1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/Debug.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 // How many times is a select replaced by one of its operands?
36 STATISTIC(NumSel, "Number of select opts");
37 
38 // Initialization Routines
39 
40 static ConstantInt *getOne(Constant *C) {
41   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
42 }
43 
44 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
45   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
46 }
47 
48 static bool HasAddOverflow(ConstantInt *Result,
49                            ConstantInt *In1, ConstantInt *In2,
50                            bool IsSigned) {
51   if (!IsSigned)
52     return Result->getValue().ult(In1->getValue());
53 
54   if (In2->isNegative())
55     return Result->getValue().sgt(In1->getValue());
56   return Result->getValue().slt(In1->getValue());
57 }
58 
59 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
60 /// overflowed for this type.
61 static bool AddWithOverflow(Constant *&Result, Constant *In1,
62                             Constant *In2, bool IsSigned = false) {
63   Result = ConstantExpr::getAdd(In1, In2);
64 
65   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
66     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
67       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
68       if (HasAddOverflow(ExtractElement(Result, Idx),
69                          ExtractElement(In1, Idx),
70                          ExtractElement(In2, Idx),
71                          IsSigned))
72         return true;
73     }
74     return false;
75   }
76 
77   return HasAddOverflow(cast<ConstantInt>(Result),
78                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
79                         IsSigned);
80 }
81 
82 static bool HasSubOverflow(ConstantInt *Result,
83                            ConstantInt *In1, ConstantInt *In2,
84                            bool IsSigned) {
85   if (!IsSigned)
86     return Result->getValue().ugt(In1->getValue());
87 
88   if (In2->isNegative())
89     return Result->getValue().slt(In1->getValue());
90 
91   return Result->getValue().sgt(In1->getValue());
92 }
93 
94 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
95 /// overflowed for this type.
96 static bool SubWithOverflow(Constant *&Result, Constant *In1,
97                             Constant *In2, bool IsSigned = false) {
98   Result = ConstantExpr::getSub(In1, In2);
99 
100   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
101     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
102       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
103       if (HasSubOverflow(ExtractElement(Result, Idx),
104                          ExtractElement(In1, Idx),
105                          ExtractElement(In2, Idx),
106                          IsSigned))
107         return true;
108     }
109     return false;
110   }
111 
112   return HasSubOverflow(cast<ConstantInt>(Result),
113                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
114                         IsSigned);
115 }
116 
117 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
118 /// comparison only checks the sign bit.  If it only checks the sign bit, set
119 /// TrueIfSigned if the result of the comparison is true when the input value is
120 /// signed.
121 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
122                            bool &TrueIfSigned) {
123   switch (pred) {
124   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
125     TrueIfSigned = true;
126     return RHS->isZero();
127   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
128     TrueIfSigned = true;
129     return RHS->isAllOnesValue();
130   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
131     TrueIfSigned = false;
132     return RHS->isAllOnesValue();
133   case ICmpInst::ICMP_UGT:
134     // True if LHS u> RHS and RHS == high-bit-mask - 1
135     TrueIfSigned = true;
136     return RHS->isMaxValue(true);
137   case ICmpInst::ICMP_UGE:
138     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
139     TrueIfSigned = true;
140     return RHS->getValue().isSignBit();
141   default:
142     return false;
143   }
144 }
145 
146 /// Returns true if the exploded icmp can be expressed as a signed comparison
147 /// to zero and updates the predicate accordingly.
148 /// The signedness of the comparison is preserved.
149 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
150   if (!ICmpInst::isSigned(pred))
151     return false;
152 
153   if (RHS->isZero())
154     return ICmpInst::isRelational(pred);
155 
156   if (RHS->isOne()) {
157     if (pred == ICmpInst::ICMP_SLT) {
158       pred = ICmpInst::ICMP_SLE;
159       return true;
160     }
161   } else if (RHS->isAllOnesValue()) {
162     if (pred == ICmpInst::ICMP_SGT) {
163       pred = ICmpInst::ICMP_SGE;
164       return true;
165     }
166   }
167 
168   return false;
169 }
170 
171 // isHighOnes - Return true if the constant is of the form 1+0+.
172 // This is the same as lowones(~X).
173 static bool isHighOnes(const ConstantInt *CI) {
174   return (~CI->getValue() + 1).isPowerOf2();
175 }
176 
177 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
178 /// set of known zero and one bits, compute the maximum and minimum values that
179 /// could have the specified known zero and known one bits, returning them in
180 /// min/max.
181 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
182                                                    const APInt& KnownOne,
183                                                    APInt& Min, APInt& Max) {
184   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
185          KnownZero.getBitWidth() == Min.getBitWidth() &&
186          KnownZero.getBitWidth() == Max.getBitWidth() &&
187          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
188   APInt UnknownBits = ~(KnownZero|KnownOne);
189 
190   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
191   // bit if it is unknown.
192   Min = KnownOne;
193   Max = KnownOne|UnknownBits;
194 
195   if (UnknownBits.isNegative()) { // Sign bit is unknown
196     Min.setBit(Min.getBitWidth()-1);
197     Max.clearBit(Max.getBitWidth()-1);
198   }
199 }
200 
201 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
202 // a set of known zero and one bits, compute the maximum and minimum values that
203 // could have the specified known zero and known one bits, returning them in
204 // min/max.
205 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
206                                                      const APInt &KnownOne,
207                                                      APInt &Min, APInt &Max) {
208   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
209          KnownZero.getBitWidth() == Min.getBitWidth() &&
210          KnownZero.getBitWidth() == Max.getBitWidth() &&
211          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
212   APInt UnknownBits = ~(KnownZero|KnownOne);
213 
214   // The minimum value is when the unknown bits are all zeros.
215   Min = KnownOne;
216   // The maximum value is when the unknown bits are all ones.
217   Max = KnownOne|UnknownBits;
218 }
219 
220 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
221 ///   cmp pred (load (gep GV, ...)), cmpcst
222 /// where GV is a global variable with a constant initializer.  Try to simplify
223 /// this into some simple computation that does not need the load.  For example
224 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
225 ///
226 /// If AndCst is non-null, then the loaded value is masked with that constant
227 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
228 Instruction *InstCombiner::
229 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
230                              CmpInst &ICI, ConstantInt *AndCst) {
231   Constant *Init = GV->getInitializer();
232   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
233     return nullptr;
234 
235   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
236   if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
237 
238   // There are many forms of this optimization we can handle, for now, just do
239   // the simple index into a single-dimensional array.
240   //
241   // Require: GEP GV, 0, i {{, constant indices}}
242   if (GEP->getNumOperands() < 3 ||
243       !isa<ConstantInt>(GEP->getOperand(1)) ||
244       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
245       isa<Constant>(GEP->getOperand(2)))
246     return nullptr;
247 
248   // Check that indices after the variable are constants and in-range for the
249   // type they index.  Collect the indices.  This is typically for arrays of
250   // structs.
251   SmallVector<unsigned, 4> LaterIndices;
252 
253   Type *EltTy = Init->getType()->getArrayElementType();
254   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
255     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
256     if (!Idx) return nullptr;  // Variable index.
257 
258     uint64_t IdxVal = Idx->getZExtValue();
259     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
260 
261     if (StructType *STy = dyn_cast<StructType>(EltTy))
262       EltTy = STy->getElementType(IdxVal);
263     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
264       if (IdxVal >= ATy->getNumElements()) return nullptr;
265       EltTy = ATy->getElementType();
266     } else {
267       return nullptr; // Unknown type.
268     }
269 
270     LaterIndices.push_back(IdxVal);
271   }
272 
273   enum { Overdefined = -3, Undefined = -2 };
274 
275   // Variables for our state machines.
276 
277   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
278   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
279   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
280   // undefined, otherwise set to the first true element.  SecondTrueElement is
281   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
282   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
283 
284   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
285   // form "i != 47 & i != 87".  Same state transitions as for true elements.
286   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
287 
288   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
289   /// define a state machine that triggers for ranges of values that the index
290   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
291   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
292   /// index in the range (inclusive).  We use -2 for undefined here because we
293   /// use relative comparisons and don't want 0-1 to match -1.
294   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
295 
296   // MagicBitvector - This is a magic bitvector where we set a bit if the
297   // comparison is true for element 'i'.  If there are 64 elements or less in
298   // the array, this will fully represent all the comparison results.
299   uint64_t MagicBitvector = 0;
300 
301   // Scan the array and see if one of our patterns matches.
302   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
303   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
304     Constant *Elt = Init->getAggregateElement(i);
305     if (!Elt) return nullptr;
306 
307     // If this is indexing an array of structures, get the structure element.
308     if (!LaterIndices.empty())
309       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
310 
311     // If the element is masked, handle it.
312     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
313 
314     // Find out if the comparison would be true or false for the i'th element.
315     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
316                                                   CompareRHS, DL, TLI);
317     // If the result is undef for this element, ignore it.
318     if (isa<UndefValue>(C)) {
319       // Extend range state machines to cover this element in case there is an
320       // undef in the middle of the range.
321       if (TrueRangeEnd == (int)i-1)
322         TrueRangeEnd = i;
323       if (FalseRangeEnd == (int)i-1)
324         FalseRangeEnd = i;
325       continue;
326     }
327 
328     // If we can't compute the result for any of the elements, we have to give
329     // up evaluating the entire conditional.
330     if (!isa<ConstantInt>(C)) return nullptr;
331 
332     // Otherwise, we know if the comparison is true or false for this element,
333     // update our state machines.
334     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
335 
336     // State machine for single/double/range index comparison.
337     if (IsTrueForElt) {
338       // Update the TrueElement state machine.
339       if (FirstTrueElement == Undefined)
340         FirstTrueElement = TrueRangeEnd = i;  // First true element.
341       else {
342         // Update double-compare state machine.
343         if (SecondTrueElement == Undefined)
344           SecondTrueElement = i;
345         else
346           SecondTrueElement = Overdefined;
347 
348         // Update range state machine.
349         if (TrueRangeEnd == (int)i-1)
350           TrueRangeEnd = i;
351         else
352           TrueRangeEnd = Overdefined;
353       }
354     } else {
355       // Update the FalseElement state machine.
356       if (FirstFalseElement == Undefined)
357         FirstFalseElement = FalseRangeEnd = i; // First false element.
358       else {
359         // Update double-compare state machine.
360         if (SecondFalseElement == Undefined)
361           SecondFalseElement = i;
362         else
363           SecondFalseElement = Overdefined;
364 
365         // Update range state machine.
366         if (FalseRangeEnd == (int)i-1)
367           FalseRangeEnd = i;
368         else
369           FalseRangeEnd = Overdefined;
370       }
371     }
372 
373     // If this element is in range, update our magic bitvector.
374     if (i < 64 && IsTrueForElt)
375       MagicBitvector |= 1ULL << i;
376 
377     // If all of our states become overdefined, bail out early.  Since the
378     // predicate is expensive, only check it every 8 elements.  This is only
379     // really useful for really huge arrays.
380     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
381         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
382         FalseRangeEnd == Overdefined)
383       return nullptr;
384   }
385 
386   // Now that we've scanned the entire array, emit our new comparison(s).  We
387   // order the state machines in complexity of the generated code.
388   Value *Idx = GEP->getOperand(2);
389 
390   // If the index is larger than the pointer size of the target, truncate the
391   // index down like the GEP would do implicitly.  We don't have to do this for
392   // an inbounds GEP because the index can't be out of range.
393   if (!GEP->isInBounds()) {
394     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
395     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
396     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
397       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
398   }
399 
400   // If the comparison is only true for one or two elements, emit direct
401   // comparisons.
402   if (SecondTrueElement != Overdefined) {
403     // None true -> false.
404     if (FirstTrueElement == Undefined)
405       return replaceInstUsesWith(ICI, Builder->getFalse());
406 
407     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
408 
409     // True for one element -> 'i == 47'.
410     if (SecondTrueElement == Undefined)
411       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
412 
413     // True for two elements -> 'i == 47 | i == 72'.
414     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
415     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
416     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
417     return BinaryOperator::CreateOr(C1, C2);
418   }
419 
420   // If the comparison is only false for one or two elements, emit direct
421   // comparisons.
422   if (SecondFalseElement != Overdefined) {
423     // None false -> true.
424     if (FirstFalseElement == Undefined)
425       return replaceInstUsesWith(ICI, Builder->getTrue());
426 
427     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
428 
429     // False for one element -> 'i != 47'.
430     if (SecondFalseElement == Undefined)
431       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
432 
433     // False for two elements -> 'i != 47 & i != 72'.
434     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
435     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
436     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
437     return BinaryOperator::CreateAnd(C1, C2);
438   }
439 
440   // If the comparison can be replaced with a range comparison for the elements
441   // where it is true, emit the range check.
442   if (TrueRangeEnd != Overdefined) {
443     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
444 
445     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
446     if (FirstTrueElement) {
447       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
448       Idx = Builder->CreateAdd(Idx, Offs);
449     }
450 
451     Value *End = ConstantInt::get(Idx->getType(),
452                                   TrueRangeEnd-FirstTrueElement+1);
453     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
454   }
455 
456   // False range check.
457   if (FalseRangeEnd != Overdefined) {
458     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
459     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
460     if (FirstFalseElement) {
461       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
462       Idx = Builder->CreateAdd(Idx, Offs);
463     }
464 
465     Value *End = ConstantInt::get(Idx->getType(),
466                                   FalseRangeEnd-FirstFalseElement);
467     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
468   }
469 
470   // If a magic bitvector captures the entire comparison state
471   // of this load, replace it with computation that does:
472   //   ((magic_cst >> i) & 1) != 0
473   {
474     Type *Ty = nullptr;
475 
476     // Look for an appropriate type:
477     // - The type of Idx if the magic fits
478     // - The smallest fitting legal type if we have a DataLayout
479     // - Default to i32
480     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
481       Ty = Idx->getType();
482     else
483       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
484 
485     if (Ty) {
486       Value *V = Builder->CreateIntCast(Idx, Ty, false);
487       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
488       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
489       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
490     }
491   }
492 
493   return nullptr;
494 }
495 
496 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
497 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
498 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
499 /// be complex, and scales are involved.  The above expression would also be
500 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
501 /// This later form is less amenable to optimization though, and we are allowed
502 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
503 ///
504 /// If we can't emit an optimized form for this expression, this returns null.
505 ///
506 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
507                                           const DataLayout &DL) {
508   gep_type_iterator GTI = gep_type_begin(GEP);
509 
510   // Check to see if this gep only has a single variable index.  If so, and if
511   // any constant indices are a multiple of its scale, then we can compute this
512   // in terms of the scale of the variable index.  For example, if the GEP
513   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
514   // because the expression will cross zero at the same point.
515   unsigned i, e = GEP->getNumOperands();
516   int64_t Offset = 0;
517   for (i = 1; i != e; ++i, ++GTI) {
518     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
519       // Compute the aggregate offset of constant indices.
520       if (CI->isZero()) continue;
521 
522       // Handle a struct index, which adds its field offset to the pointer.
523       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
524         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
525       } else {
526         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
527         Offset += Size*CI->getSExtValue();
528       }
529     } else {
530       // Found our variable index.
531       break;
532     }
533   }
534 
535   // If there are no variable indices, we must have a constant offset, just
536   // evaluate it the general way.
537   if (i == e) return nullptr;
538 
539   Value *VariableIdx = GEP->getOperand(i);
540   // Determine the scale factor of the variable element.  For example, this is
541   // 4 if the variable index is into an array of i32.
542   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
543 
544   // Verify that there are no other variable indices.  If so, emit the hard way.
545   for (++i, ++GTI; i != e; ++i, ++GTI) {
546     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
547     if (!CI) return nullptr;
548 
549     // Compute the aggregate offset of constant indices.
550     if (CI->isZero()) continue;
551 
552     // Handle a struct index, which adds its field offset to the pointer.
553     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
554       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
555     } else {
556       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
557       Offset += Size*CI->getSExtValue();
558     }
559   }
560 
561   // Okay, we know we have a single variable index, which must be a
562   // pointer/array/vector index.  If there is no offset, life is simple, return
563   // the index.
564   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
565   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
566   if (Offset == 0) {
567     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
568     // we don't need to bother extending: the extension won't affect where the
569     // computation crosses zero.
570     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
571       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
572     }
573     return VariableIdx;
574   }
575 
576   // Otherwise, there is an index.  The computation we will do will be modulo
577   // the pointer size, so get it.
578   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
579 
580   Offset &= PtrSizeMask;
581   VariableScale &= PtrSizeMask;
582 
583   // To do this transformation, any constant index must be a multiple of the
584   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
585   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
586   // multiple of the variable scale.
587   int64_t NewOffs = Offset / (int64_t)VariableScale;
588   if (Offset != NewOffs*(int64_t)VariableScale)
589     return nullptr;
590 
591   // Okay, we can do this evaluation.  Start by converting the index to intptr.
592   if (VariableIdx->getType() != IntPtrTy)
593     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
594                                             true /*Signed*/);
595   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
596   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
597 }
598 
599 /// Returns true if we can rewrite Start as a GEP with pointer Base
600 /// and some integer offset. The nodes that need to be re-written
601 /// for this transformation will be added to Explored.
602 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
603                                   const DataLayout &DL,
604                                   SetVector<Value *> &Explored) {
605   SmallVector<Value *, 16> WorkList(1, Start);
606   Explored.insert(Base);
607 
608   // The following traversal gives us an order which can be used
609   // when doing the final transformation. Since in the final
610   // transformation we create the PHI replacement instructions first,
611   // we don't have to get them in any particular order.
612   //
613   // However, for other instructions we will have to traverse the
614   // operands of an instruction first, which means that we have to
615   // do a post-order traversal.
616   while (!WorkList.empty()) {
617     SetVector<PHINode *> PHIs;
618 
619     while (!WorkList.empty()) {
620       if (Explored.size() >= 100)
621         return false;
622 
623       Value *V = WorkList.back();
624 
625       if (Explored.count(V) != 0) {
626         WorkList.pop_back();
627         continue;
628       }
629 
630       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
631           !isa<GEPOperator>(V) && !isa<PHINode>(V))
632         // We've found some value that we can't explore which is different from
633         // the base. Therefore we can't do this transformation.
634         return false;
635 
636       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
637         auto *CI = dyn_cast<CastInst>(V);
638         if (!CI->isNoopCast(DL))
639           return false;
640 
641         if (Explored.count(CI->getOperand(0)) == 0)
642           WorkList.push_back(CI->getOperand(0));
643       }
644 
645       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
646         // We're limiting the GEP to having one index. This will preserve
647         // the original pointer type. We could handle more cases in the
648         // future.
