1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/ConstantRange.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 // How many times is a select replaced by one of its operands?
36 STATISTIC(NumSel, "Number of select opts");
37 
38 
39 /// Compute Result = In1+In2, returning true if the result overflowed for this
40 /// type.
41 static bool addWithOverflow(APInt &Result, const APInt &In1,
42                             const APInt &In2, bool IsSigned = false) {
43   bool Overflow;
44   if (IsSigned)
45     Result = In1.sadd_ov(In2, Overflow);
46   else
47     Result = In1.uadd_ov(In2, Overflow);
48 
49   return Overflow;
50 }
51 
52 /// Compute Result = In1-In2, returning true if the result overflowed for this
53 /// type.
54 static bool subWithOverflow(APInt &Result, const APInt &In1,
55                             const APInt &In2, bool IsSigned = false) {
56   bool Overflow;
57   if (IsSigned)
58     Result = In1.ssub_ov(In2, Overflow);
59   else
60     Result = In1.usub_ov(In2, Overflow);
61 
62   return Overflow;
63 }
64 
65 /// Given an icmp instruction, return true if any use of this comparison is a
66 /// branch on sign bit comparison.
67 static bool hasBranchUse(ICmpInst &I) {
68   for (auto *U : I.users())
69     if (isa<BranchInst>(U))
70       return true;
71   return false;
72 }
73 
74 /// Returns true if the exploded icmp can be expressed as a signed comparison
75 /// to zero and updates the predicate accordingly.
76 /// The signedness of the comparison is preserved.
77 /// TODO: Refactor with decomposeBitTestICmp()?
78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
79   if (!ICmpInst::isSigned(Pred))
80     return false;
81 
82   if (C.isZero())
83     return ICmpInst::isRelational(Pred);
84 
85   if (C.isOne()) {
86     if (Pred == ICmpInst::ICMP_SLT) {
87       Pred = ICmpInst::ICMP_SLE;
88       return true;
89     }
90   } else if (C.isAllOnes()) {
91     if (Pred == ICmpInst::ICMP_SGT) {
92       Pred = ICmpInst::ICMP_SGE;
93       return true;
94     }
95   }
96 
97   return false;
98 }
99 
100 /// This is called when we see this pattern:
101 ///   cmp pred (load (gep GV, ...)), cmpcst
102 /// where GV is a global variable with a constant initializer. Try to simplify
103 /// this into some simple computation that does not need the load. For example
104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
105 ///
106 /// If AndCst is non-null, then the loaded value is masked with that constant
107 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
108 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
109     LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
110     ConstantInt *AndCst) {
111   if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
112       GV->getValueType() != GEP->getSourceElementType() ||
113       !GV->isConstant() || !GV->hasDefinitiveInitializer())
114     return nullptr;
115 
116   Constant *Init = GV->getInitializer();
117   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
118     return nullptr;
119 
120   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
121   // Don't blow up on huge arrays.
122   if (ArrayElementCount > MaxArraySizeForCombine)
123     return nullptr;
124 
125   // There are many forms of this optimization we can handle, for now, just do
126   // the simple index into a single-dimensional array.
127   //
128   // Require: GEP GV, 0, i {{, constant indices}}
129   if (GEP->getNumOperands() < 3 ||
130       !isa<ConstantInt>(GEP->getOperand(1)) ||
131       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
132       isa<Constant>(GEP->getOperand(2)))
133     return nullptr;
134 
135   // Check that indices after the variable are constants and in-range for the
136   // type they index.  Collect the indices.  This is typically for arrays of
137   // structs.
138   SmallVector<unsigned, 4> LaterIndices;
139 
140   Type *EltTy = Init->getType()->getArrayElementType();
141   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
142     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
143     if (!Idx) return nullptr;  // Variable index.
144 
145     uint64_t IdxVal = Idx->getZExtValue();
146     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
147 
148     if (StructType *STy = dyn_cast<StructType>(EltTy))
149       EltTy = STy->getElementType(IdxVal);
150     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
151       if (IdxVal >= ATy->getNumElements()) return nullptr;
152       EltTy = ATy->getElementType();
153     } else {
154       return nullptr; // Unknown type.
155     }
156 
157     LaterIndices.push_back(IdxVal);
158   }
159 
160   enum { Overdefined = -3, Undefined = -2 };
161 
162   // Variables for our state machines.
163 
164   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
165   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
166   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
167   // undefined, otherwise set to the first true element.  SecondTrueElement is
168   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
169   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
170 
171   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
172   // form "i != 47 & i != 87".  Same state transitions as for true elements.
173   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
174 
175   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
176   /// define a state machine that triggers for ranges of values that the index
177   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
178   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
179   /// index in the range (inclusive).  We use -2 for undefined here because we
180   /// use relative comparisons and don't want 0-1 to match -1.
181   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
182 
183   // MagicBitvector - This is a magic bitvector where we set a bit if the
184   // comparison is true for element 'i'.  If there are 64 elements or less in
185   // the array, this will fully represent all the comparison results.
186   uint64_t MagicBitvector = 0;
187 
188   // Scan the array and see if one of our patterns matches.
189   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
190   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
191     Constant *Elt = Init->getAggregateElement(i);
192     if (!Elt) return nullptr;
193 
194     // If this is indexing an array of structures, get the structure element.
195     if (!LaterIndices.empty())
196       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
197 
198     // If the element is masked, handle it.
199     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
200 
201     // Find out if the comparison would be true or false for the i'th element.
202     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
203                                                   CompareRHS, DL, &TLI);
204     // If the result is undef for this element, ignore it.
205     if (isa<UndefValue>(C)) {
206       // Extend range state machines to cover this element in case there is an
207       // undef in the middle of the range.
208       if (TrueRangeEnd == (int)i-1)
209         TrueRangeEnd = i;
210       if (FalseRangeEnd == (int)i-1)
211         FalseRangeEnd = i;
212       continue;
213     }
214 
215     // If we can't compute the result for any of the elements, we have to give
216     // up evaluating the entire conditional.
217     if (!isa<ConstantInt>(C)) return nullptr;
218 
219     // Otherwise, we know if the comparison is true or false for this element,
220     // update our state machines.
221     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
222 
223     // State machine for single/double/range index comparison.
224     if (IsTrueForElt) {
225       // Update the TrueElement state machine.
226       if (FirstTrueElement == Undefined)
227         FirstTrueElement = TrueRangeEnd = i;  // First true element.
228       else {
229         // Update double-compare state machine.
230         if (SecondTrueElement == Undefined)
231           SecondTrueElement = i;
232         else
233           SecondTrueElement = Overdefined;
234 
235         // Update range state machine.
236         if (TrueRangeEnd == (int)i-1)
237           TrueRangeEnd = i;
238         else
239           TrueRangeEnd = Overdefined;
240       }
241     } else {
242       // Update the FalseElement state machine.
243       if (FirstFalseElement == Undefined)
244         FirstFalseElement = FalseRangeEnd = i; // First false element.
245       else {
246         // Update double-compare state machine.
247         if (SecondFalseElement == Undefined)
248           SecondFalseElement = i;
249         else
250           SecondFalseElement = Overdefined;
251 
252         // Update range state machine.
253         if (FalseRangeEnd == (int)i-1)
254           FalseRangeEnd = i;
255         else
256           FalseRangeEnd = Overdefined;
257       }
258     }
259 
260     // If this element is in range, update our magic bitvector.
261     if (i < 64 && IsTrueForElt)
262       MagicBitvector |= 1ULL << i;
263 
264     // If all of our states become overdefined, bail out early.  Since the
265     // predicate is expensive, only check it every 8 elements.  This is only
266     // really useful for really huge arrays.
267     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
268         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
269         FalseRangeEnd == Overdefined)
270       return nullptr;
271   }
272 
273   // Now that we've scanned the entire array, emit our new comparison(s).  We
274   // order the state machines in complexity of the generated code.
275   Value *Idx = GEP->getOperand(2);
276 
277   // If the index is larger than the pointer size of the target, truncate the
278   // index down like the GEP would do implicitly.  We don't have to do this for
279   // an inbounds GEP because the index can't be out of range.
280   if (!GEP->isInBounds()) {
281     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
282     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
283     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
284       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
285   }
286 
287   // If inbounds keyword is not present, Idx * ElementSize can overflow.
288   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
289   // Then, there are two possible values for Idx to match offset 0:
290   // 0x00..00, 0x80..00.
291   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
292   // comparison is false if Idx was 0x80..00.
293   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
294   unsigned ElementSize =
295       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
296   auto MaskIdx = [&](Value* Idx){
297     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
298       Value *Mask = ConstantInt::get(Idx->getType(), -1);
299       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
300       Idx = Builder.CreateAnd(Idx, Mask);
301     }
302     return Idx;
303   };
304 
305   // If the comparison is only true for one or two elements, emit direct
306   // comparisons.
307   if (SecondTrueElement != Overdefined) {
308     Idx = MaskIdx(Idx);
309     // None true -> false.
310     if (FirstTrueElement == Undefined)
311       return replaceInstUsesWith(ICI, Builder.getFalse());
312 
313     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
314 
315     // True for one element -> 'i == 47'.
316     if (SecondTrueElement == Undefined)
317       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
318 
319     // True for two elements -> 'i == 47 | i == 72'.
320     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
321     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
322     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
323     return BinaryOperator::CreateOr(C1, C2);
324   }
325 
326   // If the comparison is only false for one or two elements, emit direct
327   // comparisons.
328   if (SecondFalseElement != Overdefined) {
329     Idx = MaskIdx(Idx);
330     // None false -> true.
331     if (FirstFalseElement == Undefined)
332       return replaceInstUsesWith(ICI, Builder.getTrue());
333 
334     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
335 
336     // False for one element -> 'i != 47'.
337     if (SecondFalseElement == Undefined)
338       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
339 
340     // False for two elements -> 'i != 47 & i != 72'.
341     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
342     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
343     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
344     return BinaryOperator::CreateAnd(C1, C2);
345   }
346 
347   // If the comparison can be replaced with a range comparison for the elements
348   // where it is true, emit the range check.
349   if (TrueRangeEnd != Overdefined) {
350     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
351     Idx = MaskIdx(Idx);
352 
353     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
354     if (FirstTrueElement) {
355       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
356       Idx = Builder.CreateAdd(Idx, Offs);
357     }
358 
359     Value *End = ConstantInt::get(Idx->getType(),
360                                   TrueRangeEnd-FirstTrueElement+1);
361     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
362   }
363 
364   // False range check.
365   if (FalseRangeEnd != Overdefined) {
366     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
367     Idx = MaskIdx(Idx);
368     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
369     if (FirstFalseElement) {
370       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
371       Idx = Builder.CreateAdd(Idx, Offs);
372     }
373 
374     Value *End = ConstantInt::get(Idx->getType(),
375                                   FalseRangeEnd-FirstFalseElement);
376     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
377   }
378 
379   // If a magic bitvector captures the entire comparison state
380   // of this load, replace it with computation that does:
381   //   ((magic_cst >> i) & 1) != 0
382   {
383     Type *Ty = nullptr;
384 
385     // Look for an appropriate type:
386     // - The type of Idx if the magic fits
387     // - The smallest fitting legal type
388     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
389       Ty = Idx->getType();
390     else
391       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
392 
393     if (Ty) {
394       Idx = MaskIdx(Idx);
395       Value *V = Builder.CreateIntCast(Idx, Ty, false);
396       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
397       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
398       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
399     }
400   }
401 
402   return nullptr;
403 }
404 
405 /// Return a value that can be used to compare the *offset* implied by a GEP to
406 /// zero. For example, if we have &A[i], we want to return 'i' for
407 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
408 /// are involved. The above expression would also be legal to codegen as
409 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
410 /// This latter form is less amenable to optimization though, and we are allowed
411 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
412 ///
413 /// If we can't emit an optimized form for this expression, this returns null.
414 ///
415 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
416                                           const DataLayout &DL) {
417   gep_type_iterator GTI = gep_type_begin(GEP);
418 
419   // Check to see if this gep only has a single variable index.  If so, and if
420   // any constant indices are a multiple of its scale, then we can compute this
421   // in terms of the scale of the variable index.  For example, if the GEP
422   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
423   // because the expression will cross zero at the same point.
424   unsigned i, e = GEP->getNumOperands();
425   int64_t Offset = 0;
426   for (i = 1; i != e; ++i, ++GTI) {
427     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
428       // Compute the aggregate offset of constant indices.
429       if (CI->isZero()) continue;
430 
431       // Handle a struct index, which adds its field offset to the pointer.
432       if (StructType *STy = GTI.getStructTypeOrNull()) {
433         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
434       } else {
435         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
436         Offset += Size*CI->getSExtValue();
437       }
438     } else {
439       // Found our variable index.
440       break;
441     }
442   }
443 
444   // If there are no variable indices, we must have a constant offset, just
445   // evaluate it the general way.
446   if (i == e) return nullptr;
447 
448   Value *VariableIdx = GEP->getOperand(i);
449   // Determine the scale factor of the variable element.  For example, this is
450   // 4 if the variable index is into an array of i32.
451   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
452 
453   // Verify that there are no other variable indices.  If so, emit the hard way.
454   for (++i, ++GTI; i != e; ++i, ++GTI) {
455     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
456     if (!CI) return nullptr;
457 
458     // Compute the aggregate offset of constant indices.
459     if (CI->isZero()) continue;
460 
461     // Handle a struct index, which adds its field offset to the pointer.
462     if (StructType *STy = GTI.getStructTypeOrNull()) {
463       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
464     } else {
465       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
466       Offset += Size*CI->getSExtValue();
467     }
468   }
469 
470   // Okay, we know we have a single variable index, which must be a
471   // pointer/array/vector index.  If there is no offset, life is simple, return
472   // the index.
473   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
474   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
475   if (Offset == 0) {
476     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
477     // we don't need to bother extending: the extension won't affect where the
478     // computation crosses zero.
479     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
480         IntPtrWidth) {
481       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
482     }
483     return VariableIdx;
484   }
485 
486   // Otherwise, there is an index.  The computation we will do will be modulo
487   // the pointer size.
488   Offset = SignExtend64(Offset, IntPtrWidth);
489   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
490 
491   // To do this transformation, any constant index must be a multiple of the
492   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
493   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
494   // multiple of the variable scale.
495   int64_t NewOffs = Offset / (int64_t)VariableScale;
496   if (Offset != NewOffs*(int64_t)VariableScale)
497     return nullptr;
498 
499   // Okay, we can do this evaluation.  Start by converting the index to intptr.
500   if (VariableIdx->getType() != IntPtrTy)
501     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
502                                             true /*Signed*/);
503   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
504   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
505 }
506 
507 /// Returns true if we can rewrite Start as a GEP with pointer Base
508 /// and some integer offset. The nodes that need to be re-written
509 /// for this transformation will be added to Explored.
510 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
511                                   const DataLayout &DL,
512                                   SetVector<Value *> &Explored) {
513   SmallVector<Value *, 16> WorkList(1, Start);
514   Explored.insert(Base);
515 
516   // The following traversal gives us an order which can be used
517   // when doing the final transformation. Since in the final
518   // transformation we create the PHI replacement instructions first,
519   // we don't have to get them in any particular order.
520   //
521   // However, for other instructions we will have to traverse the
522   // operands of an instruction first, which means that we have to
523   // do a post-order traversal.
524   while (!WorkList.empty()) {
525     SetVector<PHINode *> PHIs;
526 
527     while (!WorkList.empty()) {
528       if (Explored.size() >= 100)
529         return false;
530 
531       Value *V = WorkList.back();
532 
533       if (Explored.contains(V)) {
534         WorkList.pop_back();
535         continue;
536       }
537 
538       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
539           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
540         // We've found some value that we can't explore which is different from
541         // the base. Therefore we can't do this transformation.
542         return false;
543 
544       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
545         auto *CI = cast<CastInst>(V);
546         if (!CI->isNoopCast(DL))
547           return false;
548 
549         if (!Explored.contains(CI->getOperand(0)))
550           WorkList.push_back(CI->getOperand(0));
551       }
552 
553       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
554         // We're limiting the GEP to having one index. This will preserve
555         // the original pointer type. We could handle more cases in the
556         // future.
557         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
558             GEP->getSourceElementType() != ElemTy)
559           return false;
560 
561         if (!Explored.contains(GEP->getOperand(0)))
562           WorkList.push_back(GEP->getOperand(0));
563       }
564 
565       if (WorkList.back() == V) {
566         WorkList.pop_back();
567         // We've finished visiting this node, mark it as such.
568         Explored.insert(V);
569       }
570 
571       if (auto *PN = dyn_cast<PHINode>(V)) {
572         // We cannot transform PHIs on unsplittable basic blocks.
573         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
574           return false;
575         Explored.insert(PN);
576         PHIs.insert(PN);
577       }
578     }
579 
580     // Explore the PHI nodes further.
581     for (auto *PN : PHIs)
582       for (Value *Op : PN->incoming_values())
583         if (!Explored.contains(Op))
584           WorkList.push_back(Op);
585   }
586 
587   // Make sure that we can do this. Since we can't insert GEPs in a basic
588   // block before a PHI node, we can't easily do this transformation if
589   // we have PHI node users of transformed instructions.
590   for (Value *Val : Explored) {
591     for (Value *Use : Val->uses()) {
592 
593       auto *PHI = dyn_cast<PHINode>(Use);
594       auto *Inst = dyn_cast<Instruction>(Val);
595 
596       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
597           !Explored.contains(PHI))
598         continue;
599 
600       if (PHI->getParent() == Inst->getParent())
601         return false;
602     }
603   }
604   return true;
605 }
606 
607 // Sets the appropriate insert point on Builder where we can add
608 // a replacement Instruction for V (if that is possible).
609 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
610                               bool Before = true) {
611   if (auto *PHI = dyn_cast<PHINode>(V)) {
612     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
613     return;
614   }
615   if (auto *I = dyn_cast<Instruction>(V)) {
616     if (!Before)
617       I = &*std::next(I->getIterator());
618     Builder.SetInsertPoint(I);
619     return;
620   }
621   if (auto *A = dyn_cast<Argument>(V)) {
622     // Set the insertion point in the entry block.
623     BasicBlock &Entry = A->getParent()->getEntryBlock();
624     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
625     return;
626   }
627   // Otherwise, this is a constant and we don't need to set a new
628   // insertion point.
629   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
630 }
631 
632 /// Returns a re-written value of Start as an indexed GEP using Base as a
633 /// pointer.
634 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
635                                  const DataLayout &DL,
636                                  SetVector<Value *> &Explored) {
637   // Perform all the substitutions. This is a bit tricky because we can
638   // have cycles in our use-def chains.
639   // 1. Create the PHI nodes without any incoming values.
640   // 2. Create all the other values.
641   // 3. Add the edges for the PHI nodes.
642   // 4. Emit GEPs to get the original pointers.
643   // 5. Remove the original instructions.
644   Type *IndexType = IntegerType::get(
645       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
646 
647   DenseMap<Value *, Value *> NewInsts;
648   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
649 
650   // Create the new PHI nodes, without adding any incoming values.
651   for (Value *Val : Explored) {
652     if (Val == Base)
653       continue;
654     // Create empty phi nodes. This avoids cyclic dependencies when creating
655     // the remaining instructions.
656     if (auto *PHI = dyn_cast<PHINode>(Val))
657       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
658                                       PHI->getName() + ".idx", PHI);
659   }
660   IRBuilder<> Builder(Base->getContext());
661 
662   // Create all the other instructions.
663   for (Value *Val : Explored) {
664 
665     if (NewInsts.find(Val) != NewInsts.end())
666       continue;
667 
668     if (auto *CI = dyn_cast<CastInst>(Val)) {
669       // Don't get rid of the intermediate variable here; the store can grow
670       // the map which will invalidate the reference to the input value.
671       Value *V = NewInsts[CI->getOperand(0)];
672       NewInsts[CI] = V;
673       continue;
674     }
675     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
676       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
677                                                   : GEP->getOperand(1);
678       setInsertionPoint(Builder, GEP);
679       // Indices might need to be sign extended. GEPs will magically do
680       // this, but we need to do it ourselves here.
681       if (Index->getType()->getScalarSizeInBits() !=
682           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
683         Index = Builder.CreateSExtOrTrunc(
684             Index, NewInsts[GEP->getOperand(0)]->getType(),
685             GEP->getOperand(0)->getName() + ".sext");
686       }
687 
688       auto *Op = NewInsts[GEP->getOperand(0)];
689       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
690         NewInsts[GEP] = Index;
691       else
692         NewInsts[GEP] = Builder.CreateNSWAdd(
693             Op, Index, GEP->getOperand(0)->getName() + ".add");
694       continue;
695     }
696     if (isa<PHINode>(Val))
697       continue;
698 
699     llvm_unreachable("Unexpected instruction type");
700   }
701 
702   // Add the incoming values to the PHI nodes.
703   for (Value *Val : Explored) {
704     if (Val == Base)
705       continue;
706     // All the instructions have been created, we can now add edges to the
707     // phi nodes.
708     if (auto *PHI = dyn_cast<PHINode>(Val)) {
709       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
710       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
711         Value *NewIncoming = PHI->getIncomingValue(I);
712 
713         if (NewInsts.find(NewIncoming) != NewInsts.end())
714           NewIncoming = NewInsts[NewIncoming];
715 
716         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
717       }
718     }
719   }
720 
721   PointerType *PtrTy =
722       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
723   for (Value *Val : Explored) {
724     if (Val == Base)
725       continue;
726 
727     // Depending on the type, for external users we have to emit
728     // a GEP or a GEP + ptrtoint.
729     setInsertionPoint(Builder, Val, false);
730 
731     // Cast base to the expected type.
732     Value *NewVal = Builder.CreateBitOrPointerCast(
733         Base, PtrTy, Start->getName() + "to.ptr");
734     NewVal = Builder.CreateInBoundsGEP(
735         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
736     NewVal = Builder.CreateBitOrPointerCast(
737         NewVal, Val->getType(), Val->getName() + ".conv");
738     Val->replaceAllUsesWith(NewVal);
739   }
740 
741   return NewInsts[Start];
742 }
743 
744 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
745 /// the input Value as a constant indexed GEP. Returns a pair containing
746 /// the GEPs Pointer and Index.
747 static std::pair<Value *, Value *>
748 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
749   Type *IndexType = IntegerType::get(V->getContext(),
750                                      DL.getIndexTypeSizeInBits(V->getType()));
751 
752   Constant *Index = ConstantInt::getNullValue(IndexType);
753   while (true) {
754     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
755       // We accept only inbouds GEPs here to exclude the possibility of
756       // overflow.
757       if (!GEP->isInBounds())
758         break;
759       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
760           GEP->getSourceElementType() == ElemTy) {
761         V = GEP->getOperand(0);
762         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
763         Index = ConstantExpr::getAdd(
764             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
765         continue;
766       }
767       break;
768     }
769     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
770       if (!CI->isNoopCast(DL))
771         break;
772       V = CI->getOperand(0);
773       continue;
774     }
775     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
776       if (!CI->isNoopCast(DL))
777         break;
778       V = CI->getOperand(0);
779       continue;
780     }
781     break;
782   }
783   return {V, Index};
784 }
785 
786 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
787 /// We can look through PHIs, GEPs and casts in order to determine a common base
788 /// between GEPLHS and RHS.
789 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
790                                               ICmpInst::Predicate Cond,
791                                               const DataLayout &DL) {
792   // FIXME: Support vector of pointers.
793   if (GEPLHS->getType()->isVectorTy())
794     return nullptr;
795 
796   if (!GEPLHS->hasAllConstantIndices())
797     return nullptr;
798 
799   Type *ElemTy = GEPLHS->getSourceElementType();
800   Value *PtrBase, *Index;
801   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
802 
803   // The set of nodes that will take part in this transformation.
804   SetVector<Value *> Nodes;
805 
806   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
807     return nullptr;
808 
809   // We know we can re-write this as
810   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
811   // Since we've only looked through inbouds GEPs we know that we
812   // can't have overflow on either side. We can therefore re-write
813   // this as:
814   //   OFFSET1 cmp OFFSET2
815   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
816 
817   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
818   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
819   // offset. Since Index is the offset of LHS to the base pointer, we will now
820   // compare the offsets instead of comparing the pointers.
821   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
822 }
823 
824 /// Fold comparisons between a GEP instruction and something else. At this point
825 /// we know that the GEP is on the LHS of the comparison.
826 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
827                                            ICmpInst::Predicate Cond,
828                                            Instruction &I) {
829   // Don't transform signed compares of GEPs into index compares. Even if the
830   // GEP is inbounds, the final add of the base pointer can have signed overflow
831   // and would change the result of the icmp.
832   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
833   // the maximum signed value for the pointer type.
834   if (ICmpInst::isSigned(Cond))
835     return nullptr;
836 
837   // Look through bitcasts and addrspacecasts. We do not however want to remove
838   // 0 GEPs.
839   if (!isa<GetElementPtrInst>(RHS))
840     RHS = RHS->stripPointerCasts();
841 
842   Value *PtrBase = GEPLHS->getOperand(0);
843   // FIXME: Support vector pointer GEPs.
