1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Support/Debug.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 // Initialization Routines 39 40 static ConstantInt *getOne(Constant *C) { 41 return ConstantInt::get(cast<IntegerType>(C->getType()), 1); 42 } 43 44 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { 45 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); 46 } 47 48 static bool HasAddOverflow(ConstantInt *Result, 49 ConstantInt *In1, ConstantInt *In2, 50 bool IsSigned) { 51 if (!IsSigned) 52 return Result->getValue().ult(In1->getValue()); 53 54 if (In2->isNegative()) 55 return Result->getValue().sgt(In1->getValue()); 56 return Result->getValue().slt(In1->getValue()); 57 } 58 59 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result 60 /// overflowed for this type. 61 static bool AddWithOverflow(Constant *&Result, Constant *In1, 62 Constant *In2, bool IsSigned = false) { 63 Result = ConstantExpr::getAdd(In1, In2); 64 65 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 66 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 67 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 68 if (HasAddOverflow(ExtractElement(Result, Idx), 69 ExtractElement(In1, Idx), 70 ExtractElement(In2, Idx), 71 IsSigned)) 72 return true; 73 } 74 return false; 75 } 76 77 return HasAddOverflow(cast<ConstantInt>(Result), 78 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 79 IsSigned); 80 } 81 82 static bool HasSubOverflow(ConstantInt *Result, 83 ConstantInt *In1, ConstantInt *In2, 84 bool IsSigned) { 85 if (!IsSigned) 86 return Result->getValue().ugt(In1->getValue()); 87 88 if (In2->isNegative()) 89 return Result->getValue().slt(In1->getValue()); 90 91 return Result->getValue().sgt(In1->getValue()); 92 } 93 94 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result 95 /// overflowed for this type. 96 static bool SubWithOverflow(Constant *&Result, Constant *In1, 97 Constant *In2, bool IsSigned = false) { 98 Result = ConstantExpr::getSub(In1, In2); 99 100 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 101 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 102 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 103 if (HasSubOverflow(ExtractElement(Result, Idx), 104 ExtractElement(In1, Idx), 105 ExtractElement(In2, Idx), 106 IsSigned)) 107 return true; 108 } 109 return false; 110 } 111 112 return HasSubOverflow(cast<ConstantInt>(Result), 113 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 114 IsSigned); 115 } 116 117 /// isSignBitCheck - Given an exploded icmp instruction, return true if the 118 /// comparison only checks the sign bit. If it only checks the sign bit, set 119 /// TrueIfSigned if the result of the comparison is true when the input value is 120 /// signed. 121 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, 122 bool &TrueIfSigned) { 123 switch (pred) { 124 case ICmpInst::ICMP_SLT: // True if LHS s< 0 125 TrueIfSigned = true; 126 return RHS->isZero(); 127 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 128 TrueIfSigned = true; 129 return RHS->isAllOnesValue(); 130 case ICmpInst::ICMP_SGT: // True if LHS s> -1 131 TrueIfSigned = false; 132 return RHS->isAllOnesValue(); 133 case ICmpInst::ICMP_UGT: 134 // True if LHS u> RHS and RHS == high-bit-mask - 1 135 TrueIfSigned = true; 136 return RHS->isMaxValue(true); 137 case ICmpInst::ICMP_UGE: 138 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 139 TrueIfSigned = true; 140 return RHS->getValue().isSignBit(); 141 default: 142 return false; 143 } 144 } 145 146 /// Returns true if the exploded icmp can be expressed as a signed comparison 147 /// to zero and updates the predicate accordingly. 148 /// The signedness of the comparison is preserved. 149 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) { 150 if (!ICmpInst::isSigned(pred)) 151 return false; 152 153 if (RHS->isZero()) 154 return ICmpInst::isRelational(pred); 155 156 if (RHS->isOne()) { 157 if (pred == ICmpInst::ICMP_SLT) { 158 pred = ICmpInst::ICMP_SLE; 159 return true; 160 } 161 } else if (RHS->isAllOnesValue()) { 162 if (pred == ICmpInst::ICMP_SGT) { 163 pred = ICmpInst::ICMP_SGE; 164 return true; 165 } 166 } 167 168 return false; 169 } 170 171 // isHighOnes - Return true if the constant is of the form 1+0+. 172 // This is the same as lowones(~X). 173 static bool isHighOnes(const ConstantInt *CI) { 174 return (~CI->getValue() + 1).isPowerOf2(); 175 } 176 177 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 178 /// set of known zero and one bits, compute the maximum and minimum values that 179 /// could have the specified known zero and known one bits, returning them in 180 /// min/max. 181 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, 182 const APInt& KnownOne, 183 APInt& Min, APInt& Max) { 184 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 185 KnownZero.getBitWidth() == Min.getBitWidth() && 186 KnownZero.getBitWidth() == Max.getBitWidth() && 187 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 188 APInt UnknownBits = ~(KnownZero|KnownOne); 189 190 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 191 // bit if it is unknown. 192 Min = KnownOne; 193 Max = KnownOne|UnknownBits; 194 195 if (UnknownBits.isNegative()) { // Sign bit is unknown 196 Min.setBit(Min.getBitWidth()-1); 197 Max.clearBit(Max.getBitWidth()-1); 198 } 199 } 200 201 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and 202 // a set of known zero and one bits, compute the maximum and minimum values that 203 // could have the specified known zero and known one bits, returning them in 204 // min/max. 205 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 206 const APInt &KnownOne, 207 APInt &Min, APInt &Max) { 208 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 209 KnownZero.getBitWidth() == Min.getBitWidth() && 210 KnownZero.getBitWidth() == Max.getBitWidth() && 211 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 212 APInt UnknownBits = ~(KnownZero|KnownOne); 213 214 // The minimum value is when the unknown bits are all zeros. 215 Min = KnownOne; 216 // The maximum value is when the unknown bits are all ones. 217 Max = KnownOne|UnknownBits; 218 } 219 220 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern: 221 /// cmp pred (load (gep GV, ...)), cmpcst 222 /// where GV is a global variable with a constant initializer. Try to simplify 223 /// this into some simple computation that does not need the load. For example 224 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 225 /// 226 /// If AndCst is non-null, then the loaded value is masked with that constant 227 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 228 Instruction *InstCombiner:: 229 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, 230 CmpInst &ICI, ConstantInt *AndCst) { 231 Constant *Init = GV->getInitializer(); 232 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 233 return nullptr; 234 235 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 236 if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays. 237 238 // There are many forms of this optimization we can handle, for now, just do 239 // the simple index into a single-dimensional array. 240 // 241 // Require: GEP GV, 0, i {{, constant indices}} 242 if (GEP->getNumOperands() < 3 || 243 !isa<ConstantInt>(GEP->getOperand(1)) || 244 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 245 isa<Constant>(GEP->getOperand(2))) 246 return nullptr; 247 248 // Check that indices after the variable are constants and in-range for the 249 // type they index. Collect the indices. This is typically for arrays of 250 // structs. 251 SmallVector<unsigned, 4> LaterIndices; 252 253 Type *EltTy = Init->getType()->getArrayElementType(); 254 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 255 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 256 if (!Idx) return nullptr; // Variable index. 257 258 uint64_t IdxVal = Idx->getZExtValue(); 259 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 260 261 if (StructType *STy = dyn_cast<StructType>(EltTy)) 262 EltTy = STy->getElementType(IdxVal); 263 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 264 if (IdxVal >= ATy->getNumElements()) return nullptr; 265 EltTy = ATy->getElementType(); 266 } else { 267 return nullptr; // Unknown type. 268 } 269 270 LaterIndices.push_back(IdxVal); 271 } 272 273 enum { Overdefined = -3, Undefined = -2 }; 274 275 // Variables for our state machines. 276 277 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 278 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 279 // and 87 is the second (and last) index. FirstTrueElement is -2 when 280 // undefined, otherwise set to the first true element. SecondTrueElement is 281 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 282 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 283 284 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 285 // form "i != 47 & i != 87". Same state transitions as for true elements. 286 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 287 288 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 289 /// define a state machine that triggers for ranges of values that the index 290 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 291 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 292 /// index in the range (inclusive). We use -2 for undefined here because we 293 /// use relative comparisons and don't want 0-1 to match -1. 294 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 295 296 // MagicBitvector - This is a magic bitvector where we set a bit if the 297 // comparison is true for element 'i'. If there are 64 elements or less in 298 // the array, this will fully represent all the comparison results. 299 uint64_t MagicBitvector = 0; 300 301 // Scan the array and see if one of our patterns matches. 302 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 303 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 304 Constant *Elt = Init->getAggregateElement(i); 305 if (!Elt) return nullptr; 306 307 // If this is indexing an array of structures, get the structure element. 308 if (!LaterIndices.empty()) 309 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 310 311 // If the element is masked, handle it. 312 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 313 314 // Find out if the comparison would be true or false for the i'th element. 315 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 316 CompareRHS, DL, TLI); 317 // If the result is undef for this element, ignore it. 318 if (isa<UndefValue>(C)) { 319 // Extend range state machines to cover this element in case there is an 320 // undef in the middle of the range. 321 if (TrueRangeEnd == (int)i-1) 322 TrueRangeEnd = i; 323 if (FalseRangeEnd == (int)i-1) 324 FalseRangeEnd = i; 325 continue; 326 } 327 328 // If we can't compute the result for any of the elements, we have to give 329 // up evaluating the entire conditional. 330 if (!isa<ConstantInt>(C)) return nullptr; 331 332 // Otherwise, we know if the comparison is true or false for this element, 333 // update our state machines. 334 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 335 336 // State machine for single/double/range index comparison. 337 if (IsTrueForElt) { 338 // Update the TrueElement state machine. 339 if (FirstTrueElement == Undefined) 340 FirstTrueElement = TrueRangeEnd = i; // First true element. 341 else { 342 // Update double-compare state machine. 343 if (SecondTrueElement == Undefined) 344 SecondTrueElement = i; 345 else 346 SecondTrueElement = Overdefined; 347 348 // Update range state machine. 349 if (TrueRangeEnd == (int)i-1) 350 TrueRangeEnd = i; 351 else 352 TrueRangeEnd = Overdefined; 353 } 354 } else { 355 // Update the FalseElement state machine. 356 if (FirstFalseElement == Undefined) 357 FirstFalseElement = FalseRangeEnd = i; // First false element. 358 else { 359 // Update double-compare state machine. 360 if (SecondFalseElement == Undefined) 361 SecondFalseElement = i; 362 else 363 SecondFalseElement = Overdefined; 364 365 // Update range state machine. 366 if (FalseRangeEnd == (int)i-1) 367 FalseRangeEnd = i; 368 else 369 FalseRangeEnd = Overdefined; 370 } 371 } 372 373 // If this element is in range, update our magic bitvector. 374 if (i < 64 && IsTrueForElt) 375 MagicBitvector |= 1ULL << i; 376 377 // If all of our states become overdefined, bail out early. Since the 378 // predicate is expensive, only check it every 8 elements. This is only 379 // really useful for really huge arrays. 380 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 381 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 382 FalseRangeEnd == Overdefined) 383 return nullptr; 384 } 385 386 // Now that we've scanned the entire array, emit our new comparison(s). We 387 // order the state machines in complexity of the generated code. 388 Value *Idx = GEP->getOperand(2); 389 390 // If the index is larger than the pointer size of the target, truncate the 391 // index down like the GEP would do implicitly. We don't have to do this for 392 // an inbounds GEP because the index can't be out of range. 393 if (!GEP->isInBounds()) { 394 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 395 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 396 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 397 Idx = Builder->CreateTrunc(Idx, IntPtrTy); 398 } 399 400 // If the comparison is only true for one or two elements, emit direct 401 // comparisons. 402 if (SecondTrueElement != Overdefined) { 403 // None true -> false. 404 if (FirstTrueElement == Undefined) 405 return replaceInstUsesWith(ICI, Builder->getFalse()); 406 407 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 408 409 // True for one element -> 'i == 47'. 410 if (SecondTrueElement == Undefined) 411 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 412 413 // True for two elements -> 'i == 47 | i == 72'. 414 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); 415 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 416 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); 417 return BinaryOperator::CreateOr(C1, C2); 418 } 419 420 // If the comparison is only false for one or two elements, emit direct 421 // comparisons. 422 if (SecondFalseElement != Overdefined) { 423 // None false -> true. 424 if (FirstFalseElement == Undefined) 425 return replaceInstUsesWith(ICI, Builder->getTrue()); 426 427 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 428 429 // False for one element -> 'i != 47'. 430 if (SecondFalseElement == Undefined) 431 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 432 433 // False for two elements -> 'i != 47 & i != 72'. 434 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); 435 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 436 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); 437 return BinaryOperator::CreateAnd(C1, C2); 438 } 439 440 // If the comparison can be replaced with a range comparison for the elements 441 // where it is true, emit the range check. 442 if (TrueRangeEnd != Overdefined) { 443 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 444 445 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 446 if (FirstTrueElement) { 447 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 448 Idx = Builder->CreateAdd(Idx, Offs); 449 } 450 451 Value *End = ConstantInt::get(Idx->getType(), 452 TrueRangeEnd-FirstTrueElement+1); 453 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 454 } 455 456 // False range check. 457 if (FalseRangeEnd != Overdefined) { 458 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 459 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 460 if (FirstFalseElement) { 461 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 462 Idx = Builder->CreateAdd(Idx, Offs); 463 } 464 465 Value *End = ConstantInt::get(Idx->getType(), 466 FalseRangeEnd-FirstFalseElement); 467 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 468 } 469 470 // If a magic bitvector captures the entire comparison state 471 // of this load, replace it with computation that does: 472 // ((magic_cst >> i) & 1) != 0 473 { 474 Type *Ty = nullptr; 475 476 // Look for an appropriate type: 477 // - The type of Idx if the magic fits 478 // - The smallest fitting legal type if we have a DataLayout 479 // - Default to i32 480 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 481 Ty = Idx->getType(); 482 else 483 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 484 485 if (Ty) { 486 Value *V = Builder->CreateIntCast(Idx, Ty, false); 487 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 488 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); 489 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 490 } 491 } 492 493 return nullptr; 494 } 495 496 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare 497 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we 498 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can 499 /// be complex, and scales are involved. The above expression would also be 500 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). 501 /// This later form is less amenable to optimization though, and we are allowed 502 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 503 /// 504 /// If we can't emit an optimized form for this expression, this returns null. 505 /// 506 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 507 const DataLayout &DL) { 508 gep_type_iterator GTI = gep_type_begin(GEP); 509 510 // Check to see if this gep only has a single variable index. If so, and if 511 // any constant indices are a multiple of its scale, then we can compute this 512 // in terms of the scale of the variable index. For example, if the GEP 513 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 514 // because the expression will cross zero at the same point. 515 unsigned i, e = GEP->getNumOperands(); 516 int64_t Offset = 0; 517 for (i = 1; i != e; ++i, ++GTI) { 518 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 519 // Compute the aggregate offset of constant indices. 520 if (CI->isZero()) continue; 521 522 // Handle a struct index, which adds its field offset to the pointer. 523 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 524 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 525 } else { 526 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 527 Offset += Size*CI->getSExtValue(); 528 } 529 } else { 530 // Found our variable index. 531 break; 532 } 533 } 534 535 // If there are no variable indices, we must have a constant offset, just 536 // evaluate it the general way. 537 if (i == e) return nullptr; 538 539 Value *VariableIdx = GEP->getOperand(i); 540 // Determine the scale factor of the variable element. For example, this is 541 // 4 if the variable index is into an array of i32. 542 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 543 544 // Verify that there are no other variable indices. If so, emit the hard way. 545 for (++i, ++GTI; i != e; ++i, ++GTI) { 546 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 547 if (!CI) return nullptr; 548 549 // Compute the aggregate offset of constant indices. 550 if (CI->isZero()) continue; 551 552 // Handle a struct index, which adds its field offset to the pointer. 553 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 554 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 555 } else { 556 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 557 Offset += Size*CI->getSExtValue(); 558 } 559 } 560 561 // Okay, we know we have a single variable index, which must be a 562 // pointer/array/vector index. If there is no offset, life is simple, return 563 // the index. 564 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 565 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 566 if (Offset == 0) { 567 // Cast to intptrty in case a truncation occurs. If an extension is needed, 568 // we don't need to bother extending: the extension won't affect where the 569 // computation crosses zero. 570 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 571 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); 572 } 573 return VariableIdx; 574 } 575 576 // Otherwise, there is an index. The computation we will do will be modulo 577 // the pointer size, so get it. 578 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 579 580 Offset &= PtrSizeMask; 581 VariableScale &= PtrSizeMask; 582 583 // To do this transformation, any constant index must be a multiple of the 584 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 585 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 586 // multiple of the variable scale. 587 int64_t NewOffs = Offset / (int64_t)VariableScale; 588 if (Offset != NewOffs*(int64_t)VariableScale) 589 return nullptr; 590 591 // Okay, we can do this evaluation. Start by converting the index to intptr. 592 if (VariableIdx->getType() != IntPtrTy) 593 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, 594 true /*Signed*/); 595 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 596 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset"); 597 } 598 599 /// Returns true if we can rewrite Start as a GEP with pointer Base 600 /// and some integer offset. The nodes that need to be re-written 601 /// for this transformation will be added to Explored. 602 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 603 const DataLayout &DL, 604 SetVector<Value *> &Explored) { 605 SmallVector<Value *, 16> WorkList(1, Start); 606 Explored.insert(Base); 607 608 // The following traversal gives us an order which can be used 609 // when doing the final transformation. Since in the final 610 // transformation we create the PHI replacement instructions first, 611 // we don't have to get them in any particular order. 