), B, A);
5703 
5704       const APInt *C;
5705       if (match(Op1, m_APInt(C)))
5706         return new ICmpInst(I.getSwappedPredicate(), A,
5707                             ConstantInt::get(Op1->getType(), ~(*C)));
5708     }
5709 
5710     Instruction *AddI = nullptr;
5711     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5712                                      m_Instruction(AddI))) &&
5713         isa<IntegerType>(A->getType())) {
5714       Value *Result;
5715       Constant *Overflow;
5716       // m_UAddWithOverflow can match patterns that do not include  an explicit
5717       // "add" instruction, so check the opcode of the matched op.
5718       if (AddI->getOpcode() == Instruction::Add &&
5719           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5720                                 Result, Overflow)) {
5721         replaceInstUsesWith(*AddI, Result);
5722         eraseInstFromFunction(*AddI);
5723         return replaceInstUsesWith(I, Overflow);
5724       }
5725     }
5726 
5727     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5728     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5729       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5730         return R;
5731     }
5732     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5733       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5734         return R;
5735     }
5736   }
5737 
5738   if (Instruction *Res = foldICmpEquality(I))
5739     return Res;
5740 
5741   if (Instruction *Res = foldICmpOfUAddOv(I))
5742     return Res;
5743 
5744   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5745   // an i1 which indicates whether or not we successfully did the swap.
5746   //
5747   // Replace comparisons between the old value and the expected value with the
5748   // indicator that 'cmpxchg' returns.
5749   //
5750   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5751   // spuriously fail.  In those cases, the old value may equal the expected
5752   // value but it is possible for the swap to not occur.
5753   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5754     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5755       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5756         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5757             !ACXI->isWeak())
5758           return ExtractValueInst::Create(ACXI, 1);
5759 
5760   {
5761     Value *X;
5762     const APInt *C;
5763     // icmp X+Cst, X
5764     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5765       return foldICmpAddOpConst(X, *C, I.getPredicate());
5766 
5767     // icmp X, X+Cst
5768     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5769       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5770   }
5771 
5772   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5773     return Res;
5774 
5775   if (I.getType()->isVectorTy())
5776     if (Instruction *Res = foldVectorCmp(I, Builder))
5777       return Res;
5778 
5779   return Changed ? &I : nullptr;
5780 }
5781 
5782 /// Fold fcmp ([us]itofp x, cst) if possible.
5783 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5784                                                     Instruction *LHSI,
5785                                                     Constant *RHSC) {
5786   if (!isa<ConstantFP>(RHSC)) return nullptr;
5787   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5788 
5789   // Get the width of the mantissa.  We don't want to hack on conversions that
5790   // might lose information from the integer, e.g. "i64 -> float"
5791   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5792   if (MantissaWidth == -1) return nullptr;  // Unknown.
5793 
5794   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5795 
5796   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5797 
5798   if (I.isEquality()) {
5799     FCmpInst::Predicate P = I.getPredicate();
5800     bool IsExact = false;
5801     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5802     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5803 
5804     // If the floating point constant isn't an integer value, we know if we will
5805     // ever compare equal / not equal to it.
5806     if (!IsExact) {
5807       // TODO: Can never be -0.0 and other non-representable values
5808       APFloat RHSRoundInt(RHS);
5809       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5810       if (RHS != RHSRoundInt) {
5811         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5812           return replaceInstUsesWith(I, Builder.getFalse());
5813 
5814         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5815         return replaceInstUsesWith(I, Builder.getTrue());
5816       }
5817     }
5818 
5819     // TODO: If the constant is exactly representable, is it always OK to do
5820     // equality compares as integer?
5821   }
5822 
5823   // Check to see that the input is converted from an integer type that is small
5824   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5825   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5826   unsigned InputSize = IntTy->getScalarSizeInBits();
5827 
5828   // Following test does NOT adjust InputSize downwards for signed inputs,
5829   // because the most negative value still requires all the mantissa bits
5830   // to distinguish it from one less than that value.