844   if (PtrBase == RHS && GEPLHS->isInBounds() &&
845       !GEPLHS->getType()->isVectorTy()) {
846     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
847     // This transformation (ignoring the base and scales) is valid because we
848     // know pointers can't overflow since the gep is inbounds.  See if we can
849     // output an optimized form.
850     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
851 
852     // If not, synthesize the offset the hard way.
853     if (!Offset)
854       Offset = EmitGEPOffset(GEPLHS);
855     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
856                         Constant::getNullValue(Offset->getType()));
857   }
858 
859   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
860       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
861       !NullPointerIsDefined(I.getFunction(),
862                             RHS->getType()->getPointerAddressSpace())) {
863     // For most address spaces, an allocation can't be placed at null, but null
864     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
865     // the only valid inbounds address derived from null, is null itself.
866     // Thus, we have four cases to consider:
867     // 1) Base == nullptr, Offset == 0 -> inbounds, null
868     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
869     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
870     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
871     //
872     // (Note if we're indexing a type of size 0, that simply collapses into one
873     //  of the buckets above.)
874     //
875     // In general, we're allowed to make values less poison (i.e. remove
876     //   sources of full UB), so in this case, we just select between the two
877     //   non-poison cases (1 and 4 above).
878     //
879     // For vectors, we apply the same reasoning on a per-lane basis.
880     auto *Base = GEPLHS->getPointerOperand();
881     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
882       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
883       Base = Builder.CreateVectorSplat(EC, Base);
884     }
885     return new ICmpInst(Cond, Base,
886                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
887                             cast<Constant>(RHS), Base->getType()));
888   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
889     // If the base pointers are different, but the indices are the same, just
890     // compare the base pointer.
891     if (PtrBase != GEPRHS->getOperand(0)) {
892       bool IndicesTheSame =
893           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
894           GEPLHS->getType() == GEPRHS->getType() &&
895           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
896       if (IndicesTheSame)
897         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
898           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
899             IndicesTheSame = false;
900             break;
901           }
902 
903       // If all indices are the same, just compare the base pointers.
904       Type *BaseType = GEPLHS->getOperand(0)->getType();
905       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
906         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
907 
908       // If we're comparing GEPs with two base pointers that only differ in type
909       // and both GEPs have only constant indices or just one use, then fold
910       // the compare with the adjusted indices.
911       // FIXME: Support vector of pointers.
912       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
913           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
914           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
915           PtrBase->stripPointerCasts() ==
916               GEPRHS->getOperand(0)->stripPointerCasts() &&
917           !GEPLHS->getType()->isVectorTy()) {
918         Value *LOffset = EmitGEPOffset(GEPLHS);
919         Value *ROffset = EmitGEPOffset(GEPRHS);
920 
921         // If we looked through an addrspacecast between different sized address
922         // spaces, the LHS and RHS pointers are different sized
923         // integers. Truncate to the smaller one.
924         Type *LHSIndexTy = LOffset->getType();
925         Type *RHSIndexTy = ROffset->getType();
926         if (LHSIndexTy != RHSIndexTy) {
927           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
928               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
929             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
930           } else
931             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
932         }
933 
934         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
935                                         LOffset, ROffset);
936         return replaceInstUsesWith(I, Cmp);
937       }
938 
939       // Otherwise, the base pointers are different and the indices are
940       // different. Try convert this to an indexed compare by looking through
941       // PHIs/casts.
942       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
943     }
944 
945     // If one of the GEPs has all zero indices, recurse.
946     // FIXME: Handle vector of pointers.
947     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
948       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
949                          ICmpInst::getSwappedPredicate(Cond), I);
950 
951     // If the other GEP has all zero indices, recurse.
952     // FIXME: Handle vector of pointers.
953     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
954       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
955 
956     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
957     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
958         GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
959       // If the GEPs only differ by one index, compare it.
960       unsigned NumDifferences = 0;  // Keep track of # differences.
961       unsigned DiffOperand = 0;     // The operand that differs.
962       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
963         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
964           Type *LHSType = GEPLHS->getOperand(i)->getType();
965           Type *RHSType = GEPRHS->getOperand(i)->getType();
966           // FIXME: Better support for vector of pointers.
967           if (LHSType->getPrimitiveSizeInBits() !=
968                    RHSType->getPrimitiveSizeInBits() ||
969               (GEPLHS->getType()->isVectorTy() &&
970                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
971             // Irreconcilable differences.
972             NumDifferences = 2;
973             break;
974           }
975 
976           if (NumDifferences++) break;
977           DiffOperand = i;
978         }
979 
980       if (NumDifferences == 0)   // SAME GEP?
981         return replaceInstUsesWith(I, // No comparison is needed here.
982           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
983 
984       else if (NumDifferences == 1 && GEPsInBounds) {
985         Value *LHSV = GEPLHS->getOperand(DiffOperand);
986         Value *RHSV = GEPRHS->getOperand(DiffOperand);
987         // Make sure we do a signed comparison here.
988         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
989       }
990     }
991 
992     // Only lower this if the icmp is the only user of the GEP or if we expect
993     // the result to fold to a constant!
994     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
995         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
996       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
997       Value *L = EmitGEPOffset(GEPLHS);
998       Value *R = EmitGEPOffset(GEPRHS);
999       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1000     }
1001   }
1002 
1003   // Try convert this to an indexed compare by looking through PHIs/casts as a
1004   // last resort.
1005   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1006 }
1007 
1008 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1009                                              const AllocaInst *Alloca) {
1010   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1011 
1012   // It would be tempting to fold away comparisons between allocas and any
1013   // pointer not based on that alloca (e.g. an argument). However, even
1014   // though such pointers cannot alias, they can still compare equal.
1015   //
1016   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1017   // doesn't escape we can argue that it's impossible to guess its value, and we
1018   // can therefore act as if any such guesses are wrong.
1019   //
1020   // The code below checks that the alloca doesn't escape, and that it's only
1021   // used in a comparison once (the current instruction). The
1022   // single-comparison-use condition ensures that we're trivially folding all
1023   // comparisons against the alloca consistently, and avoids the risk of
1024   // erroneously folding a comparison of the pointer with itself.
1025 
1026   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1027 
1028   SmallVector<const Use *, 32> Worklist;
1029   for (const Use &U : Alloca->uses()) {
1030     if (Worklist.size() >= MaxIter)
1031       return nullptr;
1032     Worklist.push_back(&U);
1033   }
1034 
1035   unsigned NumCmps = 0;
1036   while (!Worklist.empty()) {
1037     assert(Worklist.size() <= MaxIter);
1038     const Use *U = Worklist.pop_back_val();
1039     const Value *V = U->getUser();
1040     --MaxIter;
1041 
1042     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1043         isa<SelectInst>(V)) {
1044       // Track the uses.
1045     } else if (isa<LoadInst>(V)) {
1046       // Loading from the pointer doesn't escape it.
1047       continue;
1048     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1049       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1050       if (SI->getValueOperand() == U->get())
1051         return nullptr;
1052       continue;
1053     } else if (isa<ICmpInst>(V)) {
1054       if (NumCmps++)
1055         return nullptr; // Found more than one cmp.
1056       continue;
1057     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1058       switch (Intrin->getIntrinsicID()) {
1059         // These intrinsics don't escape or compare the pointer. Memset is safe
1060         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1061         // we don't allow stores, so src cannot point to V.
1062         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1063         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1064           continue;
1065         default:
1066           return nullptr;
1067       }
1068     } else {
1069       return nullptr;
1070     }
1071     for (const Use &U : V->uses()) {
1072       if (Worklist.size() >= MaxIter)
1073         return nullptr;
1074       Worklist.push_back(&U);
1075     }
1076   }
1077 
1078   auto *Res = ConstantInt::get(ICI.getType(),
1079                                !CmpInst::isTrueWhenEqual(ICI.getPredicate()));
1080   return replaceInstUsesWith(ICI, Res);
1081 }
1082 
1083 /// Fold "icmp pred (X+C), X".
1084 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1085                                                   ICmpInst::Predicate Pred) {
1086   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1087   // so the values can never be equal.  Similarly for all other "or equals"
1088   // operators.
1089   assert(!!C && "C should not be zero!");
1090 
1091   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1092   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1093   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1094   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1095     Constant *R = ConstantInt::get(X->getType(),
1096                                    APInt::getMaxValue(C.getBitWidth()) - C);
1097     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1098   }
1099 
1100   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1101   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1102   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1103   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1104     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1105                         ConstantInt::get(X->getType(), -C));
1106 
1107   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1108 
1109   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1110   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1111   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1112   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1113   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1114   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1115   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1116     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1117                         ConstantInt::get(X->getType(), SMax - C));
1118 
1119   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1120   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1121   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1122   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1123   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1124   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1125 
1126   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1127   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1128                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1129 }
1130 
1131 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1132 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1133 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1134 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1135                                                      const APInt &AP1,
1136                                                      const APInt &AP2) {
1137   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1138 
1139   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1140     if (I.getPredicate() == I.ICMP_NE)
1141       Pred = CmpInst::getInversePredicate(Pred);
1142     return new ICmpInst(Pred, LHS, RHS);
1143   };
1144 
1145   // Don't bother doing any work for cases which InstSimplify handles.
1146   if (AP2.isZero())
1147     return nullptr;
1148 
1149   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1150   if (IsAShr) {
1151     if (AP2.isAllOnes())
1152       return nullptr;
1153     if (AP2.isNegative() != AP1.isNegative())
1154       return nullptr;
1155     if (AP2.sgt(AP1))
1156       return nullptr;
1157   }
1158 
1159   if (!AP1)
1160     // 'A' must be large enough to shift out the highest set bit.
1161     return getICmp(I.ICMP_UGT, A,
1162                    ConstantInt::get(A->getType(), AP2.logBase2()));
1163 
1164   if (AP1 == AP2)
1165     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1166 
1167   int Shift;
1168   if (IsAShr && AP1.isNegative())
1169     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1170   else
1171     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1172 
1173   if (Shift > 0) {
1174     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1175       // There are multiple solutions if we are comparing against -1 and the LHS
1176       // of the ashr is not a power of two.
1177       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1178         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1179       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1180     } else if (AP1 == AP2.lshr(Shift)) {
1181       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1182     }
1183   }
1184 
1185   // Shifting const2 will never be equal to const1.
1186   // FIXME: This should always be handled by InstSimplify?
1187   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1188   return replaceInstUsesWith(I, TorF);
1189 }
1190 
1191 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1192 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1193 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1194                                                      const APInt &AP1,
1195                                                      const APInt &AP2) {
1196   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1197 
1198   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1199     if (I.getPredicate() == I.ICMP_NE)
1200       Pred = CmpInst::getInversePredicate(Pred);
1201     return new ICmpInst(Pred, LHS, RHS);
1202   };
1203 
1204   // Don't bother doing any work for cases which InstSimplify handles.
1205   if (AP2.isZero())
1206     return nullptr;
1207 
1208   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1209 
1210   if (!AP1 && AP2TrailingZeros != 0)
1211     return getICmp(
1212         I.ICMP_UGE, A,
1213         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1214 
1215   if (AP1 == AP2)
1216     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1217 
1218   // Get the distance between the lowest bits that are set.
1219   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1220 
1221   if (Shift > 0 && AP2.shl(Shift) == AP1)
1222     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1223 
1224   // Shifting const2 will never be equal to const1.
1225   // FIXME: This should always be handled by InstSimplify?
1226   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1227   return replaceInstUsesWith(I, TorF);
1228 }
1229 
1230 /// The caller has matched a pattern of the form:
1231 ///   I = icmp ugt (add (add A, B), CI2), CI1
1232 /// If this is of the form:
1233 ///   sum = a + b
1234 ///   if (sum+128 >u 255)
1235 /// Then replace it with llvm.sadd.with.overflow.i8.
1236 ///
1237 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1238                                           ConstantInt *CI2, ConstantInt *CI1,
1239                                           InstCombinerImpl &IC) {
1240   // The transformation we're trying to do here is to transform this into an
1241   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1242   // with a narrower add, and discard the add-with-constant that is part of the
1243   // range check (if we can't eliminate it, this isn't profitable).
1244 
1245   // In order to eliminate the add-with-constant, the compare can be its only
1246   // use.
1247   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1248   if (!AddWithCst->hasOneUse())
1249     return nullptr;
1250 
1251   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1252   if (!CI2->getValue().isPowerOf2())
1253     return nullptr;
1254   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1255   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1256     return nullptr;
1257 
1258   // The width of the new add formed is 1 more than the bias.
1259   ++NewWidth;
1260 
1261   // Check to see that CI1 is an all-ones value with NewWidth bits.
1262   if (CI1->getBitWidth() == NewWidth ||
1263       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1264     return nullptr;
1265 
1266   // This is only really a signed overflow check if the inputs have been
1267   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1268   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1269   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1270       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1271     return nullptr;
1272 
1273   // In order to replace the original add with a narrower
1274   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1275   // and truncates that discard the high bits of the add.  Verify that this is
1276   // the case.
1277   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1278   for (User *U : OrigAdd->users()) {
1279     if (U == AddWithCst)
1280       continue;
1281 
1282     // Only accept truncates for now.  We would really like a nice recursive
1283     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1284     // chain to see which bits of a value are actually demanded.  If the
1285     // original add had another add which was then immediately truncated, we
1286     // could still do the transformation.
1287     TruncInst *TI = dyn_cast<TruncInst>(U);
1288     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1289       return nullptr;
1290   }
1291 
1292   // If the pattern matches, truncate the inputs to the narrower type and
1293   // use the sadd_with_overflow intrinsic to efficiently compute both the
1294   // result and the overflow bit.
1295   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1296   Function *F = Intrinsic::getDeclaration(
1297       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1298 
1299   InstCombiner::BuilderTy &Builder = IC.Builder;
1300 
1301   // Put the new code above the original add, in case there are any uses of the
1302   // add between the add and the compare.
1303   Builder.SetInsertPoint(OrigAdd);
1304 
1305   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1306   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1307   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1308   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1309   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1310 
1311   // The inner add was the result of the narrow add, zero extended to the
1312   // wider type.  Replace it with the result computed by the intrinsic.
1313   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1314   IC.eraseInstFromFunction(*OrigAdd);
1315 
1316   // The original icmp gets replaced with the overflow value.
1317   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1318 }
1319 
1320 /// If we have:
1321 ///   icmp eq/ne (urem/srem %x, %y), 0
1322 /// iff %y is a power-of-two, we can replace this with a bit test:
1323 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1324 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1325   // This fold is only valid for equality predicates.
1326   if (!I.isEquality())
1327     return nullptr;
1328   ICmpInst::Predicate Pred;
1329   Value *X, *Y, *Zero;
1330   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1331                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1332     return nullptr;
1333   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1334     return nullptr;
1335   // This may increase instruction count, we don't enforce that Y is a constant.
1336   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1337   Value *Masked = Builder.CreateAnd(X, Mask);
1338   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1339 }
1340 
1341 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1342 /// by one-less-than-bitwidth into a sign test on the original value.
1343 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1344   Instruction *Val;
1345   ICmpInst::Predicate Pred;
1346   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1347     return nullptr;
1348 
1349   Value *X;
1350   Type *XTy;
1351 
1352   Constant *C;
1353   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1354     XTy = X->getType();
1355     unsigned XBitWidth = XTy->getScalarSizeInBits();
1356     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1357                                      APInt(XBitWidth, XBitWidth - 1))))
1358       return nullptr;
1359   } else if (isa<BinaryOperator>(Val) &&
1360              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1361                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1362                   /*AnalyzeForSignBitExtraction=*/true))) {
1363     XTy = X->getType();
1364   } else
1365     return nullptr;
1366 
1367   return ICmpInst::Create(Instruction::ICmp,
1368                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1369                                                     : ICmpInst::ICMP_SLT,
1370                           X, ConstantInt::getNullValue(XTy));
1371 }
1372 
1373 // Handle  icmp pred X, 0
1374 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1375   CmpInst::Predicate Pred = Cmp.getPredicate();
1376   if (!match(Cmp.getOperand(1), m_Zero()))
1377     return nullptr;
1378 
1379   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1380   if (Pred == ICmpInst::ICMP_SGT) {
1381     Value *A, *B;
1382     if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1383       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1384         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1385       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1386         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1387     }
1388   }
1389 
1390   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1391     return New;
1392 
1393   // Given:
1394   //   icmp eq/ne (urem %x, %y), 0
1395   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1396   //   icmp eq/ne %x, 0
1397   Value *X, *Y;
1398   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1399       ICmpInst::isEquality(Pred)) {
1400     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1401     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1402     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1403       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1404   }
1405 
1406   return nullptr;
1407 }
1408 
1409 /// Fold icmp Pred X, C.
1410 /// TODO: This code structure does not make sense. The saturating add fold
1411 /// should be moved to some other helper and extended as noted below (it is also
1412 /// possible that code has been made unnecessary - do we canonicalize IR to
1413 /// overflow/saturating intrinsics or not?).
1414 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1415   // Match the following pattern, which is a common idiom when writing
1416   // overflow-safe integer arithmetic functions. The source performs an addition
1417   // in wider type and explicitly checks for overflow using comparisons against
1418   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1419   //
1420   // TODO: This could probably be generalized to handle other overflow-safe
1421   // operations if we worked out the formulas to compute the appropriate magic
1422   // constants.
1423   //
1424   // sum = a + b
1425   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1426   CmpInst::Predicate Pred = Cmp.getPredicate();
1427   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1428   Value *A, *B;
1429   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1430   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1431       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1432     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1433       return Res;
1434 
1435   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1436   Constant *C = dyn_cast<Constant>(Op1);
1437   if (!C || C->canTrap())
1438     return nullptr;
1439 
1440   if (auto *Phi = dyn_cast<PHINode>(Op0))
1441     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1442       Type *Ty = Cmp.getType();
1443       Builder.SetInsertPoint(Phi);
1444       PHINode *NewPhi =
1445           Builder.CreatePHI(Ty, Phi->getNumOperands());
1446       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1447         auto *Input =
1448             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1449         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1450         NewPhi->addIncoming(BoolInput, Predecessor);
1451       }
1452       NewPhi->takeName(&Cmp);
1453       return replaceInstUsesWith(Cmp, NewPhi);
1454     }
1455 
1456   return nullptr;
1457 }
1458 
1459 /// Canonicalize icmp instructions based on dominating conditions.
1460 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1461   // This is a cheap/incomplete check for dominance - just match a single
1462   // predecessor with a conditional branch.
1463   BasicBlock *CmpBB = Cmp.getParent();
1464   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1465   if (!DomBB)
1466     return nullptr;
1467 
1468   Value *DomCond;
1469   BasicBlock *TrueBB, *FalseBB;
1470   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1471     return nullptr;
1472 
1473   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1474          "Predecessor block does not point to successor?");
1475 
1476   // The branch should get simplified. Don't bother simplifying this condition.
1477   if (TrueBB == FalseBB)
1478     return nullptr;
1479 
1480   // Try to simplify this compare to T/F based on the dominating condition.
1481   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1482   if (Imp)
1483     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1484 
1485   CmpInst::Predicate Pred = Cmp.getPredicate();
1486   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1487   ICmpInst::Predicate DomPred;
1488   const APInt *C, *DomC;
1489   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1490       match(Y, m_APInt(C))) {
1491     // We have 2 compares of a variable with constants. Calculate the constant
1492     // ranges of those compares to see if we can transform the 2nd compare:
1493     // DomBB:
1494     //   DomCond = icmp DomPred X, DomC
1495     //   br DomCond, CmpBB, FalseBB
1496     // CmpBB:
1497     //   Cmp = icmp Pred X, C
1498     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1499     ConstantRange DominatingCR =
1500         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1501                           : ConstantRange::makeExactICmpRegion(
1502                                 CmpInst::getInversePredicate(DomPred), *DomC);
1503     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1504     ConstantRange Difference = DominatingCR.difference(CR);
1505     if (Intersection.isEmptySet())
1506       return replaceInstUsesWith(Cmp, Builder.getFalse());
1507     if (Difference.isEmptySet())
1508       return replaceInstUsesWith(Cmp, Builder.getTrue());
1509 
1510     // Canonicalizing a sign bit comparison that gets used in a branch,
1511     // pessimizes codegen by generating branch on zero instruction instead
1512     // of a test and branch. So we avoid canonicalizing in such situations
1513     // because test and branch instruction has better branch displacement
1514     // than compare and branch instruction.
1515     bool UnusedBit;
1516     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1517     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1518       return nullptr;
1519 
1520     // Avoid an infinite loop with min/max canonicalization.
1521     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1522     if (Cmp.hasOneUse() &&
1523         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1524       return nullptr;
1525 
1526     if (const APInt *EqC = Intersection.getSingleElement())
1527       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1528     if (const APInt *NeC = Difference.getSingleElement())
1529       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1530   }
1531 
1532   return nullptr;
1533 }
1534 
1535 /// Fold icmp (trunc X, Y), C.
1536 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1537                                                      TruncInst *Trunc,
1538                                                      const APInt &C) {
1539   ICmpInst::Predicate Pred = Cmp.getPredicate();
1540   Value *X = Trunc->getOperand(0);
1541   if (C.isOne() && C.getBitWidth() > 1) {
1542     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1543     Value *V = nullptr;
1544     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1545       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1546                           ConstantInt::get(V->getType(), 1));
1547   }
1548 
1549   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1550            SrcBits = X->getType()->getScalarSizeInBits();
1551   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1552     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1553     // of the high bits truncated out of x are known.
1554     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1555 
1556     // If all the high bits are known, we can do this xform.
1557     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1558       // Pull in the high bits from known-ones set.
1559       APInt NewRHS = C.zext(SrcBits);
1560       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1561       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1562     }
1563   }
1564 
1565   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1566   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1567   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1568   Value *ShOp;
1569   const APInt *ShAmtC;
1570   bool TrueIfSigned;
1571   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1572       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1573       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1574     return TrueIfSigned
1575                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1576                               ConstantInt::getNullValue(X->getType()))
1577                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1578                               ConstantInt::getAllOnesValue(X->getType()));
1579   }
1580 
1581   return nullptr;
1582 }
1583 
1584 /// Fold icmp (xor X, Y), C.
1585 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1586                                                    BinaryOperator *Xor,
1587                                                    const APInt &C) {
1588   Value *X = Xor->getOperand(0);
1589   Value *Y = Xor->getOperand(1);
1590   const APInt *XorC;
1591   if (!match(Y, m_APInt(XorC)))
1592     return nullptr;
1593 
1594   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1595   // fold the xor.
1596   ICmpInst::Predicate Pred = Cmp.getPredicate();
1597   bool TrueIfSigned = false;
1598   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1599 
1600     // If the sign bit of the XorCst is not set, there is no change to
1601     // the operation, just stop using the Xor.
1602     if (!XorC->isNegative())
1603       return replaceOperand(Cmp, 0, X);
1604 
1605     // Emit the opposite comparison.
1606     if (TrueIfSigned)
1607       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1608                           ConstantInt::getAllOnesValue(X->getType()));
1609     else
1610       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1611                           ConstantInt::getNullValue(X->getType()));
1612   }
1613 
1614   if (Xor->hasOneUse()) {
1615     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1616     if (!Cmp.isEquality() && XorC->isSignMask()) {
1617       Pred = Cmp.getFlippedSignednessPredicate();
1618       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1619     }
1620 
1621     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1622     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1623       Pred = Cmp.getFlippedSignednessPredicate();
1624       Pred = Cmp.getSwappedPredicate(Pred);
1625       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1626     }
1627   }
1628 
1629   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1630   if (Pred == ICmpInst::ICMP_UGT) {
1631     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1632     if (*XorC == ~C && (C + 1).isPowerOf2())
1633       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1634     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1635     if (*XorC == C && (C + 1).isPowerOf2())
1636       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1637   }
1638   if (Pred == ICmpInst::ICMP_ULT) {
1639     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1640     if (*XorC == -C && C.isPowerOf2())
1641       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1642                           ConstantInt::get(X->getType(), ~C));
1643     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1644     if (*XorC == C && (-C).isPowerOf2())
1645       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1646                           ConstantInt::get(X->getType(), ~C));
1647   }
1648   return nullptr;
1649 }
1650 
1651 /// Fold icmp (and (sh X, Y), C2), C1.
1652 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1653                                                 BinaryOperator *And,
1654                                                 const APInt &C1,
1655                                                 const APInt &C2) {
1656   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1657   if (!Shift || !Shift->isShift())
1658     return nullptr;
1659 
1660   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1661   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1662   // code produced by the clang front-end, for bitfield access.
1663   // This seemingly simple opportunity to fold away a shift turns out to be
1664   // rather complicated. See PR17827 for details.
1665   unsigned ShiftOpcode = Shift->getOpcode();
1666   bool IsShl = ShiftOpcode == Instruction::Shl;
1667   const APInt *C3;
1668   if (match(Shift->getOperand(1), m_APInt(C3))) {
1669     APInt NewAndCst, NewCmpCst;
1670     bool AnyCmpCstBitsShiftedOut;
1671     if (ShiftOpcode == Instruction::Shl) {
1672       // For a left shift, we can fold if the comparison is not signed. We can
1673       // also fold a signed comparison if the mask value and comparison value
1674       // are not negative. These constraints may not be obvious, but we can
1675       // prove that they are correct using an SMT solver.