649         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
650             GEP->getType() != Start->getType())
651           return false;
652 
653         if (Explored.count(GEP->getOperand(0)) == 0)
654           WorkList.push_back(GEP->getOperand(0));
655       }
656 
657       if (WorkList.back() == V) {
658         WorkList.pop_back();
659         // We've finished visiting this node, mark it as such.
660         Explored.insert(V);
661       }
662 
663       if (auto *PN = dyn_cast<PHINode>(V)) {
664         // We cannot transform PHIs on unsplittable basic blocks.
665         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
666           return false;
667         Explored.insert(PN);
668         PHIs.insert(PN);
669       }
670     }
671 
672     // Explore the PHI nodes further.
673     for (auto *PN : PHIs)
674       for (Value *Op : PN->incoming_values())
675         if (Explored.count(Op) == 0)
676           WorkList.push_back(Op);
677   }
678 
679   // Make sure that we can do this. Since we can't insert GEPs in a basic
680   // block before a PHI node, we can't easily do this transformation if
681   // we have PHI node users of transformed instructions.
682   for (Value *Val : Explored) {
683     for (Value *Use : Val->uses()) {
684 
685       auto *PHI = dyn_cast<PHINode>(Use);
686       auto *Inst = dyn_cast<Instruction>(Val);
687 
688       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
689           Explored.count(PHI) == 0)
690         continue;
691 
692       if (PHI->getParent() == Inst->getParent())
693         return false;
694     }
695   }
696   return true;
697 }
698 
699 // Sets the appropriate insert point on Builder where we can add
700 // a replacement Instruction for V (if that is possible).
701 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
702                               bool Before = true) {
703   if (auto *PHI = dyn_cast<PHINode>(V)) {
704     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
705     return;
706   }
707   if (auto *I = dyn_cast<Instruction>(V)) {
708     if (!Before)
709       I = &*std::next(I->getIterator());
710     Builder.SetInsertPoint(I);
711     return;
712   }
713   if (auto *A = dyn_cast<Argument>(V)) {
714     // Set the insertion point in the entry block.
715     BasicBlock &Entry = A->getParent()->getEntryBlock();
716     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
717     return;
718   }
719   // Otherwise, this is a constant and we don't need to set a new
720   // insertion point.
721   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
722 }
723 
724 /// Returns a re-written value of Start as an indexed GEP using Base as a
725 /// pointer.
726 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
727                                  const DataLayout &DL,
728                                  SetVector<Value *> &Explored) {
729   // Perform all the substitutions. This is a bit tricky because we can
730   // have cycles in our use-def chains.
731   // 1. Create the PHI nodes without any incoming values.
732   // 2. Create all the other values.
733   // 3. Add the edges for the PHI nodes.
734   // 4. Emit GEPs to get the original pointers.
735   // 5. Remove the original instructions.
736   Type *IndexType = IntegerType::get(
737       Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
738 
739   DenseMap<Value *, Value *> NewInsts;
740   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
741 
742   // Create the new PHI nodes, without adding any incoming values.
743   for (Value *Val : Explored) {
744     if (Val == Base)
745       continue;
746     // Create empty phi nodes. This avoids cyclic dependencies when creating
747     // the remaining instructions.
748     if (auto *PHI = dyn_cast<PHINode>(Val))
749       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
750                                       PHI->getName() + ".idx", PHI);
751   }
752   IRBuilder<> Builder(Base->getContext());
753 
754   // Create all the other instructions.
755   for (Value *Val : Explored) {
756 
757     if (NewInsts.find(Val) != NewInsts.end())
758       continue;
759 
760     if (auto *CI = dyn_cast<CastInst>(Val)) {
761       NewInsts[CI] = NewInsts[CI->getOperand(0)];
762       continue;
763     }
764     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
765       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
766                                                   : GEP->getOperand(1);
767       setInsertionPoint(Builder, GEP);
768       // Indices might need to be sign extended. GEPs will magically do
769       // this, but we need to do it ourselves here.
770       if (Index->getType()->getScalarSizeInBits() !=
771           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
772         Index = Builder.CreateSExtOrTrunc(
773             Index, NewInsts[GEP->getOperand(0)]->getType(),
774             GEP->getOperand(0)->getName() + ".sext");
775       }
776 
777       auto *Op = NewInsts[GEP->getOperand(0)];
778       if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
779         NewInsts[GEP] = Index;
780       else
781         NewInsts[GEP] = Builder.CreateNSWAdd(
782             Op, Index, GEP->getOperand(0)->getName() + ".add");
783       continue;
784     }
785     if (isa<PHINode>(Val))
786       continue;
787 
788     llvm_unreachable("Unexpected instruction type");
789   }
790 
791   // Add the incoming values to the PHI nodes.
792   for (Value *Val : Explored) {
793     if (Val == Base)
794       continue;
795     // All the instructions have been created, we can now add edges to the
796     // phi nodes.
797     if (auto *PHI = dyn_cast<PHINode>(Val)) {
798       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
799       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
800         Value *NewIncoming = PHI->getIncomingValue(I);
801 
802         if (NewInsts.find(NewIncoming) != NewInsts.end())
803           NewIncoming = NewInsts[NewIncoming];
804 
805         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
806       }
807     }
808   }
809 
810   for (Value *Val : Explored) {
811     if (Val == Base)
812       continue;
813 
814     // Depending on the type, for external users we have to emit
815     // a GEP or a GEP + ptrtoint.
816     setInsertionPoint(Builder, Val, false);
817 
818     // If required, create an inttoptr instruction for Base.
819     Value *NewBase = Base;
820     if (!Base->getType()->isPointerTy())
821       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
822                                                Start->getName() + "to.ptr");
823 
824     Value *GEP = Builder.CreateInBoundsGEP(
825         Start->getType()->getPointerElementType(), NewBase,
826         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
827 
828     if (!Val->getType()->isPointerTy()) {
829       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
830                                               Val->getName() + ".conv");
831       GEP = Cast;
832     }
833     Val->replaceAllUsesWith(GEP);
834   }
835 
836   return NewInsts[Start];
837 }
838 
839 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
840 /// the input Value as a constant indexed GEP. Returns a pair containing
841 /// the GEPs Pointer and Index.
842 static std::pair<Value *, Value *>
843 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
844   Type *IndexType = IntegerType::get(V->getContext(),
845                                      DL.getPointerTypeSizeInBits(V->getType()));
846 
847   Constant *Index = ConstantInt::getNullValue(IndexType);
848   while (true) {
849     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
850       // We accept only inbouds GEPs here to exclude the possibility of
851       // overflow.
852       if (!GEP->isInBounds())
853         break;
854       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
855           GEP->getType() == V->getType()) {
856         V = GEP->getOperand(0);
857         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
858         Index = ConstantExpr::getAdd(
859             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
860         continue;
861       }
862       break;
863     }
864     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
865       if (!CI->isNoopCast(DL))
866         break;
867       V = CI->getOperand(0);
868       continue;
869     }
870     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
871       if (!CI->isNoopCast(DL))
872         break;
873       V = CI->getOperand(0);
874       continue;
875     }
876     break;
877   }
878   return {V, Index};
879 }
880 
881 // Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
882 // We can look through PHIs, GEPs and casts in order to determine a
883 // common base between GEPLHS and RHS.
884 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
885                                               ICmpInst::Predicate Cond,
886                                               const DataLayout &DL) {
887   if (!GEPLHS->hasAllConstantIndices())
888     return nullptr;
889 
890   Value *PtrBase, *Index;
891   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
892 
893   // The set of nodes that will take part in this transformation.
894   SetVector<Value *> Nodes;
895 
896   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
897     return nullptr;
898 
899   // We know we can re-write this as
900   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
901   // Since we've only looked through inbouds GEPs we know that we
902   // can't have overflow on either side. We can therefore re-write
903   // this as:
904   //   OFFSET1 cmp OFFSET2
905   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
906 
907   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
908   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
909   // offset. Since Index is the offset of LHS to the base pointer, we will now
910   // compare the offsets instead of comparing the pointers.
911   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
912 }
913 
914 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
915 /// else.  At this point we know that the GEP is on the LHS of the comparison.
916 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
917                                        ICmpInst::Predicate Cond,
918                                        Instruction &I) {
919   // Don't transform signed compares of GEPs into index compares. Even if the
920   // GEP is inbounds, the final add of the base pointer can have signed overflow
921   // and would change the result of the icmp.
922   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
923   // the maximum signed value for the pointer type.
924   if (ICmpInst::isSigned(Cond))
925     return nullptr;
926 
927   // Look through bitcasts and addrspacecasts. We do not however want to remove
928   // 0 GEPs.
929   if (!isa<GetElementPtrInst>(RHS))
930     RHS = RHS->stripPointerCasts();
931 
932   Value *PtrBase = GEPLHS->getOperand(0);
933   if (PtrBase == RHS && GEPLHS->isInBounds()) {
934     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
935     // This transformation (ignoring the base and scales) is valid because we
936     // know pointers can't overflow since the gep is inbounds.  See if we can
937     // output an optimized form.
938     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
939 
940     // If not, synthesize the offset the hard way.
941     if (!Offset)
942       Offset = EmitGEPOffset(GEPLHS);
943     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
944                         Constant::getNullValue(Offset->getType()));
945   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
946     // If the base pointers are different, but the indices are the same, just
947     // compare the base pointer.
948     if (PtrBase != GEPRHS->getOperand(0)) {
949       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
950       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
951                         GEPRHS->getOperand(0)->getType();
952       if (IndicesTheSame)
953         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
954           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
955             IndicesTheSame = false;
956             break;
957           }
958 
959       // If all indices are the same, just compare the base pointers.
960       if (IndicesTheSame)
961         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
962 
963       // If we're comparing GEPs with two base pointers that only differ in type
964       // and both GEPs have only constant indices or just one use, then fold
965       // the compare with the adjusted indices.
966       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
967           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
968           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
969           PtrBase->stripPointerCasts() ==
970               GEPRHS->getOperand(0)->stripPointerCasts()) {
971         Value *LOffset = EmitGEPOffset(GEPLHS);
972         Value *ROffset = EmitGEPOffset(GEPRHS);
973 
974         // If we looked through an addrspacecast between different sized address
975         // spaces, the LHS and RHS pointers are different sized
976         // integers. Truncate to the smaller one.
977         Type *LHSIndexTy = LOffset->getType();
978         Type *RHSIndexTy = ROffset->getType();
979         if (LHSIndexTy != RHSIndexTy) {
980           if (LHSIndexTy->getPrimitiveSizeInBits() <
981               RHSIndexTy->getPrimitiveSizeInBits()) {
982             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
983           } else
984             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
985         }
986 
987         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
988                                          LOffset, ROffset);
989         return replaceInstUsesWith(I, Cmp);
990       }
991 
992       // Otherwise, the base pointers are different and the indices are
993       // different. Try convert this to an indexed compare by looking through
994       // PHIs/casts.
995       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
996     }
997 
998     // If one of the GEPs has all zero indices, recurse.
999     if (GEPLHS->hasAllZeroIndices())
1000       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
1001                          ICmpInst::getSwappedPredicate(Cond), I);
1002 
1003     // If the other GEP has all zero indices, recurse.
1004     if (GEPRHS->hasAllZeroIndices())
1005       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
1006 
1007     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
1008     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
1009       // If the GEPs only differ by one index, compare it.
1010       unsigned NumDifferences = 0;  // Keep track of # differences.
1011       unsigned DiffOperand = 0;     // The operand that differs.
1012       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
1013         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
1014           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
1015                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
1016             // Irreconcilable differences.
1017             NumDifferences = 2;
1018             break;
1019           } else {
1020             if (NumDifferences++) break;
1021             DiffOperand = i;
1022           }
1023         }
1024 
1025       if (NumDifferences == 0)   // SAME GEP?
1026         return replaceInstUsesWith(I, // No comparison is needed here.
1027                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
1028 
1029       else if (NumDifferences == 1 && GEPsInBounds) {
1030         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1031         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1032         // Make sure we do a signed comparison here.
1033         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1034       }
1035     }
1036 
1037     // Only lower this if the icmp is the only user of the GEP or if we expect
1038     // the result to fold to a constant!
1039     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1040         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1041       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1042       Value *L = EmitGEPOffset(GEPLHS);
1043       Value *R = EmitGEPOffset(GEPRHS);
1044       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1045     }
1046   }
1047 
1048   // Try convert this to an indexed compare by looking through PHIs/casts as a
1049   // last resort.
1050   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1051 }
1052 
1053 Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
1054                                          Value *Other) {
1055   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1056 
1057   // It would be tempting to fold away comparisons between allocas and any
1058   // pointer not based on that alloca (e.g. an argument). However, even
1059   // though such pointers cannot alias, they can still compare equal.
1060   //
1061   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1062   // doesn't escape we can argue that it's impossible to guess its value, and we
1063   // can therefore act as if any such guesses are wrong.
1064   //
1065   // The code below checks that the alloca doesn't escape, and that it's only
1066   // used in a comparison once (the current instruction). The
1067   // single-comparison-use condition ensures that we're trivially folding all
1068   // comparisons against the alloca consistently, and avoids the risk of
1069   // erroneously folding a comparison of the pointer with itself.
1070 
1071   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1072 
1073   SmallVector<Use *, 32> Worklist;
1074   for (Use &U : Alloca->uses()) {
1075     if (Worklist.size() >= MaxIter)
1076       return nullptr;
1077     Worklist.push_back(&U);
1078   }
1079 
1080   unsigned NumCmps = 0;
1081   while (!Worklist.empty()) {
1082     assert(Worklist.size() <= MaxIter);
1083     Use *U = Worklist.pop_back_val();
1084     Value *V = U->getUser();
1085     --MaxIter;
1086 
1087     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1088         isa<SelectInst>(V)) {
1089       // Track the uses.
1090     } else if (isa<LoadInst>(V)) {
1091       // Loading from the pointer doesn't escape it.
1092       continue;
1093     } else if (auto *SI = dyn_cast<StoreInst>(V)) {
1094       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1095       if (SI->getValueOperand() == U->get())
1096         return nullptr;
1097       continue;
1098     } else if (isa<ICmpInst>(V)) {
1099       if (NumCmps++)
1100         return nullptr; // Found more than one cmp.
1101       continue;
1102     } else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1103       switch (Intrin->getIntrinsicID()) {
1104         // These intrinsics don't escape or compare the pointer. Memset is safe
1105         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1106         // we don't allow stores, so src cannot point to V.
1107         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1108         case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
1109         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1110           continue;
1111         default:
1112           return nullptr;
1113       }
1114     } else {
1115       return nullptr;
1116     }
1117     for (Use &U : V->uses()) {
1118       if (Worklist.size() >= MaxIter)
1119         return nullptr;
1120       Worklist.push_back(&U);
1121     }
1122   }
1123 
1124   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1125   return replaceInstUsesWith(
1126       ICI,
1127       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1128 }
1129 
1130 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
1131 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
1132                                             Value *X, ConstantInt *CI,
1133                                             ICmpInst::Predicate Pred) {
1134   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1135   // so the values can never be equal.  Similarly for all other "or equals"
1136   // operators.
1137 
1138   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1139   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1140   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1141   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1142     Value *R =
1143       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
1144     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1145   }
1146 
1147   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1148   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1149   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1150   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1151     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
1152 
1153   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
1154   ConstantInt *SMax = ConstantInt::get(X->getContext(),
1155                                        APInt::getSignedMaxValue(BitWidth));
1156 
1157   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1158   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1159   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1160   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1161   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1162   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1163   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1164     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
1165 
1166   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1167   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1168   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1169   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1170   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1171   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1172 
1173   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1174   Constant *C = Builder->getInt(CI->getValue()-1);
1175   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
1176 }
1177 
1178 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
1179 /// and CmpRHS are both known to be integer constants.
1180 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
1181                                           ConstantInt *DivRHS) {
1182   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
1183   const APInt &CmpRHSV = CmpRHS->getValue();
1184 
1185   // FIXME: If the operand types don't match the type of the divide
1186   // then don't attempt this transform. The code below doesn't have the
1187   // logic to deal with a signed divide and an unsigned compare (and
1188   // vice versa). This is because (x /s C1) <s C2  produces different
1189   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
1190   // (x /u C1) <u C2.  Simply casting the operands and result won't
1191   // work. :(  The if statement below tests that condition and bails
1192   // if it finds it.
1193   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
1194   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
1195     return nullptr;
1196   if (DivRHS->isZero())
1197     return nullptr; // The ProdOV computation fails on divide by zero.
1198   if (DivIsSigned && DivRHS->isAllOnesValue())
1199     return nullptr; // The overflow computation also screws up here
1200   if (DivRHS->isOne()) {
1201     // This eliminates some funny cases with INT_MIN.
1202     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
1203     return &ICI;
1204   }
1205 
1206   // Compute Prod = CI * DivRHS. We are essentially solving an equation
1207   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
1208   // C2 (CI). By solving for X we can turn this into a range check
1209   // instead of computing a divide.
1210   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
1211 
1212   // Determine if the product overflows by seeing if the product is
1213   // not equal to the divide. Make sure we do the same kind of divide
1214   // as in the LHS instruction that we're folding.
1215   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
1216                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
1217 
1218   // Get the ICmp opcode
1219   ICmpInst::Predicate Pred = ICI.getPredicate();
1220 
1221   /// If the division is known to be exact, then there is no remainder from the
1222   /// divide, so the covered range size is unit, otherwise it is the divisor.
1223   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
1224 
1225   // Figure out the interval that is being checked.  For example, a comparison
1226   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
1227   // Compute this interval based on the constants involved and the signedness of
1228   // the compare/divide.  This computes a half-open interval, keeping track of
1229   // whether either value in the interval overflows.  After analysis each
1230   // overflow variable is set to 0 if it's corresponding bound variable is valid
1231   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
1232   int LoOverflow = 0, HiOverflow = 0;
1233   Constant *LoBound = nullptr, *HiBound = nullptr;
1234 
1235   if (!DivIsSigned) {  // udiv
1236     // e.g. X/5 op 3  --> [15, 20)
1237     LoBound = Prod;
1238     HiOverflow = LoOverflow = ProdOV;
1239     if (!HiOverflow) {
1240       // If this is not an exact divide, then many values in the range collapse
1241       // to the same result value.
