1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41                             const APInt &In2, bool IsSigned = false) {
42   bool Overflow;
43   if (IsSigned)
44     Result = In1.sadd_ov(In2, Overflow);
45   else
46     Result = In1.uadd_ov(In2, Overflow);
47 
48   return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54                             const APInt &In2, bool IsSigned = false) {
55   bool Overflow;
56   if (IsSigned)
57     Result = In1.ssub_ov(In2, Overflow);
58   else
59     Result = In1.usub_ov(In2, Overflow);
60 
61   return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
66 static bool hasBranchUse(ICmpInst &I) {
67   for (auto *U : I.users())
68     if (isa<BranchInst>(U))
69       return true;
70   return false;
71 }
72 
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78   if (!ICmpInst::isSigned(Pred))
79     return false;
80 
81   if (C.isNullValue())
82     return ICmpInst::isRelational(Pred);
83 
84   if (C.isOneValue()) {
85     if (Pred == ICmpInst::ICMP_SLT) {
86       Pred = ICmpInst::ICMP_SLE;
87       return true;
88     }
89   } else if (C.isAllOnesValue()) {
90     if (Pred == ICmpInst::ICMP_SGT) {
91       Pred = ICmpInst::ICMP_SGE;
92       return true;
93     }
94   }
95 
96   return false;
97 }
98 
99 /// This is called when we see this pattern:
100 ///   cmp pred (load (gep GV, ...)), cmpcst
101 /// where GV is a global variable with a constant initializer. Try to simplify
102 /// this into some simple computation that does not need the load. For example
103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
104 ///
105 /// If AndCst is non-null, then the loaded value is masked with that constant
106 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
107 Instruction *
108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
109                                                GlobalVariable *GV, CmpInst &ICI,
110                                                ConstantInt *AndCst) {
111   Constant *Init = GV->getInitializer();
112   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
113     return nullptr;
114 
115   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
116   // Don't blow up on huge arrays.
117   if (ArrayElementCount > MaxArraySizeForCombine)
118     return nullptr;
119 
120   // There are many forms of this optimization we can handle, for now, just do
121   // the simple index into a single-dimensional array.
122   //
123   // Require: GEP GV, 0, i {{, constant indices}}
124   if (GEP->getNumOperands() < 3 ||
125       !isa<ConstantInt>(GEP->getOperand(1)) ||
126       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
127       isa<Constant>(GEP->getOperand(2)))
128     return nullptr;
129 
130   // Check that indices after the variable are constants and in-range for the
131   // type they index.  Collect the indices.  This is typically for arrays of
132   // structs.
133   SmallVector<unsigned, 4> LaterIndices;
134 
135   Type *EltTy = Init->getType()->getArrayElementType();
136   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
137     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
138     if (!Idx) return nullptr;  // Variable index.
139 
140     uint64_t IdxVal = Idx->getZExtValue();
141     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
142 
143     if (StructType *STy = dyn_cast<StructType>(EltTy))
144       EltTy = STy->getElementType(IdxVal);
145     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
146       if (IdxVal >= ATy->getNumElements()) return nullptr;
147       EltTy = ATy->getElementType();
148     } else {
149       return nullptr; // Unknown type.
150     }
151 
152     LaterIndices.push_back(IdxVal);
153   }
154 
155   enum { Overdefined = -3, Undefined = -2 };
156 
157   // Variables for our state machines.
158 
159   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
160   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
161   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
162   // undefined, otherwise set to the first true element.  SecondTrueElement is
163   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
164   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
165 
166   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
167   // form "i != 47 & i != 87".  Same state transitions as for true elements.
168   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
169 
170   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
171   /// define a state machine that triggers for ranges of values that the index
172   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
173   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
174   /// index in the range (inclusive).  We use -2 for undefined here because we
175   /// use relative comparisons and don't want 0-1 to match -1.
176   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
177 
178   // MagicBitvector - This is a magic bitvector where we set a bit if the
179   // comparison is true for element 'i'.  If there are 64 elements or less in
180   // the array, this will fully represent all the comparison results.
181   uint64_t MagicBitvector = 0;
182 
183   // Scan the array and see if one of our patterns matches.
184   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
185   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
186     Constant *Elt = Init->getAggregateElement(i);
187     if (!Elt) return nullptr;
188 
189     // If this is indexing an array of structures, get the structure element.
190     if (!LaterIndices.empty())
191       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
192 
193     // If the element is masked, handle it.
194     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
195 
196     // Find out if the comparison would be true or false for the i'th element.
197     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
198                                                   CompareRHS, DL, &TLI);
199     // If the result is undef for this element, ignore it.
200     if (isa<UndefValue>(C)) {
201       // Extend range state machines to cover this element in case there is an
202       // undef in the middle of the range.
203       if (TrueRangeEnd == (int)i-1)
204         TrueRangeEnd = i;
205       if (FalseRangeEnd == (int)i-1)
206         FalseRangeEnd = i;
207       continue;
208     }
209 
210     // If we can't compute the result for any of the elements, we have to give
211     // up evaluating the entire conditional.
212     if (!isa<ConstantInt>(C)) return nullptr;
213 
214     // Otherwise, we know if the comparison is true or false for this element,
215     // update our state machines.
216     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
217 
218     // State machine for single/double/range index comparison.
219     if (IsTrueForElt) {
220       // Update the TrueElement state machine.
221       if (FirstTrueElement == Undefined)
222         FirstTrueElement = TrueRangeEnd = i;  // First true element.
223       else {
224         // Update double-compare state machine.
225         if (SecondTrueElement == Undefined)
226           SecondTrueElement = i;
227         else
228           SecondTrueElement = Overdefined;
229 
230         // Update range state machine.
231         if (TrueRangeEnd == (int)i-1)
232           TrueRangeEnd = i;
233         else
234           TrueRangeEnd = Overdefined;
235       }
236     } else {
237       // Update the FalseElement state machine.
238       if (FirstFalseElement == Undefined)
239         FirstFalseElement = FalseRangeEnd = i; // First false element.
240       else {
241         // Update double-compare state machine.
242         if (SecondFalseElement == Undefined)
243           SecondFalseElement = i;
244         else
245           SecondFalseElement = Overdefined;
246 
247         // Update range state machine.
248         if (FalseRangeEnd == (int)i-1)
249           FalseRangeEnd = i;
250         else
251           FalseRangeEnd = Overdefined;
252       }
253     }
254 
255     // If this element is in range, update our magic bitvector.
256     if (i < 64 && IsTrueForElt)
257       MagicBitvector |= 1ULL << i;
258 
259     // If all of our states become overdefined, bail out early.  Since the
260     // predicate is expensive, only check it every 8 elements.  This is only
261     // really useful for really huge arrays.
262     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
263         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
264         FalseRangeEnd == Overdefined)
265       return nullptr;
266   }
267 
268   // Now that we've scanned the entire array, emit our new comparison(s).  We
269   // order the state machines in complexity of the generated code.
270   Value *Idx = GEP->getOperand(2);
271 
272   // If the index is larger than the pointer size of the target, truncate the
273   // index down like the GEP would do implicitly.  We don't have to do this for
274   // an inbounds GEP because the index can't be out of range.
275   if (!GEP->isInBounds()) {
276     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
277     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
278     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
279       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
280   }
281 
282   // If the comparison is only true for one or two elements, emit direct
283   // comparisons.
284   if (SecondTrueElement != Overdefined) {
285     // None true -> false.
286     if (FirstTrueElement == Undefined)
287       return replaceInstUsesWith(ICI, Builder.getFalse());
288 
289     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
290 
291     // True for one element -> 'i == 47'.
292     if (SecondTrueElement == Undefined)
293       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
294 
295     // True for two elements -> 'i == 47 | i == 72'.
296     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
297     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
298     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
299     return BinaryOperator::CreateOr(C1, C2);
300   }
301 
302   // If the comparison is only false for one or two elements, emit direct
303   // comparisons.
304   if (SecondFalseElement != Overdefined) {
305     // None false -> true.
306     if (FirstFalseElement == Undefined)
307       return replaceInstUsesWith(ICI, Builder.getTrue());
308 
309     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
310 
311     // False for one element -> 'i != 47'.
312     if (SecondFalseElement == Undefined)
313       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
314 
315     // False for two elements -> 'i != 47 & i != 72'.
316     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
317     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
318     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
319     return BinaryOperator::CreateAnd(C1, C2);
320   }
321 
322   // If the comparison can be replaced with a range comparison for the elements
323   // where it is true, emit the range check.
324   if (TrueRangeEnd != Overdefined) {
325     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
326 
327     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
328     if (FirstTrueElement) {
329       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
330       Idx = Builder.CreateAdd(Idx, Offs);
331     }
332 
333     Value *End = ConstantInt::get(Idx->getType(),
334                                   TrueRangeEnd-FirstTrueElement+1);
335     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
336   }
337 
338   // False range check.
339   if (FalseRangeEnd != Overdefined) {
340     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
341     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
342     if (FirstFalseElement) {
343       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
344       Idx = Builder.CreateAdd(Idx, Offs);
345     }
346 
347     Value *End = ConstantInt::get(Idx->getType(),
348                                   FalseRangeEnd-FirstFalseElement);
349     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
350   }
351 
352   // If a magic bitvector captures the entire comparison state
353   // of this load, replace it with computation that does:
354   //   ((magic_cst >> i) & 1) != 0
355   {
356     Type *Ty = nullptr;
357 
358     // Look for an appropriate type:
359     // - The type of Idx if the magic fits
360     // - The smallest fitting legal type
361     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
362       Ty = Idx->getType();
363     else
364       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
365 
366     if (Ty) {
367       Value *V = Builder.CreateIntCast(Idx, Ty, false);
368       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
369       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
370       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
371     }
372   }
373 
374   return nullptr;
375 }
376 
377 /// Return a value that can be used to compare the *offset* implied by a GEP to
378 /// zero. For example, if we have &A[i], we want to return 'i' for
379 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
380 /// are involved. The above expression would also be legal to codegen as
381 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
382 /// This latter form is less amenable to optimization though, and we are allowed
383 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
384 ///
385 /// If we can't emit an optimized form for this expression, this returns null.
386 ///
387 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
388                                           const DataLayout &DL) {
389   gep_type_iterator GTI = gep_type_begin(GEP);
390 
391   // Check to see if this gep only has a single variable index.  If so, and if
392   // any constant indices are a multiple of its scale, then we can compute this
393   // in terms of the scale of the variable index.  For example, if the GEP
394   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
395   // because the expression will cross zero at the same point.
396   unsigned i, e = GEP->getNumOperands();
397   int64_t Offset = 0;
398   for (i = 1; i != e; ++i, ++GTI) {
399     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
400       // Compute the aggregate offset of constant indices.
401       if (CI->isZero()) continue;
402 
403       // Handle a struct index, which adds its field offset to the pointer.
404       if (StructType *STy = GTI.getStructTypeOrNull()) {
405         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
406       } else {
407         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
408         Offset += Size*CI->getSExtValue();
409       }
410     } else {
411       // Found our variable index.
412       break;
413     }
414   }
415 
416   // If there are no variable indices, we must have a constant offset, just
417   // evaluate it the general way.
418   if (i == e) return nullptr;
419 
420   Value *VariableIdx = GEP->getOperand(i);
421   // Determine the scale factor of the variable element.  For example, this is
422   // 4 if the variable index is into an array of i32.
423   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
424 
425   // Verify that there are no other variable indices.  If so, emit the hard way.
426   for (++i, ++GTI; i != e; ++i, ++GTI) {
427     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
428     if (!CI) return nullptr;
429 
430     // Compute the aggregate offset of constant indices.
431     if (CI->isZero()) continue;
432 
433     // Handle a struct index, which adds its field offset to the pointer.
434     if (StructType *STy = GTI.getStructTypeOrNull()) {
435       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
436     } else {
437       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
438       Offset += Size*CI->getSExtValue();
439     }
440   }
441 
442   // Okay, we know we have a single variable index, which must be a
443   // pointer/array/vector index.  If there is no offset, life is simple, return
444   // the index.
445   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
446   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
447   if (Offset == 0) {
448     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
449     // we don't need to bother extending: the extension won't affect where the
450     // computation crosses zero.
451     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
452         IntPtrWidth) {
453       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
454     }
455     return VariableIdx;
456   }
457 
458   // Otherwise, there is an index.  The computation we will do will be modulo
459   // the pointer size.
460   Offset = SignExtend64(Offset, IntPtrWidth);
461   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
462 
463   // To do this transformation, any constant index must be a multiple of the
464   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
465   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
466   // multiple of the variable scale.
467   int64_t NewOffs = Offset / (int64_t)VariableScale;
468   if (Offset != NewOffs*(int64_t)VariableScale)
469     return nullptr;
470 
471   // Okay, we can do this evaluation.  Start by converting the index to intptr.
472   if (VariableIdx->getType() != IntPtrTy)
473     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
474                                             true /*Signed*/);
475   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
476   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
477 }
478 
479 /// Returns true if we can rewrite Start as a GEP with pointer Base
480 /// and some integer offset. The nodes that need to be re-written
481 /// for this transformation will be added to Explored.
482 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
483                                   const DataLayout &DL,
484                                   SetVector<Value *> &Explored) {
485   SmallVector<Value *, 16> WorkList(1, Start);
486   Explored.insert(Base);
487 
488   // The following traversal gives us an order which can be used
489   // when doing the final transformation. Since in the final
490   // transformation we create the PHI replacement instructions first,
491   // we don't have to get them in any particular order.
492   //
493   // However, for other instructions we will have to traverse the
494   // operands of an instruction first, which means that we have to
495   // do a post-order traversal.
496   while (!WorkList.empty()) {
497     SetVector<PHINode *> PHIs;
498 
499     while (!WorkList.empty()) {
500       if (Explored.size() >= 100)
501         return false;
502 
503       Value *V = WorkList.back();
504 
505       if (Explored.contains(V)) {
506         WorkList.pop_back();
507         continue;
508       }
509 
510       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
511           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
512         // We've found some value that we can't explore which is different from
513         // the base. Therefore we can't do this transformation.
514         return false;
515 
516       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
517         auto *CI = cast<CastInst>(V);
518         if (!CI->isNoopCast(DL))
519           return false;
520 
521         if (Explored.count(CI->getOperand(0)) == 0)
522           WorkList.push_back(CI->getOperand(0));
523       }
524 
525       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
526         // We're limiting the GEP to having one index. This will preserve
527         // the original pointer type. We could handle more cases in the
528         // future.
529         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
530             GEP->getType() != Start->getType())
531           return false;
532 
533         if (Explored.count(GEP->getOperand(0)) == 0)
534           WorkList.push_back(GEP->getOperand(0));
535       }
536 
537       if (WorkList.back() == V) {
538         WorkList.pop_back();
539         // We've finished visiting this node, mark it as such.
540         Explored.insert(V);
541       }
542 
543       if (auto *PN = dyn_cast<PHINode>(V)) {
544         // We cannot transform PHIs on unsplittable basic blocks.
545         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
546           return false;
547         Explored.insert(PN);
548         PHIs.insert(PN);
549       }
550     }
551 
552     // Explore the PHI nodes further.
553     for (auto *PN : PHIs)
554       for (Value *Op : PN->incoming_values())
555         if (Explored.count(Op) == 0)
556           WorkList.push_back(Op);
557   }
558 
559   // Make sure that we can do this. Since we can't insert GEPs in a basic
560   // block before a PHI node, we can't easily do this transformation if
561   // we have PHI node users of transformed instructions.
562   for (Value *Val : Explored) {
563     for (Value *Use : Val->uses()) {
564 
565       auto *PHI = dyn_cast<PHINode>(Use);
566       auto *Inst = dyn_cast<Instruction>(Val);
567 
568       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
569           Explored.count(PHI) == 0)
570         continue;
571 
572       if (PHI->getParent() == Inst->getParent())
573         return false;
574     }
575   }
576   return true;
577 }
578 
579 // Sets the appropriate insert point on Builder where we can add
580 // a replacement Instruction for V (if that is possible).
581 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
582                               bool Before = true) {
583   if (auto *PHI = dyn_cast<PHINode>(V)) {
584     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
585     return;
586   }
587   if (auto *I = dyn_cast<Instruction>(V)) {
588     if (!Before)
589       I = &*std::next(I->getIterator());
590     Builder.SetInsertPoint(I);
591     return;
592   }
593   if (auto *A = dyn_cast<Argument>(V)) {
594     // Set the insertion point in the entry block.
595     BasicBlock &Entry = A->getParent()->getEntryBlock();
596     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
597     return;
598   }
599   // Otherwise, this is a constant and we don't need to set a new
600   // insertion point.
601   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
602 }
603 
604 /// Returns a re-written value of Start as an indexed GEP using Base as a
605 /// pointer.
606 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
607                                  const DataLayout &DL,
608                                  SetVector<Value *> &Explored) {
609   // Perform all the substitutions. This is a bit tricky because we can
610   // have cycles in our use-def chains.
611   // 1. Create the PHI nodes without any incoming values.
612   // 2. Create all the other values.
613   // 3. Add the edges for the PHI nodes.
614   // 4. Emit GEPs to get the original pointers.
615   // 5. Remove the original instructions.
616   Type *IndexType = IntegerType::get(
617       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
618 
619   DenseMap<Value *, Value *> NewInsts;
620   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
621 
622   // Create the new PHI nodes, without adding any incoming values.
623   for (Value *Val : Explored) {
624     if (Val == Base)
625       continue;
626     // Create empty phi nodes. This avoids cyclic dependencies when creating
627     // the remaining instructions.
628     if (auto *PHI = dyn_cast<PHINode>(Val))
629       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
630                                       PHI->getName() + ".idx", PHI);
631   }
632   IRBuilder<> Builder(Base->getContext());
633 
634   // Create all the other instructions.
635   for (Value *Val : Explored) {
636 
637     if (NewInsts.find(Val) != NewInsts.end())
638       continue;
639 
640     if (auto *CI = dyn_cast<CastInst>(Val)) {
641       // Don't get rid of the intermediate variable here; the store can grow
642       // the map which will invalidate the reference to the input value.
643       Value *V = NewInsts[CI->getOperand(0)];
644       NewInsts[CI] = V;
645       continue;
646     }
647     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
648       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
649                                                   : GEP->getOperand(1);
650       setInsertionPoint(Builder, GEP);
651       // Indices might need to be sign extended. GEPs will magically do
652       // this, but we need to do it ourselves here.
653       if (Index->getType()->getScalarSizeInBits() !=
654           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
655         Index = Builder.CreateSExtOrTrunc(
656             Index, NewInsts[GEP->getOperand(0)]->getType(),
657             GEP->getOperand(0)->getName() + ".sext");
658       }
659 
660       auto *Op = NewInsts[GEP->getOperand(0)];
661       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
662         NewInsts[GEP] = Index;
663       else
664         NewInsts[GEP] = Builder.CreateNSWAdd(
665             Op, Index, GEP->getOperand(0)->getName() + ".add");
666       continue;
667     }
668     if (isa<PHINode>(Val))
669       continue;
670 
671     llvm_unreachable("Unexpected instruction type");
672   }
673 
674   // Add the incoming values to the PHI nodes.
675   for (Value *Val : Explored) {
676     if (Val == Base)
677       continue;
678     // All the instructions have been created, we can now add edges to the
679     // phi nodes.
680     if (auto *PHI = dyn_cast<PHINode>(Val)) {
681       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
682       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
683         Value *NewIncoming = PHI->getIncomingValue(I);
684 
685         if (NewInsts.find(NewIncoming) != NewInsts.end())
686           NewIncoming = NewInsts[NewIncoming];
687 
688         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
689       }
690     }
691   }
692 
693   for (Value *Val : Explored) {
694     if (Val == Base)
695       continue;
696 
697     // Depending on the type, for external users we have to emit
698     // a GEP or a GEP + ptrtoint.
699     setInsertionPoint(Builder, Val, false);
700 
701     // If required, create an inttoptr instruction for Base.
702     Value *NewBase = Base;
703     if (!Base->getType()->isPointerTy())
704       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
705                                                Start->getName() + "to.ptr");
706 
707     Value *GEP = Builder.CreateInBoundsGEP(
708         Start->getType()->getPointerElementType(), NewBase,
709         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
710 
711     if (!Val->getType()->isPointerTy()) {
712       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
713                                               Val->getName() + ".conv");
714       GEP = Cast;
715     }
716     Val->replaceAllUsesWith(GEP);
717   }
718 
719   return NewInsts[Start];
720 }
721 
722 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
723 /// the input Value as a constant indexed GEP. Returns a pair containing
724 /// the GEPs Pointer and Index.
725 static std::pair<Value *, Value *>
726 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
727   Type *IndexType = IntegerType::get(V->getContext(),
728                                      DL.getIndexTypeSizeInBits(V->getType()));
729 
730   Constant *Index = ConstantInt::getNullValue(IndexType);
731   while (true) {
732     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
733       // We accept only inbouds GEPs here to exclude the possibility of
734       // overflow.
735       if (!GEP->isInBounds())
736         break;
737       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
738           GEP->getType() == V->getType()) {
739         V = GEP->getOperand(0);
740         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
741         Index = ConstantExpr::getAdd(
742             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
743         continue;
744       }
745       break;
746     }
747     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
748       if (!CI->isNoopCast(DL))
749         break;
750       V = CI->getOperand(0);
751       continue;
752     }
753     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
754       if (!CI->isNoopCast(DL))
755         break;
756       V = CI->getOperand(0);
757       continue;
758     }
759     break;
760   }
761   return {V, Index};
762 }
763 
764 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
765 /// We can look through PHIs, GEPs and casts in order to determine a common base
766 /// between GEPLHS and RHS.
767 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
768                                               ICmpInst::Predicate Cond,
769                                               const DataLayout &DL) {
770   // FIXME: Support vector of pointers.
771   if (GEPLHS->getType()->isVectorTy())
772     return nullptr;
773 
774   if (!GEPLHS->hasAllConstantIndices())
775     return nullptr;
776 
777   // Make sure the pointers have the same type.
778   if (GEPLHS->getType() != RHS->getType())
779     return nullptr;
780 
781   Value *PtrBase, *Index;
782   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
783 
784   // The set of nodes that will take part in this transformation.
785   SetVector<Value *> Nodes;
786 
787   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
788     return nullptr;
789 
790   // We know we can re-write this as
791   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
792   // Since we've only looked through inbouds GEPs we know that we
793   // can't have overflow on either side. We can therefore re-write
794   // this as:
795   //   OFFSET1 cmp OFFSET2
796   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
797 
798   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
799   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
800   // offset. Since Index is the offset of LHS to the base pointer, we will now
801   // compare the offsets instead of comparing the pointers.
802   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
803 }
804 
805 /// Fold comparisons between a GEP instruction and something else. At this point
806 /// we know that the GEP is on the LHS of the comparison.
807 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
808                                            ICmpInst::Predicate Cond,
809                                            Instruction &I) {
810   // Don't transform signed compares of GEPs into index compares. Even if the
811   // GEP is inbounds, the final add of the base pointer can have signed overflow
812   // and would change the result of the icmp.
813   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
814   // the maximum signed value for the pointer type.
815   if (ICmpInst::isSigned(Cond))
816     return nullptr;
817 
818   // Look through bitcasts and addrspacecasts. We do not however want to remove
819   // 0 GEPs.
820   if (!isa<GetElementPtrInst>(RHS))
821     RHS = RHS->stripPointerCasts();
822 
823   Value *PtrBase = GEPLHS->getOperand(0);
824   // FIXME: Support vector pointer GEPs.