1676       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1677         return nullptr;
1678 
1679       NewCmpCst = C1.lshr(*C3);
1680       NewAndCst = C2.lshr(*C3);
1681       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1682     } else if (ShiftOpcode == Instruction::LShr) {
1683       // For a logical right shift, we can fold if the comparison is not signed.
1684       // We can also fold a signed comparison if the shifted mask value and the
1685       // shifted comparison value are not negative. These constraints may not be
1686       // obvious, but we can prove that they are correct using an SMT solver.
1687       NewCmpCst = C1.shl(*C3);
1688       NewAndCst = C2.shl(*C3);
1689       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1690       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1691         return nullptr;
1692     } else {
1693       // For an arithmetic shift, check that both constants don't use (in a
1694       // signed sense) the top bits being shifted out.
1695       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1696       NewCmpCst = C1.shl(*C3);
1697       NewAndCst = C2.shl(*C3);
1698       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1699       if (NewAndCst.ashr(*C3) != C2)
1700         return nullptr;
1701     }
1702 
1703     if (AnyCmpCstBitsShiftedOut) {
1704       // If we shifted bits out, the fold is not going to work out. As a
1705       // special case, check to see if this means that the result is always
1706       // true or false now.
1707       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1708         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1709       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1710         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1711     } else {
1712       Value *NewAnd = Builder.CreateAnd(
1713           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1714       return new ICmpInst(Cmp.getPredicate(),
1715           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1716     }
1717   }
1718 
1719   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1720   // preferable because it allows the C2 << Y expression to be hoisted out of a
1721   // loop if Y is invariant and X is not.
1722   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1723       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1724     // Compute C2 << Y.
1725     Value *NewShift =
1726         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1727               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1728 
1729     // Compute X & (C2 << Y).
1730     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1731     return replaceOperand(Cmp, 0, NewAnd);
1732   }
1733 
1734   return nullptr;
1735 }
1736 
1737 /// Fold icmp (and X, C2), C1.
1738 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1739                                                      BinaryOperator *And,
1740                                                      const APInt &C1) {
1741   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1742 
1743   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1744   // TODO: We canonicalize to the longer form for scalars because we have
1745   // better analysis/folds for icmp, and codegen may be better with icmp.
1746   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1747       match(And->getOperand(1), m_One()))
1748     return new TruncInst(And->getOperand(0), Cmp.getType());
1749 
1750   const APInt *C2;
1751   Value *X;
1752   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1753     return nullptr;
1754 
1755   // Don't perform the following transforms if the AND has multiple uses
1756   if (!And->hasOneUse())
1757     return nullptr;
1758 
1759   if (Cmp.isEquality() && C1.isZero()) {
1760     // Restrict this fold to single-use 'and' (PR10267).
1761     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1762     if (C2->isSignMask()) {
1763       Constant *Zero = Constant::getNullValue(X->getType());
1764       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1765       return new ICmpInst(NewPred, X, Zero);
1766     }
1767 
1768     // Restrict this fold only for single-use 'and' (PR10267).
1769     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1770     if ((~(*C2) + 1).isPowerOf2()) {
1771       Constant *NegBOC =
1772           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1773       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1774       return new ICmpInst(NewPred, X, NegBOC);
1775     }
1776   }
1777 
1778   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1779   // the input width without changing the value produced, eliminate the cast:
1780   //
1781   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1782   //
1783   // We can do this transformation if the constants do not have their sign bits
1784   // set or if it is an equality comparison. Extending a relational comparison
1785   // when we're checking the sign bit would not work.
1786   Value *W;
1787   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1788       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1789     // TODO: Is this a good transform for vectors? Wider types may reduce
1790     // throughput. Should this transform be limited (even for scalars) by using
1791     // shouldChangeType()?
1792     if (!Cmp.getType()->isVectorTy()) {
1793       Type *WideType = W->getType();
1794       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1795       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1796       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1797       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1798       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1799     }
1800   }
1801 
1802   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1803     return I;
1804 
1805   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1806   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1807   //
1808   // iff pred isn't signed
1809   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1810       match(And->getOperand(1), m_One())) {
1811     Constant *One = cast<Constant>(And->getOperand(1));
1812     Value *Or = And->getOperand(0);
1813     Value *A, *B, *LShr;
1814     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1815         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1816       unsigned UsesRemoved = 0;
1817       if (And->hasOneUse())
1818         ++UsesRemoved;
1819       if (Or->hasOneUse())
1820         ++UsesRemoved;
1821       if (LShr->hasOneUse())
1822         ++UsesRemoved;
1823 
1824       // Compute A & ((1 << B) | 1)
1825       Value *NewOr = nullptr;
1826       if (auto *C = dyn_cast<Constant>(B)) {
1827         if (UsesRemoved >= 1)
1828           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1829       } else {
1830         if (UsesRemoved >= 3)
1831           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1832                                                      /*HasNUW=*/true),
1833                                    One, Or->getName());
1834       }
1835       if (NewOr) {
1836         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1837         return replaceOperand(Cmp, 0, NewAnd);
1838       }
1839     }
1840   }
1841 
1842   return nullptr;
1843 }
1844 
1845 /// Fold icmp (and X, Y), C.
1846 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1847                                                    BinaryOperator *And,
1848                                                    const APInt &C) {
1849   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1850     return I;
1851 
1852   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1853   bool TrueIfNeg;
1854   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1855     // ((X - 1) & ~X) <  0 --> X == 0
1856     // ((X - 1) & ~X) >= 0 --> X != 0
1857     Value *X;
1858     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1859         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1860       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1861       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1862     }
1863   }
1864 
1865   // TODO: These all require that Y is constant too, so refactor with the above.
1866 
1867   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1868   Value *X = And->getOperand(0);
1869   Value *Y = And->getOperand(1);
1870   if (auto *C2 = dyn_cast<ConstantInt>(Y))
1871     if (auto *LI = dyn_cast<LoadInst>(X))
1872       if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1873         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1874           if (Instruction *Res =
1875                   foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1876             return Res;
1877 
1878   if (!Cmp.isEquality())
1879     return nullptr;
1880 
1881   // X & -C == -C -> X >  u ~C
1882   // X & -C != -C -> X <= u ~C
1883   //   iff C is a power of 2
1884   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1885     auto NewPred =
1886         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1887     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1888   }
1889 
1890   return nullptr;
1891 }
1892 
1893 /// Fold icmp (or X, Y), C.
1894 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1895                                                   BinaryOperator *Or,
1896                                                   const APInt &C) {
1897   ICmpInst::Predicate Pred = Cmp.getPredicate();
1898   if (C.isOne()) {
1899     // icmp slt signum(V) 1 --> icmp slt V, 1
1900     Value *V = nullptr;
1901     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1902       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1903                           ConstantInt::get(V->getType(), 1));
1904   }
1905 
1906   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1907   const APInt *MaskC;
1908   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1909     if (*MaskC == C && (C + 1).isPowerOf2()) {
1910       // X | C == C --> X <=u C
1911       // X | C != C --> X  >u C
1912       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1913       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1914       return new ICmpInst(Pred, OrOp0, OrOp1);
1915     }
1916 
1917     // More general: canonicalize 'equality with set bits mask' to
1918     // 'equality with clear bits mask'.
1919     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1920     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1921     if (Or->hasOneUse()) {
1922       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1923       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1924       return new ICmpInst(Pred, And, NewC);
1925     }
1926   }
1927 
1928   // (X | (X-1)) s<  0 --> X s< 1
1929   // (X | (X-1)) s> -1 --> X s> 0
1930   Value *X;
1931   bool TrueIfSigned;
1932   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1933       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1934     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1935     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1936     return new ICmpInst(NewPred, X, NewC);
1937   }
1938 
1939   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1940     return nullptr;
1941 
1942   Value *P, *Q;
1943   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1944     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1945     // -> and (icmp eq P, null), (icmp eq Q, null).
1946     Value *CmpP =
1947         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1948     Value *CmpQ =
1949         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1950     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1951     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1952   }
1953 
1954   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1955   // a shorter form that has more potential to be folded even further.
1956   Value *X1, *X2, *X3, *X4;
1957   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1958       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1959     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1960     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1961     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1962     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1963     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1964     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1965   }
1966 
1967   return nullptr;
1968 }
1969 
1970 /// Fold icmp (mul X, Y), C.
1971 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1972                                                    BinaryOperator *Mul,
1973                                                    const APInt &C) {
1974   const APInt *MulC;
1975   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1976     return nullptr;
1977 
1978   // If this is a test of the sign bit and the multiply is sign-preserving with
1979   // a constant operand, use the multiply LHS operand instead.
1980   ICmpInst::Predicate Pred = Cmp.getPredicate();
1981   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1982     if (MulC->isNegative())
1983       Pred = ICmpInst::getSwappedPredicate(Pred);
1984     return new ICmpInst(Pred, Mul->getOperand(0),
1985                         Constant::getNullValue(Mul->getType()));
1986   }
1987 
1988   // If the multiply does not wrap, try to divide the compare constant by the
1989   // multiplication factor.
1990   if (Cmp.isEquality() && !MulC->isZero()) {
1991     // (mul nsw X, MulC) == C --> X == C /s MulC
1992     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
1993       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1994       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1995     }
1996     // (mul nuw X, MulC) == C --> X == C /u MulC
1997     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
1998       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1999       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2000     }
2001   }
2002 
2003   return nullptr;
2004 }
2005 
2006 /// Fold icmp (shl 1, Y), C.
2007 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2008                                    const APInt &C) {
2009   Value *Y;
2010   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2011     return nullptr;
2012 
2013   Type *ShiftType = Shl->getType();
2014   unsigned TypeBits = C.getBitWidth();
2015   bool CIsPowerOf2 = C.isPowerOf2();
2016   ICmpInst::Predicate Pred = Cmp.getPredicate();
2017   if (Cmp.isUnsigned()) {
2018     // (1 << Y) pred C -> Y pred Log2(C)
2019     if (!CIsPowerOf2) {
2020       // (1 << Y) <  30 -> Y <= 4
2021       // (1 << Y) <= 30 -> Y <= 4
2022       // (1 << Y) >= 30 -> Y >  4
2023       // (1 << Y) >  30 -> Y >  4
2024       if (Pred == ICmpInst::ICMP_ULT)
2025         Pred = ICmpInst::ICMP_ULE;
2026       else if (Pred == ICmpInst::ICMP_UGE)
2027         Pred = ICmpInst::ICMP_UGT;
2028     }
2029 
2030     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2031     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2032     unsigned CLog2 = C.logBase2();
2033     if (CLog2 == TypeBits - 1) {
2034       if (Pred == ICmpInst::ICMP_UGE)
2035         Pred = ICmpInst::ICMP_EQ;
2036       else if (Pred == ICmpInst::ICMP_ULT)
2037         Pred = ICmpInst::ICMP_NE;
2038     }
2039     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2040   } else if (Cmp.isSigned()) {
2041     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2042     if (C.isAllOnes()) {
2043       // (1 << Y) <= -1 -> Y == 31
2044       if (Pred == ICmpInst::ICMP_SLE)
2045         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2046 
2047       // (1 << Y) >  -1 -> Y != 31
2048       if (Pred == ICmpInst::ICMP_SGT)
2049         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2050     } else if (!C) {
2051       // (1 << Y) <  0 -> Y == 31
2052       // (1 << Y) <= 0 -> Y == 31
2053       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2054         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2055 
2056       // (1 << Y) >= 0 -> Y != 31
2057       // (1 << Y) >  0 -> Y != 31
2058       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2059         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2060     }
2061   } else if (Cmp.isEquality() && CIsPowerOf2) {
2062     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2063   }
2064 
2065   return nullptr;
2066 }
2067 
2068 /// Fold icmp (shl X, Y), C.
2069 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2070                                                    BinaryOperator *Shl,
2071                                                    const APInt &C) {
2072   const APInt *ShiftVal;
2073   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2074     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2075 
2076   const APInt *ShiftAmt;
2077   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2078     return foldICmpShlOne(Cmp, Shl, C);
2079 
2080   // Check that the shift amount is in range. If not, don't perform undefined
2081   // shifts. When the shift is visited, it will be simplified.
2082   unsigned TypeBits = C.getBitWidth();
2083   if (ShiftAmt->uge(TypeBits))
2084     return nullptr;
2085 
2086   ICmpInst::Predicate Pred = Cmp.getPredicate();
2087   Value *X = Shl->getOperand(0);
2088   Type *ShType = Shl->getType();
2089 
2090   // NSW guarantees that we are only shifting out sign bits from the high bits,
2091   // so we can ASHR the compare constant without needing a mask and eliminate
2092   // the shift.
2093   if (Shl->hasNoSignedWrap()) {
2094     if (Pred == ICmpInst::ICMP_SGT) {
2095       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2096       APInt ShiftedC = C.ashr(*ShiftAmt);
2097       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2098     }
2099     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2100         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2101       APInt ShiftedC = C.ashr(*ShiftAmt);
2102       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2103     }
2104     if (Pred == ICmpInst::ICMP_SLT) {
2105       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2106       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2107       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2108       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2109       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2110       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2111       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2112     }
2113     // If this is a signed comparison to 0 and the shift is sign preserving,
2114     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2115     // do that if we're sure to not continue on in this function.
2116     if (isSignTest(Pred, C))
2117       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2118   }
2119 
2120   // NUW guarantees that we are only shifting out zero bits from the high bits,
2121   // so we can LSHR the compare constant without needing a mask and eliminate
2122   // the shift.
2123   if (Shl->hasNoUnsignedWrap()) {
2124     if (Pred == ICmpInst::ICMP_UGT) {
2125       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2126       APInt ShiftedC = C.lshr(*ShiftAmt);
2127       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2128     }
2129     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2130         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2131       APInt ShiftedC = C.lshr(*ShiftAmt);
2132       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2133     }
2134     if (Pred == ICmpInst::ICMP_ULT) {
2135       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2136       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2137       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2138       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2139       assert(C.ugt(0) && "ult 0 should have been eliminated");
2140       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2141       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2142     }
2143   }
2144 
2145   if (Cmp.isEquality() && Shl->hasOneUse()) {
2146     // Strength-reduce the shift into an 'and'.
2147     Constant *Mask = ConstantInt::get(
2148         ShType,
2149         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2150     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2151     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2152     return new ICmpInst(Pred, And, LShrC);
2153   }
2154 
2155   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2156   bool TrueIfSigned = false;
2157   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2158     // (X << 31) <s 0  --> (X & 1) != 0
2159     Constant *Mask = ConstantInt::get(
2160         ShType,
2161         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2162     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2163     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2164                         And, Constant::getNullValue(ShType));
2165   }
2166 
2167   // Simplify 'shl' inequality test into 'and' equality test.
2168   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2169     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2170     if ((C + 1).isPowerOf2() &&
2171         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2172       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2173       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2174                                                      : ICmpInst::ICMP_NE,
2175                           And, Constant::getNullValue(ShType));
2176     }
2177     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2178     if (C.isPowerOf2() &&
2179         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2180       Value *And =
2181           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2182       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2183                                                      : ICmpInst::ICMP_NE,
2184                           And, Constant::getNullValue(ShType));
2185     }
2186   }
2187 
2188   // Transform (icmp pred iM (shl iM %v, N), C)
2189   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2190   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2191   // This enables us to get rid of the shift in favor of a trunc that may be
2192   // free on the target. It has the additional benefit of comparing to a
2193   // smaller constant that may be more target-friendly.
2194   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2195   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2196       DL.isLegalInteger(TypeBits - Amt)) {
2197     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2198     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2199       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2200     Constant *NewC =
2201         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2202     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2203   }
2204 
2205   return nullptr;
2206 }
2207 
2208 /// Fold icmp ({al}shr X, Y), C.
2209 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2210                                                    BinaryOperator *Shr,
2211                                                    const APInt &C) {
2212   // An exact shr only shifts out zero bits, so:
2213   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2214   Value *X = Shr->getOperand(0);
2215   CmpInst::Predicate Pred = Cmp.getPredicate();
2216   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2217     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2218 
2219   const APInt *ShiftVal;
2220   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2221     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2222 
2223   const APInt *ShiftAmt;
2224   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2225     return nullptr;
2226 
2227   // Check that the shift amount is in range. If not, don't perform undefined
2228   // shifts. When the shift is visited it will be simplified.
2229   unsigned TypeBits = C.getBitWidth();
2230   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2231   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2232     return nullptr;
2233 
2234   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2235   bool IsExact = Shr->isExact();
2236   Type *ShrTy = Shr->getType();
2237   // TODO: If we could guarantee that InstSimplify would handle all of the
2238   // constant-value-based preconditions in the folds below, then we could assert
2239   // those conditions rather than checking them. This is difficult because of
2240   // undef/poison (PR34838).
2241   if (IsAShr) {
2242     if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2243       // When ShAmtC can be shifted losslessly:
2244       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2245       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2246       APInt ShiftedC = C.shl(ShAmtVal);
2247       if (ShiftedC.ashr(ShAmtVal) == C)
2248         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2249     }
2250     if (Pred == CmpInst::ICMP_SGT) {
2251       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2252       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2253       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2254           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2255         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2256     }
2257     if (Pred == CmpInst::ICMP_UGT) {
2258       // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2259       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2260       if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2261         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2262     }
2263 
2264     // If the compare constant has significant bits above the lowest sign-bit,
2265     // then convert an unsigned cmp to a test of the sign-bit:
2266     // (ashr X, ShiftC) u> C --> X s< 0
2267     // (ashr X, ShiftC) u< C --> X s> -1
2268     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2269       if (Pred == CmpInst::ICMP_UGT) {
2270         return new ICmpInst(CmpInst::ICMP_SLT, X,
2271                             ConstantInt::getNullValue(ShrTy));
2272       }
2273       if (Pred == CmpInst::ICMP_ULT) {
2274         return new ICmpInst(CmpInst::ICMP_SGT, X,
2275                             ConstantInt::getAllOnesValue(ShrTy));
2276       }
2277     }
2278   } else {
2279     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2280       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2281       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2282       APInt ShiftedC = C.shl(ShAmtVal);
2283       if (ShiftedC.lshr(ShAmtVal) == C)
2284         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2285     }
2286     if (Pred == CmpInst::ICMP_UGT) {
2287       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2288       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2289       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2290         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2291     }
2292   }
2293 
2294   if (!Cmp.isEquality())
2295     return nullptr;
2296 
2297   // Handle equality comparisons of shift-by-constant.
2298 
2299   // If the comparison constant changes with the shift, the comparison cannot
2300   // succeed (bits of the comparison constant cannot match the shifted value).
2301   // This should be known by InstSimplify and already be folded to true/false.
2302   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2303           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2304          "Expected icmp+shr simplify did not occur.");
2305 
2306   // If the bits shifted out are known zero, compare the unshifted value:
2307   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2308   if (Shr->isExact())
2309     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2310 
2311   if (C.isZero()) {
2312     // == 0 is u< 1.
2313     if (Pred == CmpInst::ICMP_EQ)
2314       return new ICmpInst(CmpInst::ICMP_ULT, X,
2315                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2316     else
2317       return new ICmpInst(CmpInst::ICMP_UGT, X,
2318                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2319   }
2320 
2321   if (Shr->hasOneUse()) {
2322     // Canonicalize the shift into an 'and':
2323     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2324     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2325     Constant *Mask = ConstantInt::get(ShrTy, Val);
2326     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2327     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2328   }
2329 
2330   return nullptr;
2331 }
2332 
2333 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2334                                                     BinaryOperator *SRem,
2335                                                     const APInt &C) {
2336   // Match an 'is positive' or 'is negative' comparison of remainder by a
2337   // constant power-of-2 value:
2338   // (X % pow2C) sgt/slt 0
2339   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2340   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2341     return nullptr;
2342 
2343   // TODO: The one-use check is standard because we do not typically want to
2344   //       create longer instruction sequences, but this might be a special-case
2345   //       because srem is not good for analysis or codegen.
2346   if (!SRem->hasOneUse())
2347     return nullptr;
2348 
2349   const APInt *DivisorC;
2350   if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2351     return nullptr;
2352 
2353   // Mask off the sign bit and the modulo bits (low-bits).
2354   Type *Ty = SRem->getType();
2355   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2356   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2357   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2358 
2359   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2360   // bit is set. Example:
2361   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2362   if (Pred == ICmpInst::ICMP_SGT)
2363     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2364 
2365   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2366   // bit is set. Example:
2367   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2368   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2369 }
2370 
2371 /// Fold icmp (udiv X, Y), C.
2372 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2373                                                     BinaryOperator *UDiv,
2374                                                     const APInt &C) {
2375   const APInt *C2;
2376   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2377     return nullptr;
2378 
2379   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2380 
2381   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2382   Value *Y = UDiv->getOperand(1);
2383   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2384     assert(!C.isMaxValue() &&
2385            "icmp ugt X, UINT_MAX should have been simplified already.");
2386     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2387                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2388   }
2389 
2390   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2391   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2392     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2393     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2394                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2395   }
2396 
2397   return nullptr;
2398 }
2399 
2400 /// Fold icmp ({su}div X, Y), C.
2401 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2402                                                    BinaryOperator *Div,
2403                                                    const APInt &C) {
2404   // Fold: icmp pred ([us]div X, C2), C -> range test
2405   // Fold this div into the comparison, producing a range check.
2406   // Determine, based on the divide type, what the range is being
2407   // checked.  If there is an overflow on the low or high side, remember
2408   // it, otherwise compute the range [low, hi) bounding the new value.
2409   // See: InsertRangeTest above for the kinds of replacements possible.
2410   const APInt *C2;
2411   if (!match(Div->getOperand(1), m_APInt(C2)))
2412     return nullptr;
2413 
2414   // FIXME: If the operand types don't match the type of the divide
2415   // then don't attempt this transform. The code below doesn't have the
2416   // logic to deal with a signed divide and an unsigned compare (and
2417   // vice versa). This is because (x /s C2) <s C  produces different
2418   // results than (x /s C2) <u C or (x /u C2) <s C or even
2419   // (x /u C2) <u C.  Simply casting the operands and result won't
2420   // work. :(  The if statement below tests that condition and bails
2421   // if it finds it.
2422   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2423   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2424     return nullptr;
2425 
2426   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2427   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2428   // division-by-constant cases should be present, we can not assert that they
2429   // have happened before we reach this icmp instruction.
2430   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2431     return nullptr;
2432 
2433   // Compute Prod = C * C2. We are essentially solving an equation of
2434   // form X / C2 = C. We solve for X by multiplying C2 and C.
2435   // By solving for X, we can turn this into a range check instead of computing
2436   // a divide.
2437   APInt Prod = C * *C2;
2438 
2439   // Determine if the product overflows by seeing if the product is not equal to
2440   // the divide. Make sure we do the same kind of divide as in the LHS
2441   // instruction that we're folding.
2442   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2443 
2444   ICmpInst::Predicate Pred = Cmp.getPredicate();
2445 
2446   // If the division is known to be exact, then there is no remainder from the
2447   // divide, so the covered range size is unit, otherwise it is the divisor.
2448   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2449 
2450   // Figure out the interval that is being checked.  For example, a comparison
2451   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2452   // Compute this interval based on the constants involved and the signedness of
2453   // the compare/divide.  This computes a half-open interval, keeping track of
2454   // whether either value in the interval overflows.  After analysis each
2455   // overflow variable is set to 0 if it's corresponding bound variable is valid
2456   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2457   int LoOverflow = 0, HiOverflow = 0;
2458   APInt LoBound, HiBound;
2459 
2460   if (!DivIsSigned) {  // udiv
2461     // e.g. X/5 op 3  --> [15, 20)
2462     LoBound = Prod;
2463     HiOverflow = LoOverflow = ProdOV;
2464     if (!HiOverflow) {
2465       // If this is not an exact divide, then many values in the range collapse
2466       // to the same result value.
2467       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2468     }
2469   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2470     if (C.isZero()) {                    // (X / pos) op 0
2471       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2472       LoBound = -(RangeSize - 1);
2473       HiBound = RangeSize;
2474     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2475       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2476       HiOverflow = LoOverflow = ProdOV;
2477       if (!HiOverflow)
2478         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2479     } else { // (X / pos) op neg
2480       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2481       HiBound = Prod + 1;
2482       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2483       if (!LoOverflow) {
2484         APInt DivNeg = -RangeSize;
2485         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2486       }
2487     }
2488   } else if (C2->isNegative()) { // Divisor is < 0.