612 // 613 // However, for other instructions we will have to traverse the 614 // operands of an instruction first, which means that we have to 615 // do a post-order traversal. 616 while (!WorkList.empty()) { 617 SetVector<PHINode *> PHIs; 618 619 while (!WorkList.empty()) { 620 if (Explored.size() >= 100) 621 return false; 622 623 Value *V = WorkList.back(); 624 625 if (Explored.count(V) != 0) { 626 WorkList.pop_back(); 627 continue; 628 } 629 630 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 631 !isa<GEPOperator>(V) && !isa<PHINode>(V)) 632 // We've found some value that we can't explore which is different from 633 // the base. Therefore we can't do this transformation. 634 return false; 635 636 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 637 auto *CI = dyn_cast<CastInst>(V); 638 if (!CI->isNoopCast(DL)) 639 return false; 640 641 if (Explored.count(CI->getOperand(0)) == 0) 642 WorkList.push_back(CI->getOperand(0)); 643 } 644 645 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 646 // We're limiting the GEP to having one index. This will preserve 647 // the original pointer type. We could handle more cases in the 648 // future. 649 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 650 GEP->getType() != Start->getType()) 651 return false; 652 653 if (Explored.count(GEP->getOperand(0)) == 0) 654 WorkList.push_back(GEP->getOperand(0)); 655 } 656 657 if (WorkList.back() == V) { 658 WorkList.pop_back(); 659 // We've finished visiting this node, mark it as such. 660 Explored.insert(V); 661 } 662 663 if (auto *PN = dyn_cast<PHINode>(V)) { 664 // We cannot transform PHIs on unsplittable basic blocks. 665 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 666 return false; 667 Explored.insert(PN); 668 PHIs.insert(PN); 669 } 670 } 671 672 // Explore the PHI nodes further. 673 for (auto *PN : PHIs) 674 for (Value *Op : PN->incoming_values()) 675 if (Explored.count(Op) == 0) 676 WorkList.push_back(Op); 677 } 678 679 // Make sure that we can do this. Since we can't insert GEPs in a basic 680 // block before a PHI node, we can't easily do this transformation if 681 // we have PHI node users of transformed instructions. 682 for (Value *Val : Explored) { 683 for (Value *Use : Val->uses()) { 684 685 auto *PHI = dyn_cast<PHINode>(Use); 686 auto *Inst = dyn_cast<Instruction>(Val); 687 688 if (Inst == Base || Inst == PHI || !Inst || !PHI || 689 Explored.count(PHI) == 0) 690 continue; 691 692 if (PHI->getParent() == Inst->getParent()) 693 return false; 694 } 695 } 696 return true; 697 } 698 699 // Sets the appropriate insert point on Builder where we can add 700 // a replacement Instruction for V (if that is possible). 701 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 702 bool Before = true) { 703 if (auto *PHI = dyn_cast<PHINode>(V)) { 704 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 705 return; 706 } 707 if (auto *I = dyn_cast<Instruction>(V)) { 708 if (!Before) 709 I = &*std::next(I->getIterator()); 710 Builder.SetInsertPoint(I); 711 return; 712 } 713 if (auto *A = dyn_cast<Argument>(V)) { 714 // Set the insertion point in the entry block. 715 BasicBlock &Entry = A->getParent()->getEntryBlock(); 716 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 717 return; 718 } 719 // Otherwise, this is a constant and we don't need to set a new 720 // insertion point. 721 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 722 } 723 724 /// Returns a re-written value of Start as an indexed GEP using Base as a 725 /// pointer. 726 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 727 const DataLayout &DL, 728 SetVector<Value *> &Explored) { 729 // Perform all the substitutions. This is a bit tricky because we can 730 // have cycles in our use-def chains. 731 // 1. Create the PHI nodes without any incoming values. 732 // 2. Create all the other values. 733 // 3. Add the edges for the PHI nodes. 734 // 4. Emit GEPs to get the original pointers. 735 // 5. Remove the original instructions. 736 Type *IndexType = IntegerType::get( 737 Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType())); 738 739 DenseMap<Value *, Value *> NewInsts; 740 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 741 742 // Create the new PHI nodes, without adding any incoming values. 743 for (Value *Val : Explored) { 744 if (Val == Base) 745 continue; 746 // Create empty phi nodes. This avoids cyclic dependencies when creating 747 // the remaining instructions. 748 if (auto *PHI = dyn_cast<PHINode>(Val)) 749 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 750 PHI->getName() + ".idx", PHI); 751 } 752 IRBuilder<> Builder(Base->getContext()); 753 754 // Create all the other instructions. 755 for (Value *Val : Explored) { 756 757 if (NewInsts.find(Val) != NewInsts.end()) 758 continue; 759 760 if (auto *CI = dyn_cast<CastInst>(Val)) { 761 NewInsts[CI] = NewInsts[CI->getOperand(0)]; 762 continue; 763 } 764 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 765 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 766 : GEP->getOperand(1); 767 setInsertionPoint(Builder, GEP); 768 // Indices might need to be sign extended. GEPs will magically do 769 // this, but we need to do it ourselves here. 770 if (Index->getType()->getScalarSizeInBits() != 771 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 772 Index = Builder.CreateSExtOrTrunc( 773 Index, NewInsts[GEP->getOperand(0)]->getType(), 774 GEP->getOperand(0)->getName() + ".sext"); 775 } 776 777 auto *Op = NewInsts[GEP->getOperand(0)]; 778 if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero()) 779 NewInsts[GEP] = Index; 780 else 781 NewInsts[GEP] = Builder.CreateNSWAdd( 782 Op, Index, GEP->getOperand(0)->getName() + ".add"); 783 continue; 784 } 785 if (isa<PHINode>(Val)) 786 continue; 787 788 llvm_unreachable("Unexpected instruction type"); 789 } 790 791 // Add the incoming values to the PHI nodes. 792 for (Value *Val : Explored) { 793 if (Val == Base) 794 continue; 795 // All the instructions have been created, we can now add edges to the 796 // phi nodes. 797 if (auto *PHI = dyn_cast<PHINode>(Val)) { 798 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 799 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 800 Value *NewIncoming = PHI->getIncomingValue(I); 801 802 if (NewInsts.find(NewIncoming) != NewInsts.end()) 803 NewIncoming = NewInsts[NewIncoming]; 804 805 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 806 } 807 } 808 } 809 810 for (Value *Val : Explored) { 811 if (Val == Base) 812 continue; 813 814 // Depending on the type, for external users we have to emit 815 // a GEP or a GEP + ptrtoint. 816 setInsertionPoint(Builder, Val, false); 817 818 // If required, create an inttoptr instruction for Base. 819 Value *NewBase = Base; 820 if (!Base->getType()->isPointerTy()) 821 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 822 Start->getName() + "to.ptr"); 823 824 Value *GEP = Builder.CreateInBoundsGEP( 825 Start->getType()->getPointerElementType(), NewBase, 826 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 827 828 if (!Val->getType()->isPointerTy()) { 829 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 830 Val->getName() + ".conv"); 831 GEP = Cast; 832 } 833 Val->replaceAllUsesWith(GEP); 834 } 835 836 return NewInsts[Start]; 837 } 838 839 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 840 /// the input Value as a constant indexed GEP. Returns a pair containing 841 /// the GEPs Pointer and Index. 842 static std::pair<Value *, Value *> 843 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 844 Type *IndexType = IntegerType::get(V->getContext(), 845 DL.getPointerTypeSizeInBits(V->getType())); 846 847 Constant *Index = ConstantInt::getNullValue(IndexType); 848 while (true) { 849 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 850 // We accept only inbouds GEPs here to exclude the possibility of 851 // overflow. 852 if (!GEP->isInBounds()) 853 break; 854 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 855 GEP->getType() == V->getType()) { 856 V = GEP->getOperand(0); 857 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 858 Index = ConstantExpr::getAdd( 859 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 860 continue; 861 } 862 break; 863 } 864 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 865 if (!CI->isNoopCast(DL)) 866 break; 867 V = CI->getOperand(0); 868 continue; 869 } 870 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 871 if (!CI->isNoopCast(DL)) 872 break; 873 V = CI->getOperand(0); 874 continue; 875 } 876 break; 877 } 878 return {V, Index}; 879 } 880 881 // Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 882 // We can look through PHIs, GEPs and casts in order to determine a 883 // common base between GEPLHS and RHS. 884 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 885 ICmpInst::Predicate Cond, 886 const DataLayout &DL) { 887 if (!GEPLHS->hasAllConstantIndices()) 888 return nullptr; 889 890 Value *PtrBase, *Index; 891 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 892 893 // The set of nodes that will take part in this transformation. 894 SetVector<Value *> Nodes; 895 896 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 897 return nullptr; 898 899 // We know we can re-write this as 900 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 901 // Since we've only looked through inbouds GEPs we know that we 902 // can't have overflow on either side. We can therefore re-write 903 // this as: 904 // OFFSET1 cmp OFFSET2 905 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 906 907 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 908 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 909 // offset. Since Index is the offset of LHS to the base pointer, we will now 910 // compare the offsets instead of comparing the pointers. 911 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 912 } 913 914 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something 915 /// else. At this point we know that the GEP is on the LHS of the comparison. 916 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 917 ICmpInst::Predicate Cond, 918 Instruction &I) { 919 // Don't transform signed compares of GEPs into index compares. Even if the 920 // GEP is inbounds, the final add of the base pointer can have signed overflow 921 // and would change the result of the icmp. 922 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 923 // the maximum signed value for the pointer type. 924 if (ICmpInst::isSigned(Cond)) 925 return nullptr; 926 927 // Look through bitcasts and addrspacecasts. We do not however want to remove 928 // 0 GEPs. 929 if (!isa<GetElementPtrInst>(RHS)) 930 RHS = RHS->stripPointerCasts(); 931 932 Value *PtrBase = GEPLHS->getOperand(0); 933 if (PtrBase == RHS && GEPLHS->isInBounds()) { 934 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 935 // This transformation (ignoring the base and scales) is valid because we 936 // know pointers can't overflow since the gep is inbounds. See if we can 937 // output an optimized form. 938 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL); 939 940 // If not, synthesize the offset the hard way. 941 if (!Offset) 942 Offset = EmitGEPOffset(GEPLHS); 943 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 944 Constant::getNullValue(Offset->getType())); 945 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 946 // If the base pointers are different, but the indices are the same, just 947 // compare the base pointer. 948 if (PtrBase != GEPRHS->getOperand(0)) { 949 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 950 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 951 GEPRHS->getOperand(0)->getType(); 952 if (IndicesTheSame) 953 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 954 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 955 IndicesTheSame = false; 956 break; 957 } 958 959 // If all indices are the same, just compare the base pointers. 960 if (IndicesTheSame) 961 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 962 963 // If we're comparing GEPs with two base pointers that only differ in type 964 // and both GEPs have only constant indices or just one use, then fold 965 // the compare with the adjusted indices. 966 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 967 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 968 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 969 PtrBase->stripPointerCasts() == 970 GEPRHS->getOperand(0)->stripPointerCasts()) { 971 Value *LOffset = EmitGEPOffset(GEPLHS); 972 Value *ROffset = EmitGEPOffset(GEPRHS); 973 974 // If we looked through an addrspacecast between different sized address 975 // spaces, the LHS and RHS pointers are different sized 976 // integers. Truncate to the smaller one. 977 Type *LHSIndexTy = LOffset->getType(); 978 Type *RHSIndexTy = ROffset->getType(); 979 if (LHSIndexTy != RHSIndexTy) { 980 if (LHSIndexTy->getPrimitiveSizeInBits() < 981 RHSIndexTy->getPrimitiveSizeInBits()) { 982 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy); 983 } else 984 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy); 985 } 986 987 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond), 988 LOffset, ROffset); 989 return replaceInstUsesWith(I, Cmp); 990 } 991 992 // Otherwise, the base pointers are different and the indices are 993 // different. Try convert this to an indexed compare by looking through 994 // PHIs/casts. 995 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 996 } 997 998 // If one of the GEPs has all zero indices, recurse. 999 if (GEPLHS->hasAllZeroIndices()) 1000 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 1001 ICmpInst::getSwappedPredicate(Cond), I); 1002 1003 // If the other GEP has all zero indices, recurse. 1004 if (GEPRHS->hasAllZeroIndices()) 1005 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 1006 1007 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 1008 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 1009 // If the GEPs only differ by one index, compare it. 1010 unsigned NumDifferences = 0; // Keep track of # differences. 1011 unsigned DiffOperand = 0; // The operand that differs. 1012 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 1013 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 1014 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 1015 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 1016 // Irreconcilable differences. 1017 NumDifferences = 2; 1018 break; 1019 } else { 1020 if (NumDifferences++) break; 1021 DiffOperand = i; 1022 } 1023 } 1024 1025 if (NumDifferences == 0) // SAME GEP? 1026 return replaceInstUsesWith(I, // No comparison is needed here. 1027 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond))); 1028 1029 else if (NumDifferences == 1 && GEPsInBounds) { 1030 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1031 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1032 // Make sure we do a signed comparison here. 1033 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1034 } 1035 } 1036 1037 // Only lower this if the icmp is the only user of the GEP or if we expect 1038 // the result to fold to a constant! 1039 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1040 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1041 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1042 Value *L = EmitGEPOffset(GEPLHS); 1043 Value *R = EmitGEPOffset(GEPRHS); 1044 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1045 } 1046 } 1047 1048 // Try convert this to an indexed compare by looking through PHIs/casts as a 1049 // last resort. 1050 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1051 } 1052 1053 Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca, 1054 Value *Other) { 1055 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1056 1057 // It would be tempting to fold away comparisons between allocas and any 1058 // pointer not based on that alloca (e.g. an argument). However, even 1059 // though such pointers cannot alias, they can still compare equal. 1060 // 1061 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1062 // doesn't escape we can argue that it's impossible to guess its value, and we 1063 // can therefore act as if any such guesses are wrong. 1064 // 1065 // The code below checks that the alloca doesn't escape, and that it's only 1066 // used in a comparison once (the current instruction). The 1067 // single-comparison-use condition ensures that we're trivially folding all 1068 // comparisons against the alloca consistently, and avoids the risk of 1069 // erroneously folding a comparison of the pointer with itself. 1070 1071 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1072 1073 SmallVector<Use *, 32> Worklist; 1074 for (Use &U : Alloca->uses()) { 1075 if (Worklist.size() >= MaxIter) 1076 return nullptr; 1077 Worklist.push_back(&U); 1078 } 1079 1080 unsigned NumCmps = 0; 1081 while (!Worklist.empty()) { 1082 assert(Worklist.size() <= MaxIter); 1083 Use *U = Worklist.pop_back_val(); 1084 Value *V = U->getUser(); 1085 --MaxIter; 1086 1087 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1088 isa<SelectInst>(V)) { 1089 // Track the uses. 1090 } else if (isa<LoadInst>(V)) { 1091 // Loading from the pointer doesn't escape it. 1092 continue; 1093 } else if (auto *SI = dyn_cast<StoreInst>(V)) { 1094 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1095 if (SI->getValueOperand() == U->get()) 1096 return nullptr; 1097 continue; 1098 } else if (isa<ICmpInst>(V)) { 1099 if (NumCmps++) 1100 return nullptr; // Found more than one cmp. 1101 continue; 1102 } else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1103 switch (Intrin->getIntrinsicID()) { 1104 // These intrinsics don't escape or compare the pointer. Memset is safe 1105 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1106 // we don't allow stores, so src cannot point to V. 1107 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1108 case Intrinsic::dbg_declare: case Intrinsic::dbg_value: 1109 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1110 continue; 1111 default: 1112 return nullptr; 1113 } 1114 } else { 1115 return nullptr; 1116 } 1117 for (Use &U : V->uses()) { 1118 if (Worklist.size() >= MaxIter) 1119 return nullptr; 1120 Worklist.push_back(&U); 1121 } 1122 } 1123 1124 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1125 return replaceInstUsesWith( 1126 ICI, 1127 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1128 } 1129 1130 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X". 1131 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI, 1132 Value *X, ConstantInt *CI, 1133 ICmpInst::Predicate Pred) { 1134 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1135 // so the values can never be equal. Similarly for all other "or equals" 1136 // operators. 1137 1138 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1139 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1140 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1141 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1142 Value *R = 1143 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 1144 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1145 } 1146 1147 // (X+1) >u X --> X <u (0-1) --> X != 255 1148 // (X+2) >u X --> X <u (0-2) --> X <u 254 1149 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1150 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1151 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 1152 1153 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 1154 ConstantInt *SMax = ConstantInt::get(X->getContext(), 1155 APInt::getSignedMaxValue(BitWidth)); 1156 1157 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1158 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1159 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1160 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1161 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1162 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1163 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1164 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 1165 1166 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1167 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1168 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1169 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1170 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1171 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1172 1173 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1174 Constant *C = Builder->getInt(CI->getValue()-1); 1175 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 1176 } 1177 1178 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS 1179 /// and CmpRHS are both known to be integer constants. 1180 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, 1181 ConstantInt *DivRHS) { 1182 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); 1183 const APInt &CmpRHSV = CmpRHS->getValue(); 1184 1185 // FIXME: If the operand types don't match the type of the divide 1186 // then don't attempt this transform. The code below doesn't have the 1187 // logic to deal with a signed divide and an unsigned compare (and 1188 // vice versa). This is because (x /s C1) <s C2 produces different 1189 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even 1190 // (x /u C1) <u C2. Simply casting the operands and result won't 1191 // work. :( The if statement below tests that condition and bails 1192 // if it finds it. 1193 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; 1194 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) 1195 return nullptr; 1196 if (DivRHS->isZero()) 1197 return nullptr; // The ProdOV computation fails on divide by zero. 1198 if (DivIsSigned && DivRHS->isAllOnesValue()) 1199 return nullptr; // The overflow computation also screws up here 1200 if (DivRHS->isOne()) { 1201 // This eliminates some funny cases with INT_MIN. 1202 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X. 1203 return &ICI; 1204 } 1205 1206 // Compute Prod = CI * DivRHS. We are essentially solving an equation 1207 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 1208 // C2 (CI). By solving for X we can turn this into a range check 1209 // instead of computing a divide. 