825   if (PtrBase == RHS && GEPLHS->isInBounds() &&
826       !GEPLHS->getType()->isVectorTy()) {
827     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
828     // This transformation (ignoring the base and scales) is valid because we
829     // know pointers can't overflow since the gep is inbounds.  See if we can
830     // output an optimized form.
831     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
832 
833     // If not, synthesize the offset the hard way.
834     if (!Offset)
835       Offset = EmitGEPOffset(GEPLHS);
836     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
837                         Constant::getNullValue(Offset->getType()));
838   }
839 
840   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
841       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
842       !NullPointerIsDefined(I.getFunction(),
843                             RHS->getType()->getPointerAddressSpace())) {
844     // For most address spaces, an allocation can't be placed at null, but null
845     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
846     // the only valid inbounds address derived from null, is null itself.
847     // Thus, we have four cases to consider:
848     // 1) Base == nullptr, Offset == 0 -> inbounds, null
849     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
850     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
851     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
852     //
853     // (Note if we're indexing a type of size 0, that simply collapses into one
854     //  of the buckets above.)
855     //
856     // In general, we're allowed to make values less poison (i.e. remove
857     //   sources of full UB), so in this case, we just select between the two
858     //   non-poison cases (1 and 4 above).
859     //
860     // For vectors, we apply the same reasoning on a per-lane basis.
861     auto *Base = GEPLHS->getPointerOperand();
862     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
863       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
864       Base = Builder.CreateVectorSplat(EC, Base);
865     }
866     return new ICmpInst(Cond, Base,
867                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
868                             cast<Constant>(RHS), Base->getType()));
869   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
870     // If the base pointers are different, but the indices are the same, just
871     // compare the base pointer.
872     if (PtrBase != GEPRHS->getOperand(0)) {
873       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
874       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
875                         GEPRHS->getOperand(0)->getType();
876       if (IndicesTheSame)
877         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
878           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
879             IndicesTheSame = false;
880             break;
881           }
882 
883       // If all indices are the same, just compare the base pointers.
884       Type *BaseType = GEPLHS->getOperand(0)->getType();
885       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
886         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
887 
888       // If we're comparing GEPs with two base pointers that only differ in type
889       // and both GEPs have only constant indices or just one use, then fold
890       // the compare with the adjusted indices.
891       // FIXME: Support vector of pointers.
892       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
893           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
894           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
895           PtrBase->stripPointerCasts() ==
896               GEPRHS->getOperand(0)->stripPointerCasts() &&
897           !GEPLHS->getType()->isVectorTy()) {
898         Value *LOffset = EmitGEPOffset(GEPLHS);
899         Value *ROffset = EmitGEPOffset(GEPRHS);
900 
901         // If we looked through an addrspacecast between different sized address
902         // spaces, the LHS and RHS pointers are different sized
903         // integers. Truncate to the smaller one.
904         Type *LHSIndexTy = LOffset->getType();
905         Type *RHSIndexTy = ROffset->getType();
906         if (LHSIndexTy != RHSIndexTy) {
907           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
908               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
909             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
910           } else
911             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
912         }
913 
914         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
915                                         LOffset, ROffset);
916         return replaceInstUsesWith(I, Cmp);
917       }
918 
919       // Otherwise, the base pointers are different and the indices are
920       // different. Try convert this to an indexed compare by looking through
921       // PHIs/casts.
922       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
923     }
924 
925     // If one of the GEPs has all zero indices, recurse.
926     // FIXME: Handle vector of pointers.
927     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
928       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
929                          ICmpInst::getSwappedPredicate(Cond), I);
930 
931     // If the other GEP has all zero indices, recurse.
932     // FIXME: Handle vector of pointers.
933     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
934       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
935 
936     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
937     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
938       // If the GEPs only differ by one index, compare it.
939       unsigned NumDifferences = 0;  // Keep track of # differences.
940       unsigned DiffOperand = 0;     // The operand that differs.
941       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
942         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
943           Type *LHSType = GEPLHS->getOperand(i)->getType();
944           Type *RHSType = GEPRHS->getOperand(i)->getType();
945           // FIXME: Better support for vector of pointers.
946           if (LHSType->getPrimitiveSizeInBits() !=
947                    RHSType->getPrimitiveSizeInBits() ||
948               (GEPLHS->getType()->isVectorTy() &&
949                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
950             // Irreconcilable differences.
951             NumDifferences = 2;
952             break;
953           }
954 
955           if (NumDifferences++) break;
956           DiffOperand = i;
957         }
958 
959       if (NumDifferences == 0)   // SAME GEP?
960         return replaceInstUsesWith(I, // No comparison is needed here.
961           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
962 
963       else if (NumDifferences == 1 && GEPsInBounds) {
964         Value *LHSV = GEPLHS->getOperand(DiffOperand);
965         Value *RHSV = GEPRHS->getOperand(DiffOperand);
966         // Make sure we do a signed comparison here.
967         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
968       }
969     }
970 
971     // Only lower this if the icmp is the only user of the GEP or if we expect
972     // the result to fold to a constant!
973     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
974         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
975       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
976       Value *L = EmitGEPOffset(GEPLHS);
977       Value *R = EmitGEPOffset(GEPRHS);
978       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
979     }
980   }
981 
982   // Try convert this to an indexed compare by looking through PHIs/casts as a
983   // last resort.
984   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
985 }
986 
987 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
988                                              const AllocaInst *Alloca,
989                                              const Value *Other) {
990   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
991 
992   // It would be tempting to fold away comparisons between allocas and any
993   // pointer not based on that alloca (e.g. an argument). However, even
994   // though such pointers cannot alias, they can still compare equal.
995   //
996   // But LLVM doesn't specify where allocas get their memory, so if the alloca
997   // doesn't escape we can argue that it's impossible to guess its value, and we
998   // can therefore act as if any such guesses are wrong.
999   //
1000   // The code below checks that the alloca doesn't escape, and that it's only
1001   // used in a comparison once (the current instruction). The
1002   // single-comparison-use condition ensures that we're trivially folding all
1003   // comparisons against the alloca consistently, and avoids the risk of
1004   // erroneously folding a comparison of the pointer with itself.
1005 
1006   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1007 
1008   SmallVector<const Use *, 32> Worklist;
1009   for (const Use &U : Alloca->uses()) {
1010     if (Worklist.size() >= MaxIter)
1011       return nullptr;
1012     Worklist.push_back(&U);
1013   }
1014 
1015   unsigned NumCmps = 0;
1016   while (!Worklist.empty()) {
1017     assert(Worklist.size() <= MaxIter);
1018     const Use *U = Worklist.pop_back_val();
1019     const Value *V = U->getUser();
1020     --MaxIter;
1021 
1022     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1023         isa<SelectInst>(V)) {
1024       // Track the uses.
1025     } else if (isa<LoadInst>(V)) {
1026       // Loading from the pointer doesn't escape it.
1027       continue;
1028     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1029       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1030       if (SI->getValueOperand() == U->get())
1031         return nullptr;
1032       continue;
1033     } else if (isa<ICmpInst>(V)) {
1034       if (NumCmps++)
1035         return nullptr; // Found more than one cmp.
1036       continue;
1037     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1038       switch (Intrin->getIntrinsicID()) {
1039         // These intrinsics don't escape or compare the pointer. Memset is safe
1040         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1041         // we don't allow stores, so src cannot point to V.
1042         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1043         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1044           continue;
1045         default:
1046           return nullptr;
1047       }
1048     } else {
1049       return nullptr;
1050     }
1051     for (const Use &U : V->uses()) {
1052       if (Worklist.size() >= MaxIter)
1053         return nullptr;
1054       Worklist.push_back(&U);
1055     }
1056   }
1057 
1058   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1059   return replaceInstUsesWith(
1060       ICI,
1061       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1062 }
1063 
1064 /// Fold "icmp pred (X+C), X".
1065 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1066                                                   ICmpInst::Predicate Pred) {
1067   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1068   // so the values can never be equal.  Similarly for all other "or equals"
1069   // operators.
1070   assert(!!C && "C should not be zero!");
1071 
1072   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1073   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1074   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1075   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1076     Constant *R = ConstantInt::get(X->getType(),
1077                                    APInt::getMaxValue(C.getBitWidth()) - C);
1078     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1079   }
1080 
1081   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1082   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1083   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1084   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1085     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1086                         ConstantInt::get(X->getType(), -C));
1087 
1088   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1089 
1090   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1091   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1092   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1093   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1094   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1095   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1096   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1097     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1098                         ConstantInt::get(X->getType(), SMax - C));
1099 
1100   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1101   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1102   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1103   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1104   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1105   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1106 
1107   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1108   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1109                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1110 }
1111 
1112 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1113 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1114 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1115 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1116                                                      const APInt &AP1,
1117                                                      const APInt &AP2) {
1118   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1119 
1120   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1121     if (I.getPredicate() == I.ICMP_NE)
1122       Pred = CmpInst::getInversePredicate(Pred);
1123     return new ICmpInst(Pred, LHS, RHS);
1124   };
1125 
1126   // Don't bother doing any work for cases which InstSimplify handles.
1127   if (AP2.isNullValue())
1128     return nullptr;
1129 
1130   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1131   if (IsAShr) {
1132     if (AP2.isAllOnesValue())
1133       return nullptr;
1134     if (AP2.isNegative() != AP1.isNegative())
1135       return nullptr;
1136     if (AP2.sgt(AP1))
1137       return nullptr;
1138   }
1139 
1140   if (!AP1)
1141     // 'A' must be large enough to shift out the highest set bit.
1142     return getICmp(I.ICMP_UGT, A,
1143                    ConstantInt::get(A->getType(), AP2.logBase2()));
1144 
1145   if (AP1 == AP2)
1146     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1147 
1148   int Shift;
1149   if (IsAShr && AP1.isNegative())
1150     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1151   else
1152     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1153 
1154   if (Shift > 0) {
1155     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1156       // There are multiple solutions if we are comparing against -1 and the LHS
1157       // of the ashr is not a power of two.
1158       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1159         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1160       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1161     } else if (AP1 == AP2.lshr(Shift)) {
1162       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1163     }
1164   }
1165 
1166   // Shifting const2 will never be equal to const1.
1167   // FIXME: This should always be handled by InstSimplify?
1168   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1169   return replaceInstUsesWith(I, TorF);
1170 }
1171 
1172 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1173 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1174 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1175                                                      const APInt &AP1,
1176                                                      const APInt &AP2) {
1177   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1178 
1179   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1180     if (I.getPredicate() == I.ICMP_NE)
1181       Pred = CmpInst::getInversePredicate(Pred);
1182     return new ICmpInst(Pred, LHS, RHS);
1183   };
1184 
1185   // Don't bother doing any work for cases which InstSimplify handles.
1186   if (AP2.isNullValue())
1187     return nullptr;
1188 
1189   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1190 
1191   if (!AP1 && AP2TrailingZeros != 0)
1192     return getICmp(
1193         I.ICMP_UGE, A,
1194         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1195 
1196   if (AP1 == AP2)
1197     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1198 
1199   // Get the distance between the lowest bits that are set.
1200   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1201 
1202   if (Shift > 0 && AP2.shl(Shift) == AP1)
1203     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1204 
1205   // Shifting const2 will never be equal to const1.
1206   // FIXME: This should always be handled by InstSimplify?
1207   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1208   return replaceInstUsesWith(I, TorF);
1209 }
1210 
1211 /// The caller has matched a pattern of the form:
1212 ///   I = icmp ugt (add (add A, B), CI2), CI1
1213 /// If this is of the form:
1214 ///   sum = a + b
1215 ///   if (sum+128 >u 255)
1216 /// Then replace it with llvm.sadd.with.overflow.i8.
1217 ///
1218 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1219                                           ConstantInt *CI2, ConstantInt *CI1,
1220                                           InstCombinerImpl &IC) {
1221   // The transformation we're trying to do here is to transform this into an
1222   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1223   // with a narrower add, and discard the add-with-constant that is part of the
1224   // range check (if we can't eliminate it, this isn't profitable).
1225 
1226   // In order to eliminate the add-with-constant, the compare can be its only
1227   // use.
1228   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1229   if (!AddWithCst->hasOneUse())
1230     return nullptr;
1231 
1232   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1233   if (!CI2->getValue().isPowerOf2())
1234     return nullptr;
1235   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1236   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1237     return nullptr;
1238 
1239   // The width of the new add formed is 1 more than the bias.
1240   ++NewWidth;
1241 
1242   // Check to see that CI1 is an all-ones value with NewWidth bits.
1243   if (CI1->getBitWidth() == NewWidth ||
1244       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1245     return nullptr;
1246 
1247   // This is only really a signed overflow check if the inputs have been
1248   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1249   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1250   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1251   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1252       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1253     return nullptr;
1254 
1255   // In order to replace the original add with a narrower
1256   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1257   // and truncates that discard the high bits of the add.  Verify that this is
1258   // the case.
1259   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1260   for (User *U : OrigAdd->users()) {
1261     if (U == AddWithCst)
1262       continue;
1263 
1264     // Only accept truncates for now.  We would really like a nice recursive
1265     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1266     // chain to see which bits of a value are actually demanded.  If the
1267     // original add had another add which was then immediately truncated, we
1268     // could still do the transformation.
1269     TruncInst *TI = dyn_cast<TruncInst>(U);
1270     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1271       return nullptr;
1272   }
1273 
1274   // If the pattern matches, truncate the inputs to the narrower type and
1275   // use the sadd_with_overflow intrinsic to efficiently compute both the
1276   // result and the overflow bit.
1277   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1278   Function *F = Intrinsic::getDeclaration(
1279       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1280 
1281   InstCombiner::BuilderTy &Builder = IC.Builder;
1282 
1283   // Put the new code above the original add, in case there are any uses of the
1284   // add between the add and the compare.
1285   Builder.SetInsertPoint(OrigAdd);
1286 
1287   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1288   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1289   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1290   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1291   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1292 
1293   // The inner add was the result of the narrow add, zero extended to the
1294   // wider type.  Replace it with the result computed by the intrinsic.
1295   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1296   IC.eraseInstFromFunction(*OrigAdd);
1297 
1298   // The original icmp gets replaced with the overflow value.
1299   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1300 }
1301 
1302 /// If we have:
1303 ///   icmp eq/ne (urem/srem %x, %y), 0
1304 /// iff %y is a power-of-two, we can replace this with a bit test:
1305 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1306 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1307   // This fold is only valid for equality predicates.
1308   if (!I.isEquality())
1309     return nullptr;
1310   ICmpInst::Predicate Pred;
1311   Value *X, *Y, *Zero;
1312   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1313                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1314     return nullptr;
1315   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1316     return nullptr;
1317   // This may increase instruction count, we don't enforce that Y is a constant.
1318   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1319   Value *Masked = Builder.CreateAnd(X, Mask);
1320   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1321 }
1322 
1323 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1324 /// by one-less-than-bitwidth into a sign test on the original value.
1325 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1326   Instruction *Val;
1327   ICmpInst::Predicate Pred;
1328   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1329     return nullptr;
1330 
1331   Value *X;
1332   Type *XTy;
1333 
1334   Constant *C;
1335   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1336     XTy = X->getType();
1337     unsigned XBitWidth = XTy->getScalarSizeInBits();
1338     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1339                                      APInt(XBitWidth, XBitWidth - 1))))
1340       return nullptr;
1341   } else if (isa<BinaryOperator>(Val) &&
1342              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1343                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1344                   /*AnalyzeForSignBitExtraction=*/true))) {
1345     XTy = X->getType();
1346   } else
1347     return nullptr;
1348 
1349   return ICmpInst::Create(Instruction::ICmp,
1350                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1351                                                     : ICmpInst::ICMP_SLT,
1352                           X, ConstantInt::getNullValue(XTy));
1353 }
1354 
1355 // Handle  icmp pred X, 0
1356 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1357   CmpInst::Predicate Pred = Cmp.getPredicate();
1358   if (!match(Cmp.getOperand(1), m_Zero()))
1359     return nullptr;
1360 
1361   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1362   if (Pred == ICmpInst::ICMP_SGT) {
1363     Value *A, *B;
1364     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1365     if (SPR.Flavor == SPF_SMIN) {
1366       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1367         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1368       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1369         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1370     }
1371   }
1372 
1373   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1374     return New;
1375 
1376   // Given:
1377   //   icmp eq/ne (urem %x, %y), 0
1378   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1379   //   icmp eq/ne %x, 0
1380   Value *X, *Y;
1381   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1382       ICmpInst::isEquality(Pred)) {
1383     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1384     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1385     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1386       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1387   }
1388 
1389   return nullptr;
1390 }
1391 
1392 /// Fold icmp Pred X, C.
1393 /// TODO: This code structure does not make sense. The saturating add fold
1394 /// should be moved to some other helper and extended as noted below (it is also
1395 /// possible that code has been made unnecessary - do we canonicalize IR to
1396 /// overflow/saturating intrinsics or not?).
1397 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1398   // Match the following pattern, which is a common idiom when writing
1399   // overflow-safe integer arithmetic functions. The source performs an addition
1400   // in wider type and explicitly checks for overflow using comparisons against
1401   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1402   //
1403   // TODO: This could probably be generalized to handle other overflow-safe
1404   // operations if we worked out the formulas to compute the appropriate magic
1405   // constants.
1406   //
1407   // sum = a + b
1408   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1409   CmpInst::Predicate Pred = Cmp.getPredicate();
1410   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1411   Value *A, *B;
1412   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1413   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1414       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1415     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1416       return Res;
1417 
1418   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1419   Constant *C = dyn_cast<Constant>(Op1);
1420   if (!C)
1421     return nullptr;
1422 
1423   if (auto *Phi = dyn_cast<PHINode>(Op0))
1424     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1425       Type *Ty = Cmp.getType();
1426       Builder.SetInsertPoint(Phi);
1427       PHINode *NewPhi =
1428           Builder.CreatePHI(Ty, Phi->getNumOperands());
1429       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1430         auto *Input =
1431             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1432         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1433         NewPhi->addIncoming(BoolInput, Predecessor);
1434       }
1435       NewPhi->takeName(&Cmp);
1436       return replaceInstUsesWith(Cmp, NewPhi);
1437     }
1438 
1439   return nullptr;
1440 }
1441 
1442 /// Canonicalize icmp instructions based on dominating conditions.
1443 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1444   // This is a cheap/incomplete check for dominance - just match a single
1445   // predecessor with a conditional branch.
1446   BasicBlock *CmpBB = Cmp.getParent();
1447   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1448   if (!DomBB)
1449     return nullptr;
1450 
1451   Value *DomCond;
1452   BasicBlock *TrueBB, *FalseBB;
1453   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1454     return nullptr;
1455 
1456   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1457          "Predecessor block does not point to successor?");
1458 
1459   // The branch should get simplified. Don't bother simplifying this condition.
1460   if (TrueBB == FalseBB)
1461     return nullptr;
1462 
1463   // Try to simplify this compare to T/F based on the dominating condition.
1464   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1465   if (Imp)
1466     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1467 
1468   CmpInst::Predicate Pred = Cmp.getPredicate();
1469   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1470   ICmpInst::Predicate DomPred;
1471   const APInt *C, *DomC;
1472   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1473       match(Y, m_APInt(C))) {
1474     // We have 2 compares of a variable with constants. Calculate the constant
1475     // ranges of those compares to see if we can transform the 2nd compare:
1476     // DomBB:
1477     //   DomCond = icmp DomPred X, DomC
1478     //   br DomCond, CmpBB, FalseBB
1479     // CmpBB:
1480     //   Cmp = icmp Pred X, C
1481     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1482     ConstantRange DominatingCR =
1483         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1484                           : ConstantRange::makeExactICmpRegion(
1485                                 CmpInst::getInversePredicate(DomPred), *DomC);
1486     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1487     ConstantRange Difference = DominatingCR.difference(CR);
1488     if (Intersection.isEmptySet())
1489       return replaceInstUsesWith(Cmp, Builder.getFalse());
1490     if (Difference.isEmptySet())
1491       return replaceInstUsesWith(Cmp, Builder.getTrue());
1492 
1493     // Canonicalizing a sign bit comparison that gets used in a branch,
1494     // pessimizes codegen by generating branch on zero instruction instead
1495     // of a test and branch. So we avoid canonicalizing in such situations
1496     // because test and branch instruction has better branch displacement
1497     // than compare and branch instruction.
1498     bool UnusedBit;
1499     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1500     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1501       return nullptr;
1502 
1503     if (const APInt *EqC = Intersection.getSingleElement())
1504       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1505     if (const APInt *NeC = Difference.getSingleElement())
1506       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1507   }
1508 
1509   return nullptr;
1510 }
1511 
1512 /// Fold icmp (trunc X, Y), C.
1513 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1514                                                      TruncInst *Trunc,
1515                                                      const APInt &C) {
1516   ICmpInst::Predicate Pred = Cmp.getPredicate();
1517   Value *X = Trunc->getOperand(0);
1518   if (C.isOneValue() && C.getBitWidth() > 1) {
1519     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1520     Value *V = nullptr;
1521     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1522       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1523                           ConstantInt::get(V->getType(), 1));
1524   }
1525 
1526   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1527            SrcBits = X->getType()->getScalarSizeInBits();
1528   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1529     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1530     // of the high bits truncated out of x are known.
1531     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1532 
1533     // If all the high bits are known, we can do this xform.
1534     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1535       // Pull in the high bits from known-ones set.
1536       APInt NewRHS = C.zext(SrcBits);
1537       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1538       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1539     }
1540   }
1541 
1542   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1543   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1544   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1545   Value *ShOp;
1546   const APInt *ShAmtC;
1547   bool TrueIfSigned;
1548   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1549       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1550       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1551     return TrueIfSigned
1552                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1553                               ConstantInt::getNullValue(X->getType()))
1554                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1555                               ConstantInt::getAllOnesValue(X->getType()));
1556   }
1557 
1558   return nullptr;
1559 }
1560 
1561 /// Fold icmp (xor X, Y), C.
1562 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1563                                                    BinaryOperator *Xor,
1564                                                    const APInt &C) {
1565   Value *X = Xor->getOperand(0);
1566   Value *Y = Xor->getOperand(1);
1567   const APInt *XorC;
1568   if (!match(Y, m_APInt(XorC)))
1569     return nullptr;
1570 
1571   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1572   // fold the xor.
1573   ICmpInst::Predicate Pred = Cmp.getPredicate();
1574   bool TrueIfSigned = false;
1575   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1576 
1577     // If the sign bit of the XorCst is not set, there is no change to
1578     // the operation, just stop using the Xor.
1579     if (!XorC->isNegative())
1580       return replaceOperand(Cmp, 0, X);
1581 
1582     // Emit the opposite comparison.
1583     if (TrueIfSigned)
1584       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1585                           ConstantInt::getAllOnesValue(X->getType()));
1586     else
1587       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1588                           ConstantInt::getNullValue(X->getType()));
1589   }
1590 
1591   if (Xor->hasOneUse()) {
1592     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1593     if (!Cmp.isEquality() && XorC->isSignMask()) {
1594       Pred = Cmp.getFlippedSignednessPredicate();
1595       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1596     }
1597 
1598     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1599     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1600       Pred = Cmp.getFlippedSignednessPredicate();
1601       Pred = Cmp.getSwappedPredicate(Pred);
1602       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1603     }
1604   }
1605 
1606   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1607   if (Pred == ICmpInst::ICMP_UGT) {
1608     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1609     if (*XorC == ~C && (C + 1).isPowerOf2())
1610       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1611     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1612     if (*XorC == C && (C + 1).isPowerOf2())
1613       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1614   }
1615   if (Pred == ICmpInst::ICMP_ULT) {
1616     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1617     if (*XorC == -C && C.isPowerOf2())
1618       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1619                           ConstantInt::get(X->getType(), ~C));
1620     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1621     if (*XorC == C && (-C).isPowerOf2())
1622       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1623                           ConstantInt::get(X->getType(), ~C));
1624   }
1625   return nullptr;
1626 }
1627 
1628 /// Fold icmp (and (sh X, Y), C2), C1.