1242       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
1243     }
1244   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
1245     if (CmpRHSV == 0) {       // (X / pos) op 0
1246       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
1247       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
1248       HiBound = RangeSize;
1249     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
1250       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
1251       HiOverflow = LoOverflow = ProdOV;
1252       if (!HiOverflow)
1253         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
1254     } else {                       // (X / pos) op neg
1255       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
1256       HiBound = AddOne(Prod);
1257       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
1258       if (!LoOverflow) {
1259         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
1260         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
1261       }
1262     }
1263   } else if (DivRHS->isNegative()) { // Divisor is < 0.
1264     if (DivI->isExact())
1265       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
1266     if (CmpRHSV == 0) {       // (X / neg) op 0
1267       // e.g. X/-5 op 0  --> [-4, 5)
1268       LoBound = AddOne(RangeSize);
1269       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
1270       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
1271         HiOverflow = 1;            // [INTMIN+1, overflow)
1272         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
1273       }
1274     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
1275       // e.g. X/-5 op 3  --> [-19, -14)
1276       HiBound = AddOne(Prod);
1277       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
1278       if (!LoOverflow)
1279         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
1280     } else {                       // (X / neg) op neg
1281       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
1282       LoOverflow = HiOverflow = ProdOV;
1283       if (!HiOverflow)
1284         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
1285     }
1286 
1287     // Dividing by a negative swaps the condition.  LT <-> GT
1288     Pred = ICmpInst::getSwappedPredicate(Pred);
1289   }
1290 
1291   Value *X = DivI->getOperand(0);
1292   switch (Pred) {
1293   default: llvm_unreachable("Unhandled icmp opcode!");
1294   case ICmpInst::ICMP_EQ:
1295     if (LoOverflow && HiOverflow)
1296       return replaceInstUsesWith(ICI, Builder->getFalse());
1297     if (HiOverflow)
1298       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
1299                           ICmpInst::ICMP_UGE, X, LoBound);
1300     if (LoOverflow)
1301       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
1302                           ICmpInst::ICMP_ULT, X, HiBound);
1303     return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
1304                                                     DivIsSigned, true));
1305   case ICmpInst::ICMP_NE:
1306     if (LoOverflow && HiOverflow)
1307       return replaceInstUsesWith(ICI, Builder->getTrue());
1308     if (HiOverflow)
1309       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
1310                           ICmpInst::ICMP_ULT, X, LoBound);
1311     if (LoOverflow)
1312       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
1313                           ICmpInst::ICMP_UGE, X, HiBound);
1314     return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
1315                                                     DivIsSigned, false));
1316   case ICmpInst::ICMP_ULT:
1317   case ICmpInst::ICMP_SLT:
1318     if (LoOverflow == +1)   // Low bound is greater than input range.
1319       return replaceInstUsesWith(ICI, Builder->getTrue());
1320     if (LoOverflow == -1)   // Low bound is less than input range.
1321       return replaceInstUsesWith(ICI, Builder->getFalse());
1322     return new ICmpInst(Pred, X, LoBound);
1323   case ICmpInst::ICMP_UGT:
1324   case ICmpInst::ICMP_SGT:
1325     if (HiOverflow == +1)       // High bound greater than input range.
1326       return replaceInstUsesWith(ICI, Builder->getFalse());
1327     if (HiOverflow == -1)       // High bound less than input range.
1328       return replaceInstUsesWith(ICI, Builder->getTrue());
1329     if (Pred == ICmpInst::ICMP_UGT)
1330       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
1331     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
1332   }
1333 }
1334 
1335 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
1336 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
1337                                           ConstantInt *ShAmt) {
1338   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
1339 
1340   // Check that the shift amount is in range.  If not, don't perform
1341   // undefined shifts.  When the shift is visited it will be
1342   // simplified.
1343   uint32_t TypeBits = CmpRHSV.getBitWidth();
1344   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1345   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
1346     return nullptr;
1347 
1348   if (!ICI.isEquality()) {
1349     // If we have an unsigned comparison and an ashr, we can't simplify this.
1350     // Similarly for signed comparisons with lshr.
1351     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
1352       return nullptr;
1353 
1354     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
1355     // by a power of 2.  Since we already have logic to simplify these,
1356     // transform to div and then simplify the resultant comparison.
1357     if (Shr->getOpcode() == Instruction::AShr &&
1358         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
1359       return nullptr;
1360 
1361     // Revisit the shift (to delete it).
1362     Worklist.Add(Shr);
1363 
1364     Constant *DivCst =
1365       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
1366 
1367     Value *Tmp =
1368       Shr->getOpcode() == Instruction::AShr ?
1369       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
1370       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
1371 
1372     ICI.setOperand(0, Tmp);
1373 
1374     // If the builder folded the binop, just return it.
1375     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1376     if (!TheDiv)
1377       return &ICI;
1378 
1379     // Otherwise, fold this div/compare.
1380     assert(TheDiv->getOpcode() == Instruction::SDiv ||
1381            TheDiv->getOpcode() == Instruction::UDiv);
1382 
1383     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1384     assert(Res && "This div/cst should have folded!");
1385     return Res;
1386   }
1387 
1388   // If we are comparing against bits always shifted out, the
1389   // comparison cannot succeed.
1390   APInt Comp = CmpRHSV << ShAmtVal;
1391   ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1392   if (Shr->getOpcode() == Instruction::LShr)
1393     Comp = Comp.lshr(ShAmtVal);
1394   else
1395     Comp = Comp.ashr(ShAmtVal);
1396 
1397   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1398     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1399     Constant *Cst = Builder->getInt1(IsICMP_NE);
1400     return replaceInstUsesWith(ICI, Cst);
1401   }
1402 
1403   // Otherwise, check to see if the bits shifted out are known to be zero.
1404   // If so, we can compare against the unshifted value:
1405   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1406   if (Shr->hasOneUse() && Shr->isExact())
1407     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1408 
1409   if (Shr->hasOneUse()) {
1410     // Otherwise strength reduce the shift into an and.
1411     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1412     Constant *Mask = Builder->getInt(Val);
1413 
1414     Value *And = Builder->CreateAnd(Shr->getOperand(0),
1415                                     Mask, Shr->getName()+".mask");
1416     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1417   }
1418   return nullptr;
1419 }
1420 
1421 /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
1422 /// (icmp eq/ne A, Log2(const2/const1)) ->
1423 /// (icmp eq/ne A, Log2(const2) - Log2(const1)).
1424 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
1425                                              ConstantInt *CI1,
1426                                              ConstantInt *CI2) {
1427   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1428 
1429   auto getConstant = [&I, this](bool IsTrue) {
1430     if (I.getPredicate() == I.ICMP_NE)
1431       IsTrue = !IsTrue;
1432     return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1433   };
1434 
1435   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1436     if (I.getPredicate() == I.ICMP_NE)
1437       Pred = CmpInst::getInversePredicate(Pred);
1438     return new ICmpInst(Pred, LHS, RHS);
1439   };
1440 
1441   APInt AP1 = CI1->getValue();
1442   APInt AP2 = CI2->getValue();
1443 
1444   // Don't bother doing any work for cases which InstSimplify handles.
1445   if (AP2 == 0)
1446     return nullptr;
1447   bool IsAShr = isa<AShrOperator>(Op);
1448   if (IsAShr) {
1449     if (AP2.isAllOnesValue())
1450       return nullptr;
1451     if (AP2.isNegative() != AP1.isNegative())
1452       return nullptr;
1453     if (AP2.sgt(AP1))
1454       return nullptr;
1455   }
1456 
1457   if (!AP1)
1458     // 'A' must be large enough to shift out the highest set bit.
1459     return getICmp(I.ICMP_UGT, A,
1460                    ConstantInt::get(A->getType(), AP2.logBase2()));
1461 
1462   if (AP1 == AP2)
1463     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1464 
1465   int Shift;
1466   if (IsAShr && AP1.isNegative())
1467     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1468   else
1469     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1470 
1471   if (Shift > 0) {
1472     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1473       // There are multiple solutions if we are comparing against -1 and the LHS
1474       // of the ashr is not a power of two.
1475       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1476         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1477       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1478     } else if (AP1 == AP2.lshr(Shift)) {
1479       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1480     }
1481   }
1482   // Shifting const2 will never be equal to const1.
1483   return getConstant(false);
1484 }
1485 
1486 /// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
1487 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
1488 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
1489                                              ConstantInt *CI1,
1490                                              ConstantInt *CI2) {
1491   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1492 
1493   auto getConstant = [&I, this](bool IsTrue) {
1494     if (I.getPredicate() == I.ICMP_NE)
1495       IsTrue = !IsTrue;
1496     return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1497   };
1498 
1499   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1500     if (I.getPredicate() == I.ICMP_NE)
1501       Pred = CmpInst::getInversePredicate(Pred);
1502     return new ICmpInst(Pred, LHS, RHS);
1503   };
1504 
1505   APInt AP1 = CI1->getValue();
1506   APInt AP2 = CI2->getValue();
1507 
1508   // Don't bother doing any work for cases which InstSimplify handles.
1509   if (AP2 == 0)
1510     return nullptr;
1511 
1512   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1513 
1514   if (!AP1 && AP2TrailingZeros != 0)
1515     return getICmp(I.ICMP_UGE, A,
1516                    ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1517 
1518   if (AP1 == AP2)
1519     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1520 
1521   // Get the distance between the lowest bits that are set.
1522   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1523 
1524   if (Shift > 0 && AP2.shl(Shift) == AP1)
1525     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1526 
1527   // Shifting const2 will never be equal to const1.
1528   return getConstant(false);
1529 }
1530 
1531 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1532 ///
1533 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1534                                                           Instruction *LHSI,
1535                                                           ConstantInt *RHS) {
1536   const APInt &RHSV = RHS->getValue();
1537 
1538   switch (LHSI->getOpcode()) {
1539   case Instruction::Trunc:
1540     if (RHS->isOne() && RHSV.getBitWidth() > 1) {
1541       // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1542       Value *V = nullptr;
1543       if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
1544           match(LHSI->getOperand(0), m_Signum(m_Value(V))))
1545         return new ICmpInst(ICmpInst::ICMP_SLT, V,
1546                             ConstantInt::get(V->getType(), 1));
1547     }
1548     if (ICI.isEquality() && LHSI->hasOneUse()) {
1549       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1550       // of the high bits truncated out of x are known.
1551       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1552              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1553       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1554       computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
1555 
1556       // If all the high bits are known, we can do this xform.
1557       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1558         // Pull in the high bits from known-ones set.
1559         APInt NewRHS = RHS->getValue().zext(SrcBits);
1560         NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1561         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1562                             Builder->getInt(NewRHS));
1563       }
1564     }
1565     break;
1566 
1567   case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
1568     if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1569       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1570       // fold the xor.
1571       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1572           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1573         Value *CompareVal = LHSI->getOperand(0);
1574 
1575         // If the sign bit of the XorCst is not set, there is no change to
1576         // the operation, just stop using the Xor.
1577         if (!XorCst->isNegative()) {
1578           ICI.setOperand(0, CompareVal);
1579           Worklist.Add(LHSI);
1580           return &ICI;
1581         }
1582 
1583         // Was the old condition true if the operand is positive?
1584         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1585 
1586         // If so, the new one isn't.
1587         isTrueIfPositive ^= true;
1588 
1589         if (isTrueIfPositive)
1590           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1591                               SubOne(RHS));
1592         else
1593           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1594                               AddOne(RHS));
1595       }
1596 
1597       if (LHSI->hasOneUse()) {
1598         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1599         if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
1600           const APInt &SignBit = XorCst->getValue();
1601           ICmpInst::Predicate Pred = ICI.isSigned()
1602                                          ? ICI.getUnsignedPredicate()
1603                                          : ICI.getSignedPredicate();
1604           return new ICmpInst(Pred, LHSI->getOperand(0),
1605                               Builder->getInt(RHSV ^ SignBit));
1606         }
1607 
1608         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1609         if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
1610           const APInt &NotSignBit = XorCst->getValue();
1611           ICmpInst::Predicate Pred = ICI.isSigned()
1612                                          ? ICI.getUnsignedPredicate()
1613                                          : ICI.getSignedPredicate();
1614           Pred = ICI.getSwappedPredicate(Pred);
1615           return new ICmpInst(Pred, LHSI->getOperand(0),
1616                               Builder->getInt(RHSV ^ NotSignBit));
1617         }
1618       }
1619 
1620       // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1621       //   iff -C is a power of 2
1622       if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1623           XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1624         return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
1625 
1626       // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1627       //   iff -C is a power of 2
1628       if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1629           XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
1630         return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
1631     }
1632     break;
1633   case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
1634     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1635         LHSI->getOperand(0)->hasOneUse()) {
1636       ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
1637 
1638       // If the LHS is an AND of a truncating cast, we can widen the
1639       // and/compare to be the input width without changing the value
1640       // produced, eliminating a cast.
1641       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1642         // We can do this transformation if either the AND constant does not
1643         // have its sign bit set or if it is an equality comparison.
1644         // Extending a relational comparison when we're checking the sign
1645         // bit would not work.
1646         if (ICI.isEquality() ||
1647             (!AndCst->isNegative() && RHSV.isNonNegative())) {
1648           Value *NewAnd =
1649             Builder->CreateAnd(Cast->getOperand(0),
1650                                ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
1651           NewAnd->takeName(LHSI);
1652           return new ICmpInst(ICI.getPredicate(), NewAnd,
1653                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1654         }
1655       }
1656 
1657       // If the LHS is an AND of a zext, and we have an equality compare, we can
1658       // shrink the and/compare to the smaller type, eliminating the cast.
1659       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1660         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1661         // Make sure we don't compare the upper bits, SimplifyDemandedBits
1662         // should fold the icmp to true/false in that case.
1663         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1664           Value *NewAnd =
1665             Builder->CreateAnd(Cast->getOperand(0),
1666                                ConstantExpr::getTrunc(AndCst, Ty));
1667           NewAnd->takeName(LHSI);
1668           return new ICmpInst(ICI.getPredicate(), NewAnd,
1669                               ConstantExpr::getTrunc(RHS, Ty));
1670         }
1671       }
1672 
1673       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1674       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1675       // happens a LOT in code produced by the C front-end, for bitfield
1676       // access.
1677       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1678       if (Shift && !Shift->isShift())
1679         Shift = nullptr;
1680 
1681       ConstantInt *ShAmt;
1682       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
1683 
1684       // This seemingly simple opportunity to fold away a shift turns out to
1685       // be rather complicated. See PR17827
1686       // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
1687       if (ShAmt) {
1688         bool CanFold = false;
1689         unsigned ShiftOpcode = Shift->getOpcode();
1690         if (ShiftOpcode == Instruction::AShr) {
1691           // There may be some constraints that make this possible,
1692           // but nothing simple has been discovered yet.
1693           CanFold = false;
1694         } else if (ShiftOpcode == Instruction::Shl) {
1695           // For a left shift, we can fold if the comparison is not signed.
1696           // We can also fold a signed comparison if the mask value and
1697           // comparison value are not negative. These constraints may not be
1698           // obvious, but we can prove that they are correct using an SMT
1699           // solver.
1700           if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
1701             CanFold = true;
1702         } else if (ShiftOpcode == Instruction::LShr) {
1703           // For a logical right shift, we can fold if the comparison is not
1704           // signed. We can also fold a signed comparison if the shifted mask
1705           // value and the shifted comparison value are not negative.
1706           // These constraints may not be obvious, but we can prove that they
1707           // are correct using an SMT solver.
1708           if (!ICI.isSigned())
1709             CanFold = true;
1710           else {
1711             ConstantInt *ShiftedAndCst =
1712               cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
1713             ConstantInt *ShiftedRHSCst =
1714               cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
1715 
1716             if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
1717               CanFold = true;
1718           }
1719         }
1720 
1721         if (CanFold) {
1722           Constant *NewCst;
1723           if (ShiftOpcode == Instruction::Shl)
1724             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1725           else
1726             NewCst = ConstantExpr::getShl(RHS, ShAmt);
1727 
1728           // Check to see if we are shifting out any of the bits being
1729           // compared.
1730           if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
1731             // If we shifted bits out, the fold is not going to work out.
1732             // As a special case, check to see if this means that the
1733             // result is always true or false now.
1734             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1735               return replaceInstUsesWith(ICI, Builder->getFalse());
1736             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1737               return replaceInstUsesWith(ICI, Builder->getTrue());
1738           } else {
1739             ICI.setOperand(1, NewCst);
1740             Constant *NewAndCst;
1741             if (ShiftOpcode == Instruction::Shl)
1742               NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
1743             else
1744               NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
1745             LHSI->setOperand(1, NewAndCst);
1746             LHSI->setOperand(0, Shift->getOperand(0));
1747             Worklist.Add(Shift); // Shift is dead.
1748             return &ICI;
1749           }
1750         }
1751       }
1752 
1753       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1754       // preferable because it allows the C<<Y expression to be hoisted out
1755       // of a loop if Y is invariant and X is not.
1756       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1757           ICI.isEquality() && !Shift->isArithmeticShift() &&
1758           !isa<Constant>(Shift->getOperand(0))) {
1759         // Compute C << Y.
1760         Value *NS;
1761         if (Shift->getOpcode() == Instruction::LShr) {
1762           NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
1763         } else {
1764           // Insert a logical shift.
1765           NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
1766         }
1767 
1768         // Compute X & (C << Y).
1769         Value *NewAnd =
1770           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1771 
1772         ICI.setOperand(0, NewAnd);
1773         return &ICI;
1774       }
1775 
1776       // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
1777       //    (icmp pred (and X, (or (shl 1, Y), 1), 0))
1778       //
1779       // iff pred isn't signed
1780       {
1781         Value *X, *Y, *LShr;
1782         if (!ICI.isSigned() && RHSV == 0) {
1783           if (match(LHSI->getOperand(1), m_One())) {
1784             Constant *One = cast<Constant>(LHSI->getOperand(1));
1785             Value *Or = LHSI->getOperand(0);
1786             if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
1787                 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
1788               unsigned UsesRemoved = 0;
1789               if (LHSI->hasOneUse())
1790                 ++UsesRemoved;
1791               if (Or->hasOneUse())
1792                 ++UsesRemoved;
1793               if (LShr->hasOneUse())
1794                 ++UsesRemoved;
1795               Value *NewOr = nullptr;
1796               // Compute X & ((1 << Y) | 1)
1797               if (auto *C = dyn_cast<Constant>(Y)) {
1798                 if (UsesRemoved >= 1)
1799                   NewOr =
1800                       ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1801               } else {
1802                 if (UsesRemoved >= 3)
1803                   NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
1804                                                                LShr->getName(),
1805                                                                /*HasNUW=*/true),
1806                                             One, Or->getName());
1807               }
1808               if (NewOr) {
1809                 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
1810                 ICI.setOperand(0, NewAnd);
1811                 return &ICI;
1812               }
1813             }
1814           }
1815         }
1816       }
1817 
1818       // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
1819       // bit set in (X & AndCst) will produce a result greater than RHSV.