1210 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); 1211 1212 // Determine if the product overflows by seeing if the product is 1213 // not equal to the divide. Make sure we do the same kind of divide 1214 // as in the LHS instruction that we're folding. 1215 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : 1216 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; 1217 1218 // Get the ICmp opcode 1219 ICmpInst::Predicate Pred = ICI.getPredicate(); 1220 1221 /// If the division is known to be exact, then there is no remainder from the 1222 /// divide, so the covered range size is unit, otherwise it is the divisor. 1223 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS; 1224 1225 // Figure out the interval that is being checked. For example, a comparison 1226 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 1227 // Compute this interval based on the constants involved and the signedness of 1228 // the compare/divide. This computes a half-open interval, keeping track of 1229 // whether either value in the interval overflows. After analysis each 1230 // overflow variable is set to 0 if it's corresponding bound variable is valid 1231 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 1232 int LoOverflow = 0, HiOverflow = 0; 1233 Constant *LoBound = nullptr, *HiBound = nullptr; 1234 1235 if (!DivIsSigned) { // udiv 1236 // e.g. X/5 op 3 --> [15, 20) 1237 LoBound = Prod; 1238 HiOverflow = LoOverflow = ProdOV; 1239 if (!HiOverflow) { 1240 // If this is not an exact divide, then many values in the range collapse 1241 // to the same result value. 1242 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false); 1243 } 1244 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. 1245 if (CmpRHSV == 0) { // (X / pos) op 0 1246 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 1247 LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); 1248 HiBound = RangeSize; 1249 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos 1250 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 1251 HiOverflow = LoOverflow = ProdOV; 1252 if (!HiOverflow) 1253 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true); 1254 } else { // (X / pos) op neg 1255 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 1256 HiBound = AddOne(Prod); 1257 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 1258 if (!LoOverflow) { 1259 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 1260 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 1261 } 1262 } 1263 } else if (DivRHS->isNegative()) { // Divisor is < 0. 1264 if (DivI->isExact()) 1265 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 1266 if (CmpRHSV == 0) { // (X / neg) op 0 1267 // e.g. X/-5 op 0 --> [-4, 5) 1268 LoBound = AddOne(RangeSize); 1269 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 1270 if (HiBound == DivRHS) { // -INTMIN = INTMIN 1271 HiOverflow = 1; // [INTMIN+1, overflow) 1272 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN 1273 } 1274 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos 1275 // e.g. X/-5 op 3 --> [-19, -14) 1276 HiBound = AddOne(Prod); 1277 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 1278 if (!LoOverflow) 1279 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 1280 } else { // (X / neg) op neg 1281 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 1282 LoOverflow = HiOverflow = ProdOV; 1283 if (!HiOverflow) 1284 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true); 1285 } 1286 1287 // Dividing by a negative swaps the condition. LT <-> GT 1288 Pred = ICmpInst::getSwappedPredicate(Pred); 1289 } 1290 1291 Value *X = DivI->getOperand(0); 1292 switch (Pred) { 1293 default: llvm_unreachable("Unhandled icmp opcode!"); 1294 case ICmpInst::ICMP_EQ: 1295 if (LoOverflow && HiOverflow) 1296 return replaceInstUsesWith(ICI, Builder->getFalse()); 1297 if (HiOverflow) 1298 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 1299 ICmpInst::ICMP_UGE, X, LoBound); 1300 if (LoOverflow) 1301 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 1302 ICmpInst::ICMP_ULT, X, HiBound); 1303 return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 1304 DivIsSigned, true)); 1305 case ICmpInst::ICMP_NE: 1306 if (LoOverflow && HiOverflow) 1307 return replaceInstUsesWith(ICI, Builder->getTrue()); 1308 if (HiOverflow) 1309 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 1310 ICmpInst::ICMP_ULT, X, LoBound); 1311 if (LoOverflow) 1312 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 1313 ICmpInst::ICMP_UGE, X, HiBound); 1314 return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 1315 DivIsSigned, false)); 1316 case ICmpInst::ICMP_ULT: 1317 case ICmpInst::ICMP_SLT: 1318 if (LoOverflow == +1) // Low bound is greater than input range. 1319 return replaceInstUsesWith(ICI, Builder->getTrue()); 1320 if (LoOverflow == -1) // Low bound is less than input range. 1321 return replaceInstUsesWith(ICI, Builder->getFalse()); 1322 return new ICmpInst(Pred, X, LoBound); 1323 case ICmpInst::ICMP_UGT: 1324 case ICmpInst::ICMP_SGT: 1325 if (HiOverflow == +1) // High bound greater than input range. 1326 return replaceInstUsesWith(ICI, Builder->getFalse()); 1327 if (HiOverflow == -1) // High bound less than input range. 1328 return replaceInstUsesWith(ICI, Builder->getTrue()); 1329 if (Pred == ICmpInst::ICMP_UGT) 1330 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); 1331 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); 1332 } 1333 } 1334 1335 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)". 1336 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, 1337 ConstantInt *ShAmt) { 1338 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue(); 1339 1340 // Check that the shift amount is in range. If not, don't perform 1341 // undefined shifts. When the shift is visited it will be 1342 // simplified. 1343 uint32_t TypeBits = CmpRHSV.getBitWidth(); 1344 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 1345 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 1346 return nullptr; 1347 1348 if (!ICI.isEquality()) { 1349 // If we have an unsigned comparison and an ashr, we can't simplify this. 1350 // Similarly for signed comparisons with lshr. 1351 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr)) 1352 return nullptr; 1353 1354 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv 1355 // by a power of 2. Since we already have logic to simplify these, 1356 // transform to div and then simplify the resultant comparison. 1357 if (Shr->getOpcode() == Instruction::AShr && 1358 (!Shr->isExact() || ShAmtVal == TypeBits - 1)) 1359 return nullptr; 1360 1361 // Revisit the shift (to delete it). 1362 Worklist.Add(Shr); 1363 1364 Constant *DivCst = 1365 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); 1366 1367 Value *Tmp = 1368 Shr->getOpcode() == Instruction::AShr ? 1369 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) : 1370 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()); 1371 1372 ICI.setOperand(0, Tmp); 1373 1374 // If the builder folded the binop, just return it. 1375 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); 1376 if (!TheDiv) 1377 return &ICI; 1378 1379 // Otherwise, fold this div/compare. 1380 assert(TheDiv->getOpcode() == Instruction::SDiv || 1381 TheDiv->getOpcode() == Instruction::UDiv); 1382 1383 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst)); 1384 assert(Res && "This div/cst should have folded!"); 1385 return Res; 1386 } 1387 1388 // If we are comparing against bits always shifted out, the 1389 // comparison cannot succeed. 1390 APInt Comp = CmpRHSV << ShAmtVal; 1391 ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp); 1392 if (Shr->getOpcode() == Instruction::LShr) 1393 Comp = Comp.lshr(ShAmtVal); 1394 else 1395 Comp = Comp.ashr(ShAmtVal); 1396 1397 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero. 1398 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1399 Constant *Cst = Builder->getInt1(IsICMP_NE); 1400 return replaceInstUsesWith(ICI, Cst); 1401 } 1402 1403 // Otherwise, check to see if the bits shifted out are known to be zero. 1404 // If so, we can compare against the unshifted value: 1405 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 1406 if (Shr->hasOneUse() && Shr->isExact()) 1407 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS); 1408 1409 if (Shr->hasOneUse()) { 1410 // Otherwise strength reduce the shift into an and. 1411 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 1412 Constant *Mask = Builder->getInt(Val); 1413 1414 Value *And = Builder->CreateAnd(Shr->getOperand(0), 1415 Mask, Shr->getName()+".mask"); 1416 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS); 1417 } 1418 return nullptr; 1419 } 1420 1421 /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" -> 1422 /// (icmp eq/ne A, Log2(const2/const1)) -> 1423 /// (icmp eq/ne A, Log2(const2) - Log2(const1)). 1424 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A, 1425 ConstantInt *CI1, 1426 ConstantInt *CI2) { 1427 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1428 1429 auto getConstant = [&I, this](bool IsTrue) { 1430 if (I.getPredicate() == I.ICMP_NE) 1431 IsTrue = !IsTrue; 1432 return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue)); 1433 }; 1434 1435 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1436 if (I.getPredicate() == I.ICMP_NE) 1437 Pred = CmpInst::getInversePredicate(Pred); 1438 return new ICmpInst(Pred, LHS, RHS); 1439 }; 1440 1441 APInt AP1 = CI1->getValue(); 1442 APInt AP2 = CI2->getValue(); 1443 1444 // Don't bother doing any work for cases which InstSimplify handles. 1445 if (AP2 == 0) 1446 return nullptr; 1447 bool IsAShr = isa<AShrOperator>(Op); 1448 if (IsAShr) { 1449 if (AP2.isAllOnesValue()) 1450 return nullptr; 1451 if (AP2.isNegative() != AP1.isNegative()) 1452 return nullptr; 1453 if (AP2.sgt(AP1)) 1454 return nullptr; 1455 } 1456 1457 if (!AP1) 1458 // 'A' must be large enough to shift out the highest set bit. 1459 return getICmp(I.ICMP_UGT, A, 1460 ConstantInt::get(A->getType(), AP2.logBase2())); 1461 1462 if (AP1 == AP2) 1463 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1464 1465 int Shift; 1466 if (IsAShr && AP1.isNegative()) 1467 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1468 else 1469 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1470 1471 if (Shift > 0) { 1472 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1473 // There are multiple solutions if we are comparing against -1 and the LHS 1474 // of the ashr is not a power of two. 1475 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1476 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1477 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1478 } else if (AP1 == AP2.lshr(Shift)) { 1479 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1480 } 1481 } 1482 // Shifting const2 will never be equal to const1. 1483 return getConstant(false); 1484 } 1485 1486 /// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" -> 1487 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)). 1488 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A, 1489 ConstantInt *CI1, 1490 ConstantInt *CI2) { 1491 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1492 1493 auto getConstant = [&I, this](bool IsTrue) { 1494 if (I.getPredicate() == I.ICMP_NE) 1495 IsTrue = !IsTrue; 1496 return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue)); 1497 }; 1498 1499 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1500 if (I.getPredicate() == I.ICMP_NE) 1501 Pred = CmpInst::getInversePredicate(Pred); 1502 return new ICmpInst(Pred, LHS, RHS); 1503 }; 1504 1505 APInt AP1 = CI1->getValue(); 1506 APInt AP2 = CI2->getValue(); 1507 1508 // Don't bother doing any work for cases which InstSimplify handles. 1509 if (AP2 == 0) 1510 return nullptr; 1511 1512 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1513 1514 if (!AP1 && AP2TrailingZeros != 0) 1515 return getICmp(I.ICMP_UGE, A, 1516 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1517 1518 if (AP1 == AP2) 1519 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1520 1521 // Get the distance between the lowest bits that are set. 1522 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1523 1524 if (Shift > 0 && AP2.shl(Shift) == AP1) 1525 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1526 1527 // Shifting const2 will never be equal to const1. 1528 return getConstant(false); 1529 } 1530 1531 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". 1532 /// 1533 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, 1534 Instruction *LHSI, 1535 ConstantInt *RHS) { 1536 const APInt &RHSV = RHS->getValue(); 1537 1538 switch (LHSI->getOpcode()) { 1539 case Instruction::Trunc: 1540 if (RHS->isOne() && RHSV.getBitWidth() > 1) { 1541 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1542 Value *V = nullptr; 1543 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && 1544 match(LHSI->getOperand(0), m_Signum(m_Value(V)))) 1545 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1546 ConstantInt::get(V->getType(), 1)); 1547 } 1548 if (ICI.isEquality() && LHSI->hasOneUse()) { 1549 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1550 // of the high bits truncated out of x are known. 1551 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), 1552 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1553 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); 1554 computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI); 1555 1556 // If all the high bits are known, we can do this xform. 1557 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { 1558 // Pull in the high bits from known-ones set. 1559 APInt NewRHS = RHS->getValue().zext(SrcBits); 1560 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits); 1561 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1562 Builder->getInt(NewRHS)); 1563 } 1564 } 1565 break; 1566 1567 case Instruction::Xor: // (icmp pred (xor X, XorCst), CI) 1568 if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1569 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1570 // fold the xor. 1571 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || 1572 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { 1573 Value *CompareVal = LHSI->getOperand(0); 1574 1575 // If the sign bit of the XorCst is not set, there is no change to 1576 // the operation, just stop using the Xor. 1577 if (!XorCst->isNegative()) { 1578 ICI.setOperand(0, CompareVal); 1579 Worklist.Add(LHSI); 1580 return &ICI; 1581 } 1582 1583 // Was the old condition true if the operand is positive? 1584 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; 1585 1586 // If so, the new one isn't. 1587 isTrueIfPositive ^= true; 1588 1589 if (isTrueIfPositive) 1590 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, 1591 SubOne(RHS)); 1592 else 1593 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, 1594 AddOne(RHS)); 1595 } 1596 1597 if (LHSI->hasOneUse()) { 1598 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) 1599 if (!ICI.isEquality() && XorCst->getValue().isSignBit()) { 1600 const APInt &SignBit = XorCst->getValue(); 1601 ICmpInst::Predicate Pred = ICI.isSigned() 1602 ? ICI.getUnsignedPredicate() 1603 : ICI.getSignedPredicate(); 1604 return new ICmpInst(Pred, LHSI->getOperand(0), 1605 Builder->getInt(RHSV ^ SignBit)); 1606 } 1607 1608 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) 1609 if (!ICI.isEquality() && XorCst->isMaxValue(true)) { 1610 const APInt &NotSignBit = XorCst->getValue(); 1611 ICmpInst::Predicate Pred = ICI.isSigned() 1612 ? ICI.getUnsignedPredicate() 1613 : ICI.getSignedPredicate(); 1614 Pred = ICI.getSwappedPredicate(Pred); 1615 return new ICmpInst(Pred, LHSI->getOperand(0), 1616 Builder->getInt(RHSV ^ NotSignBit)); 1617 } 1618 } 1619 1620 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) 1621 // iff -C is a power of 2 1622 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && 1623 XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2()) 1624 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst); 1625 1626 // (icmp ult (xor X, C), -C) -> (icmp uge X, C) 1627 // iff -C is a power of 2 1628 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && 1629 XorCst->getValue() == -RHSV && RHSV.isPowerOf2()) 1630 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst); 1631 } 1632 break; 1633 case Instruction::And: // (icmp pred (and X, AndCst), RHS) 1634 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && 1635 LHSI->getOperand(0)->hasOneUse()) { 1636 ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1)); 1637 1638 // If the LHS is an AND of a truncating cast, we can widen the 1639 // and/compare to be the input width without changing the value 1640 // produced, eliminating a cast. 1641 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { 1642 // We can do this transformation if either the AND constant does not 1643 // have its sign bit set or if it is an equality comparison. 1644 // Extending a relational comparison when we're checking the sign 1645 // bit would not work. 1646 if (ICI.isEquality() || 1647 (!AndCst->isNegative() && RHSV.isNonNegative())) { 1648 Value *NewAnd = 1649 Builder->CreateAnd(Cast->getOperand(0), 1650 ConstantExpr::getZExt(AndCst, Cast->getSrcTy())); 1651 NewAnd->takeName(LHSI); 1652 return new ICmpInst(ICI.getPredicate(), NewAnd, 1653 ConstantExpr::getZExt(RHS, Cast->getSrcTy())); 1654 } 1655 } 1656 1657 // If the LHS is an AND of a zext, and we have an equality compare, we can 1658 // shrink the and/compare to the smaller type, eliminating the cast. 1659 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) { 1660 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy()); 1661 // Make sure we don't compare the upper bits, SimplifyDemandedBits 1662 // should fold the icmp to true/false in that case. 1663 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) { 1664 Value *NewAnd = 1665 Builder->CreateAnd(Cast->getOperand(0), 1666 ConstantExpr::getTrunc(AndCst, Ty)); 1667 NewAnd->takeName(LHSI); 1668 return new ICmpInst(ICI.getPredicate(), NewAnd, 1669 ConstantExpr::getTrunc(RHS, Ty)); 1670 } 1671 } 1672 1673 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare 1674 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This 1675 // happens a LOT in code produced by the C front-end, for bitfield 1676 // access. 1677 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); 1678 if (Shift && !Shift->isShift()) 1679 Shift = nullptr; 1680 1681 ConstantInt *ShAmt; 1682 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr; 1683 1684 // This seemingly simple opportunity to fold away a shift turns out to 1685 // be rather complicated. See PR17827 1686 // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details. 1687 if (ShAmt) { 1688 bool CanFold = false; 1689 unsigned ShiftOpcode = Shift->getOpcode(); 1690 if (ShiftOpcode == Instruction::AShr) { 1691 // There may be some constraints that make this possible, 1692 // but nothing simple has been discovered yet. 1693 CanFold = false; 1694 } else if (ShiftOpcode == Instruction::Shl) { 1695 // For a left shift, we can fold if the comparison is not signed. 1696 // We can also fold a signed comparison if the mask value and 1697 // comparison value are not negative. These constraints may not be 1698 // obvious, but we can prove that they are correct using an SMT 1699 // solver. 1700 if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative())) 1701 CanFold = true; 1702 } else if (ShiftOpcode == Instruction::LShr) { 1703 // For a logical right shift, we can fold if the comparison is not 1704 // signed. We can also fold a signed comparison if the shifted mask 1705 // value and the shifted comparison value are not negative. 1706 // These constraints may not be obvious, but we can prove that they 1707 // are correct using an SMT solver. 1708 if (!ICI.isSigned()) 1709 CanFold = true; 1710 else { 1711 ConstantInt *ShiftedAndCst = 1712 cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt)); 1713 ConstantInt *ShiftedRHSCst = 1714 cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt)); 1715 1716 if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative()) 1717 CanFold = true; 1718 } 1719 } 1720 1721 if (CanFold) { 1722 Constant *NewCst; 1723 if (ShiftOpcode == Instruction::Shl) 1724 NewCst = ConstantExpr::getLShr(RHS, ShAmt); 1725 else 1726 NewCst = ConstantExpr::getShl(RHS, ShAmt); 1727 1728 // Check to see if we are shifting out any of the bits being 1729 // compared. 1730 if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) { 1731 // If we shifted bits out, the fold is not going to work out. 1732 // As a special case, check to see if this means that the 1733 // result is always true or false now. 1734 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1735 return replaceInstUsesWith(ICI, Builder->getFalse()); 1736 if (ICI.getPredicate() == ICmpInst::ICMP_NE) 1737 return replaceInstUsesWith(ICI, Builder->getTrue()); 1738 } else { 1739 ICI.setOperand(1, NewCst); 1740 Constant *NewAndCst; 1741 if (ShiftOpcode == Instruction::Shl) 1742 NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt); 1743 else 1744 NewAndCst = ConstantExpr::getShl(AndCst, ShAmt); 1745 LHSI->setOperand(1, NewAndCst); 1746 LHSI->setOperand(0, Shift->getOperand(0)); 1747 Worklist.Add(Shift); // Shift is dead. 1748 return &ICI; 1749 } 1750 } 1751 } 1752 1753 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is 1754 // preferable because it allows the C<<Y expression to be hoisted out 1755 // of a loop if Y is invariant and X is not. 1756 if (Shift && Shift->hasOneUse() && RHSV == 0 && 1757 ICI.isEquality() && !Shift->isArithmeticShift() && 1758 !isa<Constant>(Shift->getOperand(0))) { 1759 // Compute C << Y. 1760 Value *NS; 1761 if (Shift->getOpcode() == Instruction::LShr) { 1762 NS = Builder->CreateShl(AndCst, Shift->getOperand(1)); 1763 } else { 1764 // Insert a logical shift. 