2489     if (Div->isExact())
2490       RangeSize.negate();
2491     if (C.isZero()) { // (X / neg) op 0
2492       // e.g. X/-5 op 0  --> [-4, 5)
2493       LoBound = RangeSize + 1;
2494       HiBound = -RangeSize;
2495       if (HiBound == *C2) {        // -INTMIN = INTMIN
2496         HiOverflow = 1;            // [INTMIN+1, overflow)
2497         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2498       }
2499     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2500       // e.g. X/-5 op 3  --> [-19, -14)
2501       HiBound = Prod + 1;
2502       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2503       if (!LoOverflow)
2504         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2505     } else {                // (X / neg) op neg
2506       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2507       LoOverflow = HiOverflow = ProdOV;
2508       if (!HiOverflow)
2509         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2510     }
2511 
2512     // Dividing by a negative swaps the condition.  LT <-> GT
2513     Pred = ICmpInst::getSwappedPredicate(Pred);
2514   }
2515 
2516   Value *X = Div->getOperand(0);
2517   switch (Pred) {
2518     default: llvm_unreachable("Unhandled icmp opcode!");
2519     case ICmpInst::ICMP_EQ:
2520       if (LoOverflow && HiOverflow)
2521         return replaceInstUsesWith(Cmp, Builder.getFalse());
2522       if (HiOverflow)
2523         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2524                             ICmpInst::ICMP_UGE, X,
2525                             ConstantInt::get(Div->getType(), LoBound));
2526       if (LoOverflow)
2527         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2528                             ICmpInst::ICMP_ULT, X,
2529                             ConstantInt::get(Div->getType(), HiBound));
2530       return replaceInstUsesWith(
2531           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2532     case ICmpInst::ICMP_NE:
2533       if (LoOverflow && HiOverflow)
2534         return replaceInstUsesWith(Cmp, Builder.getTrue());
2535       if (HiOverflow)
2536         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2537                             ICmpInst::ICMP_ULT, X,
2538                             ConstantInt::get(Div->getType(), LoBound));
2539       if (LoOverflow)
2540         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2541                             ICmpInst::ICMP_UGE, X,
2542                             ConstantInt::get(Div->getType(), HiBound));
2543       return replaceInstUsesWith(Cmp,
2544                                  insertRangeTest(X, LoBound, HiBound,
2545                                                  DivIsSigned, false));
2546     case ICmpInst::ICMP_ULT:
2547     case ICmpInst::ICMP_SLT:
2548       if (LoOverflow == +1)   // Low bound is greater than input range.
2549         return replaceInstUsesWith(Cmp, Builder.getTrue());
2550       if (LoOverflow == -1)   // Low bound is less than input range.
2551         return replaceInstUsesWith(Cmp, Builder.getFalse());
2552       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2553     case ICmpInst::ICMP_UGT:
2554     case ICmpInst::ICMP_SGT:
2555       if (HiOverflow == +1)       // High bound greater than input range.
2556         return replaceInstUsesWith(Cmp, Builder.getFalse());
2557       if (HiOverflow == -1)       // High bound less than input range.
2558         return replaceInstUsesWith(Cmp, Builder.getTrue());
2559       if (Pred == ICmpInst::ICMP_UGT)
2560         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2561                             ConstantInt::get(Div->getType(), HiBound));
2562       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2563                           ConstantInt::get(Div->getType(), HiBound));
2564   }
2565 
2566   return nullptr;
2567 }
2568 
2569 /// Fold icmp (sub X, Y), C.
2570 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2571                                                    BinaryOperator *Sub,
2572                                                    const APInt &C) {
2573   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2574   ICmpInst::Predicate Pred = Cmp.getPredicate();
2575   Type *Ty = Sub->getType();
2576 
2577   // (SubC - Y) == C) --> Y == (SubC - C)
2578   // (SubC - Y) != C) --> Y != (SubC - C)
2579   Constant *SubC;
2580   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2581     return new ICmpInst(Pred, Y,
2582                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2583   }
2584 
2585   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2586   const APInt *C2;
2587   APInt SubResult;
2588   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2589   bool HasNSW = Sub->hasNoSignedWrap();
2590   bool HasNUW = Sub->hasNoUnsignedWrap();
2591   if (match(X, m_APInt(C2)) &&
2592       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2593       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2594     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2595 
2596   // X - Y == 0 --> X == Y.
2597   // X - Y != 0 --> X != Y.
2598   if (Cmp.isEquality() && C.isZero())
2599     return new ICmpInst(Pred, X, Y);
2600 
2601   // The following transforms are only worth it if the only user of the subtract
2602   // is the icmp.
2603   // TODO: This is an artificial restriction for all of the transforms below
2604   //       that only need a single replacement icmp.
2605   if (!Sub->hasOneUse())
2606     return nullptr;
2607 
2608   if (Sub->hasNoSignedWrap()) {
2609     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2610     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2611       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2612 
2613     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2614     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2615       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2616 
2617     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2618     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2619       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2620 
2621     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2622     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2623       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2624   }
2625 
2626   if (!match(X, m_APInt(C2)))
2627     return nullptr;
2628 
2629   // C2 - Y <u C -> (Y | (C - 1)) == C2
2630   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2631   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2632       (*C2 & (C - 1)) == (C - 1))
2633     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2634 
2635   // C2 - Y >u C -> (Y | C) != C2
2636   //   iff C2 & C == C and C + 1 is a power of 2
2637   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2638     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2639 
2640   // We have handled special cases that reduce.
2641   // Canonicalize any remaining sub to add as:
2642   // (C2 - Y) > C --> (Y + ~C2) < ~C
2643   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2644                                  HasNUW, HasNSW);
2645   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2646 }
2647 
2648 /// Fold icmp (add X, Y), C.
2649 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2650                                                    BinaryOperator *Add,
2651                                                    const APInt &C) {
2652   Value *Y = Add->getOperand(1);
2653   const APInt *C2;
2654   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2655     return nullptr;
2656 
2657   // Fold icmp pred (add X, C2), C.
2658   Value *X = Add->getOperand(0);
2659   Type *Ty = Add->getType();
2660   const CmpInst::Predicate Pred = Cmp.getPredicate();
2661 
2662   // If the add does not wrap, we can always adjust the compare by subtracting
2663   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2664   // are canonicalized to SGT/SLT/UGT/ULT.
2665   if ((Add->hasNoSignedWrap() &&
2666        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2667       (Add->hasNoUnsignedWrap() &&
2668        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2669     bool Overflow;
2670     APInt NewC =
2671         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2672     // If there is overflow, the result must be true or false.
2673     // TODO: Can we assert there is no overflow because InstSimplify always
2674     // handles those cases?
2675     if (!Overflow)
2676       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2677       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2678   }
2679 
2680   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2681   const APInt &Upper = CR.getUpper();
2682   const APInt &Lower = CR.getLower();
2683   if (Cmp.isSigned()) {
2684     if (Lower.isSignMask())
2685       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2686     if (Upper.isSignMask())
2687       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2688   } else {
2689     if (Lower.isMinValue())
2690       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2691     if (Upper.isMinValue())
2692       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2693   }
2694 
2695   // This set of folds is intentionally placed after folds that use no-wrapping
2696   // flags because those folds are likely better for later analysis/codegen.
2697   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2698   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2699 
2700   // Fold compare with offset to opposite sign compare if it eliminates offset:
2701   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2702   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2703     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2704 
2705   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2706   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2707     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2708 
2709   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2710   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2711     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2712 
2713   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2714   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2715     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2716 
2717   if (!Add->hasOneUse())
2718     return nullptr;
2719 
2720   // X+C <u C2 -> (X & -C2) == C
2721   //   iff C & (C2-1) == 0
2722   //       C2 is a power of 2
2723   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2724     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2725                         ConstantExpr::getNeg(cast<Constant>(Y)));
2726 
2727   // X+C >u C2 -> (X & ~C2) != C
2728   //   iff C & C2 == 0
2729   //       C2+1 is a power of 2
2730   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2731     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2732                         ConstantExpr::getNeg(cast<Constant>(Y)));
2733 
2734   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2735   // to the ult form.
2736   // X+C2 >u C -> X+(C2-C-1) <u ~C
2737   if (Pred == ICmpInst::ICMP_UGT)
2738     return new ICmpInst(ICmpInst::ICMP_ULT,
2739                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2740                         ConstantInt::get(Ty, ~C));
2741 
2742   return nullptr;
2743 }
2744 
2745 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2746                                                Value *&RHS, ConstantInt *&Less,
2747                                                ConstantInt *&Equal,
2748                                                ConstantInt *&Greater) {
2749   // TODO: Generalize this to work with other comparison idioms or ensure
2750   // they get canonicalized into this form.
2751 
2752   // select i1 (a == b),
2753   //        i32 Equal,
2754   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2755   // where Equal, Less and Greater are placeholders for any three constants.
2756   ICmpInst::Predicate PredA;
2757   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2758       !ICmpInst::isEquality(PredA))
2759     return false;
2760   Value *EqualVal = SI->getTrueValue();
2761   Value *UnequalVal = SI->getFalseValue();
2762   // We still can get non-canonical predicate here, so canonicalize.
2763   if (PredA == ICmpInst::ICMP_NE)
2764     std::swap(EqualVal, UnequalVal);
2765   if (!match(EqualVal, m_ConstantInt(Equal)))
2766     return false;
2767   ICmpInst::Predicate PredB;
2768   Value *LHS2, *RHS2;
2769   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2770                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2771     return false;
2772   // We can get predicate mismatch here, so canonicalize if possible:
2773   // First, ensure that 'LHS' match.
2774   if (LHS2 != LHS) {
2775     // x sgt y <--> y slt x
2776     std::swap(LHS2, RHS2);
2777     PredB = ICmpInst::getSwappedPredicate(PredB);
2778   }
2779   if (LHS2 != LHS)
2780     return false;
2781   // We also need to canonicalize 'RHS'.
2782   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2783     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2784     auto FlippedStrictness =
2785         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2786             PredB, cast<Constant>(RHS2));
2787     if (!FlippedStrictness)
2788       return false;
2789     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2790            "basic correctness failure");
2791     RHS2 = FlippedStrictness->second;
2792     // And kind-of perform the result swap.
2793     std::swap(Less, Greater);
2794     PredB = ICmpInst::ICMP_SLT;
2795   }
2796   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2797 }
2798 
2799 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2800                                                       SelectInst *Select,
2801                                                       ConstantInt *C) {
2802 
2803   assert(C && "Cmp RHS should be a constant int!");
2804   // If we're testing a constant value against the result of a three way
2805   // comparison, the result can be expressed directly in terms of the
2806   // original values being compared.  Note: We could possibly be more
2807   // aggressive here and remove the hasOneUse test. The original select is
2808   // really likely to simplify or sink when we remove a test of the result.
2809   Value *OrigLHS, *OrigRHS;
2810   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2811   if (Cmp.hasOneUse() &&
2812       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2813                               C3GreaterThan)) {
2814     assert(C1LessThan && C2Equal && C3GreaterThan);
2815 
2816     bool TrueWhenLessThan =
2817         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2818             ->isAllOnesValue();
2819     bool TrueWhenEqual =
2820         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2821             ->isAllOnesValue();
2822     bool TrueWhenGreaterThan =
2823         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2824             ->isAllOnesValue();
2825 
2826     // This generates the new instruction that will replace the original Cmp
2827     // Instruction. Instead of enumerating the various combinations when
2828     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2829     // false, we rely on chaining of ORs and future passes of InstCombine to
2830     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2831 
2832     // When none of the three constants satisfy the predicate for the RHS (C),
2833     // the entire original Cmp can be simplified to a false.
2834     Value *Cond = Builder.getFalse();
2835     if (TrueWhenLessThan)
2836       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2837                                                        OrigLHS, OrigRHS));
2838     if (TrueWhenEqual)
2839       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2840                                                        OrigLHS, OrigRHS));
2841     if (TrueWhenGreaterThan)
2842       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2843                                                        OrigLHS, OrigRHS));
2844 
2845     return replaceInstUsesWith(Cmp, Cond);
2846   }
2847   return nullptr;
2848 }
2849 
2850 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2851   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2852   if (!Bitcast)
2853     return nullptr;
2854 
2855   ICmpInst::Predicate Pred = Cmp.getPredicate();
2856   Value *Op1 = Cmp.getOperand(1);
2857   Value *BCSrcOp = Bitcast->getOperand(0);
2858 
2859   // Make sure the bitcast doesn't change the number of vector elements.
2860   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2861           Bitcast->getDestTy()->getScalarSizeInBits()) {
2862     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2863     Value *X;
2864     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2865       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2866       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2867       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2868       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2869       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2870            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2871           match(Op1, m_Zero()))
2872         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2873 
2874       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2875       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2876         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2877 
2878       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2879       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2880         return new ICmpInst(Pred, X,
2881                             ConstantInt::getAllOnesValue(X->getType()));
2882     }
2883 
2884     // Zero-equality checks are preserved through unsigned floating-point casts:
2885     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2886     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2887     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2888       if (Cmp.isEquality() && match(Op1, m_Zero()))
2889         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2890 
2891     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2892     // the FP extend/truncate because that cast does not change the sign-bit.
2893     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2894     // The sign-bit is always the most significant bit in those types.
2895     const APInt *C;
2896     bool TrueIfSigned;
2897     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2898         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2899       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2900           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2901         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2902         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2903         Type *XType = X->getType();
2904 
2905         // We can't currently handle Power style floating point operations here.
2906         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2907 
2908           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2909           if (auto *XVTy = dyn_cast<VectorType>(XType))
2910             NewType = VectorType::get(NewType, XVTy->getElementCount());
2911           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2912           if (TrueIfSigned)
2913             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2914                                 ConstantInt::getNullValue(NewType));
2915           else
2916             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2917                                 ConstantInt::getAllOnesValue(NewType));
2918         }
2919       }
2920     }
2921   }
2922 
2923   // Test to see if the operands of the icmp are casted versions of other
2924   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2925   if (Bitcast->getType()->isPointerTy() &&
2926       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2927     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2928     // so eliminate it as well.
2929     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2930       Op1 = BC2->getOperand(0);
2931 
2932     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2933     return new ICmpInst(Pred, BCSrcOp, Op1);
2934   }
2935 
2936   const APInt *C;
2937   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2938       !Bitcast->getType()->isIntegerTy() ||
2939       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2940     return nullptr;
2941 
2942   // If this is checking if all elements of a vector compare are set or not,
2943   // invert the casted vector equality compare and test if all compare
2944   // elements are clear or not. Compare against zero is generally easier for
2945   // analysis and codegen.
2946   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2947   // Example: are all elements equal? --> are zero elements not equal?
2948   // TODO: Try harder to reduce compare of 2 freely invertible operands?
2949   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
2950       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
2951     Type *ScalarTy = Bitcast->getType();
2952     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy);
2953     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy));
2954   }
2955 
2956   // If this is checking if all elements of an extended vector are clear or not,
2957   // compare in a narrow type to eliminate the extend:
2958   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
2959   Value *X;
2960   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
2961       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
2962     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
2963       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
2964       Value *NewCast = Builder.CreateBitCast(X, NewType);
2965       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
2966     }
2967   }
2968 
2969   // Folding: icmp <pred> iN X, C
2970   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2971   //    and C is a splat of a K-bit pattern
2972   //    and SC is a constant vector = <C', C', C', ..., C'>
2973   // Into:
2974   //   %E = extractelement <M x iK> %vec, i32 C'
2975   //   icmp <pred> iK %E, trunc(C)
2976   Value *Vec;
2977   ArrayRef<int> Mask;
2978   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2979     // Check whether every element of Mask is the same constant
2980     if (is_splat(Mask)) {
2981       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2982       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2983       if (C->isSplat(EltTy->getBitWidth())) {
2984         // Fold the icmp based on the value of C
2985         // If C is M copies of an iK sized bit pattern,
2986         // then:
2987         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2988         //       icmp <pred> iK %SplatVal, <pattern>
2989         Value *Elem = Builder.getInt32(Mask[0]);
2990         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2991         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2992         return new ICmpInst(Pred, Extract, NewC);
2993       }
2994     }
2995   }
2996   return nullptr;
2997 }
2998 
2999 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3000 /// where X is some kind of instruction.
3001 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3002   const APInt *C;
3003   if (!match(Cmp.getOperand(1), m_APInt(C)))
3004     return nullptr;
3005 
3006   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
3007     switch (BO->getOpcode()) {
3008     case Instruction::Xor:
3009       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
3010         return I;
3011       break;
3012     case Instruction::And:
3013       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
3014         return I;
3015       break;
3016     case Instruction::Or:
3017       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
3018         return I;
3019       break;
3020     case Instruction::Mul:
3021       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
3022         return I;
3023       break;
3024     case Instruction::Shl:
3025       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
3026         return I;
3027       break;
3028     case Instruction::LShr:
3029     case Instruction::AShr:
3030       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
3031         return I;
3032       break;
3033     case Instruction::SRem:
3034       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
3035         return I;
3036       break;
3037     case Instruction::UDiv:
3038       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
3039         return I;
3040       LLVM_FALLTHROUGH;
3041     case Instruction::SDiv:
3042       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
3043         return I;
3044       break;
3045     case Instruction::Sub:
3046       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
3047         return I;
3048       break;
3049     case Instruction::Add:
3050       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
3051         return I;
3052       break;
3053     default:
3054       break;
3055     }
3056     // TODO: These folds could be refactored to be part of the above calls.
3057     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
3058       return I;
3059   }
3060 
3061   // Match against CmpInst LHS being instructions other than binary operators.
3062 
3063   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
3064     // For now, we only support constant integers while folding the
3065     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3066     // similar to the cases handled by binary ops above.
3067     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3068       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3069         return I;
3070   }
3071 
3072   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
3073     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3074       return I;
3075   }
3076 
3077   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3078     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3079       return I;
3080 
3081   return nullptr;
3082 }
3083 
3084 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3085 /// icmp eq/ne BO, C.
3086 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3087     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3088   // TODO: Some of these folds could work with arbitrary constants, but this
3089   // function is limited to scalar and vector splat constants.
3090   if (!Cmp.isEquality())
3091     return nullptr;
3092 
3093   ICmpInst::Predicate Pred = Cmp.getPredicate();
3094   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3095   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3096   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3097 
3098   switch (BO->getOpcode()) {
3099   case Instruction::SRem:
3100     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3101     if (C.isZero() && BO->hasOneUse()) {
3102       const APInt *BOC;
3103       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3104         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3105         return new ICmpInst(Pred, NewRem,
3106                             Constant::getNullValue(BO->getType()));
3107       }
3108     }
3109     break;
3110   case Instruction::Add: {
3111     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3112     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3113       if (BO->hasOneUse())
3114         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3115     } else if (C.isZero()) {
3116       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3117       // efficiently invertible, or if the add has just this one use.
3118       if (Value *NegVal = dyn_castNegVal(BOp1))
3119         return new ICmpInst(Pred, BOp0, NegVal);
3120       if (Value *NegVal = dyn_castNegVal(BOp0))
3121         return new ICmpInst(Pred, NegVal, BOp1);
3122       if (BO->hasOneUse()) {
3123         Value *Neg = Builder.CreateNeg(BOp1);
3124         Neg->takeName(BO);
3125         return new ICmpInst(Pred, BOp0, Neg);
3126       }
3127     }
3128     break;
3129   }
3130   case Instruction::Xor:
3131     if (BO->hasOneUse()) {
3132       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3133         // For the xor case, we can xor two constants together, eliminating
3134         // the explicit xor.
3135         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3136       } else if (C.isZero()) {
3137         // Replace ((xor A, B) != 0) with (A != B)
3138         return new ICmpInst(Pred, BOp0, BOp1);
3139       }
3140     }
3141     break;
3142   case Instruction::Or: {
3143     const APInt *BOC;
3144     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3145       // Comparing if all bits outside of a constant mask are set?
3146       // Replace (X | C) == -1 with (X & ~C) == ~C.
3147       // This removes the -1 constant.
3148       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3149       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3150       return new ICmpInst(Pred, And, NotBOC);
3151     }
3152     break;
3153   }
3154   case Instruction::And: {
3155     const APInt *BOC;
3156     if (match(BOp1, m_APInt(BOC))) {
3157       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3158       if (C == *BOC && C.isPowerOf2())
3159         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3160                             BO, Constant::getNullValue(RHS->getType()));
3161     }
3162     break;
3163   }
3164   case Instruction::UDiv:
3165     if (C.isZero()) {
3166       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3167       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3168       return new ICmpInst(NewPred, BOp1, BOp0);
3169     }
3170     break;
3171   default:
3172     break;
3173   }
3174   return nullptr;
3175 }
3176 
3177 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3178 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3179     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3180   Type *Ty = II->getType();
3181   unsigned BitWidth = C.getBitWidth();
3182   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3183 
3184   switch (II->getIntrinsicID()) {
3185   case Intrinsic::abs:
3186     // abs(A) == 0  ->  A == 0
3187     // abs(A) == INT_MIN  ->  A == INT_MIN
3188     if (C.isZero() || C.isMinSignedValue())
3189       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3190     break;
3191 
3192   case Intrinsic::bswap:
3193     // bswap(A) == C  ->  A == bswap(C)
3194     return new ICmpInst(Pred, II->getArgOperand(0),
3195                         ConstantInt::get(Ty, C.byteSwap()));
3196 
3197   case Intrinsic::ctlz:
3198   case Intrinsic::cttz: {
3199     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3200     if (C == BitWidth)
3201       return new ICmpInst(Pred, II->getArgOperand(0),
3202                           ConstantInt::getNullValue(Ty));
3203 
3204     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3205     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3206     // Limit to one use to ensure we don't increase instruction count.
3207     unsigned Num = C.getLimitedValue(BitWidth);
3208     if (Num != BitWidth && II->hasOneUse()) {
3209       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3210       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3211                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3212       APInt Mask2 = IsTrailing
3213         ? APInt::getOneBitSet(BitWidth, Num)
3214         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3215       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3216                           ConstantInt::get(Ty, Mask2));
3217     }
3218     break;
3219   }
3220 
3221   case Intrinsic::ctpop: {
3222     // popcount(A) == 0  ->  A == 0 and likewise for !=
3223     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3224     bool IsZero = C.isZero();
3225     if (IsZero || C == BitWidth)
3226       return new ICmpInst(Pred, II->getArgOperand(0),
3227                           IsZero ? Constant::getNullValue(Ty)
3228                                  : Constant::getAllOnesValue(Ty));
3229 
3230     break;
3231   }
3232 
3233   case Intrinsic::fshl:
3234   case Intrinsic::fshr:
3235     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3236       // (rot X, ?) == 0/-1 --> X == 0/-1
3237       // TODO: This transform is safe to re-use undef elts in a vector, but
3238       //       the constant value passed in by the caller doesn't allow that.
3239       if (C.isZero() || C.isAllOnes())
3240         return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3241 
3242       const APInt *RotAmtC;
3243       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3244       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3245       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3246         return new ICmpInst(Pred, II->getArgOperand(0),
3247                             II->getIntrinsicID() == Intrinsic::fshl
3248                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3249                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3250     }
3251     break;
3252 
3253   case Intrinsic::uadd_sat: {
3254     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3255     if (C.isZero()) {
3256       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3257       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3258     }
3259     break;
3260   }
3261 
3262   case Intrinsic::usub_sat: {
3263     // usub.sat(a, b) == 0  ->  a <= b
3264     if (C.isZero()) {
3265       ICmpInst::Predicate NewPred =
3266           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3267       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3268     }
3269     break;
3270   }
3271   default:
3272     break;
3273   }
3274 
3275   return nullptr;
3276 }
3277 
3278 /// Fold an icmp with LLVM intrinsics
3279 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3280   assert(Cmp.isEquality());
3281 
3282   ICmpInst::Predicate Pred = Cmp.getPredicate();
3283   Value *Op0 = Cmp.getOperand(0);
3284   Value *Op1 = Cmp.getOperand(1);
3285   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3286   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3287   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3288     return nullptr;
3289 
3290   switch (IIOp0->getIntrinsicID()) {
3291   case Intrinsic::bswap:
3292   case Intrinsic::bitreverse:
3293     // If both operands are byte-swapped or bit-reversed, just compare the
3294     // original values.
3295     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3296   case Intrinsic::fshl:
3297   case Intrinsic::fshr:
3298     // If both operands are rotated by same amount, just compare the
3299     // original values.
3300     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3301       break;
3302     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3303       break;
3304     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3305       break;
3306     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3307   default:
3308     break;
3309   }
3310 
3311   return nullptr;
3312 }
3313 
3314 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3315 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3316                                                              IntrinsicInst *II,
3317                                                              const APInt &C) {
3318   if (Cmp.isEquality())
3319     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3320 
3321   Type *Ty = II->getType();
3322   unsigned BitWidth = C.getBitWidth();
3323   ICmpInst::Predicate Pred = Cmp.getPredicate();
3324   switch (II->getIntrinsicID()) {
3325   case Intrinsic::ctpop: {
3326     // (ctpop X > BitWidth - 1) --> X == -1
3327     Value *X = II->getArgOperand(0);
3328     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3329       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3330                              ConstantInt::getAllOnesValue(Ty));
3331     // (ctpop X < BitWidth) --> X != -1
3332     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3333       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3334                              ConstantInt::getAllOnesValue(Ty));
3335     break;
3336   }
3337   case Intrinsic::ctlz: {
3338     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3339     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3340       unsigned Num = C.getLimitedValue();
3341       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3342       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3343                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3344     }
3345 
3346     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3347     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3348       unsigned Num = C.getLimitedValue();
3349       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3350       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3351                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3352     }
3353     break;
3354   }
3355   case Intrinsic::cttz: {
3356     // Limit to one use to ensure we don't increase instruction count.
3357     if (!II->hasOneUse())
3358       return nullptr;
3359 
3360     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3361     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3362       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3363       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3364                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3365                              ConstantInt::getNullValue(Ty));
3366     }
3367 
3368     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3369     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3370       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3371       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3372                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3373                              ConstantInt::getNullValue(Ty));
3374     }
3375     break;
3376   }
3377   default:
3378     break;
3379   }
3380 
3381   return nullptr;
3382 }
3383 
3384 /// Handle icmp with constant (but not simple integer constant) RHS.
