1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 #include "llvm/Transforms/InstCombine/InstCombiner.h" 28 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 // How many times is a select replaced by one of its operands? 35 STATISTIC(NumSel, "Number of select opts"); 36 37 38 /// Compute Result = In1+In2, returning true if the result overflowed for this 39 /// type. 40 static bool addWithOverflow(APInt &Result, const APInt &In1, 41 const APInt &In2, bool IsSigned = false) { 42 bool Overflow; 43 if (IsSigned) 44 Result = In1.sadd_ov(In2, Overflow); 45 else 46 Result = In1.uadd_ov(In2, Overflow); 47 48 return Overflow; 49 } 50 51 /// Compute Result = In1-In2, returning true if the result overflowed for this 52 /// type. 53 static bool subWithOverflow(APInt &Result, const APInt &In1, 54 const APInt &In2, bool IsSigned = false) { 55 bool Overflow; 56 if (IsSigned) 57 Result = In1.ssub_ov(In2, Overflow); 58 else 59 Result = In1.usub_ov(In2, Overflow); 60 61 return Overflow; 62 } 63 64 /// Given an icmp instruction, return true if any use of this comparison is a 65 /// branch on sign bit comparison. 66 static bool hasBranchUse(ICmpInst &I) { 67 for (auto *U : I.users()) 68 if (isa<BranchInst>(U)) 69 return true; 70 return false; 71 } 72 73 /// Returns true if the exploded icmp can be expressed as a signed comparison 74 /// to zero and updates the predicate accordingly. 75 /// The signedness of the comparison is preserved. 76 /// TODO: Refactor with decomposeBitTestICmp()? 77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 78 if (!ICmpInst::isSigned(Pred)) 79 return false; 80 81 if (C.isNullValue()) 82 return ICmpInst::isRelational(Pred); 83 84 if (C.isOneValue()) { 85 if (Pred == ICmpInst::ICMP_SLT) { 86 Pred = ICmpInst::ICMP_SLE; 87 return true; 88 } 89 } else if (C.isAllOnesValue()) { 90 if (Pred == ICmpInst::ICMP_SGT) { 91 Pred = ICmpInst::ICMP_SGE; 92 return true; 93 } 94 } 95 96 return false; 97 } 98 99 /// This is called when we see this pattern: 100 /// cmp pred (load (gep GV, ...)), cmpcst 101 /// where GV is a global variable with a constant initializer. Try to simplify 102 /// this into some simple computation that does not need the load. For example 103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 104 /// 105 /// If AndCst is non-null, then the loaded value is masked with that constant 106 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 107 Instruction * 108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 109 GlobalVariable *GV, CmpInst &ICI, 110 ConstantInt *AndCst) { 111 Constant *Init = GV->getInitializer(); 112 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 113 return nullptr; 114 115 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 116 // Don't blow up on huge arrays. 117 if (ArrayElementCount > MaxArraySizeForCombine) 118 return nullptr; 119 120 // There are many forms of this optimization we can handle, for now, just do 121 // the simple index into a single-dimensional array. 122 // 123 // Require: GEP GV, 0, i {{, constant indices}} 124 if (GEP->getNumOperands() < 3 || 125 !isa<ConstantInt>(GEP->getOperand(1)) || 126 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 127 isa<Constant>(GEP->getOperand(2))) 128 return nullptr; 129 130 // Check that indices after the variable are constants and in-range for the 131 // type they index. Collect the indices. This is typically for arrays of 132 // structs. 133 SmallVector<unsigned, 4> LaterIndices; 134 135 Type *EltTy = Init->getType()->getArrayElementType(); 136 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 137 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 138 if (!Idx) return nullptr; // Variable index. 139 140 uint64_t IdxVal = Idx->getZExtValue(); 141 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 142 143 if (StructType *STy = dyn_cast<StructType>(EltTy)) 144 EltTy = STy->getElementType(IdxVal); 145 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 146 if (IdxVal >= ATy->getNumElements()) return nullptr; 147 EltTy = ATy->getElementType(); 148 } else { 149 return nullptr; // Unknown type. 150 } 151 152 LaterIndices.push_back(IdxVal); 153 } 154 155 enum { Overdefined = -3, Undefined = -2 }; 156 157 // Variables for our state machines. 158 159 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 160 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 161 // and 87 is the second (and last) index. FirstTrueElement is -2 when 162 // undefined, otherwise set to the first true element. SecondTrueElement is 163 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 164 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 165 166 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 167 // form "i != 47 & i != 87". Same state transitions as for true elements. 168 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 169 170 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 171 /// define a state machine that triggers for ranges of values that the index 172 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 173 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 174 /// index in the range (inclusive). We use -2 for undefined here because we 175 /// use relative comparisons and don't want 0-1 to match -1. 176 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 177 178 // MagicBitvector - This is a magic bitvector where we set a bit if the 179 // comparison is true for element 'i'. If there are 64 elements or less in 180 // the array, this will fully represent all the comparison results. 181 uint64_t MagicBitvector = 0; 182 183 // Scan the array and see if one of our patterns matches. 184 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 185 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 186 Constant *Elt = Init->getAggregateElement(i); 187 if (!Elt) return nullptr; 188 189 // If this is indexing an array of structures, get the structure element. 190 if (!LaterIndices.empty()) 191 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 192 193 // If the element is masked, handle it. 194 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 195 196 // Find out if the comparison would be true or false for the i'th element. 197 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 198 CompareRHS, DL, &TLI); 199 // If the result is undef for this element, ignore it. 200 if (isa<UndefValue>(C)) { 201 // Extend range state machines to cover this element in case there is an 202 // undef in the middle of the range. 203 if (TrueRangeEnd == (int)i-1) 204 TrueRangeEnd = i; 205 if (FalseRangeEnd == (int)i-1) 206 FalseRangeEnd = i; 207 continue; 208 } 209 210 // If we can't compute the result for any of the elements, we have to give 211 // up evaluating the entire conditional. 212 if (!isa<ConstantInt>(C)) return nullptr; 213 214 // Otherwise, we know if the comparison is true or false for this element, 215 // update our state machines. 216 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 217 218 // State machine for single/double/range index comparison. 219 if (IsTrueForElt) { 220 // Update the TrueElement state machine. 221 if (FirstTrueElement == Undefined) 222 FirstTrueElement = TrueRangeEnd = i; // First true element. 223 else { 224 // Update double-compare state machine. 225 if (SecondTrueElement == Undefined) 226 SecondTrueElement = i; 227 else 228 SecondTrueElement = Overdefined; 229 230 // Update range state machine. 231 if (TrueRangeEnd == (int)i-1) 232 TrueRangeEnd = i; 233 else 234 TrueRangeEnd = Overdefined; 235 } 236 } else { 237 // Update the FalseElement state machine. 238 if (FirstFalseElement == Undefined) 239 FirstFalseElement = FalseRangeEnd = i; // First false element. 240 else { 241 // Update double-compare state machine. 242 if (SecondFalseElement == Undefined) 243 SecondFalseElement = i; 244 else 245 SecondFalseElement = Overdefined; 246 247 // Update range state machine. 248 if (FalseRangeEnd == (int)i-1) 249 FalseRangeEnd = i; 250 else 251 FalseRangeEnd = Overdefined; 252 } 253 } 254 255 // If this element is in range, update our magic bitvector. 256 if (i < 64 && IsTrueForElt) 257 MagicBitvector |= 1ULL << i; 258 259 // If all of our states become overdefined, bail out early. Since the 260 // predicate is expensive, only check it every 8 elements. This is only 261 // really useful for really huge arrays. 262 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 263 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 264 FalseRangeEnd == Overdefined) 265 return nullptr; 266 } 267 268 // Now that we've scanned the entire array, emit our new comparison(s). We 269 // order the state machines in complexity of the generated code. 270 Value *Idx = GEP->getOperand(2); 271 272 // If the index is larger than the pointer size of the target, truncate the 273 // index down like the GEP would do implicitly. We don't have to do this for 274 // an inbounds GEP because the index can't be out of range. 275 if (!GEP->isInBounds()) { 276 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 277 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 278 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 279 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 280 } 281 282 // If the comparison is only true for one or two elements, emit direct 283 // comparisons. 284 if (SecondTrueElement != Overdefined) { 285 // None true -> false. 286 if (FirstTrueElement == Undefined) 287 return replaceInstUsesWith(ICI, Builder.getFalse()); 288 289 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 290 291 // True for one element -> 'i == 47'. 292 if (SecondTrueElement == Undefined) 293 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 294 295 // True for two elements -> 'i == 47 | i == 72'. 296 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 297 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 298 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 299 return BinaryOperator::CreateOr(C1, C2); 300 } 301 302 // If the comparison is only false for one or two elements, emit direct 303 // comparisons. 304 if (SecondFalseElement != Overdefined) { 305 // None false -> true. 306 if (FirstFalseElement == Undefined) 307 return replaceInstUsesWith(ICI, Builder.getTrue()); 308 309 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 310 311 // False for one element -> 'i != 47'. 312 if (SecondFalseElement == Undefined) 313 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 314 315 // False for two elements -> 'i != 47 & i != 72'. 316 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 317 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 318 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 319 return BinaryOperator::CreateAnd(C1, C2); 320 } 321 322 // If the comparison can be replaced with a range comparison for the elements 323 // where it is true, emit the range check. 324 if (TrueRangeEnd != Overdefined) { 325 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 326 327 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 328 if (FirstTrueElement) { 329 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 330 Idx = Builder.CreateAdd(Idx, Offs); 331 } 332 333 Value *End = ConstantInt::get(Idx->getType(), 334 TrueRangeEnd-FirstTrueElement+1); 335 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 336 } 337 338 // False range check. 339 if (FalseRangeEnd != Overdefined) { 340 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 341 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 342 if (FirstFalseElement) { 343 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 344 Idx = Builder.CreateAdd(Idx, Offs); 345 } 346 347 Value *End = ConstantInt::get(Idx->getType(), 348 FalseRangeEnd-FirstFalseElement); 349 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 350 } 351 352 // If a magic bitvector captures the entire comparison state 353 // of this load, replace it with computation that does: 354 // ((magic_cst >> i) & 1) != 0 355 { 356 Type *Ty = nullptr; 357 358 // Look for an appropriate type: 359 // - The type of Idx if the magic fits 360 // - The smallest fitting legal type 361 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 362 Ty = Idx->getType(); 363 else 364 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 365 366 if (Ty) { 367 Value *V = Builder.CreateIntCast(Idx, Ty, false); 368 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 369 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 370 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 371 } 372 } 373 374 return nullptr; 375 } 376 377 /// Return a value that can be used to compare the *offset* implied by a GEP to 378 /// zero. For example, if we have &A[i], we want to return 'i' for 379 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 380 /// are involved. The above expression would also be legal to codegen as 381 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 382 /// This latter form is less amenable to optimization though, and we are allowed 383 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 384 /// 385 /// If we can't emit an optimized form for this expression, this returns null. 386 /// 387 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 388 const DataLayout &DL) { 389 gep_type_iterator GTI = gep_type_begin(GEP); 390 391 // Check to see if this gep only has a single variable index. If so, and if 392 // any constant indices are a multiple of its scale, then we can compute this 393 // in terms of the scale of the variable index. For example, if the GEP 394 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 395 // because the expression will cross zero at the same point. 396 unsigned i, e = GEP->getNumOperands(); 397 int64_t Offset = 0; 398 for (i = 1; i != e; ++i, ++GTI) { 399 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 400 // Compute the aggregate offset of constant indices. 401 if (CI->isZero()) continue; 402 403 // Handle a struct index, which adds its field offset to the pointer. 404 if (StructType *STy = GTI.getStructTypeOrNull()) { 405 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 406 } else { 407 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 408 Offset += Size*CI->getSExtValue(); 409 } 410 } else { 411 // Found our variable index. 412 break; 413 } 414 } 415 416 // If there are no variable indices, we must have a constant offset, just 417 // evaluate it the general way. 418 if (i == e) return nullptr; 419 420 Value *VariableIdx = GEP->getOperand(i); 421 // Determine the scale factor of the variable element. For example, this is 422 // 4 if the variable index is into an array of i32. 423 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 424 425 // Verify that there are no other variable indices. If so, emit the hard way. 426 for (++i, ++GTI; i != e; ++i, ++GTI) { 427 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 428 if (!CI) return nullptr; 429 430 // Compute the aggregate offset of constant indices. 431 if (CI->isZero()) continue; 432 433 // Handle a struct index, which adds its field offset to the pointer. 434 if (StructType *STy = GTI.getStructTypeOrNull()) { 435 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 436 } else { 437 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 438 Offset += Size*CI->getSExtValue(); 439 } 440 } 441 442 // Okay, we know we have a single variable index, which must be a 443 // pointer/array/vector index. If there is no offset, life is simple, return 444 // the index. 445 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 446 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 447 if (Offset == 0) { 448 // Cast to intptrty in case a truncation occurs. If an extension is needed, 449 // we don't need to bother extending: the extension won't affect where the 450 // computation crosses zero. 451 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 452 IntPtrWidth) { 453 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 454 } 455 return VariableIdx; 456 } 457 458 // Otherwise, there is an index. The computation we will do will be modulo 459 // the pointer size. 460 Offset = SignExtend64(Offset, IntPtrWidth); 461 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 462 463 // To do this transformation, any constant index must be a multiple of the 464 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 465 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 466 // multiple of the variable scale. 467 int64_t NewOffs = Offset / (int64_t)VariableScale; 468 if (Offset != NewOffs*(int64_t)VariableScale) 469 return nullptr; 470 471 // Okay, we can do this evaluation. Start by converting the index to intptr. 472 if (VariableIdx->getType() != IntPtrTy) 473 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 474 true /*Signed*/); 475 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 476 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 477 } 478 479 /// Returns true if we can rewrite Start as a GEP with pointer Base 480 /// and some integer offset. The nodes that need to be re-written 481 /// for this transformation will be added to Explored. 482 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 483 const DataLayout &DL, 484 SetVector<Value *> &Explored) { 485 SmallVector<Value *, 16> WorkList(1, Start); 486 Explored.insert(Base); 487 488 // The following traversal gives us an order which can be used 489 // when doing the final transformation. Since in the final 490 // transformation we create the PHI replacement instructions first, 491 // we don't have to get them in any particular order. 492 // 493 // However, for other instructions we will have to traverse the 494 // operands of an instruction first, which means that we have to 495 // do a post-order traversal. 496 while (!WorkList.empty()) { 497 SetVector<PHINode *> PHIs; 498 499 while (!WorkList.empty()) { 500 if (Explored.size() >= 100) 501 return false; 502 503 Value *V = WorkList.back(); 504 505 if (Explored.contains(V)) { 506 WorkList.pop_back(); 507 continue; 508 } 509 510 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 511 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 512 // We've found some value that we can't explore which is different from 513 // the base. Therefore we can't do this transformation. 514 return false; 515 516 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 517 auto *CI = cast<CastInst>(V); 518 if (!CI->isNoopCast(DL)) 519 return false; 520 521 if (Explored.count(CI->getOperand(0)) == 0) 522 WorkList.push_back(CI->getOperand(0)); 523 } 524 525 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 526 // We're limiting the GEP to having one index. This will preserve 527 // the original pointer type. We could handle more cases in the 528 // future. 529 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 530 GEP->getType() != Start->getType()) 531 return false; 532 533 if (Explored.count(GEP->getOperand(0)) == 0) 534 WorkList.push_back(GEP->getOperand(0)); 535 } 536 537 if (WorkList.back() == V) { 538 WorkList.pop_back(); 539 // We've finished visiting this node, mark it as such. 540 Explored.insert(V); 541 } 542 543 if (auto *PN = dyn_cast<PHINode>(V)) { 544 // We cannot transform PHIs on unsplittable basic blocks. 545 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 546 return false; 547 Explored.insert(PN); 548 PHIs.insert(PN); 549 } 550 } 551 552 // Explore the PHI nodes further. 553 for (auto *PN : PHIs) 554 for (Value *Op : PN->incoming_values()) 555 if (Explored.count(Op) == 0) 556 WorkList.push_back(Op); 557 } 558 559 // Make sure that we can do this. Since we can't insert GEPs in a basic 560 // block before a PHI node, we can't easily do this transformation if 561 // we have PHI node users of transformed instructions. 562 for (Value *Val : Explored) { 563 for (Value *Use : Val->uses()) { 564 565 auto *PHI = dyn_cast<PHINode>(Use); 566 auto *Inst = dyn_cast<Instruction>(Val); 567 568 if (Inst == Base || Inst == PHI || !Inst || !PHI || 569 Explored.count(PHI) == 0) 570 continue; 571 572 if (PHI->getParent() == Inst->getParent()) 573 return false; 574 } 575 } 576 return true; 577 } 578 579 // Sets the appropriate insert point on Builder where we can add 580 // a replacement Instruction for V (if that is possible). 581 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 582 bool Before = true) { 583 if (auto *PHI = dyn_cast<PHINode>(V)) { 584 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 585 return; 586 } 587 if (auto *I = dyn_cast<Instruction>(V)) { 588 if (!Before) 589 I = &*std::next(I->getIterator()); 590 Builder.SetInsertPoint(I); 591 return; 592 } 593 if (auto *A = dyn_cast<Argument>(V)) { 594 // Set the insertion point in the entry block. 595 BasicBlock &Entry = A->getParent()->getEntryBlock(); 596 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 597 return; 598 } 599 // Otherwise, this is a constant and we don't need to set a new 600 // insertion point. 601 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 602 } 603 604 /// Returns a re-written value of Start as an indexed GEP using Base as a 605 /// pointer. 606 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 607 const DataLayout &DL, 608 SetVector<Value *> &Explored) { 609 // Perform all the substitutions. This is a bit tricky because we can 610 // have cycles in our use-def chains. 611 // 1. Create the PHI nodes without any incoming values. 612 // 2. Create all the other values. 613 // 3. Add the edges for the PHI nodes. 614 // 4. Emit GEPs to get the original pointers. 615 // 5. Remove the original instructions. 616 Type *IndexType = IntegerType::get( 617 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 618 619 DenseMap<Value *, Value *> NewInsts; 620 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 621 622 // Create the new PHI nodes, without adding any incoming values. 623 for (Value *Val : Explored) { 624 if (Val == Base) 625 continue; 626 // Create empty phi nodes. This avoids cyclic dependencies when creating 627 // the remaining instructions. 628 if (auto *PHI = dyn_cast<PHINode>(Val)) 629 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 630 PHI->getName() + ".idx", PHI); 631 } 632 IRBuilder<> Builder(Base->getContext()); 633 634 // Create all the other instructions. 635 for (Value *Val : Explored) { 636 637 if (NewInsts.find(Val) != NewInsts.end()) 638 continue; 639 640 if (auto *CI = dyn_cast<CastInst>(Val)) { 641 // Don't get rid of the intermediate variable here; the store can grow 642 // the map which will invalidate the reference to the input value. 643 Value *V = NewInsts[CI->getOperand(0)]; 644 NewInsts[CI] = V; 645 continue; 646 } 647 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 648 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 649 : GEP->getOperand(1); 650 setInsertionPoint(Builder, GEP); 651 // Indices might need to be sign extended. GEPs will magically do 652 // this, but we need to do it ourselves here. 653 if (Index->getType()->getScalarSizeInBits() != 654 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 655 Index = Builder.CreateSExtOrTrunc( 656 Index, NewInsts[GEP->getOperand(0)]->getType(), 657 GEP->getOperand(0)->getName() + ".sext"); 658 } 659 660 auto *Op = NewInsts[GEP->getOperand(0)]; 661 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 662 NewInsts[GEP] = Index; 663 else 664 NewInsts[GEP] = Builder.CreateNSWAdd( 665 Op, Index, GEP->getOperand(0)->getName() + ".add"); 666 continue; 667 } 668 if (isa<PHINode>(Val)) 669 continue; 670 671 llvm_unreachable("Unexpected instruction type"); 672 } 673 674 // Add the incoming values to the PHI nodes. 675 for (Value *Val : Explored) { 676 if (Val == Base) 677 continue; 678 // All the instructions have been created, we can now add edges to the 679 // phi nodes. 680 if (auto *PHI = dyn_cast<PHINode>(Val)) { 681 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 682 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 683 Value *NewIncoming = PHI->getIncomingValue(I); 684 685 if (NewInsts.find(NewIncoming) != NewInsts.end()) 686 NewIncoming = NewInsts[NewIncoming]; 687 688 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 689 } 690 } 691 } 692 693 for (Value *Val : Explored) { 694 if (Val == Base) 695 continue; 696 697 // Depending on the type, for external users we have to emit 698 // a GEP or a GEP + ptrtoint. 699 setInsertionPoint(Builder, Val, false); 700 701 // If required, create an inttoptr instruction for Base. 702 Value *NewBase = Base; 703 if (!Base->getType()->isPointerTy()) 704 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 705 Start->getName() + "to.ptr"); 706 707 Value *GEP = Builder.CreateInBoundsGEP( 708 Start->getType()->getPointerElementType(), NewBase, 709 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 710 711 if (!Val->getType()->isPointerTy()) { 712 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 713 Val->getName() + ".conv"); 714 GEP = Cast; 715 } 716 Val->replaceAllUsesWith(GEP); 717 } 718 719 return NewInsts[Start]; 720 } 721 722 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 723 /// the input Value as a constant indexed GEP. Returns a pair containing 724 /// the GEPs Pointer and Index. 725 static std::pair<Value *, Value *> 726 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 727 Type *IndexType = IntegerType::get(V->getContext(), 728 DL.getIndexTypeSizeInBits(V->getType())); 729 730 Constant *Index = ConstantInt::getNullValue(IndexType); 731 while (true) { 732 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 733 // We accept only inbouds GEPs here to exclude the possibility of 734 // overflow. 735 if (!GEP->isInBounds()) 736 break; 737 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 738 GEP->getType() == V->getType()) { 739 V = GEP->getOperand(0); 740 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 741 Index = ConstantExpr::getAdd( 742 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 743 continue; 744 } 745 break; 746 } 747 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 748 if (!CI->isNoopCast(DL)) 749 break; 750 V = CI->getOperand(0); 751 continue; 752 } 753 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 754 if (!CI->isNoopCast(DL)) 755 break; 756 V = CI->getOperand(0); 757 continue; 758 } 759 break; 760 } 761 return {V, Index}; 762 } 763 764 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 765 /// We can look through PHIs, GEPs and casts in order to determine a common base 766 /// between GEPLHS and RHS. 767 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 768 ICmpInst::Predicate Cond, 769 const DataLayout &DL) { 770 // FIXME: Support vector of pointers. 771 if (GEPLHS->getType()->isVectorTy()) 772 return nullptr; 773 774 if (!GEPLHS->hasAllConstantIndices()) 775 return nullptr; 776 777 // Make sure the pointers have the same type. 778 if (GEPLHS->getType() != RHS->getType()) 779 return nullptr; 780 781 Value *PtrBase, *Index; 782 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 783 784 // The set of nodes that will take part in this transformation. 785 SetVector<Value *> Nodes; 786 787 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 788 return nullptr; 789 790 // We know we can re-write this as 791 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 792 // Since we've only looked through inbouds GEPs we know that we 793 // can't have overflow on either side. We can therefore re-write 794 // this as: 795 // OFFSET1 cmp OFFSET2 796 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 797 798 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 799 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 800 // offset. Since Index is the offset of LHS to the base pointer, we will now 801 // compare the offsets instead of comparing the pointers. 802 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 803 } 804 805 /// Fold comparisons between a GEP instruction and something else. At this point 806 /// we know that the GEP is on the LHS of the comparison. 807 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 808 ICmpInst::Predicate Cond, 809 Instruction &I) { 810 // Don't transform signed compares of GEPs into index compares. Even if the 811 // GEP is inbounds, the final add of the base pointer can have signed overflow 812 // and would change the result of the icmp. 813 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 814 // the maximum signed value for the pointer type. 815 if (ICmpInst::isSigned(Cond)) 816 return nullptr; 817 818 // Look through bitcasts and addrspacecasts. We do not however want to remove 819 // 0 GEPs. 820 if (!isa<GetElementPtrInst>(RHS)) 821 RHS = RHS->stripPointerCasts(); 822 823 Value *PtrBase = GEPLHS->getOperand(0); 824 // FIXME: Support vector pointer GEPs. 825 if (PtrBase == RHS && GEPLHS->isInBounds() && 826 !GEPLHS->getType()->isVectorTy()) { 827 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 828 // This transformation (ignoring the base and scales) is valid because we 829 // know pointers can't overflow since the gep is inbounds. See if we can 830 // output an optimized form. 831 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 832 833 // If not, synthesize the offset the hard way. 834 if (!Offset) 835 Offset = EmitGEPOffset(GEPLHS); 836 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 837 Constant::getNullValue(Offset->getType())); 838 } 839 840 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 841 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 842 !NullPointerIsDefined(I.getFunction(), 843 RHS->getType()->getPointerAddressSpace())) { 844 // For most address spaces, an allocation can't be placed at null, but null 845 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 846 // the only valid inbounds address derived from null, is null itself. 