1765 NS = Builder->CreateLShr(AndCst, Shift->getOperand(1)); 1766 } 1767 1768 // Compute X & (C << Y). 1769 Value *NewAnd = 1770 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); 1771 1772 ICI.setOperand(0, NewAnd); 1773 return &ICI; 1774 } 1775 1776 // (icmp pred (and (or (lshr X, Y), X), 1), 0) --> 1777 // (icmp pred (and X, (or (shl 1, Y), 1), 0)) 1778 // 1779 // iff pred isn't signed 1780 { 1781 Value *X, *Y, *LShr; 1782 if (!ICI.isSigned() && RHSV == 0) { 1783 if (match(LHSI->getOperand(1), m_One())) { 1784 Constant *One = cast<Constant>(LHSI->getOperand(1)); 1785 Value *Or = LHSI->getOperand(0); 1786 if (match(Or, m_Or(m_Value(LShr), m_Value(X))) && 1787 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) { 1788 unsigned UsesRemoved = 0; 1789 if (LHSI->hasOneUse()) 1790 ++UsesRemoved; 1791 if (Or->hasOneUse()) 1792 ++UsesRemoved; 1793 if (LShr->hasOneUse()) 1794 ++UsesRemoved; 1795 Value *NewOr = nullptr; 1796 // Compute X & ((1 << Y) | 1) 1797 if (auto *C = dyn_cast<Constant>(Y)) { 1798 if (UsesRemoved >= 1) 1799 NewOr = 1800 ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1801 } else { 1802 if (UsesRemoved >= 3) 1803 NewOr = Builder->CreateOr(Builder->CreateShl(One, Y, 1804 LShr->getName(), 1805 /*HasNUW=*/true), 1806 One, Or->getName()); 1807 } 1808 if (NewOr) { 1809 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName()); 1810 ICI.setOperand(0, NewAnd); 1811 return &ICI; 1812 } 1813 } 1814 } 1815 } 1816 } 1817 1818 // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any 1819 // bit set in (X & AndCst) will produce a result greater than RHSV. 1820 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) { 1821 unsigned NTZ = AndCst->getValue().countTrailingZeros(); 1822 if ((NTZ < AndCst->getBitWidth()) && 1823 APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV)) 1824 return new ICmpInst(ICmpInst::ICMP_NE, LHSI, 1825 Constant::getNullValue(RHS->getType())); 1826 } 1827 } 1828 1829 // Try to optimize things like "A[i]&42 == 0" to index computations. 1830 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) { 1831 if (GetElementPtrInst *GEP = 1832 dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1833 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1834 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1835 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) { 1836 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1)); 1837 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C)) 1838 return Res; 1839 } 1840 } 1841 1842 // X & -C == -C -> X > u ~C 1843 // X & -C != -C -> X <= u ~C 1844 // iff C is a power of 2 1845 if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2()) 1846 return new ICmpInst( 1847 ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT 1848 : ICmpInst::ICMP_ULE, 1849 LHSI->getOperand(0), SubOne(RHS)); 1850 1851 // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1) 1852 // iff C is a power of 2 1853 if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) { 1854 if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1855 const APInt &AI = CI->getValue(); 1856 int32_t ExactLogBase2 = AI.exactLogBase2(); 1857 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1858 Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1); 1859 Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy); 1860 return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ 1861 ? ICmpInst::ICMP_SGE 1862 : ICmpInst::ICMP_SLT, 1863 Trunc, Constant::getNullValue(NTy)); 1864 } 1865 } 1866 } 1867 break; 1868 1869 case Instruction::Or: { 1870 if (RHS->isOne()) { 1871 // icmp slt signum(V) 1 --> icmp slt V, 1 1872 Value *V = nullptr; 1873 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && 1874 match(LHSI, m_Signum(m_Value(V)))) 1875 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1876 ConstantInt::get(V->getType(), 1)); 1877 } 1878 1879 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse()) 1880 break; 1881 Value *P, *Q; 1882 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1883 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1884 // -> and (icmp eq P, null), (icmp eq Q, null). 1885 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P, 1886 Constant::getNullValue(P->getType())); 1887 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q, 1888 Constant::getNullValue(Q->getType())); 1889 Instruction *Op; 1890 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1891 Op = BinaryOperator::CreateAnd(ICIP, ICIQ); 1892 else 1893 Op = BinaryOperator::CreateOr(ICIP, ICIQ); 1894 return Op; 1895 } 1896 break; 1897 } 1898 1899 case Instruction::Mul: { // (icmp pred (mul X, Val), CI) 1900 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1901 if (!Val) break; 1902 1903 // If this is a signed comparison to 0 and the mul is sign preserving, 1904 // use the mul LHS operand instead. 1905 ICmpInst::Predicate pred = ICI.getPredicate(); 1906 if (isSignTest(pred, RHS) && !Val->isZero() && 1907 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1908 return new ICmpInst(Val->isNegative() ? 1909 ICmpInst::getSwappedPredicate(pred) : pred, 1910 LHSI->getOperand(0), 1911 Constant::getNullValue(RHS->getType())); 1912 1913 break; 1914 } 1915 1916 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) 1917 uint32_t TypeBits = RHSV.getBitWidth(); 1918 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1919 if (!ShAmt) { 1920 Value *X; 1921 // (1 << X) pred P2 -> X pred Log2(P2) 1922 if (match(LHSI, m_Shl(m_One(), m_Value(X)))) { 1923 bool RHSVIsPowerOf2 = RHSV.isPowerOf2(); 1924 ICmpInst::Predicate Pred = ICI.getPredicate(); 1925 if (ICI.isUnsigned()) { 1926 if (!RHSVIsPowerOf2) { 1927 // (1 << X) < 30 -> X <= 4 1928 // (1 << X) <= 30 -> X <= 4 1929 // (1 << X) >= 30 -> X > 4 1930 // (1 << X) > 30 -> X > 4 1931 if (Pred == ICmpInst::ICMP_ULT) 1932 Pred = ICmpInst::ICMP_ULE; 1933 else if (Pred == ICmpInst::ICMP_UGE) 1934 Pred = ICmpInst::ICMP_UGT; 1935 } 1936 unsigned RHSLog2 = RHSV.logBase2(); 1937 1938 // (1 << X) >= 2147483648 -> X >= 31 -> X == 31 1939 // (1 << X) < 2147483648 -> X < 31 -> X != 31 1940 if (RHSLog2 == TypeBits-1) { 1941 if (Pred == ICmpInst::ICMP_UGE) 1942 Pred = ICmpInst::ICMP_EQ; 1943 else if (Pred == ICmpInst::ICMP_ULT) 1944 Pred = ICmpInst::ICMP_NE; 1945 } 1946 1947 return new ICmpInst(Pred, X, 1948 ConstantInt::get(RHS->getType(), RHSLog2)); 1949 } else if (ICI.isSigned()) { 1950 if (RHSV.isAllOnesValue()) { 1951 // (1 << X) <= -1 -> X == 31 1952 if (Pred == ICmpInst::ICMP_SLE) 1953 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1954 ConstantInt::get(RHS->getType(), TypeBits-1)); 1955 1956 // (1 << X) > -1 -> X != 31 1957 if (Pred == ICmpInst::ICMP_SGT) 1958 return new ICmpInst(ICmpInst::ICMP_NE, X, 1959 ConstantInt::get(RHS->getType(), TypeBits-1)); 1960 } else if (!RHSV) { 1961 // (1 << X) < 0 -> X == 31 1962 // (1 << X) <= 0 -> X == 31 1963 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1964 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1965 ConstantInt::get(RHS->getType(), TypeBits-1)); 1966 1967 // (1 << X) >= 0 -> X != 31 1968 // (1 << X) > 0 -> X != 31 1969 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1970 return new ICmpInst(ICmpInst::ICMP_NE, X, 1971 ConstantInt::get(RHS->getType(), TypeBits-1)); 1972 } 1973 } else if (ICI.isEquality()) { 1974 if (RHSVIsPowerOf2) 1975 return new ICmpInst( 1976 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2())); 1977 } 1978 } 1979 break; 1980 } 1981 1982 // Check that the shift amount is in range. If not, don't perform 1983 // undefined shifts. When the shift is visited it will be 1984 // simplified. 1985 if (ShAmt->uge(TypeBits)) 1986 break; 1987 1988 if (ICI.isEquality()) { 1989 // If we are comparing against bits always shifted out, the 1990 // comparison cannot succeed. 1991 Constant *Comp = 1992 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), 1993 ShAmt); 1994 if (Comp != RHS) {// Comparing against a bit that we know is zero. 1995 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1996 Constant *Cst = Builder->getInt1(IsICMP_NE); 1997 return replaceInstUsesWith(ICI, Cst); 1998 } 1999 2000 // If the shift is NUW, then it is just shifting out zeros, no need for an 2001 // AND. 2002 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap()) 2003 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 2004 ConstantExpr::getLShr(RHS, ShAmt)); 2005 2006 // If the shift is NSW and we compare to 0, then it is just shifting out 2007 // sign bits, no need for an AND either. 2008 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0) 2009 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 2010 ConstantExpr::getLShr(RHS, ShAmt)); 2011 2012 if (LHSI->hasOneUse()) { 2013 // Otherwise strength reduce the shift into an and. 2014 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 2015 Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits, 2016 TypeBits - ShAmtVal)); 2017 2018 Value *And = 2019 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); 2020 return new ICmpInst(ICI.getPredicate(), And, 2021 ConstantExpr::getLShr(RHS, ShAmt)); 2022 } 2023 } 2024 2025 // If this is a signed comparison to 0 and the shift is sign preserving, 2026 // use the shift LHS operand instead. 2027 ICmpInst::Predicate pred = ICI.getPredicate(); 2028 if (isSignTest(pred, RHS) && 2029 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 2030 return new ICmpInst(pred, 2031 LHSI->getOperand(0), 2032 Constant::getNullValue(RHS->getType())); 2033 2034 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2035 bool TrueIfSigned = false; 2036 if (LHSI->hasOneUse() && 2037 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { 2038 // (X << 31) <s 0 --> (X&1) != 0 2039 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(), 2040 APInt::getOneBitSet(TypeBits, 2041 TypeBits-ShAmt->getZExtValue()-1)); 2042 Value *And = 2043 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); 2044 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2045 And, Constant::getNullValue(And->getType())); 2046 } 2047 2048 // Transform (icmp pred iM (shl iM %v, N), CI) 2049 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N)) 2050 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N. 2051 // This enables to get rid of the shift in favor of a trunc which can be 2052 // free on the target. It has the additional benefit of comparing to a 2053 // smaller constant, which will be target friendly. 2054 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1); 2055 if (LHSI->hasOneUse() && 2056 Amt != 0 && RHSV.countTrailingZeros() >= Amt) { 2057 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt); 2058 Constant *NCI = ConstantExpr::getTrunc( 2059 ConstantExpr::getAShr(RHS, 2060 ConstantInt::get(RHS->getType(), Amt)), 2061 NTy); 2062 return new ICmpInst(ICI.getPredicate(), 2063 Builder->CreateTrunc(LHSI->getOperand(0), NTy), 2064 NCI); 2065 } 2066 2067 break; 2068 } 2069 2070 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) 2071 case Instruction::AShr: { 2072 // Handle equality comparisons of shift-by-constant. 2073 BinaryOperator *BO = cast<BinaryOperator>(LHSI); 2074 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 2075 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt)) 2076 return Res; 2077 } 2078 2079 // Handle exact shr's. 2080 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) { 2081 if (RHSV.isMinValue()) 2082 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS); 2083 } 2084 break; 2085 } 2086 2087 case Instruction::SDiv: 2088 case Instruction::UDiv: 2089 // Fold: icmp pred ([us]div X, C1), C2 -> range test 2090 // Fold this div into the comparison, producing a range check. 2091 // Determine, based on the divide type, what the range is being 2092 // checked. If there is an overflow on the low or high side, remember 2093 // it, otherwise compute the range [low, hi) bounding the new value. 2094 // See: InsertRangeTest above for the kinds of replacements possible. 2095 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) 2096 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), 2097 DivRHS)) 2098 return R; 2099 break; 2100 2101 case Instruction::Sub: { 2102 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0)); 2103 if (!LHSC) break; 2104 const APInt &LHSV = LHSC->getValue(); 2105 2106 // C1-X <u C2 -> (X|(C2-1)) == C1 2107 // iff C1 & (C2-1) == C2-1 2108 // C2 is a power of 2 2109 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 2110 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1)) 2111 return new ICmpInst(ICmpInst::ICMP_EQ, 2112 Builder->CreateOr(LHSI->getOperand(1), RHSV - 1), 2113 LHSC); 2114 2115 // C1-X >u C2 -> (X|C2) != C1 2116 // iff C1 & C2 == C2 2117 // C2+1 is a power of 2 2118 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 2119 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV) 2120 return new ICmpInst(ICmpInst::ICMP_NE, 2121 Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC); 2122 break; 2123 } 2124 2125 case Instruction::Add: 2126 // Fold: icmp pred (add X, C1), C2 2127 if (!ICI.isEquality()) { 2128 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 2129 if (!LHSC) break; 2130 const APInt &LHSV = LHSC->getValue(); 2131 2132 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) 2133 .subtract(LHSV); 2134 2135 if (ICI.isSigned()) { 2136 if (CR.getLower().isSignBit()) { 2137 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), 2138 Builder->getInt(CR.getUpper())); 2139 } else if (CR.getUpper().isSignBit()) { 2140 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), 2141 Builder->getInt(CR.getLower())); 2142 } 2143 } else { 2144 if (CR.getLower().isMinValue()) { 2145 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), 2146 Builder->getInt(CR.getUpper())); 2147 } else if (CR.getUpper().isMinValue()) { 2148 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), 2149 Builder->getInt(CR.getLower())); 2150 } 2151 } 2152 2153 // X-C1 <u C2 -> (X & -C2) == C1 2154 // iff C1 & (C2-1) == 0 2155 // C2 is a power of 2 2156 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 2157 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0) 2158 return new ICmpInst(ICmpInst::ICMP_EQ, 2159 Builder->CreateAnd(LHSI->getOperand(0), -RHSV), 2160 ConstantExpr::getNeg(LHSC)); 2161 2162 // X-C1 >u C2 -> (X & ~C2) != C1 2163 // iff C1 & C2 == 0 2164 // C2+1 is a power of 2 2165 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 2166 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0) 2167 return new ICmpInst(ICmpInst::ICMP_NE, 2168 Builder->CreateAnd(LHSI->getOperand(0), ~RHSV), 2169 ConstantExpr::getNeg(LHSC)); 2170 } 2171 break; 2172 } 2173 2174 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. 2175 if (ICI.isEquality()) { 2176 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 2177 2178 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 2179 // the second operand is a constant, simplify a bit. 2180 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { 2181 switch (BO->getOpcode()) { 2182 case Instruction::SRem: 2183 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2184 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ 2185 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); 2186 if (V.sgt(1) && V.isPowerOf2()) { 2187 Value *NewRem = 2188 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), 2189 BO->getName()); 2190 return new ICmpInst(ICI.getPredicate(), NewRem, 2191 Constant::getNullValue(BO->getType())); 2192 } 2193 } 2194 break; 2195 case Instruction::Add: 2196 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2197 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2198 if (BO->hasOneUse()) 2199 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2200 ConstantExpr::getSub(RHS, BOp1C)); 2201 } else if (RHSV == 0) { 2202 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2203 // efficiently invertible, or if the add has just this one use. 2204 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2205 2206 if (Value *NegVal = dyn_castNegVal(BOp1)) 2207 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); 2208 if (Value *NegVal = dyn_castNegVal(BOp0)) 2209 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); 2210 if (BO->hasOneUse()) { 2211 Value *Neg = Builder->CreateNeg(BOp1); 2212 Neg->takeName(BO); 2213 return new ICmpInst(ICI.getPredicate(), BOp0, Neg); 2214 } 2215 } 2216 break; 2217 case Instruction::Xor: 2218 if (BO->hasOneUse()) { 2219 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { 2220 // For the xor case, we can xor two constants together, eliminating 2221 // the explicit xor. 2222 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2223 ConstantExpr::getXor(RHS, BOC)); 2224 } else if (RHSV == 0) { 2225 // Replace ((xor A, B) != 0) with (A != B) 2226 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2227 BO->getOperand(1)); 2228 } 2229 } 2230 break; 2231 case Instruction::Sub: 2232 if (BO->hasOneUse()) { 2233 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) { 2234 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants. 2235 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1), 2236 ConstantExpr::getSub(BOp0C, RHS)); 2237 } else if (RHSV == 0) { 2238 // Replace ((sub A, B) != 0) with (A != B) 2239 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2240 BO->getOperand(1)); 2241 } 2242 } 2243 break; 2244 case Instruction::Or: 2245 // If bits are being or'd in that are not present in the constant we 2246 // are comparing against, then the comparison could never succeed! 2247 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2248 Constant *NotCI = ConstantExpr::getNot(RHS); 2249 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) 2250 return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 2251 2252 // Comparing if all bits outside of a constant mask are set? 2253 // Replace (X | C) == -1 with (X & ~C) == ~C. 2254 // This removes the -1 constant. 2255 if (BO->hasOneUse() && RHS->isAllOnesValue()) { 2256 Constant *NotBOC = ConstantExpr::getNot(BOC); 2257 Value *And = Builder->CreateAnd(BO->getOperand(0), NotBOC); 2258 return new ICmpInst(ICI.getPredicate(), And, NotBOC); 2259 } 2260 } 2261 break; 2262 2263 case Instruction::And: 2264 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2265 // If bits are being compared against that are and'd out, then the 2266 // comparison can never succeed! 2267 if ((RHSV & ~BOC->getValue()) != 0) 2268 return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 2269 2270 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2271 if (RHS == BOC && RHSV.isPowerOf2()) 2272 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : 2273 ICmpInst::ICMP_NE, LHSI, 2274 Constant::getNullValue(RHS->getType())); 2275 2276 // Don't perform the following transforms if the AND has multiple uses 2277 if (!BO->hasOneUse()) 2278 break; 2279 2280 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 2281 if (BOC->getValue().isSignBit()) { 2282 Value *X = BO->getOperand(0); 2283 Constant *Zero = Constant::getNullValue(X->getType()); 2284 ICmpInst::Predicate pred = isICMP_NE ? 2285 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 2286 return new ICmpInst(pred, X, Zero); 2287 } 2288 2289 // ((X & ~7) == 0) --> X < 8 2290 if (RHSV == 0 && isHighOnes(BOC)) { 2291 Value *X = BO->getOperand(0); 2292 Constant *NegX = ConstantExpr::getNeg(BOC); 2293 ICmpInst::Predicate pred = isICMP_NE ? 2294 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2295 return new ICmpInst(pred, X, NegX); 2296 } 2297 } 2298 break; 2299 case Instruction::Mul: 2300 if (RHSV == 0 && BO->hasNoSignedWrap()) { 2301 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2302 // The trivial case (mul X, 0) is handled by InstSimplify 2303 // General case : (mul X, C) != 0 iff X != 0 2304 // (mul X, C) == 0 iff X == 0 2305 if (!BOC->isZero()) 2306 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2307 Constant::getNullValue(RHS->getType())); 2308 } 2309 } 2310 break; 2311 default: break; 2312 } 2313 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { 2314 // Handle icmp {eq|ne} <intrinsic>, intcst. 2315 switch (II->getIntrinsicID()) { 2316 case Intrinsic::bswap: 2317 Worklist.Add(II); 2318 ICI.setOperand(0, II->getArgOperand(0)); 2319 ICI.setOperand(1, Builder->getInt(RHSV.byteSwap())); 2320 return &ICI; 2321 case Intrinsic::ctlz: 2322 case Intrinsic::cttz: 2323 // ctz(A) == bitwidth(a) -> A == 0 and likewise for != 2324 if (RHSV == RHS->getType()->getBitWidth()) { 2325 Worklist.Add(II); 2326 ICI.setOperand(0, II->getArgOperand(0)); 2327 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0)); 2328 return &ICI; 2329 } 2330 break; 2331 case Intrinsic::ctpop: 2332 // popcount(A) == 0 -> A == 0 and likewise for != 2333 if (RHS->isZero()) { 2334 Worklist.Add(II); 2335 ICI.setOperand(0, II->getArgOperand(0)); 2336 ICI.setOperand(1, RHS); 2337 return &ICI; 2338 } 2339 break; 2340 default: 2341 break; 2342 } 2343 } 2344 } 2345 return nullptr; 2346 } 2347 2348 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). 