1629 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1630                                                 BinaryOperator *And,
1631                                                 const APInt &C1,
1632                                                 const APInt &C2) {
1633   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1634   if (!Shift || !Shift->isShift())
1635     return nullptr;
1636 
1637   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1638   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1639   // code produced by the clang front-end, for bitfield access.
1640   // This seemingly simple opportunity to fold away a shift turns out to be
1641   // rather complicated. See PR17827 for details.
1642   unsigned ShiftOpcode = Shift->getOpcode();
1643   bool IsShl = ShiftOpcode == Instruction::Shl;
1644   const APInt *C3;
1645   if (match(Shift->getOperand(1), m_APInt(C3))) {
1646     APInt NewAndCst, NewCmpCst;
1647     bool AnyCmpCstBitsShiftedOut;
1648     if (ShiftOpcode == Instruction::Shl) {
1649       // For a left shift, we can fold if the comparison is not signed. We can
1650       // also fold a signed comparison if the mask value and comparison value
1651       // are not negative. These constraints may not be obvious, but we can
1652       // prove that they are correct using an SMT solver.
1653       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1654         return nullptr;
1655 
1656       NewCmpCst = C1.lshr(*C3);
1657       NewAndCst = C2.lshr(*C3);
1658       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1659     } else if (ShiftOpcode == Instruction::LShr) {
1660       // For a logical right shift, we can fold if the comparison is not signed.
1661       // We can also fold a signed comparison if the shifted mask value and the
1662       // shifted comparison value are not negative. These constraints may not be
1663       // obvious, but we can prove that they are correct using an SMT solver.
1664       NewCmpCst = C1.shl(*C3);
1665       NewAndCst = C2.shl(*C3);
1666       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1667       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1668         return nullptr;
1669     } else {
1670       // For an arithmetic shift, check that both constants don't use (in a
1671       // signed sense) the top bits being shifted out.
1672       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1673       NewCmpCst = C1.shl(*C3);
1674       NewAndCst = C2.shl(*C3);
1675       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1676       if (NewAndCst.ashr(*C3) != C2)
1677         return nullptr;
1678     }
1679 
1680     if (AnyCmpCstBitsShiftedOut) {
1681       // If we shifted bits out, the fold is not going to work out. As a
1682       // special case, check to see if this means that the result is always
1683       // true or false now.
1684       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1685         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1686       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1687         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1688     } else {
1689       Value *NewAnd = Builder.CreateAnd(
1690           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1691       return new ICmpInst(Cmp.getPredicate(),
1692           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1693     }
1694   }
1695 
1696   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1697   // preferable because it allows the C2 << Y expression to be hoisted out of a
1698   // loop if Y is invariant and X is not.
1699   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1700       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1701     // Compute C2 << Y.
1702     Value *NewShift =
1703         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1704               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1705 
1706     // Compute X & (C2 << Y).
1707     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1708     return replaceOperand(Cmp, 0, NewAnd);
1709   }
1710 
1711   return nullptr;
1712 }
1713 
1714 /// Fold icmp (and X, C2), C1.
1715 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1716                                                      BinaryOperator *And,
1717                                                      const APInt &C1) {
1718   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1719 
1720   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1721   // TODO: We canonicalize to the longer form for scalars because we have
1722   // better analysis/folds for icmp, and codegen may be better with icmp.
1723   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1724       match(And->getOperand(1), m_One()))
1725     return new TruncInst(And->getOperand(0), Cmp.getType());
1726 
1727   const APInt *C2;
1728   Value *X;
1729   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1730     return nullptr;
1731 
1732   // Don't perform the following transforms if the AND has multiple uses
1733   if (!And->hasOneUse())
1734     return nullptr;
1735 
1736   if (Cmp.isEquality() && C1.isNullValue()) {
1737     // Restrict this fold to single-use 'and' (PR10267).
1738     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1739     if (C2->isSignMask()) {
1740       Constant *Zero = Constant::getNullValue(X->getType());
1741       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1742       return new ICmpInst(NewPred, X, Zero);
1743     }
1744 
1745     // Restrict this fold only for single-use 'and' (PR10267).
1746     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1747     if ((~(*C2) + 1).isPowerOf2()) {
1748       Constant *NegBOC =
1749           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1750       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1751       return new ICmpInst(NewPred, X, NegBOC);
1752     }
1753   }
1754 
1755   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1756   // the input width without changing the value produced, eliminate the cast:
1757   //
1758   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1759   //
1760   // We can do this transformation if the constants do not have their sign bits
1761   // set or if it is an equality comparison. Extending a relational comparison
1762   // when we're checking the sign bit would not work.
1763   Value *W;
1764   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1765       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1766     // TODO: Is this a good transform for vectors? Wider types may reduce
1767     // throughput. Should this transform be limited (even for scalars) by using
1768     // shouldChangeType()?
1769     if (!Cmp.getType()->isVectorTy()) {
1770       Type *WideType = W->getType();
1771       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1772       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1773       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1774       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1775       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1776     }
1777   }
1778 
1779   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1780     return I;
1781 
1782   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1783   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1784   //
1785   // iff pred isn't signed
1786   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1787       match(And->getOperand(1), m_One())) {
1788     Constant *One = cast<Constant>(And->getOperand(1));
1789     Value *Or = And->getOperand(0);
1790     Value *A, *B, *LShr;
1791     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1792         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1793       unsigned UsesRemoved = 0;
1794       if (And->hasOneUse())
1795         ++UsesRemoved;
1796       if (Or->hasOneUse())
1797         ++UsesRemoved;
1798       if (LShr->hasOneUse())
1799         ++UsesRemoved;
1800 
1801       // Compute A & ((1 << B) | 1)
1802       Value *NewOr = nullptr;
1803       if (auto *C = dyn_cast<Constant>(B)) {
1804         if (UsesRemoved >= 1)
1805           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1806       } else {
1807         if (UsesRemoved >= 3)
1808           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1809                                                      /*HasNUW=*/true),
1810                                    One, Or->getName());
1811       }
1812       if (NewOr) {
1813         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1814         return replaceOperand(Cmp, 0, NewAnd);
1815       }
1816     }
1817   }
1818 
1819   return nullptr;
1820 }
1821 
1822 /// Fold icmp (and X, Y), C.
1823 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1824                                                    BinaryOperator *And,
1825                                                    const APInt &C) {
1826   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1827     return I;
1828 
1829   // TODO: These all require that Y is constant too, so refactor with the above.
1830 
1831   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1832   Value *X = And->getOperand(0);
1833   Value *Y = And->getOperand(1);
1834   if (auto *LI = dyn_cast<LoadInst>(X))
1835     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1836       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1837         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1838             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1839           ConstantInt *C2 = cast<ConstantInt>(Y);
1840           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1841             return Res;
1842         }
1843 
1844   if (!Cmp.isEquality())
1845     return nullptr;
1846 
1847   // X & -C == -C -> X >  u ~C
1848   // X & -C != -C -> X <= u ~C
1849   //   iff C is a power of 2
1850   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1851     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1852                                                           : CmpInst::ICMP_ULE;
1853     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1854   }
1855 
1856   // (X & C2) == 0 -> (trunc X) >= 0
1857   // (X & C2) != 0 -> (trunc X) <  0
1858   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1859   const APInt *C2;
1860   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1861     int32_t ExactLogBase2 = C2->exactLogBase2();
1862     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1863       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1864       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1865         NTy = VectorType::get(NTy, AndVTy->getElementCount());
1866       Value *Trunc = Builder.CreateTrunc(X, NTy);
1867       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1868                                                             : CmpInst::ICMP_SLT;
1869       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1870     }
1871   }
1872 
1873   return nullptr;
1874 }
1875 
1876 /// Fold icmp (or X, Y), C.
1877 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1878                                                   BinaryOperator *Or,
1879                                                   const APInt &C) {
1880   ICmpInst::Predicate Pred = Cmp.getPredicate();
1881   if (C.isOneValue()) {
1882     // icmp slt signum(V) 1 --> icmp slt V, 1
1883     Value *V = nullptr;
1884     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1885       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1886                           ConstantInt::get(V->getType(), 1));
1887   }
1888 
1889   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1890   const APInt *MaskC;
1891   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1892     if (*MaskC == C && (C + 1).isPowerOf2()) {
1893       // X | C == C --> X <=u C
1894       // X | C != C --> X  >u C
1895       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1896       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1897       return new ICmpInst(Pred, OrOp0, OrOp1);
1898     }
1899 
1900     // More general: canonicalize 'equality with set bits mask' to
1901     // 'equality with clear bits mask'.
1902     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1903     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1904     if (Or->hasOneUse()) {
1905       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1906       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1907       return new ICmpInst(Pred, And, NewC);
1908     }
1909   }
1910 
1911   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1912     return nullptr;
1913 
1914   Value *P, *Q;
1915   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1916     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1917     // -> and (icmp eq P, null), (icmp eq Q, null).
1918     Value *CmpP =
1919         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1920     Value *CmpQ =
1921         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1922     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1923     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1924   }
1925 
1926   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1927   // a shorter form that has more potential to be folded even further.
1928   Value *X1, *X2, *X3, *X4;
1929   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1930       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1931     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1932     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1933     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1934     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1935     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1936     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1937   }
1938 
1939   return nullptr;
1940 }
1941 
1942 /// Fold icmp (mul X, Y), C.
1943 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1944                                                    BinaryOperator *Mul,
1945                                                    const APInt &C) {
1946   const APInt *MulC;
1947   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1948     return nullptr;
1949 
1950   // If this is a test of the sign bit and the multiply is sign-preserving with
1951   // a constant operand, use the multiply LHS operand instead.
1952   ICmpInst::Predicate Pred = Cmp.getPredicate();
1953   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1954     if (MulC->isNegative())
1955       Pred = ICmpInst::getSwappedPredicate(Pred);
1956     return new ICmpInst(Pred, Mul->getOperand(0),
1957                         Constant::getNullValue(Mul->getType()));
1958   }
1959 
1960   // If the multiply does not wrap, try to divide the compare constant by the
1961   // multiplication factor.
1962   if (Cmp.isEquality() && !MulC->isNullValue()) {
1963     // (mul nsw X, MulC) == C --> X == C /s MulC
1964     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
1965       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1966       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1967     }
1968     // (mul nuw X, MulC) == C --> X == C /u MulC
1969     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
1970       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1971       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1972     }
1973   }
1974 
1975   return nullptr;
1976 }
1977 
1978 /// Fold icmp (shl 1, Y), C.
1979 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1980                                    const APInt &C) {
1981   Value *Y;
1982   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1983     return nullptr;
1984 
1985   Type *ShiftType = Shl->getType();
1986   unsigned TypeBits = C.getBitWidth();
1987   bool CIsPowerOf2 = C.isPowerOf2();
1988   ICmpInst::Predicate Pred = Cmp.getPredicate();
1989   if (Cmp.isUnsigned()) {
1990     // (1 << Y) pred C -> Y pred Log2(C)
1991     if (!CIsPowerOf2) {
1992       // (1 << Y) <  30 -> Y <= 4
1993       // (1 << Y) <= 30 -> Y <= 4
1994       // (1 << Y) >= 30 -> Y >  4
1995       // (1 << Y) >  30 -> Y >  4
1996       if (Pred == ICmpInst::ICMP_ULT)
1997         Pred = ICmpInst::ICMP_ULE;
1998       else if (Pred == ICmpInst::ICMP_UGE)
1999         Pred = ICmpInst::ICMP_UGT;
2000     }
2001 
2002     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2003     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2004     unsigned CLog2 = C.logBase2();
2005     if (CLog2 == TypeBits - 1) {
2006       if (Pred == ICmpInst::ICMP_UGE)
2007         Pred = ICmpInst::ICMP_EQ;
2008       else if (Pred == ICmpInst::ICMP_ULT)
2009         Pred = ICmpInst::ICMP_NE;
2010     }
2011     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2012   } else if (Cmp.isSigned()) {
2013     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2014     if (C.isAllOnesValue()) {
2015       // (1 << Y) <= -1 -> Y == 31
2016       if (Pred == ICmpInst::ICMP_SLE)
2017         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2018 
2019       // (1 << Y) >  -1 -> Y != 31
2020       if (Pred == ICmpInst::ICMP_SGT)
2021         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2022     } else if (!C) {
2023       // (1 << Y) <  0 -> Y == 31
2024       // (1 << Y) <= 0 -> Y == 31
2025       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2026         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2027 
2028       // (1 << Y) >= 0 -> Y != 31
2029       // (1 << Y) >  0 -> Y != 31
2030       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2031         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2032     }
2033   } else if (Cmp.isEquality() && CIsPowerOf2) {
2034     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2035   }
2036 
2037   return nullptr;
2038 }
2039 
2040 /// Fold icmp (shl X, Y), C.
2041 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2042                                                    BinaryOperator *Shl,
2043                                                    const APInt &C) {
2044   const APInt *ShiftVal;
2045   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2046     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2047 
2048   const APInt *ShiftAmt;
2049   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2050     return foldICmpShlOne(Cmp, Shl, C);
2051 
2052   // Check that the shift amount is in range. If not, don't perform undefined
2053   // shifts. When the shift is visited, it will be simplified.
2054   unsigned TypeBits = C.getBitWidth();
2055   if (ShiftAmt->uge(TypeBits))
2056     return nullptr;
2057 
2058   ICmpInst::Predicate Pred = Cmp.getPredicate();
2059   Value *X = Shl->getOperand(0);
2060   Type *ShType = Shl->getType();
2061 
2062   // NSW guarantees that we are only shifting out sign bits from the high bits,
2063   // so we can ASHR the compare constant without needing a mask and eliminate
2064   // the shift.
2065   if (Shl->hasNoSignedWrap()) {
2066     if (Pred == ICmpInst::ICMP_SGT) {
2067       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2068       APInt ShiftedC = C.ashr(*ShiftAmt);
2069       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2070     }
2071     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2072         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2073       APInt ShiftedC = C.ashr(*ShiftAmt);
2074       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2075     }
2076     if (Pred == ICmpInst::ICMP_SLT) {
2077       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2078       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2079       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2080       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2081       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2082       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2083       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2084     }
2085     // If this is a signed comparison to 0 and the shift is sign preserving,
2086     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2087     // do that if we're sure to not continue on in this function.
2088     if (isSignTest(Pred, C))
2089       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2090   }
2091 
2092   // NUW guarantees that we are only shifting out zero bits from the high bits,
2093   // so we can LSHR the compare constant without needing a mask and eliminate
2094   // the shift.
2095   if (Shl->hasNoUnsignedWrap()) {
2096     if (Pred == ICmpInst::ICMP_UGT) {
2097       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2098       APInt ShiftedC = C.lshr(*ShiftAmt);
2099       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2100     }
2101     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2102         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2103       APInt ShiftedC = C.lshr(*ShiftAmt);
2104       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2105     }
2106     if (Pred == ICmpInst::ICMP_ULT) {
2107       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2108       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2109       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2110       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2111       assert(C.ugt(0) && "ult 0 should have been eliminated");
2112       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2113       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2114     }
2115   }
2116 
2117   if (Cmp.isEquality() && Shl->hasOneUse()) {
2118     // Strength-reduce the shift into an 'and'.
2119     Constant *Mask = ConstantInt::get(
2120         ShType,
2121         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2122     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2123     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2124     return new ICmpInst(Pred, And, LShrC);
2125   }
2126 
2127   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2128   bool TrueIfSigned = false;
2129   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2130     // (X << 31) <s 0  --> (X & 1) != 0
2131     Constant *Mask = ConstantInt::get(
2132         ShType,
2133         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2134     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2135     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2136                         And, Constant::getNullValue(ShType));
2137   }
2138 
2139   // Simplify 'shl' inequality test into 'and' equality test.
2140   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2141     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2142     if ((C + 1).isPowerOf2() &&
2143         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2144       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2145       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2146                                                      : ICmpInst::ICMP_NE,
2147                           And, Constant::getNullValue(ShType));
2148     }
2149     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2150     if (C.isPowerOf2() &&
2151         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2152       Value *And =
2153           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2154       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2155                                                      : ICmpInst::ICMP_NE,
2156                           And, Constant::getNullValue(ShType));
2157     }
2158   }
2159 
2160   // Transform (icmp pred iM (shl iM %v, N), C)
2161   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2162   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2163   // This enables us to get rid of the shift in favor of a trunc that may be
2164   // free on the target. It has the additional benefit of comparing to a
2165   // smaller constant that may be more target-friendly.
2166   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2167   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2168       DL.isLegalInteger(TypeBits - Amt)) {
2169     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2170     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2171       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2172     Constant *NewC =
2173         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2174     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2175   }
2176 
2177   return nullptr;
2178 }
2179 
2180 /// Fold icmp ({al}shr X, Y), C.
2181 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2182                                                    BinaryOperator *Shr,
2183                                                    const APInt &C) {
2184   // An exact shr only shifts out zero bits, so:
2185   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2186   Value *X = Shr->getOperand(0);
2187   CmpInst::Predicate Pred = Cmp.getPredicate();
2188   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2189       C.isNullValue())
2190     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2191 
2192   const APInt *ShiftVal;
2193   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2194     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2195 
2196   const APInt *ShiftAmt;
2197   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2198     return nullptr;
2199 
2200   // Check that the shift amount is in range. If not, don't perform undefined
2201   // shifts. When the shift is visited it will be simplified.
2202   unsigned TypeBits = C.getBitWidth();
2203   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2204   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2205     return nullptr;
2206 
2207   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2208   bool IsExact = Shr->isExact();
2209   Type *ShrTy = Shr->getType();
2210   // TODO: If we could guarantee that InstSimplify would handle all of the
2211   // constant-value-based preconditions in the folds below, then we could assert
2212   // those conditions rather than checking them. This is difficult because of
2213   // undef/poison (PR34838).
2214   if (IsAShr) {
2215     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2216       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2217       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2218       APInt ShiftedC = C.shl(ShAmtVal);
2219       if (ShiftedC.ashr(ShAmtVal) == C)
2220         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2221     }
2222     if (Pred == CmpInst::ICMP_SGT) {
2223       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2224       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2225       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2226           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2227         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2228     }
2229 
2230     // If the compare constant has significant bits above the lowest sign-bit,
2231     // then convert an unsigned cmp to a test of the sign-bit:
2232     // (ashr X, ShiftC) u> C --> X s< 0
2233     // (ashr X, ShiftC) u< C --> X s> -1
2234     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2235       if (Pred == CmpInst::ICMP_UGT) {
2236         return new ICmpInst(CmpInst::ICMP_SLT, X,
2237                             ConstantInt::getNullValue(ShrTy));
2238       }
2239       if (Pred == CmpInst::ICMP_ULT) {
2240         return new ICmpInst(CmpInst::ICMP_SGT, X,
2241                             ConstantInt::getAllOnesValue(ShrTy));
2242       }
2243     }
2244   } else {
2245     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2246       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2247       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2248       APInt ShiftedC = C.shl(ShAmtVal);
2249       if (ShiftedC.lshr(ShAmtVal) == C)
2250         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2251     }
2252     if (Pred == CmpInst::ICMP_UGT) {
2253       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2254       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2255       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2256         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2257     }
2258   }
2259 
2260   if (!Cmp.isEquality())
2261     return nullptr;
2262 
2263   // Handle equality comparisons of shift-by-constant.
2264 
2265   // If the comparison constant changes with the shift, the comparison cannot
2266   // succeed (bits of the comparison constant cannot match the shifted value).
2267   // This should be known by InstSimplify and already be folded to true/false.
2268   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2269           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2270          "Expected icmp+shr simplify did not occur.");
2271 
2272   // If the bits shifted out are known zero, compare the unshifted value:
2273   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2274   if (Shr->isExact())
2275     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2276 
2277   if (Shr->hasOneUse()) {
2278     // Canonicalize the shift into an 'and':
2279     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2280     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2281     Constant *Mask = ConstantInt::get(ShrTy, Val);
2282     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2283     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2284   }
2285 
2286   return nullptr;
2287 }
2288 
2289 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2290                                                     BinaryOperator *SRem,
2291                                                     const APInt &C) {
2292   // Match an 'is positive' or 'is negative' comparison of remainder by a
2293   // constant power-of-2 value:
2294   // (X % pow2C) sgt/slt 0
2295   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2296   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2297     return nullptr;
2298 
2299   // TODO: The one-use check is standard because we do not typically want to
2300   //       create longer instruction sequences, but this might be a special-case
2301   //       because srem is not good for analysis or codegen.
2302   if (!SRem->hasOneUse())
2303     return nullptr;
2304 
2305   const APInt *DivisorC;
2306   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2307     return nullptr;
2308 
2309   // Mask off the sign bit and the modulo bits (low-bits).
2310   Type *Ty = SRem->getType();
2311   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2312   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2313   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2314 
2315   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2316   // bit is set. Example:
2317   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2318   if (Pred == ICmpInst::ICMP_SGT)
2319     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2320 
2321   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2322   // bit is set. Example:
2323   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2324   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2325 }
2326 
2327 /// Fold icmp (udiv X, Y), C.
2328 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2329                                                     BinaryOperator *UDiv,
2330                                                     const APInt &C) {
2331   const APInt *C2;
2332   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2333     return nullptr;
2334 
2335   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2336 
2337   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2338   Value *Y = UDiv->getOperand(1);
2339   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2340     assert(!C.isMaxValue() &&
2341            "icmp ugt X, UINT_MAX should have been simplified already.");
2342     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2343                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2344   }
2345 
2346   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2347   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2348     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2349     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2350                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2351   }
2352 
2353   return nullptr;
2354 }
2355 
2356 /// Fold icmp ({su}div X, Y), C.
2357 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2358                                                    BinaryOperator *Div,
2359                                                    const APInt &C) {
2360   // Fold: icmp pred ([us]div X, C2), C -> range test
2361   // Fold this div into the comparison, producing a range check.
2362   // Determine, based on the divide type, what the range is being
2363   // checked.  If there is an overflow on the low or high side, remember
2364   // it, otherwise compute the range [low, hi) bounding the new value.
2365   // See: InsertRangeTest above for the kinds of replacements possible.
2366   const APInt *C2;
2367   if (!match(Div->getOperand(1), m_APInt(C2)))
2368     return nullptr;
2369 
2370   // FIXME: If the operand types don't match the type of the divide
2371   // then don't attempt this transform. The code below doesn't have the
2372   // logic to deal with a signed divide and an unsigned compare (and
2373   // vice versa). This is because (x /s C2) <s C  produces different
2374   // results than (x /s C2) <u C or (x /u C2) <s C or even
2375   // (x /u C2) <u C.  Simply casting the operands and result won't
2376   // work. :(  The if statement below tests that condition and bails
2377   // if it finds it.
2378   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2379   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2380     return nullptr;
2381 
2382   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2383   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2384   // division-by-constant cases should be present, we can not assert that they
2385   // have happened before we reach this icmp instruction.
2386   if (C2->isNullValue() || C2->isOneValue() ||
2387       (DivIsSigned && C2->isAllOnesValue()))
2388     return nullptr;
2389 
2390   // Compute Prod = C * C2. We are essentially solving an equation of
2391   // form X / C2 = C. We solve for X by multiplying C2 and C.
2392   // By solving for X, we can turn this into a range check instead of computing
2393   // a divide.