847 // Thus, we have four cases to consider: 848 // 1) Base == nullptr, Offset == 0 -> inbounds, null 849 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 850 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 851 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 852 // 853 // (Note if we're indexing a type of size 0, that simply collapses into one 854 // of the buckets above.) 855 // 856 // In general, we're allowed to make values less poison (i.e. remove 857 // sources of full UB), so in this case, we just select between the two 858 // non-poison cases (1 and 4 above). 859 // 860 // For vectors, we apply the same reasoning on a per-lane basis. 861 auto *Base = GEPLHS->getPointerOperand(); 862 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 863 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 864 Base = Builder.CreateVectorSplat(EC, Base); 865 } 866 return new ICmpInst(Cond, Base, 867 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 868 cast<Constant>(RHS), Base->getType())); 869 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 870 // If the base pointers are different, but the indices are the same, just 871 // compare the base pointer. 872 if (PtrBase != GEPRHS->getOperand(0)) { 873 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 874 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 875 GEPRHS->getOperand(0)->getType(); 876 if (IndicesTheSame) 877 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 878 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 879 IndicesTheSame = false; 880 break; 881 } 882 883 // If all indices are the same, just compare the base pointers. 884 Type *BaseType = GEPLHS->getOperand(0)->getType(); 885 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 886 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 887 888 // If we're comparing GEPs with two base pointers that only differ in type 889 // and both GEPs have only constant indices or just one use, then fold 890 // the compare with the adjusted indices. 891 // FIXME: Support vector of pointers. 892 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 893 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 894 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 895 PtrBase->stripPointerCasts() == 896 GEPRHS->getOperand(0)->stripPointerCasts() && 897 !GEPLHS->getType()->isVectorTy()) { 898 Value *LOffset = EmitGEPOffset(GEPLHS); 899 Value *ROffset = EmitGEPOffset(GEPRHS); 900 901 // If we looked through an addrspacecast between different sized address 902 // spaces, the LHS and RHS pointers are different sized 903 // integers. Truncate to the smaller one. 904 Type *LHSIndexTy = LOffset->getType(); 905 Type *RHSIndexTy = ROffset->getType(); 906 if (LHSIndexTy != RHSIndexTy) { 907 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 908 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 909 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 910 } else 911 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 912 } 913 914 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 915 LOffset, ROffset); 916 return replaceInstUsesWith(I, Cmp); 917 } 918 919 // Otherwise, the base pointers are different and the indices are 920 // different. Try convert this to an indexed compare by looking through 921 // PHIs/casts. 922 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 923 } 924 925 // If one of the GEPs has all zero indices, recurse. 926 // FIXME: Handle vector of pointers. 927 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 928 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 929 ICmpInst::getSwappedPredicate(Cond), I); 930 931 // If the other GEP has all zero indices, recurse. 932 // FIXME: Handle vector of pointers. 933 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 934 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 935 936 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 937 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 938 // If the GEPs only differ by one index, compare it. 939 unsigned NumDifferences = 0; // Keep track of # differences. 940 unsigned DiffOperand = 0; // The operand that differs. 941 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 942 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 943 Type *LHSType = GEPLHS->getOperand(i)->getType(); 944 Type *RHSType = GEPRHS->getOperand(i)->getType(); 945 // FIXME: Better support for vector of pointers. 946 if (LHSType->getPrimitiveSizeInBits() != 947 RHSType->getPrimitiveSizeInBits() || 948 (GEPLHS->getType()->isVectorTy() && 949 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 950 // Irreconcilable differences. 951 NumDifferences = 2; 952 break; 953 } 954 955 if (NumDifferences++) break; 956 DiffOperand = i; 957 } 958 959 if (NumDifferences == 0) // SAME GEP? 960 return replaceInstUsesWith(I, // No comparison is needed here. 961 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 962 963 else if (NumDifferences == 1 && GEPsInBounds) { 964 Value *LHSV = GEPLHS->getOperand(DiffOperand); 965 Value *RHSV = GEPRHS->getOperand(DiffOperand); 966 // Make sure we do a signed comparison here. 967 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 968 } 969 } 970 971 // Only lower this if the icmp is the only user of the GEP or if we expect 972 // the result to fold to a constant! 973 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 974 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 975 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 976 Value *L = EmitGEPOffset(GEPLHS); 977 Value *R = EmitGEPOffset(GEPRHS); 978 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 979 } 980 } 981 982 // Try convert this to an indexed compare by looking through PHIs/casts as a 983 // last resort. 984 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 985 } 986 987 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 988 const AllocaInst *Alloca, 989 const Value *Other) { 990 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 991 992 // It would be tempting to fold away comparisons between allocas and any 993 // pointer not based on that alloca (e.g. an argument). However, even 994 // though such pointers cannot alias, they can still compare equal. 995 // 996 // But LLVM doesn't specify where allocas get their memory, so if the alloca 997 // doesn't escape we can argue that it's impossible to guess its value, and we 998 // can therefore act as if any such guesses are wrong. 999 // 1000 // The code below checks that the alloca doesn't escape, and that it's only 1001 // used in a comparison once (the current instruction). The 1002 // single-comparison-use condition ensures that we're trivially folding all 1003 // comparisons against the alloca consistently, and avoids the risk of 1004 // erroneously folding a comparison of the pointer with itself. 1005 1006 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1007 1008 SmallVector<const Use *, 32> Worklist; 1009 for (const Use &U : Alloca->uses()) { 1010 if (Worklist.size() >= MaxIter) 1011 return nullptr; 1012 Worklist.push_back(&U); 1013 } 1014 1015 unsigned NumCmps = 0; 1016 while (!Worklist.empty()) { 1017 assert(Worklist.size() <= MaxIter); 1018 const Use *U = Worklist.pop_back_val(); 1019 const Value *V = U->getUser(); 1020 --MaxIter; 1021 1022 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1023 isa<SelectInst>(V)) { 1024 // Track the uses. 1025 } else if (isa<LoadInst>(V)) { 1026 // Loading from the pointer doesn't escape it. 1027 continue; 1028 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1029 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1030 if (SI->getValueOperand() == U->get()) 1031 return nullptr; 1032 continue; 1033 } else if (isa<ICmpInst>(V)) { 1034 if (NumCmps++) 1035 return nullptr; // Found more than one cmp. 1036 continue; 1037 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1038 switch (Intrin->getIntrinsicID()) { 1039 // These intrinsics don't escape or compare the pointer. Memset is safe 1040 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1041 // we don't allow stores, so src cannot point to V. 1042 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1043 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1044 continue; 1045 default: 1046 return nullptr; 1047 } 1048 } else { 1049 return nullptr; 1050 } 1051 for (const Use &U : V->uses()) { 1052 if (Worklist.size() >= MaxIter) 1053 return nullptr; 1054 Worklist.push_back(&U); 1055 } 1056 } 1057 1058 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1059 return replaceInstUsesWith( 1060 ICI, 1061 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1062 } 1063 1064 /// Fold "icmp pred (X+C), X". 1065 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1066 ICmpInst::Predicate Pred) { 1067 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1068 // so the values can never be equal. Similarly for all other "or equals" 1069 // operators. 1070 assert(!!C && "C should not be zero!"); 1071 1072 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1073 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1074 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1075 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1076 Constant *R = ConstantInt::get(X->getType(), 1077 APInt::getMaxValue(C.getBitWidth()) - C); 1078 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1079 } 1080 1081 // (X+1) >u X --> X <u (0-1) --> X != 255 1082 // (X+2) >u X --> X <u (0-2) --> X <u 254 1083 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1084 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1085 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1086 ConstantInt::get(X->getType(), -C)); 1087 1088 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1089 1090 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1091 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1092 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1093 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1094 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1095 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1096 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1097 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1098 ConstantInt::get(X->getType(), SMax - C)); 1099 1100 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1101 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1102 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1103 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1104 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1105 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1106 1107 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1108 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1109 ConstantInt::get(X->getType(), SMax - (C - 1))); 1110 } 1111 1112 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1113 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1114 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1115 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1116 const APInt &AP1, 1117 const APInt &AP2) { 1118 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1119 1120 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1121 if (I.getPredicate() == I.ICMP_NE) 1122 Pred = CmpInst::getInversePredicate(Pred); 1123 return new ICmpInst(Pred, LHS, RHS); 1124 }; 1125 1126 // Don't bother doing any work for cases which InstSimplify handles. 1127 if (AP2.isNullValue()) 1128 return nullptr; 1129 1130 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1131 if (IsAShr) { 1132 if (AP2.isAllOnesValue()) 1133 return nullptr; 1134 if (AP2.isNegative() != AP1.isNegative()) 1135 return nullptr; 1136 if (AP2.sgt(AP1)) 1137 return nullptr; 1138 } 1139 1140 if (!AP1) 1141 // 'A' must be large enough to shift out the highest set bit. 1142 return getICmp(I.ICMP_UGT, A, 1143 ConstantInt::get(A->getType(), AP2.logBase2())); 1144 1145 if (AP1 == AP2) 1146 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1147 1148 int Shift; 1149 if (IsAShr && AP1.isNegative()) 1150 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1151 else 1152 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1153 1154 if (Shift > 0) { 1155 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1156 // There are multiple solutions if we are comparing against -1 and the LHS 1157 // of the ashr is not a power of two. 1158 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1159 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1160 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1161 } else if (AP1 == AP2.lshr(Shift)) { 1162 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1163 } 1164 } 1165 1166 // Shifting const2 will never be equal to const1. 1167 // FIXME: This should always be handled by InstSimplify? 1168 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1169 return replaceInstUsesWith(I, TorF); 1170 } 1171 1172 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1173 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1174 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1175 const APInt &AP1, 1176 const APInt &AP2) { 1177 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1178 1179 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1180 if (I.getPredicate() == I.ICMP_NE) 1181 Pred = CmpInst::getInversePredicate(Pred); 1182 return new ICmpInst(Pred, LHS, RHS); 1183 }; 1184 1185 // Don't bother doing any work for cases which InstSimplify handles. 1186 if (AP2.isNullValue()) 1187 return nullptr; 1188 1189 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1190 1191 if (!AP1 && AP2TrailingZeros != 0) 1192 return getICmp( 1193 I.ICMP_UGE, A, 1194 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1195 1196 if (AP1 == AP2) 1197 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1198 1199 // Get the distance between the lowest bits that are set. 1200 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1201 1202 if (Shift > 0 && AP2.shl(Shift) == AP1) 1203 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1204 1205 // Shifting const2 will never be equal to const1. 1206 // FIXME: This should always be handled by InstSimplify? 1207 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1208 return replaceInstUsesWith(I, TorF); 1209 } 1210 1211 /// The caller has matched a pattern of the form: 1212 /// I = icmp ugt (add (add A, B), CI2), CI1 1213 /// If this is of the form: 1214 /// sum = a + b 1215 /// if (sum+128 >u 255) 1216 /// Then replace it with llvm.sadd.with.overflow.i8. 1217 /// 1218 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1219 ConstantInt *CI2, ConstantInt *CI1, 1220 InstCombinerImpl &IC) { 1221 // The transformation we're trying to do here is to transform this into an 1222 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1223 // with a narrower add, and discard the add-with-constant that is part of the 1224 // range check (if we can't eliminate it, this isn't profitable). 1225 1226 // In order to eliminate the add-with-constant, the compare can be its only 1227 // use. 1228 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1229 if (!AddWithCst->hasOneUse()) 1230 return nullptr; 1231 1232 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1233 if (!CI2->getValue().isPowerOf2()) 1234 return nullptr; 1235 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1236 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1237 return nullptr; 1238 1239 // The width of the new add formed is 1 more than the bias. 1240 ++NewWidth; 1241 1242 // Check to see that CI1 is an all-ones value with NewWidth bits. 1243 if (CI1->getBitWidth() == NewWidth || 1244 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1245 return nullptr; 1246 1247 // This is only really a signed overflow check if the inputs have been 1248 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1249 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1250 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1251 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1252 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1253 return nullptr; 1254 1255 // In order to replace the original add with a narrower 1256 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1257 // and truncates that discard the high bits of the add. Verify that this is 1258 // the case. 1259 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1260 for (User *U : OrigAdd->users()) { 1261 if (U == AddWithCst) 1262 continue; 1263 1264 // Only accept truncates for now. We would really like a nice recursive 1265 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1266 // chain to see which bits of a value are actually demanded. If the 1267 // original add had another add which was then immediately truncated, we 1268 // could still do the transformation. 1269 TruncInst *TI = dyn_cast<TruncInst>(U); 1270 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1271 return nullptr; 1272 } 1273 1274 // If the pattern matches, truncate the inputs to the narrower type and 1275 // use the sadd_with_overflow intrinsic to efficiently compute both the 1276 // result and the overflow bit. 1277 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1278 Function *F = Intrinsic::getDeclaration( 1279 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1280 1281 InstCombiner::BuilderTy &Builder = IC.Builder; 1282 1283 // Put the new code above the original add, in case there are any uses of the 1284 // add between the add and the compare. 1285 Builder.SetInsertPoint(OrigAdd); 1286 1287 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1288 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1289 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1290 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1291 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1292 1293 // The inner add was the result of the narrow add, zero extended to the 1294 // wider type. Replace it with the result computed by the intrinsic. 1295 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1296 IC.eraseInstFromFunction(*OrigAdd); 1297 1298 // The original icmp gets replaced with the overflow value. 1299 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1300 } 1301 1302 /// If we have: 1303 /// icmp eq/ne (urem/srem %x, %y), 0 1304 /// iff %y is a power-of-two, we can replace this with a bit test: 1305 /// icmp eq/ne (and %x, (add %y, -1)), 0 1306 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1307 // This fold is only valid for equality predicates. 1308 if (!I.isEquality()) 1309 return nullptr; 1310 ICmpInst::Predicate Pred; 1311 Value *X, *Y, *Zero; 1312 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1313 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1314 return nullptr; 1315 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1316 return nullptr; 1317 // This may increase instruction count, we don't enforce that Y is a constant. 1318 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1319 Value *Masked = Builder.CreateAnd(X, Mask); 1320 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1321 } 1322 1323 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1324 /// by one-less-than-bitwidth into a sign test on the original value. 1325 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1326 Instruction *Val; 1327 ICmpInst::Predicate Pred; 1328 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1329 return nullptr; 1330 1331 Value *X; 1332 Type *XTy; 1333 1334 Constant *C; 1335 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1336 XTy = X->getType(); 1337 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1338 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1339 APInt(XBitWidth, XBitWidth - 1)))) 1340 return nullptr; 1341 } else if (isa<BinaryOperator>(Val) && 1342 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1343 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1344 /*AnalyzeForSignBitExtraction=*/true))) { 1345 XTy = X->getType(); 1346 } else 1347 return nullptr; 1348 1349 return ICmpInst::Create(Instruction::ICmp, 1350 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1351 : ICmpInst::ICMP_SLT, 1352 X, ConstantInt::getNullValue(XTy)); 1353 } 1354 1355 // Handle icmp pred X, 0 1356 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1357 CmpInst::Predicate Pred = Cmp.getPredicate(); 1358 if (!match(Cmp.getOperand(1), m_Zero())) 1359 return nullptr; 1360 1361 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1362 if (Pred == ICmpInst::ICMP_SGT) { 1363 Value *A, *B; 1364 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1365 if (SPR.Flavor == SPF_SMIN) { 1366 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1367 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1368 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1369 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1370 } 1371 } 1372 1373 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1374 return New; 1375 1376 // Given: 1377 // icmp eq/ne (urem %x, %y), 0 1378 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1379 // icmp eq/ne %x, 0 1380 Value *X, *Y; 1381 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1382 ICmpInst::isEquality(Pred)) { 1383 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1384 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1385 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1386 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1387 } 1388 1389 return nullptr; 1390 } 1391 1392 /// Fold icmp Pred X, C. 1393 /// TODO: This code structure does not make sense. The saturating add fold 1394 /// should be moved to some other helper and extended as noted below (it is also 1395 /// possible that code has been made unnecessary - do we canonicalize IR to 1396 /// overflow/saturating intrinsics or not?). 1397 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1398 // Match the following pattern, which is a common idiom when writing 1399 // overflow-safe integer arithmetic functions. The source performs an addition 1400 // in wider type and explicitly checks for overflow using comparisons against 1401 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1402 // 1403 // TODO: This could probably be generalized to handle other overflow-safe 1404 // operations if we worked out the formulas to compute the appropriate magic 1405 // constants. 1406 // 1407 // sum = a + b 1408 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1409 CmpInst::Predicate Pred = Cmp.getPredicate(); 1410 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1411 Value *A, *B; 1412 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1413 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1414 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1415 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1416 return Res; 1417 1418 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1419 Constant *C = dyn_cast<Constant>(Op1); 1420 if (!C) 1421 return nullptr; 1422 1423 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1424 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1425 Type *Ty = Cmp.getType(); 1426 Builder.SetInsertPoint(Phi); 1427 PHINode *NewPhi = 1428 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1429 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1430 auto *Input = 1431 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1432 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1433 NewPhi->addIncoming(BoolInput, Predecessor); 1434 } 1435 NewPhi->takeName(&Cmp); 1436 return replaceInstUsesWith(Cmp, NewPhi); 1437 } 1438 1439 return nullptr; 1440 } 1441 1442 /// Canonicalize icmp instructions based on dominating conditions. 1443 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1444 // This is a cheap/incomplete check for dominance - just match a single 1445 // predecessor with a conditional branch. 1446 BasicBlock *CmpBB = Cmp.getParent(); 1447 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1448 if (!DomBB) 1449 return nullptr; 1450 1451 Value *DomCond; 1452 BasicBlock *TrueBB, *FalseBB; 1453 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1454 return nullptr; 1455 1456 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1457 "Predecessor block does not point to successor?"); 1458 1459 // The branch should get simplified. Don't bother simplifying this condition. 1460 if (TrueBB == FalseBB) 1461 return nullptr; 1462 1463 // Try to simplify this compare to T/F based on the dominating condition. 1464 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1465 if (Imp) 1466 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1467 1468 CmpInst::Predicate Pred = Cmp.getPredicate(); 1469 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1470 ICmpInst::Predicate DomPred; 1471 const APInt *C, *DomC; 1472 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1473 match(Y, m_APInt(C))) { 1474 // We have 2 compares of a variable with constants. Calculate the constant 1475 // ranges of those compares to see if we can transform the 2nd compare: 1476 // DomBB: 1477 // DomCond = icmp DomPred X, DomC 1478 // br DomCond, CmpBB, FalseBB 1479 // CmpBB: 1480 // Cmp = icmp Pred X, C 1481 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1482 ConstantRange DominatingCR = 1483 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1484 : ConstantRange::makeExactICmpRegion( 1485 CmpInst::getInversePredicate(DomPred), *DomC); 1486 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1487 ConstantRange Difference = DominatingCR.difference(CR); 1488 if (Intersection.isEmptySet()) 1489 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1490 if (Difference.isEmptySet()) 1491 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1492 1493 // Canonicalizing a sign bit comparison that gets used in a branch, 1494 // pessimizes codegen by generating branch on zero instruction instead 1495 // of a test and branch. So we avoid canonicalizing in such situations 1496 // because test and branch instruction has better branch displacement 1497 // than compare and branch instruction. 1498 bool UnusedBit; 1499 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1500 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1501 return nullptr; 1502 1503 if (const APInt *EqC = Intersection.getSingleElement()) 1504 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1505 if (const APInt *NeC = Difference.getSingleElement()) 1506 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1507 } 1508 1509 return nullptr; 1510 } 1511 1512 /// Fold icmp (trunc X, Y), C. 1513 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1514 TruncInst *Trunc, 1515 const APInt &C) { 1516 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1517 Value *X = Trunc->getOperand(0); 1518 if (C.isOneValue() && C.getBitWidth() > 1) { 1519 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1520 Value *V = nullptr; 1521 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1522 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1523 ConstantInt::get(V->getType(), 1)); 1524 } 1525 1526 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1527 SrcBits = X->getType()->getScalarSizeInBits(); 1528 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1529 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1530 // of the high bits truncated out of x are known. 1531 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1532 1533 // If all the high bits are known, we can do this xform. 1534 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1535 // Pull in the high bits from known-ones set. 1536 APInt NewRHS = C.zext(SrcBits); 1537 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1538 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1539 } 1540 } 1541 1542 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1543 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1544 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1545 Value *ShOp; 1546 const APInt *ShAmtC; 1547 bool TrueIfSigned; 1548 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1549 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1550 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1551 return TrueIfSigned 1552 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1553 ConstantInt::getNullValue(X->getType())) 1554 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1555 ConstantInt::getAllOnesValue(X->getType())); 1556 } 1557 1558 return nullptr; 1559 } 1560 1561 /// Fold icmp (xor X, Y), C. 1562 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1563 BinaryOperator *Xor, 1564 const APInt &C) { 1565 Value *X = Xor->getOperand(0); 1566 Value *Y = Xor->getOperand(1); 1567 const APInt *XorC; 1568 if (!match(Y, m_APInt(XorC))) 1569 return nullptr; 1570 1571 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1572 // fold the xor. 1573 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1574 bool TrueIfSigned = false; 1575 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1576 1577 // If the sign bit of the XorCst is not set, there is no change to 1578 // the operation, just stop using the Xor. 1579 if (!XorC->isNegative()) 1580 return replaceOperand(Cmp, 0, X); 1581 1582 // Emit the opposite comparison. 