5831   if ((int)InputSize > MantissaWidth) {
5832     // Conversion would lose accuracy. Check if loss can impact comparison.
5833     int Exp = ilogb(RHS);
5834     if (Exp == APFloat::IEK_Inf) {
5835       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5836       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5837         // Conversion could create infinity.
5838         return nullptr;
5839     } else {
5840       // Note that if RHS is zero or NaN, then Exp is negative
5841       // and first condition is trivially false.
5842       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5843         // Conversion could affect comparison.
5844         return nullptr;
5845     }
5846   }
5847 
5848   // Otherwise, we can potentially simplify the comparison.  We know that it
5849   // will always come through as an integer value and we know the constant is
5850   // not a NAN (it would have been previously simplified).
5851   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5852 
5853   ICmpInst::Predicate Pred;
5854   switch (I.getPredicate()) {
5855   default: llvm_unreachable("Unexpected predicate!");
5856   case FCmpInst::FCMP_UEQ:
5857   case FCmpInst::FCMP_OEQ:
5858     Pred = ICmpInst::ICMP_EQ;
5859     break;
5860   case FCmpInst::FCMP_UGT:
5861   case FCmpInst::FCMP_OGT:
5862     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5863     break;
5864   case FCmpInst::FCMP_UGE:
5865   case FCmpInst::FCMP_OGE:
5866     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5867     break;
5868   case FCmpInst::FCMP_ULT:
5869   case FCmpInst::FCMP_OLT:
5870     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5871     break;
5872   case FCmpInst::FCMP_ULE:
5873   case FCmpInst::FCMP_OLE:
5874     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5875     break;
5876   case FCmpInst::FCMP_UNE:
5877   case FCmpInst::FCMP_ONE:
5878     Pred = ICmpInst::ICMP_NE;
5879     break;
5880   case FCmpInst::FCMP_ORD:
5881     return replaceInstUsesWith(I, Builder.getTrue());
5882   case FCmpInst::FCMP_UNO:
5883     return replaceInstUsesWith(I, Builder.getFalse());
5884   }
5885 
5886   // Now we know that the APFloat is a normal number, zero or inf.
5887 
5888   // See if the FP constant is too large for the integer.  For example,
5889   // comparing an i8 to 300.0.
5890   unsigned IntWidth = IntTy->getScalarSizeInBits();
5891 
5892   if (!LHSUnsigned) {
5893     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5894     // and large values.
5895     APFloat SMax(RHS.getSemantics());
5896     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5897                           APFloat::rmNearestTiesToEven);
5898     if (SMax < RHS) { // smax < 13123.0
5899       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5900           Pred == ICmpInst::ICMP_SLE)
5901         return replaceInstUsesWith(I, Builder.getTrue());
5902       return replaceInstUsesWith(I, Builder.getFalse());
5903     }
5904   } else {
5905     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5906     // +INF and large values.
5907     APFloat UMax(RHS.getSemantics());
5908     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5909                           APFloat::rmNearestTiesToEven);
5910     if (UMax < RHS) { // umax < 13123.0
5911       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5912           Pred == ICmpInst::ICMP_ULE)
5913         return replaceInstUsesWith(I, Builder.getTrue());
5914       return replaceInstUsesWith(I, Builder.getFalse());
5915     }
5916   }
5917 
5918   if (!LHSUnsigned) {
5919     // See if the RHS value is < SignedMin.
5920     APFloat SMin(RHS.getSemantics());
5921     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5922                           APFloat::rmNearestTiesToEven);
5923     if (SMin > RHS) { // smin > 12312.0
5924       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5925           Pred == ICmpInst::ICMP_SGE)
5926         return replaceInstUsesWith(I, Builder.getTrue());
5927       return replaceInstUsesWith(I, Builder.getFalse());
5928     }
5929   } else {
5930     // See if the RHS value is < UnsignedMin.
