1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/KnownBits.h" 28 #include "llvm/Transforms/InstCombine/InstCombiner.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 39 /// Compute Result = In1+In2, returning true if the result overflowed for this 40 /// type. 41 static bool addWithOverflow(APInt &Result, const APInt &In1, 42 const APInt &In2, bool IsSigned = false) { 43 bool Overflow; 44 if (IsSigned) 45 Result = In1.sadd_ov(In2, Overflow); 46 else 47 Result = In1.uadd_ov(In2, Overflow); 48 49 return Overflow; 50 } 51 52 /// Compute Result = In1-In2, returning true if the result overflowed for this 53 /// type. 54 static bool subWithOverflow(APInt &Result, const APInt &In1, 55 const APInt &In2, bool IsSigned = false) { 56 bool Overflow; 57 if (IsSigned) 58 Result = In1.ssub_ov(In2, Overflow); 59 else 60 Result = In1.usub_ov(In2, Overflow); 61 62 return Overflow; 63 } 64 65 /// Given an icmp instruction, return true if any use of this comparison is a 66 /// branch on sign bit comparison. 67 static bool hasBranchUse(ICmpInst &I) { 68 for (auto *U : I.users()) 69 if (isa<BranchInst>(U)) 70 return true; 71 return false; 72 } 73 74 /// Returns true if the exploded icmp can be expressed as a signed comparison 75 /// to zero and updates the predicate accordingly. 76 /// The signedness of the comparison is preserved. 77 /// TODO: Refactor with decomposeBitTestICmp()? 78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 79 if (!ICmpInst::isSigned(Pred)) 80 return false; 81 82 if (C.isZero()) 83 return ICmpInst::isRelational(Pred); 84 85 if (C.isOne()) { 86 if (Pred == ICmpInst::ICMP_SLT) { 87 Pred = ICmpInst::ICMP_SLE; 88 return true; 89 } 90 } else if (C.isAllOnes()) { 91 if (Pred == ICmpInst::ICMP_SGT) { 92 Pred = ICmpInst::ICMP_SGE; 93 return true; 94 } 95 } 96 97 return false; 98 } 99 100 /// This is called when we see this pattern: 101 /// cmp pred (load (gep GV, ...)), cmpcst 102 /// where GV is a global variable with a constant initializer. Try to simplify 103 /// this into some simple computation that does not need the load. For example 104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 105 /// 106 /// If AndCst is non-null, then the loaded value is masked with that constant 107 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 108 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 109 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 110 ConstantInt *AndCst) { 111 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 112 GV->getValueType() != GEP->getSourceElementType() || 113 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 114 return nullptr; 115 116 Constant *Init = GV->getInitializer(); 117 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 118 return nullptr; 119 120 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 121 // Don't blow up on huge arrays. 122 if (ArrayElementCount > MaxArraySizeForCombine) 123 return nullptr; 124 125 // There are many forms of this optimization we can handle, for now, just do 126 // the simple index into a single-dimensional array. 127 // 128 // Require: GEP GV, 0, i {{, constant indices}} 129 if (GEP->getNumOperands() < 3 || 130 !isa<ConstantInt>(GEP->getOperand(1)) || 131 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 132 isa<Constant>(GEP->getOperand(2))) 133 return nullptr; 134 135 // Check that indices after the variable are constants and in-range for the 136 // type they index. Collect the indices. This is typically for arrays of 137 // structs. 138 SmallVector<unsigned, 4> LaterIndices; 139 140 Type *EltTy = Init->getType()->getArrayElementType(); 141 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 142 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 143 if (!Idx) return nullptr; // Variable index. 144 145 uint64_t IdxVal = Idx->getZExtValue(); 146 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 147 148 if (StructType *STy = dyn_cast<StructType>(EltTy)) 149 EltTy = STy->getElementType(IdxVal); 150 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 151 if (IdxVal >= ATy->getNumElements()) return nullptr; 152 EltTy = ATy->getElementType(); 153 } else { 154 return nullptr; // Unknown type. 155 } 156 157 LaterIndices.push_back(IdxVal); 158 } 159 160 enum { Overdefined = -3, Undefined = -2 }; 161 162 // Variables for our state machines. 163 164 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 165 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 166 // and 87 is the second (and last) index. FirstTrueElement is -2 when 167 // undefined, otherwise set to the first true element. SecondTrueElement is 168 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 169 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 170 171 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 172 // form "i != 47 & i != 87". Same state transitions as for true elements. 173 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 174 175 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 176 /// define a state machine that triggers for ranges of values that the index 177 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 178 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 179 /// index in the range (inclusive). We use -2 for undefined here because we 180 /// use relative comparisons and don't want 0-1 to match -1. 181 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 182 183 // MagicBitvector - This is a magic bitvector where we set a bit if the 184 // comparison is true for element 'i'. If there are 64 elements or less in 185 // the array, this will fully represent all the comparison results. 186 uint64_t MagicBitvector = 0; 187 188 // Scan the array and see if one of our patterns matches. 189 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 190 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 191 Constant *Elt = Init->getAggregateElement(i); 192 if (!Elt) return nullptr; 193 194 // If this is indexing an array of structures, get the structure element. 195 if (!LaterIndices.empty()) 196 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 197 198 // If the element is masked, handle it. 199 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 200 201 // Find out if the comparison would be true or false for the i'th element. 202 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 203 CompareRHS, DL, &TLI); 204 // If the result is undef for this element, ignore it. 205 if (isa<UndefValue>(C)) { 206 // Extend range state machines to cover this element in case there is an 207 // undef in the middle of the range. 208 if (TrueRangeEnd == (int)i-1) 209 TrueRangeEnd = i; 210 if (FalseRangeEnd == (int)i-1) 211 FalseRangeEnd = i; 212 continue; 213 } 214 215 // If we can't compute the result for any of the elements, we have to give 216 // up evaluating the entire conditional. 217 if (!isa<ConstantInt>(C)) return nullptr; 218 219 // Otherwise, we know if the comparison is true or false for this element, 220 // update our state machines. 221 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 222 223 // State machine for single/double/range index comparison. 224 if (IsTrueForElt) { 225 // Update the TrueElement state machine. 226 if (FirstTrueElement == Undefined) 227 FirstTrueElement = TrueRangeEnd = i; // First true element. 228 else { 229 // Update double-compare state machine. 230 if (SecondTrueElement == Undefined) 231 SecondTrueElement = i; 232 else 233 SecondTrueElement = Overdefined; 234 235 // Update range state machine. 236 if (TrueRangeEnd == (int)i-1) 237 TrueRangeEnd = i; 238 else 239 TrueRangeEnd = Overdefined; 240 } 241 } else { 242 // Update the FalseElement state machine. 243 if (FirstFalseElement == Undefined) 244 FirstFalseElement = FalseRangeEnd = i; // First false element. 245 else { 246 // Update double-compare state machine. 247 if (SecondFalseElement == Undefined) 248 SecondFalseElement = i; 249 else 250 SecondFalseElement = Overdefined; 251 252 // Update range state machine. 253 if (FalseRangeEnd == (int)i-1) 254 FalseRangeEnd = i; 255 else 256 FalseRangeEnd = Overdefined; 257 } 258 } 259 260 // If this element is in range, update our magic bitvector. 261 if (i < 64 && IsTrueForElt) 262 MagicBitvector |= 1ULL << i; 263 264 // If all of our states become overdefined, bail out early. Since the 265 // predicate is expensive, only check it every 8 elements. This is only 266 // really useful for really huge arrays. 267 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 268 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 269 FalseRangeEnd == Overdefined) 270 return nullptr; 271 } 272 273 // Now that we've scanned the entire array, emit our new comparison(s). We 274 // order the state machines in complexity of the generated code. 275 Value *Idx = GEP->getOperand(2); 276 277 // If the index is larger than the pointer size of the target, truncate the 278 // index down like the GEP would do implicitly. We don't have to do this for 279 // an inbounds GEP because the index can't be out of range. 280 if (!GEP->isInBounds()) { 281 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 282 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 283 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 284 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 285 } 286 287 // If inbounds keyword is not present, Idx * ElementSize can overflow. 288 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 289 // Then, there are two possible values for Idx to match offset 0: 290 // 0x00..00, 0x80..00. 291 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 292 // comparison is false if Idx was 0x80..00. 293 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 294 unsigned ElementSize = 295 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 296 auto MaskIdx = [&](Value* Idx){ 297 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 298 Value *Mask = ConstantInt::get(Idx->getType(), -1); 299 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 300 Idx = Builder.CreateAnd(Idx, Mask); 301 } 302 return Idx; 303 }; 304 305 // If the comparison is only true for one or two elements, emit direct 306 // comparisons. 307 if (SecondTrueElement != Overdefined) { 308 Idx = MaskIdx(Idx); 309 // None true -> false. 310 if (FirstTrueElement == Undefined) 311 return replaceInstUsesWith(ICI, Builder.getFalse()); 312 313 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 314 315 // True for one element -> 'i == 47'. 316 if (SecondTrueElement == Undefined) 317 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 318 319 // True for two elements -> 'i == 47 | i == 72'. 