1583 if (TrueIfSigned) 1584 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1585 ConstantInt::getAllOnesValue(X->getType())); 1586 else 1587 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1588 ConstantInt::getNullValue(X->getType())); 1589 } 1590 1591 if (Xor->hasOneUse()) { 1592 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1593 if (!Cmp.isEquality() && XorC->isSignMask()) { 1594 Pred = Cmp.getFlippedSignednessPredicate(); 1595 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1596 } 1597 1598 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1599 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1600 Pred = Cmp.getFlippedSignednessPredicate(); 1601 Pred = Cmp.getSwappedPredicate(Pred); 1602 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1603 } 1604 } 1605 1606 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1607 if (Pred == ICmpInst::ICMP_UGT) { 1608 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1609 if (*XorC == ~C && (C + 1).isPowerOf2()) 1610 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1611 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1612 if (*XorC == C && (C + 1).isPowerOf2()) 1613 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1614 } 1615 if (Pred == ICmpInst::ICMP_ULT) { 1616 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1617 if (*XorC == -C && C.isPowerOf2()) 1618 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1619 ConstantInt::get(X->getType(), ~C)); 1620 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1621 if (*XorC == C && (-C).isPowerOf2()) 1622 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1623 ConstantInt::get(X->getType(), ~C)); 1624 } 1625 return nullptr; 1626 } 1627 1628 /// Fold icmp (and (sh X, Y), C2), C1. 1629 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1630 BinaryOperator *And, 1631 const APInt &C1, 1632 const APInt &C2) { 1633 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1634 if (!Shift || !Shift->isShift()) 1635 return nullptr; 1636 1637 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1638 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1639 // code produced by the clang front-end, for bitfield access. 1640 // This seemingly simple opportunity to fold away a shift turns out to be 1641 // rather complicated. See PR17827 for details. 1642 unsigned ShiftOpcode = Shift->getOpcode(); 1643 bool IsShl = ShiftOpcode == Instruction::Shl; 1644 const APInt *C3; 1645 if (match(Shift->getOperand(1), m_APInt(C3))) { 1646 APInt NewAndCst, NewCmpCst; 1647 bool AnyCmpCstBitsShiftedOut; 1648 if (ShiftOpcode == Instruction::Shl) { 1649 // For a left shift, we can fold if the comparison is not signed. We can 1650 // also fold a signed comparison if the mask value and comparison value 1651 // are not negative. These constraints may not be obvious, but we can 1652 // prove that they are correct using an SMT solver. 1653 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1654 return nullptr; 1655 1656 NewCmpCst = C1.lshr(*C3); 1657 NewAndCst = C2.lshr(*C3); 1658 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1659 } else if (ShiftOpcode == Instruction::LShr) { 1660 // For a logical right shift, we can fold if the comparison is not signed. 1661 // We can also fold a signed comparison if the shifted mask value and the 1662 // shifted comparison value are not negative. These constraints may not be 1663 // obvious, but we can prove that they are correct using an SMT solver. 1664 NewCmpCst = C1.shl(*C3); 1665 NewAndCst = C2.shl(*C3); 1666 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1667 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1668 return nullptr; 1669 } else { 1670 // For an arithmetic shift, check that both constants don't use (in a 1671 // signed sense) the top bits being shifted out. 1672 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1673 NewCmpCst = C1.shl(*C3); 1674 NewAndCst = C2.shl(*C3); 1675 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1676 if (NewAndCst.ashr(*C3) != C2) 1677 return nullptr; 1678 } 1679 1680 if (AnyCmpCstBitsShiftedOut) { 1681 // If we shifted bits out, the fold is not going to work out. As a 1682 // special case, check to see if this means that the result is always 1683 // true or false now. 1684 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1685 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1686 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1687 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1688 } else { 1689 Value *NewAnd = Builder.CreateAnd( 1690 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1691 return new ICmpInst(Cmp.getPredicate(), 1692 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1693 } 1694 } 1695 1696 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1697 // preferable because it allows the C2 << Y expression to be hoisted out of a 1698 // loop if Y is invariant and X is not. 1699 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1700 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1701 // Compute C2 << Y. 1702 Value *NewShift = 1703 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1704 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1705 1706 // Compute X & (C2 << Y). 1707 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1708 return replaceOperand(Cmp, 0, NewAnd); 1709 } 1710 1711 return nullptr; 1712 } 1713 1714 /// Fold icmp (and X, C2), C1. 1715 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1716 BinaryOperator *And, 1717 const APInt &C1) { 1718 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1719 1720 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1721 // TODO: We canonicalize to the longer form for scalars because we have 1722 // better analysis/folds for icmp, and codegen may be better with icmp. 1723 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1724 match(And->getOperand(1), m_One())) 1725 return new TruncInst(And->getOperand(0), Cmp.getType()); 1726 1727 const APInt *C2; 1728 Value *X; 1729 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1730 return nullptr; 1731 1732 // Don't perform the following transforms if the AND has multiple uses 1733 if (!And->hasOneUse()) 1734 return nullptr; 1735 1736 if (Cmp.isEquality() && C1.isNullValue()) { 1737 // Restrict this fold to single-use 'and' (PR10267). 1738 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1739 if (C2->isSignMask()) { 1740 Constant *Zero = Constant::getNullValue(X->getType()); 1741 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1742 return new ICmpInst(NewPred, X, Zero); 1743 } 1744 1745 // Restrict this fold only for single-use 'and' (PR10267). 1746 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1747 if ((~(*C2) + 1).isPowerOf2()) { 1748 Constant *NegBOC = 1749 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1750 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1751 return new ICmpInst(NewPred, X, NegBOC); 1752 } 1753 } 1754 1755 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1756 // the input width without changing the value produced, eliminate the cast: 1757 // 1758 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1759 // 1760 // We can do this transformation if the constants do not have their sign bits 1761 // set or if it is an equality comparison. Extending a relational comparison 1762 // when we're checking the sign bit would not work. 1763 Value *W; 1764 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1765 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1766 // TODO: Is this a good transform for vectors? Wider types may reduce 1767 // throughput. Should this transform be limited (even for scalars) by using 1768 // shouldChangeType()? 1769 if (!Cmp.getType()->isVectorTy()) { 1770 Type *WideType = W->getType(); 1771 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1772 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1773 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1774 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1775 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1776 } 1777 } 1778 1779 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1780 return I; 1781 1782 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1783 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1784 // 1785 // iff pred isn't signed 1786 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1787 match(And->getOperand(1), m_One())) { 1788 Constant *One = cast<Constant>(And->getOperand(1)); 1789 Value *Or = And->getOperand(0); 1790 Value *A, *B, *LShr; 1791 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1792 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1793 unsigned UsesRemoved = 0; 1794 if (And->hasOneUse()) 1795 ++UsesRemoved; 1796 if (Or->hasOneUse()) 1797 ++UsesRemoved; 1798 if (LShr->hasOneUse()) 1799 ++UsesRemoved; 1800 1801 // Compute A & ((1 << B) | 1) 1802 Value *NewOr = nullptr; 1803 if (auto *C = dyn_cast<Constant>(B)) { 1804 if (UsesRemoved >= 1) 1805 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1806 } else { 1807 if (UsesRemoved >= 3) 1808 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1809 /*HasNUW=*/true), 1810 One, Or->getName()); 1811 } 1812 if (NewOr) { 1813 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1814 return replaceOperand(Cmp, 0, NewAnd); 1815 } 1816 } 1817 } 1818 1819 return nullptr; 1820 } 1821 1822 /// Fold icmp (and X, Y), C. 1823 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1824 BinaryOperator *And, 1825 const APInt &C) { 1826 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1827 return I; 1828 1829 // TODO: These all require that Y is constant too, so refactor with the above. 1830 1831 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1832 Value *X = And->getOperand(0); 1833 Value *Y = And->getOperand(1); 1834 if (auto *LI = dyn_cast<LoadInst>(X)) 1835 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1836 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1837 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1838 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1839 ConstantInt *C2 = cast<ConstantInt>(Y); 1840 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1841 return Res; 1842 } 1843 1844 if (!Cmp.isEquality()) 1845 return nullptr; 1846 1847 // X & -C == -C -> X > u ~C 1848 // X & -C != -C -> X <= u ~C 1849 // iff C is a power of 2 1850 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1851 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1852 : CmpInst::ICMP_ULE; 1853 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1854 } 1855 1856 // (X & C2) == 0 -> (trunc X) >= 0 1857 // (X & C2) != 0 -> (trunc X) < 0 1858 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1859 const APInt *C2; 1860 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1861 int32_t ExactLogBase2 = C2->exactLogBase2(); 1862 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1863 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1864 if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) 1865 NTy = VectorType::get(NTy, AndVTy->getElementCount()); 1866 Value *Trunc = Builder.CreateTrunc(X, NTy); 1867 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1868 : CmpInst::ICMP_SLT; 1869 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1870 } 1871 } 1872 1873 return nullptr; 1874 } 1875 1876 /// Fold icmp (or X, Y), C. 1877 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1878 BinaryOperator *Or, 1879 const APInt &C) { 1880 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1881 if (C.isOneValue()) { 1882 // icmp slt signum(V) 1 --> icmp slt V, 1 1883 Value *V = nullptr; 1884 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1885 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1886 ConstantInt::get(V->getType(), 1)); 1887 } 1888 1889 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1890 const APInt *MaskC; 1891 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1892 if (*MaskC == C && (C + 1).isPowerOf2()) { 1893 // X | C == C --> X <=u C 1894 // X | C != C --> X >u C 1895 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1896 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1897 return new ICmpInst(Pred, OrOp0, OrOp1); 1898 } 1899 1900 // More general: canonicalize 'equality with set bits mask' to 1901 // 'equality with clear bits mask'. 1902 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1903 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1904 if (Or->hasOneUse()) { 1905 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1906 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1907 return new ICmpInst(Pred, And, NewC); 1908 } 1909 } 1910 1911 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1912 return nullptr; 1913 1914 Value *P, *Q; 1915 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1916 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1917 // -> and (icmp eq P, null), (icmp eq Q, null). 1918 Value *CmpP = 1919 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1920 Value *CmpQ = 1921 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1922 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1923 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1924 } 1925 1926 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1927 // a shorter form that has more potential to be folded even further. 1928 Value *X1, *X2, *X3, *X4; 1929 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1930 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1931 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1932 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1933 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1934 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1935 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1936 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1937 } 1938 1939 return nullptr; 1940 } 1941 1942 /// Fold icmp (mul X, Y), C. 1943 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1944 BinaryOperator *Mul, 1945 const APInt &C) { 1946 const APInt *MulC; 1947 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1948 return nullptr; 1949 1950 // If this is a test of the sign bit and the multiply is sign-preserving with 1951 // a constant operand, use the multiply LHS operand instead. 1952 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1953 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1954 if (MulC->isNegative()) 1955 Pred = ICmpInst::getSwappedPredicate(Pred); 1956 return new ICmpInst(Pred, Mul->getOperand(0), 1957 Constant::getNullValue(Mul->getType())); 1958 } 1959 1960 // If the multiply does not wrap, try to divide the compare constant by the 1961 // multiplication factor. 1962 if (Cmp.isEquality() && !MulC->isNullValue()) { 1963 // (mul nsw X, MulC) == C --> X == C /s MulC 1964 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) { 1965 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1966 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1967 } 1968 // (mul nuw X, MulC) == C --> X == C /u MulC 1969 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) { 1970 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1971 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1972 } 1973 } 1974 1975 return nullptr; 1976 } 1977 1978 /// Fold icmp (shl 1, Y), C. 1979 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1980 const APInt &C) { 1981 Value *Y; 1982 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1983 return nullptr; 1984 1985 Type *ShiftType = Shl->getType(); 1986 unsigned TypeBits = C.getBitWidth(); 1987 bool CIsPowerOf2 = C.isPowerOf2(); 1988 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1989 if (Cmp.isUnsigned()) { 1990 // (1 << Y) pred C -> Y pred Log2(C) 1991 if (!CIsPowerOf2) { 1992 // (1 << Y) < 30 -> Y <= 4 1993 // (1 << Y) <= 30 -> Y <= 4 1994 // (1 << Y) >= 30 -> Y > 4 1995 // (1 << Y) > 30 -> Y > 4 1996 if (Pred == ICmpInst::ICMP_ULT) 1997 Pred = ICmpInst::ICMP_ULE; 1998 else if (Pred == ICmpInst::ICMP_UGE) 1999 Pred = ICmpInst::ICMP_UGT; 2000 } 2001 2002 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2003 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2004 unsigned CLog2 = C.logBase2(); 2005 if (CLog2 == TypeBits - 1) { 2006 if (Pred == ICmpInst::ICMP_UGE) 2007 Pred = ICmpInst::ICMP_EQ; 2008 else if (Pred == ICmpInst::ICMP_ULT) 2009 Pred = ICmpInst::ICMP_NE; 2010 } 2011 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2012 } else if (Cmp.isSigned()) { 2013 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2014 if (C.isAllOnesValue()) { 2015 // (1 << Y) <= -1 -> Y == 31 2016 if (Pred == ICmpInst::ICMP_SLE) 2017 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2018 2019 // (1 << Y) > -1 -> Y != 31 2020 if (Pred == ICmpInst::ICMP_SGT) 2021 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2022 } else if (!C) { 2023 // (1 << Y) < 0 -> Y == 31 2024 // (1 << Y) <= 0 -> Y == 31 2025 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2026 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2027 2028 // (1 << Y) >= 0 -> Y != 31 2029 // (1 << Y) > 0 -> Y != 31 2030 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2031 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2032 } 2033 } else if (Cmp.isEquality() && CIsPowerOf2) { 2034 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2035 } 2036 2037 return nullptr; 2038 } 2039 2040 /// Fold icmp (shl X, Y), C. 2041 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2042 BinaryOperator *Shl, 2043 const APInt &C) { 2044 const APInt *ShiftVal; 2045 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2046 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2047 2048 const APInt *ShiftAmt; 2049 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2050 return foldICmpShlOne(Cmp, Shl, C); 2051 2052 // Check that the shift amount is in range. If not, don't perform undefined 2053 // shifts. When the shift is visited, it will be simplified. 2054 unsigned TypeBits = C.getBitWidth(); 2055 if (ShiftAmt->uge(TypeBits)) 2056 return nullptr; 2057 2058 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2059 Value *X = Shl->getOperand(0); 2060 Type *ShType = Shl->getType(); 2061 2062 // NSW guarantees that we are only shifting out sign bits from the high bits, 2063 // so we can ASHR the compare constant without needing a mask and eliminate 2064 // the shift. 2065 if (Shl->hasNoSignedWrap()) { 2066 if (Pred == ICmpInst::ICMP_SGT) { 2067 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2068 APInt ShiftedC = C.ashr(*ShiftAmt); 2069 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2070 } 2071 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2072 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2073 APInt ShiftedC = C.ashr(*ShiftAmt); 2074 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2075 } 2076 if (Pred == ICmpInst::ICMP_SLT) { 2077 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2078 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2079 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2080 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2081 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2082 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2083 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2084 } 2085 // If this is a signed comparison to 0 and the shift is sign preserving, 2086 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2087 // do that if we're sure to not continue on in this function. 2088 if (isSignTest(Pred, C)) 2089 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2090 } 2091 2092 // NUW guarantees that we are only shifting out zero bits from the high bits, 2093 // so we can LSHR the compare constant without needing a mask and eliminate 2094 // the shift. 2095 if (Shl->hasNoUnsignedWrap()) { 2096 if (Pred == ICmpInst::ICMP_UGT) { 2097 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2098 APInt ShiftedC = C.lshr(*ShiftAmt); 2099 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2100 } 2101 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2102 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2103 APInt ShiftedC = C.lshr(*ShiftAmt); 2104 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2105 } 2106 if (Pred == ICmpInst::ICMP_ULT) { 2107 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2108 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2109 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2110 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2111 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2112 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2113 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2114 } 2115 } 2116 2117 if (Cmp.isEquality() && Shl->hasOneUse()) { 2118 // Strength-reduce the shift into an 'and'. 2119 Constant *Mask = ConstantInt::get( 2120 ShType, 2121 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2122 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2123 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2124 return new ICmpInst(Pred, And, LShrC); 2125 } 2126 2127 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2128 bool TrueIfSigned = false; 2129 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2130 // (X << 31) <s 0 --> (X & 1) != 0 2131 Constant *Mask = ConstantInt::get( 2132 ShType, 2133 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2134 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2135 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2136 And, Constant::getNullValue(ShType)); 2137 } 2138 2139 // Simplify 'shl' inequality test into 'and' equality test. 2140 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2141 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2142 if ((C + 1).isPowerOf2() && 2143 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2144 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2145 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2146 : ICmpInst::ICMP_NE, 2147 And, Constant::getNullValue(ShType)); 2148 } 2149 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2150 if (C.isPowerOf2() && 2151 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2152 Value *And = 2153 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2154 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2155 : ICmpInst::ICMP_NE, 2156 And, Constant::getNullValue(ShType)); 2157 } 2158 } 2159 2160 // Transform (icmp pred iM (shl iM %v, N), C) 2161 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2162 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2163 // This enables us to get rid of the shift in favor of a trunc that may be 2164 // free on the target. It has the additional benefit of comparing to a 2165 // smaller constant that may be more target-friendly. 2166 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2167 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2168 DL.isLegalInteger(TypeBits - Amt)) { 2169 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2170 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2171 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2172 Constant *NewC = 2173 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2174 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2175 } 2176 2177 return nullptr; 2178 } 2179 2180 /// Fold icmp ({al}shr X, Y), C. 2181 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2182 BinaryOperator *Shr, 2183 const APInt &C) { 2184 // An exact shr only shifts out zero bits, so: 2185 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2186 Value *X = Shr->getOperand(0); 2187 CmpInst::Predicate Pred = Cmp.getPredicate(); 2188 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2189 C.isNullValue()) 2190 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2191 2192 const APInt *ShiftVal; 2193 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2194 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2195 2196 const APInt *ShiftAmt; 2197 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2198 return nullptr; 2199 2200 // Check that the shift amount is in range. If not, don't perform undefined 2201 // shifts. When the shift is visited it will be simplified. 2202 unsigned TypeBits = C.getBitWidth(); 2203 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2204 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2205 return nullptr; 2206 2207 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2208 bool IsExact = Shr->isExact(); 2209 Type *ShrTy = Shr->getType(); 2210 // TODO: If we could guarantee that InstSimplify would handle all of the 2211 // constant-value-based preconditions in the folds below, then we could assert 2212 // those conditions rather than checking them. This is difficult because of 2213 // undef/poison (PR34838). 2214 if (IsAShr) { 2215 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2216 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2217 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2218 APInt ShiftedC = C.shl(ShAmtVal); 2219 if (ShiftedC.ashr(ShAmtVal) == C) 2220 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2221 } 2222 if (Pred == CmpInst::ICMP_SGT) { 2223 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2224 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2225 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2226 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2227 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2228 } 2229 2230 // If the compare constant has significant bits above the lowest sign-bit, 2231 // then convert an unsigned cmp to a test of the sign-bit: 2232 // (ashr X, ShiftC) u> C --> X s< 0 2233 // (ashr X, ShiftC) u< C --> X s> -1 2234 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2235 if (Pred == CmpInst::ICMP_UGT) { 2236 return new ICmpInst(CmpInst::ICMP_SLT, X, 2237 ConstantInt::getNullValue(ShrTy)); 2238 } 2239 if (Pred == CmpInst::ICMP_ULT) { 2240 return new ICmpInst(CmpInst::ICMP_SGT, X, 2241 ConstantInt::getAllOnesValue(ShrTy)); 2242 } 2243 } 2244 } else { 2245 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2246 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2247 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2248 APInt ShiftedC = C.shl(ShAmtVal); 2249 if (ShiftedC.lshr(ShAmtVal) == C) 2250 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2251 } 2252 if (Pred == CmpInst::ICMP_UGT) { 2253 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2254 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2255 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2256 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2257 } 2258 } 2259 2260 if (!Cmp.isEquality()) 2261 return nullptr; 2262 2263 // Handle equality comparisons of shift-by-constant. 2264 2265 // If the comparison constant changes with the shift, the comparison cannot 2266 // succeed (bits of the comparison constant cannot match the shifted value). 2267 // This should be known by InstSimplify and already be folded to true/false. 2268 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2269 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2270 "Expected icmp+shr simplify did not occur."); 2271 2272 // If the bits shifted out are known zero, compare the unshifted value: 2273 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2274 if (Shr->isExact()) 2275 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2276 2277 if (Shr->hasOneUse()) { 2278 // Canonicalize the shift into an 'and': 2279 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2280 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2281 Constant *Mask = ConstantInt::get(ShrTy, Val); 2282 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2283 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2284 } 2285 2286 return nullptr; 2287 } 2288 2289 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2290 BinaryOperator *SRem, 2291 const APInt &C) { 2292 // Match an 'is positive' or 'is negative' comparison of remainder by a 2293 // constant power-of-2 value: 2294 // (X % pow2C) sgt/slt 0 2295 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2296 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2297 return nullptr; 2298 2299 // TODO: The one-use check is standard because we do not typically want to 2300 // create longer instruction sequences, but this might be a special-case 2301 // because srem is not good for analysis or codegen. 2302 if (!SRem->hasOneUse()) 2303 return nullptr; 2304 2305 const APInt *DivisorC; 2306 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2307 return nullptr; 2308 2309 // Mask off the sign bit and the modulo bits (low-bits). 2310 Type *Ty = SRem->getType(); 2311 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2312 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2313 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2314 2315 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2316 // bit is set. Example: 2317 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2318 if (Pred == ICmpInst::ICMP_SGT) 2319 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2320 2321 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2322 // bit is set. Example: 2323 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2324 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2325 } 2326 2327 /// Fold icmp (udiv X, Y), C. 2328 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2329 BinaryOperator *UDiv, 2330 const APInt &C) { 2331 const APInt *C2; 2332 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2333 return nullptr; 2334 2335 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2336 2337 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2338 Value *Y = UDiv->getOperand(1); 2339 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2340 assert(!C.isMaxValue() && 2341 "icmp ugt X, UINT_MAX should have been simplified already."); 2342 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2343 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2344 } 2345 2346 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2347 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2348 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2349 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2350 ConstantInt::get(Y->getType(), C2->udiv(C))); 2351 } 2352 2353 return nullptr; 2354 } 2355 2356 /// Fold icmp ({su}div X, Y), C. 2357 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2358 BinaryOperator *Div, 2359 const APInt &C) { 2360 // Fold: icmp pred ([us]div X, C2), C -> range test 2361 // Fold this div into the comparison, producing a range check. 