2394   APInt Prod = C * *C2;
2395 
2396   // Determine if the product overflows by seeing if the product is not equal to
2397   // the divide. Make sure we do the same kind of divide as in the LHS
2398   // instruction that we're folding.
2399   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2400 
2401   ICmpInst::Predicate Pred = Cmp.getPredicate();
2402 
2403   // If the division is known to be exact, then there is no remainder from the
2404   // divide, so the covered range size is unit, otherwise it is the divisor.
2405   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2406 
2407   // Figure out the interval that is being checked.  For example, a comparison
2408   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2409   // Compute this interval based on the constants involved and the signedness of
2410   // the compare/divide.  This computes a half-open interval, keeping track of
2411   // whether either value in the interval overflows.  After analysis each
2412   // overflow variable is set to 0 if it's corresponding bound variable is valid
2413   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2414   int LoOverflow = 0, HiOverflow = 0;
2415   APInt LoBound, HiBound;
2416 
2417   if (!DivIsSigned) {  // udiv
2418     // e.g. X/5 op 3  --> [15, 20)
2419     LoBound = Prod;
2420     HiOverflow = LoOverflow = ProdOV;
2421     if (!HiOverflow) {
2422       // If this is not an exact divide, then many values in the range collapse
2423       // to the same result value.
2424       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2425     }
2426   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2427     if (C.isNullValue()) {       // (X / pos) op 0
2428       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2429       LoBound = -(RangeSize - 1);
2430       HiBound = RangeSize;
2431     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2432       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2433       HiOverflow = LoOverflow = ProdOV;
2434       if (!HiOverflow)
2435         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2436     } else {                       // (X / pos) op neg
2437       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2438       HiBound = Prod + 1;
2439       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2440       if (!LoOverflow) {
2441         APInt DivNeg = -RangeSize;
2442         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2443       }
2444     }
2445   } else if (C2->isNegative()) { // Divisor is < 0.
2446     if (Div->isExact())
2447       RangeSize.negate();
2448     if (C.isNullValue()) { // (X / neg) op 0
2449       // e.g. X/-5 op 0  --> [-4, 5)
2450       LoBound = RangeSize + 1;
2451       HiBound = -RangeSize;
2452       if (HiBound == *C2) {        // -INTMIN = INTMIN
2453         HiOverflow = 1;            // [INTMIN+1, overflow)
2454         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2455       }
2456     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2457       // e.g. X/-5 op 3  --> [-19, -14)
2458       HiBound = Prod + 1;
2459       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2460       if (!LoOverflow)
2461         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2462     } else {                       // (X / neg) op neg
2463       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2464       LoOverflow = HiOverflow = ProdOV;
2465       if (!HiOverflow)
2466         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2467     }
2468 
2469     // Dividing by a negative swaps the condition.  LT <-> GT
2470     Pred = ICmpInst::getSwappedPredicate(Pred);
2471   }
2472 
2473   Value *X = Div->getOperand(0);
2474   switch (Pred) {
2475     default: llvm_unreachable("Unhandled icmp opcode!");
2476     case ICmpInst::ICMP_EQ:
2477       if (LoOverflow && HiOverflow)
2478         return replaceInstUsesWith(Cmp, Builder.getFalse());
2479       if (HiOverflow)
2480         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2481                             ICmpInst::ICMP_UGE, X,
2482                             ConstantInt::get(Div->getType(), LoBound));
2483       if (LoOverflow)
2484         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2485                             ICmpInst::ICMP_ULT, X,
2486                             ConstantInt::get(Div->getType(), HiBound));
2487       return replaceInstUsesWith(
2488           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2489     case ICmpInst::ICMP_NE:
2490       if (LoOverflow && HiOverflow)
2491         return replaceInstUsesWith(Cmp, Builder.getTrue());
2492       if (HiOverflow)
2493         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2494                             ICmpInst::ICMP_ULT, X,
2495                             ConstantInt::get(Div->getType(), LoBound));
2496       if (LoOverflow)
2497         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2498                             ICmpInst::ICMP_UGE, X,
2499                             ConstantInt::get(Div->getType(), HiBound));
2500       return replaceInstUsesWith(Cmp,
2501                                  insertRangeTest(X, LoBound, HiBound,
2502                                                  DivIsSigned, false));
2503     case ICmpInst::ICMP_ULT:
2504     case ICmpInst::ICMP_SLT:
2505       if (LoOverflow == +1)   // Low bound is greater than input range.
2506         return replaceInstUsesWith(Cmp, Builder.getTrue());
2507       if (LoOverflow == -1)   // Low bound is less than input range.
2508         return replaceInstUsesWith(Cmp, Builder.getFalse());
2509       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2510     case ICmpInst::ICMP_UGT:
2511     case ICmpInst::ICMP_SGT:
2512       if (HiOverflow == +1)       // High bound greater than input range.
2513         return replaceInstUsesWith(Cmp, Builder.getFalse());
2514       if (HiOverflow == -1)       // High bound less than input range.
2515         return replaceInstUsesWith(Cmp, Builder.getTrue());
2516       if (Pred == ICmpInst::ICMP_UGT)
2517         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2518                             ConstantInt::get(Div->getType(), HiBound));
2519       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2520                           ConstantInt::get(Div->getType(), HiBound));
2521   }
2522 
2523   return nullptr;
2524 }
2525 
2526 /// Fold icmp (sub X, Y), C.
2527 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2528                                                    BinaryOperator *Sub,
2529                                                    const APInt &C) {
2530   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2531   ICmpInst::Predicate Pred = Cmp.getPredicate();
2532   const APInt *C2;
2533   APInt SubResult;
2534 
2535   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2536   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2537     return new ICmpInst(Cmp.getPredicate(), Y,
2538                         ConstantInt::get(Y->getType(), 0));
2539 
2540   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2541   if (match(X, m_APInt(C2)) &&
2542       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2543        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2544       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2545     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2546                         ConstantInt::get(Y->getType(), SubResult));
2547 
2548   // The following transforms are only worth it if the only user of the subtract
2549   // is the icmp.
2550   if (!Sub->hasOneUse())
2551     return nullptr;
2552 
2553   if (Sub->hasNoSignedWrap()) {
2554     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2555     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2556       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2557 
2558     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2559     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2560       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2561 
2562     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2563     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2564       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2565 
2566     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2567     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2568       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2569   }
2570 
2571   if (!match(X, m_APInt(C2)))
2572     return nullptr;
2573 
2574   // C2 - Y <u C -> (Y | (C - 1)) == C2
2575   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2576   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2577       (*C2 & (C - 1)) == (C - 1))
2578     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2579 
2580   // C2 - Y >u C -> (Y | C) != C2
2581   //   iff C2 & C == C and C + 1 is a power of 2
2582   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2583     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2584 
2585   return nullptr;
2586 }
2587 
2588 /// Fold icmp (add X, Y), C.
2589 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2590                                                    BinaryOperator *Add,
2591                                                    const APInt &C) {
2592   Value *Y = Add->getOperand(1);
2593   const APInt *C2;
2594   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2595     return nullptr;
2596 
2597   // Fold icmp pred (add X, C2), C.
2598   Value *X = Add->getOperand(0);
2599   Type *Ty = Add->getType();
2600   CmpInst::Predicate Pred = Cmp.getPredicate();
2601 
2602   // If the add does not wrap, we can always adjust the compare by subtracting
2603   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2604   // are canonicalized to SGT/SLT/UGT/ULT.
2605   if ((Add->hasNoSignedWrap() &&
2606        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2607       (Add->hasNoUnsignedWrap() &&
2608        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2609     bool Overflow;
2610     APInt NewC =
2611         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2612     // If there is overflow, the result must be true or false.
2613     // TODO: Can we assert there is no overflow because InstSimplify always
2614     // handles those cases?
2615     if (!Overflow)
2616       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2617       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2618   }
2619 
2620   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2621   const APInt &Upper = CR.getUpper();
2622   const APInt &Lower = CR.getLower();
2623   if (Cmp.isSigned()) {
2624     if (Lower.isSignMask())
2625       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2626     if (Upper.isSignMask())
2627       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2628   } else {
2629     if (Lower.isMinValue())
2630       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2631     if (Upper.isMinValue())
2632       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2633   }
2634 
2635   if (!Add->hasOneUse())
2636     return nullptr;
2637 
2638   // X+C <u C2 -> (X & -C2) == C
2639   //   iff C & (C2-1) == 0
2640   //       C2 is a power of 2
2641   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2642     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2643                         ConstantExpr::getNeg(cast<Constant>(Y)));
2644 
2645   // X+C >u C2 -> (X & ~C2) != C
2646   //   iff C & C2 == 0
2647   //       C2+1 is a power of 2
2648   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2649     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2650                         ConstantExpr::getNeg(cast<Constant>(Y)));
2651 
2652   return nullptr;
2653 }
2654 
2655 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2656                                                Value *&RHS, ConstantInt *&Less,
2657                                                ConstantInt *&Equal,
2658                                                ConstantInt *&Greater) {
2659   // TODO: Generalize this to work with other comparison idioms or ensure
2660   // they get canonicalized into this form.
2661 
2662   // select i1 (a == b),
2663   //        i32 Equal,
2664   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2665   // where Equal, Less and Greater are placeholders for any three constants.
2666   ICmpInst::Predicate PredA;
2667   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2668       !ICmpInst::isEquality(PredA))
2669     return false;
2670   Value *EqualVal = SI->getTrueValue();
2671   Value *UnequalVal = SI->getFalseValue();
2672   // We still can get non-canonical predicate here, so canonicalize.
2673   if (PredA == ICmpInst::ICMP_NE)
2674     std::swap(EqualVal, UnequalVal);
2675   if (!match(EqualVal, m_ConstantInt(Equal)))
2676     return false;
2677   ICmpInst::Predicate PredB;
2678   Value *LHS2, *RHS2;
2679   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2680                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2681     return false;
2682   // We can get predicate mismatch here, so canonicalize if possible:
2683   // First, ensure that 'LHS' match.
2684   if (LHS2 != LHS) {
2685     // x sgt y <--> y slt x
2686     std::swap(LHS2, RHS2);
2687     PredB = ICmpInst::getSwappedPredicate(PredB);
2688   }
2689   if (LHS2 != LHS)
2690     return false;
2691   // We also need to canonicalize 'RHS'.
2692   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2693     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2694     auto FlippedStrictness =
2695         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2696             PredB, cast<Constant>(RHS2));
2697     if (!FlippedStrictness)
2698       return false;
2699     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2700     RHS2 = FlippedStrictness->second;
2701     // And kind-of perform the result swap.
2702     std::swap(Less, Greater);
2703     PredB = ICmpInst::ICMP_SLT;
2704   }
2705   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2706 }
2707 
2708 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2709                                                       SelectInst *Select,
2710                                                       ConstantInt *C) {
2711 
2712   assert(C && "Cmp RHS should be a constant int!");
2713   // If we're testing a constant value against the result of a three way
2714   // comparison, the result can be expressed directly in terms of the
2715   // original values being compared.  Note: We could possibly be more
2716   // aggressive here and remove the hasOneUse test. The original select is
2717   // really likely to simplify or sink when we remove a test of the result.
2718   Value *OrigLHS, *OrigRHS;
2719   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2720   if (Cmp.hasOneUse() &&
2721       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2722                               C3GreaterThan)) {
2723     assert(C1LessThan && C2Equal && C3GreaterThan);
2724 
2725     bool TrueWhenLessThan =
2726         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2727             ->isAllOnesValue();
2728     bool TrueWhenEqual =
2729         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2730             ->isAllOnesValue();
2731     bool TrueWhenGreaterThan =
2732         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2733             ->isAllOnesValue();
2734 
2735     // This generates the new instruction that will replace the original Cmp
2736     // Instruction. Instead of enumerating the various combinations when
2737     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2738     // false, we rely on chaining of ORs and future passes of InstCombine to
2739     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2740 
2741     // When none of the three constants satisfy the predicate for the RHS (C),
2742     // the entire original Cmp can be simplified to a false.
2743     Value *Cond = Builder.getFalse();
2744     if (TrueWhenLessThan)
2745       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2746                                                        OrigLHS, OrigRHS));
2747     if (TrueWhenEqual)
2748       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2749                                                        OrigLHS, OrigRHS));
2750     if (TrueWhenGreaterThan)
2751       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2752                                                        OrigLHS, OrigRHS));
2753 
2754     return replaceInstUsesWith(Cmp, Cond);
2755   }
2756   return nullptr;
2757 }
2758 
2759 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2760                                     InstCombiner::BuilderTy &Builder) {
2761   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2762   if (!Bitcast)
2763     return nullptr;
2764 
2765   ICmpInst::Predicate Pred = Cmp.getPredicate();
2766   Value *Op1 = Cmp.getOperand(1);
2767   Value *BCSrcOp = Bitcast->getOperand(0);
2768 
2769   // Make sure the bitcast doesn't change the number of vector elements.
2770   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2771           Bitcast->getDestTy()->getScalarSizeInBits()) {
2772     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2773     Value *X;
2774     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2775       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2776       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2777       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2778       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2779       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2780            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2781           match(Op1, m_Zero()))
2782         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2783 
2784       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2785       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2786         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2787 
2788       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2789       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2790         return new ICmpInst(Pred, X,
2791                             ConstantInt::getAllOnesValue(X->getType()));
2792     }
2793 
2794     // Zero-equality checks are preserved through unsigned floating-point casts:
2795     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2796     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2797     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2798       if (Cmp.isEquality() && match(Op1, m_Zero()))
2799         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2800 
2801     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2802     // the FP extend/truncate because that cast does not change the sign-bit.
2803     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2804     // The sign-bit is always the most significant bit in those types.
2805     const APInt *C;
2806     bool TrueIfSigned;
2807     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2808         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2809       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2810           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2811         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2812         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2813         Type *XType = X->getType();
2814 
2815         // We can't currently handle Power style floating point operations here.
2816         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2817 
2818           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2819           if (auto *XVTy = dyn_cast<VectorType>(XType))
2820             NewType = VectorType::get(NewType, XVTy->getElementCount());
2821           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2822           if (TrueIfSigned)
2823             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2824                                 ConstantInt::getNullValue(NewType));
2825           else
2826             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2827                                 ConstantInt::getAllOnesValue(NewType));
2828         }
2829       }
2830     }
2831   }
2832 
2833   // Test to see if the operands of the icmp are casted versions of other
2834   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2835   if (Bitcast->getType()->isPointerTy() &&
2836       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2837     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2838     // so eliminate it as well.
2839     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2840       Op1 = BC2->getOperand(0);
2841 
2842     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2843     return new ICmpInst(Pred, BCSrcOp, Op1);
2844   }
2845 
2846   // Folding: icmp <pred> iN X, C
2847   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2848   //    and C is a splat of a K-bit pattern
2849   //    and SC is a constant vector = <C', C', C', ..., C'>
2850   // Into:
2851   //   %E = extractelement <M x iK> %vec, i32 C'
2852   //   icmp <pred> iK %E, trunc(C)
2853   const APInt *C;
2854   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2855       !Bitcast->getType()->isIntegerTy() ||
2856       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2857     return nullptr;
2858 
2859   Value *Vec;
2860   ArrayRef<int> Mask;
2861   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2862     // Check whether every element of Mask is the same constant
2863     if (is_splat(Mask)) {
2864       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2865       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2866       if (C->isSplat(EltTy->getBitWidth())) {
2867         // Fold the icmp based on the value of C
2868         // If C is M copies of an iK sized bit pattern,
2869         // then:
2870         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2871         //       icmp <pred> iK %SplatVal, <pattern>
2872         Value *Elem = Builder.getInt32(Mask[0]);
2873         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2874         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2875         return new ICmpInst(Pred, Extract, NewC);
2876       }
2877     }
2878   }
2879   return nullptr;
2880 }
2881 
2882 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2883 /// where X is some kind of instruction.
2884 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2885   const APInt *C;
2886   if (!match(Cmp.getOperand(1), m_APInt(C)))
2887     return nullptr;
2888 
2889   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2890     switch (BO->getOpcode()) {
2891     case Instruction::Xor:
2892       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2893         return I;
2894       break;
2895     case Instruction::And:
2896       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2897         return I;
2898       break;
2899     case Instruction::Or:
2900       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2901         return I;
2902       break;
2903     case Instruction::Mul:
2904       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2905         return I;
2906       break;
2907     case Instruction::Shl:
2908       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2909         return I;
2910       break;
2911     case Instruction::LShr:
2912     case Instruction::AShr:
2913       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2914         return I;
2915       break;
2916     case Instruction::SRem:
2917       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2918         return I;
2919       break;
2920     case Instruction::UDiv:
2921       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2922         return I;
2923       LLVM_FALLTHROUGH;
2924     case Instruction::SDiv:
2925       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2926         return I;
2927       break;
2928     case Instruction::Sub:
2929       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2930         return I;
2931       break;
2932     case Instruction::Add:
2933       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2934         return I;
2935       break;
2936     default:
2937       break;
2938     }
2939     // TODO: These folds could be refactored to be part of the above calls.
2940     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2941       return I;
2942   }
2943 
2944   // Match against CmpInst LHS being instructions other than binary operators.
2945 
2946   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2947     // For now, we only support constant integers while folding the
2948     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2949     // similar to the cases handled by binary ops above.
2950     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2951       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2952         return I;
2953   }
2954 
2955   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2956     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2957       return I;
2958   }
2959 
2960   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2961     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2962       return I;
2963 
2964   return nullptr;
2965 }
2966 
2967 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2968 /// icmp eq/ne BO, C.
2969 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
2970     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
2971   // TODO: Some of these folds could work with arbitrary constants, but this
2972   // function is limited to scalar and vector splat constants.
2973   if (!Cmp.isEquality())
2974     return nullptr;
2975 
2976   ICmpInst::Predicate Pred = Cmp.getPredicate();
2977   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2978   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2979   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2980 
2981   switch (BO->getOpcode()) {
2982   case Instruction::SRem:
2983     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2984     if (C.isNullValue() && BO->hasOneUse()) {
2985       const APInt *BOC;
2986       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2987         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2988         return new ICmpInst(Pred, NewRem,
2989                             Constant::getNullValue(BO->getType()));
2990       }
2991     }
2992     break;
2993   case Instruction::Add: {
2994     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2995     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2996       if (BO->hasOneUse())
2997         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
2998     } else if (C.isNullValue()) {
2999       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3000       // efficiently invertible, or if the add has just this one use.
3001       if (Value *NegVal = dyn_castNegVal(BOp1))
3002         return new ICmpInst(Pred, BOp0, NegVal);
3003       if (Value *NegVal = dyn_castNegVal(BOp0))
3004         return new ICmpInst(Pred, NegVal, BOp1);
3005       if (BO->hasOneUse()) {
3006         Value *Neg = Builder.CreateNeg(BOp1);
3007         Neg->takeName(BO);
3008         return new ICmpInst(Pred, BOp0, Neg);
3009       }
3010     }
3011     break;
3012   }
3013   case Instruction::Xor:
3014     if (BO->hasOneUse()) {
3015       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3016         // For the xor case, we can xor two constants together, eliminating
3017         // the explicit xor.
3018         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3019       } else if (C.isNullValue()) {
3020         // Replace ((xor A, B) != 0) with (A != B)
3021         return new ICmpInst(Pred, BOp0, BOp1);
3022       }
3023     }
3024     break;
3025   case Instruction::Sub:
3026     if (BO->hasOneUse()) {
3027       // Only check for constant LHS here, as constant RHS will be canonicalized
3028       // to add and use the fold above.
3029       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3030         // Replace ((sub BOC, B) != C) with (B != BOC-C).
3031         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3032       } else if (C.isNullValue()) {
3033         // Replace ((sub A, B) != 0) with (A != B).
3034         return new ICmpInst(Pred, BOp0, BOp1);
3035       }
3036     }
3037     break;
3038   case Instruction::Or: {
3039     const APInt *BOC;
3040     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3041       // Comparing if all bits outside of a constant mask are set?
3042       // Replace (X | C) == -1 with (X & ~C) == ~C.
3043       // This removes the -1 constant.
3044       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3045       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3046       return new ICmpInst(Pred, And, NotBOC);
3047     }
3048     break;
3049   }
3050   case Instruction::And: {
3051     const APInt *BOC;
3052     if (match(BOp1, m_APInt(BOC))) {
3053       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3054       if (C == *BOC && C.isPowerOf2())
3055         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3056                             BO, Constant::getNullValue(RHS->getType()));
3057     }
3058     break;
3059   }
3060   case Instruction::UDiv:
3061     if (C.isNullValue()) {
3062       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3063       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3064       return new ICmpInst(NewPred, BOp1, BOp0);
3065     }
3066     break;
3067   default:
3068     break;
3069   }
3070   return nullptr;
3071 }
3072 
3073 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3074 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3075     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3076   Type *Ty = II->getType();
3077   unsigned BitWidth = C.getBitWidth();
3078   switch (II->getIntrinsicID()) {
3079   case Intrinsic::abs:
3080     // abs(A) == 0  ->  A == 0
3081     // abs(A) == INT_MIN  ->  A == INT_MIN
3082     if (C.isNullValue() || C.isMinSignedValue())
3083       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3084                           ConstantInt::get(Ty, C));
3085     break;
3086 
3087   case Intrinsic::bswap:
3088     // bswap(A) == C  ->  A == bswap(C)
3089     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3090                         ConstantInt::get(Ty, C.byteSwap()));
3091 
3092   case Intrinsic::ctlz:
3093   case Intrinsic::cttz: {
3094     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3095     if (C == BitWidth)
3096       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3097                           ConstantInt::getNullValue(Ty));
3098 
3099     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3100     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3101     // Limit to one use to ensure we don't increase instruction count.
3102     unsigned Num = C.getLimitedValue(BitWidth);
3103     if (Num != BitWidth && II->hasOneUse()) {
3104       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3105       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3106                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3107       APInt Mask2 = IsTrailing
3108         ? APInt::getOneBitSet(BitWidth, Num)
3109         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3110       return new ICmpInst(Cmp.getPredicate(),
3111           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3112           ConstantInt::get(Ty, Mask2));
3113     }
3114     break;
3115   }
3116 
3117   case Intrinsic::ctpop: {
3118     // popcount(A) == 0  ->  A == 0 and likewise for !=
3119     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3120     bool IsZero = C.isNullValue();
3121     if (IsZero || C == BitWidth)
3122       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3123           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3124 
3125     break;
3126   }
3127 
3128   case Intrinsic::uadd_sat: {
3129     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3130     if (C.isNullValue()) {
3131       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3132       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3133     }
3134     break;
3135   }
3136 
3137   case Intrinsic::usub_sat: {
3138     // usub.sat(a, b) == 0  ->  a <= b
3139     if (C.isNullValue()) {
3140       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3141           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3142       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3143     }
3144     break;
3145   }
3146   default:
3147     break;
3148   }
3149 
3150   return nullptr;
3151 }
3152 
3153 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3154 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3155                                                              IntrinsicInst *II,
3156                                                              const APInt &C) {
3157   if (Cmp.isEquality())
3158     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3159 
3160   Type *Ty = II->getType();
3161   unsigned BitWidth = C.getBitWidth();
3162   ICmpInst::Predicate Pred = Cmp.getPredicate();
3163   switch (II->getIntrinsicID()) {
3164   case Intrinsic::ctpop: {
3165     // (ctpop X > BitWidth - 1) --> X == -1
3166     Value *X = II->getArgOperand(0);
3167     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3168       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3169                              ConstantInt::getAllOnesValue(Ty));
3170     // (ctpop X < BitWidth) --> X != -1
3171     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3172       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3173                              ConstantInt::getAllOnesValue(Ty));
3174     break;
3175   }
3176   case Intrinsic::ctlz: {
3177     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3178     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3179       unsigned Num = C.getLimitedValue();
3180       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3181       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3182                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3183     }
3184 
3185     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3186     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3187       unsigned Num = C.getLimitedValue();
3188       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3189       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3190                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3191     }
3192     break;
3193   }
3194   case Intrinsic::cttz: {
3195     // Limit to one use to ensure we don't increase instruction count.