320 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 321 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 322 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 323 return BinaryOperator::CreateOr(C1, C2); 324 } 325 326 // If the comparison is only false for one or two elements, emit direct 327 // comparisons. 328 if (SecondFalseElement != Overdefined) { 329 Idx = MaskIdx(Idx); 330 // None false -> true. 331 if (FirstFalseElement == Undefined) 332 return replaceInstUsesWith(ICI, Builder.getTrue()); 333 334 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 335 336 // False for one element -> 'i != 47'. 337 if (SecondFalseElement == Undefined) 338 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 339 340 // False for two elements -> 'i != 47 & i != 72'. 341 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 342 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 343 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 344 return BinaryOperator::CreateAnd(C1, C2); 345 } 346 347 // If the comparison can be replaced with a range comparison for the elements 348 // where it is true, emit the range check. 349 if (TrueRangeEnd != Overdefined) { 350 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 351 Idx = MaskIdx(Idx); 352 353 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 354 if (FirstTrueElement) { 355 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 356 Idx = Builder.CreateAdd(Idx, Offs); 357 } 358 359 Value *End = ConstantInt::get(Idx->getType(), 360 TrueRangeEnd-FirstTrueElement+1); 361 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 362 } 363 364 // False range check. 365 if (FalseRangeEnd != Overdefined) { 366 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 367 Idx = MaskIdx(Idx); 368 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 369 if (FirstFalseElement) { 370 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 371 Idx = Builder.CreateAdd(Idx, Offs); 372 } 373 374 Value *End = ConstantInt::get(Idx->getType(), 375 FalseRangeEnd-FirstFalseElement); 376 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 377 } 378 379 // If a magic bitvector captures the entire comparison state 380 // of this load, replace it with computation that does: 381 // ((magic_cst >> i) & 1) != 0 382 { 383 Type *Ty = nullptr; 384 385 // Look for an appropriate type: 386 // - The type of Idx if the magic fits 387 // - The smallest fitting legal type 388 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 389 Ty = Idx->getType(); 390 else 391 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 392 393 if (Ty) { 394 Idx = MaskIdx(Idx); 395 Value *V = Builder.CreateIntCast(Idx, Ty, false); 396 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 397 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 398 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 399 } 400 } 401 402 return nullptr; 403 } 404 405 /// Return a value that can be used to compare the *offset* implied by a GEP to 406 /// zero. For example, if we have &A[i], we want to return 'i' for 407 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 408 /// are involved. The above expression would also be legal to codegen as 409 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 410 /// This latter form is less amenable to optimization though, and we are allowed 411 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 412 /// 413 /// If we can't emit an optimized form for this expression, this returns null. 414 /// 415 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 416 const DataLayout &DL) { 417 gep_type_iterator GTI = gep_type_begin(GEP); 418 419 // Check to see if this gep only has a single variable index. If so, and if 420 // any constant indices are a multiple of its scale, then we can compute this 421 // in terms of the scale of the variable index. For example, if the GEP 422 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 423 // because the expression will cross zero at the same point. 424 unsigned i, e = GEP->getNumOperands(); 425 int64_t Offset = 0; 426 for (i = 1; i != e; ++i, ++GTI) { 427 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 428 // Compute the aggregate offset of constant indices. 429 if (CI->isZero()) continue; 430 431 // Handle a struct index, which adds its field offset to the pointer. 432 if (StructType *STy = GTI.getStructTypeOrNull()) { 433 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 434 } else { 435 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 436 Offset += Size*CI->getSExtValue(); 437 } 438 } else { 439 // Found our variable index. 440 break; 441 } 442 } 443 444 // If there are no variable indices, we must have a constant offset, just 445 // evaluate it the general way. 446 if (i == e) return nullptr; 447 448 Value *VariableIdx = GEP->getOperand(i); 449 // Determine the scale factor of the variable element. For example, this is 450 // 4 if the variable index is into an array of i32. 451 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 452 453 // Verify that there are no other variable indices. If so, emit the hard way. 454 for (++i, ++GTI; i != e; ++i, ++GTI) { 455 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 456 if (!CI) return nullptr; 457 458 // Compute the aggregate offset of constant indices. 459 if (CI->isZero()) continue; 460 461 // Handle a struct index, which adds its field offset to the pointer. 462 if (StructType *STy = GTI.getStructTypeOrNull()) { 463 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 464 } else { 465 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 466 Offset += Size*CI->getSExtValue(); 467 } 468 } 469 470 // Okay, we know we have a single variable index, which must be a 471 // pointer/array/vector index. If there is no offset, life is simple, return 472 // the index. 473 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 474 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 475 if (Offset == 0) { 476 // Cast to intptrty in case a truncation occurs. If an extension is needed, 477 // we don't need to bother extending: the extension won't affect where the 478 // computation crosses zero. 479 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 480 IntPtrWidth) { 481 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 482 } 483 return VariableIdx; 484 } 485 486 // Otherwise, there is an index. The computation we will do will be modulo 487 // the pointer size. 488 Offset = SignExtend64(Offset, IntPtrWidth); 489 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 490 491 // To do this transformation, any constant index must be a multiple of the 492 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 493 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 494 // multiple of the variable scale. 495 int64_t NewOffs = Offset / (int64_t)VariableScale; 496 if (Offset != NewOffs*(int64_t)VariableScale) 497 return nullptr; 498 499 // Okay, we can do this evaluation. Start by converting the index to intptr. 500 if (VariableIdx->getType() != IntPtrTy) 501 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 502 true /*Signed*/); 503 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 504 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 505 } 506 507 /// Returns true if we can rewrite Start as a GEP with pointer Base 508 /// and some integer offset. The nodes that need to be re-written 509 /// for this transformation will be added to Explored. 510 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 511 const DataLayout &DL, 512 SetVector<Value *> &Explored) { 513 SmallVector<Value *, 16> WorkList(1, Start); 514 Explored.insert(Base); 515 516 // The following traversal gives us an order which can be used 517 // when doing the final transformation. Since in the final 518 // transformation we create the PHI replacement instructions first, 519 // we don't have to get them in any particular order. 520 // 521 // However, for other instructions we will have to traverse the 522 // operands of an instruction first, which means that we have to 523 // do a post-order traversal. 524 while (!WorkList.empty()) { 525 SetVector<PHINode *> PHIs; 526 527 while (!WorkList.empty()) { 528 if (Explored.size() >= 100) 529 return false; 530 531 Value *V = WorkList.back(); 532 533 if (Explored.contains(V)) { 534 WorkList.pop_back(); 535 continue; 536 } 537 538 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 539 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 540 // We've found some value that we can't explore which is different from 541 // the base. Therefore we can't do this transformation. 542 return false; 543 544 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 545 auto *CI = cast<CastInst>(V); 546 if (!CI->isNoopCast(DL)) 547 return false; 548 549 if (!Explored.contains(CI->getOperand(0))) 550 WorkList.push_back(CI->getOperand(0)); 551 } 552 553 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 554 // We're limiting the GEP to having one index. This will preserve 555 // the original pointer type. We could handle more cases in the 556 // future. 557 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 558 GEP->getSourceElementType() != ElemTy) 559 return false; 560 561 if (!Explored.contains(GEP->getOperand(0))) 562 WorkList.push_back(GEP->getOperand(0)); 563 } 564 565 if (WorkList.back() == V) { 566 WorkList.pop_back(); 567 // We've finished visiting this node, mark it as such. 568 Explored.insert(V); 569 } 570 571 if (auto *PN = dyn_cast<PHINode>(V)) { 572 // We cannot transform PHIs on unsplittable basic blocks. 573 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 574 return false; 575 Explored.insert(PN); 576 PHIs.insert(PN); 577 } 578 } 579 580 // Explore the PHI nodes further. 581 for (auto *PN : PHIs) 582 for (Value *Op : PN->incoming_values()) 583 if (!Explored.contains(Op)) 584 WorkList.push_back(Op); 585 } 586 587 // Make sure that we can do this. Since we can't insert GEPs in a basic 588 // block before a PHI node, we can't easily do this transformation if 589 // we have PHI node users of transformed instructions. 590 for (Value *Val : Explored) { 591 for (Value *Use : Val->uses()) { 592 593 auto *PHI = dyn_cast<PHINode>(Use); 594 auto *Inst = dyn_cast<Instruction>(Val); 595 596 if (Inst == Base || Inst == PHI || !Inst || !PHI || 597 !Explored.contains(PHI)) 598 continue; 599 600 if (PHI->getParent() == Inst->getParent()) 601 return false; 602 } 603 } 604 return true; 605 } 606 607 // Sets the appropriate insert point on Builder where we can add 608 // a replacement Instruction for V (if that is possible). 