1820       if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1821         unsigned NTZ = AndCst->getValue().countTrailingZeros();
1822         if ((NTZ < AndCst->getBitWidth()) &&
1823             APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
1824           return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1825                               Constant::getNullValue(RHS->getType()));
1826       }
1827     }
1828 
1829     // Try to optimize things like "A[i]&42 == 0" to index computations.
1830     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1831       if (GetElementPtrInst *GEP =
1832           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1833         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1834           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1835               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1836             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1837             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1838               return Res;
1839           }
1840     }
1841 
1842     // X & -C == -C -> X >  u ~C
1843     // X & -C != -C -> X <= u ~C
1844     //   iff C is a power of 2
1845     if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1846       return new ICmpInst(
1847           ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1848                                                   : ICmpInst::ICMP_ULE,
1849           LHSI->getOperand(0), SubOne(RHS));
1850 
1851     // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1)
1852     //   iff C is a power of 2
1853     if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) {
1854       if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1855         const APInt &AI = CI->getValue();
1856         int32_t ExactLogBase2 = AI.exactLogBase2();
1857         if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1858           Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1);
1859           Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy);
1860           return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ
1861                                   ? ICmpInst::ICMP_SGE
1862                                   : ICmpInst::ICMP_SLT,
1863                               Trunc, Constant::getNullValue(NTy));
1864         }
1865       }
1866     }
1867     break;
1868 
1869   case Instruction::Or: {
1870     if (RHS->isOne()) {
1871       // icmp slt signum(V) 1 --> icmp slt V, 1
1872       Value *V = nullptr;
1873       if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
1874           match(LHSI, m_Signum(m_Value(V))))
1875         return new ICmpInst(ICmpInst::ICMP_SLT, V,
1876                             ConstantInt::get(V->getType(), 1));
1877     }
1878 
1879     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1880       break;
1881     Value *P, *Q;
1882     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1883       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1884       // -> and (icmp eq P, null), (icmp eq Q, null).
1885       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1886                                         Constant::getNullValue(P->getType()));
1887       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1888                                         Constant::getNullValue(Q->getType()));
1889       Instruction *Op;
1890       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1891         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1892       else
1893         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1894       return Op;
1895     }
1896     break;
1897   }
1898 
1899   case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
1900     ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1901     if (!Val) break;
1902 
1903     // If this is a signed comparison to 0 and the mul is sign preserving,
1904     // use the mul LHS operand instead.
1905     ICmpInst::Predicate pred = ICI.getPredicate();
1906     if (isSignTest(pred, RHS) && !Val->isZero() &&
1907         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1908       return new ICmpInst(Val->isNegative() ?
1909                           ICmpInst::getSwappedPredicate(pred) : pred,
1910                           LHSI->getOperand(0),
1911                           Constant::getNullValue(RHS->getType()));
1912 
1913     break;
1914   }
1915 
1916   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1917     uint32_t TypeBits = RHSV.getBitWidth();
1918     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1919     if (!ShAmt) {
1920       Value *X;
1921       // (1 << X) pred P2 -> X pred Log2(P2)
1922       if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1923         bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1924         ICmpInst::Predicate Pred = ICI.getPredicate();
1925         if (ICI.isUnsigned()) {
1926           if (!RHSVIsPowerOf2) {
1927             // (1 << X) <  30 -> X <= 4
1928             // (1 << X) <= 30 -> X <= 4
1929             // (1 << X) >= 30 -> X >  4
1930             // (1 << X) >  30 -> X >  4
1931             if (Pred == ICmpInst::ICMP_ULT)
1932               Pred = ICmpInst::ICMP_ULE;
1933             else if (Pred == ICmpInst::ICMP_UGE)
1934               Pred = ICmpInst::ICMP_UGT;
1935           }
1936           unsigned RHSLog2 = RHSV.logBase2();
1937 
1938           // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1939           // (1 << X) <  2147483648 -> X <  31 -> X != 31
1940           if (RHSLog2 == TypeBits-1) {
1941             if (Pred == ICmpInst::ICMP_UGE)
1942               Pred = ICmpInst::ICMP_EQ;
1943             else if (Pred == ICmpInst::ICMP_ULT)
1944               Pred = ICmpInst::ICMP_NE;
1945           }
1946 
1947           return new ICmpInst(Pred, X,
1948                               ConstantInt::get(RHS->getType(), RHSLog2));
1949         } else if (ICI.isSigned()) {
1950           if (RHSV.isAllOnesValue()) {
1951             // (1 << X) <= -1 -> X == 31
1952             if (Pred == ICmpInst::ICMP_SLE)
1953               return new ICmpInst(ICmpInst::ICMP_EQ, X,
1954                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1955 
1956             // (1 << X) >  -1 -> X != 31
1957             if (Pred == ICmpInst::ICMP_SGT)
1958               return new ICmpInst(ICmpInst::ICMP_NE, X,
1959                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1960           } else if (!RHSV) {
1961             // (1 << X) <  0 -> X == 31
1962             // (1 << X) <= 0 -> X == 31
1963             if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1964               return new ICmpInst(ICmpInst::ICMP_EQ, X,
1965                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1966 
1967             // (1 << X) >= 0 -> X != 31
1968             // (1 << X) >  0 -> X != 31
1969             if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1970               return new ICmpInst(ICmpInst::ICMP_NE, X,
1971                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1972           }
1973         } else if (ICI.isEquality()) {
1974           if (RHSVIsPowerOf2)
1975             return new ICmpInst(
1976                 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1977         }
1978       }
1979       break;
1980     }
1981 
1982     // Check that the shift amount is in range.  If not, don't perform
1983     // undefined shifts.  When the shift is visited it will be
1984     // simplified.
1985     if (ShAmt->uge(TypeBits))
1986       break;
1987 
1988     if (ICI.isEquality()) {
1989       // If we are comparing against bits always shifted out, the
1990       // comparison cannot succeed.
1991       Constant *Comp =
1992         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1993                                                                  ShAmt);
1994       if (Comp != RHS) {// Comparing against a bit that we know is zero.
1995         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1996         Constant *Cst = Builder->getInt1(IsICMP_NE);
1997         return replaceInstUsesWith(ICI, Cst);
1998       }
1999 
2000       // If the shift is NUW, then it is just shifting out zeros, no need for an
2001       // AND.
2002       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
2003         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
2004                             ConstantExpr::getLShr(RHS, ShAmt));
2005 
2006       // If the shift is NSW and we compare to 0, then it is just shifting out
2007       // sign bits, no need for an AND either.
2008       if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
2009         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
2010                             ConstantExpr::getLShr(RHS, ShAmt));
2011 
2012       if (LHSI->hasOneUse()) {
2013         // Otherwise strength reduce the shift into an and.
2014         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
2015         Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
2016                                                           TypeBits - ShAmtVal));
2017 
2018         Value *And =
2019           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
2020         return new ICmpInst(ICI.getPredicate(), And,
2021                             ConstantExpr::getLShr(RHS, ShAmt));
2022       }
2023     }
2024 
2025     // If this is a signed comparison to 0 and the shift is sign preserving,
2026     // use the shift LHS operand instead.
2027     ICmpInst::Predicate pred = ICI.getPredicate();
2028     if (isSignTest(pred, RHS) &&
2029         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
2030       return new ICmpInst(pred,
2031                           LHSI->getOperand(0),
2032                           Constant::getNullValue(RHS->getType()));
2033 
2034     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2035     bool TrueIfSigned = false;
2036     if (LHSI->hasOneUse() &&
2037         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
2038       // (X << 31) <s 0  --> (X&1) != 0
2039       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
2040                                         APInt::getOneBitSet(TypeBits,
2041                                             TypeBits-ShAmt->getZExtValue()-1));
2042       Value *And =
2043         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
2044       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2045                           And, Constant::getNullValue(And->getType()));
2046     }
2047 
2048     // Transform (icmp pred iM (shl iM %v, N), CI)
2049     // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
2050     // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
2051     // This enables to get rid of the shift in favor of a trunc which can be
2052     // free on the target. It has the additional benefit of comparing to a
2053     // smaller constant, which will be target friendly.
2054     unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
2055     if (LHSI->hasOneUse() &&
2056         Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
2057       Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
2058       Constant *NCI = ConstantExpr::getTrunc(
2059                         ConstantExpr::getAShr(RHS,
2060                           ConstantInt::get(RHS->getType(), Amt)),
2061                         NTy);
2062       return new ICmpInst(ICI.getPredicate(),
2063                           Builder->CreateTrunc(LHSI->getOperand(0), NTy),
2064                           NCI);
2065     }
2066 
2067     break;
2068   }
2069 
2070   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
2071   case Instruction::AShr: {
2072     // Handle equality comparisons of shift-by-constant.
2073     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
2074     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
2075       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
2076         return Res;
2077     }
2078 
2079     // Handle exact shr's.
2080     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
2081       if (RHSV.isMinValue())
2082         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
2083     }
2084     break;
2085   }
2086 
2087   case Instruction::SDiv:
2088   case Instruction::UDiv:
2089     // Fold: icmp pred ([us]div X, C1), C2 -> range test
2090     // Fold this div into the comparison, producing a range check.
2091     // Determine, based on the divide type, what the range is being
2092     // checked.  If there is an overflow on the low or high side, remember
2093     // it, otherwise compute the range [low, hi) bounding the new value.
2094     // See: InsertRangeTest above for the kinds of replacements possible.
2095     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
2096       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
2097                                           DivRHS))
2098         return R;
2099     break;
2100 
2101   case Instruction::Sub: {
2102     ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
2103     if (!LHSC) break;
2104     const APInt &LHSV = LHSC->getValue();
2105 
2106     // C1-X <u C2 -> (X|(C2-1)) == C1
2107     //   iff C1 & (C2-1) == C2-1
2108     //       C2 is a power of 2
2109     if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
2110         RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
2111       return new ICmpInst(ICmpInst::ICMP_EQ,
2112                           Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
2113                           LHSC);
2114 
2115     // C1-X >u C2 -> (X|C2) != C1
2116     //   iff C1 & C2 == C2
2117     //       C2+1 is a power of 2
2118     if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
2119         (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
2120       return new ICmpInst(ICmpInst::ICMP_NE,
2121                           Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
2122     break;
2123   }
2124 
2125   case Instruction::Add:
2126     // Fold: icmp pred (add X, C1), C2
2127     if (!ICI.isEquality()) {
2128       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
2129       if (!LHSC) break;
2130       const APInt &LHSV = LHSC->getValue();
2131 
2132       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
2133                             .subtract(LHSV);
2134 
2135       if (ICI.isSigned()) {
2136         if (CR.getLower().isSignBit()) {
2137           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
2138                               Builder->getInt(CR.getUpper()));
2139         } else if (CR.getUpper().isSignBit()) {
2140           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
2141                               Builder->getInt(CR.getLower()));
2142         }
2143       } else {
2144         if (CR.getLower().isMinValue()) {
2145           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
2146                               Builder->getInt(CR.getUpper()));
2147         } else if (CR.getUpper().isMinValue()) {
2148           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
2149                               Builder->getInt(CR.getLower()));
2150         }
2151       }
2152 
2153       // X-C1 <u C2 -> (X & -C2) == C1
2154       //   iff C1 & (C2-1) == 0
2155       //       C2 is a power of 2
2156       if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
2157           RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
2158         return new ICmpInst(ICmpInst::ICMP_EQ,
2159                             Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
2160                             ConstantExpr::getNeg(LHSC));
2161 
2162       // X-C1 >u C2 -> (X & ~C2) != C1
2163       //   iff C1 & C2 == 0
2164       //       C2+1 is a power of 2
2165       if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
2166           (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
2167         return new ICmpInst(ICmpInst::ICMP_NE,
2168                             Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
2169                             ConstantExpr::getNeg(LHSC));
2170     }
2171     break;
2172   }
2173 
2174   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
2175   if (ICI.isEquality()) {
2176     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
2177 
2178     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
2179     // the second operand is a constant, simplify a bit.
2180     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
2181       switch (BO->getOpcode()) {
2182       case Instruction::SRem:
2183         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2184         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
2185           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
2186           if (V.sgt(1) && V.isPowerOf2()) {
2187             Value *NewRem =
2188               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
2189                                   BO->getName());
2190             return new ICmpInst(ICI.getPredicate(), NewRem,
2191                                 Constant::getNullValue(BO->getType()));
2192           }
2193         }
2194         break;
2195       case Instruction::Add:
2196         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2197         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2198           if (BO->hasOneUse())
2199             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
2200                                 ConstantExpr::getSub(RHS, BOp1C));
2201         } else if (RHSV == 0) {
2202           // Replace ((add A, B) != 0) with (A != -B) if A or B is
2203           // efficiently invertible, or if the add has just this one use.
2204           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2205 
2206           if (Value *NegVal = dyn_castNegVal(BOp1))
2207             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
2208           if (Value *NegVal = dyn_castNegVal(BOp0))
2209             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
2210           if (BO->hasOneUse()) {
2211             Value *Neg = Builder->CreateNeg(BOp1);
2212             Neg->takeName(BO);
2213             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
2214           }
2215         }
2216         break;
2217       case Instruction::Xor:
2218         if (BO->hasOneUse()) {
2219           if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
2220             // For the xor case, we can xor two constants together, eliminating
2221             // the explicit xor.
2222             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
2223                 ConstantExpr::getXor(RHS, BOC));
2224           } else if (RHSV == 0) {
2225             // Replace ((xor A, B) != 0) with (A != B)
2226             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
2227                 BO->getOperand(1));
2228           }
2229         }
2230         break;
2231       case Instruction::Sub:
2232         if (BO->hasOneUse()) {
2233           if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
2234             // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
2235             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
2236                 ConstantExpr::getSub(BOp0C, RHS));
2237           } else if (RHSV == 0) {
2238             // Replace ((sub A, B) != 0) with (A != B)
2239             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
2240                 BO->getOperand(1));
2241           }
2242         }
2243         break;
2244       case Instruction::Or:
2245         // If bits are being or'd in that are not present in the constant we
2246         // are comparing against, then the comparison could never succeed!
2247         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2248           Constant *NotCI = ConstantExpr::getNot(RHS);
2249           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
2250             return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
2251 
2252           // Comparing if all bits outside of a constant mask are set?
2253           // Replace (X | C) == -1 with (X & ~C) == ~C.
2254           // This removes the -1 constant.
2255           if (BO->hasOneUse() && RHS->isAllOnesValue()) {
2256             Constant *NotBOC = ConstantExpr::getNot(BOC);
2257             Value *And = Builder->CreateAnd(BO->getOperand(0), NotBOC);
2258             return new ICmpInst(ICI.getPredicate(), And, NotBOC);
2259           }
2260         }
2261         break;
2262 
2263       case Instruction::And:
2264         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2265           // If bits are being compared against that are and'd out, then the
2266           // comparison can never succeed!
2267           if ((RHSV & ~BOC->getValue()) != 0)
2268             return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
2269 
2270           // If we have ((X & C) == C), turn it into ((X & C) != 0).
2271           if (RHS == BOC && RHSV.isPowerOf2())
2272             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
2273                                 ICmpInst::ICMP_NE, LHSI,
2274                                 Constant::getNullValue(RHS->getType()));
2275 
2276           // Don't perform the following transforms if the AND has multiple uses
2277           if (!BO->hasOneUse())
2278             break;
2279 
2280           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
2281           if (BOC->getValue().isSignBit()) {
2282             Value *X = BO->getOperand(0);
2283             Constant *Zero = Constant::getNullValue(X->getType());
2284             ICmpInst::Predicate pred = isICMP_NE ?
2285               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
2286             return new ICmpInst(pred, X, Zero);
2287           }
2288 
2289           // ((X & ~7) == 0) --> X < 8
2290           if (RHSV == 0 && isHighOnes(BOC)) {
2291             Value *X = BO->getOperand(0);
2292             Constant *NegX = ConstantExpr::getNeg(BOC);
2293             ICmpInst::Predicate pred = isICMP_NE ?
2294               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
2295             return new ICmpInst(pred, X, NegX);
2296           }
2297         }
2298         break;
2299       case Instruction::Mul:
2300         if (RHSV == 0 && BO->hasNoSignedWrap()) {
2301           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2302             // The trivial case (mul X, 0) is handled by InstSimplify
2303             // General case : (mul X, C) != 0 iff X != 0
2304             //                (mul X, C) == 0 iff X == 0
2305             if (!BOC->isZero())
2306               return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
2307                                   Constant::getNullValue(RHS->getType()));
2308           }
2309         }
2310         break;
2311       default: break;
2312       }
2313     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
2314       // Handle icmp {eq|ne} <intrinsic>, intcst.
2315       switch (II->getIntrinsicID()) {
2316       case Intrinsic::bswap:
2317         Worklist.Add(II);
2318         ICI.setOperand(0, II->getArgOperand(0));
2319         ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
2320         return &ICI;
2321       case Intrinsic::ctlz:
2322       case Intrinsic::cttz:
2323         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
2324         if (RHSV == RHS->getType()->getBitWidth()) {
2325           Worklist.Add(II);
2326           ICI.setOperand(0, II->getArgOperand(0));
2327           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
2328           return &ICI;
2329         }
2330         break;
2331       case Intrinsic::ctpop:
2332         // popcount(A) == 0  ->  A == 0 and likewise for !=
2333         if (RHS->isZero()) {
2334           Worklist.Add(II);
2335           ICI.setOperand(0, II->getArgOperand(0));
2336           ICI.setOperand(1, RHS);
2337           return &ICI;
2338         }
2339         break;
2340       default:
2341         break;
2342       }
2343     }
2344   }
2345   return nullptr;
2346 }
2347 
2348 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
2349 /// We only handle extending casts so far.
2350 ///
2351 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
2352   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
2353   Value *LHSCIOp        = LHSCI->getOperand(0);
2354   Type *SrcTy     = LHSCIOp->getType();
2355   Type *DestTy    = LHSCI->getType();
2356   Value *RHSCIOp;
2357 
2358   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
2359   // integer type is the same size as the pointer type.