5931     APFloat UMin(RHS.getSemantics());
5932     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5933                           APFloat::rmNearestTiesToEven);
5934     if (UMin > RHS) { // umin > 12312.0
5935       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5936           Pred == ICmpInst::ICMP_UGE)
5937         return replaceInstUsesWith(I, Builder.getTrue());
5938       return replaceInstUsesWith(I, Builder.getFalse());
5939     }
5940   }
5941 
5942   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5943   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5944   // casting the FP value to the integer value and back, checking for equality.
5945   // Don't do this for zero, because -0.0 is not fractional.
5946   Constant *RHSInt = LHSUnsigned
5947     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5948     : ConstantExpr::getFPToSI(RHSC, IntTy);
5949   if (!RHS.isZero()) {
5950     bool Equal = LHSUnsigned
5951       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5952       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5953     if (!Equal) {
5954       // If we had a comparison against a fractional value, we have to adjust
5955       // the compare predicate and sometimes the value.  RHSC is rounded towards
5956       // zero at this point.
5957       switch (Pred) {
5958       default: llvm_unreachable("Unexpected integer comparison!");
5959       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5960         return replaceInstUsesWith(I, Builder.getTrue());
5961       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5962         return replaceInstUsesWith(I, Builder.getFalse());
5963       case ICmpInst::ICMP_ULE:
5964         // (float)int <= 4.4   --> int <= 4
5965         // (float)int <= -4.4  --> false
5966         if (RHS.isNegative())
5967           return replaceInstUsesWith(I, Builder.getFalse());
5968         break;
5969       case ICmpInst::ICMP_SLE:
5970         // (float)int <= 4.4   --> int <= 4
5971         // (float)int <= -4.4  --> int < -4
5972         if (RHS.isNegative())
5973           Pred = ICmpInst::ICMP_SLT;
5974         break;
5975       case ICmpInst::ICMP_ULT:
5976         // (float)int < -4.4   --> false
5977         // (float)int < 4.4    --> int <= 4
5978         if (RHS.isNegative())
5979           return replaceInstUsesWith(I, Builder.getFalse());
5980         Pred = ICmpInst::ICMP_ULE;
5981         break;
5982       case ICmpInst::ICMP_SLT:
5983         // (float)int < -4.4   --> int < -4
5984         // (float)int < 4.4    --> int <= 4
5985         if (!RHS.isNegative())
5986           Pred = ICmpInst::ICMP_SLE;
5987         break;
5988       case ICmpInst::ICMP_UGT:
5989         // (float)int > 4.4    --> int > 4
5990         // (float)int > -4.4   --> true
5991         if (RHS.isNegative())
5992           return replaceInstUsesWith(I, Builder.getTrue());
5993         break;
5994       case ICmpInst::ICMP_SGT:
5995         // (float)int > 4.4    --> int > 4
5996         // (float)int > -4.4   --> int >= -4
5997         if (RHS.isNegative())
5998           Pred = ICmpInst::ICMP_SGE;
5999         break;
6000       case ICmpInst::ICMP_UGE:
6001         // (float)int >= -4.4   --> true
6002         // (float)int >= 4.4    --> int > 4
6003         if (RHS.isNegative())
6004           return replaceInstUsesWith(I, Builder.getTrue());
6005         Pred = ICmpInst::ICMP_UGT;
6006         break;
6007       case ICmpInst::ICMP_SGE:
6008         // (float)int >= -4.4   --> int >= -4
6009         // (float)int >= 4.4    --> int > 4
6010         if (!RHS.isNegative())
6011           Pred = ICmpInst::ICMP_SGT;
6012         break;
6013       }
6014     }
6015   }
6016 
6017   // Lower this FP comparison into an appropriate integer version of the
6018   // comparison.