609 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 610 bool Before = true) { 611 if (auto *PHI = dyn_cast<PHINode>(V)) { 612 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 613 return; 614 } 615 if (auto *I = dyn_cast<Instruction>(V)) { 616 if (!Before) 617 I = &*std::next(I->getIterator()); 618 Builder.SetInsertPoint(I); 619 return; 620 } 621 if (auto *A = dyn_cast<Argument>(V)) { 622 // Set the insertion point in the entry block. 623 BasicBlock &Entry = A->getParent()->getEntryBlock(); 624 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 625 return; 626 } 627 // Otherwise, this is a constant and we don't need to set a new 628 // insertion point. 629 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 630 } 631 632 /// Returns a re-written value of Start as an indexed GEP using Base as a 633 /// pointer. 634 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 635 const DataLayout &DL, 636 SetVector<Value *> &Explored) { 637 // Perform all the substitutions. This is a bit tricky because we can 638 // have cycles in our use-def chains. 639 // 1. Create the PHI nodes without any incoming values. 640 // 2. Create all the other values. 641 // 3. Add the edges for the PHI nodes. 642 // 4. Emit GEPs to get the original pointers. 643 // 5. Remove the original instructions. 644 Type *IndexType = IntegerType::get( 645 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 646 647 DenseMap<Value *, Value *> NewInsts; 648 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 649 650 // Create the new PHI nodes, without adding any incoming values. 651 for (Value *Val : Explored) { 652 if (Val == Base) 653 continue; 654 // Create empty phi nodes. This avoids cyclic dependencies when creating 655 // the remaining instructions. 656 if (auto *PHI = dyn_cast<PHINode>(Val)) 657 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 658 PHI->getName() + ".idx", PHI); 659 } 660 IRBuilder<> Builder(Base->getContext()); 661 662 // Create all the other instructions. 663 for (Value *Val : Explored) { 664 665 if (NewInsts.find(Val) != NewInsts.end()) 666 continue; 667 668 if (auto *CI = dyn_cast<CastInst>(Val)) { 669 // Don't get rid of the intermediate variable here; the store can grow 670 // the map which will invalidate the reference to the input value. 671 Value *V = NewInsts[CI->getOperand(0)]; 672 NewInsts[CI] = V; 673 continue; 674 } 675 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 676 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 677 : GEP->getOperand(1); 678 setInsertionPoint(Builder, GEP); 679 // Indices might need to be sign extended. GEPs will magically do 680 // this, but we need to do it ourselves here. 681 if (Index->getType()->getScalarSizeInBits() != 682 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 683 Index = Builder.CreateSExtOrTrunc( 684 Index, NewInsts[GEP->getOperand(0)]->getType(), 685 GEP->getOperand(0)->getName() + ".sext"); 686 } 687 688 auto *Op = NewInsts[GEP->getOperand(0)]; 689 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 690 NewInsts[GEP] = Index; 691 else 692 NewInsts[GEP] = Builder.CreateNSWAdd( 693 Op, Index, GEP->getOperand(0)->getName() + ".add"); 694 continue; 695 } 696 if (isa<PHINode>(Val)) 697 continue; 698 699 llvm_unreachable("Unexpected instruction type"); 700 } 701 702 // Add the incoming values to the PHI nodes. 703 for (Value *Val : Explored) { 704 if (Val == Base) 705 continue; 706 // All the instructions have been created, we can now add edges to the 707 // phi nodes. 708 if (auto *PHI = dyn_cast<PHINode>(Val)) { 709 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 710 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 711 Value *NewIncoming = PHI->getIncomingValue(I); 712 713 if (NewInsts.find(NewIncoming) != NewInsts.end()) 714 NewIncoming = NewInsts[NewIncoming]; 715 716 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 717 } 718 } 719 } 720 721 PointerType *PtrTy = 722 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 723 for (Value *Val : Explored) { 724 if (Val == Base) 725 continue; 726 727 // Depending on the type, for external users we have to emit 728 // a GEP or a GEP + ptrtoint. 729 setInsertionPoint(Builder, Val, false); 730 731 // Cast base to the expected type. 732 Value *NewVal = Builder.CreateBitOrPointerCast( 733 Base, PtrTy, Start->getName() + "to.ptr"); 734 NewVal = Builder.CreateInBoundsGEP( 735 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 736 NewVal = Builder.CreateBitOrPointerCast( 737 NewVal, Val->getType(), Val->getName() + ".conv"); 738 Val->replaceAllUsesWith(NewVal); 739 } 740 741 return NewInsts[Start]; 742 } 743 744 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 745 /// the input Value as a constant indexed GEP. Returns a pair containing 746 /// the GEPs Pointer and Index. 747 static std::pair<Value *, Value *> 748 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 749 Type *IndexType = IntegerType::get(V->getContext(), 750 DL.getIndexTypeSizeInBits(V->getType())); 751 752 Constant *Index = ConstantInt::getNullValue(IndexType); 753 while (true) { 754 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 755 // We accept only inbouds GEPs here to exclude the possibility of 756 // overflow. 757 if (!GEP->isInBounds()) 758 break; 759 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 760 GEP->getSourceElementType() == ElemTy) { 761 V = GEP->getOperand(0); 762 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 763 Index = ConstantExpr::getAdd( 764 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 765 continue; 766 } 767 break; 768 } 769 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 770 if (!CI->isNoopCast(DL)) 771 break; 772 V = CI->getOperand(0); 773 continue; 774 } 775 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 776 if (!CI->isNoopCast(DL)) 777 break; 778 V = CI->getOperand(0); 779 continue; 780 } 781 break; 782 } 783 return {V, Index}; 784 } 785 786 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 787 /// We can look through PHIs, GEPs and casts in order to determine a common base 788 /// between GEPLHS and RHS. 789 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 790 ICmpInst::Predicate Cond, 791 const DataLayout &DL) { 792 // FIXME: Support vector of pointers. 793 if (GEPLHS->getType()->isVectorTy()) 794 return nullptr; 795 796 if (!GEPLHS->hasAllConstantIndices()) 797 return nullptr; 798 799 Type *ElemTy = GEPLHS->getSourceElementType(); 800 Value *PtrBase, *Index; 801 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 802 803 // The set of nodes that will take part in this transformation. 804 SetVector<Value *> Nodes; 805 806 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 807 return nullptr; 808 809 // We know we can re-write this as 810 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 811 // Since we've only looked through inbouds GEPs we know that we 812 // can't have overflow on either side. We can therefore re-write 813 // this as: 814 // OFFSET1 cmp OFFSET2 815 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 816 817 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 818 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 819 // offset. Since Index is the offset of LHS to the base pointer, we will now 820 // compare the offsets instead of comparing the pointers. 821 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 822 } 823 824 /// Fold comparisons between a GEP instruction and something else. At this point 825 /// we know that the GEP is on the LHS of the comparison. 826 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 827 ICmpInst::Predicate Cond, 828 Instruction &I) { 829 // Don't transform signed compares of GEPs into index compares. Even if the 830 // GEP is inbounds, the final add of the base pointer can have signed overflow 831 // and would change the result of the icmp. 832 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 833 // the maximum signed value for the pointer type. 834 if (ICmpInst::isSigned(Cond)) 835 return nullptr; 836 837 // Look through bitcasts and addrspacecasts. We do not however want to remove 838 // 0 GEPs. 839 if (!isa<GetElementPtrInst>(RHS)) 840 RHS = RHS->stripPointerCasts(); 841 842 Value *PtrBase = GEPLHS->getOperand(0); 843 // FIXME: Support vector pointer GEPs. 844 if (PtrBase == RHS && GEPLHS->isInBounds() && 845 !GEPLHS->getType()->isVectorTy()) { 846 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 847 // This transformation (ignoring the base and scales) is valid because we 848 // know pointers can't overflow since the gep is inbounds. See if we can 849 // output an optimized form. 850 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 851 852 // If not, synthesize the offset the hard way. 853 if (!Offset) 854 Offset = EmitGEPOffset(GEPLHS); 855 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 856 Constant::getNullValue(Offset->getType())); 857 } 858 859 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 860 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 861 !NullPointerIsDefined(I.getFunction(), 862 RHS->getType()->getPointerAddressSpace())) { 863 // For most address spaces, an allocation can't be placed at null, but null 864 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 865 // the only valid inbounds address derived from null, is null itself. 866 // Thus, we have four cases to consider: 867 // 1) Base == nullptr, Offset == 0 -> inbounds, null 868 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 869 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 870 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 871 // 872 // (Note if we're indexing a type of size 0, that simply collapses into one 873 // of the buckets above.) 874 // 875 // In general, we're allowed to make values less poison (i.e. remove 876 // sources of full UB), so in this case, we just select between the two 877 // non-poison cases (1 and 4 above). 878 // 879 // For vectors, we apply the same reasoning on a per-lane basis. 880 auto *Base = GEPLHS->getPointerOperand(); 881 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 882 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 883 Base = Builder.CreateVectorSplat(EC, Base); 884 } 885 return new ICmpInst(Cond, Base, 886 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 887 cast<Constant>(RHS), Base->getType())); 888 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 889 // If the base pointers are different, but the indices are the same, just 890 // compare the base pointer. 891 if (PtrBase != GEPRHS->getOperand(0)) { 892 bool IndicesTheSame = 893 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 894 GEPLHS->getType() == GEPRHS->getType() && 895 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 896 if (IndicesTheSame) 897 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 898 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 899 IndicesTheSame = false; 900 break; 901 } 902 903 // If all indices are the same, just compare the base pointers. 