2362 // Determine, based on the divide type, what the range is being 2363 // checked. If there is an overflow on the low or high side, remember 2364 // it, otherwise compute the range [low, hi) bounding the new value. 2365 // See: InsertRangeTest above for the kinds of replacements possible. 2366 const APInt *C2; 2367 if (!match(Div->getOperand(1), m_APInt(C2))) 2368 return nullptr; 2369 2370 // FIXME: If the operand types don't match the type of the divide 2371 // then don't attempt this transform. The code below doesn't have the 2372 // logic to deal with a signed divide and an unsigned compare (and 2373 // vice versa). This is because (x /s C2) <s C produces different 2374 // results than (x /s C2) <u C or (x /u C2) <s C or even 2375 // (x /u C2) <u C. Simply casting the operands and result won't 2376 // work. :( The if statement below tests that condition and bails 2377 // if it finds it. 2378 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2379 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2380 return nullptr; 2381 2382 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2383 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2384 // division-by-constant cases should be present, we can not assert that they 2385 // have happened before we reach this icmp instruction. 2386 if (C2->isNullValue() || C2->isOneValue() || 2387 (DivIsSigned && C2->isAllOnesValue())) 2388 return nullptr; 2389 2390 // Compute Prod = C * C2. We are essentially solving an equation of 2391 // form X / C2 = C. We solve for X by multiplying C2 and C. 2392 // By solving for X, we can turn this into a range check instead of computing 2393 // a divide. 2394 APInt Prod = C * *C2; 2395 2396 // Determine if the product overflows by seeing if the product is not equal to 2397 // the divide. Make sure we do the same kind of divide as in the LHS 2398 // instruction that we're folding. 2399 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2400 2401 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2402 2403 // If the division is known to be exact, then there is no remainder from the 2404 // divide, so the covered range size is unit, otherwise it is the divisor. 2405 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2406 2407 // Figure out the interval that is being checked. For example, a comparison 2408 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2409 // Compute this interval based on the constants involved and the signedness of 2410 // the compare/divide. This computes a half-open interval, keeping track of 2411 // whether either value in the interval overflows. After analysis each 2412 // overflow variable is set to 0 if it's corresponding bound variable is valid 2413 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2414 int LoOverflow = 0, HiOverflow = 0; 2415 APInt LoBound, HiBound; 2416 2417 if (!DivIsSigned) { // udiv 2418 // e.g. X/5 op 3 --> [15, 20) 2419 LoBound = Prod; 2420 HiOverflow = LoOverflow = ProdOV; 2421 if (!HiOverflow) { 2422 // If this is not an exact divide, then many values in the range collapse 2423 // to the same result value. 2424 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2425 } 2426 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2427 if (C.isNullValue()) { // (X / pos) op 0 2428 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2429 LoBound = -(RangeSize - 1); 2430 HiBound = RangeSize; 2431 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2432 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2433 HiOverflow = LoOverflow = ProdOV; 2434 if (!HiOverflow) 2435 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2436 } else { // (X / pos) op neg 2437 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2438 HiBound = Prod + 1; 2439 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2440 if (!LoOverflow) { 2441 APInt DivNeg = -RangeSize; 2442 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2443 } 2444 } 2445 } else if (C2->isNegative()) { // Divisor is < 0. 2446 if (Div->isExact()) 2447 RangeSize.negate(); 2448 if (C.isNullValue()) { // (X / neg) op 0 2449 // e.g. X/-5 op 0 --> [-4, 5) 2450 LoBound = RangeSize + 1; 2451 HiBound = -RangeSize; 2452 if (HiBound == *C2) { // -INTMIN = INTMIN 2453 HiOverflow = 1; // [INTMIN+1, overflow) 2454 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2455 } 2456 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2457 // e.g. X/-5 op 3 --> [-19, -14) 2458 HiBound = Prod + 1; 2459 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2460 if (!LoOverflow) 2461 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2462 } else { // (X / neg) op neg 2463 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2464 LoOverflow = HiOverflow = ProdOV; 2465 if (!HiOverflow) 2466 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2467 } 2468 2469 // Dividing by a negative swaps the condition. LT <-> GT 2470 Pred = ICmpInst::getSwappedPredicate(Pred); 2471 } 2472 2473 Value *X = Div->getOperand(0); 2474 switch (Pred) { 2475 default: llvm_unreachable("Unhandled icmp opcode!"); 2476 case ICmpInst::ICMP_EQ: 2477 if (LoOverflow && HiOverflow) 2478 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2479 if (HiOverflow) 2480 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2481 ICmpInst::ICMP_UGE, X, 2482 ConstantInt::get(Div->getType(), LoBound)); 2483 if (LoOverflow) 2484 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2485 ICmpInst::ICMP_ULT, X, 2486 ConstantInt::get(Div->getType(), HiBound)); 2487 return replaceInstUsesWith( 2488 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2489 case ICmpInst::ICMP_NE: 2490 if (LoOverflow && HiOverflow) 2491 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2492 if (HiOverflow) 2493 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2494 ICmpInst::ICMP_ULT, X, 2495 ConstantInt::get(Div->getType(), LoBound)); 2496 if (LoOverflow) 2497 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2498 ICmpInst::ICMP_UGE, X, 2499 ConstantInt::get(Div->getType(), HiBound)); 2500 return replaceInstUsesWith(Cmp, 2501 insertRangeTest(X, LoBound, HiBound, 2502 DivIsSigned, false)); 2503 case ICmpInst::ICMP_ULT: 2504 case ICmpInst::ICMP_SLT: 2505 if (LoOverflow == +1) // Low bound is greater than input range. 2506 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2507 if (LoOverflow == -1) // Low bound is less than input range. 2508 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2509 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2510 case ICmpInst::ICMP_UGT: 2511 case ICmpInst::ICMP_SGT: 2512 if (HiOverflow == +1) // High bound greater than input range. 2513 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2514 if (HiOverflow == -1) // High bound less than input range. 2515 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2516 if (Pred == ICmpInst::ICMP_UGT) 2517 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2518 ConstantInt::get(Div->getType(), HiBound)); 2519 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2520 ConstantInt::get(Div->getType(), HiBound)); 2521 } 2522 2523 return nullptr; 2524 } 2525 2526 /// Fold icmp (sub X, Y), C. 2527 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2528 BinaryOperator *Sub, 2529 const APInt &C) { 2530 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2531 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2532 const APInt *C2; 2533 APInt SubResult; 2534 2535 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2536 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2537 return new ICmpInst(Cmp.getPredicate(), Y, 2538 ConstantInt::get(Y->getType(), 0)); 2539 2540 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2541 if (match(X, m_APInt(C2)) && 2542 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2543 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2544 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2545 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2546 ConstantInt::get(Y->getType(), SubResult)); 2547 2548 // The following transforms are only worth it if the only user of the subtract 2549 // is the icmp. 2550 if (!Sub->hasOneUse()) 2551 return nullptr; 2552 2553 if (Sub->hasNoSignedWrap()) { 2554 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2555 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2556 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2557 2558 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2559 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2560 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2561 2562 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2563 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2564 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2565 2566 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2567 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2568 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2569 } 2570 2571 if (!match(X, m_APInt(C2))) 2572 return nullptr; 2573 2574 // C2 - Y <u C -> (Y | (C - 1)) == C2 2575 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2576 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2577 (*C2 & (C - 1)) == (C - 1)) 2578 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2579 2580 // C2 - Y >u C -> (Y | C) != C2 2581 // iff C2 & C == C and C + 1 is a power of 2 2582 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2583 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2584 2585 return nullptr; 2586 } 2587 2588 /// Fold icmp (add X, Y), C. 2589 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2590 BinaryOperator *Add, 2591 const APInt &C) { 2592 Value *Y = Add->getOperand(1); 2593 const APInt *C2; 2594 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2595 return nullptr; 2596 2597 // Fold icmp pred (add X, C2), C. 2598 Value *X = Add->getOperand(0); 2599 Type *Ty = Add->getType(); 2600 CmpInst::Predicate Pred = Cmp.getPredicate(); 2601 2602 // If the add does not wrap, we can always adjust the compare by subtracting 2603 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2604 // are canonicalized to SGT/SLT/UGT/ULT. 2605 if ((Add->hasNoSignedWrap() && 2606 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2607 (Add->hasNoUnsignedWrap() && 2608 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2609 bool Overflow; 2610 APInt NewC = 2611 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2612 // If there is overflow, the result must be true or false. 2613 // TODO: Can we assert there is no overflow because InstSimplify always 2614 // handles those cases? 2615 if (!Overflow) 2616 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2617 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2618 } 2619 2620 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2621 const APInt &Upper = CR.getUpper(); 2622 const APInt &Lower = CR.getLower(); 2623 if (Cmp.isSigned()) { 2624 if (Lower.isSignMask()) 2625 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2626 if (Upper.isSignMask()) 2627 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2628 } else { 2629 if (Lower.isMinValue()) 2630 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2631 if (Upper.isMinValue()) 2632 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2633 } 2634 2635 if (!Add->hasOneUse()) 2636 return nullptr; 2637 2638 // X+C <u C2 -> (X & -C2) == C 2639 // iff C & (C2-1) == 0 2640 // C2 is a power of 2 2641 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2642 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2643 ConstantExpr::getNeg(cast<Constant>(Y))); 2644 2645 // X+C >u C2 -> (X & ~C2) != C 2646 // iff C & C2 == 0 2647 // C2+1 is a power of 2 2648 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2649 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2650 ConstantExpr::getNeg(cast<Constant>(Y))); 2651 2652 return nullptr; 2653 } 2654 2655 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2656 Value *&RHS, ConstantInt *&Less, 2657 ConstantInt *&Equal, 2658 ConstantInt *&Greater) { 2659 // TODO: Generalize this to work with other comparison idioms or ensure 2660 // they get canonicalized into this form. 2661 2662 // select i1 (a == b), 2663 // i32 Equal, 2664 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2665 // where Equal, Less and Greater are placeholders for any three constants. 2666 ICmpInst::Predicate PredA; 2667 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2668 !ICmpInst::isEquality(PredA)) 2669 return false; 2670 Value *EqualVal = SI->getTrueValue(); 2671 Value *UnequalVal = SI->getFalseValue(); 2672 // We still can get non-canonical predicate here, so canonicalize. 2673 if (PredA == ICmpInst::ICMP_NE) 2674 std::swap(EqualVal, UnequalVal); 2675 if (!match(EqualVal, m_ConstantInt(Equal))) 2676 return false; 2677 ICmpInst::Predicate PredB; 2678 Value *LHS2, *RHS2; 2679 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2680 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2681 return false; 2682 // We can get predicate mismatch here, so canonicalize if possible: 2683 // First, ensure that 'LHS' match. 2684 if (LHS2 != LHS) { 2685 // x sgt y <--> y slt x 2686 std::swap(LHS2, RHS2); 2687 PredB = ICmpInst::getSwappedPredicate(PredB); 2688 } 2689 if (LHS2 != LHS) 2690 return false; 2691 // We also need to canonicalize 'RHS'. 2692 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2693 // x sgt C-1 <--> x sge C <--> not(x slt C) 2694 auto FlippedStrictness = 2695 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2696 PredB, cast<Constant>(RHS2)); 2697 if (!FlippedStrictness) 2698 return false; 2699 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2700 RHS2 = FlippedStrictness->second; 2701 // And kind-of perform the result swap. 2702 std::swap(Less, Greater); 2703 PredB = ICmpInst::ICMP_SLT; 2704 } 2705 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2706 } 2707 2708 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2709 SelectInst *Select, 2710 ConstantInt *C) { 2711 2712 assert(C && "Cmp RHS should be a constant int!"); 2713 // If we're testing a constant value against the result of a three way 2714 // comparison, the result can be expressed directly in terms of the 2715 // original values being compared. Note: We could possibly be more 2716 // aggressive here and remove the hasOneUse test. The original select is 2717 // really likely to simplify or sink when we remove a test of the result. 2718 Value *OrigLHS, *OrigRHS; 2719 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2720 if (Cmp.hasOneUse() && 2721 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2722 C3GreaterThan)) { 2723 assert(C1LessThan && C2Equal && C3GreaterThan); 2724 2725 bool TrueWhenLessThan = 2726 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2727 ->isAllOnesValue(); 2728 bool TrueWhenEqual = 2729 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2730 ->isAllOnesValue(); 2731 bool TrueWhenGreaterThan = 2732 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2733 ->isAllOnesValue(); 2734 2735 // This generates the new instruction that will replace the original Cmp 2736 // Instruction. Instead of enumerating the various combinations when 2737 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2738 // false, we rely on chaining of ORs and future passes of InstCombine to 2739 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2740 2741 // When none of the three constants satisfy the predicate for the RHS (C), 2742 // the entire original Cmp can be simplified to a false. 2743 Value *Cond = Builder.getFalse(); 2744 if (TrueWhenLessThan) 2745 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2746 OrigLHS, OrigRHS)); 2747 if (TrueWhenEqual) 2748 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2749 OrigLHS, OrigRHS)); 2750 if (TrueWhenGreaterThan) 2751 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2752 OrigLHS, OrigRHS)); 2753 2754 return replaceInstUsesWith(Cmp, Cond); 2755 } 2756 return nullptr; 2757 } 2758 2759 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2760 InstCombiner::BuilderTy &Builder) { 2761 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2762 if (!Bitcast) 2763 return nullptr; 2764 2765 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2766 Value *Op1 = Cmp.getOperand(1); 2767 Value *BCSrcOp = Bitcast->getOperand(0); 2768 2769 // Make sure the bitcast doesn't change the number of vector elements. 2770 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2771 Bitcast->getDestTy()->getScalarSizeInBits()) { 2772 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2773 Value *X; 2774 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2775 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2776 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2777 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2778 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2779 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2780 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2781 match(Op1, m_Zero())) 2782 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2783 2784 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2785 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2786 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2787 2788 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2789 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2790 return new ICmpInst(Pred, X, 2791 ConstantInt::getAllOnesValue(X->getType())); 2792 } 2793 2794 // Zero-equality checks are preserved through unsigned floating-point casts: 2795 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2796 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2797 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2798 if (Cmp.isEquality() && match(Op1, m_Zero())) 2799 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2800 2801 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2802 // the FP extend/truncate because that cast does not change the sign-bit. 2803 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2804 // The sign-bit is always the most significant bit in those types. 2805 const APInt *C; 2806 bool TrueIfSigned; 2807 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2808 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2809 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2810 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2811 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2812 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2813 Type *XType = X->getType(); 2814 2815 // We can't currently handle Power style floating point operations here. 2816 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2817 2818 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2819 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2820 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2821 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2822 if (TrueIfSigned) 2823 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2824 ConstantInt::getNullValue(NewType)); 2825 else 2826 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2827 ConstantInt::getAllOnesValue(NewType)); 2828 } 2829 } 2830 } 2831 } 2832 2833 // Test to see if the operands of the icmp are casted versions of other 2834 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2835 if (Bitcast->getType()->isPointerTy() && 2836 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2837 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2838 // so eliminate it as well. 2839 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2840 Op1 = BC2->getOperand(0); 2841 2842 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2843 return new ICmpInst(Pred, BCSrcOp, Op1); 2844 } 2845 2846 // Folding: icmp <pred> iN X, C 2847 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2848 // and C is a splat of a K-bit pattern 2849 // and SC is a constant vector = <C', C', C', ..., C'> 2850 // Into: 2851 // %E = extractelement <M x iK> %vec, i32 C' 2852 // icmp <pred> iK %E, trunc(C) 2853 const APInt *C; 2854 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2855 !Bitcast->getType()->isIntegerTy() || 2856 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2857 return nullptr; 2858 2859 Value *Vec; 2860 ArrayRef<int> Mask; 2861 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2862 // Check whether every element of Mask is the same constant 2863 if (is_splat(Mask)) { 2864 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2865 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2866 if (C->isSplat(EltTy->getBitWidth())) { 2867 // Fold the icmp based on the value of C 2868 // If C is M copies of an iK sized bit pattern, 2869 // then: 2870 // => %E = extractelement <N x iK> %vec, i32 Elem 2871 // icmp <pred> iK %SplatVal, <pattern> 2872 Value *Elem = Builder.getInt32(Mask[0]); 2873 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2874 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2875 return new ICmpInst(Pred, Extract, NewC); 2876 } 2877 } 2878 } 2879 return nullptr; 2880 } 2881 2882 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2883 /// where X is some kind of instruction. 2884 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 2885 const APInt *C; 2886 if (!match(Cmp.getOperand(1), m_APInt(C))) 2887 return nullptr; 2888 2889 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2890 switch (BO->getOpcode()) { 2891 case Instruction::Xor: 2892 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2893 return I; 2894 break; 2895 case Instruction::And: 2896 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2897 return I; 2898 break; 2899 case Instruction::Or: 2900 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2901 return I; 2902 break; 2903 case Instruction::Mul: 2904 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2905 return I; 2906 break; 2907 case Instruction::Shl: 2908 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2909 return I; 2910 break; 2911 case Instruction::LShr: 2912 case Instruction::AShr: 2913 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2914 return I; 2915 break; 2916 case Instruction::SRem: 2917 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 2918 return I; 2919 break; 2920 case Instruction::UDiv: 2921 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2922 return I; 2923 LLVM_FALLTHROUGH; 2924 case Instruction::SDiv: 2925 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2926 return I; 2927 break; 2928 case Instruction::Sub: 2929 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2930 return I; 2931 break; 2932 case Instruction::Add: 2933 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2934 return I; 2935 break; 2936 default: 2937 break; 2938 } 2939 // TODO: These folds could be refactored to be part of the above calls. 2940 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2941 return I; 2942 } 2943 2944 // Match against CmpInst LHS being instructions other than binary operators. 2945 2946 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2947 // For now, we only support constant integers while folding the 2948 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2949 // similar to the cases handled by binary ops above. 2950 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2951 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2952 return I; 2953 } 2954 2955 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2956 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2957 return I; 2958 } 2959 2960 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2961 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2962 return I; 2963 2964 return nullptr; 2965 } 2966 2967 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2968 /// icmp eq/ne BO, C. 2969 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 2970 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 2971 // TODO: Some of these folds could work with arbitrary constants, but this 2972 // function is limited to scalar and vector splat constants. 2973 if (!Cmp.isEquality()) 2974 return nullptr; 2975 2976 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2977 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2978 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2979 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2980 2981 switch (BO->getOpcode()) { 2982 case Instruction::SRem: 2983 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2984 if (C.isNullValue() && BO->hasOneUse()) { 2985 const APInt *BOC; 2986 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2987 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2988 return new ICmpInst(Pred, NewRem, 2989 Constant::getNullValue(BO->getType())); 2990 } 2991 } 2992 break; 2993 case Instruction::Add: { 2994 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2995 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2996 if (BO->hasOneUse()) 2997 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 2998 } else if (C.isNullValue()) { 2999 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3000 // efficiently invertible, or if the add has just this one use. 3001 if (Value *NegVal = dyn_castNegVal(BOp1)) 3002 return new ICmpInst(Pred, BOp0, NegVal); 3003 if (Value *NegVal = dyn_castNegVal(BOp0)) 3004 return new ICmpInst(Pred, NegVal, BOp1); 3005 if (BO->hasOneUse()) { 3006 Value *Neg = Builder.CreateNeg(BOp1); 3007 Neg->takeName(BO); 3008 return new ICmpInst(Pred, BOp0, Neg); 3009 } 3010 } 3011 break; 3012 } 3013 case Instruction::Xor: 3014 if (BO->hasOneUse()) { 3015 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3016 // For the xor case, we can xor two constants together, eliminating 3017 // the explicit xor. 3018 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3019 } else if (C.isNullValue()) { 3020 // Replace ((xor A, B) != 0) with (A != B) 3021 return new ICmpInst(Pred, BOp0, BOp1); 3022 } 3023 } 3024 break; 3025 case Instruction::Sub: 3026 if (BO->hasOneUse()) { 3027 // Only check for constant LHS here, as constant RHS will be canonicalized 3028 // to add and use the fold above. 3029 if (Constant *BOC = dyn_cast<Constant>(BOp0)) { 3030 // Replace ((sub BOC, B) != C) with (B != BOC-C). 3031 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); 3032 } else if (C.isNullValue()) { 3033 // Replace ((sub A, B) != 0) with (A != B). 3034 return new ICmpInst(Pred, BOp0, BOp1); 3035 } 3036 } 3037 break; 3038 case Instruction::Or: { 3039 const APInt *BOC; 3040 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3041 // Comparing if all bits outside of a constant mask are set? 3042 // Replace (X | C) == -1 with (X & ~C) == ~C. 3043 // This removes the -1 constant. 3044 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3045 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3046 return new ICmpInst(Pred, And, NotBOC); 3047 } 3048 break; 3049 } 3050 case Instruction::And: { 3051 const APInt *BOC; 3052 if (match(BOp1, m_APInt(BOC))) { 3053 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3054 if (C == *BOC && C.isPowerOf2()) 3055 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3056 BO, Constant::getNullValue(RHS->getType())); 3057 } 3058 break; 3059 } 3060 case Instruction::UDiv: 3061 if (C.isNullValue()) { 3062 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3063 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3064 return new ICmpInst(NewPred, BOp1, BOp0); 3065 } 3066 break; 3067 default: 3068 break; 3069 } 3070 return nullptr; 3071 } 3072 3073 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3074 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3075 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3076 Type *Ty = II->getType(); 3077 unsigned BitWidth = C.getBitWidth(); 3078 switch (II->getIntrinsicID()) { 3079 case Intrinsic::abs: 3080 // abs(A) == 0 -> A == 0 3081 // abs(A) == INT_MIN -> A == INT_MIN 3082 if (C.isNullValue() || C.isMinSignedValue()) 3083 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3084 ConstantInt::get(Ty, C)); 3085 break; 3086 3087 case Intrinsic::bswap: 3088 // bswap(A) == C -> A == bswap(C) 3089 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3090 ConstantInt::get(Ty, C.byteSwap())); 3091 3092 case Intrinsic::ctlz: 3093 case Intrinsic::cttz: { 3094 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3095 if (C == BitWidth) 3096 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3097 ConstantInt::getNullValue(Ty)); 3098 3099 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3100 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3101 // Limit to one use to ensure we don't increase instruction count. 