2349 /// We only handle extending casts so far. 2350 /// 2351 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { 2352 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); 2353 Value *LHSCIOp = LHSCI->getOperand(0); 2354 Type *SrcTy = LHSCIOp->getType(); 2355 Type *DestTy = LHSCI->getType(); 2356 Value *RHSCIOp; 2357 2358 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 2359 // integer type is the same size as the pointer type. 2360 if (LHSCI->getOpcode() == Instruction::PtrToInt && 2361 DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { 2362 Value *RHSOp = nullptr; 2363 if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) { 2364 Value *RHSCIOp = RHSC->getOperand(0); 2365 if (RHSCIOp->getType()->getPointerAddressSpace() == 2366 LHSCIOp->getType()->getPointerAddressSpace()) { 2367 RHSOp = RHSC->getOperand(0); 2368 // If the pointer types don't match, insert a bitcast. 2369 if (LHSCIOp->getType() != RHSOp->getType()) 2370 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); 2371 } 2372 } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) 2373 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 2374 2375 if (RHSOp) 2376 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); 2377 } 2378 2379 // The code below only handles extension cast instructions, so far. 2380 // Enforce this. 2381 if (LHSCI->getOpcode() != Instruction::ZExt && 2382 LHSCI->getOpcode() != Instruction::SExt) 2383 return nullptr; 2384 2385 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 2386 bool isSignedCmp = ICI.isSigned(); 2387 2388 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { 2389 // Not an extension from the same type? 2390 RHSCIOp = CI->getOperand(0); 2391 if (RHSCIOp->getType() != LHSCIOp->getType()) 2392 return nullptr; 2393 2394 // If the signedness of the two casts doesn't agree (i.e. one is a sext 2395 // and the other is a zext), then we can't handle this. 2396 if (CI->getOpcode() != LHSCI->getOpcode()) 2397 return nullptr; 2398 2399 // Deal with equality cases early. 2400 if (ICI.isEquality()) 2401 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 2402 2403 // A signed comparison of sign extended values simplifies into a 2404 // signed comparison. 2405 if (isSignedCmp && isSignedExt) 2406 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 2407 2408 // The other three cases all fold into an unsigned comparison. 2409 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 2410 } 2411 2412 // If we aren't dealing with a constant on the RHS, exit early 2413 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); 2414 if (!CI) 2415 return nullptr; 2416 2417 // Compute the constant that would happen if we truncated to SrcTy then 2418 // reextended to DestTy. 2419 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); 2420 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), 2421 Res1, DestTy); 2422 2423 // If the re-extended constant didn't change... 2424 if (Res2 == CI) { 2425 // Deal with equality cases early. 2426 if (ICI.isEquality()) 2427 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 2428 2429 // A signed comparison of sign extended values simplifies into a 2430 // signed comparison. 2431 if (isSignedExt && isSignedCmp) 2432 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 2433 2434 // The other three cases all fold into an unsigned comparison. 2435 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1); 2436 } 2437 2438 // The re-extended constant changed so the constant cannot be represented 2439 // in the shorter type. Consequently, we cannot emit a simple comparison. 2440 // All the cases that fold to true or false will have already been handled 2441 // by SimplifyICmpInst, so only deal with the tricky case. 2442 2443 if (isSignedCmp || !isSignedExt) 2444 return nullptr; 2445 2446 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 2447 // should have been folded away previously and not enter in here. 2448 2449 // We're performing an unsigned comp with a sign extended value. 2450 // This is true if the input is >= 0. [aka >s -1] 2451 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 2452 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName()); 2453 2454 // Finally, return the value computed. 2455 if (ICI.getPredicate() == ICmpInst::ICMP_ULT) 2456 return replaceInstUsesWith(ICI, Result); 2457 2458 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 2459 return BinaryOperator::CreateNot(Result); 2460 } 2461 2462 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form: 2463 /// I = icmp ugt (add (add A, B), CI2), CI1 2464 /// If this is of the form: 2465 /// sum = a + b 2466 /// if (sum+128 >u 255) 2467 /// Then replace it with llvm.sadd.with.overflow.i8. 2468 /// 2469 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 2470 ConstantInt *CI2, ConstantInt *CI1, 2471 InstCombiner &IC) { 2472 // The transformation we're trying to do here is to transform this into an 2473 // llvm.sadd.with.overflow. To do this, we have to replace the original add 2474 // with a narrower add, and discard the add-with-constant that is part of the 2475 // range check (if we can't eliminate it, this isn't profitable). 2476 2477 // In order to eliminate the add-with-constant, the compare can be its only 2478 // use. 2479 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 2480 if (!AddWithCst->hasOneUse()) return nullptr; 2481 2482 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 2483 if (!CI2->getValue().isPowerOf2()) return nullptr; 2484 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 2485 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr; 2486 2487 // The width of the new add formed is 1 more than the bias. 2488 ++NewWidth; 2489 2490 // Check to see that CI1 is an all-ones value with NewWidth bits. 2491 if (CI1->getBitWidth() == NewWidth || 2492 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 2493 return nullptr; 2494 2495 // This is only really a signed overflow check if the inputs have been 2496 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 2497 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 2498 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 2499 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 2500 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 2501 return nullptr; 2502 2503 // In order to replace the original add with a narrower 2504 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 2505 // and truncates that discard the high bits of the add. Verify that this is 2506 // the case. 2507 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 2508 for (User *U : OrigAdd->users()) { 2509 if (U == AddWithCst) continue; 2510 2511 // Only accept truncates for now. We would really like a nice recursive 2512 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 2513 // chain to see which bits of a value are actually demanded. If the 2514 // original add had another add which was then immediately truncated, we 2515 // could still do the transformation. 2516 TruncInst *TI = dyn_cast<TruncInst>(U); 2517 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 2518 return nullptr; 2519 } 2520 2521 // If the pattern matches, truncate the inputs to the narrower type and 2522 // use the sadd_with_overflow intrinsic to efficiently compute both the 2523 // result and the overflow bit. 2524 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 2525 Value *F = Intrinsic::getDeclaration(I.getModule(), 2526 Intrinsic::sadd_with_overflow, NewType); 2527 2528 InstCombiner::BuilderTy *Builder = IC.Builder; 2529 2530 // Put the new code above the original add, in case there are any uses of the 2531 // add between the add and the compare. 2532 Builder->SetInsertPoint(OrigAdd); 2533 2534 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc"); 2535 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc"); 2536 CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd"); 2537 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); 2538 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); 2539 2540 // The inner add was the result of the narrow add, zero extended to the 2541 // wider type. Replace it with the result computed by the intrinsic. 2542 IC.replaceInstUsesWith(*OrigAdd, ZExt); 2543 2544 // The original icmp gets replaced with the overflow value. 2545 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 2546 } 2547 2548 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, 2549 Value *RHS, Instruction &OrigI, 2550 Value *&Result, Constant *&Overflow) { 2551 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 2552 std::swap(LHS, RHS); 2553 2554 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { 2555 Result = OpResult; 2556 Overflow = OverflowVal; 2557 if (ReuseName) 2558 Result->takeName(&OrigI); 2559 return true; 2560 }; 2561 2562 // If the overflow check was an add followed by a compare, the insertion point 2563 // may be pointing to the compare. We want to insert the new instructions 2564 // before the add in case there are uses of the add between the add and the 2565 // compare. 2566 Builder->SetInsertPoint(&OrigI); 2567 2568 switch (OCF) { 2569 case OCF_INVALID: 2570 llvm_unreachable("bad overflow check kind!"); 2571 2572 case OCF_UNSIGNED_ADD: { 2573 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); 2574 if (OR == OverflowResult::NeverOverflows) 2575 return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(), 2576 true); 2577 2578 if (OR == OverflowResult::AlwaysOverflows) 2579 return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true); 2580 } 2581 // FALL THROUGH uadd into sadd 2582 case OCF_SIGNED_ADD: { 2583 // X + 0 -> {X, false} 2584 if (match(RHS, m_Zero())) 2585 return SetResult(LHS, Builder->getFalse(), false); 2586 2587 // We can strength reduce this signed add into a regular add if we can prove 2588 // that it will never overflow. 2589 if (OCF == OCF_SIGNED_ADD) 2590 if (WillNotOverflowSignedAdd(LHS, RHS, OrigI)) 2591 return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(), 2592 true); 2593 break; 2594 } 2595 2596 case OCF_UNSIGNED_SUB: 2597 case OCF_SIGNED_SUB: { 2598 // X - 0 -> {X, false} 2599 if (match(RHS, m_Zero())) 2600 return SetResult(LHS, Builder->getFalse(), false); 2601 2602 if (OCF == OCF_SIGNED_SUB) { 2603 if (WillNotOverflowSignedSub(LHS, RHS, OrigI)) 2604 return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(), 2605 true); 2606 } else { 2607 if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI)) 2608 return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(), 2609 true); 2610 } 2611 break; 2612 } 2613 2614 case OCF_UNSIGNED_MUL: { 2615 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); 2616 if (OR == OverflowResult::NeverOverflows) 2617 return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(), 2618 true); 2619 if (OR == OverflowResult::AlwaysOverflows) 2620 return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true); 2621 } // FALL THROUGH 2622 case OCF_SIGNED_MUL: 2623 // X * undef -> undef 2624 if (isa<UndefValue>(RHS)) 2625 return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false); 2626 2627 // X * 0 -> {0, false} 2628 if (match(RHS, m_Zero())) 2629 return SetResult(RHS, Builder->getFalse(), false); 2630 2631 // X * 1 -> {X, false} 2632 if (match(RHS, m_One())) 2633 return SetResult(LHS, Builder->getFalse(), false); 2634 2635 if (OCF == OCF_SIGNED_MUL) 2636 if (WillNotOverflowSignedMul(LHS, RHS, OrigI)) 2637 return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(), 2638 true); 2639 break; 2640 } 2641 2642 return false; 2643 } 2644 2645 /// \brief Recognize and process idiom involving test for multiplication 2646 /// overflow. 2647 /// 2648 /// The caller has matched a pattern of the form: 2649 /// I = cmp u (mul(zext A, zext B), V 2650 /// The function checks if this is a test for overflow and if so replaces 2651 /// multiplication with call to 'mul.with.overflow' intrinsic. 2652 /// 2653 /// \param I Compare instruction. 2654 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 2655 /// the compare instruction. Must be of integer type. 2656 /// \param OtherVal The other argument of compare instruction. 2657 /// \returns Instruction which must replace the compare instruction, NULL if no 2658 /// replacement required. 2659 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal, 2660 Value *OtherVal, InstCombiner &IC) { 2661 // Don't bother doing this transformation for pointers, don't do it for 2662 // vectors. 2663 if (!isa<IntegerType>(MulVal->getType())) 2664 return nullptr; 2665 2666 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 2667 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 2668 auto *MulInstr = dyn_cast<Instruction>(MulVal); 2669 if (!MulInstr) 2670 return nullptr; 2671 assert(MulInstr->getOpcode() == Instruction::Mul); 2672 2673 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 2674 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 2675 assert(LHS->getOpcode() == Instruction::ZExt); 2676 assert(RHS->getOpcode() == Instruction::ZExt); 2677 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 2678 2679 // Calculate type and width of the result produced by mul.with.overflow. 2680 Type *TyA = A->getType(), *TyB = B->getType(); 2681 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 2682 WidthB = TyB->getPrimitiveSizeInBits(); 2683 unsigned MulWidth; 2684 Type *MulType; 2685 if (WidthB > WidthA) { 2686 MulWidth = WidthB; 2687 MulType = TyB; 2688 } else { 2689 MulWidth = WidthA; 2690 MulType = TyA; 2691 } 2692 2693 // In order to replace the original mul with a narrower mul.with.overflow, 2694 // all uses must ignore upper bits of the product. The number of used low 2695 // bits must be not greater than the width of mul.with.overflow. 2696 if (MulVal->hasNUsesOrMore(2)) 2697 for (User *U : MulVal->users()) { 2698 if (U == &I) 2699 continue; 2700 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2701 // Check if truncation ignores bits above MulWidth. 2702 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 2703 if (TruncWidth > MulWidth) 2704 return nullptr; 2705 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2706 // Check if AND ignores bits above MulWidth. 2707 if (BO->getOpcode() != Instruction::And) 2708 return nullptr; 2709 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2710 const APInt &CVal = CI->getValue(); 2711 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 2712 return nullptr; 2713 } 2714 } else { 2715 // Other uses prohibit this transformation. 2716 return nullptr; 2717 } 2718 } 2719 2720 // Recognize patterns 2721 switch (I.getPredicate()) { 2722 case ICmpInst::ICMP_EQ: 2723 case ICmpInst::ICMP_NE: 2724 // Recognize pattern: 2725 // mulval = mul(zext A, zext B) 2726 // cmp eq/neq mulval, zext trunc mulval 2727 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 2728 if (Zext->hasOneUse()) { 2729 Value *ZextArg = Zext->getOperand(0); 2730 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 2731 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 2732 break; //Recognized 2733 } 2734 2735 // Recognize pattern: 2736 // mulval = mul(zext A, zext B) 2737 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 2738 ConstantInt *CI; 2739 Value *ValToMask; 2740 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 2741 if (ValToMask != MulVal) 2742 return nullptr; 2743 const APInt &CVal = CI->getValue() + 1; 2744 if (CVal.isPowerOf2()) { 2745 unsigned MaskWidth = CVal.logBase2(); 2746 if (MaskWidth == MulWidth) 2747 break; // Recognized 2748 } 2749 } 2750 return nullptr; 2751 2752 case ICmpInst::ICMP_UGT: 2753 // Recognize pattern: 2754 // mulval = mul(zext A, zext B) 2755 // cmp ugt mulval, max 2756 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2757 APInt MaxVal = APInt::getMaxValue(MulWidth); 2758 MaxVal = MaxVal.zext(CI->getBitWidth()); 2759 if (MaxVal.eq(CI->getValue())) 2760 break; // Recognized 2761 } 2762 return nullptr; 2763 2764 case ICmpInst::ICMP_UGE: 2765 // Recognize pattern: 2766 // mulval = mul(zext A, zext B) 2767 // cmp uge mulval, max+1 2768 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2769 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2770 if (MaxVal.eq(CI->getValue())) 2771 break; // Recognized 2772 } 2773 return nullptr; 2774 2775 case ICmpInst::ICMP_ULE: 2776 // Recognize pattern: 2777 // mulval = mul(zext A, zext B) 2778 // cmp ule mulval, max 2779 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2780 APInt MaxVal = APInt::getMaxValue(MulWidth); 2781 MaxVal = MaxVal.zext(CI->getBitWidth()); 2782 if (MaxVal.eq(CI->getValue())) 2783 break; // Recognized 2784 } 2785 return nullptr; 2786 2787 case ICmpInst::ICMP_ULT: 2788 // Recognize pattern: 2789 // mulval = mul(zext A, zext B) 2790 // cmp ule mulval, max + 1 2791 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2792 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2793 if (MaxVal.eq(CI->getValue())) 2794 break; // Recognized 2795 } 2796 return nullptr; 2797 2798 default: 2799 return nullptr; 2800 } 2801 2802 InstCombiner::BuilderTy *Builder = IC.Builder; 2803 Builder->SetInsertPoint(MulInstr); 2804 2805 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 2806 Value *MulA = A, *MulB = B; 2807 if (WidthA < MulWidth) 2808 MulA = Builder->CreateZExt(A, MulType); 2809 if (WidthB < MulWidth) 2810 MulB = Builder->CreateZExt(B, MulType); 2811 Value *F = Intrinsic::getDeclaration(I.getModule(), 2812 Intrinsic::umul_with_overflow, MulType); 2813 CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul"); 2814 IC.Worklist.Add(MulInstr); 2815 2816 // If there are uses of mul result other than the comparison, we know that 2817 // they are truncation or binary AND. Change them to use result of 2818 // mul.with.overflow and adjust properly mask/size. 2819 if (MulVal->hasNUsesOrMore(2)) { 2820 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value"); 2821 for (User *U : MulVal->users()) { 2822 if (U == &I || U == OtherVal) 2823 continue; 2824 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2825 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 2826 IC.replaceInstUsesWith(*TI, Mul); 2827 else 2828 TI->setOperand(0, Mul); 2829 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2830 assert(BO->getOpcode() == Instruction::And); 2831 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 2832 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 2833 APInt ShortMask = CI->getValue().trunc(MulWidth); 2834 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask); 2835 Instruction *Zext = 2836 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType())); 2837 IC.Worklist.Add(Zext); 2838 IC.replaceInstUsesWith(*BO, Zext); 2839 } else { 2840 llvm_unreachable("Unexpected Binary operation"); 2841 } 2842 IC.Worklist.Add(cast<Instruction>(U)); 2843 } 2844 } 2845 if (isa<Instruction>(OtherVal)) 2846 IC.Worklist.Add(cast<Instruction>(OtherVal)); 2847 2848 // The original icmp gets replaced with the overflow value, maybe inverted 2849 // depending on predicate. 2850 bool Inverse = false; 2851 switch (I.getPredicate()) { 2852 case ICmpInst::ICMP_NE: 2853 break; 2854 case ICmpInst::ICMP_EQ: 2855 Inverse = true; 2856 break; 2857 case ICmpInst::ICMP_UGT: 2858 case ICmpInst::ICMP_UGE: 2859 if (I.getOperand(0) == MulVal) 2860 break; 2861 Inverse = true; 2862 break; 2863 case ICmpInst::ICMP_ULT: 2864 case ICmpInst::ICMP_ULE: 2865 if (I.getOperand(1) == MulVal) 2866 break; 2867 Inverse = true; 2868 break; 2869 default: 2870 llvm_unreachable("Unexpected predicate"); 2871 } 2872 if (Inverse) { 2873 Value *Res = Builder->CreateExtractValue(Call, 1); 2874 return BinaryOperator::CreateNot(Res); 2875 } 2876 2877 return ExtractValueInst::Create(Call, 1); 2878 } 2879 2880 // DemandedBitsLHSMask - When performing a comparison against a constant, 2881 // it is possible that not all the bits in the LHS are demanded. This helper 2882 // method computes the mask that IS demanded. 2883 static APInt DemandedBitsLHSMask(ICmpInst &I, 2884 unsigned BitWidth, bool isSignCheck) { 2885 if (isSignCheck) 2886 return APInt::getSignBit(BitWidth); 2887 2888 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 2889 if (!CI) return APInt::getAllOnesValue(BitWidth); 2890 const APInt &RHS = CI->getValue(); 2891 2892 switch (I.getPredicate()) { 2893 // For a UGT comparison, we don't care about any bits that 2894 // correspond to the trailing ones of the comparand. The value of these 2895 // bits doesn't impact the outcome of the comparison, because any value 2896 // greater than the RHS must differ in a bit higher than these due to carry. 2897 case ICmpInst::ICMP_UGT: { 2898 unsigned trailingOnes = RHS.countTrailingOnes(); 2899 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); 2900 return ~lowBitsSet; 2901 } 2902 2903 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 2904 // Any value less than the RHS must differ in a higher bit because of carries. 2905 case ICmpInst::ICMP_ULT: { 2906 unsigned trailingZeros = RHS.countTrailingZeros(); 2907 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); 2908 return ~lowBitsSet; 2909 } 2910 2911 default: 2912 return APInt::getAllOnesValue(BitWidth); 2913 } 2914 } 2915 2916 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst 2917 /// should be swapped. 2918 /// The decision is based on how many times these two operands are reused 2919 /// as subtract operands and their positions in those instructions. 2920 /// The rational is that several architectures use the same instruction for 2921 /// both subtract and cmp, thus it is better if the order of those operands 2922 /// match. 2923 /// \return true if Op0 and Op1 should be swapped. 2924 static bool swapMayExposeCSEOpportunities(const Value * Op0, 2925 const Value * Op1) { 2926 // Filter out pointer value as those cannot appears directly in subtract. 2927 // FIXME: we may want to go through inttoptrs or bitcasts. 