904 Type *BaseType = GEPLHS->getOperand(0)->getType(); 905 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 906 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 907 908 // If we're comparing GEPs with two base pointers that only differ in type 909 // and both GEPs have only constant indices or just one use, then fold 910 // the compare with the adjusted indices. 911 // FIXME: Support vector of pointers. 912 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 913 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 914 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 915 PtrBase->stripPointerCasts() == 916 GEPRHS->getOperand(0)->stripPointerCasts() && 917 !GEPLHS->getType()->isVectorTy()) { 918 Value *LOffset = EmitGEPOffset(GEPLHS); 919 Value *ROffset = EmitGEPOffset(GEPRHS); 920 921 // If we looked through an addrspacecast between different sized address 922 // spaces, the LHS and RHS pointers are different sized 923 // integers. Truncate to the smaller one. 924 Type *LHSIndexTy = LOffset->getType(); 925 Type *RHSIndexTy = ROffset->getType(); 926 if (LHSIndexTy != RHSIndexTy) { 927 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 928 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 929 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 930 } else 931 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 932 } 933 934 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 935 LOffset, ROffset); 936 return replaceInstUsesWith(I, Cmp); 937 } 938 939 // Otherwise, the base pointers are different and the indices are 940 // different. Try convert this to an indexed compare by looking through 941 // PHIs/casts. 942 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 943 } 944 945 // If one of the GEPs has all zero indices, recurse. 946 // FIXME: Handle vector of pointers. 947 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 948 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 949 ICmpInst::getSwappedPredicate(Cond), I); 950 951 // If the other GEP has all zero indices, recurse. 952 // FIXME: Handle vector of pointers. 953 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 954 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 955 956 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 957 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 958 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 959 // If the GEPs only differ by one index, compare it. 960 unsigned NumDifferences = 0; // Keep track of # differences. 961 unsigned DiffOperand = 0; // The operand that differs. 962 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 963 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 964 Type *LHSType = GEPLHS->getOperand(i)->getType(); 965 Type *RHSType = GEPRHS->getOperand(i)->getType(); 966 // FIXME: Better support for vector of pointers. 967 if (LHSType->getPrimitiveSizeInBits() != 968 RHSType->getPrimitiveSizeInBits() || 969 (GEPLHS->getType()->isVectorTy() && 970 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 971 // Irreconcilable differences. 972 NumDifferences = 2; 973 break; 974 } 975 976 if (NumDifferences++) break; 977 DiffOperand = i; 978 } 979 980 if (NumDifferences == 0) // SAME GEP? 981 return replaceInstUsesWith(I, // No comparison is needed here. 982 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 983 984 else if (NumDifferences == 1 && GEPsInBounds) { 985 Value *LHSV = GEPLHS->getOperand(DiffOperand); 986 Value *RHSV = GEPRHS->getOperand(DiffOperand); 987 // Make sure we do a signed comparison here. 988 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 989 } 990 } 991 992 // Only lower this if the icmp is the only user of the GEP or if we expect 993 // the result to fold to a constant! 994 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 995 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 996 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 997 Value *L = EmitGEPOffset(GEPLHS); 998 Value *R = EmitGEPOffset(GEPRHS); 999 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1000 } 1001 } 1002 1003 // Try convert this to an indexed compare by looking through PHIs/casts as a 1004 // last resort. 1005 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1006 } 1007 1008 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1009 const AllocaInst *Alloca) { 1010 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1011 1012 // It would be tempting to fold away comparisons between allocas and any 1013 // pointer not based on that alloca (e.g. an argument). However, even 1014 // though such pointers cannot alias, they can still compare equal. 1015 // 1016 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1017 // doesn't escape we can argue that it's impossible to guess its value, and we 1018 // can therefore act as if any such guesses are wrong. 1019 // 1020 // The code below checks that the alloca doesn't escape, and that it's only 1021 // used in a comparison once (the current instruction). The 1022 // single-comparison-use condition ensures that we're trivially folding all 1023 // comparisons against the alloca consistently, and avoids the risk of 1024 // erroneously folding a comparison of the pointer with itself. 1025 1026 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1027 1028 SmallVector<const Use *, 32> Worklist; 1029 for (const Use &U : Alloca->uses()) { 1030 if (Worklist.size() >= MaxIter) 1031 return nullptr; 1032 Worklist.push_back(&U); 1033 } 1034 1035 unsigned NumCmps = 0; 1036 while (!Worklist.empty()) { 1037 assert(Worklist.size() <= MaxIter); 1038 const Use *U = Worklist.pop_back_val(); 1039 const Value *V = U->getUser(); 1040 --MaxIter; 1041 1042 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1043 isa<SelectInst>(V)) { 1044 // Track the uses. 1045 } else if (isa<LoadInst>(V)) { 1046 // Loading from the pointer doesn't escape it. 1047 continue; 1048 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1049 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1050 if (SI->getValueOperand() == U->get()) 1051 return nullptr; 1052 continue; 1053 } else if (isa<ICmpInst>(V)) { 1054 if (NumCmps++) 1055 return nullptr; // Found more than one cmp. 1056 continue; 1057 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1058 switch (Intrin->getIntrinsicID()) { 1059 // These intrinsics don't escape or compare the pointer. Memset is safe 1060 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1061 // we don't allow stores, so src cannot point to V. 1062 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1063 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1064 continue; 1065 default: 1066 return nullptr; 1067 } 1068 } else { 1069 return nullptr; 1070 } 1071 for (const Use &U : V->uses()) { 1072 if (Worklist.size() >= MaxIter) 1073 return nullptr; 1074 Worklist.push_back(&U); 1075 } 1076 } 1077 1078 auto *Res = ConstantInt::get(ICI.getType(), 1079 !CmpInst::isTrueWhenEqual(ICI.getPredicate())); 1080 return replaceInstUsesWith(ICI, Res); 1081 } 1082 1083 /// Fold "icmp pred (X+C), X". 1084 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1085 ICmpInst::Predicate Pred) { 1086 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1087 // so the values can never be equal. Similarly for all other "or equals" 1088 // operators. 1089 assert(!!C && "C should not be zero!"); 1090 1091 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1092 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1093 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1094 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1095 Constant *R = ConstantInt::get(X->getType(), 1096 APInt::getMaxValue(C.getBitWidth()) - C); 1097 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1098 } 1099 1100 // (X+1) >u X --> X <u (0-1) --> X != 255 1101 // (X+2) >u X --> X <u (0-2) --> X <u 254 1102 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1103 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1104 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1105 ConstantInt::get(X->getType(), -C)); 1106 1107 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1108 1109 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1110 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1111 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1112 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1113 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1114 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1115 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1116 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1117 ConstantInt::get(X->getType(), SMax - C)); 1118 1119 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1120 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1121 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1122 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1123 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1124 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1125 1126 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1127 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1128 ConstantInt::get(X->getType(), SMax - (C - 1))); 1129 } 1130 1131 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1132 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1133 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1134 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1135 const APInt &AP1, 1136 const APInt &AP2) { 1137 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1138 1139 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1140 if (I.getPredicate() == I.ICMP_NE) 1141 Pred = CmpInst::getInversePredicate(Pred); 1142 return new ICmpInst(Pred, LHS, RHS); 1143 }; 1144 1145 // Don't bother doing any work for cases which InstSimplify handles. 1146 if (AP2.isZero()) 1147 return nullptr; 1148 1149 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1150 if (IsAShr) { 1151 if (AP2.isAllOnes()) 1152 return nullptr; 1153 if (AP2.isNegative() != AP1.isNegative()) 1154 return nullptr; 1155 if (AP2.sgt(AP1)) 1156 return nullptr; 1157 } 1158 1159 if (!AP1) 1160 // 'A' must be large enough to shift out the highest set bit. 1161 return getICmp(I.ICMP_UGT, A, 1162 ConstantInt::get(A->getType(), AP2.logBase2())); 1163 1164 if (AP1 == AP2) 1165 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1166 1167 int Shift; 1168 if (IsAShr && AP1.isNegative()) 1169 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1170 else 1171 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1172 1173 if (Shift > 0) { 1174 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1175 // There are multiple solutions if we are comparing against -1 and the LHS 1176 // of the ashr is not a power of two. 1177 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1178 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1179 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1180 } else if (AP1 == AP2.lshr(Shift)) { 1181 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1182 } 1183 } 1184 1185 // Shifting const2 will never be equal to const1. 