3102 unsigned Num = C.getLimitedValue(BitWidth); 3103 if (Num != BitWidth && II->hasOneUse()) { 3104 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3105 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3106 : APInt::getHighBitsSet(BitWidth, Num + 1); 3107 APInt Mask2 = IsTrailing 3108 ? APInt::getOneBitSet(BitWidth, Num) 3109 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3110 return new ICmpInst(Cmp.getPredicate(), 3111 Builder.CreateAnd(II->getArgOperand(0), Mask1), 3112 ConstantInt::get(Ty, Mask2)); 3113 } 3114 break; 3115 } 3116 3117 case Intrinsic::ctpop: { 3118 // popcount(A) == 0 -> A == 0 and likewise for != 3119 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3120 bool IsZero = C.isNullValue(); 3121 if (IsZero || C == BitWidth) 3122 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3123 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); 3124 3125 break; 3126 } 3127 3128 case Intrinsic::uadd_sat: { 3129 // uadd.sat(a, b) == 0 -> (a | b) == 0 3130 if (C.isNullValue()) { 3131 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3132 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); 3133 } 3134 break; 3135 } 3136 3137 case Intrinsic::usub_sat: { 3138 // usub.sat(a, b) == 0 -> a <= b 3139 if (C.isNullValue()) { 3140 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ 3141 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3142 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3143 } 3144 break; 3145 } 3146 default: 3147 break; 3148 } 3149 3150 return nullptr; 3151 } 3152 3153 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3154 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3155 IntrinsicInst *II, 3156 const APInt &C) { 3157 if (Cmp.isEquality()) 3158 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3159 3160 Type *Ty = II->getType(); 3161 unsigned BitWidth = C.getBitWidth(); 3162 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3163 switch (II->getIntrinsicID()) { 3164 case Intrinsic::ctpop: { 3165 // (ctpop X > BitWidth - 1) --> X == -1 3166 Value *X = II->getArgOperand(0); 3167 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3168 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3169 ConstantInt::getAllOnesValue(Ty)); 3170 // (ctpop X < BitWidth) --> X != -1 3171 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3172 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3173 ConstantInt::getAllOnesValue(Ty)); 3174 break; 3175 } 3176 case Intrinsic::ctlz: { 3177 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3178 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3179 unsigned Num = C.getLimitedValue(); 3180 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3181 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3182 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3183 } 3184 3185 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3186 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3187 unsigned Num = C.getLimitedValue(); 3188 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3189 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3190 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3191 } 3192 break; 3193 } 3194 case Intrinsic::cttz: { 3195 // Limit to one use to ensure we don't increase instruction count. 3196 if (!II->hasOneUse()) 3197 return nullptr; 3198 3199 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3200 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3201 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3202 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3203 Builder.CreateAnd(II->getArgOperand(0), Mask), 3204 ConstantInt::getNullValue(Ty)); 3205 } 3206 3207 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3208 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3209 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3210 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3211 Builder.CreateAnd(II->getArgOperand(0), Mask), 3212 ConstantInt::getNullValue(Ty)); 3213 } 3214 break; 3215 } 3216 default: 3217 break; 3218 } 3219 3220 return nullptr; 3221 } 3222 3223 /// Handle icmp with constant (but not simple integer constant) RHS. 3224 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3225 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3226 Constant *RHSC = dyn_cast<Constant>(Op1); 3227 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3228 if (!RHSC || !LHSI) 3229 return nullptr; 3230 3231 switch (LHSI->getOpcode()) { 3232 case Instruction::GetElementPtr: 3233 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3234 if (RHSC->isNullValue() && 3235 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3236 return new ICmpInst( 3237 I.getPredicate(), LHSI->getOperand(0), 3238 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3239 break; 3240 case Instruction::PHI: 3241 // Only fold icmp into the PHI if the phi and icmp are in the same 3242 // block. If in the same block, we're encouraging jump threading. If 3243 // not, we are just pessimizing the code by making an i1 phi. 3244 if (LHSI->getParent() == I.getParent()) 3245 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3246 return NV; 3247 break; 3248 case Instruction::Select: { 3249 // If either operand of the select is a constant, we can fold the 3250 // comparison into the select arms, which will cause one to be 3251 // constant folded and the select turned into a bitwise or. 3252 Value *Op1 = nullptr, *Op2 = nullptr; 3253 ConstantInt *CI = nullptr; 3254 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3255 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3256 CI = dyn_cast<ConstantInt>(Op1); 3257 } 3258 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3259 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3260 CI = dyn_cast<ConstantInt>(Op2); 3261 } 3262 3263 // We only want to perform this transformation if it will not lead to 3264 // additional code. This is true if either both sides of the select 3265 // fold to a constant (in which case the icmp is replaced with a select 3266 // which will usually simplify) or this is the only user of the 3267 // select (in which case we are trading a select+icmp for a simpler 3268 // select+icmp) or all uses of the select can be replaced based on 3269 // dominance information ("Global cases"). 3270 bool Transform = false; 3271 if (Op1 && Op2) 3272 Transform = true; 3273 else if (Op1 || Op2) { 3274 // Local case 3275 if (LHSI->hasOneUse()) 3276 Transform = true; 3277 // Global cases 3278 else if (CI && !CI->isZero()) 3279 // When Op1 is constant try replacing select with second operand. 3280 // Otherwise Op2 is constant and try replacing select with first 3281 // operand. 3282 Transform = 3283 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3284 } 3285 if (Transform) { 3286 if (!Op1) 3287 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3288 I.getName()); 3289 if (!Op2) 3290 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3291 I.getName()); 3292 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3293 } 3294 break; 3295 } 3296 case Instruction::IntToPtr: 3297 // icmp pred inttoptr(X), null -> icmp pred X, 0 3298 if (RHSC->isNullValue() && 3299 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3300 return new ICmpInst( 3301 I.getPredicate(), LHSI->getOperand(0), 3302 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3303 break; 3304 3305 case Instruction::Load: 3306 // Try to optimize things like "A[i] > 4" to index computations. 3307 if (GetElementPtrInst *GEP = 3308 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3309 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3310 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3311 !cast<LoadInst>(LHSI)->isVolatile()) 3312 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3313 return Res; 3314 } 3315 break; 3316 } 3317 3318 return nullptr; 3319 } 3320 3321 /// Some comparisons can be simplified. 3322 /// In this case, we are looking for comparisons that look like 3323 /// a check for a lossy truncation. 3324 /// Folds: 3325 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3326 /// Where Mask is some pattern that produces all-ones in low bits: 3327 /// (-1 >> y) 3328 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3329 /// ~(-1 << y) 3330 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3331 /// The Mask can be a constant, too. 3332 /// For some predicates, the operands are commutative. 3333 /// For others, x can only be on a specific side. 3334 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3335 InstCombiner::BuilderTy &Builder) { 3336 ICmpInst::Predicate SrcPred; 3337 Value *X, *M, *Y; 3338 auto m_VariableMask = m_CombineOr( 3339 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3340 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3341 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3342 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3343 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3344 if (!match(&I, m_c_ICmp(SrcPred, 3345 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3346 m_Deferred(X)))) 3347 return nullptr; 3348 3349 ICmpInst::Predicate DstPred; 3350 switch (SrcPred) { 3351 case ICmpInst::Predicate::ICMP_EQ: 3352 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3353 DstPred = ICmpInst::Predicate::ICMP_ULE; 3354 break; 3355 case ICmpInst::Predicate::ICMP_NE: 3356 // x & (-1 >> y) != x -> x u> (-1 >> y) 3357 DstPred = ICmpInst::Predicate::ICMP_UGT; 3358 break; 3359 case ICmpInst::Predicate::ICMP_ULT: 3360 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3361 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3362 DstPred = ICmpInst::Predicate::ICMP_UGT; 3363 break; 3364 case ICmpInst::Predicate::ICMP_UGE: 3365 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3366 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3367 DstPred = ICmpInst::Predicate::ICMP_ULE; 3368 break; 3369 case ICmpInst::Predicate::ICMP_SLT: 3370 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3371 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3372 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3373 return nullptr; 3374 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3375 return nullptr; 3376 DstPred = ICmpInst::Predicate::ICMP_SGT; 3377 break; 3378 case ICmpInst::Predicate::ICMP_SGE: 3379 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3380 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3381 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3382 return nullptr; 3383 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3384 return nullptr; 3385 DstPred = ICmpInst::Predicate::ICMP_SLE; 3386 break; 3387 case ICmpInst::Predicate::ICMP_SGT: 3388 case ICmpInst::Predicate::ICMP_SLE: 3389 return nullptr; 3390 case ICmpInst::Predicate::ICMP_UGT: 3391 case ICmpInst::Predicate::ICMP_ULE: 3392 llvm_unreachable("Instsimplify took care of commut. variant"); 3393 break; 3394 default: 3395 llvm_unreachable("All possible folds are handled."); 3396 } 3397 3398 // The mask value may be a vector constant that has undefined elements. But it 3399 // may not be safe to propagate those undefs into the new compare, so replace 3400 // those elements by copying an existing, defined, and safe scalar constant. 3401 Type *OpTy = M->getType(); 3402 auto *VecC = dyn_cast<Constant>(M); 3403 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3404 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3405 Constant *SafeReplacementConstant = nullptr; 3406 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3407 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3408 SafeReplacementConstant = VecC->getAggregateElement(i); 3409 break; 3410 } 3411 } 3412 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3413 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3414 } 3415 3416 return Builder.CreateICmp(DstPred, X, M); 3417 } 3418 3419 /// Some comparisons can be simplified. 3420 /// In this case, we are looking for comparisons that look like 3421 /// a check for a lossy signed truncation. 3422 /// Folds: (MaskedBits is a constant.) 3423 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3424 /// Into: 3425 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3426 /// Where KeptBits = bitwidth(%x) - MaskedBits 3427 static Value * 3428 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3429 InstCombiner::BuilderTy &Builder) { 3430 ICmpInst::Predicate SrcPred; 3431 Value *X; 3432 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3433 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3434 if (!match(&I, m_c_ICmp(SrcPred, 3435 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3436 m_APInt(C1))), 3437 m_Deferred(X)))) 3438 return nullptr; 3439 3440 // Potential handling of non-splats: for each element: 3441 // * if both are undef, replace with constant 0. 3442 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3443 // * if both are not undef, and are different, bailout. 3444 // * else, only one is undef, then pick the non-undef one. 3445 3446 // The shift amount must be equal. 3447 if (*C0 != *C1) 3448 return nullptr; 3449 const APInt &MaskedBits = *C0; 3450 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3451 3452 ICmpInst::Predicate DstPred; 3453 switch (SrcPred) { 3454 case ICmpInst::Predicate::ICMP_EQ: 3455 // ((%x << MaskedBits) a>> MaskedBits) == %x 3456 // => 3457 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3458 DstPred = ICmpInst::Predicate::ICMP_ULT; 3459 break; 3460 case ICmpInst::Predicate::ICMP_NE: 3461 // ((%x << MaskedBits) a>> MaskedBits) != %x 3462 // => 3463 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3464 DstPred = ICmpInst::Predicate::ICMP_UGE; 3465 break; 3466 // FIXME: are more folds possible? 3467 default: 3468 return nullptr; 3469 } 3470 3471 auto *XType = X->getType(); 3472 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3473 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3474 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3475 3476 // KeptBits = bitwidth(%x) - MaskedBits 3477 const APInt KeptBits = BitWidth - MaskedBits; 3478 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3479 // ICmpCst = (1 << KeptBits) 3480 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3481 assert(ICmpCst.isPowerOf2()); 3482 // AddCst = (1 << (KeptBits-1)) 3483 const APInt AddCst = ICmpCst.lshr(1); 3484 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3485 3486 // T0 = add %x, AddCst 3487 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3488 // T1 = T0 DstPred ICmpCst 3489 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3490 3491 return T1; 3492 } 3493 3494 // Given pattern: 3495 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3496 // we should move shifts to the same hand of 'and', i.e. rewrite as 3497 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3498 // We are only interested in opposite logical shifts here. 3499 // One of the shifts can be truncated. 3500 // If we can, we want to end up creating 'lshr' shift. 3501 static Value * 3502 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3503 InstCombiner::BuilderTy &Builder) { 3504 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3505 !I.getOperand(0)->hasOneUse()) 3506 return nullptr; 3507 3508 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3509 3510 // Look for an 'and' of two logical shifts, one of which may be truncated. 3511 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3512 Instruction *XShift, *MaybeTruncation, *YShift; 3513 if (!match( 3514 I.getOperand(0), 3515 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3516 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3517 m_AnyLogicalShift, m_Instruction(YShift))), 3518 m_Instruction(MaybeTruncation))))) 3519 return nullptr; 3520 3521 // We potentially looked past 'trunc', but only when matching YShift, 3522 // therefore YShift must have the widest type. 3523 Instruction *WidestShift = YShift; 3524 // Therefore XShift must have the shallowest type. 3525 // Or they both have identical types if there was no truncation. 3526 Instruction *NarrowestShift = XShift; 3527 3528 Type *WidestTy = WidestShift->getType(); 3529 Type *NarrowestTy = NarrowestShift->getType(); 3530 assert(NarrowestTy == I.getOperand(0)->getType() && 3531 "We did not look past any shifts while matching XShift though."); 3532 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3533 3534 // If YShift is a 'lshr', swap the shifts around. 3535 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3536 std::swap(XShift, YShift); 3537 3538 // The shifts must be in opposite directions. 3539 auto XShiftOpcode = XShift->getOpcode(); 3540 if (XShiftOpcode == YShift->getOpcode()) 3541 return nullptr; // Do not care about same-direction shifts here. 3542 3543 Value *X, *XShAmt, *Y, *YShAmt; 3544 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3545 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3546 3547 // If one of the values being shifted is a constant, then we will end with 3548 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3549 // however, we will need to ensure that we won't increase instruction count. 3550 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3551 // At least one of the hands of the 'and' should be one-use shift. 3552 if (!match(I.getOperand(0), 3553 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3554 return nullptr; 3555 if (HadTrunc) { 3556 // Due to the 'trunc', we will need to widen X. For that either the old 3557 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3558 if (!MaybeTruncation->hasOneUse() && 3559 !NarrowestShift->getOperand(1)->hasOneUse()) 3560 return nullptr; 3561 } 3562 } 3563 3564 // We have two shift amounts from two different shifts. The types of those 3565 // shift amounts may not match. If that's the case let's bailout now. 3566 if (XShAmt->getType() != YShAmt->getType()) 3567 return nullptr; 3568 3569 // As input, we have the following pattern: 3570 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3571 // We want to rewrite that as: 3572 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3573 // While we know that originally (Q+K) would not overflow 3574 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3575 // shift amounts. so it may now overflow in smaller bitwidth. 3576 // To ensure that does not happen, we need to ensure that the total maximal 3577 // shift amount is still representable in that smaller bit width. 3578 unsigned MaximalPossibleTotalShiftAmount = 3579 (WidestTy->getScalarSizeInBits() - 1) + 3580 (NarrowestTy->getScalarSizeInBits() - 1); 3581 APInt MaximalRepresentableShiftAmount = 3582 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); 3583 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3584 return nullptr; 3585 3586 // Can we fold (XShAmt+YShAmt) ? 3587 auto *NewShAmt = dyn_cast_or_null<Constant>( 3588 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3589 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3590 if (!NewShAmt) 3591 return nullptr; 3592 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3593 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3594 3595 // Is the new shift amount smaller than the bit width? 3596 // FIXME: could also rely on ConstantRange. 3597 if (!match(NewShAmt, 3598 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3599 APInt(WidestBitWidth, WidestBitWidth)))) 3600 return nullptr; 3601 3602 // An extra legality check is needed if we had trunc-of-lshr. 3603 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3604 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3605 WidestShift]() { 3606 // It isn't obvious whether it's worth it to analyze non-constants here. 3607 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3608 // If *any* of these preconditions matches we can perform the fold. 3609 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3610 ? NewShAmt->getSplatValue() 3611 : NewShAmt; 3612 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3613 if (NewShAmtSplat && 3614 (NewShAmtSplat->isNullValue() || 3615 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3616 return true; 3617 // We consider *min* leading zeros so a single outlier 3618 // blocks the transform as opposed to allowing it. 3619 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3620 KnownBits Known = computeKnownBits(C, SQ.DL); 3621 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3622 // If the value being shifted has at most lowest bit set we can fold. 3623 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3624 if (MaxActiveBits <= 1) 3625 return true; 3626 // Precondition: NewShAmt u<= countLeadingZeros(C) 3627 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3628 return true; 3629 } 3630 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3631 KnownBits Known = computeKnownBits(C, SQ.DL); 3632 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3633 // If the value being shifted has at most lowest bit set we can fold. 3634 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3635 if (MaxActiveBits <= 1) 3636 return true; 3637 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3638 if (NewShAmtSplat) { 3639 APInt AdjNewShAmt = 3640 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3641 if (AdjNewShAmt.ule(MinLeadZero)) 3642 return true; 3643 } 3644 } 3645 return false; // Can't tell if it's ok. 3646 }; 3647 if (!CanFold()) 3648 return nullptr; 3649 } 3650 3651 // All good, we can do this fold. 3652 X = Builder.CreateZExt(X, WidestTy); 3653 Y = Builder.CreateZExt(Y, WidestTy); 3654 // The shift is the same that was for X. 3655 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3656 ? Builder.CreateLShr(X, NewShAmt) 3657 : Builder.CreateShl(X, NewShAmt); 3658 Value *T1 = Builder.CreateAnd(T0, Y); 3659 return Builder.CreateICmp(I.getPredicate(), T1, 3660 Constant::getNullValue(WidestTy)); 3661 } 3662 3663 /// Fold 3664 /// (-1 u/ x) u< y 3665 /// ((x * y) u/ x) != y 3666 /// to 3667 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit 3668 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3669 /// will mean that we are looking for the opposite answer. 3670 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { 3671 ICmpInst::Predicate Pred; 3672 Value *X, *Y; 3673 Instruction *Mul; 3674 bool NeedNegation; 3675 // Look for: (-1 u/ x) u</u>= y 3676 if (!I.isEquality() && 3677 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3678 m_Value(Y)))) { 3679 Mul = nullptr; 3680 3681 // Are we checking that overflow does not happen, or does happen? 3682 switch (Pred) { 3683 case ICmpInst::Predicate::ICMP_ULT: 3684 NeedNegation = false; 3685 break; // OK 3686 case ICmpInst::Predicate::ICMP_UGE: 3687 NeedNegation = true; 3688 break; // OK 3689 default: 3690 return nullptr; // Wrong predicate. 3691 } 3692 } else // Look for: ((x * y) u/ x) !=/== y 3693 if (I.isEquality() && 3694 match(&I, m_c_ICmp(Pred, m_Value(Y), 3695 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3696 m_Value(X)), 3697 m_Instruction(Mul)), 3698 m_Deferred(X)))))) { 3699 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3700 } else 3701 return nullptr; 3702 3703 BuilderTy::InsertPointGuard Guard(Builder); 3704 // If the pattern included (x * y), we'll want to insert new instructions 3705 // right before that original multiplication so that we can replace it. 3706 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3707 if (MulHadOtherUses) 3708 Builder.SetInsertPoint(Mul); 3709 3710 Function *F = Intrinsic::getDeclaration( 3711 I.getModule(), Intrinsic::umul_with_overflow, X->getType()); 3712 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); 3713 3714 // If the multiplication was used elsewhere, to ensure that we don't leave 3715 // "duplicate" instructions, replace uses of that original multiplication 3716 // with the multiplication result from the with.overflow intrinsic. 3717 if (MulHadOtherUses) 3718 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); 3719 3720 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); 3721 if (NeedNegation) // This technically increases instruction count. 3722 Res = Builder.CreateNot(Res, "umul.not.ov"); 3723 3724 // If we replaced the mul, erase it. Do this after all uses of Builder, 3725 // as the mul is used as insertion point. 3726 if (MulHadOtherUses) 3727 eraseInstFromFunction(*Mul); 3728 3729 return Res; 3730 } 3731 3732 static Instruction *foldICmpXNegX(ICmpInst &I) { 3733 CmpInst::Predicate Pred; 3734 Value *X; 3735 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3736 return nullptr; 3737 3738 if (ICmpInst::isSigned(Pred)) 3739 Pred = ICmpInst::getSwappedPredicate(Pred); 3740 else if (ICmpInst::isUnsigned(Pred)) 3741 Pred = ICmpInst::getSignedPredicate(Pred); 3742 // else for equality-comparisons just keep the predicate. 3743 3744 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3745 Constant::getNullValue(X->getType()), I.getName()); 3746 } 3747 3748 /// Try to fold icmp (binop), X or icmp X, (binop). 3749 /// TODO: A large part of this logic is duplicated in InstSimplify's 3750 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3751 /// duplication. 3752 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3753 const SimplifyQuery &SQ) { 3754 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3755 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3756 3757 // Special logic for binary operators. 3758 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3759 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3760 if (!BO0 && !BO1) 3761 return nullptr; 3762 3763 if (Instruction *NewICmp = foldICmpXNegX(I)) 3764 return NewICmp; 3765 3766 const CmpInst::Predicate Pred = I.getPredicate(); 3767 Value *X; 3768 3769 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3770 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3771 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3772 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3773 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3774 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3775 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3776 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3777 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3778 3779 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3780 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3781 NoOp0WrapProblem = 3782 ICmpInst::isEquality(Pred) || 3783 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3784 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3785 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3786 NoOp1WrapProblem = 3787 ICmpInst::isEquality(Pred) || 3788 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3789 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3790 3791 // Analyze the case when either Op0 or Op1 is an add instruction. 3792 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3793 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3794 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3795 A = BO0->getOperand(0); 3796 B = BO0->getOperand(1); 3797 } 3798 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3799 C = BO1->getOperand(0); 3800 D = BO1->getOperand(1); 3801 } 3802 3803 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3804 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3805 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3806 return new ICmpInst(Pred, A == Op1 ? B : A, 3807 Constant::getNullValue(Op1->getType())); 3808 3809 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3810 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3811 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3812 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3813 C == Op0 ? D : C); 3814 3815 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3816 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3817 NoOp1WrapProblem) { 3818 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3819 Value *Y, *Z; 3820 if (A == C) { 3821 // C + B == C + D -> B == D 3822 Y = B; 3823 Z = D; 3824 } else if (A == D) { 3825 // D + B == C + D -> B == C 3826 Y = B; 3827 Z = C; 3828 } else if (B == C) { 3829 // A + C == C + D -> A == D 3830 Y = A; 3831 Z = D; 3832 } else { 3833 assert(B == D); 3834 // A + D == C + D -> A == C 3835 Y = A; 3836 Z = C; 3837 } 3838 return new ICmpInst(Pred, Y, Z); 3839 } 3840 3841 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 3842 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3843 match(B, m_AllOnes())) 3844 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3845 3846 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 3847 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3848 match(B, m_AllOnes())) 3849 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3850 3851 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 3852 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3853 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3854 3855 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 3856 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3857 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3858 3859 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 3860 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3861 match(D, m_AllOnes())) 3862 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3863 3864 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 3865 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3866 match(D, m_AllOnes())) 3867 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3868 3869 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 3870 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3871 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3872 3873 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 3874 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3875 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3876 3877 // TODO: The subtraction-related identities shown below also hold, but 3878 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3879 // wouldn't happen even if they were implemented. 