3196     if (!II->hasOneUse())
3197       return nullptr;
3198 
3199     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3200     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3201       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3202       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3203                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3204                              ConstantInt::getNullValue(Ty));
3205     }
3206 
3207     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3208     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3209       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3210       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3211                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3212                              ConstantInt::getNullValue(Ty));
3213     }
3214     break;
3215   }
3216   default:
3217     break;
3218   }
3219 
3220   return nullptr;
3221 }
3222 
3223 /// Handle icmp with constant (but not simple integer constant) RHS.
3224 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3225   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3226   Constant *RHSC = dyn_cast<Constant>(Op1);
3227   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3228   if (!RHSC || !LHSI)
3229     return nullptr;
3230 
3231   switch (LHSI->getOpcode()) {
3232   case Instruction::GetElementPtr:
3233     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3234     if (RHSC->isNullValue() &&
3235         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3236       return new ICmpInst(
3237           I.getPredicate(), LHSI->getOperand(0),
3238           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3239     break;
3240   case Instruction::PHI:
3241     // Only fold icmp into the PHI if the phi and icmp are in the same
3242     // block.  If in the same block, we're encouraging jump threading.  If
3243     // not, we are just pessimizing the code by making an i1 phi.
3244     if (LHSI->getParent() == I.getParent())
3245       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3246         return NV;
3247     break;
3248   case Instruction::Select: {
3249     // If either operand of the select is a constant, we can fold the
3250     // comparison into the select arms, which will cause one to be
3251     // constant folded and the select turned into a bitwise or.
3252     Value *Op1 = nullptr, *Op2 = nullptr;
3253     ConstantInt *CI = nullptr;
3254     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3255       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3256       CI = dyn_cast<ConstantInt>(Op1);
3257     }
3258     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3259       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3260       CI = dyn_cast<ConstantInt>(Op2);
3261     }
3262 
3263     // We only want to perform this transformation if it will not lead to
3264     // additional code. This is true if either both sides of the select
3265     // fold to a constant (in which case the icmp is replaced with a select
3266     // which will usually simplify) or this is the only user of the
3267     // select (in which case we are trading a select+icmp for a simpler
3268     // select+icmp) or all uses of the select can be replaced based on
3269     // dominance information ("Global cases").
3270     bool Transform = false;
3271     if (Op1 && Op2)
3272       Transform = true;
3273     else if (Op1 || Op2) {
3274       // Local case
3275       if (LHSI->hasOneUse())
3276         Transform = true;
3277       // Global cases
3278       else if (CI && !CI->isZero())
3279         // When Op1 is constant try replacing select with second operand.
3280         // Otherwise Op2 is constant and try replacing select with first
3281         // operand.
3282         Transform =
3283             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3284     }
3285     if (Transform) {
3286       if (!Op1)
3287         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3288                                  I.getName());
3289       if (!Op2)
3290         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3291                                  I.getName());
3292       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3293     }
3294     break;
3295   }
3296   case Instruction::IntToPtr:
3297     // icmp pred inttoptr(X), null -> icmp pred X, 0
3298     if (RHSC->isNullValue() &&
3299         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3300       return new ICmpInst(
3301           I.getPredicate(), LHSI->getOperand(0),
3302           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3303     break;
3304 
3305   case Instruction::Load:
3306     // Try to optimize things like "A[i] > 4" to index computations.
3307     if (GetElementPtrInst *GEP =
3308             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3309       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3310         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3311             !cast<LoadInst>(LHSI)->isVolatile())
3312           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3313             return Res;
3314     }
3315     break;
3316   }
3317 
3318   return nullptr;
3319 }
3320 
3321 /// Some comparisons can be simplified.
3322 /// In this case, we are looking for comparisons that look like
3323 /// a check for a lossy truncation.
3324 /// Folds:
3325 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3326 /// Where Mask is some pattern that produces all-ones in low bits:
3327 ///    (-1 >> y)
3328 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3329 ///   ~(-1 << y)
3330 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3331 /// The Mask can be a constant, too.
3332 /// For some predicates, the operands are commutative.
3333 /// For others, x can only be on a specific side.
3334 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3335                                           InstCombiner::BuilderTy &Builder) {
3336   ICmpInst::Predicate SrcPred;
3337   Value *X, *M, *Y;
3338   auto m_VariableMask = m_CombineOr(
3339       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3340                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3341       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3342                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3343   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3344   if (!match(&I, m_c_ICmp(SrcPred,
3345                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3346                           m_Deferred(X))))
3347     return nullptr;
3348 
3349   ICmpInst::Predicate DstPred;
3350   switch (SrcPred) {
3351   case ICmpInst::Predicate::ICMP_EQ:
3352     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3353     DstPred = ICmpInst::Predicate::ICMP_ULE;
3354     break;
3355   case ICmpInst::Predicate::ICMP_NE:
3356     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3357     DstPred = ICmpInst::Predicate::ICMP_UGT;
3358     break;
3359   case ICmpInst::Predicate::ICMP_ULT:
3360     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3361     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3362     DstPred = ICmpInst::Predicate::ICMP_UGT;
3363     break;
3364   case ICmpInst::Predicate::ICMP_UGE:
3365     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3366     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3367     DstPred = ICmpInst::Predicate::ICMP_ULE;
3368     break;
3369   case ICmpInst::Predicate::ICMP_SLT:
3370     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3371     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3372     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3373       return nullptr;
3374     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3375       return nullptr;
3376     DstPred = ICmpInst::Predicate::ICMP_SGT;
3377     break;
3378   case ICmpInst::Predicate::ICMP_SGE:
3379     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3380     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3381     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3382       return nullptr;
3383     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3384       return nullptr;
3385     DstPred = ICmpInst::Predicate::ICMP_SLE;
3386     break;
3387   case ICmpInst::Predicate::ICMP_SGT:
3388   case ICmpInst::Predicate::ICMP_SLE:
3389     return nullptr;
3390   case ICmpInst::Predicate::ICMP_UGT:
3391   case ICmpInst::Predicate::ICMP_ULE:
3392     llvm_unreachable("Instsimplify took care of commut. variant");
3393     break;
3394   default:
3395     llvm_unreachable("All possible folds are handled.");
3396   }
3397 
3398   // The mask value may be a vector constant that has undefined elements. But it
3399   // may not be safe to propagate those undefs into the new compare, so replace
3400   // those elements by copying an existing, defined, and safe scalar constant.
3401   Type *OpTy = M->getType();
3402   auto *VecC = dyn_cast<Constant>(M);
3403   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3404   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3405     Constant *SafeReplacementConstant = nullptr;
3406     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3407       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3408         SafeReplacementConstant = VecC->getAggregateElement(i);
3409         break;
3410       }
3411     }
3412     assert(SafeReplacementConstant && "Failed to find undef replacement");
3413     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3414   }
3415 
3416   return Builder.CreateICmp(DstPred, X, M);
3417 }
3418 
3419 /// Some comparisons can be simplified.
3420 /// In this case, we are looking for comparisons that look like
3421 /// a check for a lossy signed truncation.
3422 /// Folds:   (MaskedBits is a constant.)
3423 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3424 /// Into:
3425 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3426 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3427 static Value *
3428 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3429                                  InstCombiner::BuilderTy &Builder) {
3430   ICmpInst::Predicate SrcPred;
3431   Value *X;
3432   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3433   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3434   if (!match(&I, m_c_ICmp(SrcPred,
3435                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3436                                           m_APInt(C1))),
3437                           m_Deferred(X))))
3438     return nullptr;
3439 
3440   // Potential handling of non-splats: for each element:
3441   //  * if both are undef, replace with constant 0.
3442   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3443   //  * if both are not undef, and are different, bailout.
3444   //  * else, only one is undef, then pick the non-undef one.
3445 
3446   // The shift amount must be equal.
3447   if (*C0 != *C1)
3448     return nullptr;
3449   const APInt &MaskedBits = *C0;
3450   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3451 
3452   ICmpInst::Predicate DstPred;
3453   switch (SrcPred) {
3454   case ICmpInst::Predicate::ICMP_EQ:
3455     // ((%x << MaskedBits) a>> MaskedBits) == %x
3456     //   =>
3457     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3458     DstPred = ICmpInst::Predicate::ICMP_ULT;
3459     break;
3460   case ICmpInst::Predicate::ICMP_NE:
3461     // ((%x << MaskedBits) a>> MaskedBits) != %x
3462     //   =>
3463     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3464     DstPred = ICmpInst::Predicate::ICMP_UGE;
3465     break;
3466   // FIXME: are more folds possible?
3467   default:
3468     return nullptr;
3469   }
3470 
3471   auto *XType = X->getType();
3472   const unsigned XBitWidth = XType->getScalarSizeInBits();
3473   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3474   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3475 
3476   // KeptBits = bitwidth(%x) - MaskedBits
3477   const APInt KeptBits = BitWidth - MaskedBits;
3478   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3479   // ICmpCst = (1 << KeptBits)
3480   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3481   assert(ICmpCst.isPowerOf2());
3482   // AddCst = (1 << (KeptBits-1))
3483   const APInt AddCst = ICmpCst.lshr(1);
3484   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3485 
3486   // T0 = add %x, AddCst
3487   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3488   // T1 = T0 DstPred ICmpCst
3489   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3490 
3491   return T1;
3492 }
3493 
3494 // Given pattern:
3495 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3496 // we should move shifts to the same hand of 'and', i.e. rewrite as
3497 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3498 // We are only interested in opposite logical shifts here.
3499 // One of the shifts can be truncated.
3500 // If we can, we want to end up creating 'lshr' shift.
3501 static Value *
3502 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3503                                            InstCombiner::BuilderTy &Builder) {
3504   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3505       !I.getOperand(0)->hasOneUse())
3506     return nullptr;
3507 
3508   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3509 
3510   // Look for an 'and' of two logical shifts, one of which may be truncated.
3511   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3512   Instruction *XShift, *MaybeTruncation, *YShift;
3513   if (!match(
3514           I.getOperand(0),
3515           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3516                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3517                                    m_AnyLogicalShift, m_Instruction(YShift))),
3518                                m_Instruction(MaybeTruncation)))))
3519     return nullptr;
3520 
3521   // We potentially looked past 'trunc', but only when matching YShift,
3522   // therefore YShift must have the widest type.
3523   Instruction *WidestShift = YShift;
3524   // Therefore XShift must have the shallowest type.
3525   // Or they both have identical types if there was no truncation.
3526   Instruction *NarrowestShift = XShift;
3527 
3528   Type *WidestTy = WidestShift->getType();
3529   Type *NarrowestTy = NarrowestShift->getType();
3530   assert(NarrowestTy == I.getOperand(0)->getType() &&
3531          "We did not look past any shifts while matching XShift though.");
3532   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3533 
3534   // If YShift is a 'lshr', swap the shifts around.
3535   if (match(YShift, m_LShr(m_Value(), m_Value())))
3536     std::swap(XShift, YShift);
3537 
3538   // The shifts must be in opposite directions.
3539   auto XShiftOpcode = XShift->getOpcode();
3540   if (XShiftOpcode == YShift->getOpcode())
3541     return nullptr; // Do not care about same-direction shifts here.
3542 
3543   Value *X, *XShAmt, *Y, *YShAmt;
3544   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3545   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3546 
3547   // If one of the values being shifted is a constant, then we will end with
3548   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3549   // however, we will need to ensure that we won't increase instruction count.
3550   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3551     // At least one of the hands of the 'and' should be one-use shift.
3552     if (!match(I.getOperand(0),
3553                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3554       return nullptr;
3555     if (HadTrunc) {
3556       // Due to the 'trunc', we will need to widen X. For that either the old
3557       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3558       if (!MaybeTruncation->hasOneUse() &&
3559           !NarrowestShift->getOperand(1)->hasOneUse())
3560         return nullptr;
3561     }
3562   }
3563 
3564   // We have two shift amounts from two different shifts. The types of those
3565   // shift amounts may not match. If that's the case let's bailout now.
3566   if (XShAmt->getType() != YShAmt->getType())
3567     return nullptr;
3568 
3569   // As input, we have the following pattern:
3570   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3571   // We want to rewrite that as:
3572   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3573   // While we know that originally (Q+K) would not overflow
3574   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3575   // shift amounts. so it may now overflow in smaller bitwidth.
3576   // To ensure that does not happen, we need to ensure that the total maximal
3577   // shift amount is still representable in that smaller bit width.
3578   unsigned MaximalPossibleTotalShiftAmount =
3579       (WidestTy->getScalarSizeInBits() - 1) +
3580       (NarrowestTy->getScalarSizeInBits() - 1);
3581   APInt MaximalRepresentableShiftAmount =
3582       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3583   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3584     return nullptr;
3585 
3586   // Can we fold (XShAmt+YShAmt) ?
3587   auto *NewShAmt = dyn_cast_or_null<Constant>(
3588       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3589                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3590   if (!NewShAmt)
3591     return nullptr;
3592   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3593   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3594 
3595   // Is the new shift amount smaller than the bit width?
3596   // FIXME: could also rely on ConstantRange.
3597   if (!match(NewShAmt,
3598              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3599                                 APInt(WidestBitWidth, WidestBitWidth))))
3600     return nullptr;
3601 
3602   // An extra legality check is needed if we had trunc-of-lshr.
3603   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3604     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3605                     WidestShift]() {
3606       // It isn't obvious whether it's worth it to analyze non-constants here.
3607       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3608       // If *any* of these preconditions matches we can perform the fold.
3609       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3610                                     ? NewShAmt->getSplatValue()
3611                                     : NewShAmt;
3612       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3613       if (NewShAmtSplat &&
3614           (NewShAmtSplat->isNullValue() ||
3615            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3616         return true;
3617       // We consider *min* leading zeros so a single outlier
3618       // blocks the transform as opposed to allowing it.
3619       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3620         KnownBits Known = computeKnownBits(C, SQ.DL);
3621         unsigned MinLeadZero = Known.countMinLeadingZeros();
3622         // If the value being shifted has at most lowest bit set we can fold.
3623         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3624         if (MaxActiveBits <= 1)
3625           return true;
3626         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3627         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3628           return true;
3629       }
3630       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3631         KnownBits Known = computeKnownBits(C, SQ.DL);
3632         unsigned MinLeadZero = Known.countMinLeadingZeros();
3633         // If the value being shifted has at most lowest bit set we can fold.
3634         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3635         if (MaxActiveBits <= 1)
3636           return true;
3637         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3638         if (NewShAmtSplat) {
3639           APInt AdjNewShAmt =
3640               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3641           if (AdjNewShAmt.ule(MinLeadZero))
3642             return true;
3643         }
3644       }
3645       return false; // Can't tell if it's ok.
3646     };
3647     if (!CanFold())
3648       return nullptr;
3649   }
3650 
3651   // All good, we can do this fold.
3652   X = Builder.CreateZExt(X, WidestTy);
3653   Y = Builder.CreateZExt(Y, WidestTy);
3654   // The shift is the same that was for X.
3655   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3656                   ? Builder.CreateLShr(X, NewShAmt)
3657                   : Builder.CreateShl(X, NewShAmt);
3658   Value *T1 = Builder.CreateAnd(T0, Y);
3659   return Builder.CreateICmp(I.getPredicate(), T1,
3660                             Constant::getNullValue(WidestTy));
3661 }
3662 
3663 /// Fold
3664 ///   (-1 u/ x) u< y
3665 ///   ((x * y) u/ x) != y
3666 /// to
3667 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3668 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3669 /// will mean that we are looking for the opposite answer.
3670 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3671   ICmpInst::Predicate Pred;
3672   Value *X, *Y;
3673   Instruction *Mul;
3674   bool NeedNegation;
3675   // Look for: (-1 u/ x) u</u>= y
3676   if (!I.isEquality() &&
3677       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3678                          m_Value(Y)))) {
3679     Mul = nullptr;
3680 
3681     // Are we checking that overflow does not happen, or does happen?
3682     switch (Pred) {
3683     case ICmpInst::Predicate::ICMP_ULT:
3684       NeedNegation = false;
3685       break; // OK
3686     case ICmpInst::Predicate::ICMP_UGE:
3687       NeedNegation = true;
3688       break; // OK
3689     default:
3690       return nullptr; // Wrong predicate.
3691     }
3692   } else // Look for: ((x * y) u/ x) !=/== y
3693       if (I.isEquality() &&
3694           match(&I, m_c_ICmp(Pred, m_Value(Y),
3695                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3696                                                                   m_Value(X)),
3697                                                           m_Instruction(Mul)),
3698                                              m_Deferred(X)))))) {
3699     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3700   } else
3701     return nullptr;
3702 
3703   BuilderTy::InsertPointGuard Guard(Builder);
3704   // If the pattern included (x * y), we'll want to insert new instructions
3705   // right before that original multiplication so that we can replace it.
3706   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3707   if (MulHadOtherUses)
3708     Builder.SetInsertPoint(Mul);
3709 
3710   Function *F = Intrinsic::getDeclaration(
3711       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3712   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3713 
3714   // If the multiplication was used elsewhere, to ensure that we don't leave
3715   // "duplicate" instructions, replace uses of that original multiplication
3716   // with the multiplication result from the with.overflow intrinsic.
3717   if (MulHadOtherUses)
3718     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3719 
3720   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3721   if (NeedNegation) // This technically increases instruction count.
3722     Res = Builder.CreateNot(Res, "umul.not.ov");
3723 
3724   // If we replaced the mul, erase it. Do this after all uses of Builder,
3725   // as the mul is used as insertion point.
3726   if (MulHadOtherUses)
3727     eraseInstFromFunction(*Mul);
3728 
3729   return Res;
3730 }
3731 
3732 static Instruction *foldICmpXNegX(ICmpInst &I) {
3733   CmpInst::Predicate Pred;
3734   Value *X;
3735   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3736     return nullptr;
3737 
3738   if (ICmpInst::isSigned(Pred))
3739     Pred = ICmpInst::getSwappedPredicate(Pred);
3740   else if (ICmpInst::isUnsigned(Pred))
3741     Pred = ICmpInst::getSignedPredicate(Pred);
3742   // else for equality-comparisons just keep the predicate.
3743 
3744   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3745                           Constant::getNullValue(X->getType()), I.getName());
3746 }
3747 
3748 /// Try to fold icmp (binop), X or icmp X, (binop).
3749 /// TODO: A large part of this logic is duplicated in InstSimplify's
3750 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3751 /// duplication.
3752 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3753                                              const SimplifyQuery &SQ) {
3754   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3755   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3756 
3757   // Special logic for binary operators.
3758   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3759   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3760   if (!BO0 && !BO1)
3761     return nullptr;
3762 
3763   if (Instruction *NewICmp = foldICmpXNegX(I))
3764     return NewICmp;
3765 
3766   const CmpInst::Predicate Pred = I.getPredicate();
3767   Value *X;
3768 
3769   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3770   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3771   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3772       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3773     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3774   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3775   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3776       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3777     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3778 
3779   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3780   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3781     NoOp0WrapProblem =
3782         ICmpInst::isEquality(Pred) ||
3783         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3784         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3785   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3786     NoOp1WrapProblem =
3787         ICmpInst::isEquality(Pred) ||
3788         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3789         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3790 
3791   // Analyze the case when either Op0 or Op1 is an add instruction.
3792   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3793   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3794   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3795     A = BO0->getOperand(0);
3796     B = BO0->getOperand(1);
3797   }
3798   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3799     C = BO1->getOperand(0);
3800     D = BO1->getOperand(1);
3801   }
3802 
3803   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3804   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3805   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3806     return new ICmpInst(Pred, A == Op1 ? B : A,
3807                         Constant::getNullValue(Op1->getType()));
3808 
3809   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3810   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3811   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3812     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3813                         C == Op0 ? D : C);
3814 
3815   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3816   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3817       NoOp1WrapProblem) {
3818     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3819     Value *Y, *Z;
3820     if (A == C) {
3821       // C + B == C + D  ->  B == D
3822       Y = B;
3823       Z = D;
3824     } else if (A == D) {
3825       // D + B == C + D  ->  B == C
3826       Y = B;
3827       Z = C;
3828     } else if (B == C) {
3829       // A + C == C + D  ->  A == D
3830       Y = A;
3831       Z = D;
3832     } else {
3833       assert(B == D);
3834       // A + D == C + D  ->  A == C
3835       Y = A;
3836       Z = C;
3837     }
3838     return new ICmpInst(Pred, Y, Z);
3839   }
3840 
3841   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3842   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3843       match(B, m_AllOnes()))
3844     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3845 
3846   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3847   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3848       match(B, m_AllOnes()))
3849     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3850 
3851   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3852   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3853     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3854 
3855   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3856   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3857     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3858 
3859   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3860   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3861       match(D, m_AllOnes()))
3862     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3863 
3864   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3865   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3866       match(D, m_AllOnes()))
3867     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3868 
3869   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3870   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3871     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3872 
3873   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3874   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3875     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3876 
3877   // TODO: The subtraction-related identities shown below also hold, but
3878   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3879   // wouldn't happen even if they were implemented.
3880   //
3881   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3882   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3883   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3884   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3885 
3886   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3887   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3888     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3889 
3890   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3891   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3892     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3893 
3894   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3895   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3896     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3897 
3898   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3899   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3900     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3901 
3902   // if C1 has greater magnitude than C2:
3903   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3904   //  s.t. C3 = C1 - C2
3905   //
3906   // if C2 has greater magnitude than C1:
3907   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3908   //  s.t. C3 = C2 - C1
3909   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3910       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3911     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3912       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3913         const APInt &AP1 = C1->getValue();
3914         const APInt &AP2 = C2->getValue();
3915         if (AP1.isNegative() == AP2.isNegative()) {
3916           APInt AP1Abs = C1->getValue().abs();
3917           APInt AP2Abs = C2->getValue().abs();
3918           if (AP1Abs.uge(AP2Abs)) {
3919             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3920             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
3921             bool HasNSW = BO0->hasNoSignedWrap();
3922             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
3923             return new ICmpInst(Pred, NewAdd, C);
3924           } else {
3925             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3926             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
3927             bool HasNSW = BO1->hasNoSignedWrap();
3928             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
3929             return new ICmpInst(Pred, A, NewAdd);
3930           }
3931         }
3932       }
3933 
3934   // Analyze the case when either Op0 or Op1 is a sub instruction.