1186 // FIXME: This should always be handled by InstSimplify? 1187 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1188 return replaceInstUsesWith(I, TorF); 1189 } 1190 1191 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1192 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1193 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1194 const APInt &AP1, 1195 const APInt &AP2) { 1196 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1197 1198 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1199 if (I.getPredicate() == I.ICMP_NE) 1200 Pred = CmpInst::getInversePredicate(Pred); 1201 return new ICmpInst(Pred, LHS, RHS); 1202 }; 1203 1204 // Don't bother doing any work for cases which InstSimplify handles. 1205 if (AP2.isZero()) 1206 return nullptr; 1207 1208 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1209 1210 if (!AP1 && AP2TrailingZeros != 0) 1211 return getICmp( 1212 I.ICMP_UGE, A, 1213 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1214 1215 if (AP1 == AP2) 1216 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1217 1218 // Get the distance between the lowest bits that are set. 1219 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1220 1221 if (Shift > 0 && AP2.shl(Shift) == AP1) 1222 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1223 1224 // Shifting const2 will never be equal to const1. 1225 // FIXME: This should always be handled by InstSimplify? 1226 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1227 return replaceInstUsesWith(I, TorF); 1228 } 1229 1230 /// The caller has matched a pattern of the form: 1231 /// I = icmp ugt (add (add A, B), CI2), CI1 1232 /// If this is of the form: 1233 /// sum = a + b 1234 /// if (sum+128 >u 255) 1235 /// Then replace it with llvm.sadd.with.overflow.i8. 1236 /// 1237 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1238 ConstantInt *CI2, ConstantInt *CI1, 1239 InstCombinerImpl &IC) { 1240 // The transformation we're trying to do here is to transform this into an 1241 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1242 // with a narrower add, and discard the add-with-constant that is part of the 1243 // range check (if we can't eliminate it, this isn't profitable). 1244 1245 // In order to eliminate the add-with-constant, the compare can be its only 1246 // use. 1247 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1248 if (!AddWithCst->hasOneUse()) 1249 return nullptr; 1250 1251 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1252 if (!CI2->getValue().isPowerOf2()) 1253 return nullptr; 1254 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1255 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1256 return nullptr; 1257 1258 // The width of the new add formed is 1 more than the bias. 1259 ++NewWidth; 1260 1261 // Check to see that CI1 is an all-ones value with NewWidth bits. 1262 if (CI1->getBitWidth() == NewWidth || 1263 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1264 return nullptr; 1265 1266 // This is only really a signed overflow check if the inputs have been 1267 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1268 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1269 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1270 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1271 return nullptr; 1272 1273 // In order to replace the original add with a narrower 1274 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1275 // and truncates that discard the high bits of the add. Verify that this is 1276 // the case. 1277 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1278 for (User *U : OrigAdd->users()) { 1279 if (U == AddWithCst) 1280 continue; 1281 1282 // Only accept truncates for now. We would really like a nice recursive 1283 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1284 // chain to see which bits of a value are actually demanded. If the 1285 // original add had another add which was then immediately truncated, we 1286 // could still do the transformation. 1287 TruncInst *TI = dyn_cast<TruncInst>(U); 1288 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1289 return nullptr; 1290 } 1291 1292 // If the pattern matches, truncate the inputs to the narrower type and 1293 // use the sadd_with_overflow intrinsic to efficiently compute both the 1294 // result and the overflow bit. 1295 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1296 Function *F = Intrinsic::getDeclaration( 1297 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1298 1299 InstCombiner::BuilderTy &Builder = IC.Builder; 1300 1301 // Put the new code above the original add, in case there are any uses of the 1302 // add between the add and the compare. 1303 Builder.SetInsertPoint(OrigAdd); 1304 1305 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1306 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1307 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1308 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1309 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1310 1311 // The inner add was the result of the narrow add, zero extended to the 1312 // wider type. Replace it with the result computed by the intrinsic. 1313 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1314 IC.eraseInstFromFunction(*OrigAdd); 1315 1316 // The original icmp gets replaced with the overflow value. 1317 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1318 } 1319 1320 /// If we have: 1321 /// icmp eq/ne (urem/srem %x, %y), 0 1322 /// iff %y is a power-of-two, we can replace this with a bit test: 1323 /// icmp eq/ne (and %x, (add %y, -1)), 0 1324 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1325 // This fold is only valid for equality predicates. 1326 if (!I.isEquality()) 1327 return nullptr; 1328 ICmpInst::Predicate Pred; 1329 Value *X, *Y, *Zero; 1330 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1331 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1332 return nullptr; 1333 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1334 return nullptr; 1335 // This may increase instruction count, we don't enforce that Y is a constant. 1336 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1337 Value *Masked = Builder.CreateAnd(X, Mask); 1338 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1339 } 1340 1341 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1342 /// by one-less-than-bitwidth into a sign test on the original value. 1343 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1344 Instruction *Val; 1345 ICmpInst::Predicate Pred; 1346 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1347 return nullptr; 1348 1349 Value *X; 1350 Type *XTy; 1351 1352 Constant *C; 1353 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1354 XTy = X->getType(); 1355 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1356 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1357 APInt(XBitWidth, XBitWidth - 1)))) 1358 return nullptr; 1359 } else if (isa<BinaryOperator>(Val) && 1360 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1361 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1362 /*AnalyzeForSignBitExtraction=*/true))) { 1363 XTy = X->getType(); 1364 } else 1365 return nullptr; 1366 1367 return ICmpInst::Create(Instruction::ICmp, 1368 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1369 : ICmpInst::ICMP_SLT, 1370 X, ConstantInt::getNullValue(XTy)); 1371 } 1372 1373 // Handle icmp pred X, 0 1374 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1375 CmpInst::Predicate Pred = Cmp.getPredicate(); 1376 if (!match(Cmp.getOperand(1), m_Zero())) 1377 return nullptr; 1378 1379 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1380 if (Pred == ICmpInst::ICMP_SGT) { 1381 Value *A, *B; 1382 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1383 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1384 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1385 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1386 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1387 } 1388 } 1389 1390 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1391 return New; 1392 1393 // Given: 1394 // icmp eq/ne (urem %x, %y), 0 1395 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1396 // icmp eq/ne %x, 0 1397 Value *X, *Y; 1398 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1399 ICmpInst::isEquality(Pred)) { 1400 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1401 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1402 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1403 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1404 } 1405 1406 return nullptr; 1407 } 1408 1409 /// Fold icmp Pred X, C. 1410 /// TODO: This code structure does not make sense. The saturating add fold 1411 /// should be moved to some other helper and extended as noted below (it is also 1412 /// possible that code has been made unnecessary - do we canonicalize IR to 1413 /// overflow/saturating intrinsics or not?). 1414 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1415 // Match the following pattern, which is a common idiom when writing 1416 // overflow-safe integer arithmetic functions. The source performs an addition 1417 // in wider type and explicitly checks for overflow using comparisons against 1418 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1419 // 1420 // TODO: This could probably be generalized to handle other overflow-safe 1421 // operations if we worked out the formulas to compute the appropriate magic 1422 // constants. 