6019   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6020 }
6021 
6022 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6023 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6024                                               Constant *RHSC) {
6025   // When C is not 0.0 and infinities are not allowed:
6026   // (C / X) < 0.0 is a sign-bit test of X
6027   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6028   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6029   //
6030   // Proof:
6031   // Multiply (C / X) < 0.0 by X * X / C.
6032   // - X is non zero, if it is the flag 'ninf' is violated.
6033   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6034   //   the predicate. C is also non zero by definition.
6035   //
6036   // Thus X * X / C is non zero and the transformation is valid. [qed]
6037 
6038   FCmpInst::Predicate Pred = I.getPredicate();
6039 
6040   // Check that predicates are valid.
6041   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6042       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6043     return nullptr;
6044 
6045   // Check that RHS operand is zero.
6046   if (!match(RHSC, m_AnyZeroFP()))
6047     return nullptr;
6048 
6049   // Check fastmath flags ('ninf').
6050   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6051     return nullptr;
6052 
6053   // Check the properties of the dividend. It must not be zero to avoid a
6054   // division by zero (see Proof).
6055   const APFloat *C;
6056   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6057     return nullptr;
6058 
6059   if (C->isZero())
6060     return nullptr;
6061 
6062   // Get swapped predicate if necessary.
6063   if (C->isNegative())
6064     Pred = I.getSwappedPredicate();
6065 
6066   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6067 }
6068 
6069 /// Optimize fabs(X) compared with zero.
6070 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6071   Value *X;
6072   if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
6073       !match(I.getOperand(1), m_PosZeroFP()))
6074     return nullptr;
6075 
6076   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6077     I->setPredicate(P);
6078     return IC.replaceOperand(*I, 0, X);
6079   };
6080 
6081   switch (I.getPredicate()) {
6082   case FCmpInst::FCMP_UGE:
6083   case FCmpInst::FCMP_OLT:
6084     // fabs(X) >= 0.0 --> true
6085     // fabs(X) <  0.0 --> false
6086     llvm_unreachable("fcmp should have simplified");
6087 
6088   case FCmpInst::FCMP_OGT:
6089     // fabs(X) > 0.0 --> X != 0.0
6090     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6091 
6092   case FCmpInst::FCMP_UGT:
6093     // fabs(X) u> 0.0 --> X u!= 0.0
6094     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6095 
6096   case FCmpInst::FCMP_OLE:
6097     // fabs(X) <= 0.0 --> X == 0.0
6098     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6099 
6100   case FCmpInst::FCMP_ULE:
6101     // fabs(X) u<= 0.0 --> X u== 0.0
6102     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6103 
6104   case FCmpInst::FCMP_OGE:
6105     // fabs(X) >= 0.0 --> !isnan(X)
6106     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6107     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6108 
6109   case FCmpInst::FCMP_ULT:
6110     // fabs(X) u< 0.0 --> isnan(X)
6111     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6112     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6113 
6114   case FCmpInst::FCMP_OEQ:
6115   case FCmpInst::FCMP_UEQ:
6116   case FCmpInst::FCMP_ONE:
6117   case FCmpInst::FCMP_UNE:
6118   case FCmpInst::FCMP_ORD:
6119   case FCmpInst::FCMP_UNO:
6120     // Look through the fabs() because it doesn't change anything but the sign.
6121     // fabs(X) == 0.0 --> X == 0.0,
6122     // fabs(X) != 0.0 --> X != 0.0
6123     // isnan(fabs(X)) --> isnan(X)
6124     // !isnan(fabs(X) --> !isnan(X)
6125     return replacePredAndOp0(&I, I.getPredicate(), X);
6126 
6127   default:
6128     return nullptr;
6129   }
6130 }
6131 
6132 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6133   bool Changed = false;
6134 
6135   /// Orders the operands of the compare so that they are listed from most
6136   /// complex to least complex.  This puts constants before unary operators,
6137   /// before binary operators.