2928 if (Op0->getType()->isPointerTy()) 2929 return false; 2930 // Count every uses of both Op0 and Op1 in a subtract. 2931 // Each time Op0 is the first operand, count -1: swapping is bad, the 2932 // subtract has already the same layout as the compare. 2933 // Each time Op0 is the second operand, count +1: swapping is good, the 2934 // subtract has a different layout as the compare. 2935 // At the end, if the benefit is greater than 0, Op0 should come second to 2936 // expose more CSE opportunities. 2937 int GlobalSwapBenefits = 0; 2938 for (const User *U : Op0->users()) { 2939 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U); 2940 if (!BinOp || BinOp->getOpcode() != Instruction::Sub) 2941 continue; 2942 // If Op0 is the first argument, this is not beneficial to swap the 2943 // arguments. 2944 int LocalSwapBenefits = -1; 2945 unsigned Op1Idx = 1; 2946 if (BinOp->getOperand(Op1Idx) == Op0) { 2947 Op1Idx = 0; 2948 LocalSwapBenefits = 1; 2949 } 2950 if (BinOp->getOperand(Op1Idx) != Op1) 2951 continue; 2952 GlobalSwapBenefits += LocalSwapBenefits; 2953 } 2954 return GlobalSwapBenefits > 0; 2955 } 2956 2957 /// \brief Check that one use is in the same block as the definition and all 2958 /// other uses are in blocks dominated by a given block 2959 /// 2960 /// \param DI Definition 2961 /// \param UI Use 2962 /// \param DB Block that must dominate all uses of \p DI outside 2963 /// the parent block 2964 /// \return true when \p UI is the only use of \p DI in the parent block 2965 /// and all other uses of \p DI are in blocks dominated by \p DB. 2966 /// 2967 bool InstCombiner::dominatesAllUses(const Instruction *DI, 2968 const Instruction *UI, 2969 const BasicBlock *DB) const { 2970 assert(DI && UI && "Instruction not defined\n"); 2971 // ignore incomplete definitions 2972 if (!DI->getParent()) 2973 return false; 2974 // DI and UI must be in the same block 2975 if (DI->getParent() != UI->getParent()) 2976 return false; 2977 // Protect from self-referencing blocks 2978 if (DI->getParent() == DB) 2979 return false; 2980 // DominatorTree available? 2981 if (!DT) 2982 return false; 2983 for (const User *U : DI->users()) { 2984 auto *Usr = cast<Instruction>(U); 2985 if (Usr != UI && !DT->dominates(DB, Usr->getParent())) 2986 return false; 2987 } 2988 return true; 2989 } 2990 2991 /// 2992 /// true when the instruction sequence within a block is select-cmp-br. 2993 /// 2994 static bool isChainSelectCmpBranch(const SelectInst *SI) { 2995 const BasicBlock *BB = SI->getParent(); 2996 if (!BB) 2997 return false; 2998 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 2999 if (!BI || BI->getNumSuccessors() != 2) 3000 return false; 3001 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 3002 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 3003 return false; 3004 return true; 3005 } 3006 3007 /// 3008 /// \brief True when a select result is replaced by one of its operands 3009 /// in select-icmp sequence. This will eventually result in the elimination 3010 /// of the select. 3011 /// 3012 /// \param SI Select instruction 3013 /// \param Icmp Compare instruction 3014 /// \param SIOpd Operand that replaces the select 3015 /// 3016 /// Notes: 3017 /// - The replacement is global and requires dominator information 3018 /// - The caller is responsible for the actual replacement 3019 /// 3020 /// Example: 3021 /// 3022 /// entry: 3023 /// %4 = select i1 %3, %C* %0, %C* null 3024 /// %5 = icmp eq %C* %4, null 3025 /// br i1 %5, label %9, label %7 3026 /// ... 3027 /// ; <label>:7 ; preds = %entry 3028 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 3029 /// ... 3030 /// 3031 /// can be transformed to 3032 /// 3033 /// %5 = icmp eq %C* %0, null 3034 /// %6 = select i1 %3, i1 %5, i1 true 3035 /// br i1 %6, label %9, label %7 3036 /// ... 3037 /// ; <label>:7 ; preds = %entry 3038 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 3039 /// 3040 /// Similar when the first operand of the select is a constant or/and 3041 /// the compare is for not equal rather than equal. 3042 /// 3043 /// NOTE: The function is only called when the select and compare constants 3044 /// are equal, the optimization can work only for EQ predicates. This is not a 3045 /// major restriction since a NE compare should be 'normalized' to an equal 3046 /// compare, which usually happens in the combiner and test case 3047 /// select-cmp-br.ll 3048 /// checks for it. 3049 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 3050 const ICmpInst *Icmp, 3051 const unsigned SIOpd) { 3052 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 3053 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 3054 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 3055 // The check for the unique predecessor is not the best that can be 3056 // done. But it protects efficiently against cases like when SI's 3057 // home block has two successors, Succ and Succ1, and Succ1 predecessor 3058 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 3059 // replaced can be reached on either path. So the uniqueness check 3060 // guarantees that the path all uses of SI (outside SI's parent) are on 3061 // is disjoint from all other paths out of SI. But that information 3062 // is more expensive to compute, and the trade-off here is in favor 3063 // of compile-time. 3064 if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 3065 NumSel++; 3066 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 3067 return true; 3068 } 3069 } 3070 return false; 3071 } 3072 3073 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 3074 bool Changed = false; 3075 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3076 unsigned Op0Cplxity = getComplexity(Op0); 3077 unsigned Op1Cplxity = getComplexity(Op1); 3078 3079 /// Orders the operands of the compare so that they are listed from most 3080 /// complex to least complex. This puts constants before unary operators, 3081 /// before binary operators. 3082 if (Op0Cplxity < Op1Cplxity || 3083 (Op0Cplxity == Op1Cplxity && 3084 swapMayExposeCSEOpportunities(Op0, Op1))) { 3085 I.swapOperands(); 3086 std::swap(Op0, Op1); 3087 Changed = true; 3088 } 3089 3090 if (Value *V = 3091 SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I)) 3092 return replaceInstUsesWith(I, V); 3093 3094 // comparing -val or val with non-zero is the same as just comparing val 3095 // ie, abs(val) != 0 -> val != 0 3096 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) 3097 { 3098 Value *Cond, *SelectTrue, *SelectFalse; 3099 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 3100 m_Value(SelectFalse)))) { 3101 if (Value *V = dyn_castNegVal(SelectTrue)) { 3102 if (V == SelectFalse) 3103 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 3104 } 3105 else if (Value *V = dyn_castNegVal(SelectFalse)) { 3106 if (V == SelectTrue) 3107 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 3108 } 3109 } 3110 } 3111 3112 Type *Ty = Op0->getType(); 3113 3114 // icmp's with boolean values can always be turned into bitwise operations 3115 if (Ty->isIntegerTy(1)) { 3116 switch (I.getPredicate()) { 3117 default: llvm_unreachable("Invalid icmp instruction!"); 3118 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) 3119 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp"); 3120 return BinaryOperator::CreateNot(Xor); 3121 } 3122 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B 3123 return BinaryOperator::CreateXor(Op0, Op1); 3124 3125 case ICmpInst::ICMP_UGT: 3126 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult 3127 // FALL THROUGH 3128 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B 3129 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 3130 return BinaryOperator::CreateAnd(Not, Op1); 3131 } 3132 case ICmpInst::ICMP_SGT: 3133 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt 3134 // FALL THROUGH 3135 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B 3136 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 3137 return BinaryOperator::CreateAnd(Not, Op0); 3138 } 3139 case ICmpInst::ICMP_UGE: 3140 std::swap(Op0, Op1); // Change icmp uge -> icmp ule 3141 // FALL THROUGH 3142 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B 3143 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 3144 return BinaryOperator::CreateOr(Not, Op1); 3145 } 3146 case ICmpInst::ICMP_SGE: 3147 std::swap(Op0, Op1); // Change icmp sge -> icmp sle 3148 // FALL THROUGH 3149 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B 3150 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 3151 return BinaryOperator::CreateOr(Not, Op0); 3152 } 3153 } 3154 } 3155 3156 unsigned BitWidth = 0; 3157 if (Ty->isIntOrIntVectorTy()) 3158 BitWidth = Ty->getScalarSizeInBits(); 3159 else // Get pointer size. 3160 BitWidth = DL.getTypeSizeInBits(Ty->getScalarType()); 3161 3162 bool isSignBit = false; 3163 3164 // See if we are doing a comparison with a constant. 3165 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3166 Value *A = nullptr, *B = nullptr; 3167 3168 // Match the following pattern, which is a common idiom when writing 3169 // overflow-safe integer arithmetic function. The source performs an 3170 // addition in wider type, and explicitly checks for overflow using 3171 // comparisons against INT_MIN and INT_MAX. Simplify this by using the 3172 // sadd_with_overflow intrinsic. 3173 // 3174 // TODO: This could probably be generalized to handle other overflow-safe 3175 // operations if we worked out the formulas to compute the appropriate 3176 // magic constants. 3177 // 3178 // sum = a + b 3179 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 3180 { 3181 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 3182 if (I.getPredicate() == ICmpInst::ICMP_UGT && 3183 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 3184 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this)) 3185 return Res; 3186 } 3187 3188 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 3189 if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT) 3190 if (auto *SI = dyn_cast<SelectInst>(Op0)) { 3191 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 3192 if (SPR.Flavor == SPF_SMIN) { 3193 if (isKnownPositive(A, DL)) 3194 return new ICmpInst(I.getPredicate(), B, CI); 3195 if (isKnownPositive(B, DL)) 3196 return new ICmpInst(I.getPredicate(), A, CI); 3197 } 3198 } 3199 3200 3201 // The following transforms are only 'worth it' if the only user of the 3202 // subtraction is the icmp. 3203 if (Op0->hasOneUse()) { 3204 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) 3205 if (I.isEquality() && CI->isZero() && 3206 match(Op0, m_Sub(m_Value(A), m_Value(B)))) 3207 return new ICmpInst(I.getPredicate(), A, B); 3208 3209 // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B) 3210 if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() && 3211 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3212 return new ICmpInst(ICmpInst::ICMP_SGE, A, B); 3213 3214 // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B) 3215 if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() && 3216 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3217 return new ICmpInst(ICmpInst::ICMP_SGT, A, B); 3218 3219 // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B) 3220 if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() && 3221 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3222 return new ICmpInst(ICmpInst::ICMP_SLT, A, B); 3223 3224 // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B) 3225 if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() && 3226 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3227 return new ICmpInst(ICmpInst::ICMP_SLE, A, B); 3228 } 3229 3230 // If we have an icmp le or icmp ge instruction, turn it into the 3231 // appropriate icmp lt or icmp gt instruction. This allows us to rely on 3232 // them being folded in the code below. The SimplifyICmpInst code has 3233 // already handled the edge cases for us, so we just assert on them. 3234 switch (I.getPredicate()) { 3235 default: break; 3236 case ICmpInst::ICMP_ULE: 3237 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE 3238 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, 3239 Builder->getInt(CI->getValue()+1)); 3240 case ICmpInst::ICMP_SLE: 3241 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE 3242 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 3243 Builder->getInt(CI->getValue()+1)); 3244 case ICmpInst::ICMP_UGE: 3245 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE 3246 return new ICmpInst(ICmpInst::ICMP_UGT, Op0, 3247 Builder->getInt(CI->getValue()-1)); 3248 case ICmpInst::ICMP_SGE: 3249 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE 3250 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 3251 Builder->getInt(CI->getValue()-1)); 3252 } 3253 3254 if (I.isEquality()) { 3255 ConstantInt *CI2; 3256 if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) || 3257 match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) { 3258 // (icmp eq/ne (ashr/lshr const2, A), const1) 3259 if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2)) 3260 return Inst; 3261 } 3262 if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) { 3263 // (icmp eq/ne (shl const2, A), const1) 3264 if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2)) 3265 return Inst; 3266 } 3267 } 3268 3269 // If this comparison is a normal comparison, it demands all 3270 // bits, if it is a sign bit comparison, it only demands the sign bit. 3271 bool UnusedBit; 3272 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); 3273 } 3274 3275 // See if we can fold the comparison based on range information we can get 3276 // by checking whether bits are known to be zero or one in the input. 3277 if (BitWidth != 0) { 3278 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); 3279 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); 3280 3281 if (SimplifyDemandedBits(I.getOperandUse(0), 3282 DemandedBitsLHSMask(I, BitWidth, isSignBit), 3283 Op0KnownZero, Op0KnownOne, 0)) 3284 return &I; 3285 if (SimplifyDemandedBits(I.getOperandUse(1), 3286 APInt::getAllOnesValue(BitWidth), Op1KnownZero, 3287 Op1KnownOne, 0)) 3288 return &I; 3289 3290 // Given the known and unknown bits, compute a range that the LHS could be 3291 // in. Compute the Min, Max and RHS values based on the known bits. For the 3292 // EQ and NE we use unsigned values. 3293 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 3294 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 3295 if (I.isSigned()) { 3296 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 3297 Op0Min, Op0Max); 3298 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 3299 Op1Min, Op1Max); 3300 } else { 3301 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 3302 Op0Min, Op0Max); 3303 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 3304 Op1Min, Op1Max); 3305 } 3306 3307 // If Min and Max are known to be the same, then SimplifyDemandedBits 3308 // figured out that the LHS is a constant. Just constant fold this now so 3309 // that code below can assume that Min != Max. 3310 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 3311 return new ICmpInst(I.getPredicate(), 3312 ConstantInt::get(Op0->getType(), Op0Min), Op1); 3313 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 3314 return new ICmpInst(I.getPredicate(), Op0, 3315 ConstantInt::get(Op1->getType(), Op1Min)); 3316 3317 // Based on the range information we know about the LHS, see if we can 3318 // simplify this comparison. For example, (x&4) < 8 is always true. 3319 switch (I.getPredicate()) { 3320 default: llvm_unreachable("Unknown icmp opcode!"); 3321 case ICmpInst::ICMP_EQ: { 3322 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 3323 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3324 3325 // If all bits are known zero except for one, then we know at most one 3326 // bit is set. If the comparison is against zero, then this is a check 3327 // to see if *that* bit is set. 3328 APInt Op0KnownZeroInverted = ~Op0KnownZero; 3329 if (~Op1KnownZero == 0) { 3330 // If the LHS is an AND with the same constant, look through it. 3331 Value *LHS = nullptr; 3332 ConstantInt *LHSC = nullptr; 3333 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 3334 LHSC->getValue() != Op0KnownZeroInverted) 3335 LHS = Op0; 3336 3337 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 3338 // then turn "((1 << x)&8) == 0" into "x != 3". 3339 // or turn "((1 << x)&7) == 0" into "x > 2". 3340 Value *X = nullptr; 3341 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 3342 APInt ValToCheck = Op0KnownZeroInverted; 3343 if (ValToCheck.isPowerOf2()) { 3344 unsigned CmpVal = ValToCheck.countTrailingZeros(); 3345 return new ICmpInst(ICmpInst::ICMP_NE, X, 3346 ConstantInt::get(X->getType(), CmpVal)); 3347 } else if ((++ValToCheck).isPowerOf2()) { 3348 unsigned CmpVal = ValToCheck.countTrailingZeros() - 1; 3349 return new ICmpInst(ICmpInst::ICMP_UGT, X, 3350 ConstantInt::get(X->getType(), CmpVal)); 3351 } 3352 } 3353 3354 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 3355 // then turn "((8 >>u x)&1) == 0" into "x != 3". 3356 const APInt *CI; 3357 if (Op0KnownZeroInverted == 1 && 3358 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 3359 return new ICmpInst(ICmpInst::ICMP_NE, X, 3360 ConstantInt::get(X->getType(), 3361 CI->countTrailingZeros())); 3362 } 3363 break; 3364 } 3365 case ICmpInst::ICMP_NE: { 3366 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 3367 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3368 3369 // If all bits are known zero except for one, then we know at most one 3370 // bit is set. If the comparison is against zero, then this is a check 3371 // to see if *that* bit is set. 3372 APInt Op0KnownZeroInverted = ~Op0KnownZero; 3373 if (~Op1KnownZero == 0) { 3374 // If the LHS is an AND with the same constant, look through it. 3375 Value *LHS = nullptr; 3376 ConstantInt *LHSC = nullptr; 3377 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 3378 LHSC->getValue() != Op0KnownZeroInverted) 3379 LHS = Op0; 3380 3381 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 3382 // then turn "((1 << x)&8) != 0" into "x == 3". 3383 // or turn "((1 << x)&7) != 0" into "x < 3". 3384 Value *X = nullptr; 3385 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 3386 APInt ValToCheck = Op0KnownZeroInverted; 3387 if (ValToCheck.isPowerOf2()) { 3388 unsigned CmpVal = ValToCheck.countTrailingZeros(); 3389 return new ICmpInst(ICmpInst::ICMP_EQ, X, 3390 ConstantInt::get(X->getType(), CmpVal)); 3391 } else if ((++ValToCheck).isPowerOf2()) { 3392 unsigned CmpVal = ValToCheck.countTrailingZeros(); 3393 return new ICmpInst(ICmpInst::ICMP_ULT, X, 3394 ConstantInt::get(X->getType(), CmpVal)); 3395 } 3396 } 3397 3398 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 3399 // then turn "((8 >>u x)&1) != 0" into "x == 3". 3400 const APInt *CI; 3401 if (Op0KnownZeroInverted == 1 && 3402 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 3403 return new ICmpInst(ICmpInst::ICMP_EQ, X, 3404 ConstantInt::get(X->getType(), 3405 CI->countTrailingZeros())); 3406 } 3407 break; 3408 } 3409 case ICmpInst::ICMP_ULT: 3410 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 3411 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3412 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 3413 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3414 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 3415 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3416 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3417 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C 3418 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3419 Builder->getInt(CI->getValue()-1)); 3420 3421 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear 3422 if (CI->isMinValue(true)) 3423 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 3424 Constant::getAllOnesValue(Op0->getType())); 3425 } 3426 break; 3427 case ICmpInst::ICMP_UGT: 3428 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 3429 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3430 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 3431 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3432 3433 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 3434 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3435 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3436 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C 3437 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3438 Builder->getInt(CI->getValue()+1)); 3439 3440 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set 3441 if (CI->isMaxValue(true)) 3442 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 3443 Constant::getNullValue(Op0->getType())); 3444 } 3445 break; 3446 case ICmpInst::ICMP_SLT: 3447 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 3448 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3449 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 3450 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3451 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 3452 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3453 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3454 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C 3455 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3456 Builder->getInt(CI->getValue()-1)); 3457 } 3458 break; 3459 case ICmpInst::ICMP_SGT: 3460 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 3461 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3462 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 3463 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3464 3465 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 3466 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3467 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3468 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C 3469 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3470 Builder->getInt(CI->getValue()+1)); 3471 } 3472 break; 3473 case ICmpInst::ICMP_SGE: 3474 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 3475 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 3476 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3477 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 3478 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3479 break; 3480 case ICmpInst::ICMP_SLE: 3481 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 3482 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 3483 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3484 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 3485 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3486 break; 3487 case ICmpInst::ICMP_UGE: 3488 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 3489 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 3490 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3491 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 3492 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3493 break; 3494 case ICmpInst::ICMP_ULE: 3495 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 3496 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 3497 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3498 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 3499 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3500 break; 3501 } 3502 3503 // Turn a signed comparison into an unsigned one if both operands 3504 // are known to have the same sign. 3505 if (I.isSigned() && 3506 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || 3507 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) 3508 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 3509 } 3510 3511 // Test if the ICmpInst instruction is used exclusively by a select as 3512 // part of a minimum or maximum operation. If so, refrain from doing 3513 // any other folding. This helps out other analyses which understand 3514 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 3515 // and CodeGen. And in this case, at least one of the comparison 3516 // operands has at least one user besides the compare (the select), 3517 // which would often largely negate the benefit of folding anyway. 