1423 // 1424 // sum = a + b 1425 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1426 CmpInst::Predicate Pred = Cmp.getPredicate(); 1427 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1428 Value *A, *B; 1429 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1430 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1431 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1432 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1433 return Res; 1434 1435 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1436 Constant *C = dyn_cast<Constant>(Op1); 1437 if (!C || C->canTrap()) 1438 return nullptr; 1439 1440 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1441 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1442 Type *Ty = Cmp.getType(); 1443 Builder.SetInsertPoint(Phi); 1444 PHINode *NewPhi = 1445 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1446 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1447 auto *Input = 1448 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1449 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1450 NewPhi->addIncoming(BoolInput, Predecessor); 1451 } 1452 NewPhi->takeName(&Cmp); 1453 return replaceInstUsesWith(Cmp, NewPhi); 1454 } 1455 1456 return nullptr; 1457 } 1458 1459 /// Canonicalize icmp instructions based on dominating conditions. 1460 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1461 // This is a cheap/incomplete check for dominance - just match a single 1462 // predecessor with a conditional branch. 1463 BasicBlock *CmpBB = Cmp.getParent(); 1464 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1465 if (!DomBB) 1466 return nullptr; 1467 1468 Value *DomCond; 1469 BasicBlock *TrueBB, *FalseBB; 1470 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1471 return nullptr; 1472 1473 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1474 "Predecessor block does not point to successor?"); 1475 1476 // The branch should get simplified. Don't bother simplifying this condition. 1477 if (TrueBB == FalseBB) 1478 return nullptr; 1479 1480 // Try to simplify this compare to T/F based on the dominating condition. 1481 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1482 if (Imp) 1483 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1484 1485 CmpInst::Predicate Pred = Cmp.getPredicate(); 1486 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1487 ICmpInst::Predicate DomPred; 1488 const APInt *C, *DomC; 1489 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1490 match(Y, m_APInt(C))) { 1491 // We have 2 compares of a variable with constants. Calculate the constant 1492 // ranges of those compares to see if we can transform the 2nd compare: 1493 // DomBB: 1494 // DomCond = icmp DomPred X, DomC 1495 // br DomCond, CmpBB, FalseBB 1496 // CmpBB: 1497 // Cmp = icmp Pred X, C 1498 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1499 ConstantRange DominatingCR = 1500 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1501 : ConstantRange::makeExactICmpRegion( 1502 CmpInst::getInversePredicate(DomPred), *DomC); 1503 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1504 ConstantRange Difference = DominatingCR.difference(CR); 1505 if (Intersection.isEmptySet()) 1506 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1507 if (Difference.isEmptySet()) 1508 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1509 1510 // Canonicalizing a sign bit comparison that gets used in a branch, 1511 // pessimizes codegen by generating branch on zero instruction instead 1512 // of a test and branch. So we avoid canonicalizing in such situations 1513 // because test and branch instruction has better branch displacement 1514 // than compare and branch instruction. 1515 bool UnusedBit; 1516 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1517 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1518 return nullptr; 1519 1520 // Avoid an infinite loop with min/max canonicalization. 1521 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1522 if (Cmp.hasOneUse() && 1523 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1524 return nullptr; 1525 1526 if (const APInt *EqC = Intersection.getSingleElement()) 1527 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1528 if (const APInt *NeC = Difference.getSingleElement()) 1529 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1530 } 1531 1532 return nullptr; 1533 } 1534 1535 /// Fold icmp (trunc X, Y), C. 1536 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1537 TruncInst *Trunc, 1538 const APInt &C) { 1539 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1540 Value *X = Trunc->getOperand(0); 1541 if (C.isOne() && C.getBitWidth() > 1) { 1542 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1543 Value *V = nullptr; 1544 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1545 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1546 ConstantInt::get(V->getType(), 1)); 1547 } 1548 1549 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1550 SrcBits = X->getType()->getScalarSizeInBits(); 1551 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1552 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1553 // of the high bits truncated out of x are known. 1554 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1555 1556 // If all the high bits are known, we can do this xform. 1557 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1558 // Pull in the high bits from known-ones set. 1559 APInt NewRHS = C.zext(SrcBits); 1560 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1561 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1562 } 1563 } 1564 1565 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1566 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1567 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1568 Value *ShOp; 1569 const APInt *ShAmtC; 1570 bool TrueIfSigned; 1571 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1572 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1573 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1574 return TrueIfSigned 1575 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1576 ConstantInt::getNullValue(X->getType())) 1577 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1578 ConstantInt::getAllOnesValue(X->getType())); 1579 } 1580 1581 return nullptr; 1582 } 1583 1584 /// Fold icmp (xor X, Y), C. 1585 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1586 BinaryOperator *Xor, 1587 const APInt &C) { 1588 Value *X = Xor->getOperand(0); 1589 Value *Y = Xor->getOperand(1); 1590 const APInt *XorC; 1591 if (!match(Y, m_APInt(XorC))) 1592 return nullptr; 1593 1594 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1595 // fold the xor. 1596 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1597 bool TrueIfSigned = false; 1598 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1599 1600 // If the sign bit of the XorCst is not set, there is no change to 1601 // the operation, just stop using the Xor. 1602 if (!XorC->isNegative()) 1603 return replaceOperand(Cmp, 0, X); 1604 1605 // Emit the opposite comparison. 1606 if (TrueIfSigned) 1607 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1608 ConstantInt::getAllOnesValue(X->getType())); 1609 else 1610 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1611 ConstantInt::getNullValue(X->getType())); 1612 } 1613 1614 if (Xor->hasOneUse()) { 1615 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1616 if (!Cmp.isEquality() && XorC->isSignMask()) { 1617 Pred = Cmp.getFlippedSignednessPredicate(); 1618 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1619 } 1620 1621 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1622 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1623 Pred = Cmp.getFlippedSignednessPredicate(); 1624 Pred = Cmp.getSwappedPredicate(Pred); 1625 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1626 } 1627 } 1628 1629 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1630 if (Pred == ICmpInst::ICMP_UGT) { 1631 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1632 if (*XorC == ~C && (C + 1).isPowerOf2()) 1633 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1634 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1635 if (*XorC == C && (C + 1).isPowerOf2()) 1636 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1637 } 1638 if (Pred == ICmpInst::ICMP_ULT) { 1639 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1640 if (*XorC == -C && C.isPowerOf2()) 1641 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1642 ConstantInt::get(X->getType(), ~C)); 1643 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1644 if (*XorC == C && (-C).isPowerOf2()) 1645 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1646 ConstantInt::get(X->getType(), ~C)); 1647 } 1648 return nullptr; 1649 } 1650 1651 /// Fold icmp (and (sh X, Y), C2), C1. 1652 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1653 BinaryOperator *And, 1654 const APInt &C1, 1655 const APInt &C2) { 1656 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1657 if (!Shift || !Shift->isShift()) 1658 return nullptr; 1659 1660 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1661 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1662 // code produced by the clang front-end, for bitfield access. 1663 // This seemingly simple opportunity to fold away a shift turns out to be 1664 // rather complicated. See PR17827 for details. 1665 unsigned ShiftOpcode = Shift->getOpcode(); 1666 bool IsShl = ShiftOpcode == Instruction::Shl; 1667 const APInt *C3; 1668 if (match(Shift->getOperand(1), m_APInt(C3))) { 1669 APInt NewAndCst, NewCmpCst; 1670 bool AnyCmpCstBitsShiftedOut; 1671 if (ShiftOpcode == Instruction::Shl) { 1672 // For a left shift, we can fold if the comparison is not signed. We can 1673 // also fold a signed comparison if the mask value and comparison value 1674 // are not negative. These constraints may not be obvious, but we can 1675 // prove that they are correct using an SMT solver. 1676 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1677 return nullptr; 1678 1679 NewCmpCst = C1.lshr(*C3); 1680 NewAndCst = C2.lshr(*C3); 1681 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1682 } else if (ShiftOpcode == Instruction::LShr) { 1683 // For a logical right shift, we can fold if the comparison is not signed. 1684 // We can also fold a signed comparison if the shifted mask value and the 1685 // shifted comparison value are not negative. These constraints may not be 1686 // obvious, but we can prove that they are correct using an SMT solver. 