2360   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
2361       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
2362     Value *RHSOp = nullptr;
2363     if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
2364       Value *RHSCIOp = RHSC->getOperand(0);
2365       if (RHSCIOp->getType()->getPointerAddressSpace() ==
2366           LHSCIOp->getType()->getPointerAddressSpace()) {
2367         RHSOp = RHSC->getOperand(0);
2368         // If the pointer types don't match, insert a bitcast.
2369         if (LHSCIOp->getType() != RHSOp->getType())
2370           RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
2371       }
2372     } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
2373       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
2374 
2375     if (RHSOp)
2376       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
2377   }
2378 
2379   // The code below only handles extension cast instructions, so far.
2380   // Enforce this.
2381   if (LHSCI->getOpcode() != Instruction::ZExt &&
2382       LHSCI->getOpcode() != Instruction::SExt)
2383     return nullptr;
2384 
2385   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
2386   bool isSignedCmp = ICI.isSigned();
2387 
2388   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
2389     // Not an extension from the same type?
2390     RHSCIOp = CI->getOperand(0);
2391     if (RHSCIOp->getType() != LHSCIOp->getType())
2392       return nullptr;
2393 
2394     // If the signedness of the two casts doesn't agree (i.e. one is a sext
2395     // and the other is a zext), then we can't handle this.
2396     if (CI->getOpcode() != LHSCI->getOpcode())
2397       return nullptr;
2398 
2399     // Deal with equality cases early.
2400     if (ICI.isEquality())
2401       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
2402 
2403     // A signed comparison of sign extended values simplifies into a
2404     // signed comparison.
2405     if (isSignedCmp && isSignedExt)
2406       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
2407 
2408     // The other three cases all fold into an unsigned comparison.
2409     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
2410   }
2411 
2412   // If we aren't dealing with a constant on the RHS, exit early
2413   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
2414   if (!CI)
2415     return nullptr;
2416 
2417   // Compute the constant that would happen if we truncated to SrcTy then
2418   // reextended to DestTy.
2419   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
2420   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
2421                                                 Res1, DestTy);
2422 
2423   // If the re-extended constant didn't change...
2424   if (Res2 == CI) {
2425     // Deal with equality cases early.
2426     if (ICI.isEquality())
2427       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
2428 
2429     // A signed comparison of sign extended values simplifies into a
2430     // signed comparison.
2431     if (isSignedExt && isSignedCmp)
2432       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
2433 
2434     // The other three cases all fold into an unsigned comparison.
2435     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
2436   }
2437 
2438   // The re-extended constant changed so the constant cannot be represented
2439   // in the shorter type. Consequently, we cannot emit a simple comparison.
2440   // All the cases that fold to true or false will have already been handled
2441   // by SimplifyICmpInst, so only deal with the tricky case.
2442 
2443   if (isSignedCmp || !isSignedExt)
2444     return nullptr;
2445 
2446   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
2447   // should have been folded away previously and not enter in here.
2448 
2449   // We're performing an unsigned comp with a sign extended value.
2450   // This is true if the input is >= 0. [aka >s -1]
2451   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
2452   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
2453 
2454   // Finally, return the value computed.
2455   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
2456     return replaceInstUsesWith(ICI, Result);
2457 
2458   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
2459   return BinaryOperator::CreateNot(Result);
2460 }
2461 
2462 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
2463 ///   I = icmp ugt (add (add A, B), CI2), CI1
2464 /// If this is of the form:
2465 ///   sum = a + b
2466 ///   if (sum+128 >u 255)
2467 /// Then replace it with llvm.sadd.with.overflow.i8.
2468 ///
2469 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
2470                                           ConstantInt *CI2, ConstantInt *CI1,
2471                                           InstCombiner &IC) {
2472   // The transformation we're trying to do here is to transform this into an
2473   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
2474   // with a narrower add, and discard the add-with-constant that is part of the
2475   // range check (if we can't eliminate it, this isn't profitable).
2476 
2477   // In order to eliminate the add-with-constant, the compare can be its only
2478   // use.
2479   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
2480   if (!AddWithCst->hasOneUse()) return nullptr;
2481 
2482   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
2483   if (!CI2->getValue().isPowerOf2()) return nullptr;
2484   unsigned NewWidth = CI2->getValue().countTrailingZeros();
2485   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
2486 
2487   // The width of the new add formed is 1 more than the bias.
2488   ++NewWidth;
2489 
2490   // Check to see that CI1 is an all-ones value with NewWidth bits.
2491   if (CI1->getBitWidth() == NewWidth ||
2492       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
2493     return nullptr;
2494 
2495   // This is only really a signed overflow check if the inputs have been
2496   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
2497   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
2498   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
2499   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
2500       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
2501     return nullptr;
2502 
2503   // In order to replace the original add with a narrower
2504   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
2505   // and truncates that discard the high bits of the add.  Verify that this is
2506   // the case.
2507   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
2508   for (User *U : OrigAdd->users()) {
2509     if (U == AddWithCst) continue;
2510 
2511     // Only accept truncates for now.  We would really like a nice recursive
2512     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
2513     // chain to see which bits of a value are actually demanded.  If the
2514     // original add had another add which was then immediately truncated, we
2515     // could still do the transformation.
2516     TruncInst *TI = dyn_cast<TruncInst>(U);
2517     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
2518       return nullptr;
2519   }
2520 
2521   // If the pattern matches, truncate the inputs to the narrower type and
2522   // use the sadd_with_overflow intrinsic to efficiently compute both the
2523   // result and the overflow bit.
2524   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
2525   Value *F = Intrinsic::getDeclaration(I.getModule(),
2526                                        Intrinsic::sadd_with_overflow, NewType);
2527 
2528   InstCombiner::BuilderTy *Builder = IC.Builder;
2529 
2530   // Put the new code above the original add, in case there are any uses of the
2531   // add between the add and the compare.
2532   Builder->SetInsertPoint(OrigAdd);
2533 
2534   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
2535   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
2536   CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
2537   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
2538   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
2539 
2540   // The inner add was the result of the narrow add, zero extended to the
2541   // wider type.  Replace it with the result computed by the intrinsic.
2542   IC.replaceInstUsesWith(*OrigAdd, ZExt);
2543 
2544   // The original icmp gets replaced with the overflow value.
2545   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
2546 }
2547 
2548 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
2549                                          Value *RHS, Instruction &OrigI,
2550                                          Value *&Result, Constant *&Overflow) {
2551   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
2552     std::swap(LHS, RHS);
2553 
2554   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
2555     Result = OpResult;
2556     Overflow = OverflowVal;
2557     if (ReuseName)
2558       Result->takeName(&OrigI);
2559     return true;
2560   };
2561 
2562   // If the overflow check was an add followed by a compare, the insertion point
2563   // may be pointing to the compare.  We want to insert the new instructions
2564   // before the add in case there are uses of the add between the add and the
2565   // compare.
2566   Builder->SetInsertPoint(&OrigI);
2567 
2568   switch (OCF) {
2569   case OCF_INVALID:
2570     llvm_unreachable("bad overflow check kind!");
2571 
2572   case OCF_UNSIGNED_ADD: {
2573     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
2574     if (OR == OverflowResult::NeverOverflows)
2575       return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
2576                        true);
2577 
2578     if (OR == OverflowResult::AlwaysOverflows)
2579       return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
2580   }
2581   // FALL THROUGH uadd into sadd
2582   case OCF_SIGNED_ADD: {
2583     // X + 0 -> {X, false}
2584     if (match(RHS, m_Zero()))
2585       return SetResult(LHS, Builder->getFalse(), false);
2586 
2587     // We can strength reduce this signed add into a regular add if we can prove
2588     // that it will never overflow.
2589     if (OCF == OCF_SIGNED_ADD)
2590       if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
2591         return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
2592                          true);
2593     break;
2594   }
2595 
2596   case OCF_UNSIGNED_SUB:
2597   case OCF_SIGNED_SUB: {
2598     // X - 0 -> {X, false}
2599     if (match(RHS, m_Zero()))
2600       return SetResult(LHS, Builder->getFalse(), false);
2601 
2602     if (OCF == OCF_SIGNED_SUB) {
2603       if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
2604         return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
2605                          true);
2606     } else {
2607       if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
2608         return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
2609                          true);
2610     }
2611     break;
2612   }
2613 
2614   case OCF_UNSIGNED_MUL: {
2615     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
2616     if (OR == OverflowResult::NeverOverflows)
2617       return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
2618                        true);
2619     if (OR == OverflowResult::AlwaysOverflows)
2620       return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
2621   } // FALL THROUGH
2622   case OCF_SIGNED_MUL:
2623     // X * undef -> undef
2624     if (isa<UndefValue>(RHS))
2625       return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
2626 
2627     // X * 0 -> {0, false}
2628     if (match(RHS, m_Zero()))
2629       return SetResult(RHS, Builder->getFalse(), false);
2630 
2631     // X * 1 -> {X, false}
2632     if (match(RHS, m_One()))
2633       return SetResult(LHS, Builder->getFalse(), false);
2634 
2635     if (OCF == OCF_SIGNED_MUL)
2636       if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
2637         return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
2638                          true);
2639     break;
2640   }
2641 
2642   return false;
2643 }
2644 
2645 /// \brief Recognize and process idiom involving test for multiplication
2646 /// overflow.
2647 ///
2648 /// The caller has matched a pattern of the form:
2649 ///   I = cmp u (mul(zext A, zext B), V
2650 /// The function checks if this is a test for overflow and if so replaces
2651 /// multiplication with call to 'mul.with.overflow' intrinsic.
2652 ///
2653 /// \param I Compare instruction.
2654 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
2655 ///               the compare instruction.  Must be of integer type.
2656 /// \param OtherVal The other argument of compare instruction.
2657 /// \returns Instruction which must replace the compare instruction, NULL if no
2658 ///          replacement required.
2659 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
2660                                          Value *OtherVal, InstCombiner &IC) {
2661   // Don't bother doing this transformation for pointers, don't do it for
2662   // vectors.
2663   if (!isa<IntegerType>(MulVal->getType()))
2664     return nullptr;
2665 
2666   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
2667   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
2668   auto *MulInstr = dyn_cast<Instruction>(MulVal);
2669   if (!MulInstr)
2670     return nullptr;
2671   assert(MulInstr->getOpcode() == Instruction::Mul);
2672 
2673   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
2674        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
2675   assert(LHS->getOpcode() == Instruction::ZExt);
2676   assert(RHS->getOpcode() == Instruction::ZExt);
2677   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
2678 
2679   // Calculate type and width of the result produced by mul.with.overflow.
2680   Type *TyA = A->getType(), *TyB = B->getType();
2681   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
2682            WidthB = TyB->getPrimitiveSizeInBits();
2683   unsigned MulWidth;
2684   Type *MulType;
2685   if (WidthB > WidthA) {
2686     MulWidth = WidthB;
2687     MulType = TyB;
2688   } else {
2689     MulWidth = WidthA;
2690     MulType = TyA;
2691   }
2692 
2693   // In order to replace the original mul with a narrower mul.with.overflow,
2694   // all uses must ignore upper bits of the product.  The number of used low
2695   // bits must be not greater than the width of mul.with.overflow.
2696   if (MulVal->hasNUsesOrMore(2))
2697     for (User *U : MulVal->users()) {
2698       if (U == &I)
2699         continue;
2700       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2701         // Check if truncation ignores bits above MulWidth.
2702         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
2703         if (TruncWidth > MulWidth)
2704           return nullptr;
2705       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2706         // Check if AND ignores bits above MulWidth.
2707         if (BO->getOpcode() != Instruction::And)
2708           return nullptr;
2709         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2710           const APInt &CVal = CI->getValue();
2711           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
2712             return nullptr;
2713         }
2714       } else {
2715         // Other uses prohibit this transformation.
2716         return nullptr;
2717       }
2718     }
2719 
2720   // Recognize patterns
2721   switch (I.getPredicate()) {
2722   case ICmpInst::ICMP_EQ:
2723   case ICmpInst::ICMP_NE:
2724     // Recognize pattern:
2725     //   mulval = mul(zext A, zext B)
2726     //   cmp eq/neq mulval, zext trunc mulval
2727     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
2728       if (Zext->hasOneUse()) {
2729         Value *ZextArg = Zext->getOperand(0);
2730         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
2731           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
2732             break; //Recognized
2733       }
2734 
2735     // Recognize pattern:
2736     //   mulval = mul(zext A, zext B)
2737     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
2738     ConstantInt *CI;
2739     Value *ValToMask;
2740     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
2741       if (ValToMask != MulVal)
2742         return nullptr;
2743       const APInt &CVal = CI->getValue() + 1;
2744       if (CVal.isPowerOf2()) {
2745         unsigned MaskWidth = CVal.logBase2();
2746         if (MaskWidth == MulWidth)
2747           break; // Recognized
2748       }
2749     }
2750     return nullptr;
2751 
2752   case ICmpInst::ICMP_UGT:
2753     // Recognize pattern:
2754     //   mulval = mul(zext A, zext B)
2755     //   cmp ugt mulval, max
2756     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2757       APInt MaxVal = APInt::getMaxValue(MulWidth);
2758       MaxVal = MaxVal.zext(CI->getBitWidth());
2759       if (MaxVal.eq(CI->getValue()))
2760         break; // Recognized
2761     }
2762     return nullptr;
2763 
2764   case ICmpInst::ICMP_UGE:
2765     // Recognize pattern:
2766     //   mulval = mul(zext A, zext B)
2767     //   cmp uge mulval, max+1
2768     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2769       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2770       if (MaxVal.eq(CI->getValue()))
2771         break; // Recognized
2772     }
2773     return nullptr;
2774 
2775   case ICmpInst::ICMP_ULE:
2776     // Recognize pattern:
2777     //   mulval = mul(zext A, zext B)
2778     //   cmp ule mulval, max
2779     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2780       APInt MaxVal = APInt::getMaxValue(MulWidth);
2781       MaxVal = MaxVal.zext(CI->getBitWidth());
2782       if (MaxVal.eq(CI->getValue()))
2783         break; // Recognized
2784     }
2785     return nullptr;
2786 
2787   case ICmpInst::ICMP_ULT:
2788     // Recognize pattern:
2789     //   mulval = mul(zext A, zext B)
2790     //   cmp ule mulval, max + 1
2791     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2792       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2793       if (MaxVal.eq(CI->getValue()))
2794         break; // Recognized
2795     }
2796     return nullptr;
2797 
2798   default:
2799     return nullptr;
2800   }
2801 
2802   InstCombiner::BuilderTy *Builder = IC.Builder;
2803   Builder->SetInsertPoint(MulInstr);
2804 
2805   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
2806   Value *MulA = A, *MulB = B;
2807   if (WidthA < MulWidth)
2808     MulA = Builder->CreateZExt(A, MulType);
2809   if (WidthB < MulWidth)
2810     MulB = Builder->CreateZExt(B, MulType);
2811   Value *F = Intrinsic::getDeclaration(I.getModule(),
2812                                        Intrinsic::umul_with_overflow, MulType);
2813   CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
2814   IC.Worklist.Add(MulInstr);
2815 
2816   // If there are uses of mul result other than the comparison, we know that
2817   // they are truncation or binary AND. Change them to use result of
2818   // mul.with.overflow and adjust properly mask/size.
2819   if (MulVal->hasNUsesOrMore(2)) {
2820     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
2821     for (User *U : MulVal->users()) {
2822       if (U == &I || U == OtherVal)
2823         continue;
2824       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2825         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
2826           IC.replaceInstUsesWith(*TI, Mul);
2827         else
2828           TI->setOperand(0, Mul);
2829       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2830         assert(BO->getOpcode() == Instruction::And);
2831         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
2832         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
2833         APInt ShortMask = CI->getValue().trunc(MulWidth);
2834         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
2835         Instruction *Zext =
2836             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
2837         IC.Worklist.Add(Zext);
2838         IC.replaceInstUsesWith(*BO, Zext);
2839       } else {
2840         llvm_unreachable("Unexpected Binary operation");
2841       }
2842       IC.Worklist.Add(cast<Instruction>(U));
2843     }
2844   }
2845   if (isa<Instruction>(OtherVal))
2846     IC.Worklist.Add(cast<Instruction>(OtherVal));
2847 
2848   // The original icmp gets replaced with the overflow value, maybe inverted
2849   // depending on predicate.
2850   bool Inverse = false;
2851   switch (I.getPredicate()) {
2852   case ICmpInst::ICMP_NE:
2853     break;
2854   case ICmpInst::ICMP_EQ:
2855     Inverse = true;
2856     break;
2857   case ICmpInst::ICMP_UGT:
2858   case ICmpInst::ICMP_UGE:
2859     if (I.getOperand(0) == MulVal)
2860       break;
2861     Inverse = true;
2862     break;
2863   case ICmpInst::ICMP_ULT:
2864   case ICmpInst::ICMP_ULE:
2865     if (I.getOperand(1) == MulVal)
2866       break;
2867     Inverse = true;
2868     break;
2869   default:
2870     llvm_unreachable("Unexpected predicate");
2871   }
2872   if (Inverse) {
2873     Value *Res = Builder->CreateExtractValue(Call, 1);
2874     return BinaryOperator::CreateNot(Res);
2875   }
2876 
2877   return ExtractValueInst::Create(Call, 1);
2878 }
2879 
2880 // DemandedBitsLHSMask - When performing a comparison against a constant,
2881 // it is possible that not all the bits in the LHS are demanded.  This helper
2882 // method computes the mask that IS demanded.
2883 static APInt DemandedBitsLHSMask(ICmpInst &I,
2884                                  unsigned BitWidth, bool isSignCheck) {
2885   if (isSignCheck)
2886     return APInt::getSignBit(BitWidth);
2887 
2888   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2889   if (!CI) return APInt::getAllOnesValue(BitWidth);
2890   const APInt &RHS = CI->getValue();
2891 
2892   switch (I.getPredicate()) {
2893   // For a UGT comparison, we don't care about any bits that
2894   // correspond to the trailing ones of the comparand.  The value of these
2895   // bits doesn't impact the outcome of the comparison, because any value
2896   // greater than the RHS must differ in a bit higher than these due to carry.
2897   case ICmpInst::ICMP_UGT: {
2898     unsigned trailingOnes = RHS.countTrailingOnes();
2899     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2900     return ~lowBitsSet;
2901   }
2902 
2903   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2904   // Any value less than the RHS must differ in a higher bit because of carries.