3880 // 3881 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 3882 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 3883 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 3884 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 3885 3886 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 3887 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3888 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3889 3890 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 3891 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3892 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3893 3894 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 3895 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3896 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3897 3898 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 3899 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3900 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3901 3902 // if C1 has greater magnitude than C2: 3903 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 3904 // s.t. C3 = C1 - C2 3905 // 3906 // if C2 has greater magnitude than C1: 3907 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 3908 // s.t. C3 = C2 - C1 3909 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3910 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3911 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3912 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3913 const APInt &AP1 = C1->getValue(); 3914 const APInt &AP2 = C2->getValue(); 3915 if (AP1.isNegative() == AP2.isNegative()) { 3916 APInt AP1Abs = C1->getValue().abs(); 3917 APInt AP2Abs = C2->getValue().abs(); 3918 if (AP1Abs.uge(AP2Abs)) { 3919 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3920 bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1); 3921 bool HasNSW = BO0->hasNoSignedWrap(); 3922 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 3923 return new ICmpInst(Pred, NewAdd, C); 3924 } else { 3925 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3926 bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2); 3927 bool HasNSW = BO1->hasNoSignedWrap(); 3928 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 3929 return new ICmpInst(Pred, A, NewAdd); 3930 } 3931 } 3932 } 3933 3934 // Analyze the case when either Op0 or Op1 is a sub instruction. 3935 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3936 A = nullptr; 3937 B = nullptr; 3938 C = nullptr; 3939 D = nullptr; 3940 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3941 A = BO0->getOperand(0); 3942 B = BO0->getOperand(1); 3943 } 3944 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3945 C = BO1->getOperand(0); 3946 D = BO1->getOperand(1); 3947 } 3948 3949 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 3950 if (A == Op1 && NoOp0WrapProblem) 3951 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3952 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 3953 if (C == Op0 && NoOp1WrapProblem) 3954 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3955 3956 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 3957 // (A - B) u>/u<= A --> B u>/u<= A 3958 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3959 return new ICmpInst(Pred, B, A); 3960 // C u</u>= (C - D) --> C u</u>= D 3961 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3962 return new ICmpInst(Pred, C, D); 3963 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 3964 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 3965 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3966 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 3967 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 3968 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 3969 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3970 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 3971 3972 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 3973 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 3974 return new ICmpInst(Pred, A, C); 3975 3976 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 3977 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 3978 return new ICmpInst(Pred, D, B); 3979 3980 // icmp (0-X) < cst --> x > -cst 3981 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3982 Value *X; 3983 if (match(BO0, m_Neg(m_Value(X)))) 3984 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3985 if (RHSC->isNotMinSignedValue()) 3986 return new ICmpInst(I.getSwappedPredicate(), X, 3987 ConstantExpr::getNeg(RHSC)); 3988 } 3989 3990 { 3991 // Try to remove shared constant multiplier from equality comparison: 3992 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 3993 Value *X, *Y; 3994 const APInt *C; 3995 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 3996 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 3997 if (!C->countTrailingZeros() || 3998 (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 3999 (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4000 return new ICmpInst(Pred, X, Y); 4001 } 4002 4003 BinaryOperator *SRem = nullptr; 4004 // icmp (srem X, Y), Y 4005 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4006 SRem = BO0; 4007 // icmp Y, (srem X, Y) 4008 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4009 Op0 == BO1->getOperand(1)) 4010 SRem = BO1; 4011 if (SRem) { 4012 // We don't check hasOneUse to avoid increasing register pressure because 4013 // the value we use is the same value this instruction was already using. 4014 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4015 default: 4016 break; 4017 case ICmpInst::ICMP_EQ: 4018 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4019 case ICmpInst::ICMP_NE: 4020 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4021 case ICmpInst::ICMP_SGT: 4022 case ICmpInst::ICMP_SGE: 4023 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4024 Constant::getAllOnesValue(SRem->getType())); 4025 case ICmpInst::ICMP_SLT: 4026 case ICmpInst::ICMP_SLE: 4027 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4028 Constant::getNullValue(SRem->getType())); 4029 } 4030 } 4031 4032 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4033 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4034 switch (BO0->getOpcode()) { 4035 default: 4036 break; 4037 case Instruction::Add: 4038 case Instruction::Sub: 4039 case Instruction::Xor: { 4040 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4041 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4042 4043 const APInt *C; 4044 if (match(BO0->getOperand(1), m_APInt(C))) { 4045 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4046 if (C->isSignMask()) { 4047 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4048 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4049 } 4050 4051 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4052 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4053 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4054 NewPred = I.getSwappedPredicate(NewPred); 4055 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4056 } 4057 } 4058 break; 4059 } 4060 case Instruction::Mul: { 4061 if (!I.isEquality()) 4062 break; 4063 4064 const APInt *C; 4065 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 4066 !C->isOneValue()) { 4067 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4068 // Mask = -1 >> count-trailing-zeros(C). 4069 if (unsigned TZs = C->countTrailingZeros()) { 4070 Constant *Mask = ConstantInt::get( 4071 BO0->getType(), 4072 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4073 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4074 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4075 return new ICmpInst(Pred, And1, And2); 4076 } 4077 } 4078 break; 4079 } 4080 case Instruction::UDiv: 4081 case Instruction::LShr: 4082 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4083 break; 4084 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4085 4086 case Instruction::SDiv: 4087 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4088 break; 4089 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4090 4091 case Instruction::AShr: 4092 if (!BO0->isExact() || !BO1->isExact()) 4093 break; 4094 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4095 4096 case Instruction::Shl: { 4097 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4098 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4099 if (!NUW && !NSW) 4100 break; 4101 if (!NSW && I.isSigned()) 4102 break; 4103 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4104 } 4105 } 4106 } 4107 4108 if (BO0) { 4109 // Transform A & (L - 1) `ult` L --> L != 0 4110 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4111 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4112 4113 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4114 auto *Zero = Constant::getNullValue(BO0->getType()); 4115 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4116 } 4117 } 4118 4119 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) 4120 return replaceInstUsesWith(I, V); 4121 4122 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4123 return replaceInstUsesWith(I, V); 4124 4125 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4126 return replaceInstUsesWith(I, V); 4127 4128 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4129 return replaceInstUsesWith(I, V); 4130 4131 return nullptr; 4132 } 4133 4134 /// Fold icmp Pred min|max(X, Y), X. 4135 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4136 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4137 Value *Op0 = Cmp.getOperand(0); 4138 Value *X = Cmp.getOperand(1); 4139 4140 // Canonicalize minimum or maximum operand to LHS of the icmp. 4141 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4142 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4143 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4144 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4145 std::swap(Op0, X); 4146 Pred = Cmp.getSwappedPredicate(); 4147 } 4148 4149 Value *Y; 4150 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4151 // smin(X, Y) == X --> X s<= Y 4152 // smin(X, Y) s>= X --> X s<= Y 4153 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4154 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4155 4156 // smin(X, Y) != X --> X s> Y 4157 // smin(X, Y) s< X --> X s> Y 4158 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4159 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4160 4161 // These cases should be handled in InstSimplify: 4162 // smin(X, Y) s<= X --> true 4163 // smin(X, Y) s> X --> false 4164 return nullptr; 4165 } 4166 4167 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4168 // smax(X, Y) == X --> X s>= Y 4169 // smax(X, Y) s<= X --> X s>= Y 4170 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4171 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4172 4173 // smax(X, Y) != X --> X s< Y 4174 // smax(X, Y) s> X --> X s< Y 4175 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4176 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4177 4178 // These cases should be handled in InstSimplify: 4179 // smax(X, Y) s>= X --> true 4180 // smax(X, Y) s< X --> false 4181 return nullptr; 4182 } 4183 4184 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4185 // umin(X, Y) == X --> X u<= Y 4186 // umin(X, Y) u>= X --> X u<= Y 4187 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4188 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4189 4190 // umin(X, Y) != X --> X u> Y 4191 // umin(X, Y) u< X --> X u> Y 4192 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4193 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4194 4195 // These cases should be handled in InstSimplify: 4196 // umin(X, Y) u<= X --> true 4197 // umin(X, Y) u> X --> false 4198 return nullptr; 4199 } 4200 4201 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4202 // umax(X, Y) == X --> X u>= Y 4203 // umax(X, Y) u<= X --> X u>= Y 4204 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4205 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4206 4207 // umax(X, Y) != X --> X u< Y 4208 // umax(X, Y) u> X --> X u< Y 4209 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4210 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4211 4212 // These cases should be handled in InstSimplify: 4213 // umax(X, Y) u>= X --> true 4214 // umax(X, Y) u< X --> false 4215 return nullptr; 4216 } 4217 4218 return nullptr; 4219 } 4220 4221 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4222 if (!I.isEquality()) 4223 return nullptr; 4224 4225 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4226 const CmpInst::Predicate Pred = I.getPredicate(); 4227 Value *A, *B, *C, *D; 4228 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4229 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4230 Value *OtherVal = A == Op1 ? B : A; 4231 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4232 } 4233 4234 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4235 // A^c1 == C^c2 --> A == C^(c1^c2) 4236 ConstantInt *C1, *C2; 4237 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4238 Op1->hasOneUse()) { 4239 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4240 Value *Xor = Builder.CreateXor(C, NC); 4241 return new ICmpInst(Pred, A, Xor); 4242 } 4243 4244 // A^B == A^D -> B == D 4245 if (A == C) 4246 return new ICmpInst(Pred, B, D); 4247 if (A == D) 4248 return new ICmpInst(Pred, B, C); 4249 if (B == C) 4250 return new ICmpInst(Pred, A, D); 4251 if (B == D) 4252 return new ICmpInst(Pred, A, C); 4253 } 4254 } 4255 4256 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4257 // A == (A^B) -> B == 0 4258 Value *OtherVal = A == Op0 ? B : A; 4259 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4260 } 4261 4262 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4263 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4264 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4265 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4266 4267 if (A == C) { 4268 X = B; 4269 Y = D; 4270 Z = A; 4271 } else if (A == D) { 4272 X = B; 4273 Y = C; 4274 Z = A; 4275 } else if (B == C) { 4276 X = A; 4277 Y = D; 4278 Z = B; 4279 } else if (B == D) { 4280 X = A; 4281 Y = C; 4282 Z = B; 4283 } 4284 4285 if (X) { // Build (X^Y) & Z 4286 Op1 = Builder.CreateXor(X, Y); 4287 Op1 = Builder.CreateAnd(Op1, Z); 4288 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4289 } 4290 } 4291 4292 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4293 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4294 ConstantInt *Cst1; 4295 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4296 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4297 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4298 match(Op1, m_ZExt(m_Value(A))))) { 4299 APInt Pow2 = Cst1->getValue() + 1; 4300 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4301 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4302 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4303 } 4304 4305 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4306 // For lshr and ashr pairs. 4307 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4308 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4309 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4310 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4311 unsigned TypeBits = Cst1->getBitWidth(); 4312 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4313 if (ShAmt < TypeBits && ShAmt != 0) { 4314 ICmpInst::Predicate NewPred = 4315 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4316 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4317 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4318 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4319 } 4320 } 4321 4322 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4323 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4324 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4325 unsigned TypeBits = Cst1->getBitWidth(); 4326 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4327 if (ShAmt < TypeBits && ShAmt != 0) { 4328 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4329 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4330 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4331 I.getName() + ".mask"); 4332 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4333 } 4334 } 4335 4336 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4337 // "icmp (and X, mask), cst" 4338 uint64_t ShAmt = 0; 4339 if (Op0->hasOneUse() && 4340 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4341 match(Op1, m_ConstantInt(Cst1)) && 4342 // Only do this when A has multiple uses. This is most important to do 4343 // when it exposes other optimizations. 4344 !A->hasOneUse()) { 4345 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4346 4347 if (ShAmt < ASize) { 4348 APInt MaskV = 4349 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4350 MaskV <<= ShAmt; 4351 4352 APInt CmpV = Cst1->getValue().zext(ASize); 4353 CmpV <<= ShAmt; 4354 4355 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4356 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4357 } 4358 } 4359 4360 // If both operands are byte-swapped or bit-reversed, just compare the 4361 // original values. 4362 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 4363 // and handle more intrinsics. 4364 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 4365 (match(Op0, m_BitReverse(m_Value(A))) && 4366 match(Op1, m_BitReverse(m_Value(B))))) 4367 return new ICmpInst(Pred, A, B); 4368 4369 // Canonicalize checking for a power-of-2-or-zero value: 4370 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4371 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4372 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4373 m_Deferred(A)))) || 4374 !match(Op1, m_ZeroInt())) 4375 A = nullptr; 4376 4377 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4378 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4379 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4380 A = Op1; 4381 else if (match(Op1, 4382 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4383 A = Op0; 4384 4385 if (A) { 4386 Type *Ty = A->getType(); 4387 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4388 return Pred == ICmpInst::ICMP_EQ 4389 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4390 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4391 } 4392 4393 return nullptr; 4394 } 4395 4396 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4397 InstCombiner::BuilderTy &Builder) { 4398 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4399 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4400 Value *X; 4401 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4402 return nullptr; 4403 4404 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4405 bool IsSignedCmp = ICmp.isSigned(); 4406 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4407 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4408 // and the other is a zext), then we can't handle this. 4409 // TODO: This is too strict. We can handle some predicates (equality?). 4410 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4411 return nullptr; 4412 4413 // Not an extension from the same type? 4414 Value *Y = CastOp1->getOperand(0); 4415 Type *XTy = X->getType(), *YTy = Y->getType(); 4416 if (XTy != YTy) { 4417 // One of the casts must have one use because we are creating a new cast. 4418 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4419 return nullptr; 4420 // Extend the narrower operand to the type of the wider operand. 4421 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4422 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4423 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4424 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4425 else 4426 return nullptr; 4427 } 4428 4429 // (zext X) == (zext Y) --> X == Y 4430 // (sext X) == (sext Y) --> X == Y 4431 if (ICmp.isEquality()) 4432 return new ICmpInst(ICmp.getPredicate(), X, Y); 4433 4434 // A signed comparison of sign extended values simplifies into a 4435 // signed comparison. 4436 if (IsSignedCmp && IsSignedExt) 4437 return new ICmpInst(ICmp.getPredicate(), X, Y); 4438 4439 // The other three cases all fold into an unsigned comparison. 4440 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4441 } 4442 4443 // Below here, we are only folding a compare with constant. 4444 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4445 if (!C) 4446 return nullptr; 4447 4448 // Compute the constant that would happen if we truncated to SrcTy then 4449 // re-extended to DestTy. 4450 Type *SrcTy = CastOp0->getSrcTy(); 4451 Type *DestTy = CastOp0->getDestTy(); 4452 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4453 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4454 4455 // If the re-extended constant didn't change... 4456 if (Res2 == C) { 4457 if (ICmp.isEquality()) 4458 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4459 4460 // A signed comparison of sign extended values simplifies into a 4461 // signed comparison. 4462 if (IsSignedExt && IsSignedCmp) 4463 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4464 4465 // The other three cases all fold into an unsigned comparison. 4466 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4467 } 4468 4469 // The re-extended constant changed, partly changed (in the case of a vector), 4470 // or could not be determined to be equal (in the case of a constant 4471 // expression), so the constant cannot be represented in the shorter type. 4472 // All the cases that fold to true or false will have already been handled 4473 // by SimplifyICmpInst, so only deal with the tricky case. 4474 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4475 return nullptr; 4476 4477 // Is source op positive? 4478 // icmp ult (sext X), C --> icmp sgt X, -1 4479 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4480 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4481 4482 // Is source op negative? 4483 // icmp ugt (sext X), C --> icmp slt X, 0 4484 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4485 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4486 } 4487 4488 /// Handle icmp (cast x), (cast or constant). 4489 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4490 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4491 if (!CastOp0) 4492 return nullptr; 4493 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4494 return nullptr; 4495 4496 Value *Op0Src = CastOp0->getOperand(0); 4497 Type *SrcTy = CastOp0->getSrcTy(); 4498 Type *DestTy = CastOp0->getDestTy(); 4499 4500 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4501 // integer type is the same size as the pointer type. 4502 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4503 if (isa<VectorType>(SrcTy)) { 4504 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4505 DestTy = cast<VectorType>(DestTy)->getElementType(); 4506 } 4507 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4508 }; 4509 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4510 CompatibleSizes(SrcTy, DestTy)) { 4511 Value *NewOp1 = nullptr; 4512 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4513 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4514 if (PtrSrc->getType()->getPointerAddressSpace() == 4515 Op0Src->getType()->getPointerAddressSpace()) { 4516 NewOp1 = PtrToIntOp1->getOperand(0); 4517 // If the pointer types don't match, insert a bitcast. 4518 if (Op0Src->getType() != NewOp1->getType()) 4519 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4520 } 4521 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4522 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4523 } 4524 4525 if (NewOp1) 4526 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4527 } 4528 4529 return foldICmpWithZextOrSext(ICmp, Builder); 4530 } 4531 4532 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4533 switch (BinaryOp) { 4534 default: 4535 llvm_unreachable("Unsupported binary op"); 4536 case Instruction::Add: 4537 case Instruction::Sub: 4538 return match(RHS, m_Zero()); 4539 case Instruction::Mul: 4540 return match(RHS, m_One()); 4541 } 4542 } 4543 4544 OverflowResult 4545 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4546 bool IsSigned, Value *LHS, Value *RHS, 4547 Instruction *CxtI) const { 4548 switch (BinaryOp) { 4549 default: 4550 llvm_unreachable("Unsupported binary op"); 4551 case Instruction::Add: 4552 if (IsSigned) 4553 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4554 else 4555 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4556 case Instruction::Sub: 4557 if (IsSigned) 4558 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4559 else 4560 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4561 case Instruction::Mul: 4562 if (IsSigned) 4563 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4564 else 4565 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4566 } 4567 } 4568 4569 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4570 bool IsSigned, Value *LHS, 4571 Value *RHS, Instruction &OrigI, 4572 Value *&Result, 4573 Constant *&Overflow) { 4574 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4575 std::swap(LHS, RHS); 4576 4577 // If the overflow check was an add followed by a compare, the insertion point 4578 // may be pointing to the compare. We want to insert the new instructions 4579 // before the add in case there are uses of the add between the add and the 4580 // compare. 4581 Builder.SetInsertPoint(&OrigI); 4582 4583 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4584 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4585 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4586 4587 if (isNeutralValue(BinaryOp, RHS)) { 4588 Result = LHS; 4589 Overflow = ConstantInt::getFalse(OverflowTy); 4590 return true; 4591 } 4592 4593 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4594 case OverflowResult::MayOverflow: 4595 return false; 4596 case OverflowResult::AlwaysOverflowsLow: 4597 case OverflowResult::AlwaysOverflowsHigh: 4598 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4599 Result->takeName(&OrigI); 4600 Overflow = ConstantInt::getTrue(OverflowTy); 4601 return true; 4602 case OverflowResult::NeverOverflows: 4603 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4604 Result->takeName(&OrigI); 4605 Overflow = ConstantInt::getFalse(OverflowTy); 4606 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4607 if (IsSigned) 4608 Inst->setHasNoSignedWrap(); 4609 else 4610 Inst->setHasNoUnsignedWrap(); 4611 } 4612 return true; 4613 } 4614 4615 llvm_unreachable("Unexpected overflow result"); 4616 } 4617 4618 /// Recognize and process idiom involving test for multiplication 4619 /// overflow. 4620 /// 4621 /// The caller has matched a pattern of the form: 4622 /// I = cmp u (mul(zext A, zext B), V 4623 /// The function checks if this is a test for overflow and if so replaces 4624 /// multiplication with call to 'mul.with.overflow' intrinsic. 4625 /// 4626 /// \param I Compare instruction. 4627 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4628 /// the compare instruction. Must be of integer type. 4629 /// \param OtherVal The other argument of compare instruction. 4630 /// \returns Instruction which must replace the compare instruction, NULL if no 4631 /// replacement required. 4632 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4633 Value *OtherVal, 4634 InstCombinerImpl &IC) { 4635 // Don't bother doing this transformation for pointers, don't do it for 4636 // vectors. 4637 if (!isa<IntegerType>(MulVal->getType())) 4638 return nullptr; 4639 4640 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4641 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4642 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4643 if (!MulInstr) 4644 return nullptr; 4645 assert(MulInstr->getOpcode() == Instruction::Mul); 4646 4647 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4648 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4649 assert(LHS->getOpcode() == Instruction::ZExt); 4650 assert(RHS->getOpcode() == Instruction::ZExt); 4651 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4652 4653 // Calculate type and width of the result produced by mul.with.overflow. 4654 Type *TyA = A->getType(), *TyB = B->getType(); 4655 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4656 WidthB = TyB->getPrimitiveSizeInBits(); 4657 unsigned MulWidth; 4658 Type *MulType; 4659 if (WidthB > WidthA) { 4660 MulWidth = WidthB; 4661 MulType = TyB; 4662 } else { 4663 MulWidth = WidthA; 4664 MulType = TyA; 4665 } 4666 4667 // In order to replace the original mul with a narrower mul.with.overflow, 4668 // all uses must ignore upper bits of the product. The number of used low 4669 // bits must be not greater than the width of mul.with.overflow. 4670 if (MulVal->hasNUsesOrMore(2)) 4671 for (User *U : MulVal->users()) { 4672 if (U == &I) 4673 continue; 4674 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4675 // Check if truncation ignores bits above MulWidth. 4676 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4677 if (TruncWidth > MulWidth) 4678 return nullptr; 4679 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4680 // Check if AND ignores bits above MulWidth. 4681 if (BO->getOpcode() != Instruction::And) 4682 return nullptr; 4683 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4684 const APInt &CVal = CI->getValue(); 4685 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4686 return nullptr; 4687 } else { 4688 // In this case we could have the operand of the binary operation 4689 // being defined in another block, and performing the replacement 4690 // could break the dominance relation. 4691 return nullptr; 4692 } 4693 } else { 4694 // Other uses prohibit this transformation. 