1687 NewCmpCst = C1.shl(*C3); 1688 NewAndCst = C2.shl(*C3); 1689 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1690 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1691 return nullptr; 1692 } else { 1693 // For an arithmetic shift, check that both constants don't use (in a 1694 // signed sense) the top bits being shifted out. 1695 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1696 NewCmpCst = C1.shl(*C3); 1697 NewAndCst = C2.shl(*C3); 1698 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1699 if (NewAndCst.ashr(*C3) != C2) 1700 return nullptr; 1701 } 1702 1703 if (AnyCmpCstBitsShiftedOut) { 1704 // If we shifted bits out, the fold is not going to work out. As a 1705 // special case, check to see if this means that the result is always 1706 // true or false now. 1707 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1708 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1709 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1710 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1711 } else { 1712 Value *NewAnd = Builder.CreateAnd( 1713 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1714 return new ICmpInst(Cmp.getPredicate(), 1715 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1716 } 1717 } 1718 1719 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1720 // preferable because it allows the C2 << Y expression to be hoisted out of a 1721 // loop if Y is invariant and X is not. 1722 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1723 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1724 // Compute C2 << Y. 1725 Value *NewShift = 1726 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1727 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1728 1729 // Compute X & (C2 << Y). 1730 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1731 return replaceOperand(Cmp, 0, NewAnd); 1732 } 1733 1734 return nullptr; 1735 } 1736 1737 /// Fold icmp (and X, C2), C1. 1738 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1739 BinaryOperator *And, 1740 const APInt &C1) { 1741 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1742 1743 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1744 // TODO: We canonicalize to the longer form for scalars because we have 1745 // better analysis/folds for icmp, and codegen may be better with icmp. 1746 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1747 match(And->getOperand(1), m_One())) 1748 return new TruncInst(And->getOperand(0), Cmp.getType()); 1749 1750 const APInt *C2; 1751 Value *X; 1752 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1753 return nullptr; 1754 1755 // Don't perform the following transforms if the AND has multiple uses 1756 if (!And->hasOneUse()) 1757 return nullptr; 1758 1759 if (Cmp.isEquality() && C1.isZero()) { 1760 // Restrict this fold to single-use 'and' (PR10267). 1761 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1762 if (C2->isSignMask()) { 1763 Constant *Zero = Constant::getNullValue(X->getType()); 1764 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1765 return new ICmpInst(NewPred, X, Zero); 1766 } 1767 1768 // Restrict this fold only for single-use 'and' (PR10267). 1769 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1770 if ((~(*C2) + 1).isPowerOf2()) { 1771 Constant *NegBOC = 1772 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1773 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1774 return new ICmpInst(NewPred, X, NegBOC); 1775 } 1776 } 1777 1778 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1779 // the input width without changing the value produced, eliminate the cast: 1780 // 1781 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1782 // 1783 // We can do this transformation if the constants do not have their sign bits 1784 // set or if it is an equality comparison. Extending a relational comparison 1785 // when we're checking the sign bit would not work. 1786 Value *W; 1787 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1788 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1789 // TODO: Is this a good transform for vectors? Wider types may reduce 1790 // throughput. Should this transform be limited (even for scalars) by using 1791 // shouldChangeType()? 1792 if (!Cmp.getType()->isVectorTy()) { 1793 Type *WideType = W->getType(); 1794 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1795 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1796 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1797 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1798 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1799 } 1800 } 1801 1802 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1803 return I; 1804 1805 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1806 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1807 // 1808 // iff pred isn't signed 1809 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1810 match(And->getOperand(1), m_One())) { 1811 Constant *One = cast<Constant>(And->getOperand(1)); 1812 Value *Or = And->getOperand(0); 1813 Value *A, *B, *LShr; 1814 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1815 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1816 unsigned UsesRemoved = 0; 1817 if (And->hasOneUse()) 1818 ++UsesRemoved; 1819 if (Or->hasOneUse()) 1820 ++UsesRemoved; 1821 if (LShr->hasOneUse()) 1822 ++UsesRemoved; 1823 1824 // Compute A & ((1 << B) | 1) 1825 Value *NewOr = nullptr; 1826 if (auto *C = dyn_cast<Constant>(B)) { 1827 if (UsesRemoved >= 1) 1828 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1829 } else { 1830 if (UsesRemoved >= 3) 1831 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1832 /*HasNUW=*/true), 1833 One, Or->getName()); 1834 } 1835 if (NewOr) { 1836 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1837 return replaceOperand(Cmp, 0, NewAnd); 1838 } 1839 } 1840 } 1841 1842 return nullptr; 1843 } 1844 1845 /// Fold icmp (and X, Y), C. 1846 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1847 BinaryOperator *And, 1848 const APInt &C) { 1849 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1850 return I; 1851 1852 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1853 bool TrueIfNeg; 1854 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1855 // ((X - 1) & ~X) < 0 --> X == 0 1856 // ((X - 1) & ~X) >= 0 --> X != 0 1857 Value *X; 1858 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1859 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1860 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1861 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1862 } 1863 } 1864 1865 // TODO: These all require that Y is constant too, so refactor with the above. 1866 1867 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1868 Value *X = And->getOperand(0); 1869 Value *Y = And->getOperand(1); 1870 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1871 if (auto *LI = dyn_cast<LoadInst>(X)) 1872 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1873 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1874 if (Instruction *Res = 1875 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1876 return Res; 1877 1878 if (!Cmp.isEquality()) 1879 return nullptr; 1880 1881 // X & -C == -C -> X > u ~C 1882 // X & -C != -C -> X <= u ~C 1883 // iff C is a power of 2 1884 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1885 auto NewPred = 1886 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1887 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1888 } 1889 1890 return nullptr; 1891 } 1892 1893 /// Fold icmp (or X, Y), C. 1894 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1895 BinaryOperator *Or, 1896 const APInt &C) { 1897 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1898 if (C.isOne()) { 1899 // icmp slt signum(V) 1 --> icmp slt V, 1 1900 Value *V = nullptr; 1901 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1902 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1903 ConstantInt::get(V->getType(), 1)); 1904 } 1905 1906 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1907 const APInt *MaskC; 1908 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1909 if (*MaskC == C && (C + 1).isPowerOf2()) { 1910 // X | C == C --> X <=u C 1911 // X | C != C --> X >u C 1912 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1913 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1914 return new ICmpInst(Pred, OrOp0, OrOp1); 1915 } 1916 1917 // More general: canonicalize 'equality with set bits mask' to 1918 // 'equality with clear bits mask'. 1919 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1920 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1921 if (Or->hasOneUse()) { 1922 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1923 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1924 return new ICmpInst(Pred, And, NewC); 1925 } 1926 } 1927 1928 // (X | (X-1)) s< 0 --> X s< 1 1929 // (X | (X-1)) s> -1 --> X s> 0 1930 Value *X; 1931 bool TrueIfSigned; 1932 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1933 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1934 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1935 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1936 return new ICmpInst(NewPred, X, NewC); 1937 } 1938 1939 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1940 return nullptr; 1941 1942 Value *P, *Q; 1943 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1944 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1945 // -> and (icmp eq P, null), (icmp eq Q, null). 1946 Value *CmpP = 1947 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1948 Value *CmpQ = 1949 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1950 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1951 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1952 } 1953 1954 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1955 // a shorter form that has more potential to be folded even further. 1956 Value *X1, *X2, *X3, *X4; 1957 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1958 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1959 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1960 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1961 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1962 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1963 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1964 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1965 } 1966 1967 return nullptr; 1968 } 1969 1970 /// Fold icmp (mul X, Y), C. 1971 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1972 BinaryOperator *Mul, 1973 const APInt &C) { 1974 const APInt *MulC; 1975 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1976 return nullptr; 1977 1978 // If this is a test of the sign bit and the multiply is sign-preserving with 1979 // a constant operand, use the multiply LHS operand instead. 1980 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1981 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1982 if (MulC->isNegative()) 1983 Pred = ICmpInst::getSwappedPredicate(Pred); 1984 return new ICmpInst(Pred, Mul->getOperand(0), 1985 Constant::getNullValue(Mul->getType())); 1986 } 1987 1988 // If the multiply does not wrap, try to divide the compare constant by the 1989 // multiplication factor. 