2905   case ICmpInst::ICMP_ULT: {
2906     unsigned trailingZeros = RHS.countTrailingZeros();
2907     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2908     return ~lowBitsSet;
2909   }
2910 
2911   default:
2912     return APInt::getAllOnesValue(BitWidth);
2913   }
2914 }
2915 
2916 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2917 /// should be swapped.
2918 /// The decision is based on how many times these two operands are reused
2919 /// as subtract operands and their positions in those instructions.
2920 /// The rational is that several architectures use the same instruction for
2921 /// both subtract and cmp, thus it is better if the order of those operands
2922 /// match.
2923 /// \return true if Op0 and Op1 should be swapped.
2924 static bool swapMayExposeCSEOpportunities(const Value * Op0,
2925                                           const Value * Op1) {
2926   // Filter out pointer value as those cannot appears directly in subtract.
2927   // FIXME: we may want to go through inttoptrs or bitcasts.
2928   if (Op0->getType()->isPointerTy())
2929     return false;
2930   // Count every uses of both Op0 and Op1 in a subtract.
2931   // Each time Op0 is the first operand, count -1: swapping is bad, the
2932   // subtract has already the same layout as the compare.
2933   // Each time Op0 is the second operand, count +1: swapping is good, the
2934   // subtract has a different layout as the compare.
2935   // At the end, if the benefit is greater than 0, Op0 should come second to
2936   // expose more CSE opportunities.
2937   int GlobalSwapBenefits = 0;
2938   for (const User *U : Op0->users()) {
2939     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
2940     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2941       continue;
2942     // If Op0 is the first argument, this is not beneficial to swap the
2943     // arguments.
2944     int LocalSwapBenefits = -1;
2945     unsigned Op1Idx = 1;
2946     if (BinOp->getOperand(Op1Idx) == Op0) {
2947       Op1Idx = 0;
2948       LocalSwapBenefits = 1;
2949     }
2950     if (BinOp->getOperand(Op1Idx) != Op1)
2951       continue;
2952     GlobalSwapBenefits += LocalSwapBenefits;
2953   }
2954   return GlobalSwapBenefits > 0;
2955 }
2956 
2957 /// \brief Check that one use is in the same block as the definition and all
2958 /// other uses are in blocks dominated by a given block
2959 ///
2960 /// \param DI Definition
2961 /// \param UI Use
2962 /// \param DB Block that must dominate all uses of \p DI outside
2963 ///           the parent block
2964 /// \return true when \p UI is the only use of \p DI in the parent block
2965 /// and all other uses of \p DI are in blocks dominated by \p DB.
2966 ///
2967 bool InstCombiner::dominatesAllUses(const Instruction *DI,
2968                                     const Instruction *UI,
2969                                     const BasicBlock *DB) const {
2970   assert(DI && UI && "Instruction not defined\n");
2971   // ignore incomplete definitions
2972   if (!DI->getParent())
2973     return false;
2974   // DI and UI must be in the same block
2975   if (DI->getParent() != UI->getParent())
2976     return false;
2977   // Protect from self-referencing blocks
2978   if (DI->getParent() == DB)
2979     return false;
2980   // DominatorTree available?
2981   if (!DT)
2982     return false;
2983   for (const User *U : DI->users()) {
2984     auto *Usr = cast<Instruction>(U);
2985     if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
2986       return false;
2987   }
2988   return true;
2989 }
2990 
2991 ///
2992 /// true when the instruction sequence within a block is select-cmp-br.
2993 ///
2994 static bool isChainSelectCmpBranch(const SelectInst *SI) {
2995   const BasicBlock *BB = SI->getParent();
2996   if (!BB)
2997     return false;
2998   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
2999   if (!BI || BI->getNumSuccessors() != 2)
3000     return false;
3001   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
3002   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
3003     return false;
3004   return true;
3005 }
3006 
3007 ///
3008 /// \brief True when a select result is replaced by one of its operands
3009 /// in select-icmp sequence. This will eventually result in the elimination
3010 /// of the select.
3011 ///
3012 /// \param SI    Select instruction
3013 /// \param Icmp  Compare instruction
3014 /// \param SIOpd Operand that replaces the select
3015 ///
3016 /// Notes:
3017 /// - The replacement is global and requires dominator information
3018 /// - The caller is responsible for the actual replacement
3019 ///
3020 /// Example:
3021 ///
3022 /// entry:
3023 ///  %4 = select i1 %3, %C* %0, %C* null
3024 ///  %5 = icmp eq %C* %4, null
3025 ///  br i1 %5, label %9, label %7
3026 ///  ...
3027 ///  ; <label>:7                                       ; preds = %entry
3028 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
3029 ///  ...
3030 ///
3031 /// can be transformed to
3032 ///
3033 ///  %5 = icmp eq %C* %0, null
3034 ///  %6 = select i1 %3, i1 %5, i1 true
3035 ///  br i1 %6, label %9, label %7
3036 ///  ...
3037 ///  ; <label>:7                                       ; preds = %entry
3038 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
3039 ///
3040 /// Similar when the first operand of the select is a constant or/and
3041 /// the compare is for not equal rather than equal.
3042 ///
3043 /// NOTE: The function is only called when the select and compare constants
3044 /// are equal, the optimization can work only for EQ predicates. This is not a
3045 /// major restriction since a NE compare should be 'normalized' to an equal
3046 /// compare, which usually happens in the combiner and test case
3047 /// select-cmp-br.ll
3048 /// checks for it.
3049 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
3050                                              const ICmpInst *Icmp,
3051                                              const unsigned SIOpd) {
3052   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
3053   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
3054     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
3055     // The check for the unique predecessor is not the best that can be
3056     // done. But it protects efficiently against cases like  when SI's
3057     // home block has two successors, Succ and Succ1, and Succ1 predecessor
3058     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
3059     // replaced can be reached on either path. So the uniqueness check
3060     // guarantees that the path all uses of SI (outside SI's parent) are on
3061     // is disjoint from all other paths out of SI. But that information
3062     // is more expensive to compute, and the trade-off here is in favor
3063     // of compile-time.
3064     if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
3065       NumSel++;
3066       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
3067       return true;
3068     }
3069   }
3070   return false;
3071 }
3072 
3073 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
3074   bool Changed = false;
3075   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3076   unsigned Op0Cplxity = getComplexity(Op0);
3077   unsigned Op1Cplxity = getComplexity(Op1);
3078 
3079   /// Orders the operands of the compare so that they are listed from most
3080   /// complex to least complex.  This puts constants before unary operators,
3081   /// before binary operators.
3082   if (Op0Cplxity < Op1Cplxity ||
3083         (Op0Cplxity == Op1Cplxity &&
3084          swapMayExposeCSEOpportunities(Op0, Op1))) {
3085     I.swapOperands();
3086     std::swap(Op0, Op1);
3087     Changed = true;
3088   }
3089 
3090   if (Value *V =
3091           SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
3092     return replaceInstUsesWith(I, V);
3093 
3094   // comparing -val or val with non-zero is the same as just comparing val
3095   // ie, abs(val) != 0 -> val != 0
3096   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
3097   {
3098     Value *Cond, *SelectTrue, *SelectFalse;
3099     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
3100                             m_Value(SelectFalse)))) {
3101       if (Value *V = dyn_castNegVal(SelectTrue)) {
3102         if (V == SelectFalse)
3103           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
3104       }
3105       else if (Value *V = dyn_castNegVal(SelectFalse)) {
3106         if (V == SelectTrue)
3107           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
3108       }
3109     }
3110   }
3111 
3112   Type *Ty = Op0->getType();
3113 
3114   // icmp's with boolean values can always be turned into bitwise operations
3115   if (Ty->isIntegerTy(1)) {
3116     switch (I.getPredicate()) {
3117     default: llvm_unreachable("Invalid icmp instruction!");
3118     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
3119       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
3120       return BinaryOperator::CreateNot(Xor);
3121     }
3122     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
3123       return BinaryOperator::CreateXor(Op0, Op1);
3124 
3125     case ICmpInst::ICMP_UGT:
3126       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
3127       // FALL THROUGH
3128     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
3129       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
3130       return BinaryOperator::CreateAnd(Not, Op1);
3131     }
3132     case ICmpInst::ICMP_SGT:
3133       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
3134       // FALL THROUGH
3135     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
3136       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
3137       return BinaryOperator::CreateAnd(Not, Op0);
3138     }
3139     case ICmpInst::ICMP_UGE:
3140       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
3141       // FALL THROUGH
3142     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
3143       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
3144       return BinaryOperator::CreateOr(Not, Op1);
3145     }
3146     case ICmpInst::ICMP_SGE:
3147       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
3148       // FALL THROUGH
3149     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
3150       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
3151       return BinaryOperator::CreateOr(Not, Op0);
3152     }
3153     }
3154   }
3155 
3156   unsigned BitWidth = 0;
3157   if (Ty->isIntOrIntVectorTy())
3158     BitWidth = Ty->getScalarSizeInBits();
3159   else // Get pointer size.
3160     BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
3161 
3162   bool isSignBit = false;
3163 
3164   // See if we are doing a comparison with a constant.
3165   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3166     Value *A = nullptr, *B = nullptr;
3167 
3168     // Match the following pattern, which is a common idiom when writing
3169     // overflow-safe integer arithmetic function.  The source performs an
3170     // addition in wider type, and explicitly checks for overflow using
3171     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
3172     // sadd_with_overflow intrinsic.
3173     //
3174     // TODO: This could probably be generalized to handle other overflow-safe
3175     // operations if we worked out the formulas to compute the appropriate
3176     // magic constants.
3177     //
3178     // sum = a + b
3179     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
3180     {
3181     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
3182     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
3183         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
3184       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
3185         return Res;
3186     }
3187 
3188     // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
3189     if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT)
3190       if (auto *SI = dyn_cast<SelectInst>(Op0)) {
3191         SelectPatternResult SPR = matchSelectPattern(SI, A, B);
3192         if (SPR.Flavor == SPF_SMIN) {
3193           if (isKnownPositive(A, DL))
3194             return new ICmpInst(I.getPredicate(), B, CI);
3195           if (isKnownPositive(B, DL))
3196             return new ICmpInst(I.getPredicate(), A, CI);
3197         }
3198       }
3199 
3200 
3201     // The following transforms are only 'worth it' if the only user of the
3202     // subtraction is the icmp.
3203     if (Op0->hasOneUse()) {
3204       // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
3205       if (I.isEquality() && CI->isZero() &&
3206           match(Op0, m_Sub(m_Value(A), m_Value(B))))
3207         return new ICmpInst(I.getPredicate(), A, B);
3208 
3209       // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
3210       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
3211           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
3212         return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
3213 
3214       // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
3215       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
3216           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
3217         return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
3218 
3219       // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
3220       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
3221           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
3222         return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
3223 
3224       // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
3225       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
3226           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
3227         return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
3228     }
3229 
3230     // If we have an icmp le or icmp ge instruction, turn it into the
3231     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
3232     // them being folded in the code below.  The SimplifyICmpInst code has
3233     // already handled the edge cases for us, so we just assert on them.
3234     switch (I.getPredicate()) {
3235     default: break;
3236     case ICmpInst::ICMP_ULE:
3237       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
3238       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
3239                           Builder->getInt(CI->getValue()+1));
3240     case ICmpInst::ICMP_SLE:
3241       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
3242       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
3243                           Builder->getInt(CI->getValue()+1));
3244     case ICmpInst::ICMP_UGE:
3245       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
3246       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
3247                           Builder->getInt(CI->getValue()-1));
3248     case ICmpInst::ICMP_SGE:
3249       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
3250       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
3251                           Builder->getInt(CI->getValue()-1));
3252     }
3253 
3254     if (I.isEquality()) {
3255       ConstantInt *CI2;
3256       if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
3257           match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
3258         // (icmp eq/ne (ashr/lshr const2, A), const1)
3259         if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
3260           return Inst;
3261       }
3262       if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
3263         // (icmp eq/ne (shl const2, A), const1)
3264         if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
3265           return Inst;
3266       }
3267     }
3268 
3269     // If this comparison is a normal comparison, it demands all
3270     // bits, if it is a sign bit comparison, it only demands the sign bit.
3271     bool UnusedBit;
3272     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
3273   }
3274 
3275   // See if we can fold the comparison based on range information we can get
3276   // by checking whether bits are known to be zero or one in the input.
3277   if (BitWidth != 0) {
3278     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
3279     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
3280 
3281     if (SimplifyDemandedBits(I.getOperandUse(0),
3282                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
3283                              Op0KnownZero, Op0KnownOne, 0))
3284       return &I;
3285     if (SimplifyDemandedBits(I.getOperandUse(1),
3286                              APInt::getAllOnesValue(BitWidth), Op1KnownZero,
3287                              Op1KnownOne, 0))
3288       return &I;
3289 
3290     // Given the known and unknown bits, compute a range that the LHS could be
3291     // in.  Compute the Min, Max and RHS values based on the known bits. For the
3292     // EQ and NE we use unsigned values.
3293     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
3294     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
3295     if (I.isSigned()) {
3296       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
3297                                              Op0Min, Op0Max);
3298       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
3299                                              Op1Min, Op1Max);
3300     } else {
3301       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
3302                                                Op0Min, Op0Max);
3303       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
3304                                                Op1Min, Op1Max);
3305     }
3306 
3307     // If Min and Max are known to be the same, then SimplifyDemandedBits
3308     // figured out that the LHS is a constant.  Just constant fold this now so
3309     // that code below can assume that Min != Max.
3310     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
3311       return new ICmpInst(I.getPredicate(),
3312                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
3313     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
3314       return new ICmpInst(I.getPredicate(), Op0,
3315                           ConstantInt::get(Op1->getType(), Op1Min));
3316 
3317     // Based on the range information we know about the LHS, see if we can
3318     // simplify this comparison.  For example, (x&4) < 8 is always true.
3319     switch (I.getPredicate()) {
3320     default: llvm_unreachable("Unknown icmp opcode!");
3321     case ICmpInst::ICMP_EQ: {
3322       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
3323         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3324 
3325       // If all bits are known zero except for one, then we know at most one
3326       // bit is set.   If the comparison is against zero, then this is a check
3327       // to see if *that* bit is set.
3328       APInt Op0KnownZeroInverted = ~Op0KnownZero;
3329       if (~Op1KnownZero == 0) {
3330         // If the LHS is an AND with the same constant, look through it.
3331         Value *LHS = nullptr;
3332         ConstantInt *LHSC = nullptr;
3333         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
3334             LHSC->getValue() != Op0KnownZeroInverted)
3335           LHS = Op0;
3336 
3337         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
3338         // then turn "((1 << x)&8) == 0" into "x != 3".
3339         // or turn "((1 << x)&7) == 0" into "x > 2".
3340         Value *X = nullptr;
3341         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
3342           APInt ValToCheck = Op0KnownZeroInverted;
3343           if (ValToCheck.isPowerOf2()) {
3344             unsigned CmpVal = ValToCheck.countTrailingZeros();
3345             return new ICmpInst(ICmpInst::ICMP_NE, X,
3346                                 ConstantInt::get(X->getType(), CmpVal));
3347           } else if ((++ValToCheck).isPowerOf2()) {
3348             unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
3349             return new ICmpInst(ICmpInst::ICMP_UGT, X,
3350                                 ConstantInt::get(X->getType(), CmpVal));
3351           }
3352         }
3353 
3354         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
3355         // then turn "((8 >>u x)&1) == 0" into "x != 3".
3356         const APInt *CI;
3357         if (Op0KnownZeroInverted == 1 &&
3358             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
3359           return new ICmpInst(ICmpInst::ICMP_NE, X,
3360                               ConstantInt::get(X->getType(),
3361                                                CI->countTrailingZeros()));
3362       }
3363       break;
3364     }
3365     case ICmpInst::ICMP_NE: {
3366       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
3367         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3368 
3369       // If all bits are known zero except for one, then we know at most one
3370       // bit is set.   If the comparison is against zero, then this is a check
3371       // to see if *that* bit is set.
3372       APInt Op0KnownZeroInverted = ~Op0KnownZero;
3373       if (~Op1KnownZero == 0) {
3374         // If the LHS is an AND with the same constant, look through it.
3375         Value *LHS = nullptr;
3376         ConstantInt *LHSC = nullptr;
3377         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
3378             LHSC->getValue() != Op0KnownZeroInverted)
3379           LHS = Op0;
3380 
3381         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
3382         // then turn "((1 << x)&8) != 0" into "x == 3".
3383         // or turn "((1 << x)&7) != 0" into "x < 3".
3384         Value *X = nullptr;
3385         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
3386           APInt ValToCheck = Op0KnownZeroInverted;
3387           if (ValToCheck.isPowerOf2()) {
3388             unsigned CmpVal = ValToCheck.countTrailingZeros();
3389             return new ICmpInst(ICmpInst::ICMP_EQ, X,
3390                                 ConstantInt::get(X->getType(), CmpVal));
3391           } else if ((++ValToCheck).isPowerOf2()) {
3392             unsigned CmpVal = ValToCheck.countTrailingZeros();
3393             return new ICmpInst(ICmpInst::ICMP_ULT, X,
3394                                 ConstantInt::get(X->getType(), CmpVal));
3395           }
3396         }
3397 
3398         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
3399         // then turn "((8 >>u x)&1) != 0" into "x == 3".
3400         const APInt *CI;
3401         if (Op0KnownZeroInverted == 1 &&
3402             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
3403           return new ICmpInst(ICmpInst::ICMP_EQ, X,
3404                               ConstantInt::get(X->getType(),
3405                                                CI->countTrailingZeros()));
3406       }
3407       break;
3408     }
3409     case ICmpInst::ICMP_ULT:
3410       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
3411         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3412       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
3413         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3414       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
3415         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3416       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3417         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
3418           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3419                               Builder->getInt(CI->getValue()-1));
3420 
3421         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
3422         if (CI->isMinValue(true))
3423           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
3424                            Constant::getAllOnesValue(Op0->getType()));
3425       }
3426       break;
3427     case ICmpInst::ICMP_UGT:
3428       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
3429         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3430       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
3431         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3432 
3433       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
3434         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3435       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3436         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
3437           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3438                               Builder->getInt(CI->getValue()+1));
3439 
3440         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
3441         if (CI->isMaxValue(true))
3442           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
3443                               Constant::getNullValue(Op0->getType()));
3444       }
3445       break;
3446     case ICmpInst::ICMP_SLT:
3447       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
3448         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3449       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
3450         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3451       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
3452         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3453       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3454         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
3455           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3456                               Builder->getInt(CI->getValue()-1));
3457       }
3458       break;
3459     case ICmpInst::ICMP_SGT:
3460       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
3461         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3462       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
3463         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3464 
3465       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
3466         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3467       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3468         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
3469           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3470                               Builder->getInt(CI->getValue()+1));
3471       }
3472       break;
3473     case ICmpInst::ICMP_SGE:
3474       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
3475       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
3476         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3477       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
3478         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3479       break;
3480     case ICmpInst::ICMP_SLE:
3481       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
3482       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
3483         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3484       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
3485         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3486       break;
3487     case ICmpInst::ICMP_UGE:
3488       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
3489       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
3490         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3491       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
3492         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3493       break;
3494     case ICmpInst::ICMP_ULE:
3495       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
3496       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
3497         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3498       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
3499         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3500       break;
3501     }
3502 
3503     // Turn a signed comparison into an unsigned one if both operands
3504     // are known to have the same sign.