3518 if (I.hasOneUse()) 3519 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 3520 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 3521 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 3522 return nullptr; 3523 3524 // See if we are doing a comparison between a constant and an instruction that 3525 // can be folded into the comparison. 3526 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3527 // Since the RHS is a ConstantInt (CI), if the left hand side is an 3528 // instruction, see if that instruction also has constants so that the 3529 // instruction can be folded into the icmp 3530 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3531 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) 3532 return Res; 3533 } 3534 3535 // Handle icmp with constant (but not simple integer constant) RHS 3536 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 3537 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3538 switch (LHSI->getOpcode()) { 3539 case Instruction::GetElementPtr: 3540 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3541 if (RHSC->isNullValue() && 3542 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3543 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 3544 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3545 break; 3546 case Instruction::PHI: 3547 // Only fold icmp into the PHI if the phi and icmp are in the same 3548 // block. If in the same block, we're encouraging jump threading. If 3549 // not, we are just pessimizing the code by making an i1 phi. 3550 if (LHSI->getParent() == I.getParent()) 3551 if (Instruction *NV = FoldOpIntoPhi(I)) 3552 return NV; 3553 break; 3554 case Instruction::Select: { 3555 // If either operand of the select is a constant, we can fold the 3556 // comparison into the select arms, which will cause one to be 3557 // constant folded and the select turned into a bitwise or. 3558 Value *Op1 = nullptr, *Op2 = nullptr; 3559 ConstantInt *CI = nullptr; 3560 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3561 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3562 CI = dyn_cast<ConstantInt>(Op1); 3563 } 3564 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3565 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3566 CI = dyn_cast<ConstantInt>(Op2); 3567 } 3568 3569 // We only want to perform this transformation if it will not lead to 3570 // additional code. This is true if either both sides of the select 3571 // fold to a constant (in which case the icmp is replaced with a select 3572 // which will usually simplify) or this is the only user of the 3573 // select (in which case we are trading a select+icmp for a simpler 3574 // select+icmp) or all uses of the select can be replaced based on 3575 // dominance information ("Global cases"). 3576 bool Transform = false; 3577 if (Op1 && Op2) 3578 Transform = true; 3579 else if (Op1 || Op2) { 3580 // Local case 3581 if (LHSI->hasOneUse()) 3582 Transform = true; 3583 // Global cases 3584 else if (CI && !CI->isZero()) 3585 // When Op1 is constant try replacing select with second operand. 3586 // Otherwise Op2 is constant and try replacing select with first 3587 // operand. 3588 Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, 3589 Op1 ? 2 : 1); 3590 } 3591 if (Transform) { 3592 if (!Op1) 3593 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), 3594 RHSC, I.getName()); 3595 if (!Op2) 3596 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), 3597 RHSC, I.getName()); 3598 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3599 } 3600 break; 3601 } 3602 case Instruction::IntToPtr: 3603 // icmp pred inttoptr(X), null -> icmp pred X, 0 3604 if (RHSC->isNullValue() && 3605 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3606 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 3607 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3608 break; 3609 3610 case Instruction::Load: 3611 // Try to optimize things like "A[i] > 4" to index computations. 3612 if (GetElementPtrInst *GEP = 3613 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3614 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3615 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3616 !cast<LoadInst>(LHSI)->isVolatile()) 3617 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3618 return Res; 3619 } 3620 break; 3621 } 3622 } 3623 3624 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 3625 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 3626 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) 3627 return NI; 3628 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 3629 if (Instruction *NI = FoldGEPICmp(GEP, Op0, 3630 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 3631 return NI; 3632 3633 // Try to optimize equality comparisons against alloca-based pointers. 3634 if (Op0->getType()->isPointerTy() && I.isEquality()) { 3635 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 3636 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 3637 if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1)) 3638 return New; 3639 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 3640 if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0)) 3641 return New; 3642 } 3643 3644 // Test to see if the operands of the icmp are casted versions of other 3645 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 3646 // now. 3647 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 3648 if (Op0->getType()->isPointerTy() && 3649 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 3650 // We keep moving the cast from the left operand over to the right 3651 // operand, where it can often be eliminated completely. 3652 Op0 = CI->getOperand(0); 3653 3654 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 3655 // so eliminate it as well. 3656 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 3657 Op1 = CI2->getOperand(0); 3658 3659 // If Op1 is a constant, we can fold the cast into the constant. 3660 if (Op0->getType() != Op1->getType()) { 3661 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 3662 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 3663 } else { 3664 // Otherwise, cast the RHS right before the icmp 3665 Op1 = Builder->CreateBitCast(Op1, Op0->getType()); 3666 } 3667 } 3668 return new ICmpInst(I.getPredicate(), Op0, Op1); 3669 } 3670 } 3671 3672 if (isa<CastInst>(Op0)) { 3673 // Handle the special case of: icmp (cast bool to X), <cst> 3674 // This comes up when you have code like 3675 // int X = A < B; 3676 // if (X) ... 3677 // For generality, we handle any zero-extension of any operand comparison 3678 // with a constant or another cast from the same type. 3679 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 3680 if (Instruction *R = visitICmpInstWithCastAndCast(I)) 3681 return R; 3682 } 3683 3684 // Special logic for binary operators. 3685 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3686 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3687 if (BO0 || BO1) { 3688 CmpInst::Predicate Pred = I.getPredicate(); 3689 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3690 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3691 NoOp0WrapProblem = ICmpInst::isEquality(Pred) || 3692 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3693 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3694 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3695 NoOp1WrapProblem = ICmpInst::isEquality(Pred) || 3696 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3697 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3698 3699 // Analyze the case when either Op0 or Op1 is an add instruction. 3700 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3701 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3702 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3703 A = BO0->getOperand(0); 3704 B = BO0->getOperand(1); 3705 } 3706 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3707 C = BO1->getOperand(0); 3708 D = BO1->getOperand(1); 3709 } 3710 3711 // icmp (X+cst) < 0 --> X < -cst 3712 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero())) 3713 if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B)) 3714 if (!RHSC->isMinValue(/*isSigned=*/true)) 3715 return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC)); 3716 3717 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3718 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3719 return new ICmpInst(Pred, A == Op1 ? B : A, 3720 Constant::getNullValue(Op1->getType())); 3721 3722 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3723 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3724 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3725 C == Op0 ? D : C); 3726 3727 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3728 if (A && C && (A == C || A == D || B == C || B == D) && 3729 NoOp0WrapProblem && NoOp1WrapProblem && 3730 // Try not to increase register pressure. 3731 BO0->hasOneUse() && BO1->hasOneUse()) { 3732 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3733 Value *Y, *Z; 3734 if (A == C) { 3735 // C + B == C + D -> B == D 3736 Y = B; 3737 Z = D; 3738 } else if (A == D) { 3739 // D + B == C + D -> B == C 3740 Y = B; 3741 Z = C; 3742 } else if (B == C) { 3743 // A + C == C + D -> A == D 3744 Y = A; 3745 Z = D; 3746 } else { 3747 assert(B == D); 3748 // A + D == C + D -> A == C 3749 Y = A; 3750 Z = C; 3751 } 3752 return new ICmpInst(Pred, Y, Z); 3753 } 3754 3755 // icmp slt (X + -1), Y -> icmp sle X, Y 3756 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3757 match(B, m_AllOnes())) 3758 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3759 3760 // icmp sge (X + -1), Y -> icmp sgt X, Y 3761 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3762 match(B, m_AllOnes())) 3763 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3764 3765 // icmp sle (X + 1), Y -> icmp slt X, Y 3766 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && 3767 match(B, m_One())) 3768 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3769 3770 // icmp sgt (X + 1), Y -> icmp sge X, Y 3771 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && 3772 match(B, m_One())) 3773 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3774 3775 // icmp sgt X, (Y + -1) -> icmp sge X, Y 3776 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3777 match(D, m_AllOnes())) 3778 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3779 3780 // icmp sle X, (Y + -1) -> icmp slt X, Y 3781 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3782 match(D, m_AllOnes())) 3783 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3784 3785 // icmp sge X, (Y + 1) -> icmp sgt X, Y 3786 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && 3787 match(D, m_One())) 3788 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3789 3790 // icmp slt X, (Y + 1) -> icmp sle X, Y 3791 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && 3792 match(D, m_One())) 3793 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3794 3795 // if C1 has greater magnitude than C2: 3796 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3797 // s.t. C3 = C1 - C2 3798 // 3799 // if C2 has greater magnitude than C1: 3800 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3801 // s.t. C3 = C2 - C1 3802 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3803 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3804 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3805 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3806 const APInt &AP1 = C1->getValue(); 3807 const APInt &AP2 = C2->getValue(); 3808 if (AP1.isNegative() == AP2.isNegative()) { 3809 APInt AP1Abs = C1->getValue().abs(); 3810 APInt AP2Abs = C2->getValue().abs(); 3811 if (AP1Abs.uge(AP2Abs)) { 3812 ConstantInt *C3 = Builder->getInt(AP1 - AP2); 3813 Value *NewAdd = Builder->CreateNSWAdd(A, C3); 3814 return new ICmpInst(Pred, NewAdd, C); 3815 } else { 3816 ConstantInt *C3 = Builder->getInt(AP2 - AP1); 3817 Value *NewAdd = Builder->CreateNSWAdd(C, C3); 3818 return new ICmpInst(Pred, A, NewAdd); 3819 } 3820 } 3821 } 3822 3823 3824 // Analyze the case when either Op0 or Op1 is a sub instruction. 3825 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3826 A = nullptr; 3827 B = nullptr; 3828 C = nullptr; 3829 D = nullptr; 3830 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3831 A = BO0->getOperand(0); 3832 B = BO0->getOperand(1); 3833 } 3834 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3835 C = BO1->getOperand(0); 3836 D = BO1->getOperand(1); 3837 } 3838 3839 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3840 if (A == Op1 && NoOp0WrapProblem) 3841 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3842 3843 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3844 if (C == Op0 && NoOp1WrapProblem) 3845 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3846 3847 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3848 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3849 // Try not to increase register pressure. 3850 BO0->hasOneUse() && BO1->hasOneUse()) 3851 return new ICmpInst(Pred, A, C); 3852 3853 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3854 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3855 // Try not to increase register pressure. 3856 BO0->hasOneUse() && BO1->hasOneUse()) 3857 return new ICmpInst(Pred, D, B); 3858 3859 // icmp (0-X) < cst --> x > -cst 3860 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3861 Value *X; 3862 if (match(BO0, m_Neg(m_Value(X)))) 3863 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 3864 if (!RHSC->isMinValue(/*isSigned=*/true)) 3865 return new ICmpInst(I.getSwappedPredicate(), X, 3866 ConstantExpr::getNeg(RHSC)); 3867 } 3868 3869 BinaryOperator *SRem = nullptr; 3870 // icmp (srem X, Y), Y 3871 if (BO0 && BO0->getOpcode() == Instruction::SRem && 3872 Op1 == BO0->getOperand(1)) 3873 SRem = BO0; 3874 // icmp Y, (srem X, Y) 3875 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3876 Op0 == BO1->getOperand(1)) 3877 SRem = BO1; 3878 if (SRem) { 3879 // We don't check hasOneUse to avoid increasing register pressure because 3880 // the value we use is the same value this instruction was already using. 3881 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3882 default: break; 3883 case ICmpInst::ICMP_EQ: 3884 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3885 case ICmpInst::ICMP_NE: 3886 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3887 case ICmpInst::ICMP_SGT: 3888 case ICmpInst::ICMP_SGE: 3889 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3890 Constant::getAllOnesValue(SRem->getType())); 3891 case ICmpInst::ICMP_SLT: 3892 case ICmpInst::ICMP_SLE: 3893 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3894 Constant::getNullValue(SRem->getType())); 3895 } 3896 } 3897 3898 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && 3899 BO0->hasOneUse() && BO1->hasOneUse() && 3900 BO0->getOperand(1) == BO1->getOperand(1)) { 3901 switch (BO0->getOpcode()) { 3902 default: break; 3903 case Instruction::Add: 3904 case Instruction::Sub: 3905 case Instruction::Xor: 3906 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3907 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3908 BO1->getOperand(0)); 3909 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b 3910 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 3911 if (CI->getValue().isSignBit()) { 3912 ICmpInst::Predicate Pred = I.isSigned() 3913 ? I.getUnsignedPredicate() 3914 : I.getSignedPredicate(); 3915 return new ICmpInst(Pred, BO0->getOperand(0), 3916 BO1->getOperand(0)); 3917 } 3918 3919 if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) { 3920 ICmpInst::Predicate Pred = I.isSigned() 3921 ? I.getUnsignedPredicate() 3922 : I.getSignedPredicate(); 3923 Pred = I.getSwappedPredicate(Pred); 3924 return new ICmpInst(Pred, BO0->getOperand(0), 3925 BO1->getOperand(0)); 3926 } 3927 } 3928 break; 3929 case Instruction::Mul: 3930 if (!I.isEquality()) 3931 break; 3932 3933 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 3934 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask 3935 // Mask = -1 >> count-trailing-zeros(Cst). 3936 if (!CI->isZero() && !CI->isOne()) { 3937 const APInt &AP = CI->getValue(); 3938 ConstantInt *Mask = ConstantInt::get(I.getContext(), 3939 APInt::getLowBitsSet(AP.getBitWidth(), 3940 AP.getBitWidth() - 3941 AP.countTrailingZeros())); 3942 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask); 3943 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask); 3944 return new ICmpInst(I.getPredicate(), And1, And2); 3945 } 3946 } 3947 break; 3948 case Instruction::UDiv: 3949 case Instruction::LShr: 3950 if (I.isSigned()) 3951 break; 3952 // fall-through 3953 case Instruction::SDiv: 3954 case Instruction::AShr: 3955 if (!BO0->isExact() || !BO1->isExact()) 3956 break; 3957 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3958 BO1->getOperand(0)); 3959 case Instruction::Shl: { 3960 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3961 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3962 if (!NUW && !NSW) 3963 break; 3964 if (!NSW && I.isSigned()) 3965 break; 3966 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3967 BO1->getOperand(0)); 3968 } 3969 } 3970 } 3971 3972 if (BO0) { 3973 // Transform A & (L - 1) `ult` L --> L != 0 3974 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3975 auto BitwiseAnd = 3976 m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value())); 3977 3978 if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) { 3979 auto *Zero = Constant::getNullValue(BO0->getType()); 3980 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3981 } 3982 } 3983 } 3984 3985 { Value *A, *B; 3986 // Transform (A & ~B) == 0 --> (A & B) != 0 3987 // and (A & ~B) != 0 --> (A & B) == 0 3988 // if A is a power of 2. 3989 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 3990 match(Op1, m_Zero()) && 3991 isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality()) 3992 return new ICmpInst(I.getInversePredicate(), 3993 Builder->CreateAnd(A, B), 3994 Op1); 3995 3996 // ~x < ~y --> y < x 3997 // ~x < cst --> ~cst < x 3998 if (match(Op0, m_Not(m_Value(A)))) { 3999 if (match(Op1, m_Not(m_Value(B)))) 4000 return new ICmpInst(I.getPredicate(), B, A); 4001 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 4002 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A); 4003 } 4004 4005 Instruction *AddI = nullptr; 4006 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 4007 m_Instruction(AddI))) && 4008 isa<IntegerType>(A->getType())) { 4009 Value *Result; 4010 Constant *Overflow; 4011 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, 4012 Overflow)) { 4013 replaceInstUsesWith(*AddI, Result); 4014 return replaceInstUsesWith(I, Overflow); 4015 } 4016 } 4017 4018 // (zext a) * (zext b) --> llvm.umul.with.overflow. 