3385 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3386   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3387   Constant *RHSC = dyn_cast<Constant>(Op1);
3388   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3389   if (!RHSC || !LHSI)
3390     return nullptr;
3391 
3392   switch (LHSI->getOpcode()) {
3393   case Instruction::GetElementPtr:
3394     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3395     if (RHSC->isNullValue() &&
3396         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3397       return new ICmpInst(
3398           I.getPredicate(), LHSI->getOperand(0),
3399           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3400     break;
3401   case Instruction::PHI:
3402     // Only fold icmp into the PHI if the phi and icmp are in the same
3403     // block.  If in the same block, we're encouraging jump threading.  If
3404     // not, we are just pessimizing the code by making an i1 phi.
3405     if (LHSI->getParent() == I.getParent())
3406       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3407         return NV;
3408     break;
3409   case Instruction::Select: {
3410     // If either operand of the select is a constant, we can fold the
3411     // comparison into the select arms, which will cause one to be
3412     // constant folded and the select turned into a bitwise or.
3413     Value *Op1 = nullptr, *Op2 = nullptr;
3414     ConstantInt *CI = nullptr;
3415 
3416     auto SimplifyOp = [&](Value *V) {
3417       Value *Op = nullptr;
3418       if (Constant *C = dyn_cast<Constant>(V)) {
3419         Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3420       } else if (RHSC->isNullValue()) {
3421         // If null is being compared, check if it can be further simplified.
3422         Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ);
3423       }
3424       return Op;
3425     };
3426     Op1 = SimplifyOp(LHSI->getOperand(1));
3427     if (Op1)
3428       CI = dyn_cast<ConstantInt>(Op1);
3429 
3430     Op2 = SimplifyOp(LHSI->getOperand(2));
3431     if (Op2)
3432       CI = dyn_cast<ConstantInt>(Op2);
3433 
3434     // We only want to perform this transformation if it will not lead to
3435     // additional code. This is true if either both sides of the select
3436     // fold to a constant (in which case the icmp is replaced with a select
3437     // which will usually simplify) or this is the only user of the
3438     // select (in which case we are trading a select+icmp for a simpler
3439     // select+icmp) or all uses of the select can be replaced based on
3440     // dominance information ("Global cases").
3441     bool Transform = false;
3442     if (Op1 && Op2)
3443       Transform = true;
3444     else if (Op1 || Op2) {
3445       // Local case
3446       if (LHSI->hasOneUse())
3447         Transform = true;
3448       // Global cases
3449       else if (CI && !CI->isZero())
3450         // When Op1 is constant try replacing select with second operand.
3451         // Otherwise Op2 is constant and try replacing select with first
3452         // operand.
3453         Transform =
3454             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3455     }
3456     if (Transform) {
3457       if (!Op1)
3458         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3459                                  I.getName());
3460       if (!Op2)
3461         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3462                                  I.getName());
3463       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3464     }
3465     break;
3466   }
3467   case Instruction::IntToPtr:
3468     // icmp pred inttoptr(X), null -> icmp pred X, 0
3469     if (RHSC->isNullValue() &&
3470         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3471       return new ICmpInst(
3472           I.getPredicate(), LHSI->getOperand(0),
3473           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3474     break;
3475 
3476   case Instruction::Load:
3477     // Try to optimize things like "A[i] > 4" to index computations.
3478     if (GetElementPtrInst *GEP =
3479             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
3480       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3481         if (Instruction *Res =
3482                 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
3483           return Res;
3484     break;
3485   }
3486 
3487   return nullptr;
3488 }
3489 
3490 /// Some comparisons can be simplified.
3491 /// In this case, we are looking for comparisons that look like
3492 /// a check for a lossy truncation.
3493 /// Folds:
3494 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3495 /// Where Mask is some pattern that produces all-ones in low bits:
3496 ///    (-1 >> y)
3497 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3498 ///   ~(-1 << y)
3499 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3500 /// The Mask can be a constant, too.
3501 /// For some predicates, the operands are commutative.
3502 /// For others, x can only be on a specific side.
3503 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3504                                           InstCombiner::BuilderTy &Builder) {
3505   ICmpInst::Predicate SrcPred;
3506   Value *X, *M, *Y;
3507   auto m_VariableMask = m_CombineOr(
3508       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3509                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3510       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3511                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3512   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3513   if (!match(&I, m_c_ICmp(SrcPred,
3514                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3515                           m_Deferred(X))))
3516     return nullptr;
3517 
3518   ICmpInst::Predicate DstPred;
3519   switch (SrcPred) {
3520   case ICmpInst::Predicate::ICMP_EQ:
3521     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3522     DstPred = ICmpInst::Predicate::ICMP_ULE;
3523     break;
3524   case ICmpInst::Predicate::ICMP_NE:
3525     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3526     DstPred = ICmpInst::Predicate::ICMP_UGT;
3527     break;
3528   case ICmpInst::Predicate::ICMP_ULT:
3529     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3530     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3531     DstPred = ICmpInst::Predicate::ICMP_UGT;
3532     break;
3533   case ICmpInst::Predicate::ICMP_UGE:
3534     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3535     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3536     DstPred = ICmpInst::Predicate::ICMP_ULE;
3537     break;
3538   case ICmpInst::Predicate::ICMP_SLT:
3539     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3540     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3541     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3542       return nullptr;
3543     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3544       return nullptr;
3545     DstPred = ICmpInst::Predicate::ICMP_SGT;
3546     break;
3547   case ICmpInst::Predicate::ICMP_SGE:
3548     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3549     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3550     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3551       return nullptr;
3552     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3553       return nullptr;
3554     DstPred = ICmpInst::Predicate::ICMP_SLE;
3555     break;
3556   case ICmpInst::Predicate::ICMP_SGT:
3557   case ICmpInst::Predicate::ICMP_SLE:
3558     return nullptr;
3559   case ICmpInst::Predicate::ICMP_UGT:
3560   case ICmpInst::Predicate::ICMP_ULE:
3561     llvm_unreachable("Instsimplify took care of commut. variant");
3562     break;
3563   default:
3564     llvm_unreachable("All possible folds are handled.");
3565   }
3566 
3567   // The mask value may be a vector constant that has undefined elements. But it
3568   // may not be safe to propagate those undefs into the new compare, so replace
3569   // those elements by copying an existing, defined, and safe scalar constant.
3570   Type *OpTy = M->getType();
3571   auto *VecC = dyn_cast<Constant>(M);
3572   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3573   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3574     Constant *SafeReplacementConstant = nullptr;
3575     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3576       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3577         SafeReplacementConstant = VecC->getAggregateElement(i);
3578         break;
3579       }
3580     }
3581     assert(SafeReplacementConstant && "Failed to find undef replacement");
3582     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3583   }
3584 
3585   return Builder.CreateICmp(DstPred, X, M);
3586 }
3587 
3588 /// Some comparisons can be simplified.
3589 /// In this case, we are looking for comparisons that look like
3590 /// a check for a lossy signed truncation.
3591 /// Folds:   (MaskedBits is a constant.)
3592 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3593 /// Into:
3594 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3595 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3596 static Value *
3597 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3598                                  InstCombiner::BuilderTy &Builder) {
3599   ICmpInst::Predicate SrcPred;
3600   Value *X;
3601   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3602   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3603   if (!match(&I, m_c_ICmp(SrcPred,
3604                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3605                                           m_APInt(C1))),
3606                           m_Deferred(X))))
3607     return nullptr;
3608 
3609   // Potential handling of non-splats: for each element:
3610   //  * if both are undef, replace with constant 0.
3611   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3612   //  * if both are not undef, and are different, bailout.
3613   //  * else, only one is undef, then pick the non-undef one.
3614 
3615   // The shift amount must be equal.
3616   if (*C0 != *C1)
3617     return nullptr;
3618   const APInt &MaskedBits = *C0;
3619   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3620 
3621   ICmpInst::Predicate DstPred;
3622   switch (SrcPred) {
3623   case ICmpInst::Predicate::ICMP_EQ:
3624     // ((%x << MaskedBits) a>> MaskedBits) == %x
3625     //   =>
3626     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3627     DstPred = ICmpInst::Predicate::ICMP_ULT;
3628     break;
3629   case ICmpInst::Predicate::ICMP_NE:
3630     // ((%x << MaskedBits) a>> MaskedBits) != %x
3631     //   =>
3632     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3633     DstPred = ICmpInst::Predicate::ICMP_UGE;
3634     break;
3635   // FIXME: are more folds possible?
3636   default:
3637     return nullptr;
3638   }
3639 
3640   auto *XType = X->getType();
3641   const unsigned XBitWidth = XType->getScalarSizeInBits();
3642   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3643   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3644 
3645   // KeptBits = bitwidth(%x) - MaskedBits
3646   const APInt KeptBits = BitWidth - MaskedBits;
3647   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3648   // ICmpCst = (1 << KeptBits)
3649   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3650   assert(ICmpCst.isPowerOf2());
3651   // AddCst = (1 << (KeptBits-1))
3652   const APInt AddCst = ICmpCst.lshr(1);
3653   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3654 
3655   // T0 = add %x, AddCst
3656   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3657   // T1 = T0 DstPred ICmpCst
3658   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3659 
3660   return T1;
3661 }
3662 
3663 // Given pattern:
3664 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3665 // we should move shifts to the same hand of 'and', i.e. rewrite as
3666 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3667 // We are only interested in opposite logical shifts here.
3668 // One of the shifts can be truncated.
3669 // If we can, we want to end up creating 'lshr' shift.
3670 static Value *
3671 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3672                                            InstCombiner::BuilderTy &Builder) {
3673   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3674       !I.getOperand(0)->hasOneUse())
3675     return nullptr;
3676 
3677   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3678 
3679   // Look for an 'and' of two logical shifts, one of which may be truncated.
3680   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3681   Instruction *XShift, *MaybeTruncation, *YShift;
3682   if (!match(
3683           I.getOperand(0),
3684           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3685                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3686                                    m_AnyLogicalShift, m_Instruction(YShift))),
3687                                m_Instruction(MaybeTruncation)))))
3688     return nullptr;
3689 
3690   // We potentially looked past 'trunc', but only when matching YShift,
3691   // therefore YShift must have the widest type.
3692   Instruction *WidestShift = YShift;
3693   // Therefore XShift must have the shallowest type.
3694   // Or they both have identical types if there was no truncation.
3695   Instruction *NarrowestShift = XShift;
3696 
3697   Type *WidestTy = WidestShift->getType();
3698   Type *NarrowestTy = NarrowestShift->getType();
3699   assert(NarrowestTy == I.getOperand(0)->getType() &&
3700          "We did not look past any shifts while matching XShift though.");
3701   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3702 
3703   // If YShift is a 'lshr', swap the shifts around.
3704   if (match(YShift, m_LShr(m_Value(), m_Value())))
3705     std::swap(XShift, YShift);
3706 
3707   // The shifts must be in opposite directions.
3708   auto XShiftOpcode = XShift->getOpcode();
3709   if (XShiftOpcode == YShift->getOpcode())
3710     return nullptr; // Do not care about same-direction shifts here.
3711 
3712   Value *X, *XShAmt, *Y, *YShAmt;
3713   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3714   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3715 
3716   // If one of the values being shifted is a constant, then we will end with
3717   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3718   // however, we will need to ensure that we won't increase instruction count.
3719   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3720     // At least one of the hands of the 'and' should be one-use shift.
3721     if (!match(I.getOperand(0),
3722                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3723       return nullptr;
3724     if (HadTrunc) {
3725       // Due to the 'trunc', we will need to widen X. For that either the old
3726       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3727       if (!MaybeTruncation->hasOneUse() &&
3728           !NarrowestShift->getOperand(1)->hasOneUse())
3729         return nullptr;
3730     }
3731   }
3732 
3733   // We have two shift amounts from two different shifts. The types of those
3734   // shift amounts may not match. If that's the case let's bailout now.
3735   if (XShAmt->getType() != YShAmt->getType())
3736     return nullptr;
3737 
3738   // As input, we have the following pattern:
3739   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3740   // We want to rewrite that as:
3741   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3742   // While we know that originally (Q+K) would not overflow
3743   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3744   // shift amounts. so it may now overflow in smaller bitwidth.
3745   // To ensure that does not happen, we need to ensure that the total maximal
3746   // shift amount is still representable in that smaller bit width.
3747   unsigned MaximalPossibleTotalShiftAmount =
3748       (WidestTy->getScalarSizeInBits() - 1) +
3749       (NarrowestTy->getScalarSizeInBits() - 1);
3750   APInt MaximalRepresentableShiftAmount =
3751       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3752   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3753     return nullptr;
3754 
3755   // Can we fold (XShAmt+YShAmt) ?
3756   auto *NewShAmt = dyn_cast_or_null<Constant>(
3757       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3758                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3759   if (!NewShAmt)
3760     return nullptr;
3761   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3762   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3763 
3764   // Is the new shift amount smaller than the bit width?
3765   // FIXME: could also rely on ConstantRange.
3766   if (!match(NewShAmt,
3767              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3768                                 APInt(WidestBitWidth, WidestBitWidth))))
3769     return nullptr;
3770 
3771   // An extra legality check is needed if we had trunc-of-lshr.
3772   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3773     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3774                     WidestShift]() {
3775       // It isn't obvious whether it's worth it to analyze non-constants here.
3776       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3777       // If *any* of these preconditions matches we can perform the fold.
3778       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3779                                     ? NewShAmt->getSplatValue()
3780                                     : NewShAmt;
3781       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3782       if (NewShAmtSplat &&
3783           (NewShAmtSplat->isNullValue() ||
3784            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3785         return true;
3786       // We consider *min* leading zeros so a single outlier
3787       // blocks the transform as opposed to allowing it.
3788       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3789         KnownBits Known = computeKnownBits(C, SQ.DL);
3790         unsigned MinLeadZero = Known.countMinLeadingZeros();
3791         // If the value being shifted has at most lowest bit set we can fold.
3792         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3793         if (MaxActiveBits <= 1)
3794           return true;
3795         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3796         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3797           return true;
3798       }
3799       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3800         KnownBits Known = computeKnownBits(C, SQ.DL);
3801         unsigned MinLeadZero = Known.countMinLeadingZeros();
3802         // If the value being shifted has at most lowest bit set we can fold.
3803         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3804         if (MaxActiveBits <= 1)
3805           return true;
3806         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3807         if (NewShAmtSplat) {
3808           APInt AdjNewShAmt =
3809               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3810           if (AdjNewShAmt.ule(MinLeadZero))
3811             return true;
3812         }
3813       }
3814       return false; // Can't tell if it's ok.
3815     };
3816     if (!CanFold())
3817       return nullptr;
3818   }
3819 
3820   // All good, we can do this fold.
3821   X = Builder.CreateZExt(X, WidestTy);
3822   Y = Builder.CreateZExt(Y, WidestTy);
3823   // The shift is the same that was for X.
3824   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3825                   ? Builder.CreateLShr(X, NewShAmt)
3826                   : Builder.CreateShl(X, NewShAmt);
3827   Value *T1 = Builder.CreateAnd(T0, Y);
3828   return Builder.CreateICmp(I.getPredicate(), T1,
3829                             Constant::getNullValue(WidestTy));
3830 }
3831 
3832 /// Fold
3833 ///   (-1 u/ x) u< y
3834 ///   ((x * y) ?/ x) != y
3835 /// to
3836 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3837 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3838 /// will mean that we are looking for the opposite answer.
3839 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3840   ICmpInst::Predicate Pred;
3841   Value *X, *Y;
3842   Instruction *Mul;
3843   Instruction *Div;
3844   bool NeedNegation;
3845   // Look for: (-1 u/ x) u</u>= y
3846   if (!I.isEquality() &&
3847       match(&I, m_c_ICmp(Pred,
3848                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3849                                       m_Instruction(Div)),
3850                          m_Value(Y)))) {
3851     Mul = nullptr;
3852 
3853     // Are we checking that overflow does not happen, or does happen?
3854     switch (Pred) {
3855     case ICmpInst::Predicate::ICMP_ULT:
3856       NeedNegation = false;
3857       break; // OK
3858     case ICmpInst::Predicate::ICMP_UGE:
3859       NeedNegation = true;
3860       break; // OK
3861     default:
3862       return nullptr; // Wrong predicate.
3863     }
3864   } else // Look for: ((x * y) / x) !=/== y
3865       if (I.isEquality() &&
3866           match(&I,
3867                 m_c_ICmp(Pred, m_Value(Y),
3868                          m_CombineAnd(
3869                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3870                                                                   m_Value(X)),
3871                                                           m_Instruction(Mul)),
3872                                              m_Deferred(X))),
3873                              m_Instruction(Div))))) {
3874     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3875   } else
3876     return nullptr;
3877 
3878   BuilderTy::InsertPointGuard Guard(Builder);
3879   // If the pattern included (x * y), we'll want to insert new instructions
3880   // right before that original multiplication so that we can replace it.
3881   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3882   if (MulHadOtherUses)
3883     Builder.SetInsertPoint(Mul);
3884 
3885   Function *F = Intrinsic::getDeclaration(I.getModule(),
3886                                           Div->getOpcode() == Instruction::UDiv
3887                                               ? Intrinsic::umul_with_overflow
3888                                               : Intrinsic::smul_with_overflow,
3889                                           X->getType());
3890   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3891 
3892   // If the multiplication was used elsewhere, to ensure that we don't leave
3893   // "duplicate" instructions, replace uses of that original multiplication
3894   // with the multiplication result from the with.overflow intrinsic.
3895   if (MulHadOtherUses)
3896     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3897 
3898   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3899   if (NeedNegation) // This technically increases instruction count.
3900     Res = Builder.CreateNot(Res, "mul.not.ov");
3901 
3902   // If we replaced the mul, erase it. Do this after all uses of Builder,
3903   // as the mul is used as insertion point.
3904   if (MulHadOtherUses)
3905     eraseInstFromFunction(*Mul);
3906 
3907   return Res;
3908 }
3909 
3910 static Instruction *foldICmpXNegX(ICmpInst &I) {
3911   CmpInst::Predicate Pred;
3912   Value *X;
3913   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3914     return nullptr;
3915 
3916   if (ICmpInst::isSigned(Pred))
3917     Pred = ICmpInst::getSwappedPredicate(Pred);
3918   else if (ICmpInst::isUnsigned(Pred))
3919     Pred = ICmpInst::getSignedPredicate(Pred);
3920   // else for equality-comparisons just keep the predicate.
3921 
3922   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3923                           Constant::getNullValue(X->getType()), I.getName());
3924 }
3925 
3926 /// Try to fold icmp (binop), X or icmp X, (binop).
3927 /// TODO: A large part of this logic is duplicated in InstSimplify's
3928 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3929 /// duplication.
3930 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3931                                              const SimplifyQuery &SQ) {
3932   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3933   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3934 
3935   // Special logic for binary operators.
3936   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3937   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3938   if (!BO0 && !BO1)
3939     return nullptr;
3940 
3941   if (Instruction *NewICmp = foldICmpXNegX(I))
3942     return NewICmp;
3943 
3944   const CmpInst::Predicate Pred = I.getPredicate();
3945   Value *X;
3946 
3947   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3948   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3949   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3950       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3951     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3952   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3953   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3954       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3955     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3956 
3957   {
3958     // Similar to above: an unsigned overflow comparison may use offset + mask:
3959     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
3960     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
3961     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
3962     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
3963     BinaryOperator *BO;
3964     const APInt *C;
3965     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
3966         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3967         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
3968       CmpInst::Predicate NewPred =
3969           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
3970       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
3971       return new ICmpInst(NewPred, Op1, Zero);
3972     }
3973 
3974     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
3975         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3976         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
3977       CmpInst::Predicate NewPred =
3978           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
3979       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
3980       return new ICmpInst(NewPred, Op0, Zero);
3981     }
3982   }
3983 
3984   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3985   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3986     NoOp0WrapProblem =
3987         ICmpInst::isEquality(Pred) ||
3988         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3989         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3990   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3991     NoOp1WrapProblem =
3992         ICmpInst::isEquality(Pred) ||
3993         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3994         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3995 
3996   // Analyze the case when either Op0 or Op1 is an add instruction.
3997   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3998   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3999   if (BO0 && BO0->getOpcode() == Instruction::Add) {
4000     A = BO0->getOperand(0);
4001     B = BO0->getOperand(1);
4002   }
4003   if (BO1 && BO1->getOpcode() == Instruction::Add) {
4004     C = BO1->getOperand(0);
4005     D = BO1->getOperand(1);
4006   }
4007 
4008   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4009   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4010   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4011     return new ICmpInst(Pred, A == Op1 ? B : A,
4012                         Constant::getNullValue(Op1->getType()));
4013 
4014   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4015   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4016   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4017     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4018                         C == Op0 ? D : C);
4019 
4020   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4021   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4022       NoOp1WrapProblem) {
4023     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4024     Value *Y, *Z;
4025     if (A == C) {
4026       // C + B == C + D  ->  B == D
4027       Y = B;
4028       Z = D;
4029     } else if (A == D) {
4030       // D + B == C + D  ->  B == C
4031       Y = B;
4032       Z = C;
4033     } else if (B == C) {
4034       // A + C == C + D  ->  A == D
4035       Y = A;
4036       Z = D;
4037     } else {
4038       assert(B == D);
4039       // A + D == C + D  ->  A == C
4040       Y = A;
4041       Z = C;
4042     }
4043     return new ICmpInst(Pred, Y, Z);
4044   }
4045 
4046   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4047   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4048       match(B, m_AllOnes()))
4049     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4050 
4051   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4052   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4053       match(B, m_AllOnes()))
4054     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4055 
4056   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4057   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4058     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4059 
4060   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4061   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4062     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4063 
4064   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4065   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4066       match(D, m_AllOnes()))
4067     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4068 
4069   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4070   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4071       match(D, m_AllOnes()))
4072     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4073 
4074   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4075   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4076     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4077 
4078   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4079   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4080     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4081 
4082   // TODO: The subtraction-related identities shown below also hold, but
4083   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4084   // wouldn't happen even if they were implemented.
4085   //
4086   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4087   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4088   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4089   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4090 
4091   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4092   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4093     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4094 
4095   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4096   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4097     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4098 
4099   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4100   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4101     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4102 
4103   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4104   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4105     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4106 
4107   // if C1 has greater magnitude than C2:
4108   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4109   //  s.t. C3 = C1 - C2
4110   //
4111   // if C2 has greater magnitude than C1:
4112   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4113   //  s.t. C3 = C2 - C1
4114   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4115       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
4116     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
4117       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
4118         const APInt &AP1 = C1->getValue();
4119         const APInt &AP2 = C2->getValue();
4120         if (AP1.isNegative() == AP2.isNegative()) {
4121           APInt AP1Abs = C1->getValue().abs();
4122           APInt AP2Abs = C2->getValue().abs();
4123           if (AP1Abs.uge(AP2Abs)) {
4124             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
4125             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
4126             bool HasNSW = BO0->hasNoSignedWrap();
4127             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4128             return new ICmpInst(Pred, NewAdd, C);
4129           } else {
4130             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
4131             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
4132             bool HasNSW = BO1->hasNoSignedWrap();
4133             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4134             return new ICmpInst(Pred, A, NewAdd);
4135           }
4136         }
4137       }
4138 
4139   // Analyze the case when either Op0 or Op1 is a sub instruction.
4140   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4141   A = nullptr;
4142   B = nullptr;
4143   C = nullptr;
4144   D = nullptr;
4145   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4146     A = BO0->getOperand(0);
4147     B = BO0->getOperand(1);
4148   }
4149   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4150     C = BO1->getOperand(0);
4151     D = BO1->getOperand(1);
4152   }
4153 
4154   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4155   if (A == Op1 && NoOp0WrapProblem)
4156     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4157   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4158   if (C == Op0 && NoOp1WrapProblem)
4159     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4160 
4161   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4162   // (A - B) u>/u<= A --> B u>/u<= A
4163   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4164     return new ICmpInst(Pred, B, A);
4165   // C u</u>= (C - D) --> C u</u>= D
4166   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4167     return new ICmpInst(Pred, C, D);
4168   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4169   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4170       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4171     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4172   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4173   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4174       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4175     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4176 
4177   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4178   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4179     return new ICmpInst(Pred, A, C);
4180 
4181   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4182   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4183     return new ICmpInst(Pred, D, B);
4184 
4185   // icmp (0-X) < cst --> x > -cst
4186   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4187     Value *X;
4188     if (match(BO0, m_Neg(m_Value(X))))
4189       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4190         if (RHSC->isNotMinSignedValue())
4191           return new ICmpInst(I.getSwappedPredicate(), X,
4192                               ConstantExpr::getNeg(RHSC));
4193   }
4194 
4195   {
4196     // Try to remove shared constant multiplier from equality comparison:
4197     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4198     Value *X, *Y;
4199     const APInt *C;
4200     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4201         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4202       if (!C->countTrailingZeros() ||
4203           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4204           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4205       return new ICmpInst(Pred, X, Y);
4206   }
4207 
4208   BinaryOperator *SRem = nullptr;
4209   // icmp (srem X, Y), Y
4210   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4211     SRem = BO0;
4212   // icmp Y, (srem X, Y)
4213   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4214            Op0 == BO1->getOperand(1))
4215     SRem = BO1;
4216   if (SRem) {
4217     // We don't check hasOneUse to avoid increasing register pressure because
4218     // the value we use is the same value this instruction was already using.