6138   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6139     I.swapOperands();
6140     Changed = true;
6141   }
6142 
6143   const CmpInst::Predicate Pred = I.getPredicate();
6144   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6145   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6146                                   SQ.getWithInstruction(&I)))
6147     return replaceInstUsesWith(I, V);
6148 
6149   // Simplify 'fcmp pred X, X'
6150   Type *OpType = Op0->getType();
6151   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6152   if (Op0 == Op1) {
6153     switch (Pred) {
6154       default: break;
6155     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6156     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6157     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6158     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6159       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6160       I.setPredicate(FCmpInst::FCMP_UNO);
6161       I.setOperand(1, Constant::getNullValue(OpType));
6162       return &I;
6163 
6164     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6165     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6166     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6167     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6168       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6169       I.setPredicate(FCmpInst::FCMP_ORD);
6170       I.setOperand(1, Constant::getNullValue(OpType));
6171       return &I;
6172     }
6173   }
6174 
6175   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6176   // then canonicalize the operand to 0.0.
6177   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6178     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6179       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6180 
6181     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6182       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6183   }
6184 
6185   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6186   Value *X, *Y;
6187   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6188     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6189 
6190   // Test if the FCmpInst instruction is used exclusively by a select as
6191   // part of a minimum or maximum operation. If so, refrain from doing
6192   // any other folding. This helps out other analyses which understand
6193   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6194   // and CodeGen. And in this case, at least one of the comparison
6195   // operands has at least one user besides the compare (the select),
6196   // which would often largely negate the benefit of folding anyway.
6197   if (I.hasOneUse())
6198     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6199       Value *A, *B;
6200       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6201       if (SPR.Flavor != SPF_UNKNOWN)
6202         return nullptr;
6203     }
6204 
6205   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6206   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6207   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6208     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6209 
6210   // Handle fcmp with instruction LHS and constant RHS.
6211   Instruction *LHSI;
6212   Constant *RHSC;
6213   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6214     switch (LHSI->getOpcode()) {
6215     case Instruction::PHI:
6216       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6217       // block.  If in the same block, we're encouraging jump threading.  If
6218       // not, we are just pessimizing the code by making an i1 phi.
6219       if (LHSI->getParent() == I.getParent())
6220         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6221           return NV;
6222       break;
6223     case Instruction::SIToFP:
6224     case Instruction::UIToFP:
6225       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6226         return NV;
6227       break;
6228     case Instruction::FDiv:
6229       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6230         return NV;
6231       break;
6232     case Instruction::Load:
6233       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6234         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6235           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6236               !cast<LoadInst>(LHSI)->isVolatile())
6237             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6238               return Res;
6239       break;
6240   }
6241   }
6242 
6243   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6244     return R;
6245 
6246   if (match(Op0, m_FNeg(m_Value(X)))) {
6247     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6248     Constant *C;
6249     if (match(Op1, m_Constant(C))) {
6250       Constant *NegC = ConstantExpr::getFNeg(C);
6251       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6252     }
6253   }
6254 
6255   if (match(Op0, m_FPExt(m_Value(X)))) {
6256     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6257     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6258       return new FCmpInst(Pred, X, Y, "", &I);
6259 
6260     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6261     const APFloat *C;
6262     if (match(Op1, m_APFloat(C))) {
6263       const fltSemantics &FPSem =
6264           X->getType()->getScalarType()->getFltSemantics();
6265       bool Lossy;
6266       APFloat TruncC = *C;
6267       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6268 
6269       // Avoid lossy conversions and denormals.
6270       // Zero is a special case that's OK to convert.
6271       APFloat Fabs = TruncC;
6272       Fabs.clearSign();
6273       if (!Lossy &&
6274           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6275         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6276         return new FCmpInst(Pred, X, NewC, "", &I);
6277       }
6278     }
6279   }
6280 
6281   if (I.getType()->isVectorTy())
6282     if (Instruction *Res = foldVectorCmp(I, Builder))
6283       return Res;
6284 
6285   return Changed ? &I : nullptr;
6286 }
6287