3935   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3936   A = nullptr;
3937   B = nullptr;
3938   C = nullptr;
3939   D = nullptr;
3940   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3941     A = BO0->getOperand(0);
3942     B = BO0->getOperand(1);
3943   }
3944   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3945     C = BO1->getOperand(0);
3946     D = BO1->getOperand(1);
3947   }
3948 
3949   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3950   if (A == Op1 && NoOp0WrapProblem)
3951     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3952   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3953   if (C == Op0 && NoOp1WrapProblem)
3954     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3955 
3956   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3957   // (A - B) u>/u<= A --> B u>/u<= A
3958   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3959     return new ICmpInst(Pred, B, A);
3960   // C u</u>= (C - D) --> C u</u>= D
3961   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3962     return new ICmpInst(Pred, C, D);
3963   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3964   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3965       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3966     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3967   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3968   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3969       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3970     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3971 
3972   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3973   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3974     return new ICmpInst(Pred, A, C);
3975 
3976   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3977   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3978     return new ICmpInst(Pred, D, B);
3979 
3980   // icmp (0-X) < cst --> x > -cst
3981   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3982     Value *X;
3983     if (match(BO0, m_Neg(m_Value(X))))
3984       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3985         if (RHSC->isNotMinSignedValue())
3986           return new ICmpInst(I.getSwappedPredicate(), X,
3987                               ConstantExpr::getNeg(RHSC));
3988   }
3989 
3990   {
3991     // Try to remove shared constant multiplier from equality comparison:
3992     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
3993     Value *X, *Y;
3994     const APInt *C;
3995     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
3996         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
3997       if (!C->countTrailingZeros() ||
3998           (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
3999           (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4000       return new ICmpInst(Pred, X, Y);
4001   }
4002 
4003   BinaryOperator *SRem = nullptr;
4004   // icmp (srem X, Y), Y
4005   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4006     SRem = BO0;
4007   // icmp Y, (srem X, Y)
4008   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4009            Op0 == BO1->getOperand(1))
4010     SRem = BO1;
4011   if (SRem) {
4012     // We don't check hasOneUse to avoid increasing register pressure because
4013     // the value we use is the same value this instruction was already using.
4014     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4015     default:
4016       break;
4017     case ICmpInst::ICMP_EQ:
4018       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4019     case ICmpInst::ICMP_NE:
4020       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4021     case ICmpInst::ICMP_SGT:
4022     case ICmpInst::ICMP_SGE:
4023       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4024                           Constant::getAllOnesValue(SRem->getType()));
4025     case ICmpInst::ICMP_SLT:
4026     case ICmpInst::ICMP_SLE:
4027       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4028                           Constant::getNullValue(SRem->getType()));
4029     }
4030   }
4031 
4032   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4033       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4034     switch (BO0->getOpcode()) {
4035     default:
4036       break;
4037     case Instruction::Add:
4038     case Instruction::Sub:
4039     case Instruction::Xor: {
4040       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4041         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4042 
4043       const APInt *C;
4044       if (match(BO0->getOperand(1), m_APInt(C))) {
4045         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4046         if (C->isSignMask()) {
4047           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4048           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4049         }
4050 
4051         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4052         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4053           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4054           NewPred = I.getSwappedPredicate(NewPred);
4055           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4056         }
4057       }
4058       break;
4059     }
4060     case Instruction::Mul: {
4061       if (!I.isEquality())
4062         break;
4063 
4064       const APInt *C;
4065       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4066           !C->isOneValue()) {
4067         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4068         // Mask = -1 >> count-trailing-zeros(C).
4069         if (unsigned TZs = C->countTrailingZeros()) {
4070           Constant *Mask = ConstantInt::get(
4071               BO0->getType(),
4072               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4073           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4074           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4075           return new ICmpInst(Pred, And1, And2);
4076         }
4077       }
4078       break;
4079     }
4080     case Instruction::UDiv:
4081     case Instruction::LShr:
4082       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4083         break;
4084       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4085 
4086     case Instruction::SDiv:
4087       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4088         break;
4089       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4090 
4091     case Instruction::AShr:
4092       if (!BO0->isExact() || !BO1->isExact())
4093         break;
4094       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4095 
4096     case Instruction::Shl: {
4097       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4098       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4099       if (!NUW && !NSW)
4100         break;
4101       if (!NSW && I.isSigned())
4102         break;
4103       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4104     }
4105     }
4106   }
4107 
4108   if (BO0) {
4109     // Transform  A & (L - 1) `ult` L --> L != 0
4110     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4111     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4112 
4113     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4114       auto *Zero = Constant::getNullValue(BO0->getType());
4115       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4116     }
4117   }
4118 
4119   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4120     return replaceInstUsesWith(I, V);
4121 
4122   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4123     return replaceInstUsesWith(I, V);
4124 
4125   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4126     return replaceInstUsesWith(I, V);
4127 
4128   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4129     return replaceInstUsesWith(I, V);
4130 
4131   return nullptr;
4132 }
4133 
4134 /// Fold icmp Pred min|max(X, Y), X.
4135 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4136   ICmpInst::Predicate Pred = Cmp.getPredicate();
4137   Value *Op0 = Cmp.getOperand(0);
4138   Value *X = Cmp.getOperand(1);
4139 
4140   // Canonicalize minimum or maximum operand to LHS of the icmp.
4141   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4142       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4143       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4144       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4145     std::swap(Op0, X);
4146     Pred = Cmp.getSwappedPredicate();
4147   }
4148 
4149   Value *Y;
4150   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4151     // smin(X, Y)  == X --> X s<= Y
4152     // smin(X, Y) s>= X --> X s<= Y
4153     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4154       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4155 
4156     // smin(X, Y) != X --> X s> Y
4157     // smin(X, Y) s< X --> X s> Y
4158     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4159       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4160 
4161     // These cases should be handled in InstSimplify:
4162     // smin(X, Y) s<= X --> true
4163     // smin(X, Y) s> X --> false
4164     return nullptr;
4165   }
4166 
4167   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4168     // smax(X, Y)  == X --> X s>= Y
4169     // smax(X, Y) s<= X --> X s>= Y
4170     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4171       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4172 
4173     // smax(X, Y) != X --> X s< Y
4174     // smax(X, Y) s> X --> X s< Y
4175     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4176       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4177 
4178     // These cases should be handled in InstSimplify:
4179     // smax(X, Y) s>= X --> true
4180     // smax(X, Y) s< X --> false
4181     return nullptr;
4182   }
4183 
4184   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4185     // umin(X, Y)  == X --> X u<= Y
4186     // umin(X, Y) u>= X --> X u<= Y
4187     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4188       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4189 
4190     // umin(X, Y) != X --> X u> Y
4191     // umin(X, Y) u< X --> X u> Y
4192     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4193       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4194 
4195     // These cases should be handled in InstSimplify:
4196     // umin(X, Y) u<= X --> true
4197     // umin(X, Y) u> X --> false
4198     return nullptr;
4199   }
4200 
4201   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4202     // umax(X, Y)  == X --> X u>= Y
4203     // umax(X, Y) u<= X --> X u>= Y
4204     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4205       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4206 
4207     // umax(X, Y) != X --> X u< Y
4208     // umax(X, Y) u> X --> X u< Y
4209     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4210       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4211 
4212     // These cases should be handled in InstSimplify:
4213     // umax(X, Y) u>= X --> true
4214     // umax(X, Y) u< X --> false
4215     return nullptr;
4216   }
4217 
4218   return nullptr;
4219 }
4220 
4221 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4222   if (!I.isEquality())
4223     return nullptr;
4224 
4225   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4226   const CmpInst::Predicate Pred = I.getPredicate();
4227   Value *A, *B, *C, *D;
4228   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4229     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4230       Value *OtherVal = A == Op1 ? B : A;
4231       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4232     }
4233 
4234     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4235       // A^c1 == C^c2 --> A == C^(c1^c2)
4236       ConstantInt *C1, *C2;
4237       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4238           Op1->hasOneUse()) {
4239         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4240         Value *Xor = Builder.CreateXor(C, NC);
4241         return new ICmpInst(Pred, A, Xor);
4242       }
4243 
4244       // A^B == A^D -> B == D
4245       if (A == C)
4246         return new ICmpInst(Pred, B, D);
4247       if (A == D)
4248         return new ICmpInst(Pred, B, C);
4249       if (B == C)
4250         return new ICmpInst(Pred, A, D);
4251       if (B == D)
4252         return new ICmpInst(Pred, A, C);
4253     }
4254   }
4255 
4256   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4257     // A == (A^B)  ->  B == 0
4258     Value *OtherVal = A == Op0 ? B : A;
4259     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4260   }
4261 
4262   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4263   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4264       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4265     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4266 
4267     if (A == C) {
4268       X = B;
4269       Y = D;
4270       Z = A;
4271     } else if (A == D) {
4272       X = B;
4273       Y = C;
4274       Z = A;
4275     } else if (B == C) {
4276       X = A;
4277       Y = D;
4278       Z = B;
4279     } else if (B == D) {
4280       X = A;
4281       Y = C;
4282       Z = B;
4283     }
4284 
4285     if (X) { // Build (X^Y) & Z
4286       Op1 = Builder.CreateXor(X, Y);
4287       Op1 = Builder.CreateAnd(Op1, Z);
4288       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4289     }
4290   }
4291 
4292   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4293   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4294   ConstantInt *Cst1;
4295   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4296        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4297       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4298        match(Op1, m_ZExt(m_Value(A))))) {
4299     APInt Pow2 = Cst1->getValue() + 1;
4300     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4301         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4302       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4303   }
4304 
4305   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4306   // For lshr and ashr pairs.
4307   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4308        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4309       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4310        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4311     unsigned TypeBits = Cst1->getBitWidth();
4312     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4313     if (ShAmt < TypeBits && ShAmt != 0) {
4314       ICmpInst::Predicate NewPred =
4315           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4316       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4317       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4318       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4319     }
4320   }
4321 
4322   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4323   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4324       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4325     unsigned TypeBits = Cst1->getBitWidth();
4326     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4327     if (ShAmt < TypeBits && ShAmt != 0) {
4328       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4329       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4330       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4331                                       I.getName() + ".mask");
4332       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4333     }
4334   }
4335 
4336   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4337   // "icmp (and X, mask), cst"
4338   uint64_t ShAmt = 0;
4339   if (Op0->hasOneUse() &&
4340       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4341       match(Op1, m_ConstantInt(Cst1)) &&
4342       // Only do this when A has multiple uses.  This is most important to do
4343       // when it exposes other optimizations.
4344       !A->hasOneUse()) {
4345     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4346 
4347     if (ShAmt < ASize) {
4348       APInt MaskV =
4349           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4350       MaskV <<= ShAmt;
4351 
4352       APInt CmpV = Cst1->getValue().zext(ASize);
4353       CmpV <<= ShAmt;
4354 
4355       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4356       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4357     }
4358   }
4359 
4360   // If both operands are byte-swapped or bit-reversed, just compare the
4361   // original values.
4362   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4363   // and handle more intrinsics.
4364   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4365       (match(Op0, m_BitReverse(m_Value(A))) &&
4366        match(Op1, m_BitReverse(m_Value(B)))))
4367     return new ICmpInst(Pred, A, B);
4368 
4369   // Canonicalize checking for a power-of-2-or-zero value:
4370   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4371   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4372   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4373                                    m_Deferred(A)))) ||
4374       !match(Op1, m_ZeroInt()))
4375     A = nullptr;
4376 
4377   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4378   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4379   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4380     A = Op1;
4381   else if (match(Op1,
4382                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4383     A = Op0;
4384 
4385   if (A) {
4386     Type *Ty = A->getType();
4387     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4388     return Pred == ICmpInst::ICMP_EQ
4389         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4390         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4391   }
4392 
4393   return nullptr;
4394 }
4395 
4396 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4397                                            InstCombiner::BuilderTy &Builder) {
4398   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4399   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4400   Value *X;
4401   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4402     return nullptr;
4403 
4404   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4405   bool IsSignedCmp = ICmp.isSigned();
4406   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4407     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4408     // and the other is a zext), then we can't handle this.
4409     // TODO: This is too strict. We can handle some predicates (equality?).
4410     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4411       return nullptr;
4412 
4413     // Not an extension from the same type?
4414     Value *Y = CastOp1->getOperand(0);
4415     Type *XTy = X->getType(), *YTy = Y->getType();
4416     if (XTy != YTy) {
4417       // One of the casts must have one use because we are creating a new cast.
4418       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4419         return nullptr;
4420       // Extend the narrower operand to the type of the wider operand.
4421       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4422         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4423       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4424         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4425       else
4426         return nullptr;
4427     }
4428 
4429     // (zext X) == (zext Y) --> X == Y
4430     // (sext X) == (sext Y) --> X == Y
4431     if (ICmp.isEquality())
4432       return new ICmpInst(ICmp.getPredicate(), X, Y);
4433 
4434     // A signed comparison of sign extended values simplifies into a
4435     // signed comparison.
4436     if (IsSignedCmp && IsSignedExt)
4437       return new ICmpInst(ICmp.getPredicate(), X, Y);
4438 
4439     // The other three cases all fold into an unsigned comparison.
4440     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4441   }
4442 
4443   // Below here, we are only folding a compare with constant.
4444   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4445   if (!C)
4446     return nullptr;
4447 
4448   // Compute the constant that would happen if we truncated to SrcTy then
4449   // re-extended to DestTy.
4450   Type *SrcTy = CastOp0->getSrcTy();
4451   Type *DestTy = CastOp0->getDestTy();
4452   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4453   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4454 
4455   // If the re-extended constant didn't change...
4456   if (Res2 == C) {
4457     if (ICmp.isEquality())
4458       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4459 
4460     // A signed comparison of sign extended values simplifies into a
4461     // signed comparison.
4462     if (IsSignedExt && IsSignedCmp)
4463       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4464 
4465     // The other three cases all fold into an unsigned comparison.
4466     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4467   }
4468 
4469   // The re-extended constant changed, partly changed (in the case of a vector),
4470   // or could not be determined to be equal (in the case of a constant
4471   // expression), so the constant cannot be represented in the shorter type.
4472   // All the cases that fold to true or false will have already been handled
4473   // by SimplifyICmpInst, so only deal with the tricky case.
4474   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4475     return nullptr;
4476 
4477   // Is source op positive?
4478   // icmp ult (sext X), C --> icmp sgt X, -1
4479   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4480     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4481 
4482   // Is source op negative?
4483   // icmp ugt (sext X), C --> icmp slt X, 0
4484   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4485   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4486 }
4487 
4488 /// Handle icmp (cast x), (cast or constant).
4489 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4490   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4491   if (!CastOp0)
4492     return nullptr;
4493   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4494     return nullptr;
4495 
4496   Value *Op0Src = CastOp0->getOperand(0);
4497   Type *SrcTy = CastOp0->getSrcTy();
4498   Type *DestTy = CastOp0->getDestTy();
4499 
4500   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4501   // integer type is the same size as the pointer type.
4502   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4503     if (isa<VectorType>(SrcTy)) {
4504       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4505       DestTy = cast<VectorType>(DestTy)->getElementType();
4506     }
4507     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4508   };
4509   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4510       CompatibleSizes(SrcTy, DestTy)) {
4511     Value *NewOp1 = nullptr;
4512     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4513       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4514       if (PtrSrc->getType()->getPointerAddressSpace() ==
4515           Op0Src->getType()->getPointerAddressSpace()) {
4516         NewOp1 = PtrToIntOp1->getOperand(0);
4517         // If the pointer types don't match, insert a bitcast.
4518         if (Op0Src->getType() != NewOp1->getType())
4519           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4520       }
4521     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4522       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4523     }
4524 
4525     if (NewOp1)
4526       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4527   }
4528 
4529   return foldICmpWithZextOrSext(ICmp, Builder);
4530 }
4531 
4532 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4533   switch (BinaryOp) {
4534     default:
4535       llvm_unreachable("Unsupported binary op");
4536     case Instruction::Add:
4537     case Instruction::Sub:
4538       return match(RHS, m_Zero());
4539     case Instruction::Mul:
4540       return match(RHS, m_One());
4541   }
4542 }
4543 
4544 OverflowResult
4545 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4546                                   bool IsSigned, Value *LHS, Value *RHS,
4547                                   Instruction *CxtI) const {
4548   switch (BinaryOp) {
4549     default:
4550       llvm_unreachable("Unsupported binary op");
4551     case Instruction::Add:
4552       if (IsSigned)
4553         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4554       else
4555         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4556     case Instruction::Sub:
4557       if (IsSigned)
4558         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4559       else
4560         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4561     case Instruction::Mul:
4562       if (IsSigned)
4563         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4564       else
4565         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4566   }
4567 }
4568 
4569 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4570                                              bool IsSigned, Value *LHS,
4571                                              Value *RHS, Instruction &OrigI,
4572                                              Value *&Result,
4573                                              Constant *&Overflow) {
4574   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4575     std::swap(LHS, RHS);
4576 
4577   // If the overflow check was an add followed by a compare, the insertion point
4578   // may be pointing to the compare.  We want to insert the new instructions
4579   // before the add in case there are uses of the add between the add and the
4580   // compare.
4581   Builder.SetInsertPoint(&OrigI);
4582 
4583   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4584   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4585     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4586 
4587   if (isNeutralValue(BinaryOp, RHS)) {
4588     Result = LHS;
4589     Overflow = ConstantInt::getFalse(OverflowTy);
4590     return true;
4591   }
4592 
4593   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4594     case OverflowResult::MayOverflow:
4595       return false;
4596     case OverflowResult::AlwaysOverflowsLow:
4597     case OverflowResult::AlwaysOverflowsHigh:
4598       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4599       Result->takeName(&OrigI);
4600       Overflow = ConstantInt::getTrue(OverflowTy);
4601       return true;
4602     case OverflowResult::NeverOverflows:
4603       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4604       Result->takeName(&OrigI);
4605       Overflow = ConstantInt::getFalse(OverflowTy);
4606       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4607         if (IsSigned)
4608           Inst->setHasNoSignedWrap();
4609         else
4610           Inst->setHasNoUnsignedWrap();
4611       }
4612       return true;
4613   }
4614 
4615   llvm_unreachable("Unexpected overflow result");
4616 }
4617 
4618 /// Recognize and process idiom involving test for multiplication
4619 /// overflow.
4620 ///
4621 /// The caller has matched a pattern of the form:
4622 ///   I = cmp u (mul(zext A, zext B), V
4623 /// The function checks if this is a test for overflow and if so replaces
4624 /// multiplication with call to 'mul.with.overflow' intrinsic.
4625 ///
4626 /// \param I Compare instruction.
4627 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4628 ///               the compare instruction.  Must be of integer type.
4629 /// \param OtherVal The other argument of compare instruction.
4630 /// \returns Instruction which must replace the compare instruction, NULL if no
4631 ///          replacement required.
4632 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4633                                          Value *OtherVal,
4634                                          InstCombinerImpl &IC) {
4635   // Don't bother doing this transformation for pointers, don't do it for
4636   // vectors.
4637   if (!isa<IntegerType>(MulVal->getType()))
4638     return nullptr;
4639 
4640   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4641   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4642   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4643   if (!MulInstr)
4644     return nullptr;
4645   assert(MulInstr->getOpcode() == Instruction::Mul);
4646 
4647   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4648        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4649   assert(LHS->getOpcode() == Instruction::ZExt);
4650   assert(RHS->getOpcode() == Instruction::ZExt);
4651   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4652 
4653   // Calculate type and width of the result produced by mul.with.overflow.
4654   Type *TyA = A->getType(), *TyB = B->getType();
4655   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4656            WidthB = TyB->getPrimitiveSizeInBits();
4657   unsigned MulWidth;
4658   Type *MulType;
4659   if (WidthB > WidthA) {
4660     MulWidth = WidthB;
4661     MulType = TyB;
4662   } else {
4663     MulWidth = WidthA;
4664     MulType = TyA;
4665   }
4666 
4667   // In order to replace the original mul with a narrower mul.with.overflow,
4668   // all uses must ignore upper bits of the product.  The number of used low
4669   // bits must be not greater than the width of mul.with.overflow.
4670   if (MulVal->hasNUsesOrMore(2))
4671     for (User *U : MulVal->users()) {
4672       if (U == &I)
4673         continue;
4674       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4675         // Check if truncation ignores bits above MulWidth.
4676         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4677         if (TruncWidth > MulWidth)
4678           return nullptr;
4679       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4680         // Check if AND ignores bits above MulWidth.
4681         if (BO->getOpcode() != Instruction::And)
4682           return nullptr;
4683         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4684           const APInt &CVal = CI->getValue();
4685           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4686             return nullptr;
4687         } else {
4688           // In this case we could have the operand of the binary operation
4689           // being defined in another block, and performing the replacement
4690           // could break the dominance relation.
4691           return nullptr;
4692         }
4693       } else {
4694         // Other uses prohibit this transformation.
4695         return nullptr;
4696       }
4697     }
4698 
4699   // Recognize patterns
4700   switch (I.getPredicate()) {
4701   case ICmpInst::ICMP_EQ:
4702   case ICmpInst::ICMP_NE:
4703     // Recognize pattern:
4704     //   mulval = mul(zext A, zext B)
4705     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4706     ConstantInt *CI;
4707     Value *ValToMask;
4708     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4709       if (ValToMask != MulVal)
4710         return nullptr;
4711       const APInt &CVal = CI->getValue() + 1;
4712       if (CVal.isPowerOf2()) {
4713         unsigned MaskWidth = CVal.logBase2();
4714         if (MaskWidth == MulWidth)
4715           break; // Recognized
4716       }
4717     }
4718     return nullptr;
4719 
4720   case ICmpInst::ICMP_UGT:
4721     // Recognize pattern:
4722     //   mulval = mul(zext A, zext B)
4723     //   cmp ugt mulval, max
4724     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4725       APInt MaxVal = APInt::getMaxValue(MulWidth);
4726       MaxVal = MaxVal.zext(CI->getBitWidth());
4727       if (MaxVal.eq(CI->getValue()))
4728         break; // Recognized
4729     }
4730     return nullptr;
4731 
4732   case ICmpInst::ICMP_UGE:
4733     // Recognize pattern:
4734     //   mulval = mul(zext A, zext B)
4735     //   cmp uge mulval, max+1
4736     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4737       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4738       if (MaxVal.eq(CI->getValue()))
4739         break; // Recognized
4740     }
4741     return nullptr;
4742 
4743   case ICmpInst::ICMP_ULE:
4744     // Recognize pattern:
4745     //   mulval = mul(zext A, zext B)
4746     //   cmp ule mulval, max
4747     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4748       APInt MaxVal = APInt::getMaxValue(MulWidth);
4749       MaxVal = MaxVal.zext(CI->getBitWidth());
4750       if (MaxVal.eq(CI->getValue()))
4751         break; // Recognized
4752     }
4753     return nullptr;
4754 
4755   case ICmpInst::ICMP_ULT:
4756     // Recognize pattern:
4757     //   mulval = mul(zext A, zext B)
4758     //   cmp ule mulval, max + 1
4759     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4760       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4761       if (MaxVal.eq(CI->getValue()))
4762         break; // Recognized
4763     }
4764     return nullptr;
4765 
4766   default:
4767     return nullptr;
4768   }
4769 
4770   InstCombiner::BuilderTy &Builder = IC.Builder;
4771   Builder.SetInsertPoint(MulInstr);
4772 
4773   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4774   Value *MulA = A, *MulB = B;
4775   if (WidthA < MulWidth)
4776     MulA = Builder.CreateZExt(A, MulType);
4777   if (WidthB < MulWidth)
4778     MulB = Builder.CreateZExt(B, MulType);
4779   Function *F = Intrinsic::getDeclaration(
4780       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4781   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4782   IC.addToWorklist(MulInstr);
4783 
4784   // If there are uses of mul result other than the comparison, we know that
4785   // they are truncation or binary AND. Change them to use result of
4786   // mul.with.overflow and adjust properly mask/size.
4787   if (MulVal->hasNUsesOrMore(2)) {
4788     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4789     for (User *U : make_early_inc_range(MulVal->users())) {
4790       if (U == &I || U == OtherVal)
4791         continue;
4792       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4793         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4794           IC.replaceInstUsesWith(*TI, Mul);
4795         else
4796           TI->setOperand(0, Mul);
4797       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4798         assert(BO->getOpcode() == Instruction::And);
4799         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4800         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4801         APInt ShortMask = CI->getValue().trunc(MulWidth);
4802         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4803         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4804         IC.replaceInstUsesWith(*BO, Zext);
4805       } else {
4806         llvm_unreachable("Unexpected Binary operation");
4807       }
4808       IC.addToWorklist(cast<Instruction>(U));
4809     }
4810   }
4811   if (isa<Instruction>(OtherVal))
4812     IC.addToWorklist(cast<Instruction>(OtherVal));
4813 
4814   // The original icmp gets replaced with the overflow value, maybe inverted
4815   // depending on predicate.