4219     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4220     default:
4221       break;
4222     case ICmpInst::ICMP_EQ:
4223       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4224     case ICmpInst::ICMP_NE:
4225       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4226     case ICmpInst::ICMP_SGT:
4227     case ICmpInst::ICMP_SGE:
4228       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4229                           Constant::getAllOnesValue(SRem->getType()));
4230     case ICmpInst::ICMP_SLT:
4231     case ICmpInst::ICMP_SLE:
4232       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4233                           Constant::getNullValue(SRem->getType()));
4234     }
4235   }
4236 
4237   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4238       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4239     switch (BO0->getOpcode()) {
4240     default:
4241       break;
4242     case Instruction::Add:
4243     case Instruction::Sub:
4244     case Instruction::Xor: {
4245       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4246         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4247 
4248       const APInt *C;
4249       if (match(BO0->getOperand(1), m_APInt(C))) {
4250         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4251         if (C->isSignMask()) {
4252           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4253           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4254         }
4255 
4256         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4257         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4258           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4259           NewPred = I.getSwappedPredicate(NewPred);
4260           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4261         }
4262       }
4263       break;
4264     }
4265     case Instruction::Mul: {
4266       if (!I.isEquality())
4267         break;
4268 
4269       const APInt *C;
4270       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4271           !C->isOne()) {
4272         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4273         // Mask = -1 >> count-trailing-zeros(C).
4274         if (unsigned TZs = C->countTrailingZeros()) {
4275           Constant *Mask = ConstantInt::get(
4276               BO0->getType(),
4277               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4278           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4279           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4280           return new ICmpInst(Pred, And1, And2);
4281         }
4282       }
4283       break;
4284     }
4285     case Instruction::UDiv:
4286     case Instruction::LShr:
4287       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4288         break;
4289       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4290 
4291     case Instruction::SDiv:
4292       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4293         break;
4294       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4295 
4296     case Instruction::AShr:
4297       if (!BO0->isExact() || !BO1->isExact())
4298         break;
4299       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4300 
4301     case Instruction::Shl: {
4302       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4303       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4304       if (!NUW && !NSW)
4305         break;
4306       if (!NSW && I.isSigned())
4307         break;
4308       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4309     }
4310     }
4311   }
4312 
4313   if (BO0) {
4314     // Transform  A & (L - 1) `ult` L --> L != 0
4315     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4316     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4317 
4318     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4319       auto *Zero = Constant::getNullValue(BO0->getType());
4320       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4321     }
4322   }
4323 
4324   if (Value *V = foldMultiplicationOverflowCheck(I))
4325     return replaceInstUsesWith(I, V);
4326 
4327   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4328     return replaceInstUsesWith(I, V);
4329 
4330   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4331     return replaceInstUsesWith(I, V);
4332 
4333   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4334     return replaceInstUsesWith(I, V);
4335 
4336   return nullptr;
4337 }
4338 
4339 /// Fold icmp Pred min|max(X, Y), X.
4340 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4341   ICmpInst::Predicate Pred = Cmp.getPredicate();
4342   Value *Op0 = Cmp.getOperand(0);
4343   Value *X = Cmp.getOperand(1);
4344 
4345   // Canonicalize minimum or maximum operand to LHS of the icmp.
4346   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4347       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4348       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4349       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4350     std::swap(Op0, X);
4351     Pred = Cmp.getSwappedPredicate();
4352   }
4353 
4354   Value *Y;
4355   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4356     // smin(X, Y)  == X --> X s<= Y
4357     // smin(X, Y) s>= X --> X s<= Y
4358     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4359       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4360 
4361     // smin(X, Y) != X --> X s> Y
4362     // smin(X, Y) s< X --> X s> Y
4363     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4364       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4365 
4366     // These cases should be handled in InstSimplify:
4367     // smin(X, Y) s<= X --> true
4368     // smin(X, Y) s> X --> false
4369     return nullptr;
4370   }
4371 
4372   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4373     // smax(X, Y)  == X --> X s>= Y
4374     // smax(X, Y) s<= X --> X s>= Y
4375     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4376       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4377 
4378     // smax(X, Y) != X --> X s< Y
4379     // smax(X, Y) s> X --> X s< Y
4380     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4381       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4382 
4383     // These cases should be handled in InstSimplify:
4384     // smax(X, Y) s>= X --> true
4385     // smax(X, Y) s< X --> false
4386     return nullptr;
4387   }
4388 
4389   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4390     // umin(X, Y)  == X --> X u<= Y
4391     // umin(X, Y) u>= X --> X u<= Y
4392     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4393       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4394 
4395     // umin(X, Y) != X --> X u> Y
4396     // umin(X, Y) u< X --> X u> Y
4397     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4398       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4399 
4400     // These cases should be handled in InstSimplify:
4401     // umin(X, Y) u<= X --> true
4402     // umin(X, Y) u> X --> false
4403     return nullptr;
4404   }
4405 
4406   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4407     // umax(X, Y)  == X --> X u>= Y
4408     // umax(X, Y) u<= X --> X u>= Y
4409     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4410       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4411 
4412     // umax(X, Y) != X --> X u< Y
4413     // umax(X, Y) u> X --> X u< Y
4414     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4415       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4416 
4417     // These cases should be handled in InstSimplify:
4418     // umax(X, Y) u>= X --> true
4419     // umax(X, Y) u< X --> false
4420     return nullptr;
4421   }
4422 
4423   return nullptr;
4424 }
4425 
4426 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4427   if (!I.isEquality())
4428     return nullptr;
4429 
4430   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4431   const CmpInst::Predicate Pred = I.getPredicate();
4432   Value *A, *B, *C, *D;
4433   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4434     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4435       Value *OtherVal = A == Op1 ? B : A;
4436       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4437     }
4438 
4439     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4440       // A^c1 == C^c2 --> A == C^(c1^c2)
4441       ConstantInt *C1, *C2;
4442       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4443           Op1->hasOneUse()) {
4444         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4445         Value *Xor = Builder.CreateXor(C, NC);
4446         return new ICmpInst(Pred, A, Xor);
4447       }
4448 
4449       // A^B == A^D -> B == D
4450       if (A == C)
4451         return new ICmpInst(Pred, B, D);
4452       if (A == D)
4453         return new ICmpInst(Pred, B, C);
4454       if (B == C)
4455         return new ICmpInst(Pred, A, D);
4456       if (B == D)
4457         return new ICmpInst(Pred, A, C);
4458     }
4459   }
4460 
4461   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4462     // A == (A^B)  ->  B == 0
4463     Value *OtherVal = A == Op0 ? B : A;
4464     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4465   }
4466 
4467   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4468   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4469       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4470     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4471 
4472     if (A == C) {
4473       X = B;
4474       Y = D;
4475       Z = A;
4476     } else if (A == D) {
4477       X = B;
4478       Y = C;
4479       Z = A;
4480     } else if (B == C) {
4481       X = A;
4482       Y = D;
4483       Z = B;
4484     } else if (B == D) {
4485       X = A;
4486       Y = C;
4487       Z = B;
4488     }
4489 
4490     if (X) { // Build (X^Y) & Z
4491       Op1 = Builder.CreateXor(X, Y);
4492       Op1 = Builder.CreateAnd(Op1, Z);
4493       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4494     }
4495   }
4496 
4497   {
4498     // Similar to above, but specialized for constant because invert is needed:
4499     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4500     Value *X, *Y;
4501     Constant *C;
4502     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4503         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4504       Value *Xor = Builder.CreateXor(X, Y);
4505       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4506       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4507     }
4508   }
4509 
4510   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4511   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4512   ConstantInt *Cst1;
4513   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4514        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4515       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4516        match(Op1, m_ZExt(m_Value(A))))) {
4517     APInt Pow2 = Cst1->getValue() + 1;
4518     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4519         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4520       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4521   }
4522 
4523   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4524   // For lshr and ashr pairs.
4525   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4526        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4527       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4528        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4529     unsigned TypeBits = Cst1->getBitWidth();
4530     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4531     if (ShAmt < TypeBits && ShAmt != 0) {
4532       ICmpInst::Predicate NewPred =
4533           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4534       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4535       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4536       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4537     }
4538   }
4539 
4540   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4541   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4542       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4543     unsigned TypeBits = Cst1->getBitWidth();
4544     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4545     if (ShAmt < TypeBits && ShAmt != 0) {
4546       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4547       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4548       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4549                                       I.getName() + ".mask");
4550       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4551     }
4552   }
4553 
4554   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4555   // "icmp (and X, mask), cst"
4556   uint64_t ShAmt = 0;
4557   if (Op0->hasOneUse() &&
4558       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4559       match(Op1, m_ConstantInt(Cst1)) &&
4560       // Only do this when A has multiple uses.  This is most important to do
4561       // when it exposes other optimizations.
4562       !A->hasOneUse()) {
4563     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4564 
4565     if (ShAmt < ASize) {
4566       APInt MaskV =
4567           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4568       MaskV <<= ShAmt;
4569 
4570       APInt CmpV = Cst1->getValue().zext(ASize);
4571       CmpV <<= ShAmt;
4572 
4573       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4574       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4575     }
4576   }
4577 
4578   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4579     return ICmp;
4580 
4581   // Canonicalize checking for a power-of-2-or-zero value:
4582   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4583   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4584   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4585                                    m_Deferred(A)))) ||
4586       !match(Op1, m_ZeroInt()))
4587     A = nullptr;
4588 
4589   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4590   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4591   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4592     A = Op1;
4593   else if (match(Op1,
4594                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4595     A = Op0;
4596 
4597   if (A) {
4598     Type *Ty = A->getType();
4599     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4600     return Pred == ICmpInst::ICMP_EQ
4601         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4602         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4603   }
4604 
4605   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4606   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4607   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4608   // of instcombine.
4609   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4610   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4611       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4612       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4613       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4614     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4615     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4616     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4617                                                   : ICmpInst::ICMP_UGE,
4618                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4619   }
4620 
4621   return nullptr;
4622 }
4623 
4624 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4625                                       InstCombiner::BuilderTy &Builder) {
4626   ICmpInst::Predicate Pred = ICmp.getPredicate();
4627   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4628 
4629   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4630   // The trunc masks high bits while the compare may effectively mask low bits.
4631   Value *X;
4632   const APInt *C;
4633   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4634     return nullptr;
4635 
4636   // This matches patterns corresponding to tests of the signbit as well as:
4637   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4638   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4639   APInt Mask;
4640   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4641     Value *And = Builder.CreateAnd(X, Mask);
4642     Constant *Zero = ConstantInt::getNullValue(X->getType());
4643     return new ICmpInst(Pred, And, Zero);
4644   }
4645 
4646   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4647   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4648     // If C is a negative power-of-2 (high-bit mask):
4649     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4650     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4651     Value *And = Builder.CreateAnd(X, MaskC);
4652     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4653   }
4654 
4655   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4656     // If C is not-of-power-of-2 (one clear bit):
4657     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4658     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4659     Value *And = Builder.CreateAnd(X, MaskC);
4660     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4661   }
4662 
4663   return nullptr;
4664 }
4665 
4666 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4667                                            InstCombiner::BuilderTy &Builder) {
4668   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4669   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4670   Value *X;
4671   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4672     return nullptr;
4673 
4674   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4675   bool IsSignedCmp = ICmp.isSigned();
4676   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4677     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4678     // and the other is a zext), then we can't handle this.
4679     // TODO: This is too strict. We can handle some predicates (equality?).
4680     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4681       return nullptr;
4682 
4683     // Not an extension from the same type?
4684     Value *Y = CastOp1->getOperand(0);
4685     Type *XTy = X->getType(), *YTy = Y->getType();
4686     if (XTy != YTy) {
4687       // One of the casts must have one use because we are creating a new cast.
4688       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4689         return nullptr;
4690       // Extend the narrower operand to the type of the wider operand.
4691       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4692         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4693       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4694         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4695       else
4696         return nullptr;
4697     }
4698 
4699     // (zext X) == (zext Y) --> X == Y
4700     // (sext X) == (sext Y) --> X == Y
4701     if (ICmp.isEquality())
4702       return new ICmpInst(ICmp.getPredicate(), X, Y);
4703 
4704     // A signed comparison of sign extended values simplifies into a
4705     // signed comparison.
4706     if (IsSignedCmp && IsSignedExt)
4707       return new ICmpInst(ICmp.getPredicate(), X, Y);
4708 
4709     // The other three cases all fold into an unsigned comparison.
4710     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4711   }
4712 
4713   // Below here, we are only folding a compare with constant.
4714   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4715   if (!C)
4716     return nullptr;
4717 
4718   // Compute the constant that would happen if we truncated to SrcTy then
4719   // re-extended to DestTy.
4720   Type *SrcTy = CastOp0->getSrcTy();
4721   Type *DestTy = CastOp0->getDestTy();
4722   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4723   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4724 
4725   // If the re-extended constant didn't change...
4726   if (Res2 == C) {
4727     if (ICmp.isEquality())
4728       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4729 
4730     // A signed comparison of sign extended values simplifies into a
4731     // signed comparison.
4732     if (IsSignedExt && IsSignedCmp)
4733       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4734 
4735     // The other three cases all fold into an unsigned comparison.
4736     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4737   }
4738 
4739   // The re-extended constant changed, partly changed (in the case of a vector),
4740   // or could not be determined to be equal (in the case of a constant
4741   // expression), so the constant cannot be represented in the shorter type.
4742   // All the cases that fold to true or false will have already been handled
4743   // by SimplifyICmpInst, so only deal with the tricky case.
4744   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4745     return nullptr;
4746 
4747   // Is source op positive?
4748   // icmp ult (sext X), C --> icmp sgt X, -1
4749   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4750     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4751 
4752   // Is source op negative?
4753   // icmp ugt (sext X), C --> icmp slt X, 0
4754   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4755   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4756 }
4757 
4758 /// Handle icmp (cast x), (cast or constant).
4759 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4760   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4761   // icmp compares only pointer's value.
4762   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4763   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4764   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4765   if (SimplifiedOp0 || SimplifiedOp1)
4766     return new ICmpInst(ICmp.getPredicate(),
4767                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4768                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4769 
4770   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4771   if (!CastOp0)
4772     return nullptr;
4773   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4774     return nullptr;
4775 
4776   Value *Op0Src = CastOp0->getOperand(0);
4777   Type *SrcTy = CastOp0->getSrcTy();
4778   Type *DestTy = CastOp0->getDestTy();
4779 
4780   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4781   // integer type is the same size as the pointer type.
4782   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4783     if (isa<VectorType>(SrcTy)) {
4784       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4785       DestTy = cast<VectorType>(DestTy)->getElementType();
4786     }
4787     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4788   };
4789   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4790       CompatibleSizes(SrcTy, DestTy)) {
4791     Value *NewOp1 = nullptr;
4792     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4793       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4794       if (PtrSrc->getType()->getPointerAddressSpace() ==
4795           Op0Src->getType()->getPointerAddressSpace()) {
4796         NewOp1 = PtrToIntOp1->getOperand(0);
4797         // If the pointer types don't match, insert a bitcast.
4798         if (Op0Src->getType() != NewOp1->getType())
4799           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4800       }
4801     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4802       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4803     }
4804 
4805     if (NewOp1)
4806       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4807   }
4808 
4809   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4810     return R;
4811 
4812   return foldICmpWithZextOrSext(ICmp, Builder);
4813 }
4814 
4815 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4816   switch (BinaryOp) {
4817     default:
4818       llvm_unreachable("Unsupported binary op");
4819     case Instruction::Add:
4820     case Instruction::Sub:
4821       return match(RHS, m_Zero());
4822     case Instruction::Mul:
4823       return match(RHS, m_One());
4824   }
4825 }
4826 
4827 OverflowResult
4828 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4829                                   bool IsSigned, Value *LHS, Value *RHS,
4830                                   Instruction *CxtI) const {
4831   switch (BinaryOp) {
4832     default:
4833       llvm_unreachable("Unsupported binary op");
4834     case Instruction::Add:
4835       if (IsSigned)
4836         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4837       else
4838         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4839     case Instruction::Sub:
4840       if (IsSigned)
4841         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4842       else
4843         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4844     case Instruction::Mul:
4845       if (IsSigned)
4846         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4847       else
4848         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4849   }
4850 }
4851 
4852 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4853                                              bool IsSigned, Value *LHS,
4854                                              Value *RHS, Instruction &OrigI,
4855                                              Value *&Result,
4856                                              Constant *&Overflow) {
4857   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4858     std::swap(LHS, RHS);
4859 
4860   // If the overflow check was an add followed by a compare, the insertion point
4861   // may be pointing to the compare.  We want to insert the new instructions
4862   // before the add in case there are uses of the add between the add and the
4863   // compare.
4864   Builder.SetInsertPoint(&OrigI);
4865 
4866   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4867   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4868     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4869 
4870   if (isNeutralValue(BinaryOp, RHS)) {
4871     Result = LHS;
4872     Overflow = ConstantInt::getFalse(OverflowTy);
4873     return true;
4874   }
4875 
4876   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4877     case OverflowResult::MayOverflow:
4878       return false;
4879     case OverflowResult::AlwaysOverflowsLow:
4880     case OverflowResult::AlwaysOverflowsHigh:
4881       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4882       Result->takeName(&OrigI);
4883       Overflow = ConstantInt::getTrue(OverflowTy);
4884       return true;
4885     case OverflowResult::NeverOverflows:
4886       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4887       Result->takeName(&OrigI);
4888       Overflow = ConstantInt::getFalse(OverflowTy);
4889       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4890         if (IsSigned)
4891           Inst->setHasNoSignedWrap();
4892         else
4893           Inst->setHasNoUnsignedWrap();
4894       }
4895       return true;
4896   }
4897 
4898   llvm_unreachable("Unexpected overflow result");
4899 }
4900 
4901 /// Recognize and process idiom involving test for multiplication
4902 /// overflow.
4903 ///
4904 /// The caller has matched a pattern of the form:
4905 ///   I = cmp u (mul(zext A, zext B), V
4906 /// The function checks if this is a test for overflow and if so replaces
4907 /// multiplication with call to 'mul.with.overflow' intrinsic.
4908 ///
4909 /// \param I Compare instruction.
4910 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4911 ///               the compare instruction.  Must be of integer type.
4912 /// \param OtherVal The other argument of compare instruction.
4913 /// \returns Instruction which must replace the compare instruction, NULL if no
4914 ///          replacement required.
4915 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4916                                          Value *OtherVal,
4917                                          InstCombinerImpl &IC) {
4918   // Don't bother doing this transformation for pointers, don't do it for
4919   // vectors.
4920   if (!isa<IntegerType>(MulVal->getType()))
4921     return nullptr;
4922 
4923   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4924   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4925   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4926   if (!MulInstr)
4927     return nullptr;
4928   assert(MulInstr->getOpcode() == Instruction::Mul);
4929 
4930   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4931        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4932   assert(LHS->getOpcode() == Instruction::ZExt);
4933   assert(RHS->getOpcode() == Instruction::ZExt);
4934   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4935 
4936   // Calculate type and width of the result produced by mul.with.overflow.
4937   Type *TyA = A->getType(), *TyB = B->getType();
4938   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4939            WidthB = TyB->getPrimitiveSizeInBits();
4940   unsigned MulWidth;
4941   Type *MulType;
4942   if (WidthB > WidthA) {
4943     MulWidth = WidthB;
4944     MulType = TyB;
4945   } else {
4946     MulWidth = WidthA;
4947     MulType = TyA;
4948   }
4949 
4950   // In order to replace the original mul with a narrower mul.with.overflow,
4951   // all uses must ignore upper bits of the product.  The number of used low
4952   // bits must be not greater than the width of mul.with.overflow.
4953   if (MulVal->hasNUsesOrMore(2))
4954     for (User *U : MulVal->users()) {
4955       if (U == &I)
4956         continue;
4957       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4958         // Check if truncation ignores bits above MulWidth.
4959         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4960         if (TruncWidth > MulWidth)
4961           return nullptr;
4962       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4963         // Check if AND ignores bits above MulWidth.
4964         if (BO->getOpcode() != Instruction::And)
4965           return nullptr;
4966         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4967           const APInt &CVal = CI->getValue();
4968           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4969             return nullptr;
4970         } else {
4971           // In this case we could have the operand of the binary operation
4972           // being defined in another block, and performing the replacement
4973           // could break the dominance relation.
4974           return nullptr;
4975         }
4976       } else {
4977         // Other uses prohibit this transformation.
4978         return nullptr;
4979       }
4980     }
4981 
4982   // Recognize patterns
4983   switch (I.getPredicate()) {
4984   case ICmpInst::ICMP_EQ:
4985   case ICmpInst::ICMP_NE:
4986     // Recognize pattern:
4987     //   mulval = mul(zext A, zext B)
4988     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4989     ConstantInt *CI;
4990     Value *ValToMask;
4991     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4992       if (ValToMask != MulVal)
4993         return nullptr;
4994       const APInt &CVal = CI->getValue() + 1;
4995       if (CVal.isPowerOf2()) {
4996         unsigned MaskWidth = CVal.logBase2();
4997         if (MaskWidth == MulWidth)
4998           break; // Recognized
4999       }
5000     }
5001     return nullptr;
5002 
5003   case ICmpInst::ICMP_UGT:
5004     // Recognize pattern:
5005     //   mulval = mul(zext A, zext B)
5006     //   cmp ugt mulval, max
5007     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5008       APInt MaxVal = APInt::getMaxValue(MulWidth);
5009       MaxVal = MaxVal.zext(CI->getBitWidth());
5010       if (MaxVal.eq(CI->getValue()))
5011         break; // Recognized
5012     }
5013     return nullptr;
5014 
5015   case ICmpInst::ICMP_UGE:
5016     // Recognize pattern:
5017     //   mulval = mul(zext A, zext B)
5018     //   cmp uge mulval, max+1
5019     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5020       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5021       if (MaxVal.eq(CI->getValue()))
5022         break; // Recognized
5023     }
5024     return nullptr;
5025 
5026   case ICmpInst::ICMP_ULE:
5027     // Recognize pattern:
5028     //   mulval = mul(zext A, zext B)
5029     //   cmp ule mulval, max
5030     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5031       APInt MaxVal = APInt::getMaxValue(MulWidth);
5032       MaxVal = MaxVal.zext(CI->getBitWidth());
5033       if (MaxVal.eq(CI->getValue()))
5034         break; // Recognized
5035     }
5036     return nullptr;
5037 
5038   case ICmpInst::ICMP_ULT:
5039     // Recognize pattern:
5040     //   mulval = mul(zext A, zext B)
5041     //   cmp ule mulval, max + 1
5042     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5043       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5044       if (MaxVal.eq(CI->getValue()))
5045         break; // Recognized
5046     }
5047     return nullptr;
5048 
5049   default:
5050     return nullptr;
5051   }
5052 
5053   InstCombiner::BuilderTy &Builder = IC.Builder;
5054   Builder.SetInsertPoint(MulInstr);
5055 
5056   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5057   Value *MulA = A, *MulB = B;
5058   if (WidthA < MulWidth)
5059     MulA = Builder.CreateZExt(A, MulType);
5060   if (WidthB < MulWidth)
5061     MulB = Builder.CreateZExt(B, MulType);
5062   Function *F = Intrinsic::getDeclaration(
5063       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5064   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5065   IC.addToWorklist(MulInstr);
5066 
5067   // If there are uses of mul result other than the comparison, we know that
5068   // they are truncation or binary AND. Change them to use result of
5069   // mul.with.overflow and adjust properly mask/size.
5070   if (MulVal->hasNUsesOrMore(2)) {
5071     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5072     for (User *U : make_early_inc_range(MulVal->users())) {
5073       if (U == &I || U == OtherVal)
5074         continue;
5075       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5076         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5077           IC.replaceInstUsesWith(*TI, Mul);
5078         else
5079           TI->setOperand(0, Mul);
5080       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5081         assert(BO->getOpcode() == Instruction::And);
5082         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5083         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5084         APInt ShortMask = CI->getValue().trunc(MulWidth);
5085         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5086         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5087         IC.replaceInstUsesWith(*BO, Zext);
5088       } else {
5089         llvm_unreachable("Unexpected Binary operation");
5090       }
5091       IC.addToWorklist(cast<Instruction>(U));
5092     }
5093   }
5094   if (isa<Instruction>(OtherVal))
5095     IC.addToWorklist(cast<Instruction>(OtherVal));
5096 
5097   // The original icmp gets replaced with the overflow value, maybe inverted
5098   // depending on predicate.