3505     if (I.isSigned() &&
3506         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
3507          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
3508       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
3509   }
3510 
3511   // Test if the ICmpInst instruction is used exclusively by a select as
3512   // part of a minimum or maximum operation. If so, refrain from doing
3513   // any other folding. This helps out other analyses which understand
3514   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
3515   // and CodeGen. And in this case, at least one of the comparison
3516   // operands has at least one user besides the compare (the select),
3517   // which would often largely negate the benefit of folding anyway.
3518   if (I.hasOneUse())
3519     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
3520       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
3521           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
3522         return nullptr;
3523 
3524   // See if we are doing a comparison between a constant and an instruction that
3525   // can be folded into the comparison.
3526   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3527     // Since the RHS is a ConstantInt (CI), if the left hand side is an
3528     // instruction, see if that instruction also has constants so that the
3529     // instruction can be folded into the icmp
3530     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3531       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
3532         return Res;
3533   }
3534 
3535   // Handle icmp with constant (but not simple integer constant) RHS
3536   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3537     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3538       switch (LHSI->getOpcode()) {
3539       case Instruction::GetElementPtr:
3540           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3541         if (RHSC->isNullValue() &&
3542             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3543           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3544                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
3545         break;
3546       case Instruction::PHI:
3547         // Only fold icmp into the PHI if the phi and icmp are in the same
3548         // block.  If in the same block, we're encouraging jump threading.  If
3549         // not, we are just pessimizing the code by making an i1 phi.
3550         if (LHSI->getParent() == I.getParent())
3551           if (Instruction *NV = FoldOpIntoPhi(I))
3552             return NV;
3553         break;
3554       case Instruction::Select: {
3555         // If either operand of the select is a constant, we can fold the
3556         // comparison into the select arms, which will cause one to be
3557         // constant folded and the select turned into a bitwise or.
3558         Value *Op1 = nullptr, *Op2 = nullptr;
3559         ConstantInt *CI = nullptr;
3560         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3561           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3562           CI = dyn_cast<ConstantInt>(Op1);
3563         }
3564         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3565           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3566           CI = dyn_cast<ConstantInt>(Op2);
3567         }
3568 
3569         // We only want to perform this transformation if it will not lead to
3570         // additional code. This is true if either both sides of the select
3571         // fold to a constant (in which case the icmp is replaced with a select
3572         // which will usually simplify) or this is the only user of the
3573         // select (in which case we are trading a select+icmp for a simpler
3574         // select+icmp) or all uses of the select can be replaced based on
3575         // dominance information ("Global cases").
3576         bool Transform = false;
3577         if (Op1 && Op2)
3578           Transform = true;
3579         else if (Op1 || Op2) {
3580           // Local case
3581           if (LHSI->hasOneUse())
3582             Transform = true;
3583           // Global cases
3584           else if (CI && !CI->isZero())
3585             // When Op1 is constant try replacing select with second operand.
3586             // Otherwise Op2 is constant and try replacing select with first
3587             // operand.
3588             Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
3589                                                   Op1 ? 2 : 1);
3590         }
3591         if (Transform) {
3592           if (!Op1)
3593             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
3594                                       RHSC, I.getName());
3595           if (!Op2)
3596             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
3597                                       RHSC, I.getName());
3598           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3599         }
3600         break;
3601       }
3602       case Instruction::IntToPtr:
3603         // icmp pred inttoptr(X), null -> icmp pred X, 0
3604         if (RHSC->isNullValue() &&
3605             DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3606           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3607                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
3608         break;
3609 
3610       case Instruction::Load:
3611         // Try to optimize things like "A[i] > 4" to index computations.
3612         if (GetElementPtrInst *GEP =
3613               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3614           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3615             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3616                 !cast<LoadInst>(LHSI)->isVolatile())
3617               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3618                 return Res;
3619         }
3620         break;
3621       }
3622   }
3623 
3624   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
3625   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
3626     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
3627       return NI;
3628   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
3629     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
3630                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
3631       return NI;
3632 
3633   // Try to optimize equality comparisons against alloca-based pointers.
3634   if (Op0->getType()->isPointerTy() && I.isEquality()) {
3635     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
3636     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
3637       if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1))
3638         return New;
3639     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
3640       if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0))
3641         return New;
3642   }
3643 
3644   // Test to see if the operands of the icmp are casted versions of other
3645   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
3646   // now.
3647   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
3648     if (Op0->getType()->isPointerTy() &&
3649         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
3650       // We keep moving the cast from the left operand over to the right
3651       // operand, where it can often be eliminated completely.
3652       Op0 = CI->getOperand(0);
3653 
3654       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
3655       // so eliminate it as well.
3656       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
3657         Op1 = CI2->getOperand(0);
3658 
3659       // If Op1 is a constant, we can fold the cast into the constant.
3660       if (Op0->getType() != Op1->getType()) {
3661         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
3662           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
3663         } else {
3664           // Otherwise, cast the RHS right before the icmp
3665           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
3666         }
3667       }
3668       return new ICmpInst(I.getPredicate(), Op0, Op1);
3669     }
3670   }
3671 
3672   if (isa<CastInst>(Op0)) {
3673     // Handle the special case of: icmp (cast bool to X), <cst>
3674     // This comes up when you have code like
3675     //   int X = A < B;
3676     //   if (X) ...
3677     // For generality, we handle any zero-extension of any operand comparison
3678     // with a constant or another cast from the same type.
3679     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
3680       if (Instruction *R = visitICmpInstWithCastAndCast(I))
3681         return R;
3682   }
3683 
3684   // Special logic for binary operators.
3685   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3686   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3687   if (BO0 || BO1) {
3688     CmpInst::Predicate Pred = I.getPredicate();
3689     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3690     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3691       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
3692         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3693         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3694     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3695       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
3696         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3697         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3698 
3699     // Analyze the case when either Op0 or Op1 is an add instruction.
3700     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3701     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3702     if (BO0 && BO0->getOpcode() == Instruction::Add) {
3703       A = BO0->getOperand(0);
3704       B = BO0->getOperand(1);
3705     }
3706     if (BO1 && BO1->getOpcode() == Instruction::Add) {
3707       C = BO1->getOperand(0);
3708       D = BO1->getOperand(1);
3709     }
3710 
3711     // icmp (X+cst) < 0 --> X < -cst
3712     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
3713       if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
3714         if (!RHSC->isMinValue(/*isSigned=*/true))
3715           return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
3716 
3717     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3718     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3719       return new ICmpInst(Pred, A == Op1 ? B : A,
3720                           Constant::getNullValue(Op1->getType()));
3721 
3722     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3723     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3724       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3725                           C == Op0 ? D : C);
3726 
3727     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3728     if (A && C && (A == C || A == D || B == C || B == D) &&
3729         NoOp0WrapProblem && NoOp1WrapProblem &&
3730         // Try not to increase register pressure.
3731         BO0->hasOneUse() && BO1->hasOneUse()) {
3732       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3733       Value *Y, *Z;
3734       if (A == C) {
3735         // C + B == C + D  ->  B == D
3736         Y = B;
3737         Z = D;
3738       } else if (A == D) {
3739         // D + B == C + D  ->  B == C
3740         Y = B;
3741         Z = C;
3742       } else if (B == C) {
3743         // A + C == C + D  ->  A == D
3744         Y = A;
3745         Z = D;
3746       } else {
3747         assert(B == D);
3748         // A + D == C + D  ->  A == C
3749         Y = A;
3750         Z = C;
3751       }
3752       return new ICmpInst(Pred, Y, Z);
3753     }
3754 
3755     // icmp slt (X + -1), Y -> icmp sle X, Y
3756     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3757         match(B, m_AllOnes()))
3758       return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3759 
3760     // icmp sge (X + -1), Y -> icmp sgt X, Y
3761     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3762         match(B, m_AllOnes()))
3763       return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3764 
3765     // icmp sle (X + 1), Y -> icmp slt X, Y
3766     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
3767         match(B, m_One()))
3768       return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3769 
3770     // icmp sgt (X + 1), Y -> icmp sge X, Y
3771     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
3772         match(B, m_One()))
3773       return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3774 
3775     // icmp sgt X, (Y + -1) -> icmp sge X, Y
3776     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3777         match(D, m_AllOnes()))
3778       return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3779 
3780     // icmp sle X, (Y + -1) -> icmp slt X, Y
3781     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3782         match(D, m_AllOnes()))
3783       return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3784 
3785     // icmp sge X, (Y + 1) -> icmp sgt X, Y
3786     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE &&
3787         match(D, m_One()))
3788       return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3789 
3790     // icmp slt X, (Y + 1) -> icmp sle X, Y
3791     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT &&
3792         match(D, m_One()))
3793       return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3794 
3795     // if C1 has greater magnitude than C2:
3796     //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3797     //  s.t. C3 = C1 - C2
3798     //
3799     // if C2 has greater magnitude than C1:
3800     //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3801     //  s.t. C3 = C2 - C1
3802     if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3803         (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3804       if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3805         if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3806           const APInt &AP1 = C1->getValue();
3807           const APInt &AP2 = C2->getValue();
3808           if (AP1.isNegative() == AP2.isNegative()) {
3809             APInt AP1Abs = C1->getValue().abs();
3810             APInt AP2Abs = C2->getValue().abs();
3811             if (AP1Abs.uge(AP2Abs)) {
3812               ConstantInt *C3 = Builder->getInt(AP1 - AP2);
3813               Value *NewAdd = Builder->CreateNSWAdd(A, C3);
3814               return new ICmpInst(Pred, NewAdd, C);
3815             } else {
3816               ConstantInt *C3 = Builder->getInt(AP2 - AP1);
3817               Value *NewAdd = Builder->CreateNSWAdd(C, C3);
3818               return new ICmpInst(Pred, A, NewAdd);
3819             }
3820           }
3821         }
3822 
3823 
3824     // Analyze the case when either Op0 or Op1 is a sub instruction.
3825     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3826     A = nullptr;
3827     B = nullptr;
3828     C = nullptr;
3829     D = nullptr;
3830     if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3831       A = BO0->getOperand(0);
3832       B = BO0->getOperand(1);
3833     }
3834     if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3835       C = BO1->getOperand(0);
3836       D = BO1->getOperand(1);
3837     }
3838 
3839     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3840     if (A == Op1 && NoOp0WrapProblem)
3841       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3842 
3843     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3844     if (C == Op0 && NoOp1WrapProblem)
3845       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3846 
3847     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3848     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3849         // Try not to increase register pressure.
3850         BO0->hasOneUse() && BO1->hasOneUse())
3851       return new ICmpInst(Pred, A, C);
3852 
3853     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3854     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3855         // Try not to increase register pressure.
3856         BO0->hasOneUse() && BO1->hasOneUse())
3857       return new ICmpInst(Pred, D, B);
3858 
3859     // icmp (0-X) < cst --> x > -cst
3860     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3861       Value *X;
3862       if (match(BO0, m_Neg(m_Value(X))))
3863         if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3864           if (!RHSC->isMinValue(/*isSigned=*/true))
3865             return new ICmpInst(I.getSwappedPredicate(), X,
3866                                 ConstantExpr::getNeg(RHSC));
3867     }
3868 
3869     BinaryOperator *SRem = nullptr;
3870     // icmp (srem X, Y), Y
3871     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
3872         Op1 == BO0->getOperand(1))
3873       SRem = BO0;
3874     // icmp Y, (srem X, Y)
3875     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3876              Op0 == BO1->getOperand(1))
3877       SRem = BO1;
3878     if (SRem) {
3879       // We don't check hasOneUse to avoid increasing register pressure because
3880       // the value we use is the same value this instruction was already using.
3881       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3882         default: break;
3883         case ICmpInst::ICMP_EQ:
3884           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3885         case ICmpInst::ICMP_NE:
3886           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3887         case ICmpInst::ICMP_SGT:
3888         case ICmpInst::ICMP_SGE:
3889           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3890                               Constant::getAllOnesValue(SRem->getType()));
3891         case ICmpInst::ICMP_SLT:
3892         case ICmpInst::ICMP_SLE:
3893           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3894                               Constant::getNullValue(SRem->getType()));
3895       }
3896     }
3897 
3898     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
3899         BO0->hasOneUse() && BO1->hasOneUse() &&
3900         BO0->getOperand(1) == BO1->getOperand(1)) {
3901       switch (BO0->getOpcode()) {
3902       default: break;
3903       case Instruction::Add:
3904       case Instruction::Sub:
3905       case Instruction::Xor:
3906         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
3907           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3908                               BO1->getOperand(0));
3909         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
3910         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3911           if (CI->getValue().isSignBit()) {
3912             ICmpInst::Predicate Pred = I.isSigned()
3913                                            ? I.getUnsignedPredicate()
3914                                            : I.getSignedPredicate();
3915             return new ICmpInst(Pred, BO0->getOperand(0),
3916                                 BO1->getOperand(0));
3917           }
3918 
3919           if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
3920             ICmpInst::Predicate Pred = I.isSigned()
3921                                            ? I.getUnsignedPredicate()
3922                                            : I.getSignedPredicate();
3923             Pred = I.getSwappedPredicate(Pred);
3924             return new ICmpInst(Pred, BO0->getOperand(0),
3925                                 BO1->getOperand(0));
3926           }
3927         }
3928         break;
3929       case Instruction::Mul:
3930         if (!I.isEquality())
3931           break;
3932 
3933         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3934           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
3935           // Mask = -1 >> count-trailing-zeros(Cst).
3936           if (!CI->isZero() && !CI->isOne()) {
3937             const APInt &AP = CI->getValue();
3938             ConstantInt *Mask = ConstantInt::get(I.getContext(),
3939                                     APInt::getLowBitsSet(AP.getBitWidth(),
3940                                                          AP.getBitWidth() -
3941                                                     AP.countTrailingZeros()));
3942             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3943             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3944             return new ICmpInst(I.getPredicate(), And1, And2);
3945           }
3946         }
3947         break;
3948       case Instruction::UDiv:
3949       case Instruction::LShr:
3950         if (I.isSigned())
3951           break;
3952         // fall-through
3953       case Instruction::SDiv:
3954       case Instruction::AShr:
3955         if (!BO0->isExact() || !BO1->isExact())
3956           break;
3957         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3958                             BO1->getOperand(0));
3959       case Instruction::Shl: {
3960         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3961         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3962         if (!NUW && !NSW)
3963           break;
3964         if (!NSW && I.isSigned())
3965           break;
3966         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3967                             BO1->getOperand(0));
3968       }
3969       }
3970     }
3971 
3972     if (BO0) {
3973       // Transform  A & (L - 1) `ult` L --> L != 0
3974       auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3975       auto BitwiseAnd =
3976           m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
3977 
3978       if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
3979         auto *Zero = Constant::getNullValue(BO0->getType());
3980         return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3981       }
3982     }
3983   }
3984 
3985   { Value *A, *B;
3986     // Transform (A & ~B) == 0 --> (A & B) != 0
3987     // and       (A & ~B) != 0 --> (A & B) == 0
3988     // if A is a power of 2.
3989     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
3990         match(Op1, m_Zero()) &&
3991         isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
3992       return new ICmpInst(I.getInversePredicate(),
3993                           Builder->CreateAnd(A, B),
3994                           Op1);
3995 
3996     // ~x < ~y --> y < x
3997     // ~x < cst --> ~cst < x
3998     if (match(Op0, m_Not(m_Value(A)))) {
3999       if (match(Op1, m_Not(m_Value(B))))
4000         return new ICmpInst(I.getPredicate(), B, A);
4001       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
4002         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
4003     }
4004 
4005     Instruction *AddI = nullptr;
4006     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
4007                                      m_Instruction(AddI))) &&
4008         isa<IntegerType>(A->getType())) {
4009       Value *Result;
4010       Constant *Overflow;
4011       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
4012                                 Overflow)) {
4013         replaceInstUsesWith(*AddI, Result);
4014         return replaceInstUsesWith(I, Overflow);
4015       }
4016     }
4017 
4018     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
4019     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4020       if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
4021         return R;
4022     }
4023     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4024       if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
4025         return R;
4026     }
4027   }
4028 
4029   if (I.isEquality()) {
4030     Value *A, *B, *C, *D;
4031 
4032     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4033       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
4034         Value *OtherVal = A == Op1 ? B : A;
4035         return new ICmpInst(I.getPredicate(), OtherVal,
4036                             Constant::getNullValue(A->getType()));
4037       }
4038 
4039       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4040         // A^c1 == C^c2 --> A == C^(c1^c2)
4041         ConstantInt *C1, *C2;
4042         if (match(B, m_ConstantInt(C1)) &&
4043             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
4044           Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
4045           Value *Xor = Builder->CreateXor(C, NC);
4046           return new ICmpInst(I.getPredicate(), A, Xor);
4047         }
4048 
4049         // A^B == A^D -> B == D
4050         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
4051         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
4052         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
4053         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
4054       }
4055     }
4056 
4057     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
4058         (A == Op0 || B == Op0)) {
4059       // A == (A^B)  ->  B == 0
4060       Value *OtherVal = A == Op0 ? B : A;
4061       return new ICmpInst(I.getPredicate(), OtherVal,
4062                           Constant::getNullValue(A->getType()));
4063     }
4064 
4065     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4066     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4067         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4068       Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4069 
4070       if (A == C) {
4071         X = B; Y = D; Z = A;
4072       } else if (A == D) {
4073         X = B; Y = C; Z = A;
4074       } else if (B == C) {
4075         X = A; Y = D; Z = B;
4076       } else if (B == D) {
4077         X = A; Y = C; Z = B;
4078       }
4079 
4080       if (X) {   // Build (X^Y) & Z
4081         Op1 = Builder->CreateXor(X, Y);
4082         Op1 = Builder->CreateAnd(Op1, Z);
4083         I.setOperand(0, Op1);
4084         I.setOperand(1, Constant::getNullValue(Op1->getType()));
4085         return &I;
4086       }
4087     }
4088 
4089     // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4090     // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4091     ConstantInt *Cst1;
4092     if ((Op0->hasOneUse() &&
4093          match(Op0, m_ZExt(m_Value(A))) &&
4094          match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4095         (Op1->hasOneUse() &&
4096          match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4097          match(Op1, m_ZExt(m_Value(A))))) {
4098       APInt Pow2 = Cst1->getValue() + 1;
4099       if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4100           Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4101         return new ICmpInst(I.getPredicate(), A,
4102                             Builder->CreateTrunc(B, A->getType()));
4103     }
4104 
4105     // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4106     // For lshr and ashr pairs.