4816   bool Inverse = false;
4817   switch (I.getPredicate()) {
4818   case ICmpInst::ICMP_NE:
4819     break;
4820   case ICmpInst::ICMP_EQ:
4821     Inverse = true;
4822     break;
4823   case ICmpInst::ICMP_UGT:
4824   case ICmpInst::ICMP_UGE:
4825     if (I.getOperand(0) == MulVal)
4826       break;
4827     Inverse = true;
4828     break;
4829   case ICmpInst::ICMP_ULT:
4830   case ICmpInst::ICMP_ULE:
4831     if (I.getOperand(1) == MulVal)
4832       break;
4833     Inverse = true;
4834     break;
4835   default:
4836     llvm_unreachable("Unexpected predicate");
4837   }
4838   if (Inverse) {
4839     Value *Res = Builder.CreateExtractValue(Call, 1);
4840     return BinaryOperator::CreateNot(Res);
4841   }
4842 
4843   return ExtractValueInst::Create(Call, 1);
4844 }
4845 
4846 /// When performing a comparison against a constant, it is possible that not all
4847 /// the bits in the LHS are demanded. This helper method computes the mask that
4848 /// IS demanded.
4849 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4850   const APInt *RHS;
4851   if (!match(I.getOperand(1), m_APInt(RHS)))
4852     return APInt::getAllOnesValue(BitWidth);
4853 
4854   // If this is a normal comparison, it demands all bits. If it is a sign bit
4855   // comparison, it only demands the sign bit.
4856   bool UnusedBit;
4857   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4858     return APInt::getSignMask(BitWidth);
4859 
4860   switch (I.getPredicate()) {
4861   // For a UGT comparison, we don't care about any bits that
4862   // correspond to the trailing ones of the comparand.  The value of these
4863   // bits doesn't impact the outcome of the comparison, because any value
4864   // greater than the RHS must differ in a bit higher than these due to carry.
4865   case ICmpInst::ICMP_UGT:
4866     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4867 
4868   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4869   // Any value less than the RHS must differ in a higher bit because of carries.
4870   case ICmpInst::ICMP_ULT:
4871     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4872 
4873   default:
4874     return APInt::getAllOnesValue(BitWidth);
4875   }
4876 }
4877 
4878 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4879 /// should be swapped.
4880 /// The decision is based on how many times these two operands are reused
4881 /// as subtract operands and their positions in those instructions.
4882 /// The rationale is that several architectures use the same instruction for
4883 /// both subtract and cmp. Thus, it is better if the order of those operands
4884 /// match.
4885 /// \return true if Op0 and Op1 should be swapped.
4886 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4887   // Filter out pointer values as those cannot appear directly in subtract.
4888   // FIXME: we may want to go through inttoptrs or bitcasts.
4889   if (Op0->getType()->isPointerTy())
4890     return false;
4891   // If a subtract already has the same operands as a compare, swapping would be
4892   // bad. If a subtract has the same operands as a compare but in reverse order,
4893   // then swapping is good.
4894   int GoodToSwap = 0;
4895   for (const User *U : Op0->users()) {
4896     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4897       GoodToSwap++;
4898     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4899       GoodToSwap--;
4900   }
4901   return GoodToSwap > 0;
4902 }
4903 
4904 /// Check that one use is in the same block as the definition and all
4905 /// other uses are in blocks dominated by a given block.
4906 ///
4907 /// \param DI Definition
4908 /// \param UI Use
4909 /// \param DB Block that must dominate all uses of \p DI outside
4910 ///           the parent block
4911 /// \return true when \p UI is the only use of \p DI in the parent block
4912 /// and all other uses of \p DI are in blocks dominated by \p DB.
4913 ///
4914 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
4915                                         const Instruction *UI,
4916                                         const BasicBlock *DB) const {
4917   assert(DI && UI && "Instruction not defined\n");
4918   // Ignore incomplete definitions.
4919   if (!DI->getParent())
4920     return false;
4921   // DI and UI must be in the same block.
4922   if (DI->getParent() != UI->getParent())
4923     return false;
4924   // Protect from self-referencing blocks.
4925   if (DI->getParent() == DB)
4926     return false;
4927   for (const User *U : DI->users()) {
4928     auto *Usr = cast<Instruction>(U);
4929     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4930       return false;
4931   }
4932   return true;
4933 }
4934 
4935 /// Return true when the instruction sequence within a block is select-cmp-br.
4936 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4937   const BasicBlock *BB = SI->getParent();
4938   if (!BB)
4939     return false;
4940   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4941   if (!BI || BI->getNumSuccessors() != 2)
4942     return false;
4943   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4944   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4945     return false;
4946   return true;
4947 }
4948 
4949 /// True when a select result is replaced by one of its operands
4950 /// in select-icmp sequence. This will eventually result in the elimination
4951 /// of the select.
4952 ///
4953 /// \param SI    Select instruction
4954 /// \param Icmp  Compare instruction
4955 /// \param SIOpd Operand that replaces the select
4956 ///
4957 /// Notes:
4958 /// - The replacement is global and requires dominator information
4959 /// - The caller is responsible for the actual replacement
4960 ///
4961 /// Example:
4962 ///
4963 /// entry:
4964 ///  %4 = select i1 %3, %C* %0, %C* null
4965 ///  %5 = icmp eq %C* %4, null
4966 ///  br i1 %5, label %9, label %7
4967 ///  ...
4968 ///  ; <label>:7                                       ; preds = %entry
4969 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4970 ///  ...
4971 ///
4972 /// can be transformed to
4973 ///
4974 ///  %5 = icmp eq %C* %0, null
4975 ///  %6 = select i1 %3, i1 %5, i1 true
4976 ///  br i1 %6, label %9, label %7
4977 ///  ...
4978 ///  ; <label>:7                                       ; preds = %entry
4979 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4980 ///
4981 /// Similar when the first operand of the select is a constant or/and
4982 /// the compare is for not equal rather than equal.
4983 ///
4984 /// NOTE: The function is only called when the select and compare constants
4985 /// are equal, the optimization can work only for EQ predicates. This is not a
4986 /// major restriction since a NE compare should be 'normalized' to an equal
4987 /// compare, which usually happens in the combiner and test case
4988 /// select-cmp-br.ll checks for it.
4989 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
4990                                                  const ICmpInst *Icmp,
4991                                                  const unsigned SIOpd) {
4992   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4993   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4994     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4995     // The check for the single predecessor is not the best that can be
4996     // done. But it protects efficiently against cases like when SI's
4997     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4998     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4999     // replaced can be reached on either path. So the uniqueness check
5000     // guarantees that the path all uses of SI (outside SI's parent) are on
5001     // is disjoint from all other paths out of SI. But that information
5002     // is more expensive to compute, and the trade-off here is in favor
5003     // of compile-time. It should also be noticed that we check for a single
5004     // predecessor and not only uniqueness. This to handle the situation when
5005     // Succ and Succ1 points to the same basic block.
5006     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5007       NumSel++;
5008       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5009       return true;
5010     }
5011   }
5012   return false;
5013 }
5014 
5015 /// Try to fold the comparison based on range information we can get by checking
5016 /// whether bits are known to be zero or one in the inputs.
5017 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5018   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5019   Type *Ty = Op0->getType();
5020   ICmpInst::Predicate Pred = I.getPredicate();
5021 
5022   // Get scalar or pointer size.
5023   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5024                           ? Ty->getScalarSizeInBits()
5025                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5026 
5027   if (!BitWidth)
5028     return nullptr;
5029 
5030   KnownBits Op0Known(BitWidth);
5031   KnownBits Op1Known(BitWidth);
5032 
5033   if (SimplifyDemandedBits(&I, 0,
5034                            getDemandedBitsLHSMask(I, BitWidth),
5035                            Op0Known, 0))
5036     return &I;
5037 
5038   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5039                            Op1Known, 0))
5040     return &I;
5041 
5042   // Given the known and unknown bits, compute a range that the LHS could be
5043   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5044   // EQ and NE we use unsigned values.
5045   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5046   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5047   if (I.isSigned()) {
5048     Op0Min = Op0Known.getSignedMinValue();
5049     Op0Max = Op0Known.getSignedMaxValue();
5050     Op1Min = Op1Known.getSignedMinValue();
5051     Op1Max = Op1Known.getSignedMaxValue();
5052   } else {
5053     Op0Min = Op0Known.getMinValue();
5054     Op0Max = Op0Known.getMaxValue();
5055     Op1Min = Op1Known.getMinValue();
5056     Op1Max = Op1Known.getMaxValue();
5057   }
5058 
5059   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5060   // out that the LHS or RHS is a constant. Constant fold this now, so that
5061   // code below can assume that Min != Max.
5062   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5063     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5064   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5065     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5066 
5067   // Based on the range information we know about the LHS, see if we can
5068   // simplify this comparison.  For example, (x&4) < 8 is always true.
5069   switch (Pred) {
5070   default:
5071     llvm_unreachable("Unknown icmp opcode!");
5072   case ICmpInst::ICMP_EQ:
5073   case ICmpInst::ICMP_NE: {
5074     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5075       return replaceInstUsesWith(
5076           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5077 
5078     // If all bits are known zero except for one, then we know at most one bit
5079     // is set. If the comparison is against zero, then this is a check to see if
5080     // *that* bit is set.
5081     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5082     if (Op1Known.isZero()) {
5083       // If the LHS is an AND with the same constant, look through it.
5084       Value *LHS = nullptr;
5085       const APInt *LHSC;
5086       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5087           *LHSC != Op0KnownZeroInverted)
5088         LHS = Op0;
5089 
5090       Value *X;
5091       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5092         APInt ValToCheck = Op0KnownZeroInverted;
5093         Type *XTy = X->getType();
5094         if (ValToCheck.isPowerOf2()) {
5095           // ((1 << X) & 8) == 0 -> X != 3
5096           // ((1 << X) & 8) != 0 -> X == 3
5097           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5098           auto NewPred = ICmpInst::getInversePredicate(Pred);
5099           return new ICmpInst(NewPred, X, CmpC);
5100         } else if ((++ValToCheck).isPowerOf2()) {
5101           // ((1 << X) & 7) == 0 -> X >= 3
5102           // ((1 << X) & 7) != 0 -> X  < 3
5103           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5104           auto NewPred =
5105               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5106           return new ICmpInst(NewPred, X, CmpC);
5107         }
5108       }
5109 
5110       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5111       const APInt *CI;
5112       if (Op0KnownZeroInverted.isOneValue() &&
5113           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5114         // ((8 >>u X) & 1) == 0 -> X != 3
5115         // ((8 >>u X) & 1) != 0 -> X == 3
5116         unsigned CmpVal = CI->countTrailingZeros();
5117         auto NewPred = ICmpInst::getInversePredicate(Pred);
5118         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5119       }
5120     }
5121     break;
5122   }
5123   case ICmpInst::ICMP_ULT: {
5124     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5125       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5126     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5127       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5128     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5129       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5130 
5131     const APInt *CmpC;
5132     if (match(Op1, m_APInt(CmpC))) {
5133       // A <u C -> A == C-1 if min(A)+1 == C
5134       if (*CmpC == Op0Min + 1)
5135         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5136                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5137       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5138       // exceeds the log2 of C.
5139       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5140         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5141                             Constant::getNullValue(Op1->getType()));
5142     }
5143     break;
5144   }
5145   case ICmpInst::ICMP_UGT: {
5146     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5147       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5148     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5149       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5150     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5151       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5152 
5153     const APInt *CmpC;
5154     if (match(Op1, m_APInt(CmpC))) {
5155       // A >u C -> A == C+1 if max(a)-1 == C
5156       if (*CmpC == Op0Max - 1)
5157         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5158                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5159       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5160       // exceeds the log2 of C.
5161       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5162         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5163                             Constant::getNullValue(Op1->getType()));
5164     }
5165     break;
5166   }
5167   case ICmpInst::ICMP_SLT: {
5168     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5169       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5170     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5171       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5172     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5173       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5174     const APInt *CmpC;
5175     if (match(Op1, m_APInt(CmpC))) {
5176       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5177         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5178                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5179     }
5180     break;
5181   }
5182   case ICmpInst::ICMP_SGT: {
5183     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5184       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5185     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5186       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5187     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5188       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5189     const APInt *CmpC;
5190     if (match(Op1, m_APInt(CmpC))) {
5191       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5192         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5193                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5194     }
5195     break;
5196   }
5197   case ICmpInst::ICMP_SGE:
5198     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5199     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5200       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5201     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5202       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5203     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5204       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5205     break;
5206   case ICmpInst::ICMP_SLE:
5207     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5208     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5209       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5210     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5211       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5212     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5213       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5214     break;
5215   case ICmpInst::ICMP_UGE:
5216     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5217     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5218       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5219     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5220       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5221     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5222       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5223     break;
5224   case ICmpInst::ICMP_ULE:
5225     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5226     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5227       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5228     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5229       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5230     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5231       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5232     break;
5233   }
5234 
5235   // Turn a signed comparison into an unsigned one if both operands are known to
5236   // have the same sign.
5237   if (I.isSigned() &&
5238       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5239        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5240     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5241 
5242   return nullptr;
5243 }
5244 
5245 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5246 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5247                                                        Constant *C) {
5248   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5249          "Only for relational integer predicates.");
5250 
5251   Type *Type = C->getType();
5252   bool IsSigned = ICmpInst::isSigned(Pred);
5253 
5254   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5255   bool WillIncrement =
5256       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5257 
5258   // Check if the constant operand can be safely incremented/decremented
5259   // without overflowing/underflowing.
5260   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5261     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5262   };
5263 
5264   Constant *SafeReplacementConstant = nullptr;
5265   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5266     // Bail out if the constant can't be safely incremented/decremented.
5267     if (!ConstantIsOk(CI))
5268       return llvm::None;
5269   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5270     unsigned NumElts = FVTy->getNumElements();
5271     for (unsigned i = 0; i != NumElts; ++i) {
5272       Constant *Elt = C->getAggregateElement(i);
5273       if (!Elt)
5274         return llvm::None;
5275 
5276       if (isa<UndefValue>(Elt))
5277         continue;
5278 
5279       // Bail out if we can't determine if this constant is min/max or if we
5280       // know that this constant is min/max.
5281       auto *CI = dyn_cast<ConstantInt>(Elt);
5282       if (!CI || !ConstantIsOk(CI))
5283         return llvm::None;
5284 
5285       if (!SafeReplacementConstant)
5286         SafeReplacementConstant = CI;
5287     }
5288   } else {
5289     // ConstantExpr?
5290     return llvm::None;
5291   }
5292 
5293   // It may not be safe to change a compare predicate in the presence of
5294   // undefined elements, so replace those elements with the first safe constant
5295   // that we found.
5296   // TODO: in case of poison, it is safe; let's replace undefs only.
5297   if (C->containsUndefOrPoisonElement()) {
5298     assert(SafeReplacementConstant && "Replacement constant not set");
5299     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5300   }
5301 
5302   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5303 
5304   // Increment or decrement the constant.
5305   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5306   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5307 
5308   return std::make_pair(NewPred, NewC);
5309 }
5310 
5311 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5312 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5313 /// allows them to be folded in visitICmpInst.
5314 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5315   ICmpInst::Predicate Pred = I.getPredicate();
5316   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5317       InstCombiner::isCanonicalPredicate(Pred))
5318     return nullptr;
5319 
5320   Value *Op0 = I.getOperand(0);
5321   Value *Op1 = I.getOperand(1);
5322   auto *Op1C = dyn_cast<Constant>(Op1);
5323   if (!Op1C)
5324     return nullptr;
5325 
5326   auto FlippedStrictness =
5327       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5328   if (!FlippedStrictness)
5329     return nullptr;
5330 
5331   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5332 }
5333 
5334 /// If we have a comparison with a non-canonical predicate, if we can update
5335 /// all the users, invert the predicate and adjust all the users.
5336 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5337   // Is the predicate already canonical?
5338   CmpInst::Predicate Pred = I.getPredicate();
5339   if (InstCombiner::isCanonicalPredicate(Pred))
5340     return nullptr;
5341 
5342   // Can all users be adjusted to predicate inversion?
5343   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5344     return nullptr;
5345 
5346   // Ok, we can canonicalize comparison!
5347   // Let's first invert the comparison's predicate.
5348   I.setPredicate(CmpInst::getInversePredicate(Pred));
5349   I.setName(I.getName() + ".not");
5350 
5351   // And, adapt users.
5352   freelyInvertAllUsersOf(&I);
5353 
5354   return &I;
5355 }
5356 
5357 /// Integer compare with boolean values can always be turned into bitwise ops.
5358 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5359                                          InstCombiner::BuilderTy &Builder) {
5360   Value *A = I.getOperand(0), *B = I.getOperand(1);
5361   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5362 
5363   // A boolean compared to true/false can be simplified to Op0/true/false in
5364   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5365   // Cases not handled by InstSimplify are always 'not' of Op0.
5366   if (match(B, m_Zero())) {
5367     switch (I.getPredicate()) {
5368       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5369       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5370       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5371         return BinaryOperator::CreateNot(A);
5372       default:
5373         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5374     }
5375   } else if (match(B, m_One())) {
5376     switch (I.getPredicate()) {
5377       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5378       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5379       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5380         return BinaryOperator::CreateNot(A);
5381       default:
5382         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5383     }
5384   }
5385 
5386   switch (I.getPredicate()) {
5387   default:
5388     llvm_unreachable("Invalid icmp instruction!");
5389   case ICmpInst::ICMP_EQ:
5390     // icmp eq i1 A, B -> ~(A ^ B)
5391     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5392 
5393   case ICmpInst::ICMP_NE:
5394     // icmp ne i1 A, B -> A ^ B
5395     return BinaryOperator::CreateXor(A, B);
5396 
5397   case ICmpInst::ICMP_UGT:
5398     // icmp ugt -> icmp ult
5399     std::swap(A, B);
5400     LLVM_FALLTHROUGH;
5401   case ICmpInst::ICMP_ULT:
5402     // icmp ult i1 A, B -> ~A & B
5403     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5404 
5405   case ICmpInst::ICMP_SGT:
5406     // icmp sgt -> icmp slt
5407     std::swap(A, B);
5408     LLVM_FALLTHROUGH;
5409   case ICmpInst::ICMP_SLT:
5410     // icmp slt i1 A, B -> A & ~B
5411     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5412 
5413   case ICmpInst::ICMP_UGE:
5414     // icmp uge -> icmp ule
5415     std::swap(A, B);
5416     LLVM_FALLTHROUGH;
5417   case ICmpInst::ICMP_ULE:
5418     // icmp ule i1 A, B -> ~A | B
5419     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5420 
5421   case ICmpInst::ICMP_SGE:
5422     // icmp sge -> icmp sle
5423     std::swap(A, B);
5424     LLVM_FALLTHROUGH;
5425   case ICmpInst::ICMP_SLE:
5426     // icmp sle i1 A, B -> A | ~B
5427     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5428   }
5429 }
5430 
5431 // Transform pattern like:
5432 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5433 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5434 // Into:
5435 //   (X l>> Y) != 0
5436 //   (X l>> Y) == 0
5437 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5438                                             InstCombiner::BuilderTy &Builder) {
5439   ICmpInst::Predicate Pred, NewPred;
5440   Value *X, *Y;
5441   if (match(&Cmp,
5442             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5443     switch (Pred) {
5444     case ICmpInst::ICMP_ULE:
5445       NewPred = ICmpInst::ICMP_NE;
5446       break;
5447     case ICmpInst::ICMP_UGT:
5448       NewPred = ICmpInst::ICMP_EQ;
5449       break;
5450     default:
5451       return nullptr;
5452     }
5453   } else if (match(&Cmp, m_c_ICmp(Pred,
5454                                   m_OneUse(m_CombineOr(
5455                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5456                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5457                                             m_AllOnes()))),
5458                                   m_Value(X)))) {
5459     // The variant with 'add' is not canonical, (the variant with 'not' is)
5460     // we only get it because it has extra uses, and can't be canonicalized,
5461 
5462     switch (Pred) {
5463     case ICmpInst::ICMP_ULT:
5464       NewPred = ICmpInst::ICMP_NE;
5465       break;
5466     case ICmpInst::ICMP_UGE:
5467       NewPred = ICmpInst::ICMP_EQ;
5468       break;
5469     default:
5470       return nullptr;
5471     }
5472   } else
5473     return nullptr;
5474 
5475   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5476   Constant *Zero = Constant::getNullValue(NewX->getType());
5477   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5478 }
5479 
5480 static Instruction *foldVectorCmp(CmpInst &Cmp,
5481                                   InstCombiner::BuilderTy &Builder) {
5482   const CmpInst::Predicate Pred = Cmp.getPredicate();
5483   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5484   Value *V1, *V2;
5485   ArrayRef<int> M;
5486   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5487     return nullptr;
5488 
5489   // If both arguments of the cmp are shuffles that use the same mask and
5490   // shuffle within a single vector, move the shuffle after the cmp:
5491   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5492   Type *V1Ty = V1->getType();
5493   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5494       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5495     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5496     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5497   }
5498 
5499   // Try to canonicalize compare with splatted operand and splat constant.
5500   // TODO: We could generalize this for more than splats. See/use the code in
5501   //       InstCombiner::foldVectorBinop().
5502   Constant *C;
5503   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5504     return nullptr;
5505 
5506   // Length-changing splats are ok, so adjust the constants as needed:
5507   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5508   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5509   int MaskSplatIndex;
5510   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5511     // We allow undefs in matching, but this transform removes those for safety.
5512     // Demanded elements analysis should be able to recover some/all of that.
5513     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5514                                  ScalarC);
5515     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5516     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5517     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5518                                  NewM);
5519   }
5520 
5521   return nullptr;
5522 }
5523 
5524 // extract(uadd.with.overflow(A, B), 0) ult A
5525 //  -> extract(uadd.with.overflow(A, B), 1)
5526 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5527   CmpInst::Predicate Pred = I.getPredicate();
5528   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5529 
5530   Value *UAddOv;
5531   Value *A, *B;
5532   auto UAddOvResultPat = m_ExtractValue<0>(
5533       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5534   if (match(Op0, UAddOvResultPat) &&
5535       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5536        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5537         (match(A, m_One()) || match(B, m_One()))) ||
5538        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5539         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5540     // extract(uadd.with.overflow(A, B), 0) < A
5541     // extract(uadd.with.overflow(A, 1), 0) == 0
5542     // extract(uadd.with.overflow(A, -1), 0) != -1
5543     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5544   else if (match(Op1, UAddOvResultPat) &&
5545            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5546     // A > extract(uadd.with.overflow(A, B), 0)
5547     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5548   else
5549     return nullptr;
5550 
5551   return ExtractValueInst::Create(UAddOv, 1);
5552 }
5553 
5554 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5555   bool Changed = false;
5556   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5557   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5558   unsigned Op0Cplxity = getComplexity(Op0);
5559   unsigned Op1Cplxity = getComplexity(Op1);
5560 
5561   /// Orders the operands of the compare so that they are listed from most
5562   /// complex to least complex.  This puts constants before unary operators,
5563   /// before binary operators.