5099   bool Inverse = false;
5100   switch (I.getPredicate()) {
5101   case ICmpInst::ICMP_NE:
5102     break;
5103   case ICmpInst::ICMP_EQ:
5104     Inverse = true;
5105     break;
5106   case ICmpInst::ICMP_UGT:
5107   case ICmpInst::ICMP_UGE:
5108     if (I.getOperand(0) == MulVal)
5109       break;
5110     Inverse = true;
5111     break;
5112   case ICmpInst::ICMP_ULT:
5113   case ICmpInst::ICMP_ULE:
5114     if (I.getOperand(1) == MulVal)
5115       break;
5116     Inverse = true;
5117     break;
5118   default:
5119     llvm_unreachable("Unexpected predicate");
5120   }
5121   if (Inverse) {
5122     Value *Res = Builder.CreateExtractValue(Call, 1);
5123     return BinaryOperator::CreateNot(Res);
5124   }
5125 
5126   return ExtractValueInst::Create(Call, 1);
5127 }
5128 
5129 /// When performing a comparison against a constant, it is possible that not all
5130 /// the bits in the LHS are demanded. This helper method computes the mask that
5131 /// IS demanded.
5132 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5133   const APInt *RHS;
5134   if (!match(I.getOperand(1), m_APInt(RHS)))
5135     return APInt::getAllOnes(BitWidth);
5136 
5137   // If this is a normal comparison, it demands all bits. If it is a sign bit
5138   // comparison, it only demands the sign bit.
5139   bool UnusedBit;
5140   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5141     return APInt::getSignMask(BitWidth);
5142 
5143   switch (I.getPredicate()) {
5144   // For a UGT comparison, we don't care about any bits that
5145   // correspond to the trailing ones of the comparand.  The value of these
5146   // bits doesn't impact the outcome of the comparison, because any value
5147   // greater than the RHS must differ in a bit higher than these due to carry.
5148   case ICmpInst::ICMP_UGT:
5149     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5150 
5151   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5152   // Any value less than the RHS must differ in a higher bit because of carries.
5153   case ICmpInst::ICMP_ULT:
5154     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5155 
5156   default:
5157     return APInt::getAllOnes(BitWidth);
5158   }
5159 }
5160 
5161 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5162 /// should be swapped.
5163 /// The decision is based on how many times these two operands are reused
5164 /// as subtract operands and their positions in those instructions.
5165 /// The rationale is that several architectures use the same instruction for
5166 /// both subtract and cmp. Thus, it is better if the order of those operands
5167 /// match.
5168 /// \return true if Op0 and Op1 should be swapped.
5169 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5170   // Filter out pointer values as those cannot appear directly in subtract.
5171   // FIXME: we may want to go through inttoptrs or bitcasts.
5172   if (Op0->getType()->isPointerTy())
5173     return false;
5174   // If a subtract already has the same operands as a compare, swapping would be
5175   // bad. If a subtract has the same operands as a compare but in reverse order,
5176   // then swapping is good.
5177   int GoodToSwap = 0;
5178   for (const User *U : Op0->users()) {
5179     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5180       GoodToSwap++;
5181     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5182       GoodToSwap--;
5183   }
5184   return GoodToSwap > 0;
5185 }
5186 
5187 /// Check that one use is in the same block as the definition and all
5188 /// other uses are in blocks dominated by a given block.
5189 ///
5190 /// \param DI Definition
5191 /// \param UI Use
5192 /// \param DB Block that must dominate all uses of \p DI outside
5193 ///           the parent block
5194 /// \return true when \p UI is the only use of \p DI in the parent block
5195 /// and all other uses of \p DI are in blocks dominated by \p DB.
5196 ///
5197 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5198                                         const Instruction *UI,
5199                                         const BasicBlock *DB) const {
5200   assert(DI && UI && "Instruction not defined\n");
5201   // Ignore incomplete definitions.
5202   if (!DI->getParent())
5203     return false;
5204   // DI and UI must be in the same block.
5205   if (DI->getParent() != UI->getParent())
5206     return false;
5207   // Protect from self-referencing blocks.
5208   if (DI->getParent() == DB)
5209     return false;
5210   for (const User *U : DI->users()) {
5211     auto *Usr = cast<Instruction>(U);
5212     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5213       return false;
5214   }
5215   return true;
5216 }
5217 
5218 /// Return true when the instruction sequence within a block is select-cmp-br.
5219 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5220   const BasicBlock *BB = SI->getParent();
5221   if (!BB)
5222     return false;
5223   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5224   if (!BI || BI->getNumSuccessors() != 2)
5225     return false;
5226   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5227   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5228     return false;
5229   return true;
5230 }
5231 
5232 /// True when a select result is replaced by one of its operands
5233 /// in select-icmp sequence. This will eventually result in the elimination
5234 /// of the select.
5235 ///
5236 /// \param SI    Select instruction
5237 /// \param Icmp  Compare instruction
5238 /// \param SIOpd Operand that replaces the select
5239 ///
5240 /// Notes:
5241 /// - The replacement is global and requires dominator information
5242 /// - The caller is responsible for the actual replacement
5243 ///
5244 /// Example:
5245 ///
5246 /// entry:
5247 ///  %4 = select i1 %3, %C* %0, %C* null
5248 ///  %5 = icmp eq %C* %4, null
5249 ///  br i1 %5, label %9, label %7
5250 ///  ...
5251 ///  ; <label>:7                                       ; preds = %entry
5252 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5253 ///  ...
5254 ///
5255 /// can be transformed to
5256 ///
5257 ///  %5 = icmp eq %C* %0, null
5258 ///  %6 = select i1 %3, i1 %5, i1 true
5259 ///  br i1 %6, label %9, label %7
5260 ///  ...
5261 ///  ; <label>:7                                       ; preds = %entry
5262 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5263 ///
5264 /// Similar when the first operand of the select is a constant or/and
5265 /// the compare is for not equal rather than equal.
5266 ///
5267 /// NOTE: The function is only called when the select and compare constants
5268 /// are equal, the optimization can work only for EQ predicates. This is not a
5269 /// major restriction since a NE compare should be 'normalized' to an equal
5270 /// compare, which usually happens in the combiner and test case
5271 /// select-cmp-br.ll checks for it.
5272 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5273                                                  const ICmpInst *Icmp,
5274                                                  const unsigned SIOpd) {
5275   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5276   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5277     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5278     // The check for the single predecessor is not the best that can be
5279     // done. But it protects efficiently against cases like when SI's
5280     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5281     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5282     // replaced can be reached on either path. So the uniqueness check
5283     // guarantees that the path all uses of SI (outside SI's parent) are on
5284     // is disjoint from all other paths out of SI. But that information
5285     // is more expensive to compute, and the trade-off here is in favor
5286     // of compile-time. It should also be noticed that we check for a single
5287     // predecessor and not only uniqueness. This to handle the situation when
5288     // Succ and Succ1 points to the same basic block.
5289     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5290       NumSel++;
5291       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5292       return true;
5293     }
5294   }
5295   return false;
5296 }
5297 
5298 /// Try to fold the comparison based on range information we can get by checking
5299 /// whether bits are known to be zero or one in the inputs.
5300 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5301   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5302   Type *Ty = Op0->getType();
5303   ICmpInst::Predicate Pred = I.getPredicate();
5304 
5305   // Get scalar or pointer size.
5306   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5307                           ? Ty->getScalarSizeInBits()
5308                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5309 
5310   if (!BitWidth)
5311     return nullptr;
5312 
5313   KnownBits Op0Known(BitWidth);
5314   KnownBits Op1Known(BitWidth);
5315 
5316   if (SimplifyDemandedBits(&I, 0,
5317                            getDemandedBitsLHSMask(I, BitWidth),
5318                            Op0Known, 0))
5319     return &I;
5320 
5321   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5322     return &I;
5323 
5324   // Given the known and unknown bits, compute a range that the LHS could be
5325   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5326   // EQ and NE we use unsigned values.
5327   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5328   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5329   if (I.isSigned()) {
5330     Op0Min = Op0Known.getSignedMinValue();
5331     Op0Max = Op0Known.getSignedMaxValue();
5332     Op1Min = Op1Known.getSignedMinValue();
5333     Op1Max = Op1Known.getSignedMaxValue();
5334   } else {
5335     Op0Min = Op0Known.getMinValue();
5336     Op0Max = Op0Known.getMaxValue();
5337     Op1Min = Op1Known.getMinValue();
5338     Op1Max = Op1Known.getMaxValue();
5339   }
5340 
5341   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5342   // out that the LHS or RHS is a constant. Constant fold this now, so that
5343   // code below can assume that Min != Max.
5344   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5345     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5346   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5347     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5348 
5349   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5350   // min/max canonical compare with some other compare. That could lead to
5351   // conflict with select canonicalization and infinite looping.
5352   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5353   auto isMinMaxCmp = [&](Instruction &Cmp) {
5354     if (!Cmp.hasOneUse())
5355       return false;
5356     Value *A, *B;
5357     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5358     if (!SelectPatternResult::isMinOrMax(SPF))
5359       return false;
5360     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5361            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5362   };
5363   if (!isMinMaxCmp(I)) {
5364     switch (Pred) {
5365     default:
5366       break;
5367     case ICmpInst::ICMP_ULT: {
5368       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5369         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5370       const APInt *CmpC;
5371       if (match(Op1, m_APInt(CmpC))) {
5372         // A <u C -> A == C-1 if min(A)+1 == C
5373         if (*CmpC == Op0Min + 1)
5374           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5375                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5376         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5377         // exceeds the log2 of C.
5378         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5379           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5380                               Constant::getNullValue(Op1->getType()));
5381       }
5382       break;
5383     }
5384     case ICmpInst::ICMP_UGT: {
5385       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5386         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5387       const APInt *CmpC;
5388       if (match(Op1, m_APInt(CmpC))) {
5389         // A >u C -> A == C+1 if max(a)-1 == C
5390         if (*CmpC == Op0Max - 1)
5391           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5392                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5393         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5394         // exceeds the log2 of C.
5395         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5396           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5397                               Constant::getNullValue(Op1->getType()));
5398       }
5399       break;
5400     }
5401     case ICmpInst::ICMP_SLT: {
5402       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5403         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5404       const APInt *CmpC;
5405       if (match(Op1, m_APInt(CmpC))) {
5406         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5407           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5408                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5409       }
5410       break;
5411     }
5412     case ICmpInst::ICMP_SGT: {
5413       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5414         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5415       const APInt *CmpC;
5416       if (match(Op1, m_APInt(CmpC))) {
5417         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5418           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5419                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5420       }
5421       break;
5422     }
5423     }
5424   }
5425 
5426   // Based on the range information we know about the LHS, see if we can
5427   // simplify this comparison.  For example, (x&4) < 8 is always true.
5428   switch (Pred) {
5429   default:
5430     llvm_unreachable("Unknown icmp opcode!");
5431   case ICmpInst::ICMP_EQ:
5432   case ICmpInst::ICMP_NE: {
5433     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5434       return replaceInstUsesWith(
5435           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5436 
5437     // If all bits are known zero except for one, then we know at most one bit
5438     // is set. If the comparison is against zero, then this is a check to see if
5439     // *that* bit is set.
5440     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5441     if (Op1Known.isZero()) {
5442       // If the LHS is an AND with the same constant, look through it.
5443       Value *LHS = nullptr;
5444       const APInt *LHSC;
5445       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5446           *LHSC != Op0KnownZeroInverted)
5447         LHS = Op0;
5448 
5449       Value *X;
5450       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5451         APInt ValToCheck = Op0KnownZeroInverted;
5452         Type *XTy = X->getType();
5453         if (ValToCheck.isPowerOf2()) {
5454           // ((1 << X) & 8) == 0 -> X != 3
5455           // ((1 << X) & 8) != 0 -> X == 3
5456           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5457           auto NewPred = ICmpInst::getInversePredicate(Pred);
5458           return new ICmpInst(NewPred, X, CmpC);
5459         } else if ((++ValToCheck).isPowerOf2()) {
5460           // ((1 << X) & 7) == 0 -> X >= 3
5461           // ((1 << X) & 7) != 0 -> X  < 3
5462           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5463           auto NewPred =
5464               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5465           return new ICmpInst(NewPred, X, CmpC);
5466         }
5467       }
5468 
5469       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5470       const APInt *CI;
5471       if (Op0KnownZeroInverted.isOne() &&
5472           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5473         // ((8 >>u X) & 1) == 0 -> X != 3
5474         // ((8 >>u X) & 1) != 0 -> X == 3
5475         unsigned CmpVal = CI->countTrailingZeros();
5476         auto NewPred = ICmpInst::getInversePredicate(Pred);
5477         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5478       }
5479     }
5480     break;
5481   }
5482   case ICmpInst::ICMP_ULT: {
5483     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5484       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5485     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5486       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5487     break;
5488   }
5489   case ICmpInst::ICMP_UGT: {
5490     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5491       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5492     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5493       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5494     break;
5495   }
5496   case ICmpInst::ICMP_SLT: {
5497     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5498       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5499     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5500       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5501     break;
5502   }
5503   case ICmpInst::ICMP_SGT: {
5504     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5505       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5506     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5507       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5508     break;
5509   }
5510   case ICmpInst::ICMP_SGE:
5511     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5512     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5513       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5514     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5515       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5516     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5517       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5518     break;
5519   case ICmpInst::ICMP_SLE:
5520     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5521     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5522       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5523     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5524       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5525     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5526       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5527     break;
5528   case ICmpInst::ICMP_UGE:
5529     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5530     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5531       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5532     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5533       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5534     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5535       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5536     break;
5537   case ICmpInst::ICMP_ULE:
5538     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5539     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5540       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5541     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5542       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5543     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5544       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5545     break;
5546   }
5547 
5548   // Turn a signed comparison into an unsigned one if both operands are known to
5549   // have the same sign.
5550   if (I.isSigned() &&
5551       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5552        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5553     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5554 
5555   return nullptr;
5556 }
5557 
5558 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5559 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5560                                                        Constant *C) {
5561   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5562          "Only for relational integer predicates.");
5563 
5564   Type *Type = C->getType();
5565   bool IsSigned = ICmpInst::isSigned(Pred);
5566 
5567   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5568   bool WillIncrement =
5569       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5570 
5571   // Check if the constant operand can be safely incremented/decremented
5572   // without overflowing/underflowing.
5573   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5574     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5575   };
5576 
5577   Constant *SafeReplacementConstant = nullptr;
5578   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5579     // Bail out if the constant can't be safely incremented/decremented.
5580     if (!ConstantIsOk(CI))
5581       return llvm::None;
5582   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5583     unsigned NumElts = FVTy->getNumElements();
5584     for (unsigned i = 0; i != NumElts; ++i) {
5585       Constant *Elt = C->getAggregateElement(i);
5586       if (!Elt)
5587         return llvm::None;
5588 
5589       if (isa<UndefValue>(Elt))
5590         continue;
5591 
5592       // Bail out if we can't determine if this constant is min/max or if we
5593       // know that this constant is min/max.
5594       auto *CI = dyn_cast<ConstantInt>(Elt);
5595       if (!CI || !ConstantIsOk(CI))
5596         return llvm::None;
5597 
5598       if (!SafeReplacementConstant)
5599         SafeReplacementConstant = CI;
5600     }
5601   } else {
5602     // ConstantExpr?
5603     return llvm::None;
5604   }
5605 
5606   // It may not be safe to change a compare predicate in the presence of
5607   // undefined elements, so replace those elements with the first safe constant
5608   // that we found.
5609   // TODO: in case of poison, it is safe; let's replace undefs only.
5610   if (C->containsUndefOrPoisonElement()) {
5611     assert(SafeReplacementConstant && "Replacement constant not set");
5612     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5613   }
5614 
5615   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5616 
5617   // Increment or decrement the constant.
5618   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5619   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5620 
5621   return std::make_pair(NewPred, NewC);
5622 }
5623 
5624 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5625 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5626 /// allows them to be folded in visitICmpInst.
5627 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5628   ICmpInst::Predicate Pred = I.getPredicate();
5629   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5630       InstCombiner::isCanonicalPredicate(Pred))
5631     return nullptr;
5632 
5633   Value *Op0 = I.getOperand(0);
5634   Value *Op1 = I.getOperand(1);
5635   auto *Op1C = dyn_cast<Constant>(Op1);
5636   if (!Op1C)
5637     return nullptr;
5638 
5639   auto FlippedStrictness =
5640       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5641   if (!FlippedStrictness)
5642     return nullptr;
5643 
5644   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5645 }
5646 
5647 /// If we have a comparison with a non-canonical predicate, if we can update
5648 /// all the users, invert the predicate and adjust all the users.
5649 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5650   // Is the predicate already canonical?
5651   CmpInst::Predicate Pred = I.getPredicate();
5652   if (InstCombiner::isCanonicalPredicate(Pred))
5653     return nullptr;
5654 
5655   // Can all users be adjusted to predicate inversion?
5656   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5657     return nullptr;
5658 
5659   // Ok, we can canonicalize comparison!
5660   // Let's first invert the comparison's predicate.
5661   I.setPredicate(CmpInst::getInversePredicate(Pred));
5662   I.setName(I.getName() + ".not");
5663 
5664   // And, adapt users.
5665   freelyInvertAllUsersOf(&I);
5666 
5667   return &I;
5668 }
5669 
5670 /// Integer compare with boolean values can always be turned into bitwise ops.
5671 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5672                                          InstCombiner::BuilderTy &Builder) {
5673   Value *A = I.getOperand(0), *B = I.getOperand(1);
5674   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5675 
5676   // A boolean compared to true/false can be simplified to Op0/true/false in
5677   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5678   // Cases not handled by InstSimplify are always 'not' of Op0.
5679   if (match(B, m_Zero())) {
5680     switch (I.getPredicate()) {
5681       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5682       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5683       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5684         return BinaryOperator::CreateNot(A);
5685       default:
5686         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5687     }
5688   } else if (match(B, m_One())) {
5689     switch (I.getPredicate()) {
5690       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5691       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5692       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5693         return BinaryOperator::CreateNot(A);
5694       default:
5695         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5696     }
5697   }
5698 
5699   switch (I.getPredicate()) {
5700   default:
5701     llvm_unreachable("Invalid icmp instruction!");
5702   case ICmpInst::ICMP_EQ:
5703     // icmp eq i1 A, B -> ~(A ^ B)
5704     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5705 
5706   case ICmpInst::ICMP_NE:
5707     // icmp ne i1 A, B -> A ^ B
5708     return BinaryOperator::CreateXor(A, B);
5709 
5710   case ICmpInst::ICMP_UGT:
5711     // icmp ugt -> icmp ult
5712     std::swap(A, B);
5713     LLVM_FALLTHROUGH;
5714   case ICmpInst::ICMP_ULT:
5715     // icmp ult i1 A, B -> ~A & B
5716     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5717 
5718   case ICmpInst::ICMP_SGT:
5719     // icmp sgt -> icmp slt
5720     std::swap(A, B);
5721     LLVM_FALLTHROUGH;
5722   case ICmpInst::ICMP_SLT:
5723     // icmp slt i1 A, B -> A & ~B
5724     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5725 
5726   case ICmpInst::ICMP_UGE:
5727     // icmp uge -> icmp ule
5728     std::swap(A, B);
5729     LLVM_FALLTHROUGH;
5730   case ICmpInst::ICMP_ULE:
5731     // icmp ule i1 A, B -> ~A | B
5732     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5733 
5734   case ICmpInst::ICMP_SGE:
5735     // icmp sge -> icmp sle
5736     std::swap(A, B);
5737     LLVM_FALLTHROUGH;
5738   case ICmpInst::ICMP_SLE:
5739     // icmp sle i1 A, B -> A | ~B
5740     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5741   }
5742 }
5743 
5744 // Transform pattern like:
5745 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5746 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5747 // Into:
5748 //   (X l>> Y) != 0
5749 //   (X l>> Y) == 0
5750 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5751                                             InstCombiner::BuilderTy &Builder) {
5752   ICmpInst::Predicate Pred, NewPred;
5753   Value *X, *Y;
5754   if (match(&Cmp,
5755             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5756     switch (Pred) {
5757     case ICmpInst::ICMP_ULE:
5758       NewPred = ICmpInst::ICMP_NE;
5759       break;
5760     case ICmpInst::ICMP_UGT:
5761       NewPred = ICmpInst::ICMP_EQ;
5762       break;
5763     default:
5764       return nullptr;
5765     }
5766   } else if (match(&Cmp, m_c_ICmp(Pred,
5767                                   m_OneUse(m_CombineOr(
5768                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5769                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5770                                             m_AllOnes()))),
5771                                   m_Value(X)))) {
5772     // The variant with 'add' is not canonical, (the variant with 'not' is)
5773     // we only get it because it has extra uses, and can't be canonicalized,
5774 
5775     switch (Pred) {
5776     case ICmpInst::ICMP_ULT:
5777       NewPred = ICmpInst::ICMP_NE;
5778       break;
5779     case ICmpInst::ICMP_UGE:
5780       NewPred = ICmpInst::ICMP_EQ;
5781       break;
5782     default:
5783       return nullptr;
5784     }
5785   } else
5786     return nullptr;
5787 
5788   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5789   Constant *Zero = Constant::getNullValue(NewX->getType());
5790   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5791 }
5792 
5793 static Instruction *foldVectorCmp(CmpInst &Cmp,
5794                                   InstCombiner::BuilderTy &Builder) {
5795   const CmpInst::Predicate Pred = Cmp.getPredicate();
5796   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5797   Value *V1, *V2;
5798   ArrayRef<int> M;
5799   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5800     return nullptr;
5801 
5802   // If both arguments of the cmp are shuffles that use the same mask and
5803   // shuffle within a single vector, move the shuffle after the cmp:
5804   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5805   Type *V1Ty = V1->getType();
5806   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5807       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5808     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5809     return new ShuffleVectorInst(NewCmp, M);
5810   }
5811 
5812   // Try to canonicalize compare with splatted operand and splat constant.
5813   // TODO: We could generalize this for more than splats. See/use the code in
5814   //       InstCombiner::foldVectorBinop().
5815   Constant *C;
5816   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5817     return nullptr;
5818 
5819   // Length-changing splats are ok, so adjust the constants as needed:
5820   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5821   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5822   int MaskSplatIndex;
5823   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5824     // We allow undefs in matching, but this transform removes those for safety.
5825     // Demanded elements analysis should be able to recover some/all of that.
5826     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5827                                  ScalarC);
5828     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5829     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5830     return new ShuffleVectorInst(NewCmp, NewM);
5831   }
5832 
5833   return nullptr;
5834 }
5835 
5836 // extract(uadd.with.overflow(A, B), 0) ult A
5837 //  -> extract(uadd.with.overflow(A, B), 1)
5838 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5839   CmpInst::Predicate Pred = I.getPredicate();
5840   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5841 
5842   Value *UAddOv;
5843   Value *A, *B;
5844   auto UAddOvResultPat = m_ExtractValue<0>(
5845       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5846   if (match(Op0, UAddOvResultPat) &&
5847       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5848        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5849         (match(A, m_One()) || match(B, m_One()))) ||
5850        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5851         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5852     // extract(uadd.with.overflow(A, B), 0) < A
5853     // extract(uadd.with.overflow(A, 1), 0) == 0
5854     // extract(uadd.with.overflow(A, -1), 0) != -1
5855     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5856   else if (match(Op1, UAddOvResultPat) &&
5857            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5858     // A > extract(uadd.with.overflow(A, B), 0)
5859     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5860   else
5861     return nullptr;
5862 
5863   return ExtractValueInst::Create(UAddOv, 1);
5864 }
5865 
5866 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5867   if (!I.getOperand(0)->getType()->isPointerTy() ||
5868       NullPointerIsDefined(
5869           I.getParent()->getParent(),
5870           I.getOperand(0)->getType()->getPointerAddressSpace())) {
5871     return nullptr;
5872   }
5873   Instruction *Op;
5874   if (match(I.getOperand(0), m_Instruction(Op)) &&
5875       match(I.getOperand(1), m_Zero()) &&
5876       Op->isLaunderOrStripInvariantGroup()) {
5877     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
5878                             Op->getOperand(0), I.getOperand(1));
5879   }
5880   return nullptr;
5881 }
5882 
5883 /// This function folds patterns produced by lowering of reduce idioms, such as
5884 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
5885 /// attempts to generate fewer number of scalar comparisons instead of vector
5886 /// comparisons when possible.
5887 static Instruction *foldReductionIdiom(ICmpInst &I,
5888                                        InstCombiner::BuilderTy &Builder,
5889                                        const DataLayout &DL) {
5890   if (I.getType()->isVectorTy())
5891     return nullptr;
5892   ICmpInst::Predicate OuterPred, InnerPred;
5893   Value *LHS, *RHS;
5894 
5895   // Match lowering of @llvm.vector.reduce.and. Turn
5896   ///   %vec_ne = icmp ne <8 x i8> %lhs, %rhs
5897   ///   %scalar_ne = bitcast <8 x i1> %vec_ne to i8
5898   ///   %res = icmp <pred> i8 %scalar_ne, 0
5899   ///
5900   /// into
5901   ///
5902   ///   %lhs.scalar = bitcast <8 x i8> %lhs to i64
5903   ///   %rhs.scalar = bitcast <8 x i8> %rhs to i64
5904   ///   %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
5905   ///
5906   /// for <pred> in {ne, eq}.
5907   if (!match(&I, m_ICmp(OuterPred,
5908                         m_OneUse(m_BitCast(m_OneUse(
5909                             m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
5910                         m_Zero())))
5911     return nullptr;
5912   auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
5913   if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
5914     return nullptr;
5915   unsigned NumBits =
5916       LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
5917   // TODO: Relax this to "not wider than max legal integer type"?