4019 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4020 if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this)) 4021 return R; 4022 } 4023 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4024 if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this)) 4025 return R; 4026 } 4027 } 4028 4029 if (I.isEquality()) { 4030 Value *A, *B, *C, *D; 4031 4032 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4033 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4034 Value *OtherVal = A == Op1 ? B : A; 4035 return new ICmpInst(I.getPredicate(), OtherVal, 4036 Constant::getNullValue(A->getType())); 4037 } 4038 4039 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4040 // A^c1 == C^c2 --> A == C^(c1^c2) 4041 ConstantInt *C1, *C2; 4042 if (match(B, m_ConstantInt(C1)) && 4043 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { 4044 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue()); 4045 Value *Xor = Builder->CreateXor(C, NC); 4046 return new ICmpInst(I.getPredicate(), A, Xor); 4047 } 4048 4049 // A^B == A^D -> B == D 4050 if (A == C) return new ICmpInst(I.getPredicate(), B, D); 4051 if (A == D) return new ICmpInst(I.getPredicate(), B, C); 4052 if (B == C) return new ICmpInst(I.getPredicate(), A, D); 4053 if (B == D) return new ICmpInst(I.getPredicate(), A, C); 4054 } 4055 } 4056 4057 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 4058 (A == Op0 || B == Op0)) { 4059 // A == (A^B) -> B == 0 4060 Value *OtherVal = A == Op0 ? B : A; 4061 return new ICmpInst(I.getPredicate(), OtherVal, 4062 Constant::getNullValue(A->getType())); 4063 } 4064 4065 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4066 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4067 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4068 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4069 4070 if (A == C) { 4071 X = B; Y = D; Z = A; 4072 } else if (A == D) { 4073 X = B; Y = C; Z = A; 4074 } else if (B == C) { 4075 X = A; Y = D; Z = B; 4076 } else if (B == D) { 4077 X = A; Y = C; Z = B; 4078 } 4079 4080 if (X) { // Build (X^Y) & Z 4081 Op1 = Builder->CreateXor(X, Y); 4082 Op1 = Builder->CreateAnd(Op1, Z); 4083 I.setOperand(0, Op1); 4084 I.setOperand(1, Constant::getNullValue(Op1->getType())); 4085 return &I; 4086 } 4087 } 4088 4089 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4090 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4091 ConstantInt *Cst1; 4092 if ((Op0->hasOneUse() && 4093 match(Op0, m_ZExt(m_Value(A))) && 4094 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4095 (Op1->hasOneUse() && 4096 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4097 match(Op1, m_ZExt(m_Value(A))))) { 4098 APInt Pow2 = Cst1->getValue() + 1; 4099 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4100 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4101 return new ICmpInst(I.getPredicate(), A, 4102 Builder->CreateTrunc(B, A->getType())); 4103 } 4104 4105 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4106 // For lshr and ashr pairs. 4107 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4108 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4109 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4110 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4111 unsigned TypeBits = Cst1->getBitWidth(); 4112 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4113 if (ShAmt < TypeBits && ShAmt != 0) { 4114 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE 4115 ? ICmpInst::ICMP_UGE 4116 : ICmpInst::ICMP_ULT; 4117 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 4118 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4119 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal)); 4120 } 4121 } 4122 4123 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4124 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4125 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4126 unsigned TypeBits = Cst1->getBitWidth(); 4127 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4128 if (ShAmt < TypeBits && ShAmt != 0) { 4129 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 4130 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4131 Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal), 4132 I.getName() + ".mask"); 4133 return new ICmpInst(I.getPredicate(), And, 4134 Constant::getNullValue(Cst1->getType())); 4135 } 4136 } 4137 4138 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4139 // "icmp (and X, mask), cst" 4140 uint64_t ShAmt = 0; 4141 if (Op0->hasOneUse() && 4142 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), 4143 m_ConstantInt(ShAmt))))) && 4144 match(Op1, m_ConstantInt(Cst1)) && 4145 // Only do this when A has multiple uses. This is most important to do 4146 // when it exposes other optimizations. 4147 !A->hasOneUse()) { 4148 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4149 4150 if (ShAmt < ASize) { 4151 APInt MaskV = 4152 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4153 MaskV <<= ShAmt; 4154 4155 APInt CmpV = Cst1->getValue().zext(ASize); 4156 CmpV <<= ShAmt; 4157 4158 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); 4159 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); 4160 } 4161 } 4162 } 4163 4164 // The 'cmpxchg' instruction returns an aggregate containing the old value and 4165 // an i1 which indicates whether or not we successfully did the swap. 4166 // 4167 // Replace comparisons between the old value and the expected value with the 4168 // indicator that 'cmpxchg' returns. 4169 // 4170 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 4171 // spuriously fail. In those cases, the old value may equal the expected 4172 // value but it is possible for the swap to not occur. 4173 if (I.getPredicate() == ICmpInst::ICMP_EQ) 4174 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 4175 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 4176 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 4177 !ACXI->isWeak()) 4178 return ExtractValueInst::Create(ACXI, 1); 4179 4180 { 4181 Value *X; ConstantInt *Cst; 4182 // icmp X+Cst, X 4183 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 4184 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate()); 4185 4186 // icmp X, X+Cst 4187 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 4188 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate()); 4189 } 4190 return Changed ? &I : nullptr; 4191 } 4192 4193 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. 4194 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, 4195 Instruction *LHSI, 4196 Constant *RHSC) { 4197 if (!isa<ConstantFP>(RHSC)) return nullptr; 4198 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 4199 4200 // Get the width of the mantissa. We don't want to hack on conversions that 4201 // might lose information from the integer, e.g. "i64 -> float" 4202 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 4203 if (MantissaWidth == -1) return nullptr; // Unknown. 4204 4205 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 4206 4207 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 4208 4209 if (I.isEquality()) { 4210 FCmpInst::Predicate P = I.getPredicate(); 4211 bool IsExact = false; 4212 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 4213 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 4214 4215 // If the floating point constant isn't an integer value, we know if we will 4216 // ever compare equal / not equal to it. 4217 if (!IsExact) { 4218 // TODO: Can never be -0.0 and other non-representable values 4219 APFloat RHSRoundInt(RHS); 4220 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 4221 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 4222 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 4223 return replaceInstUsesWith(I, Builder->getFalse()); 4224 4225 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 4226 return replaceInstUsesWith(I, Builder->getTrue()); 4227 } 4228 } 4229 4230 // TODO: If the constant is exactly representable, is it always OK to do 4231 // equality compares as integer? 4232 } 4233 4234 // Check to see that the input is converted from an integer type that is small 4235 // enough that preserves all bits. TODO: check here for "known" sign bits. 4236 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 4237 unsigned InputSize = IntTy->getScalarSizeInBits(); 4238 4239 // Following test does NOT adjust InputSize downwards for signed inputs, 4240 // because the most negative value still requires all the mantissa bits 4241 // to distinguish it from one less than that value. 4242 if ((int)InputSize > MantissaWidth) { 4243 // Conversion would lose accuracy. Check if loss can impact comparison. 4244 int Exp = ilogb(RHS); 4245 if (Exp == APFloat::IEK_Inf) { 4246 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 4247 if (MaxExponent < (int)InputSize - !LHSUnsigned) 4248 // Conversion could create infinity. 4249 return nullptr; 4250 } else { 4251 // Note that if RHS is zero or NaN, then Exp is negative 4252 // and first condition is trivially false. 4253 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 4254 // Conversion could affect comparison. 4255 return nullptr; 4256 } 4257 } 4258 4259 // Otherwise, we can potentially simplify the comparison. We know that it 4260 // will always come through as an integer value and we know the constant is 4261 // not a NAN (it would have been previously simplified). 4262 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 4263 4264 ICmpInst::Predicate Pred; 4265 switch (I.getPredicate()) { 4266 default: llvm_unreachable("Unexpected predicate!"); 4267 case FCmpInst::FCMP_UEQ: 4268 case FCmpInst::FCMP_OEQ: 4269 Pred = ICmpInst::ICMP_EQ; 4270 break; 4271 case FCmpInst::FCMP_UGT: 4272 case FCmpInst::FCMP_OGT: 4273 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 4274 break; 4275 case FCmpInst::FCMP_UGE: 4276 case FCmpInst::FCMP_OGE: 4277 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 4278 break; 4279 case FCmpInst::FCMP_ULT: 4280 case FCmpInst::FCMP_OLT: 4281 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 4282 break; 4283 case FCmpInst::FCMP_ULE: 4284 case FCmpInst::FCMP_OLE: 4285 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 4286 break; 4287 case FCmpInst::FCMP_UNE: 4288 case FCmpInst::FCMP_ONE: 4289 Pred = ICmpInst::ICMP_NE; 4290 break; 4291 case FCmpInst::FCMP_ORD: 4292 return replaceInstUsesWith(I, Builder->getTrue()); 4293 case FCmpInst::FCMP_UNO: 4294 return replaceInstUsesWith(I, Builder->getFalse()); 4295 } 4296 4297 // Now we know that the APFloat is a normal number, zero or inf. 4298 4299 // See if the FP constant is too large for the integer. For example, 4300 // comparing an i8 to 300.0. 4301 unsigned IntWidth = IntTy->getScalarSizeInBits(); 4302 4303 if (!LHSUnsigned) { 4304 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 4305 // and large values. 4306 APFloat SMax(RHS.getSemantics()); 4307 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 4308 APFloat::rmNearestTiesToEven); 4309 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 4310 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 4311 Pred == ICmpInst::ICMP_SLE) 4312 return replaceInstUsesWith(I, Builder->getTrue()); 4313 return replaceInstUsesWith(I, Builder->getFalse()); 4314 } 4315 } else { 4316 // If the RHS value is > UnsignedMax, fold the comparison. This handles 4317 // +INF and large values. 4318 APFloat UMax(RHS.getSemantics()); 4319 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 4320 APFloat::rmNearestTiesToEven); 4321 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 4322 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 4323 Pred == ICmpInst::ICMP_ULE) 4324 return replaceInstUsesWith(I, Builder->getTrue()); 4325 return replaceInstUsesWith(I, Builder->getFalse()); 4326 } 4327 } 4328 4329 if (!LHSUnsigned) { 4330 // See if the RHS value is < SignedMin. 4331 APFloat SMin(RHS.getSemantics()); 4332 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 4333 APFloat::rmNearestTiesToEven); 4334 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 4335 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 4336 Pred == ICmpInst::ICMP_SGE) 4337 return replaceInstUsesWith(I, Builder->getTrue()); 4338 return replaceInstUsesWith(I, Builder->getFalse()); 4339 } 4340 } else { 4341 // See if the RHS value is < UnsignedMin. 4342 APFloat SMin(RHS.getSemantics()); 4343 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 4344 APFloat::rmNearestTiesToEven); 4345 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 4346 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 4347 Pred == ICmpInst::ICMP_UGE) 4348 return replaceInstUsesWith(I, Builder->getTrue()); 4349 return replaceInstUsesWith(I, Builder->getFalse()); 4350 } 4351 } 4352 4353 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 4354 // [0, UMAX], but it may still be fractional. See if it is fractional by 4355 // casting the FP value to the integer value and back, checking for equality. 4356 // Don't do this for zero, because -0.0 is not fractional. 4357 Constant *RHSInt = LHSUnsigned 4358 ? ConstantExpr::getFPToUI(RHSC, IntTy) 4359 : ConstantExpr::getFPToSI(RHSC, IntTy); 4360 if (!RHS.isZero()) { 4361 bool Equal = LHSUnsigned 4362 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 4363 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 4364 if (!Equal) { 4365 // If we had a comparison against a fractional value, we have to adjust 4366 // the compare predicate and sometimes the value. RHSC is rounded towards 4367 // zero at this point. 4368 switch (Pred) { 4369 default: llvm_unreachable("Unexpected integer comparison!"); 4370 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 4371 return replaceInstUsesWith(I, Builder->getTrue()); 4372 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 4373 return replaceInstUsesWith(I, Builder->getFalse()); 4374 case ICmpInst::ICMP_ULE: 4375 // (float)int <= 4.4 --> int <= 4 4376 // (float)int <= -4.4 --> false 4377 if (RHS.isNegative()) 4378 return replaceInstUsesWith(I, Builder->getFalse()); 4379 break; 4380 case ICmpInst::ICMP_SLE: 4381 // (float)int <= 4.4 --> int <= 4 4382 // (float)int <= -4.4 --> int < -4 4383 if (RHS.isNegative()) 4384 Pred = ICmpInst::ICMP_SLT; 4385 break; 4386 case ICmpInst::ICMP_ULT: 4387 // (float)int < -4.4 --> false 4388 // (float)int < 4.4 --> int <= 4 4389 if (RHS.isNegative()) 4390 return replaceInstUsesWith(I, Builder->getFalse()); 4391 Pred = ICmpInst::ICMP_ULE; 4392 break; 4393 case ICmpInst::ICMP_SLT: 4394 // (float)int < -4.4 --> int < -4 4395 // (float)int < 4.4 --> int <= 4 4396 if (!RHS.isNegative()) 4397 Pred = ICmpInst::ICMP_SLE; 4398 break; 4399 case ICmpInst::ICMP_UGT: 4400 // (float)int > 4.4 --> int > 4 4401 // (float)int > -4.4 --> true 4402 if (RHS.isNegative()) 4403 return replaceInstUsesWith(I, Builder->getTrue()); 4404 break; 4405 case ICmpInst::ICMP_SGT: 4406 // (float)int > 4.4 --> int > 4 4407 // (float)int > -4.4 --> int >= -4 4408 if (RHS.isNegative()) 4409 Pred = ICmpInst::ICMP_SGE; 4410 break; 4411 case ICmpInst::ICMP_UGE: 4412 // (float)int >= -4.4 --> true 4413 // (float)int >= 4.4 --> int > 4 4414 if (RHS.isNegative()) 4415 return replaceInstUsesWith(I, Builder->getTrue()); 4416 Pred = ICmpInst::ICMP_UGT; 4417 break; 4418 case ICmpInst::ICMP_SGE: 4419 // (float)int >= -4.4 --> int >= -4 4420 // (float)int >= 4.4 --> int > 4 4421 if (!RHS.isNegative()) 4422 Pred = ICmpInst::ICMP_SGT; 4423 break; 4424 } 4425 } 4426 } 4427 4428 // Lower this FP comparison into an appropriate integer version of the 4429 // comparison. 4430 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 4431 } 4432 4433 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 4434 bool Changed = false; 4435 4436 /// Orders the operands of the compare so that they are listed from most 4437 /// complex to least complex. This puts constants before unary operators, 4438 /// before binary operators. 4439 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 4440 I.swapOperands(); 4441 Changed = true; 4442 } 4443 4444 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4445 4446 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, 4447 I.getFastMathFlags(), DL, TLI, DT, AC, &I)) 4448 return replaceInstUsesWith(I, V); 4449 4450 // Simplify 'fcmp pred X, X' 4451 if (Op0 == Op1) { 4452 switch (I.getPredicate()) { 4453 default: llvm_unreachable("Unknown predicate!"); 4454 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 4455 case FCmpInst::FCMP_ULT: // True if unordered or less than 4456 case FCmpInst::FCMP_UGT: // True if unordered or greater than 4457 case FCmpInst::FCMP_UNE: // True if unordered or not equal 4458 // Canonicalize these to be 'fcmp uno %X, 0.0'. 4459 I.setPredicate(FCmpInst::FCMP_UNO); 4460 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4461 return &I; 4462 4463 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 4464 case FCmpInst::FCMP_OEQ: // True if ordered and equal 4465 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 4466 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 4467 // Canonicalize these to be 'fcmp ord %X, 0.0'. 4468 I.setPredicate(FCmpInst::FCMP_ORD); 4469 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4470 return &I; 4471 } 4472 } 4473 4474 // Test if the FCmpInst instruction is used exclusively by a select as 4475 // part of a minimum or maximum operation. If so, refrain from doing 4476 // any other folding. This helps out other analyses which understand 4477 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4478 // and CodeGen. And in this case, at least one of the comparison 4479 // operands has at least one user besides the compare (the select), 4480 // which would often largely negate the benefit of folding anyway. 4481 if (I.hasOneUse()) 4482 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 4483 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 4484 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 4485 return nullptr; 4486 4487 // Handle fcmp with constant RHS 4488 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 4489 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 4490 switch (LHSI->getOpcode()) { 4491 case Instruction::FPExt: { 4492 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 4493 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 4494 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 4495 if (!RHSF) 4496 break; 4497 4498 const fltSemantics *Sem; 4499 // FIXME: This shouldn't be here. 4500 if (LHSExt->getSrcTy()->isHalfTy()) 4501 Sem = &APFloat::IEEEhalf; 4502 else if (LHSExt->getSrcTy()->isFloatTy()) 4503 Sem = &APFloat::IEEEsingle; 4504 else if (LHSExt->getSrcTy()->isDoubleTy()) 4505 Sem = &APFloat::IEEEdouble; 4506 else if (LHSExt->getSrcTy()->isFP128Ty()) 4507 Sem = &APFloat::IEEEquad; 4508 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 4509 Sem = &APFloat::x87DoubleExtended; 4510 else if (LHSExt->getSrcTy()->isPPC_FP128Ty()) 4511 Sem = &APFloat::PPCDoubleDouble; 4512 else 4513 break; 4514 4515 bool Lossy; 4516 APFloat F = RHSF->getValueAPF(); 4517 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 4518 4519 // Avoid lossy conversions and denormals. Zero is a special case 4520 // that's OK to convert. 4521 APFloat Fabs = F; 4522 Fabs.clearSign(); 4523 if (!Lossy && 4524 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 4525 APFloat::cmpLessThan) || Fabs.isZero())) 4526 4527 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4528 ConstantFP::get(RHSC->getContext(), F)); 4529 break; 4530 } 4531 case Instruction::PHI: 4532 // Only fold fcmp into the PHI if the phi and fcmp are in the same 4533 // block. If in the same block, we're encouraging jump threading. If 4534 // not, we are just pessimizing the code by making an i1 phi. 4535 if (LHSI->getParent() == I.getParent()) 4536 if (Instruction *NV = FoldOpIntoPhi(I)) 4537 return NV; 4538 break; 4539 case Instruction::SIToFP: 4540 case Instruction::UIToFP: 4541 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) 4542 return NV; 4543 break; 4544 case Instruction::FSub: { 4545 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 4546 Value *Op; 4547 if (match(LHSI, m_FNeg(m_Value(Op)))) 4548 return new FCmpInst(I.getSwappedPredicate(), Op, 4549 ConstantExpr::getFNeg(RHSC)); 4550 break; 4551 } 4552 case Instruction::Load: 4553 if (GetElementPtrInst *GEP = 4554 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 4555 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 4556 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 4557 !cast<LoadInst>(LHSI)->isVolatile()) 4558 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 4559 return Res; 4560 } 4561 break; 4562 case Instruction::Call: { 4563 if (!RHSC->isNullValue()) 4564 break; 4565 4566 CallInst *CI = cast<CallInst>(LHSI); 4567 Intrinsic::ID IID = getIntrinsicIDForCall(CI, TLI); 4568 if (IID != Intrinsic::fabs) 4569 break; 4570 4571 // Various optimization for fabs compared with zero. 4572 switch (I.getPredicate()) { 4573 default: 4574 break; 4575 // fabs(x) < 0 --> false 4576 case FCmpInst::FCMP_OLT: 4577 llvm_unreachable("handled by SimplifyFCmpInst"); 4578 // fabs(x) > 0 --> x != 0 4579 case FCmpInst::FCMP_OGT: 4580 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC); 4581 // fabs(x) <= 0 --> x == 0 4582 case FCmpInst::FCMP_OLE: 4583 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC); 4584 // fabs(x) >= 0 --> !isnan(x) 4585 case FCmpInst::FCMP_OGE: 4586 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC); 4587 // fabs(x) == 0 --> x == 0 4588 // fabs(x) != 0 --> x != 0 4589 case FCmpInst::FCMP_OEQ: 4590 case FCmpInst::FCMP_UEQ: 4591 case FCmpInst::FCMP_ONE: 4592 case FCmpInst::FCMP_UNE: 4593 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC); 4594 } 4595 } 4596 } 4597 } 4598 4599 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 4600 Value *X, *Y; 4601 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 4602 return new FCmpInst(I.getSwappedPredicate(), X, Y); 4603 4604 // fcmp (fpext x), (fpext y) -> fcmp x, y 4605 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 4606 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 4607 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 4608 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4609 RHSExt->getOperand(0)); 4610 4611 return Changed ? &I : nullptr; 4612 } 4613