5564   if (Op0Cplxity < Op1Cplxity ||
5565       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5566     I.swapOperands();
5567     std::swap(Op0, Op1);
5568     Changed = true;
5569   }
5570 
5571   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5572     return replaceInstUsesWith(I, V);
5573 
5574   // Comparing -val or val with non-zero is the same as just comparing val
5575   // ie, abs(val) != 0 -> val != 0
5576   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5577     Value *Cond, *SelectTrue, *SelectFalse;
5578     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5579                             m_Value(SelectFalse)))) {
5580       if (Value *V = dyn_castNegVal(SelectTrue)) {
5581         if (V == SelectFalse)
5582           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5583       }
5584       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5585         if (V == SelectTrue)
5586           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5587       }
5588     }
5589   }
5590 
5591   if (Op0->getType()->isIntOrIntVectorTy(1))
5592     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5593       return Res;
5594 
5595   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5596     return Res;
5597 
5598   if (Instruction *Res = canonicalizeICmpPredicate(I))
5599     return Res;
5600 
5601   if (Instruction *Res = foldICmpWithConstant(I))
5602     return Res;
5603 
5604   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5605     return Res;
5606 
5607   if (Instruction *Res = foldICmpBinOp(I, Q))
5608     return Res;
5609 
5610   if (Instruction *Res = foldICmpUsingKnownBits(I))
5611     return Res;
5612 
5613   // Test if the ICmpInst instruction is used exclusively by a select as
5614   // part of a minimum or maximum operation. If so, refrain from doing
5615   // any other folding. This helps out other analyses which understand
5616   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5617   // and CodeGen. And in this case, at least one of the comparison
5618   // operands has at least one user besides the compare (the select),
5619   // which would often largely negate the benefit of folding anyway.
5620   //
5621   // Do the same for the other patterns recognized by matchSelectPattern.
5622   if (I.hasOneUse())
5623     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5624       Value *A, *B;
5625       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5626       if (SPR.Flavor != SPF_UNKNOWN)
5627         return nullptr;
5628     }
5629 
5630   // Do this after checking for min/max to prevent infinite looping.
5631   if (Instruction *Res = foldICmpWithZero(I))
5632     return Res;
5633 
5634   // FIXME: We only do this after checking for min/max to prevent infinite
5635   // looping caused by a reverse canonicalization of these patterns for min/max.
5636   // FIXME: The organization of folds is a mess. These would naturally go into
5637   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5638   // down here after the min/max restriction.
5639   ICmpInst::Predicate Pred = I.getPredicate();
5640   const APInt *C;
5641   if (match(Op1, m_APInt(C))) {
5642     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5643     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5644       Constant *Zero = Constant::getNullValue(Op0->getType());
5645       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5646     }
5647 
5648     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5649     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5650       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5651       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5652     }
5653   }
5654 
5655   if (Instruction *Res = foldICmpInstWithConstant(I))
5656     return Res;
5657 
5658   // Try to match comparison as a sign bit test. Intentionally do this after
5659   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5660   if (Instruction *New = foldSignBitTest(I))
5661     return New;
5662 
5663   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5664     return Res;
5665 
5666   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5667   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5668     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5669       return NI;
5670   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5671     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5672                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5673       return NI;
5674 
5675   // Try to optimize equality comparisons against alloca-based pointers.
5676   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5677     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5678     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5679       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5680         return New;
5681     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5682       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5683         return New;
5684   }
5685 
5686   if (Instruction *Res = foldICmpBitCast(I, Builder))
5687     return Res;
5688 
5689   // TODO: Hoist this above the min/max bailout.
5690   if (Instruction *R = foldICmpWithCastOp(I))
5691     return R;
5692 
5693   if (Instruction *Res = foldICmpWithMinMax(I))
5694     return Res;
5695 
5696   {
5697     Value *A, *B;
5698     // Transform (A & ~B) == 0 --> (A & B) != 0
5699     // and       (A & ~B) != 0 --> (A & B) == 0
5700     // if A is a power of 2.
5701     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5702         match(Op1, m_Zero()) &&
5703         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5704       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5705                           Op1);
5706 
5707     // ~X < ~Y --> Y < X
5708     // ~X < C -->  X > ~C
5709     if (match(Op0, m_Not(m_Value(A)))) {
5710       if (match(Op1, m_Not(m_Value(B))))
5711         return new ICmpInst(I.getPredicate(), B, A);
5712 
5713       const APInt *C;
5714       if (match(Op1, m_APInt(C)))
5715         return new ICmpInst(I.getSwappedPredicate(), A,
5716                             ConstantInt::get(Op1->getType(), ~(*C)));
5717     }
5718 
5719     Instruction *AddI = nullptr;
5720     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5721                                      m_Instruction(AddI))) &&
5722         isa<IntegerType>(A->getType())) {
5723       Value *Result;
5724       Constant *Overflow;
5725       // m_UAddWithOverflow can match patterns that do not include  an explicit
5726       // "add" instruction, so check the opcode of the matched op.
5727       if (AddI->getOpcode() == Instruction::Add &&
5728           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5729                                 Result, Overflow)) {
5730         replaceInstUsesWith(*AddI, Result);
5731         eraseInstFromFunction(*AddI);
5732         return replaceInstUsesWith(I, Overflow);
5733       }
5734     }
5735 
5736     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5737     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5738       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5739         return R;
5740     }
5741     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5742       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5743         return R;
5744     }
5745   }
5746 
5747   if (Instruction *Res = foldICmpEquality(I))
5748     return Res;
5749 
5750   if (Instruction *Res = foldICmpOfUAddOv(I))
5751     return Res;
5752 
5753   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5754   // an i1 which indicates whether or not we successfully did the swap.
5755   //
5756   // Replace comparisons between the old value and the expected value with the
5757   // indicator that 'cmpxchg' returns.
5758   //
5759   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5760   // spuriously fail.  In those cases, the old value may equal the expected
5761   // value but it is possible for the swap to not occur.
5762   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5763     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5764       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5765         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5766             !ACXI->isWeak())
5767           return ExtractValueInst::Create(ACXI, 1);
5768 
5769   {
5770     Value *X;
5771     const APInt *C;
5772     // icmp X+Cst, X
5773     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5774       return foldICmpAddOpConst(X, *C, I.getPredicate());
5775 
5776     // icmp X, X+Cst
5777     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5778       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5779   }
5780 
5781   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5782     return Res;
5783 
5784   if (I.getType()->isVectorTy())
5785     if (Instruction *Res = foldVectorCmp(I, Builder))
5786       return Res;
5787 
5788   return Changed ? &I : nullptr;
5789 }
5790 
5791 /// Fold fcmp ([us]itofp x, cst) if possible.
5792 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5793                                                     Instruction *LHSI,
5794                                                     Constant *RHSC) {
5795   if (!isa<ConstantFP>(RHSC)) return nullptr;
5796   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5797 
5798   // Get the width of the mantissa.  We don't want to hack on conversions that
5799   // might lose information from the integer, e.g. "i64 -> float"
5800   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5801   if (MantissaWidth == -1) return nullptr;  // Unknown.
5802 
5803   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5804 
5805   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5806 
5807   if (I.isEquality()) {
5808     FCmpInst::Predicate P = I.getPredicate();
5809     bool IsExact = false;
5810     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5811     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5812 
5813     // If the floating point constant isn't an integer value, we know if we will
5814     // ever compare equal / not equal to it.
5815     if (!IsExact) {
5816       // TODO: Can never be -0.0 and other non-representable values
5817       APFloat RHSRoundInt(RHS);
5818       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5819       if (RHS != RHSRoundInt) {
5820         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5821           return replaceInstUsesWith(I, Builder.getFalse());
5822 
5823         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5824         return replaceInstUsesWith(I, Builder.getTrue());
5825       }
5826     }
5827 
5828     // TODO: If the constant is exactly representable, is it always OK to do
5829     // equality compares as integer?
5830   }
5831 
5832   // Check to see that the input is converted from an integer type that is small
5833   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5834   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5835   unsigned InputSize = IntTy->getScalarSizeInBits();
5836 
5837   // Following test does NOT adjust InputSize downwards for signed inputs,
5838   // because the most negative value still requires all the mantissa bits
5839   // to distinguish it from one less than that value.
5840   if ((int)InputSize > MantissaWidth) {
5841     // Conversion would lose accuracy. Check if loss can impact comparison.
5842     int Exp = ilogb(RHS);
5843     if (Exp == APFloat::IEK_Inf) {
5844       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5845       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5846         // Conversion could create infinity.
5847         return nullptr;
5848     } else {
5849       // Note that if RHS is zero or NaN, then Exp is negative
5850       // and first condition is trivially false.
5851       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5852         // Conversion could affect comparison.
5853         return nullptr;
5854     }
5855   }
5856 
5857   // Otherwise, we can potentially simplify the comparison.  We know that it
5858   // will always come through as an integer value and we know the constant is
5859   // not a NAN (it would have been previously simplified).
5860   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5861 
5862   ICmpInst::Predicate Pred;
5863   switch (I.getPredicate()) {
5864   default: llvm_unreachable("Unexpected predicate!");
5865   case FCmpInst::FCMP_UEQ:
5866   case FCmpInst::FCMP_OEQ:
5867     Pred = ICmpInst::ICMP_EQ;
5868     break;
5869   case FCmpInst::FCMP_UGT:
5870   case FCmpInst::FCMP_OGT:
5871     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5872     break;
5873   case FCmpInst::FCMP_UGE:
5874   case FCmpInst::FCMP_OGE:
5875     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5876     break;
5877   case FCmpInst::FCMP_ULT:
5878   case FCmpInst::FCMP_OLT:
5879     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5880     break;
5881   case FCmpInst::FCMP_ULE:
5882   case FCmpInst::FCMP_OLE:
5883     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5884     break;
5885   case FCmpInst::FCMP_UNE:
5886   case FCmpInst::FCMP_ONE:
5887     Pred = ICmpInst::ICMP_NE;
5888     break;
5889   case FCmpInst::FCMP_ORD:
5890     return replaceInstUsesWith(I, Builder.getTrue());
5891   case FCmpInst::FCMP_UNO:
5892     return replaceInstUsesWith(I, Builder.getFalse());
5893   }
5894 
5895   // Now we know that the APFloat is a normal number, zero or inf.
5896 
5897   // See if the FP constant is too large for the integer.  For example,
5898   // comparing an i8 to 300.0.
5899   unsigned IntWidth = IntTy->getScalarSizeInBits();
5900 
5901   if (!LHSUnsigned) {
5902     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5903     // and large values.
5904     APFloat SMax(RHS.getSemantics());
5905     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5906                           APFloat::rmNearestTiesToEven);
5907     if (SMax < RHS) { // smax < 13123.0
5908       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5909           Pred == ICmpInst::ICMP_SLE)
5910         return replaceInstUsesWith(I, Builder.getTrue());
5911       return replaceInstUsesWith(I, Builder.getFalse());
5912     }
5913   } else {
5914     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5915     // +INF and large values.
5916     APFloat UMax(RHS.getSemantics());
5917     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5918                           APFloat::rmNearestTiesToEven);
5919     if (UMax < RHS) { // umax < 13123.0
5920       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5921           Pred == ICmpInst::ICMP_ULE)
5922         return replaceInstUsesWith(I, Builder.getTrue());
5923       return replaceInstUsesWith(I, Builder.getFalse());
5924     }
5925   }
5926 
5927   if (!LHSUnsigned) {
5928     // See if the RHS value is < SignedMin.
5929     APFloat SMin(RHS.getSemantics());
5930     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5931                           APFloat::rmNearestTiesToEven);
5932     if (SMin > RHS) { // smin > 12312.0
5933       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5934           Pred == ICmpInst::ICMP_SGE)
5935         return replaceInstUsesWith(I, Builder.getTrue());
5936       return replaceInstUsesWith(I, Builder.getFalse());
5937     }
5938   } else {
5939     // See if the RHS value is < UnsignedMin.
5940     APFloat UMin(RHS.getSemantics());
5941     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5942                           APFloat::rmNearestTiesToEven);
5943     if (UMin > RHS) { // umin > 12312.0
5944       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5945           Pred == ICmpInst::ICMP_UGE)
5946         return replaceInstUsesWith(I, Builder.getTrue());
5947       return replaceInstUsesWith(I, Builder.getFalse());
5948     }
5949   }
5950 
5951   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5952   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5953   // casting the FP value to the integer value and back, checking for equality.
5954   // Don't do this for zero, because -0.0 is not fractional.
5955   Constant *RHSInt = LHSUnsigned
5956     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5957     : ConstantExpr::getFPToSI(RHSC, IntTy);
5958   if (!RHS.isZero()) {
5959     bool Equal = LHSUnsigned
5960       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5961       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5962     if (!Equal) {
5963       // If we had a comparison against a fractional value, we have to adjust
5964       // the compare predicate and sometimes the value.  RHSC is rounded towards
5965       // zero at this point.
5966       switch (Pred) {
5967       default: llvm_unreachable("Unexpected integer comparison!");
5968       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5969         return replaceInstUsesWith(I, Builder.getTrue());
5970       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5971         return replaceInstUsesWith(I, Builder.getFalse());
5972       case ICmpInst::ICMP_ULE:
5973         // (float)int <= 4.4   --> int <= 4
5974         // (float)int <= -4.4  --> false
5975         if (RHS.isNegative())
5976           return replaceInstUsesWith(I, Builder.getFalse());
5977         break;
5978       case ICmpInst::ICMP_SLE:
5979         // (float)int <= 4.4   --> int <= 4
5980         // (float)int <= -4.4  --> int < -4
5981         if (RHS.isNegative())
5982           Pred = ICmpInst::ICMP_SLT;
5983         break;
5984       case ICmpInst::ICMP_ULT:
5985         // (float)int < -4.4   --> false
5986         // (float)int < 4.4    --> int <= 4
5987         if (RHS.isNegative())
5988           return replaceInstUsesWith(I, Builder.getFalse());
5989         Pred = ICmpInst::ICMP_ULE;
5990         break;
5991       case ICmpInst::ICMP_SLT:
5992         // (float)int < -4.4   --> int < -4
5993         // (float)int < 4.4    --> int <= 4
5994         if (!RHS.isNegative())
5995           Pred = ICmpInst::ICMP_SLE;
5996         break;
5997       case ICmpInst::ICMP_UGT:
5998         // (float)int > 4.4    --> int > 4
5999         // (float)int > -4.4   --> true
6000         if (RHS.isNegative())
6001           return replaceInstUsesWith(I, Builder.getTrue());
6002         break;
6003       case ICmpInst::ICMP_SGT:
6004         // (float)int > 4.4    --> int > 4
6005         // (float)int > -4.4   --> int >= -4
6006         if (RHS.isNegative())
6007           Pred = ICmpInst::ICMP_SGE;
6008         break;
6009       case ICmpInst::ICMP_UGE:
6010         // (float)int >= -4.4   --> true
6011         // (float)int >= 4.4    --> int > 4
6012         if (RHS.isNegative())
6013           return replaceInstUsesWith(I, Builder.getTrue());
6014         Pred = ICmpInst::ICMP_UGT;
6015         break;
6016       case ICmpInst::ICMP_SGE:
6017         // (float)int >= -4.4   --> int >= -4
6018         // (float)int >= 4.4    --> int > 4
6019         if (!RHS.isNegative())
6020           Pred = ICmpInst::ICMP_SGT;
6021         break;
6022       }
6023     }
6024   }
6025 
6026   // Lower this FP comparison into an appropriate integer version of the
6027   // comparison.
6028   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6029 }
6030 
6031 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6032 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6033                                               Constant *RHSC) {
6034   // When C is not 0.0 and infinities are not allowed:
6035   // (C / X) < 0.0 is a sign-bit test of X
6036   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6037   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6038   //
6039   // Proof:
6040   // Multiply (C / X) < 0.0 by X * X / C.
6041   // - X is non zero, if it is the flag 'ninf' is violated.
6042   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6043   //   the predicate. C is also non zero by definition.
6044   //
6045   // Thus X * X / C is non zero and the transformation is valid. [qed]
6046 
6047   FCmpInst::Predicate Pred = I.getPredicate();
6048 
6049   // Check that predicates are valid.
6050   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6051       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6052     return nullptr;
6053 
6054   // Check that RHS operand is zero.
6055   if (!match(RHSC, m_AnyZeroFP()))
6056     return nullptr;
6057 
6058   // Check fastmath flags ('ninf').
6059   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6060     return nullptr;
6061 
6062   // Check the properties of the dividend. It must not be zero to avoid a
6063   // division by zero (see Proof).
6064   const APFloat *C;
6065   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6066     return nullptr;
6067 
6068   if (C->isZero())
6069     return nullptr;
6070 
6071   // Get swapped predicate if necessary.
6072   if (C->isNegative())
6073     Pred = I.getSwappedPredicate();
6074 
6075   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6076 }
6077 
6078 /// Optimize fabs(X) compared with zero.
6079 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6080   Value *X;
6081   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6082       !match(I.getOperand(1), m_PosZeroFP()))
6083     return nullptr;
6084 
6085   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6086     I->setPredicate(P);
6087     return IC.replaceOperand(*I, 0, X);
6088   };
6089 
6090   switch (I.getPredicate()) {
6091   case FCmpInst::FCMP_UGE:
6092   case FCmpInst::FCMP_OLT:
6093     // fabs(X) >= 0.0 --> true
6094     // fabs(X) <  0.0 --> false
6095     llvm_unreachable("fcmp should have simplified");
6096 
6097   case FCmpInst::FCMP_OGT:
6098     // fabs(X) > 0.0 --> X != 0.0
6099     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6100 
6101   case FCmpInst::FCMP_UGT:
6102     // fabs(X) u> 0.0 --> X u!= 0.0
6103     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6104 
6105   case FCmpInst::FCMP_OLE:
6106     // fabs(X) <= 0.0 --> X == 0.0
6107     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6108 
6109   case FCmpInst::FCMP_ULE:
6110     // fabs(X) u<= 0.0 --> X u== 0.0
6111     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6112 
6113   case FCmpInst::FCMP_OGE:
6114     // fabs(X) >= 0.0 --> !isnan(X)
6115     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6116     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6117 
6118   case FCmpInst::FCMP_ULT:
6119     // fabs(X) u< 0.0 --> isnan(X)
6120     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6121     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6122 
6123   case FCmpInst::FCMP_OEQ:
6124   case FCmpInst::FCMP_UEQ:
6125   case FCmpInst::FCMP_ONE:
6126   case FCmpInst::FCMP_UNE:
6127   case FCmpInst::FCMP_ORD:
6128   case FCmpInst::FCMP_UNO:
6129     // Look through the fabs() because it doesn't change anything but the sign.
6130     // fabs(X) == 0.0 --> X == 0.0,
6131     // fabs(X) != 0.0 --> X != 0.0
6132     // isnan(fabs(X)) --> isnan(X)
6133     // !isnan(fabs(X) --> !isnan(X)
6134     return replacePredAndOp0(&I, I.getPredicate(), X);
6135 
6136   default:
6137     return nullptr;
6138   }
6139 }
6140 
6141 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6142   bool Changed = false;
6143 
6144   /// Orders the operands of the compare so that they are listed from most
6145   /// complex to least complex.  This puts constants before unary operators,
6146   /// before binary operators.
6147   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6148     I.swapOperands();
6149     Changed = true;
6150   }
6151 
6152   const CmpInst::Predicate Pred = I.getPredicate();
6153   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6154   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6155                                   SQ.getWithInstruction(&I)))
6156     return replaceInstUsesWith(I, V);
6157 
6158   // Simplify 'fcmp pred X, X'
6159   Type *OpType = Op0->getType();
6160   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6161   if (Op0 == Op1) {
6162     switch (Pred) {
6163       default: break;
6164     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6165     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6166     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6167     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6168       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6169       I.setPredicate(FCmpInst::FCMP_UNO);
6170       I.setOperand(1, Constant::getNullValue(OpType));
6171       return &I;
6172 
6173     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6174     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6175     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6176     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6177       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6178       I.setPredicate(FCmpInst::FCMP_ORD);
6179       I.setOperand(1, Constant::getNullValue(OpType));
6180       return &I;
6181     }
6182   }
6183 
6184   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6185   // then canonicalize the operand to 0.0.
6186   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6187     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6188       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6189 
6190     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6191       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6192   }
6193 
6194   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6195   Value *X, *Y;
6196   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6197     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6198 
6199   // Test if the FCmpInst instruction is used exclusively by a select as
6200   // part of a minimum or maximum operation. If so, refrain from doing
6201   // any other folding. This helps out other analyses which understand
6202   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6203   // and CodeGen. And in this case, at least one of the comparison
6204   // operands has at least one user besides the compare (the select),
6205   // which would often largely negate the benefit of folding anyway.
6206   if (I.hasOneUse())
6207     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6208       Value *A, *B;
6209       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6210       if (SPR.Flavor != SPF_UNKNOWN)
6211         return nullptr;
6212     }
6213 
6214   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6215   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6216   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6217     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6218 
6219   // Handle fcmp with instruction LHS and constant RHS.
6220   Instruction *LHSI;
6221   Constant *RHSC;
6222   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6223     switch (LHSI->getOpcode()) {
6224     case Instruction::PHI:
6225       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6226       // block.  If in the same block, we're encouraging jump threading.  If
6227       // not, we are just pessimizing the code by making an i1 phi.
6228       if (LHSI->getParent() == I.getParent())
6229         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6230           return NV;
6231       break;
6232     case Instruction::SIToFP:
6233     case Instruction::UIToFP:
6234       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6235         return NV;
6236       break;
6237     case Instruction::FDiv:
6238       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6239         return NV;
6240       break;
6241     case Instruction::Load:
6242       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6243         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6244           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6245               !cast<LoadInst>(LHSI)->isVolatile())
6246             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6247               return Res;
6248       break;
6249   }
6250   }
6251 
6252   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6253     return R;
6254 
6255   if (match(Op0, m_FNeg(m_Value(X)))) {
6256     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6257     Constant *C;
6258     if (match(Op1, m_Constant(C))) {
6259       Constant *NegC = ConstantExpr::getFNeg(C);
6260       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6261     }
6262   }
6263 
6264   if (match(Op0, m_FPExt(m_Value(X)))) {
6265     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6266     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6267       return new FCmpInst(Pred, X, Y, "", &I);
6268 
6269     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6270     const APFloat *C;
6271     if (match(Op1, m_APFloat(C))) {
6272       const fltSemantics &FPSem =
6273           X->getType()->getScalarType()->getFltSemantics();
6274       bool Lossy;
6275       APFloat TruncC = *C;
6276       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6277 
6278       // Avoid lossy conversions and denormals.
6279       // Zero is a special case that's OK to convert.
6280       APFloat Fabs = TruncC;
6281       Fabs.clearSign();
6282       if (!Lossy &&
6283           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6284         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6285         return new FCmpInst(Pred, X, NewC, "", &I);
6286       }
6287     }
6288   }
6289 
6290   // Convert a sign-bit test of an FP value into a cast and integer compare.
6291   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6292   // TODO: Handle non-zero compare constants.
6293   // TODO: Handle other predicates.
6294   const APFloat *C;
6295   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6296                                                            m_Value(X)))) &&
6297       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6298     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6299     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6300       IntType = VectorType::get(IntType, VecTy->getElementCount());
6301 
6302     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6303     if (Pred == FCmpInst::FCMP_OLT) {
6304       Value *IntX = Builder.CreateBitCast(X, IntType);
6305       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6306                           ConstantInt::getNullValue(IntType));
6307     }
6308   }
6309 
6310   if (I.getType()->isVectorTy())
6311     if (Instruction *Res = foldVectorCmp(I, Builder))
6312       return Res;
6313 
6314   return Changed ? &I : nullptr;
6315 }
6316