4107     if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4108          match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4109         (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4110          match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4111       unsigned TypeBits = Cst1->getBitWidth();
4112       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4113       if (ShAmt < TypeBits && ShAmt != 0) {
4114         ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
4115                                        ? ICmpInst::ICMP_UGE
4116                                        : ICmpInst::ICMP_ULT;
4117         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
4118         APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4119         return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
4120       }
4121     }
4122 
4123     // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4124     if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4125         match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4126       unsigned TypeBits = Cst1->getBitWidth();
4127       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4128       if (ShAmt < TypeBits && ShAmt != 0) {
4129         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
4130         APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4131         Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
4132                                         I.getName() + ".mask");
4133         return new ICmpInst(I.getPredicate(), And,
4134                             Constant::getNullValue(Cst1->getType()));
4135       }
4136     }
4137 
4138     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4139     // "icmp (and X, mask), cst"
4140     uint64_t ShAmt = 0;
4141     if (Op0->hasOneUse() &&
4142         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
4143                                            m_ConstantInt(ShAmt))))) &&
4144         match(Op1, m_ConstantInt(Cst1)) &&
4145         // Only do this when A has multiple uses.  This is most important to do
4146         // when it exposes other optimizations.
4147         !A->hasOneUse()) {
4148       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4149 
4150       if (ShAmt < ASize) {
4151         APInt MaskV =
4152           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4153         MaskV <<= ShAmt;
4154 
4155         APInt CmpV = Cst1->getValue().zext(ASize);
4156         CmpV <<= ShAmt;
4157 
4158         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
4159         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
4160       }
4161     }
4162   }
4163 
4164   // The 'cmpxchg' instruction returns an aggregate containing the old value and
4165   // an i1 which indicates whether or not we successfully did the swap.
4166   //
4167   // Replace comparisons between the old value and the expected value with the
4168   // indicator that 'cmpxchg' returns.
4169   //
4170   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
4171   // spuriously fail.  In those cases, the old value may equal the expected
4172   // value but it is possible for the swap to not occur.
4173   if (I.getPredicate() == ICmpInst::ICMP_EQ)
4174     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
4175       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
4176         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
4177             !ACXI->isWeak())
4178           return ExtractValueInst::Create(ACXI, 1);
4179 
4180   {
4181     Value *X; ConstantInt *Cst;
4182     // icmp X+Cst, X
4183     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
4184       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
4185 
4186     // icmp X, X+Cst
4187     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
4188       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
4189   }
4190   return Changed ? &I : nullptr;
4191 }
4192 
4193 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
4194 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
4195                                                 Instruction *LHSI,
4196                                                 Constant *RHSC) {
4197   if (!isa<ConstantFP>(RHSC)) return nullptr;
4198   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
4199 
4200   // Get the width of the mantissa.  We don't want to hack on conversions that
4201   // might lose information from the integer, e.g. "i64 -> float"
4202   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
4203   if (MantissaWidth == -1) return nullptr;  // Unknown.
4204 
4205   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
4206 
4207   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
4208 
4209   if (I.isEquality()) {
4210     FCmpInst::Predicate P = I.getPredicate();
4211     bool IsExact = false;
4212     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
4213     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
4214 
4215     // If the floating point constant isn't an integer value, we know if we will
4216     // ever compare equal / not equal to it.
4217     if (!IsExact) {
4218       // TODO: Can never be -0.0 and other non-representable values
4219       APFloat RHSRoundInt(RHS);
4220       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
4221       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
4222         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
4223           return replaceInstUsesWith(I, Builder->getFalse());
4224 
4225         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
4226         return replaceInstUsesWith(I, Builder->getTrue());
4227       }
4228     }
4229 
4230     // TODO: If the constant is exactly representable, is it always OK to do
4231     // equality compares as integer?
4232   }
4233 
4234   // Check to see that the input is converted from an integer type that is small
4235   // enough that preserves all bits.  TODO: check here for "known" sign bits.
4236   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
4237   unsigned InputSize = IntTy->getScalarSizeInBits();
4238 
4239   // Following test does NOT adjust InputSize downwards for signed inputs,
4240   // because the most negative value still requires all the mantissa bits
4241   // to distinguish it from one less than that value.
4242   if ((int)InputSize > MantissaWidth) {
4243     // Conversion would lose accuracy. Check if loss can impact comparison.
4244     int Exp = ilogb(RHS);
4245     if (Exp == APFloat::IEK_Inf) {
4246       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
4247       if (MaxExponent < (int)InputSize - !LHSUnsigned)
4248         // Conversion could create infinity.
4249         return nullptr;
4250     } else {
4251       // Note that if RHS is zero or NaN, then Exp is negative
4252       // and first condition is trivially false.
4253       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
4254         // Conversion could affect comparison.
4255         return nullptr;
4256     }
4257   }
4258 
4259   // Otherwise, we can potentially simplify the comparison.  We know that it
4260   // will always come through as an integer value and we know the constant is
4261   // not a NAN (it would have been previously simplified).
4262   assert(!RHS.isNaN() && "NaN comparison not already folded!");
4263 
4264   ICmpInst::Predicate Pred;
4265   switch (I.getPredicate()) {
4266   default: llvm_unreachable("Unexpected predicate!");
4267   case FCmpInst::FCMP_UEQ:
4268   case FCmpInst::FCMP_OEQ:
4269     Pred = ICmpInst::ICMP_EQ;
4270     break;
4271   case FCmpInst::FCMP_UGT:
4272   case FCmpInst::FCMP_OGT:
4273     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
4274     break;
4275   case FCmpInst::FCMP_UGE:
4276   case FCmpInst::FCMP_OGE:
4277     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
4278     break;
4279   case FCmpInst::FCMP_ULT:
4280   case FCmpInst::FCMP_OLT:
4281     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
4282     break;
4283   case FCmpInst::FCMP_ULE:
4284   case FCmpInst::FCMP_OLE:
4285     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
4286     break;
4287   case FCmpInst::FCMP_UNE:
4288   case FCmpInst::FCMP_ONE:
4289     Pred = ICmpInst::ICMP_NE;
4290     break;
4291   case FCmpInst::FCMP_ORD:
4292     return replaceInstUsesWith(I, Builder->getTrue());
4293   case FCmpInst::FCMP_UNO:
4294     return replaceInstUsesWith(I, Builder->getFalse());
4295   }
4296 
4297   // Now we know that the APFloat is a normal number, zero or inf.
4298 
4299   // See if the FP constant is too large for the integer.  For example,
4300   // comparing an i8 to 300.0.
4301   unsigned IntWidth = IntTy->getScalarSizeInBits();
4302 
4303   if (!LHSUnsigned) {
4304     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
4305     // and large values.
4306     APFloat SMax(RHS.getSemantics());
4307     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
4308                           APFloat::rmNearestTiesToEven);
4309     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
4310       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
4311           Pred == ICmpInst::ICMP_SLE)
4312         return replaceInstUsesWith(I, Builder->getTrue());
4313       return replaceInstUsesWith(I, Builder->getFalse());
4314     }
4315   } else {
4316     // If the RHS value is > UnsignedMax, fold the comparison. This handles
4317     // +INF and large values.
4318     APFloat UMax(RHS.getSemantics());
4319     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
4320                           APFloat::rmNearestTiesToEven);
4321     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
4322       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
4323           Pred == ICmpInst::ICMP_ULE)
4324         return replaceInstUsesWith(I, Builder->getTrue());
4325       return replaceInstUsesWith(I, Builder->getFalse());
4326     }
4327   }
4328 
4329   if (!LHSUnsigned) {
4330     // See if the RHS value is < SignedMin.
4331     APFloat SMin(RHS.getSemantics());
4332     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
4333                           APFloat::rmNearestTiesToEven);
4334     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
4335       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
4336           Pred == ICmpInst::ICMP_SGE)
4337         return replaceInstUsesWith(I, Builder->getTrue());
4338       return replaceInstUsesWith(I, Builder->getFalse());
4339     }
4340   } else {
4341     // See if the RHS value is < UnsignedMin.
4342     APFloat SMin(RHS.getSemantics());
4343     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
4344                           APFloat::rmNearestTiesToEven);
4345     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
4346       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
4347           Pred == ICmpInst::ICMP_UGE)
4348         return replaceInstUsesWith(I, Builder->getTrue());
4349       return replaceInstUsesWith(I, Builder->getFalse());
4350     }
4351   }
4352 
4353   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
4354   // [0, UMAX], but it may still be fractional.  See if it is fractional by
4355   // casting the FP value to the integer value and back, checking for equality.
4356   // Don't do this for zero, because -0.0 is not fractional.
4357   Constant *RHSInt = LHSUnsigned
4358     ? ConstantExpr::getFPToUI(RHSC, IntTy)
4359     : ConstantExpr::getFPToSI(RHSC, IntTy);
4360   if (!RHS.isZero()) {
4361     bool Equal = LHSUnsigned
4362       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
4363       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
4364     if (!Equal) {
4365       // If we had a comparison against a fractional value, we have to adjust
4366       // the compare predicate and sometimes the value.  RHSC is rounded towards
4367       // zero at this point.
4368       switch (Pred) {
4369       default: llvm_unreachable("Unexpected integer comparison!");
4370       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
4371         return replaceInstUsesWith(I, Builder->getTrue());
4372       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
4373         return replaceInstUsesWith(I, Builder->getFalse());
4374       case ICmpInst::ICMP_ULE:
4375         // (float)int <= 4.4   --> int <= 4
4376         // (float)int <= -4.4  --> false
4377         if (RHS.isNegative())
4378           return replaceInstUsesWith(I, Builder->getFalse());
4379         break;
4380       case ICmpInst::ICMP_SLE:
4381         // (float)int <= 4.4   --> int <= 4
4382         // (float)int <= -4.4  --> int < -4
4383         if (RHS.isNegative())
4384           Pred = ICmpInst::ICMP_SLT;
4385         break;
4386       case ICmpInst::ICMP_ULT:
4387         // (float)int < -4.4   --> false
4388         // (float)int < 4.4    --> int <= 4
4389         if (RHS.isNegative())
4390           return replaceInstUsesWith(I, Builder->getFalse());
4391         Pred = ICmpInst::ICMP_ULE;
4392         break;
4393       case ICmpInst::ICMP_SLT:
4394         // (float)int < -4.4   --> int < -4
4395         // (float)int < 4.4    --> int <= 4
4396         if (!RHS.isNegative())
4397           Pred = ICmpInst::ICMP_SLE;
4398         break;
4399       case ICmpInst::ICMP_UGT:
4400         // (float)int > 4.4    --> int > 4
4401         // (float)int > -4.4   --> true
4402         if (RHS.isNegative())
4403           return replaceInstUsesWith(I, Builder->getTrue());
4404         break;
4405       case ICmpInst::ICMP_SGT:
4406         // (float)int > 4.4    --> int > 4
4407         // (float)int > -4.4   --> int >= -4
4408         if (RHS.isNegative())
4409           Pred = ICmpInst::ICMP_SGE;
4410         break;
4411       case ICmpInst::ICMP_UGE:
4412         // (float)int >= -4.4   --> true
4413         // (float)int >= 4.4    --> int > 4
4414         if (RHS.isNegative())
4415           return replaceInstUsesWith(I, Builder->getTrue());
4416         Pred = ICmpInst::ICMP_UGT;
4417         break;
4418       case ICmpInst::ICMP_SGE:
4419         // (float)int >= -4.4   --> int >= -4
4420         // (float)int >= 4.4    --> int > 4
4421         if (!RHS.isNegative())
4422           Pred = ICmpInst::ICMP_SGT;
4423         break;
4424       }
4425     }
4426   }
4427 
4428   // Lower this FP comparison into an appropriate integer version of the
4429   // comparison.
4430   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
4431 }
4432 
4433 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4434   bool Changed = false;
4435 
4436   /// Orders the operands of the compare so that they are listed from most
4437   /// complex to least complex.  This puts constants before unary operators,
4438   /// before binary operators.
4439   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
4440     I.swapOperands();
4441     Changed = true;
4442   }
4443 
4444   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4445 
4446   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
4447                                   I.getFastMathFlags(), DL, TLI, DT, AC, &I))
4448     return replaceInstUsesWith(I, V);
4449 
4450   // Simplify 'fcmp pred X, X'
4451   if (Op0 == Op1) {
4452     switch (I.getPredicate()) {
4453     default: llvm_unreachable("Unknown predicate!");
4454     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
4455     case FCmpInst::FCMP_ULT:    // True if unordered or less than
4456     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
4457     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
4458       // Canonicalize these to be 'fcmp uno %X, 0.0'.
4459       I.setPredicate(FCmpInst::FCMP_UNO);
4460       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4461       return &I;
4462 
4463     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
4464     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
4465     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
4466     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
4467       // Canonicalize these to be 'fcmp ord %X, 0.0'.
4468       I.setPredicate(FCmpInst::FCMP_ORD);
4469       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4470       return &I;
4471     }
4472   }
4473 
4474   // Test if the FCmpInst instruction is used exclusively by a select as
4475   // part of a minimum or maximum operation. If so, refrain from doing
4476   // any other folding. This helps out other analyses which understand
4477   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4478   // and CodeGen. And in this case, at least one of the comparison
4479   // operands has at least one user besides the compare (the select),
4480   // which would often largely negate the benefit of folding anyway.
4481   if (I.hasOneUse())
4482     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4483       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4484           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4485         return nullptr;
4486 
4487   // Handle fcmp with constant RHS
4488   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4489     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4490       switch (LHSI->getOpcode()) {
4491       case Instruction::FPExt: {
4492         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
4493         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
4494         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
4495         if (!RHSF)
4496           break;
4497 
4498         const fltSemantics *Sem;
4499         // FIXME: This shouldn't be here.
4500         if (LHSExt->getSrcTy()->isHalfTy())
4501           Sem = &APFloat::IEEEhalf;
4502         else if (LHSExt->getSrcTy()->isFloatTy())
4503           Sem = &APFloat::IEEEsingle;
4504         else if (LHSExt->getSrcTy()->isDoubleTy())
4505           Sem = &APFloat::IEEEdouble;
4506         else if (LHSExt->getSrcTy()->isFP128Ty())
4507           Sem = &APFloat::IEEEquad;
4508         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
4509           Sem = &APFloat::x87DoubleExtended;
4510         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
4511           Sem = &APFloat::PPCDoubleDouble;
4512         else
4513           break;
4514 
4515         bool Lossy;
4516         APFloat F = RHSF->getValueAPF();
4517         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
4518 
4519         // Avoid lossy conversions and denormals. Zero is a special case
4520         // that's OK to convert.
4521         APFloat Fabs = F;
4522         Fabs.clearSign();
4523         if (!Lossy &&
4524             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
4525                  APFloat::cmpLessThan) || Fabs.isZero()))
4526 
4527           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4528                               ConstantFP::get(RHSC->getContext(), F));
4529         break;
4530       }
4531       case Instruction::PHI:
4532         // Only fold fcmp into the PHI if the phi and fcmp are in the same
4533         // block.  If in the same block, we're encouraging jump threading.  If
4534         // not, we are just pessimizing the code by making an i1 phi.
4535         if (LHSI->getParent() == I.getParent())
4536           if (Instruction *NV = FoldOpIntoPhi(I))
4537             return NV;
4538         break;
4539       case Instruction::SIToFP:
4540       case Instruction::UIToFP:
4541         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
4542           return NV;
4543         break;
4544       case Instruction::FSub: {
4545         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
4546         Value *Op;
4547         if (match(LHSI, m_FNeg(m_Value(Op))))
4548           return new FCmpInst(I.getSwappedPredicate(), Op,
4549                               ConstantExpr::getFNeg(RHSC));
4550         break;
4551       }
4552       case Instruction::Load:
4553         if (GetElementPtrInst *GEP =
4554             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
4555           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4556             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
4557                 !cast<LoadInst>(LHSI)->isVolatile())
4558               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
4559                 return Res;
4560         }
4561         break;
4562       case Instruction::Call: {
4563         if (!RHSC->isNullValue())
4564           break;
4565 
4566         CallInst *CI = cast<CallInst>(LHSI);
4567         Intrinsic::ID IID = getIntrinsicIDForCall(CI, TLI);
4568         if (IID != Intrinsic::fabs)
4569           break;
4570 
4571         // Various optimization for fabs compared with zero.
4572         switch (I.getPredicate()) {
4573         default:
4574           break;
4575         // fabs(x) < 0 --> false
4576         case FCmpInst::FCMP_OLT:
4577           llvm_unreachable("handled by SimplifyFCmpInst");
4578         // fabs(x) > 0 --> x != 0
4579         case FCmpInst::FCMP_OGT:
4580           return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
4581         // fabs(x) <= 0 --> x == 0
4582         case FCmpInst::FCMP_OLE:
4583           return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
4584         // fabs(x) >= 0 --> !isnan(x)
4585         case FCmpInst::FCMP_OGE:
4586           return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
4587         // fabs(x) == 0 --> x == 0
4588         // fabs(x) != 0 --> x != 0
4589         case FCmpInst::FCMP_OEQ:
4590         case FCmpInst::FCMP_UEQ:
4591         case FCmpInst::FCMP_ONE:
4592         case FCmpInst::FCMP_UNE:
4593           return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
4594         }
4595       }
4596       }
4597   }
4598 
4599   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
4600   Value *X, *Y;
4601   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
4602     return new FCmpInst(I.getSwappedPredicate(), X, Y);
4603 
4604   // fcmp (fpext x), (fpext y) -> fcmp x, y
4605   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
4606     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
4607       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
4608         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4609                             RHSExt->getOperand(0));
4610 
4611   return Changed ? &I : nullptr;
4612 }
4613