4695 return nullptr; 4696 } 4697 } 4698 4699 // Recognize patterns 4700 switch (I.getPredicate()) { 4701 case ICmpInst::ICMP_EQ: 4702 case ICmpInst::ICMP_NE: 4703 // Recognize pattern: 4704 // mulval = mul(zext A, zext B) 4705 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4706 ConstantInt *CI; 4707 Value *ValToMask; 4708 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4709 if (ValToMask != MulVal) 4710 return nullptr; 4711 const APInt &CVal = CI->getValue() + 1; 4712 if (CVal.isPowerOf2()) { 4713 unsigned MaskWidth = CVal.logBase2(); 4714 if (MaskWidth == MulWidth) 4715 break; // Recognized 4716 } 4717 } 4718 return nullptr; 4719 4720 case ICmpInst::ICMP_UGT: 4721 // Recognize pattern: 4722 // mulval = mul(zext A, zext B) 4723 // cmp ugt mulval, max 4724 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4725 APInt MaxVal = APInt::getMaxValue(MulWidth); 4726 MaxVal = MaxVal.zext(CI->getBitWidth()); 4727 if (MaxVal.eq(CI->getValue())) 4728 break; // Recognized 4729 } 4730 return nullptr; 4731 4732 case ICmpInst::ICMP_UGE: 4733 // Recognize pattern: 4734 // mulval = mul(zext A, zext B) 4735 // cmp uge mulval, max+1 4736 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4737 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4738 if (MaxVal.eq(CI->getValue())) 4739 break; // Recognized 4740 } 4741 return nullptr; 4742 4743 case ICmpInst::ICMP_ULE: 4744 // Recognize pattern: 4745 // mulval = mul(zext A, zext B) 4746 // cmp ule mulval, max 4747 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4748 APInt MaxVal = APInt::getMaxValue(MulWidth); 4749 MaxVal = MaxVal.zext(CI->getBitWidth()); 4750 if (MaxVal.eq(CI->getValue())) 4751 break; // Recognized 4752 } 4753 return nullptr; 4754 4755 case ICmpInst::ICMP_ULT: 4756 // Recognize pattern: 4757 // mulval = mul(zext A, zext B) 4758 // cmp ule mulval, max + 1 4759 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4760 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4761 if (MaxVal.eq(CI->getValue())) 4762 break; // Recognized 4763 } 4764 return nullptr; 4765 4766 default: 4767 return nullptr; 4768 } 4769 4770 InstCombiner::BuilderTy &Builder = IC.Builder; 4771 Builder.SetInsertPoint(MulInstr); 4772 4773 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4774 Value *MulA = A, *MulB = B; 4775 if (WidthA < MulWidth) 4776 MulA = Builder.CreateZExt(A, MulType); 4777 if (WidthB < MulWidth) 4778 MulB = Builder.CreateZExt(B, MulType); 4779 Function *F = Intrinsic::getDeclaration( 4780 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4781 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4782 IC.addToWorklist(MulInstr); 4783 4784 // If there are uses of mul result other than the comparison, we know that 4785 // they are truncation or binary AND. Change them to use result of 4786 // mul.with.overflow and adjust properly mask/size. 4787 if (MulVal->hasNUsesOrMore(2)) { 4788 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4789 for (User *U : make_early_inc_range(MulVal->users())) { 4790 if (U == &I || U == OtherVal) 4791 continue; 4792 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4793 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4794 IC.replaceInstUsesWith(*TI, Mul); 4795 else 4796 TI->setOperand(0, Mul); 4797 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4798 assert(BO->getOpcode() == Instruction::And); 4799 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4800 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4801 APInt ShortMask = CI->getValue().trunc(MulWidth); 4802 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4803 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 4804 IC.replaceInstUsesWith(*BO, Zext); 4805 } else { 4806 llvm_unreachable("Unexpected Binary operation"); 4807 } 4808 IC.addToWorklist(cast<Instruction>(U)); 4809 } 4810 } 4811 if (isa<Instruction>(OtherVal)) 4812 IC.addToWorklist(cast<Instruction>(OtherVal)); 4813 4814 // The original icmp gets replaced with the overflow value, maybe inverted 4815 // depending on predicate. 4816 bool Inverse = false; 4817 switch (I.getPredicate()) { 4818 case ICmpInst::ICMP_NE: 4819 break; 4820 case ICmpInst::ICMP_EQ: 4821 Inverse = true; 4822 break; 4823 case ICmpInst::ICMP_UGT: 4824 case ICmpInst::ICMP_UGE: 4825 if (I.getOperand(0) == MulVal) 4826 break; 4827 Inverse = true; 4828 break; 4829 case ICmpInst::ICMP_ULT: 4830 case ICmpInst::ICMP_ULE: 4831 if (I.getOperand(1) == MulVal) 4832 break; 4833 Inverse = true; 4834 break; 4835 default: 4836 llvm_unreachable("Unexpected predicate"); 4837 } 4838 if (Inverse) { 4839 Value *Res = Builder.CreateExtractValue(Call, 1); 4840 return BinaryOperator::CreateNot(Res); 4841 } 4842 4843 return ExtractValueInst::Create(Call, 1); 4844 } 4845 4846 /// When performing a comparison against a constant, it is possible that not all 4847 /// the bits in the LHS are demanded. This helper method computes the mask that 4848 /// IS demanded. 4849 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4850 const APInt *RHS; 4851 if (!match(I.getOperand(1), m_APInt(RHS))) 4852 return APInt::getAllOnesValue(BitWidth); 4853 4854 // If this is a normal comparison, it demands all bits. If it is a sign bit 4855 // comparison, it only demands the sign bit. 4856 bool UnusedBit; 4857 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4858 return APInt::getSignMask(BitWidth); 4859 4860 switch (I.getPredicate()) { 4861 // For a UGT comparison, we don't care about any bits that 4862 // correspond to the trailing ones of the comparand. The value of these 4863 // bits doesn't impact the outcome of the comparison, because any value 4864 // greater than the RHS must differ in a bit higher than these due to carry. 4865 case ICmpInst::ICMP_UGT: 4866 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4867 4868 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4869 // Any value less than the RHS must differ in a higher bit because of carries. 4870 case ICmpInst::ICMP_ULT: 4871 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4872 4873 default: 4874 return APInt::getAllOnesValue(BitWidth); 4875 } 4876 } 4877 4878 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4879 /// should be swapped. 4880 /// The decision is based on how many times these two operands are reused 4881 /// as subtract operands and their positions in those instructions. 4882 /// The rationale is that several architectures use the same instruction for 4883 /// both subtract and cmp. Thus, it is better if the order of those operands 4884 /// match. 4885 /// \return true if Op0 and Op1 should be swapped. 4886 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4887 // Filter out pointer values as those cannot appear directly in subtract. 4888 // FIXME: we may want to go through inttoptrs or bitcasts. 4889 if (Op0->getType()->isPointerTy()) 4890 return false; 4891 // If a subtract already has the same operands as a compare, swapping would be 4892 // bad. If a subtract has the same operands as a compare but in reverse order, 4893 // then swapping is good. 4894 int GoodToSwap = 0; 4895 for (const User *U : Op0->users()) { 4896 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4897 GoodToSwap++; 4898 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4899 GoodToSwap--; 4900 } 4901 return GoodToSwap > 0; 4902 } 4903 4904 /// Check that one use is in the same block as the definition and all 4905 /// other uses are in blocks dominated by a given block. 4906 /// 4907 /// \param DI Definition 4908 /// \param UI Use 4909 /// \param DB Block that must dominate all uses of \p DI outside 4910 /// the parent block 4911 /// \return true when \p UI is the only use of \p DI in the parent block 4912 /// and all other uses of \p DI are in blocks dominated by \p DB. 4913 /// 4914 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 4915 const Instruction *UI, 4916 const BasicBlock *DB) const { 4917 assert(DI && UI && "Instruction not defined\n"); 4918 // Ignore incomplete definitions. 4919 if (!DI->getParent()) 4920 return false; 4921 // DI and UI must be in the same block. 4922 if (DI->getParent() != UI->getParent()) 4923 return false; 4924 // Protect from self-referencing blocks. 4925 if (DI->getParent() == DB) 4926 return false; 4927 for (const User *U : DI->users()) { 4928 auto *Usr = cast<Instruction>(U); 4929 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4930 return false; 4931 } 4932 return true; 4933 } 4934 4935 /// Return true when the instruction sequence within a block is select-cmp-br. 4936 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4937 const BasicBlock *BB = SI->getParent(); 4938 if (!BB) 4939 return false; 4940 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4941 if (!BI || BI->getNumSuccessors() != 2) 4942 return false; 4943 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4944 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4945 return false; 4946 return true; 4947 } 4948 4949 /// True when a select result is replaced by one of its operands 4950 /// in select-icmp sequence. This will eventually result in the elimination 4951 /// of the select. 4952 /// 4953 /// \param SI Select instruction 4954 /// \param Icmp Compare instruction 4955 /// \param SIOpd Operand that replaces the select 4956 /// 4957 /// Notes: 4958 /// - The replacement is global and requires dominator information 4959 /// - The caller is responsible for the actual replacement 4960 /// 4961 /// Example: 4962 /// 4963 /// entry: 4964 /// %4 = select i1 %3, %C* %0, %C* null 4965 /// %5 = icmp eq %C* %4, null 4966 /// br i1 %5, label %9, label %7 4967 /// ... 4968 /// ; <label>:7 ; preds = %entry 4969 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4970 /// ... 4971 /// 4972 /// can be transformed to 4973 /// 4974 /// %5 = icmp eq %C* %0, null 4975 /// %6 = select i1 %3, i1 %5, i1 true 4976 /// br i1 %6, label %9, label %7 4977 /// ... 4978 /// ; <label>:7 ; preds = %entry 4979 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4980 /// 4981 /// Similar when the first operand of the select is a constant or/and 4982 /// the compare is for not equal rather than equal. 4983 /// 4984 /// NOTE: The function is only called when the select and compare constants 4985 /// are equal, the optimization can work only for EQ predicates. This is not a 4986 /// major restriction since a NE compare should be 'normalized' to an equal 4987 /// compare, which usually happens in the combiner and test case 4988 /// select-cmp-br.ll checks for it. 4989 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 4990 const ICmpInst *Icmp, 4991 const unsigned SIOpd) { 4992 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4993 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4994 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4995 // The check for the single predecessor is not the best that can be 4996 // done. But it protects efficiently against cases like when SI's 4997 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4998 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4999 // replaced can be reached on either path. So the uniqueness check 5000 // guarantees that the path all uses of SI (outside SI's parent) are on 5001 // is disjoint from all other paths out of SI. But that information 5002 // is more expensive to compute, and the trade-off here is in favor 5003 // of compile-time. It should also be noticed that we check for a single 5004 // predecessor and not only uniqueness. This to handle the situation when 5005 // Succ and Succ1 points to the same basic block. 5006 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5007 NumSel++; 5008 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5009 return true; 5010 } 5011 } 5012 return false; 5013 } 5014 5015 /// Try to fold the comparison based on range information we can get by checking 5016 /// whether bits are known to be zero or one in the inputs. 5017 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5018 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5019 Type *Ty = Op0->getType(); 5020 ICmpInst::Predicate Pred = I.getPredicate(); 5021 5022 // Get scalar or pointer size. 5023 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5024 ? Ty->getScalarSizeInBits() 5025 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5026 5027 if (!BitWidth) 5028 return nullptr; 5029 5030 KnownBits Op0Known(BitWidth); 5031 KnownBits Op1Known(BitWidth); 5032 5033 if (SimplifyDemandedBits(&I, 0, 5034 getDemandedBitsLHSMask(I, BitWidth), 5035 Op0Known, 0)) 5036 return &I; 5037 5038 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 5039 Op1Known, 0)) 5040 return &I; 5041 5042 // Given the known and unknown bits, compute a range that the LHS could be 5043 // in. Compute the Min, Max and RHS values based on the known bits. For the 5044 // EQ and NE we use unsigned values. 5045 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5046 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5047 if (I.isSigned()) { 5048 Op0Min = Op0Known.getSignedMinValue(); 5049 Op0Max = Op0Known.getSignedMaxValue(); 5050 Op1Min = Op1Known.getSignedMinValue(); 5051 Op1Max = Op1Known.getSignedMaxValue(); 5052 } else { 5053 Op0Min = Op0Known.getMinValue(); 5054 Op0Max = Op0Known.getMaxValue(); 5055 Op1Min = Op1Known.getMinValue(); 5056 Op1Max = Op1Known.getMaxValue(); 5057 } 5058 5059 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5060 // out that the LHS or RHS is a constant. Constant fold this now, so that 5061 // code below can assume that Min != Max. 5062 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5063 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5064 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5065 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5066 5067 // Based on the range information we know about the LHS, see if we can 5068 // simplify this comparison. For example, (x&4) < 8 is always true. 5069 switch (Pred) { 5070 default: 5071 llvm_unreachable("Unknown icmp opcode!"); 5072 case ICmpInst::ICMP_EQ: 5073 case ICmpInst::ICMP_NE: { 5074 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5075 return replaceInstUsesWith( 5076 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5077 5078 // If all bits are known zero except for one, then we know at most one bit 5079 // is set. If the comparison is against zero, then this is a check to see if 5080 // *that* bit is set. 5081 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5082 if (Op1Known.isZero()) { 5083 // If the LHS is an AND with the same constant, look through it. 5084 Value *LHS = nullptr; 5085 const APInt *LHSC; 5086 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5087 *LHSC != Op0KnownZeroInverted) 5088 LHS = Op0; 5089 5090 Value *X; 5091 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5092 APInt ValToCheck = Op0KnownZeroInverted; 5093 Type *XTy = X->getType(); 5094 if (ValToCheck.isPowerOf2()) { 5095 // ((1 << X) & 8) == 0 -> X != 3 5096 // ((1 << X) & 8) != 0 -> X == 3 5097 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5098 auto NewPred = ICmpInst::getInversePredicate(Pred); 5099 return new ICmpInst(NewPred, X, CmpC); 5100 } else if ((++ValToCheck).isPowerOf2()) { 5101 // ((1 << X) & 7) == 0 -> X >= 3 5102 // ((1 << X) & 7) != 0 -> X < 3 5103 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5104 auto NewPred = 5105 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5106 return new ICmpInst(NewPred, X, CmpC); 5107 } 5108 } 5109 5110 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5111 const APInt *CI; 5112 if (Op0KnownZeroInverted.isOneValue() && 5113 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5114 // ((8 >>u X) & 1) == 0 -> X != 3 5115 // ((8 >>u X) & 1) != 0 -> X == 3 5116 unsigned CmpVal = CI->countTrailingZeros(); 5117 auto NewPred = ICmpInst::getInversePredicate(Pred); 5118 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5119 } 5120 } 5121 break; 5122 } 5123 case ICmpInst::ICMP_ULT: { 5124 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5125 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5126 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5127 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5128 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5129 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5130 5131 const APInt *CmpC; 5132 if (match(Op1, m_APInt(CmpC))) { 5133 // A <u C -> A == C-1 if min(A)+1 == C 5134 if (*CmpC == Op0Min + 1) 5135 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5136 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5137 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5138 // exceeds the log2 of C. 5139 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5140 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5141 Constant::getNullValue(Op1->getType())); 5142 } 5143 break; 5144 } 5145 case ICmpInst::ICMP_UGT: { 5146 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5147 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5148 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5149 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5150 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5151 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5152 5153 const APInt *CmpC; 5154 if (match(Op1, m_APInt(CmpC))) { 5155 // A >u C -> A == C+1 if max(a)-1 == C 5156 if (*CmpC == Op0Max - 1) 5157 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5158 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5159 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5160 // exceeds the log2 of C. 5161 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5162 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5163 Constant::getNullValue(Op1->getType())); 5164 } 5165 break; 5166 } 5167 case ICmpInst::ICMP_SLT: { 5168 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5169 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5170 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5171 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5172 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5173 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5174 const APInt *CmpC; 5175 if (match(Op1, m_APInt(CmpC))) { 5176 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5177 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5178 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5179 } 5180 break; 5181 } 5182 case ICmpInst::ICMP_SGT: { 5183 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5184 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5185 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5186 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5187 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5188 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5189 const APInt *CmpC; 5190 if (match(Op1, m_APInt(CmpC))) { 5191 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5192 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5193 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5194 } 5195 break; 5196 } 5197 case ICmpInst::ICMP_SGE: 5198 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5199 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5200 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5201 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5202 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5203 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5204 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5205 break; 5206 case ICmpInst::ICMP_SLE: 5207 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5208 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5209 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5210 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5211 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5212 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5213 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5214 break; 5215 case ICmpInst::ICMP_UGE: 5216 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5217 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5218 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5219 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5220 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5221 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5222 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5223 break; 5224 case ICmpInst::ICMP_ULE: 5225 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5226 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5227 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5228 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5229 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5230 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5231 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5232 break; 5233 } 5234 5235 // Turn a signed comparison into an unsigned one if both operands are known to 5236 // have the same sign. 5237 if (I.isSigned() && 5238 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5239 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5240 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5241 5242 return nullptr; 5243 } 5244 5245 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5246 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5247 Constant *C) { 5248 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5249 "Only for relational integer predicates."); 5250 5251 Type *Type = C->getType(); 5252 bool IsSigned = ICmpInst::isSigned(Pred); 5253 5254 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5255 bool WillIncrement = 5256 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5257 5258 // Check if the constant operand can be safely incremented/decremented 5259 // without overflowing/underflowing. 5260 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5261 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5262 }; 5263 5264 Constant *SafeReplacementConstant = nullptr; 5265 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5266 // Bail out if the constant can't be safely incremented/decremented. 5267 if (!ConstantIsOk(CI)) 5268 return llvm::None; 5269 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5270 unsigned NumElts = FVTy->getNumElements(); 5271 for (unsigned i = 0; i != NumElts; ++i) { 5272 Constant *Elt = C->getAggregateElement(i); 5273 if (!Elt) 5274 return llvm::None; 5275 5276 if (isa<UndefValue>(Elt)) 5277 continue; 5278 5279 // Bail out if we can't determine if this constant is min/max or if we 5280 // know that this constant is min/max. 5281 auto *CI = dyn_cast<ConstantInt>(Elt); 5282 if (!CI || !ConstantIsOk(CI)) 5283 return llvm::None; 5284 5285 if (!SafeReplacementConstant) 5286 SafeReplacementConstant = CI; 5287 } 5288 } else { 5289 // ConstantExpr? 5290 return llvm::None; 5291 } 5292 5293 // It may not be safe to change a compare predicate in the presence of 5294 // undefined elements, so replace those elements with the first safe constant 5295 // that we found. 5296 // TODO: in case of poison, it is safe; let's replace undefs only. 5297 if (C->containsUndefOrPoisonElement()) { 5298 assert(SafeReplacementConstant && "Replacement constant not set"); 5299 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5300 } 5301 5302 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5303 5304 // Increment or decrement the constant. 5305 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5306 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5307 5308 return std::make_pair(NewPred, NewC); 5309 } 5310 5311 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5312 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5313 /// allows them to be folded in visitICmpInst. 5314 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5315 ICmpInst::Predicate Pred = I.getPredicate(); 5316 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5317 InstCombiner::isCanonicalPredicate(Pred)) 5318 return nullptr; 5319 5320 Value *Op0 = I.getOperand(0); 5321 Value *Op1 = I.getOperand(1); 5322 auto *Op1C = dyn_cast<Constant>(Op1); 5323 if (!Op1C) 5324 return nullptr; 5325 5326 auto FlippedStrictness = 5327 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5328 if (!FlippedStrictness) 5329 return nullptr; 5330 5331 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5332 } 5333 5334 /// If we have a comparison with a non-canonical predicate, if we can update 5335 /// all the users, invert the predicate and adjust all the users. 5336 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5337 // Is the predicate already canonical? 5338 CmpInst::Predicate Pred = I.getPredicate(); 5339 if (InstCombiner::isCanonicalPredicate(Pred)) 5340 return nullptr; 5341 5342 // Can all users be adjusted to predicate inversion? 5343 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5344 return nullptr; 5345 5346 // Ok, we can canonicalize comparison! 5347 // Let's first invert the comparison's predicate. 5348 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5349 I.setName(I.getName() + ".not"); 5350 5351 // And, adapt users. 5352 freelyInvertAllUsersOf(&I); 5353 5354 return &I; 5355 } 5356 5357 /// Integer compare with boolean values can always be turned into bitwise ops. 5358 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5359 InstCombiner::BuilderTy &Builder) { 5360 Value *A = I.getOperand(0), *B = I.getOperand(1); 5361 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5362 5363 // A boolean compared to true/false can be simplified to Op0/true/false in 5364 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5365 // Cases not handled by InstSimplify are always 'not' of Op0. 5366 if (match(B, m_Zero())) { 5367 switch (I.getPredicate()) { 5368 case CmpInst::ICMP_EQ: // A == 0 -> !A 5369 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5370 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5371 return BinaryOperator::CreateNot(A); 5372 default: 5373 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5374 } 5375 } else if (match(B, m_One())) { 5376 switch (I.getPredicate()) { 5377 case CmpInst::ICMP_NE: // A != 1 -> !A 5378 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5379 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5380 return BinaryOperator::CreateNot(A); 5381 default: 5382 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5383 } 5384 } 5385 5386 switch (I.getPredicate()) { 5387 default: 5388 llvm_unreachable("Invalid icmp instruction!"); 5389 case ICmpInst::ICMP_EQ: 5390 // icmp eq i1 A, B -> ~(A ^ B) 5391 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5392 5393 case ICmpInst::ICMP_NE: 5394 // icmp ne i1 A, B -> A ^ B 5395 return BinaryOperator::CreateXor(A, B); 5396 5397 case ICmpInst::ICMP_UGT: 5398 // icmp ugt -> icmp ult 5399 std::swap(A, B); 5400 LLVM_FALLTHROUGH; 5401 case ICmpInst::ICMP_ULT: 5402 // icmp ult i1 A, B -> ~A & B 5403 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5404 5405 case ICmpInst::ICMP_SGT: 5406 // icmp sgt -> icmp slt 5407 std::swap(A, B); 5408 LLVM_FALLTHROUGH; 5409 case ICmpInst::ICMP_SLT: 5410 // icmp slt i1 A, B -> A & ~B 5411 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5412 5413 case ICmpInst::ICMP_UGE: 5414 // icmp uge -> icmp ule 5415 std::swap(A, B); 5416 LLVM_FALLTHROUGH; 5417 case ICmpInst::ICMP_ULE: 5418 // icmp ule i1 A, B -> ~A | B 5419 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5420 5421 case ICmpInst::ICMP_SGE: 5422 // icmp sge -> icmp sle 5423 std::swap(A, B); 5424 LLVM_FALLTHROUGH; 5425 case ICmpInst::ICMP_SLE: 5426 // icmp sle i1 A, B -> A | ~B 5427 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5428 } 5429 } 5430 5431 // Transform pattern like: 5432 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5433 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5434 // Into: 5435 // (X l>> Y) != 0 5436 // (X l>> Y) == 0 5437 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5438 InstCombiner::BuilderTy &Builder) { 5439 ICmpInst::Predicate Pred, NewPred; 5440 Value *X, *Y; 5441 if (match(&Cmp, 5442 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5443 switch (Pred) { 5444 case ICmpInst::ICMP_ULE: 5445 NewPred = ICmpInst::ICMP_NE; 5446 break; 5447 case ICmpInst::ICMP_UGT: 5448 NewPred = ICmpInst::ICMP_EQ; 5449 break; 5450 default: 5451 return nullptr; 5452 } 5453 } else if (match(&Cmp, m_c_ICmp(Pred, 5454 m_OneUse(m_CombineOr( 5455 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5456 m_Add(m_Shl(m_One(), m_Value(Y)), 5457 m_AllOnes()))), 5458 m_Value(X)))) { 5459 // The variant with 'add' is not canonical, (the variant with 'not' is) 5460 // we only get it because it has extra uses, and can't be canonicalized, 5461 5462 switch (Pred) { 5463 case ICmpInst::ICMP_ULT: 5464 NewPred = ICmpInst::ICMP_NE; 5465 break; 5466 case ICmpInst::ICMP_UGE: 5467 NewPred = ICmpInst::ICMP_EQ; 5468 break; 5469 default: 5470 return nullptr; 5471 } 5472 } else 5473 return nullptr; 5474 5475 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5476 Constant *Zero = Constant::getNullValue(NewX->getType()); 5477 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5478 } 5479 5480 static Instruction *foldVectorCmp(CmpInst &Cmp, 5481 InstCombiner::BuilderTy &Builder) { 5482 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5483 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5484 Value *V1, *V2; 5485 ArrayRef<int> M; 5486 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5487 return nullptr; 5488 5489 // If both arguments of the cmp are shuffles that use the same mask and 5490 // shuffle within a single vector, move the shuffle after the cmp: 5491 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5492 Type *V1Ty = V1->getType(); 5493 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5494 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5495 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5496 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5497 } 5498 5499 // Try to canonicalize compare with splatted operand and splat constant. 5500 // TODO: We could generalize this for more than splats. See/use the code in 5501 // InstCombiner::foldVectorBinop(). 5502 Constant *C; 5503 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5504 return nullptr; 5505 5506 // Length-changing splats are ok, so adjust the constants as needed: 5507 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5508 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5509 int MaskSplatIndex; 5510 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5511 // We allow undefs in matching, but this transform removes those for safety. 