5918   if (!DL.isLegalInteger(NumBits))
5919     return nullptr;
5920 
5921   if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
5922     auto *ScalarTy = Builder.getIntNTy(NumBits);
5923     LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
5924     RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
5925     return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
5926                             I.getName());
5927   }
5928 
5929   return nullptr;
5930 }
5931 
5932 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5933   bool Changed = false;
5934   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5935   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5936   unsigned Op0Cplxity = getComplexity(Op0);
5937   unsigned Op1Cplxity = getComplexity(Op1);
5938 
5939   /// Orders the operands of the compare so that they are listed from most
5940   /// complex to least complex.  This puts constants before unary operators,
5941   /// before binary operators.
5942   if (Op0Cplxity < Op1Cplxity ||
5943       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5944     I.swapOperands();
5945     std::swap(Op0, Op1);
5946     Changed = true;
5947   }
5948 
5949   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5950     return replaceInstUsesWith(I, V);
5951 
5952   // Comparing -val or val with non-zero is the same as just comparing val
5953   // ie, abs(val) != 0 -> val != 0
5954   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5955     Value *Cond, *SelectTrue, *SelectFalse;
5956     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5957                             m_Value(SelectFalse)))) {
5958       if (Value *V = dyn_castNegVal(SelectTrue)) {
5959         if (V == SelectFalse)
5960           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5961       }
5962       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5963         if (V == SelectTrue)
5964           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5965       }
5966     }
5967   }
5968 
5969   if (Op0->getType()->isIntOrIntVectorTy(1))
5970     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5971       return Res;
5972 
5973   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5974     return Res;
5975 
5976   if (Instruction *Res = canonicalizeICmpPredicate(I))
5977     return Res;
5978 
5979   if (Instruction *Res = foldICmpWithConstant(I))
5980     return Res;
5981 
5982   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5983     return Res;
5984 
5985   if (Instruction *Res = foldICmpUsingKnownBits(I))
5986     return Res;
5987 
5988   // Test if the ICmpInst instruction is used exclusively by a select as
5989   // part of a minimum or maximum operation. If so, refrain from doing
5990   // any other folding. This helps out other analyses which understand
5991   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5992   // and CodeGen. And in this case, at least one of the comparison
5993   // operands has at least one user besides the compare (the select),
5994   // which would often largely negate the benefit of folding anyway.
5995   //
5996   // Do the same for the other patterns recognized by matchSelectPattern.
5997   if (I.hasOneUse())
5998     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5999       Value *A, *B;
6000       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6001       if (SPR.Flavor != SPF_UNKNOWN)
6002         return nullptr;
6003     }
6004 
6005   // Do this after checking for min/max to prevent infinite looping.
6006   if (Instruction *Res = foldICmpWithZero(I))
6007     return Res;
6008 
6009   // FIXME: We only do this after checking for min/max to prevent infinite
6010   // looping caused by a reverse canonicalization of these patterns for min/max.
6011   // FIXME: The organization of folds is a mess. These would naturally go into
6012   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
6013   // down here after the min/max restriction.
6014   ICmpInst::Predicate Pred = I.getPredicate();
6015   const APInt *C;
6016   if (match(Op1, m_APInt(C))) {
6017     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
6018     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
6019       Constant *Zero = Constant::getNullValue(Op0->getType());
6020       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
6021     }
6022 
6023     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
6024     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
6025       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
6026       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
6027     }
6028   }
6029 
6030   // The folds in here may rely on wrapping flags and special constants, so
6031   // they can break up min/max idioms in some cases but not seemingly similar
6032   // patterns.
6033   // FIXME: It may be possible to enhance select folding to make this
6034   //        unnecessary. It may also be moot if we canonicalize to min/max
6035   //        intrinsics.
6036   if (Instruction *Res = foldICmpBinOp(I, Q))
6037     return Res;
6038 
6039   if (Instruction *Res = foldICmpInstWithConstant(I))
6040     return Res;
6041 
6042   // Try to match comparison as a sign bit test. Intentionally do this after
6043   // foldICmpInstWithConstant() to potentially let other folds to happen first.
6044   if (Instruction *New = foldSignBitTest(I))
6045     return New;
6046 
6047   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
6048     return Res;
6049 
6050   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6051   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6052     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6053       return NI;
6054   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6055     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6056       return NI;
6057 
6058   // Try to optimize equality comparisons against alloca-based pointers.
6059   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6060     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6061     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6062       if (Instruction *New = foldAllocaCmp(I, Alloca))
6063         return New;
6064     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6065       if (Instruction *New = foldAllocaCmp(I, Alloca))
6066         return New;
6067   }
6068 
6069   if (Instruction *Res = foldICmpBitCast(I))
6070     return Res;
6071 
6072   // TODO: Hoist this above the min/max bailout.
6073   if (Instruction *R = foldICmpWithCastOp(I))
6074     return R;
6075 
6076   if (Instruction *Res = foldICmpWithMinMax(I))
6077     return Res;
6078 
6079   {
6080     Value *A, *B;
6081     // Transform (A & ~B) == 0 --> (A & B) != 0
6082     // and       (A & ~B) != 0 --> (A & B) == 0
6083     // if A is a power of 2.
6084     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6085         match(Op1, m_Zero()) &&
6086         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6087       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6088                           Op1);
6089 
6090     // ~X < ~Y --> Y < X
6091     // ~X < C -->  X > ~C
6092     if (match(Op0, m_Not(m_Value(A)))) {
6093       if (match(Op1, m_Not(m_Value(B))))
6094         return new ICmpInst(I.getPredicate(), B, A);
6095 
6096       const APInt *C;
6097       if (match(Op1, m_APInt(C)))
6098         return new ICmpInst(I.getSwappedPredicate(), A,
6099                             ConstantInt::get(Op1->getType(), ~(*C)));
6100     }
6101 
6102     Instruction *AddI = nullptr;
6103     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6104                                      m_Instruction(AddI))) &&
6105         isa<IntegerType>(A->getType())) {
6106       Value *Result;
6107       Constant *Overflow;
6108       // m_UAddWithOverflow can match patterns that do not include  an explicit
6109       // "add" instruction, so check the opcode of the matched op.
6110       if (AddI->getOpcode() == Instruction::Add &&
6111           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6112                                 Result, Overflow)) {
6113         replaceInstUsesWith(*AddI, Result);
6114         eraseInstFromFunction(*AddI);
6115         return replaceInstUsesWith(I, Overflow);
6116       }
6117     }
6118 
6119     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6120     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6121       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6122         return R;
6123     }
6124     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6125       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6126         return R;
6127     }
6128   }
6129 
6130   if (Instruction *Res = foldICmpEquality(I))
6131     return Res;
6132 
6133   if (Instruction *Res = foldICmpOfUAddOv(I))
6134     return Res;
6135 
6136   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6137   // an i1 which indicates whether or not we successfully did the swap.
6138   //
6139   // Replace comparisons between the old value and the expected value with the
6140   // indicator that 'cmpxchg' returns.
6141   //
6142   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6143   // spuriously fail.  In those cases, the old value may equal the expected
6144   // value but it is possible for the swap to not occur.
6145   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6146     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6147       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6148         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6149             !ACXI->isWeak())
6150           return ExtractValueInst::Create(ACXI, 1);
6151 
6152   {
6153     Value *X;
6154     const APInt *C;
6155     // icmp X+Cst, X
6156     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6157       return foldICmpAddOpConst(X, *C, I.getPredicate());
6158 
6159     // icmp X, X+Cst
6160     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6161       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6162   }
6163 
6164   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6165     return Res;
6166 
6167   if (I.getType()->isVectorTy())
6168     if (Instruction *Res = foldVectorCmp(I, Builder))
6169       return Res;
6170 
6171   if (Instruction *Res = foldICmpInvariantGroup(I))
6172     return Res;
6173 
6174   if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
6175     return Res;
6176 
6177   return Changed ? &I : nullptr;
6178 }
6179 
6180 /// Fold fcmp ([us]itofp x, cst) if possible.
6181 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6182                                                     Instruction *LHSI,
6183                                                     Constant *RHSC) {
6184   if (!isa<ConstantFP>(RHSC)) return nullptr;
6185   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6186 
6187   // Get the width of the mantissa.  We don't want to hack on conversions that
6188   // might lose information from the integer, e.g. "i64 -> float"
6189   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6190   if (MantissaWidth == -1) return nullptr;  // Unknown.
6191 
6192   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6193 
6194   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6195 
6196   if (I.isEquality()) {
6197     FCmpInst::Predicate P = I.getPredicate();
6198     bool IsExact = false;
6199     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6200     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6201 
6202     // If the floating point constant isn't an integer value, we know if we will
6203     // ever compare equal / not equal to it.
6204     if (!IsExact) {
6205       // TODO: Can never be -0.0 and other non-representable values
6206       APFloat RHSRoundInt(RHS);
6207       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6208       if (RHS != RHSRoundInt) {
6209         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6210           return replaceInstUsesWith(I, Builder.getFalse());
6211 
6212         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6213         return replaceInstUsesWith(I, Builder.getTrue());
6214       }
6215     }
6216 
6217     // TODO: If the constant is exactly representable, is it always OK to do
6218     // equality compares as integer?
6219   }
6220 
6221   // Check to see that the input is converted from an integer type that is small
6222   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6223   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6224   unsigned InputSize = IntTy->getScalarSizeInBits();
6225 
6226   // Following test does NOT adjust InputSize downwards for signed inputs,
6227   // because the most negative value still requires all the mantissa bits
6228   // to distinguish it from one less than that value.
6229   if ((int)InputSize > MantissaWidth) {
6230     // Conversion would lose accuracy. Check if loss can impact comparison.
6231     int Exp = ilogb(RHS);
6232     if (Exp == APFloat::IEK_Inf) {
6233       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6234       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6235         // Conversion could create infinity.
6236         return nullptr;
6237     } else {
6238       // Note that if RHS is zero or NaN, then Exp is negative
6239       // and first condition is trivially false.
6240       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6241         // Conversion could affect comparison.
6242         return nullptr;
6243     }
6244   }
6245 
6246   // Otherwise, we can potentially simplify the comparison.  We know that it
6247   // will always come through as an integer value and we know the constant is
6248   // not a NAN (it would have been previously simplified).
6249   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6250 
6251   ICmpInst::Predicate Pred;
6252   switch (I.getPredicate()) {
6253   default: llvm_unreachable("Unexpected predicate!");
6254   case FCmpInst::FCMP_UEQ:
6255   case FCmpInst::FCMP_OEQ:
6256     Pred = ICmpInst::ICMP_EQ;
6257     break;
6258   case FCmpInst::FCMP_UGT:
6259   case FCmpInst::FCMP_OGT:
6260     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6261     break;
6262   case FCmpInst::FCMP_UGE:
6263   case FCmpInst::FCMP_OGE:
6264     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6265     break;
6266   case FCmpInst::FCMP_ULT:
6267   case FCmpInst::FCMP_OLT:
6268     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6269     break;
6270   case FCmpInst::FCMP_ULE:
6271   case FCmpInst::FCMP_OLE:
6272     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6273     break;
6274   case FCmpInst::FCMP_UNE:
6275   case FCmpInst::FCMP_ONE:
6276     Pred = ICmpInst::ICMP_NE;
6277     break;
6278   case FCmpInst::FCMP_ORD:
6279     return replaceInstUsesWith(I, Builder.getTrue());
6280   case FCmpInst::FCMP_UNO:
6281     return replaceInstUsesWith(I, Builder.getFalse());
6282   }
6283 
6284   // Now we know that the APFloat is a normal number, zero or inf.
6285 
6286   // See if the FP constant is too large for the integer.  For example,
6287   // comparing an i8 to 300.0.
6288   unsigned IntWidth = IntTy->getScalarSizeInBits();
6289 
6290   if (!LHSUnsigned) {
6291     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6292     // and large values.
6293     APFloat SMax(RHS.getSemantics());
6294     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6295                           APFloat::rmNearestTiesToEven);
6296     if (SMax < RHS) { // smax < 13123.0
6297       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6298           Pred == ICmpInst::ICMP_SLE)
6299         return replaceInstUsesWith(I, Builder.getTrue());
6300       return replaceInstUsesWith(I, Builder.getFalse());
6301     }
6302   } else {
6303     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6304     // +INF and large values.
6305     APFloat UMax(RHS.getSemantics());
6306     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6307                           APFloat::rmNearestTiesToEven);
6308     if (UMax < RHS) { // umax < 13123.0
6309       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6310           Pred == ICmpInst::ICMP_ULE)
6311         return replaceInstUsesWith(I, Builder.getTrue());
6312       return replaceInstUsesWith(I, Builder.getFalse());
6313     }
6314   }
6315 
6316   if (!LHSUnsigned) {
6317     // See if the RHS value is < SignedMin.
6318     APFloat SMin(RHS.getSemantics());
6319     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6320                           APFloat::rmNearestTiesToEven);
6321     if (SMin > RHS) { // smin > 12312.0
6322       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6323           Pred == ICmpInst::ICMP_SGE)
6324         return replaceInstUsesWith(I, Builder.getTrue());
6325       return replaceInstUsesWith(I, Builder.getFalse());
6326     }
6327   } else {
6328     // See if the RHS value is < UnsignedMin.
6329     APFloat UMin(RHS.getSemantics());
6330     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6331                           APFloat::rmNearestTiesToEven);
6332     if (UMin > RHS) { // umin > 12312.0
6333       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6334           Pred == ICmpInst::ICMP_UGE)
6335         return replaceInstUsesWith(I, Builder.getTrue());
6336       return replaceInstUsesWith(I, Builder.getFalse());
6337     }
6338   }
6339 
6340   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6341   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6342   // casting the FP value to the integer value and back, checking for equality.
6343   // Don't do this for zero, because -0.0 is not fractional.
6344   Constant *RHSInt = LHSUnsigned
6345     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6346     : ConstantExpr::getFPToSI(RHSC, IntTy);
6347   if (!RHS.isZero()) {
6348     bool Equal = LHSUnsigned
6349       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6350       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6351     if (!Equal) {
6352       // If we had a comparison against a fractional value, we have to adjust
6353       // the compare predicate and sometimes the value.  RHSC is rounded towards
6354       // zero at this point.
6355       switch (Pred) {
6356       default: llvm_unreachable("Unexpected integer comparison!");
6357       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6358         return replaceInstUsesWith(I, Builder.getTrue());
6359       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6360         return replaceInstUsesWith(I, Builder.getFalse());
6361       case ICmpInst::ICMP_ULE:
6362         // (float)int <= 4.4   --> int <= 4
6363         // (float)int <= -4.4  --> false
6364         if (RHS.isNegative())
6365           return replaceInstUsesWith(I, Builder.getFalse());
6366         break;
6367       case ICmpInst::ICMP_SLE:
6368         // (float)int <= 4.4   --> int <= 4
6369         // (float)int <= -4.4  --> int < -4
6370         if (RHS.isNegative())
6371           Pred = ICmpInst::ICMP_SLT;
6372         break;
6373       case ICmpInst::ICMP_ULT:
6374         // (float)int < -4.4   --> false
6375         // (float)int < 4.4    --> int <= 4
6376         if (RHS.isNegative())
6377           return replaceInstUsesWith(I, Builder.getFalse());
6378         Pred = ICmpInst::ICMP_ULE;
6379         break;
6380       case ICmpInst::ICMP_SLT:
6381         // (float)int < -4.4   --> int < -4
6382         // (float)int < 4.4    --> int <= 4
6383         if (!RHS.isNegative())
6384           Pred = ICmpInst::ICMP_SLE;
6385         break;
6386       case ICmpInst::ICMP_UGT:
6387         // (float)int > 4.4    --> int > 4
6388         // (float)int > -4.4   --> true
6389         if (RHS.isNegative())
6390           return replaceInstUsesWith(I, Builder.getTrue());
6391         break;
6392       case ICmpInst::ICMP_SGT:
6393         // (float)int > 4.4    --> int > 4
6394         // (float)int > -4.4   --> int >= -4
6395         if (RHS.isNegative())
6396           Pred = ICmpInst::ICMP_SGE;
6397         break;
6398       case ICmpInst::ICMP_UGE:
6399         // (float)int >= -4.4   --> true
6400         // (float)int >= 4.4    --> int > 4
6401         if (RHS.isNegative())
6402           return replaceInstUsesWith(I, Builder.getTrue());
6403         Pred = ICmpInst::ICMP_UGT;
6404         break;
6405       case ICmpInst::ICMP_SGE:
6406         // (float)int >= -4.4   --> int >= -4
6407         // (float)int >= 4.4    --> int > 4
6408         if (!RHS.isNegative())
6409           Pred = ICmpInst::ICMP_SGT;
6410         break;
6411       }
6412     }
6413   }
6414 
6415   // Lower this FP comparison into an appropriate integer version of the
6416   // comparison.
6417   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6418 }
6419 
6420 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6421 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6422                                               Constant *RHSC) {
6423   // When C is not 0.0 and infinities are not allowed:
6424   // (C / X) < 0.0 is a sign-bit test of X
6425   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6426   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6427   //
6428   // Proof:
6429   // Multiply (C / X) < 0.0 by X * X / C.
6430   // - X is non zero, if it is the flag 'ninf' is violated.
6431   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6432   //   the predicate. C is also non zero by definition.
6433   //
6434   // Thus X * X / C is non zero and the transformation is valid. [qed]
6435 
6436   FCmpInst::Predicate Pred = I.getPredicate();
6437 
6438   // Check that predicates are valid.
6439   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6440       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6441     return nullptr;
6442 
6443   // Check that RHS operand is zero.
6444   if (!match(RHSC, m_AnyZeroFP()))
6445     return nullptr;
6446 
6447   // Check fastmath flags ('ninf').
6448   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6449     return nullptr;
6450 
6451   // Check the properties of the dividend. It must not be zero to avoid a
6452   // division by zero (see Proof).
6453   const APFloat *C;
6454   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6455     return nullptr;
6456 
6457   if (C->isZero())
6458     return nullptr;
6459 
6460   // Get swapped predicate if necessary.
6461   if (C->isNegative())
6462     Pred = I.getSwappedPredicate();
6463 
6464   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6465 }
6466 
6467 /// Optimize fabs(X) compared with zero.
6468 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6469   Value *X;
6470   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6471       !match(I.getOperand(1), m_PosZeroFP()))
6472     return nullptr;
6473 
6474   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6475     I->setPredicate(P);
6476     return IC.replaceOperand(*I, 0, X);
6477   };
6478 
6479   switch (I.getPredicate()) {
6480   case FCmpInst::FCMP_UGE:
6481   case FCmpInst::FCMP_OLT:
6482     // fabs(X) >= 0.0 --> true
6483     // fabs(X) <  0.0 --> false
6484     llvm_unreachable("fcmp should have simplified");
6485 
6486   case FCmpInst::FCMP_OGT:
6487     // fabs(X) > 0.0 --> X != 0.0
6488     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6489 
6490   case FCmpInst::FCMP_UGT:
6491     // fabs(X) u> 0.0 --> X u!= 0.0
6492     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6493 
6494   case FCmpInst::FCMP_OLE:
6495     // fabs(X) <= 0.0 --> X == 0.0
6496     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6497 
6498   case FCmpInst::FCMP_ULE:
6499     // fabs(X) u<= 0.0 --> X u== 0.0
6500     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6501 
6502   case FCmpInst::FCMP_OGE:
6503     // fabs(X) >= 0.0 --> !isnan(X)
6504     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6505     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6506 
6507   case FCmpInst::FCMP_ULT:
6508     // fabs(X) u< 0.0 --> isnan(X)
6509     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6510     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6511 
6512   case FCmpInst::FCMP_OEQ:
6513   case FCmpInst::FCMP_UEQ:
6514   case FCmpInst::FCMP_ONE:
6515   case FCmpInst::FCMP_UNE:
6516   case FCmpInst::FCMP_ORD:
6517   case FCmpInst::FCMP_UNO:
6518     // Look through the fabs() because it doesn't change anything but the sign.
6519     // fabs(X) == 0.0 --> X == 0.0,
6520     // fabs(X) != 0.0 --> X != 0.0
6521     // isnan(fabs(X)) --> isnan(X)
6522     // !isnan(fabs(X) --> !isnan(X)
6523     return replacePredAndOp0(&I, I.getPredicate(), X);
6524 
6525   default:
6526     return nullptr;
6527   }
6528 }
6529 
6530 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6531   bool Changed = false;
6532 
6533   /// Orders the operands of the compare so that they are listed from most
6534   /// complex to least complex.  This puts constants before unary operators,
6535   /// before binary operators.
6536   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6537     I.swapOperands();
6538     Changed = true;
6539   }
6540 
6541   const CmpInst::Predicate Pred = I.getPredicate();
6542   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6543   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6544                                   SQ.getWithInstruction(&I)))
6545     return replaceInstUsesWith(I, V);
6546 
6547   // Simplify 'fcmp pred X, X'
6548   Type *OpType = Op0->getType();
6549   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6550   if (Op0 == Op1) {
6551     switch (Pred) {
6552       default: break;
6553     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6554     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6555     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6556     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6557       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6558       I.setPredicate(FCmpInst::FCMP_UNO);
6559       I.setOperand(1, Constant::getNullValue(OpType));
6560       return &I;
6561 
6562     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6563     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6564     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6565     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6566       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6567       I.setPredicate(FCmpInst::FCMP_ORD);
6568       I.setOperand(1, Constant::getNullValue(OpType));
6569       return &I;
6570     }
6571   }
6572 
6573   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6574   // then canonicalize the operand to 0.0.
6575   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6576     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6577       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6578 
6579     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6580       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6581   }
6582 
6583   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6584   Value *X, *Y;
6585   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6586     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6587 
6588   // Test if the FCmpInst instruction is used exclusively by a select as
6589   // part of a minimum or maximum operation. If so, refrain from doing
6590   // any other folding. This helps out other analyses which understand
6591   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6592   // and CodeGen. And in this case, at least one of the comparison
6593   // operands has at least one user besides the compare (the select),
6594   // which would often largely negate the benefit of folding anyway.
6595   if (I.hasOneUse())
6596     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6597       Value *A, *B;
6598       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6599       if (SPR.Flavor != SPF_UNKNOWN)
6600         return nullptr;
6601     }
6602 
6603   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6604   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6605   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6606     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6607 
6608   // Handle fcmp with instruction LHS and constant RHS.
6609   Instruction *LHSI;
6610   Constant *RHSC;
6611   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6612     switch (LHSI->getOpcode()) {
6613     case Instruction::PHI:
6614       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6615       // block.  If in the same block, we're encouraging jump threading.  If
6616       // not, we are just pessimizing the code by making an i1 phi.
6617       if (LHSI->getParent() == I.getParent())
6618         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6619           return NV;
6620       break;
6621     case Instruction::SIToFP:
6622     case Instruction::UIToFP:
6623       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6624         return NV;
6625       break;
6626     case Instruction::FDiv:
6627       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6628         return NV;
6629       break;
6630     case Instruction::Load:
6631       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6632         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6633           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
6634                   cast<LoadInst>(LHSI), GEP, GV, I))
6635             return Res;
6636       break;
6637   }
6638   }
6639 
6640   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6641     return R;
6642 
6643   if (match(Op0, m_FNeg(m_Value(X)))) {
6644     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6645     Constant *C;
6646     if (match(Op1, m_Constant(C))) {
6647       Constant *NegC = ConstantExpr::getFNeg(C);
6648       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6649     }
6650   }
6651 
6652   if (match(Op0, m_FPExt(m_Value(X)))) {
6653     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6654     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6655       return new FCmpInst(Pred, X, Y, "", &I);
6656 
6657     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6658     const APFloat *C;
6659     if (match(Op1, m_APFloat(C))) {
6660       const fltSemantics &FPSem =
6661           X->getType()->getScalarType()->getFltSemantics();
6662       bool Lossy;
6663       APFloat TruncC = *C;
6664       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6665 
6666       // Avoid lossy conversions and denormals.
6667       // Zero is a special case that's OK to convert.
6668       APFloat Fabs = TruncC;
6669       Fabs.clearSign();
6670       if (!Lossy &&
6671           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6672         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6673         return new FCmpInst(Pred, X, NewC, "", &I);
6674       }
6675     }
6676   }
6677 
6678   // Convert a sign-bit test of an FP value into a cast and integer compare.
6679   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6680   // TODO: Handle non-zero compare constants.
6681   // TODO: Handle other predicates.
6682   const APFloat *C;
6683   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6684                                                            m_Value(X)))) &&
6685       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6686     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6687     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6688       IntType = VectorType::get(IntType, VecTy->getElementCount());
6689 
6690     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6691     if (Pred == FCmpInst::FCMP_OLT) {
6692       Value *IntX = Builder.CreateBitCast(X, IntType);
6693       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6694                           ConstantInt::getNullValue(IntType));
6695     }
6696   }
6697 
6698   if (I.getType()->isVectorTy())
6699     if (Instruction *Res = foldVectorCmp(I, Builder))
6700       return Res;
6701 
6702   return Changed ? &I : nullptr;
6703 }
6704