5512 // Demanded elements analysis should be able to recover some/all of that. 5513 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5514 ScalarC); 5515 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5516 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5517 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), 5518 NewM); 5519 } 5520 5521 return nullptr; 5522 } 5523 5524 // extract(uadd.with.overflow(A, B), 0) ult A 5525 // -> extract(uadd.with.overflow(A, B), 1) 5526 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5527 CmpInst::Predicate Pred = I.getPredicate(); 5528 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5529 5530 Value *UAddOv; 5531 Value *A, *B; 5532 auto UAddOvResultPat = m_ExtractValue<0>( 5533 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5534 if (match(Op0, UAddOvResultPat) && 5535 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5536 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5537 (match(A, m_One()) || match(B, m_One()))) || 5538 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5539 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5540 // extract(uadd.with.overflow(A, B), 0) < A 5541 // extract(uadd.with.overflow(A, 1), 0) == 0 5542 // extract(uadd.with.overflow(A, -1), 0) != -1 5543 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5544 else if (match(Op1, UAddOvResultPat) && 5545 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5546 // A > extract(uadd.with.overflow(A, B), 0) 5547 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5548 else 5549 return nullptr; 5550 5551 return ExtractValueInst::Create(UAddOv, 1); 5552 } 5553 5554 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5555 bool Changed = false; 5556 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5557 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5558 unsigned Op0Cplxity = getComplexity(Op0); 5559 unsigned Op1Cplxity = getComplexity(Op1); 5560 5561 /// Orders the operands of the compare so that they are listed from most 5562 /// complex to least complex. This puts constants before unary operators, 5563 /// before binary operators. 5564 if (Op0Cplxity < Op1Cplxity || 5565 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5566 I.swapOperands(); 5567 std::swap(Op0, Op1); 5568 Changed = true; 5569 } 5570 5571 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5572 return replaceInstUsesWith(I, V); 5573 5574 // Comparing -val or val with non-zero is the same as just comparing val 5575 // ie, abs(val) != 0 -> val != 0 5576 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5577 Value *Cond, *SelectTrue, *SelectFalse; 5578 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5579 m_Value(SelectFalse)))) { 5580 if (Value *V = dyn_castNegVal(SelectTrue)) { 5581 if (V == SelectFalse) 5582 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5583 } 5584 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5585 if (V == SelectTrue) 5586 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5587 } 5588 } 5589 } 5590 5591 if (Op0->getType()->isIntOrIntVectorTy(1)) 5592 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5593 return Res; 5594 5595 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5596 return Res; 5597 5598 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5599 return Res; 5600 5601 if (Instruction *Res = foldICmpWithConstant(I)) 5602 return Res; 5603 5604 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5605 return Res; 5606 5607 if (Instruction *Res = foldICmpBinOp(I, Q)) 5608 return Res; 5609 5610 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5611 return Res; 5612 5613 // Test if the ICmpInst instruction is used exclusively by a select as 5614 // part of a minimum or maximum operation. If so, refrain from doing 5615 // any other folding. This helps out other analyses which understand 5616 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5617 // and CodeGen. And in this case, at least one of the comparison 5618 // operands has at least one user besides the compare (the select), 5619 // which would often largely negate the benefit of folding anyway. 5620 // 5621 // Do the same for the other patterns recognized by matchSelectPattern. 5622 if (I.hasOneUse()) 5623 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5624 Value *A, *B; 5625 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5626 if (SPR.Flavor != SPF_UNKNOWN) 5627 return nullptr; 5628 } 5629 5630 // Do this after checking for min/max to prevent infinite looping. 5631 if (Instruction *Res = foldICmpWithZero(I)) 5632 return Res; 5633 5634 // FIXME: We only do this after checking for min/max to prevent infinite 5635 // looping caused by a reverse canonicalization of these patterns for min/max. 5636 // FIXME: The organization of folds is a mess. These would naturally go into 5637 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5638 // down here after the min/max restriction. 5639 ICmpInst::Predicate Pred = I.getPredicate(); 5640 const APInt *C; 5641 if (match(Op1, m_APInt(C))) { 5642 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5643 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5644 Constant *Zero = Constant::getNullValue(Op0->getType()); 5645 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5646 } 5647 5648 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5649 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5650 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5651 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5652 } 5653 } 5654 5655 if (Instruction *Res = foldICmpInstWithConstant(I)) 5656 return Res; 5657 5658 // Try to match comparison as a sign bit test. Intentionally do this after 5659 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5660 if (Instruction *New = foldSignBitTest(I)) 5661 return New; 5662 5663 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5664 return Res; 5665 5666 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5667 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5668 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5669 return NI; 5670 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5671 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5672 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5673 return NI; 5674 5675 // Try to optimize equality comparisons against alloca-based pointers. 5676 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5677 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5678 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 5679 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5680 return New; 5681 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 5682 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5683 return New; 5684 } 5685 5686 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5687 return Res; 5688 5689 // TODO: Hoist this above the min/max bailout. 5690 if (Instruction *R = foldICmpWithCastOp(I)) 5691 return R; 5692 5693 if (Instruction *Res = foldICmpWithMinMax(I)) 5694 return Res; 5695 5696 { 5697 Value *A, *B; 5698 // Transform (A & ~B) == 0 --> (A & B) != 0 5699 // and (A & ~B) != 0 --> (A & B) == 0 5700 // if A is a power of 2. 5701 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5702 match(Op1, m_Zero()) && 5703 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5704 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5705 Op1); 5706 5707 // ~X < ~Y --> Y < X 5708 // ~X < C --> X > ~C 5709 if (match(Op0, m_Not(m_Value(A)))) { 5710 if (match(Op1, m_Not(m_Value(B)))) 5711 return new ICmpInst(I.getPredicate(), B, A); 5712 5713 const APInt *C; 5714 if (match(Op1, m_APInt(C))) 5715 return new ICmpInst(I.getSwappedPredicate(), A, 5716 ConstantInt::get(Op1->getType(), ~(*C))); 5717 } 5718 5719 Instruction *AddI = nullptr; 5720 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5721 m_Instruction(AddI))) && 5722 isa<IntegerType>(A->getType())) { 5723 Value *Result; 5724 Constant *Overflow; 5725 // m_UAddWithOverflow can match patterns that do not include an explicit 5726 // "add" instruction, so check the opcode of the matched op. 5727 if (AddI->getOpcode() == Instruction::Add && 5728 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 5729 Result, Overflow)) { 5730 replaceInstUsesWith(*AddI, Result); 5731 eraseInstFromFunction(*AddI); 5732 return replaceInstUsesWith(I, Overflow); 5733 } 5734 } 5735 5736 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5737 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5738 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5739 return R; 5740 } 5741 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5742 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5743 return R; 5744 } 5745 } 5746 5747 if (Instruction *Res = foldICmpEquality(I)) 5748 return Res; 5749 5750 if (Instruction *Res = foldICmpOfUAddOv(I)) 5751 return Res; 5752 5753 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5754 // an i1 which indicates whether or not we successfully did the swap. 5755 // 5756 // Replace comparisons between the old value and the expected value with the 5757 // indicator that 'cmpxchg' returns. 5758 // 5759 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5760 // spuriously fail. In those cases, the old value may equal the expected 5761 // value but it is possible for the swap to not occur. 5762 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5763 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5764 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5765 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5766 !ACXI->isWeak()) 5767 return ExtractValueInst::Create(ACXI, 1); 5768 5769 { 5770 Value *X; 5771 const APInt *C; 5772 // icmp X+Cst, X 5773 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5774 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5775 5776 // icmp X, X+Cst 5777 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5778 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5779 } 5780 5781 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5782 return Res; 5783 5784 if (I.getType()->isVectorTy()) 5785 if (Instruction *Res = foldVectorCmp(I, Builder)) 5786 return Res; 5787 5788 return Changed ? &I : nullptr; 5789 } 5790 5791 /// Fold fcmp ([us]itofp x, cst) if possible. 5792 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 5793 Instruction *LHSI, 5794 Constant *RHSC) { 5795 if (!isa<ConstantFP>(RHSC)) return nullptr; 5796 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5797 5798 // Get the width of the mantissa. We don't want to hack on conversions that 5799 // might lose information from the integer, e.g. "i64 -> float" 5800 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5801 if (MantissaWidth == -1) return nullptr; // Unknown. 5802 5803 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5804 5805 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5806 5807 if (I.isEquality()) { 5808 FCmpInst::Predicate P = I.getPredicate(); 5809 bool IsExact = false; 5810 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5811 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5812 5813 // If the floating point constant isn't an integer value, we know if we will 5814 // ever compare equal / not equal to it. 5815 if (!IsExact) { 5816 // TODO: Can never be -0.0 and other non-representable values 5817 APFloat RHSRoundInt(RHS); 5818 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5819 if (RHS != RHSRoundInt) { 5820 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5821 return replaceInstUsesWith(I, Builder.getFalse()); 5822 5823 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5824 return replaceInstUsesWith(I, Builder.getTrue()); 5825 } 5826 } 5827 5828 // TODO: If the constant is exactly representable, is it always OK to do 5829 // equality compares as integer? 5830 } 5831 5832 // Check to see that the input is converted from an integer type that is small 5833 // enough that preserves all bits. TODO: check here for "known" sign bits. 5834 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5835 unsigned InputSize = IntTy->getScalarSizeInBits(); 5836 5837 // Following test does NOT adjust InputSize downwards for signed inputs, 5838 // because the most negative value still requires all the mantissa bits 5839 // to distinguish it from one less than that value. 5840 if ((int)InputSize > MantissaWidth) { 5841 // Conversion would lose accuracy. Check if loss can impact comparison. 5842 int Exp = ilogb(RHS); 5843 if (Exp == APFloat::IEK_Inf) { 5844 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5845 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5846 // Conversion could create infinity. 5847 return nullptr; 5848 } else { 5849 // Note that if RHS is zero or NaN, then Exp is negative 5850 // and first condition is trivially false. 5851 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5852 // Conversion could affect comparison. 5853 return nullptr; 5854 } 5855 } 5856 5857 // Otherwise, we can potentially simplify the comparison. We know that it 5858 // will always come through as an integer value and we know the constant is 5859 // not a NAN (it would have been previously simplified). 5860 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5861 5862 ICmpInst::Predicate Pred; 5863 switch (I.getPredicate()) { 5864 default: llvm_unreachable("Unexpected predicate!"); 5865 case FCmpInst::FCMP_UEQ: 5866 case FCmpInst::FCMP_OEQ: 5867 Pred = ICmpInst::ICMP_EQ; 5868 break; 5869 case FCmpInst::FCMP_UGT: 5870 case FCmpInst::FCMP_OGT: 5871 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5872 break; 5873 case FCmpInst::FCMP_UGE: 5874 case FCmpInst::FCMP_OGE: 5875 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5876 break; 5877 case FCmpInst::FCMP_ULT: 5878 case FCmpInst::FCMP_OLT: 5879 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5880 break; 5881 case FCmpInst::FCMP_ULE: 5882 case FCmpInst::FCMP_OLE: 5883 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5884 break; 5885 case FCmpInst::FCMP_UNE: 5886 case FCmpInst::FCMP_ONE: 5887 Pred = ICmpInst::ICMP_NE; 5888 break; 5889 case FCmpInst::FCMP_ORD: 5890 return replaceInstUsesWith(I, Builder.getTrue()); 5891 case FCmpInst::FCMP_UNO: 5892 return replaceInstUsesWith(I, Builder.getFalse()); 5893 } 5894 5895 // Now we know that the APFloat is a normal number, zero or inf. 5896 5897 // See if the FP constant is too large for the integer. For example, 5898 // comparing an i8 to 300.0. 5899 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5900 5901 if (!LHSUnsigned) { 5902 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5903 // and large values. 5904 APFloat SMax(RHS.getSemantics()); 5905 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5906 APFloat::rmNearestTiesToEven); 5907 if (SMax < RHS) { // smax < 13123.0 5908 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5909 Pred == ICmpInst::ICMP_SLE) 5910 return replaceInstUsesWith(I, Builder.getTrue()); 5911 return replaceInstUsesWith(I, Builder.getFalse()); 5912 } 5913 } else { 5914 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5915 // +INF and large values. 5916 APFloat UMax(RHS.getSemantics()); 5917 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5918 APFloat::rmNearestTiesToEven); 5919 if (UMax < RHS) { // umax < 13123.0 5920 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5921 Pred == ICmpInst::ICMP_ULE) 5922 return replaceInstUsesWith(I, Builder.getTrue()); 5923 return replaceInstUsesWith(I, Builder.getFalse()); 5924 } 5925 } 5926 5927 if (!LHSUnsigned) { 5928 // See if the RHS value is < SignedMin. 5929 APFloat SMin(RHS.getSemantics()); 5930 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5931 APFloat::rmNearestTiesToEven); 5932 if (SMin > RHS) { // smin > 12312.0 5933 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5934 Pred == ICmpInst::ICMP_SGE) 5935 return replaceInstUsesWith(I, Builder.getTrue()); 5936 return replaceInstUsesWith(I, Builder.getFalse()); 5937 } 5938 } else { 5939 // See if the RHS value is < UnsignedMin. 5940 APFloat UMin(RHS.getSemantics()); 5941 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 5942 APFloat::rmNearestTiesToEven); 5943 if (UMin > RHS) { // umin > 12312.0 5944 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5945 Pred == ICmpInst::ICMP_UGE) 5946 return replaceInstUsesWith(I, Builder.getTrue()); 5947 return replaceInstUsesWith(I, Builder.getFalse()); 5948 } 5949 } 5950 5951 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5952 // [0, UMAX], but it may still be fractional. See if it is fractional by 5953 // casting the FP value to the integer value and back, checking for equality. 5954 // Don't do this for zero, because -0.0 is not fractional. 5955 Constant *RHSInt = LHSUnsigned 5956 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5957 : ConstantExpr::getFPToSI(RHSC, IntTy); 5958 if (!RHS.isZero()) { 5959 bool Equal = LHSUnsigned 5960 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5961 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5962 if (!Equal) { 5963 // If we had a comparison against a fractional value, we have to adjust 5964 // the compare predicate and sometimes the value. RHSC is rounded towards 5965 // zero at this point. 5966 switch (Pred) { 5967 default: llvm_unreachable("Unexpected integer comparison!"); 5968 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5969 return replaceInstUsesWith(I, Builder.getTrue()); 5970 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5971 return replaceInstUsesWith(I, Builder.getFalse()); 5972 case ICmpInst::ICMP_ULE: 5973 // (float)int <= 4.4 --> int <= 4 5974 // (float)int <= -4.4 --> false 5975 if (RHS.isNegative()) 5976 return replaceInstUsesWith(I, Builder.getFalse()); 5977 break; 5978 case ICmpInst::ICMP_SLE: 5979 // (float)int <= 4.4 --> int <= 4 5980 // (float)int <= -4.4 --> int < -4 5981 if (RHS.isNegative()) 5982 Pred = ICmpInst::ICMP_SLT; 5983 break; 5984 case ICmpInst::ICMP_ULT: 5985 // (float)int < -4.4 --> false 5986 // (float)int < 4.4 --> int <= 4 5987 if (RHS.isNegative()) 5988 return replaceInstUsesWith(I, Builder.getFalse()); 5989 Pred = ICmpInst::ICMP_ULE; 5990 break; 5991 case ICmpInst::ICMP_SLT: 5992 // (float)int < -4.4 --> int < -4 5993 // (float)int < 4.4 --> int <= 4 5994 if (!RHS.isNegative()) 5995 Pred = ICmpInst::ICMP_SLE; 5996 break; 5997 case ICmpInst::ICMP_UGT: 5998 // (float)int > 4.4 --> int > 4 5999 // (float)int > -4.4 --> true 6000 if (RHS.isNegative()) 6001 return replaceInstUsesWith(I, Builder.getTrue()); 6002 break; 6003 case ICmpInst::ICMP_SGT: 6004 // (float)int > 4.4 --> int > 4 6005 // (float)int > -4.4 --> int >= -4 6006 if (RHS.isNegative()) 6007 Pred = ICmpInst::ICMP_SGE; 6008 break; 6009 case ICmpInst::ICMP_UGE: 6010 // (float)int >= -4.4 --> true 6011 // (float)int >= 4.4 --> int > 4 6012 if (RHS.isNegative()) 6013 return replaceInstUsesWith(I, Builder.getTrue()); 6014 Pred = ICmpInst::ICMP_UGT; 6015 break; 6016 case ICmpInst::ICMP_SGE: 6017 // (float)int >= -4.4 --> int >= -4 6018 // (float)int >= 4.4 --> int > 4 6019 if (!RHS.isNegative()) 6020 Pred = ICmpInst::ICMP_SGT; 6021 break; 6022 } 6023 } 6024 } 6025 6026 // Lower this FP comparison into an appropriate integer version of the 6027 // comparison. 6028 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6029 } 6030 6031 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6032 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6033 Constant *RHSC) { 6034 // When C is not 0.0 and infinities are not allowed: 6035 // (C / X) < 0.0 is a sign-bit test of X 6036 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6037 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6038 // 6039 // Proof: 6040 // Multiply (C / X) < 0.0 by X * X / C. 6041 // - X is non zero, if it is the flag 'ninf' is violated. 6042 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6043 // the predicate. C is also non zero by definition. 6044 // 6045 // Thus X * X / C is non zero and the transformation is valid. [qed] 6046 6047 FCmpInst::Predicate Pred = I.getPredicate(); 6048 6049 // Check that predicates are valid. 6050 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6051 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6052 return nullptr; 6053 6054 // Check that RHS operand is zero. 6055 if (!match(RHSC, m_AnyZeroFP())) 6056 return nullptr; 6057 6058 // Check fastmath flags ('ninf'). 6059 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6060 return nullptr; 6061 6062 // Check the properties of the dividend. It must not be zero to avoid a 6063 // division by zero (see Proof). 6064 const APFloat *C; 6065 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6066 return nullptr; 6067 6068 if (C->isZero()) 6069 return nullptr; 6070 6071 // Get swapped predicate if necessary. 6072 if (C->isNegative()) 6073 Pred = I.getSwappedPredicate(); 6074 6075 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6076 } 6077 6078 /// Optimize fabs(X) compared with zero. 6079 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6080 Value *X; 6081 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6082 !match(I.getOperand(1), m_PosZeroFP())) 6083 return nullptr; 6084 6085 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6086 I->setPredicate(P); 6087 return IC.replaceOperand(*I, 0, X); 6088 }; 6089 6090 switch (I.getPredicate()) { 6091 case FCmpInst::FCMP_UGE: 6092 case FCmpInst::FCMP_OLT: 6093 // fabs(X) >= 0.0 --> true 6094 // fabs(X) < 0.0 --> false 6095 llvm_unreachable("fcmp should have simplified"); 6096 6097 case FCmpInst::FCMP_OGT: 6098 // fabs(X) > 0.0 --> X != 0.0 6099 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6100 6101 case FCmpInst::FCMP_UGT: 6102 // fabs(X) u> 0.0 --> X u!= 0.0 6103 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6104 6105 case FCmpInst::FCMP_OLE: 6106 // fabs(X) <= 0.0 --> X == 0.0 6107 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6108 6109 case FCmpInst::FCMP_ULE: 6110 // fabs(X) u<= 0.0 --> X u== 0.0 6111 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6112 6113 case FCmpInst::FCMP_OGE: 6114 // fabs(X) >= 0.0 --> !isnan(X) 6115 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6116 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6117 6118 case FCmpInst::FCMP_ULT: 6119 // fabs(X) u< 0.0 --> isnan(X) 6120 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6121 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6122 6123 case FCmpInst::FCMP_OEQ: 6124 case FCmpInst::FCMP_UEQ: 6125 case FCmpInst::FCMP_ONE: 6126 case FCmpInst::FCMP_UNE: 6127 case FCmpInst::FCMP_ORD: 6128 case FCmpInst::FCMP_UNO: 6129 // Look through the fabs() because it doesn't change anything but the sign. 6130 // fabs(X) == 0.0 --> X == 0.0, 6131 // fabs(X) != 0.0 --> X != 0.0 6132 // isnan(fabs(X)) --> isnan(X) 6133 // !isnan(fabs(X) --> !isnan(X) 6134 return replacePredAndOp0(&I, I.getPredicate(), X); 6135 6136 default: 6137 return nullptr; 6138 } 6139 } 6140 6141 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6142 bool Changed = false; 6143 6144 /// Orders the operands of the compare so that they are listed from most 6145 /// complex to least complex. This puts constants before unary operators, 6146 /// before binary operators. 6147 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6148 I.swapOperands(); 6149 Changed = true; 6150 } 6151 6152 const CmpInst::Predicate Pred = I.getPredicate(); 6153 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6154 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6155 SQ.getWithInstruction(&I))) 6156 return replaceInstUsesWith(I, V); 6157 6158 // Simplify 'fcmp pred X, X' 6159 Type *OpType = Op0->getType(); 6160 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6161 if (Op0 == Op1) { 6162 switch (Pred) { 6163 default: break; 6164 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6165 case FCmpInst::FCMP_ULT: // True if unordered or less than 6166 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6167 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6168 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6169 I.setPredicate(FCmpInst::FCMP_UNO); 6170 I.setOperand(1, Constant::getNullValue(OpType)); 6171 return &I; 6172 6173 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6174 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6175 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6176 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6177 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6178 I.setPredicate(FCmpInst::FCMP_ORD); 6179 I.setOperand(1, Constant::getNullValue(OpType)); 6180 return &I; 6181 } 6182 } 6183 6184 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6185 // then canonicalize the operand to 0.0. 6186 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6187 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6188 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6189 6190 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6191 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6192 } 6193 6194 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6195 Value *X, *Y; 6196 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6197 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6198 6199 // Test if the FCmpInst instruction is used exclusively by a select as 6200 // part of a minimum or maximum operation. If so, refrain from doing 6201 // any other folding. This helps out other analyses which understand 6202 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6203 // and CodeGen. And in this case, at least one of the comparison 6204 // operands has at least one user besides the compare (the select), 6205 // which would often largely negate the benefit of folding anyway. 6206 if (I.hasOneUse()) 6207 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6208 Value *A, *B; 6209 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6210 if (SPR.Flavor != SPF_UNKNOWN) 6211 return nullptr; 6212 } 6213 6214 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6215 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6216 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6217 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6218 6219 // Handle fcmp with instruction LHS and constant RHS. 6220 Instruction *LHSI; 6221 Constant *RHSC; 6222 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6223 switch (LHSI->getOpcode()) { 6224 case Instruction::PHI: 6225 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6226 // block. If in the same block, we're encouraging jump threading. If 6227 // not, we are just pessimizing the code by making an i1 phi. 6228 if (LHSI->getParent() == I.getParent()) 6229 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6230 return NV; 6231 break; 6232 case Instruction::SIToFP: 6233 case Instruction::UIToFP: 6234 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6235 return NV; 6236 break; 6237 case Instruction::FDiv: 6238 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6239 return NV; 6240 break; 6241 case Instruction::Load: 6242 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6243 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6244 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6245 !cast<LoadInst>(LHSI)->isVolatile()) 6246 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6247 return Res; 6248 break; 6249 } 6250 } 6251 6252 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6253 return R; 6254 6255 if (match(Op0, m_FNeg(m_Value(X)))) { 6256 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6257 Constant *C; 6258 if (match(Op1, m_Constant(C))) { 6259 Constant *NegC = ConstantExpr::getFNeg(C); 6260 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6261 } 6262 } 6263 6264 if (match(Op0, m_FPExt(m_Value(X)))) { 6265 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6266 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6267 return new FCmpInst(Pred, X, Y, "", &I); 6268 6269 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6270 const APFloat *C; 6271 if (match(Op1, m_APFloat(C))) { 6272 const fltSemantics &FPSem = 6273 X->getType()->getScalarType()->getFltSemantics(); 6274 bool Lossy; 6275 APFloat TruncC = *C; 6276 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6277 6278 // Avoid lossy conversions and denormals. 6279 // Zero is a special case that's OK to convert. 6280 APFloat Fabs = TruncC; 6281 Fabs.clearSign(); 6282 if (!Lossy && 6283 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6284 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6285 return new FCmpInst(Pred, X, NewC, "", &I); 6286 } 6287 } 6288 } 6289 6290 // Convert a sign-bit test of an FP value into a cast and integer compare. 6291 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6292 // TODO: Handle non-zero compare constants. 6293 // TODO: Handle other predicates. 6294 const APFloat *C; 6295 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6296 m_Value(X)))) && 6297 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6298 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6299 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6300 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6301 6302 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6303 if (Pred == FCmpInst::FCMP_OLT) { 6304 Value *IntX = Builder.CreateBitCast(X, IntType); 6305 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6306 ConstantInt::getNullValue(IntType)); 6307 } 6308 } 6309 6310 if (I.getType()->isVectorTy()) 6311 if (Instruction *Res = foldVectorCmp(I, Builder)) 6312 return Res; 6313 6314 return Changed ? &I : nullptr; 6315 } 6316