1990 if (Cmp.isEquality() && !MulC->isZero()) { 1991 // (mul nsw X, MulC) == C --> X == C /s MulC 1992 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 1993 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1994 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1995 } 1996 // (mul nuw X, MulC) == C --> X == C /u MulC 1997 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 1998 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1999 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2000 } 2001 } 2002 2003 return nullptr; 2004 } 2005 2006 /// Fold icmp (shl 1, Y), C. 2007 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2008 const APInt &C) { 2009 Value *Y; 2010 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2011 return nullptr; 2012 2013 Type *ShiftType = Shl->getType(); 2014 unsigned TypeBits = C.getBitWidth(); 2015 bool CIsPowerOf2 = C.isPowerOf2(); 2016 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2017 if (Cmp.isUnsigned()) { 2018 // (1 << Y) pred C -> Y pred Log2(C) 2019 if (!CIsPowerOf2) { 2020 // (1 << Y) < 30 -> Y <= 4 2021 // (1 << Y) <= 30 -> Y <= 4 2022 // (1 << Y) >= 30 -> Y > 4 2023 // (1 << Y) > 30 -> Y > 4 2024 if (Pred == ICmpInst::ICMP_ULT) 2025 Pred = ICmpInst::ICMP_ULE; 2026 else if (Pred == ICmpInst::ICMP_UGE) 2027 Pred = ICmpInst::ICMP_UGT; 2028 } 2029 2030 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2031 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2032 unsigned CLog2 = C.logBase2(); 2033 if (CLog2 == TypeBits - 1) { 2034 if (Pred == ICmpInst::ICMP_UGE) 2035 Pred = ICmpInst::ICMP_EQ; 2036 else if (Pred == ICmpInst::ICMP_ULT) 2037 Pred = ICmpInst::ICMP_NE; 2038 } 2039 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2040 } else if (Cmp.isSigned()) { 2041 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2042 if (C.isAllOnes()) { 2043 // (1 << Y) <= -1 -> Y == 31 2044 if (Pred == ICmpInst::ICMP_SLE) 2045 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2046 2047 // (1 << Y) > -1 -> Y != 31 2048 if (Pred == ICmpInst::ICMP_SGT) 2049 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2050 } else if (!C) { 2051 // (1 << Y) < 0 -> Y == 31 2052 // (1 << Y) <= 0 -> Y == 31 2053 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2054 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2055 2056 // (1 << Y) >= 0 -> Y != 31 2057 // (1 << Y) > 0 -> Y != 31 2058 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2059 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2060 } 2061 } else if (Cmp.isEquality() && CIsPowerOf2) { 2062 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2063 } 2064 2065 return nullptr; 2066 } 2067 2068 /// Fold icmp (shl X, Y), C. 2069 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2070 BinaryOperator *Shl, 2071 const APInt &C) { 2072 const APInt *ShiftVal; 2073 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2074 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2075 2076 const APInt *ShiftAmt; 2077 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2078 return foldICmpShlOne(Cmp, Shl, C); 2079 2080 // Check that the shift amount is in range. If not, don't perform undefined 2081 // shifts. When the shift is visited, it will be simplified. 2082 unsigned TypeBits = C.getBitWidth(); 2083 if (ShiftAmt->uge(TypeBits)) 2084 return nullptr; 2085 2086 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2087 Value *X = Shl->getOperand(0); 2088 Type *ShType = Shl->getType(); 2089 2090 // NSW guarantees that we are only shifting out sign bits from the high bits, 2091 // so we can ASHR the compare constant without needing a mask and eliminate 2092 // the shift. 2093 if (Shl->hasNoSignedWrap()) { 2094 if (Pred == ICmpInst::ICMP_SGT) { 2095 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2096 APInt ShiftedC = C.ashr(*ShiftAmt); 2097 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2098 } 2099 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2100 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2101 APInt ShiftedC = C.ashr(*ShiftAmt); 2102 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2103 } 2104 if (Pred == ICmpInst::ICMP_SLT) { 2105 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2106 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2107 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2108 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2109 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2110 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2111 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2112 } 2113 // If this is a signed comparison to 0 and the shift is sign preserving, 2114 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2115 // do that if we're sure to not continue on in this function. 2116 if (isSignTest(Pred, C)) 2117 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2118 } 2119 2120 // NUW guarantees that we are only shifting out zero bits from the high bits, 2121 // so we can LSHR the compare constant without needing a mask and eliminate 2122 // the shift. 2123 if (Shl->hasNoUnsignedWrap()) { 2124 if (Pred == ICmpInst::ICMP_UGT) { 2125 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2126 APInt ShiftedC = C.lshr(*ShiftAmt); 2127 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2128 } 2129 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2130 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2131 APInt ShiftedC = C.lshr(*ShiftAmt); 2132 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2133 } 2134 if (Pred == ICmpInst::ICMP_ULT) { 2135 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2136 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2137 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2138 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2139 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2140 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2141 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2142 } 2143 } 2144 2145 if (Cmp.isEquality() && Shl->hasOneUse()) { 2146 // Strength-reduce the shift into an 'and'. 2147 Constant *Mask = ConstantInt::get( 2148 ShType, 2149 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2150 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2151 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2152 return new ICmpInst(Pred, And, LShrC); 2153 } 2154 2155 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2156 bool TrueIfSigned = false; 2157 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2158 // (X << 31) <s 0 --> (X & 1) != 0 2159 Constant *Mask = ConstantInt::get( 2160 ShType, 2161 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2162 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2163 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2164 And, Constant::getNullValue(ShType)); 2165 } 2166 2167 // Simplify 'shl' inequality test into 'and' equality test. 2168 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2169 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2170 if ((C + 1).isPowerOf2() && 2171 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2172 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2173 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2174 : ICmpInst::ICMP_NE, 2175 And, Constant::getNullValue(ShType)); 2176 } 2177 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2178 if (C.isPowerOf2() && 2179 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2180 Value *And = 2181 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2182 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2183 : ICmpInst::ICMP_NE, 2184 And, Constant::getNullValue(ShType)); 2185 } 2186 } 2187 2188 // Transform (icmp pred iM (shl iM %v, N), C) 2189 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2190 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2191 // This enables us to get rid of the shift in favor of a trunc that may be 2192 // free on the target. It has the additional benefit of comparing to a 2193 // smaller constant that may be more target-friendly. 2194 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2195 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2196 DL.isLegalInteger(TypeBits - Amt)) { 2197 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2198 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2199 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2200 Constant *NewC = 2201 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2202 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2203 } 2204 2205 return nullptr; 2206 } 2207 2208 /// Fold icmp ({al}shr X, Y), C. 2209 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2210 BinaryOperator *Shr, 2211 const APInt &C) { 2212 // An exact shr only shifts out zero bits, so: 2213 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2214 Value *X = Shr->getOperand(0); 2215 CmpInst::Predicate Pred = Cmp.getPredicate(); 2216 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2217 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2218 2219 const APInt *ShiftVal; 2220 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2221 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2222 2223 const APInt *ShiftAmt; 2224 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2225 return nullptr; 2226 2227 // Check that the shift amount is in range. If not, don't perform undefined 2228 // shifts. When the shift is visited it will be simplified. 2229 unsigned TypeBits = C.getBitWidth(); 2230 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2231 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2232 return nullptr; 2233 2234 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2235 bool IsExact = Shr->isExact(); 2236 Type *ShrTy = Shr->getType(); 2237 // TODO: If we could guarantee that InstSimplify would handle all of the 2238 // constant-value-based preconditions in the folds below, then we could assert 2239 // those conditions rather than checking them. This is difficult because of 2240 // undef/poison (PR34838). 2241 if (IsAShr) { 2242 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2243 // When ShAmtC can be shifted losslessly: 2244 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2245 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2246 APInt ShiftedC = C.shl(ShAmtVal); 2247 if (ShiftedC.ashr(ShAmtVal) == C) 2248 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2249 } 2250 if (Pred == CmpInst::ICMP_SGT) { 2251 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2252 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2253 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2254 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2255 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2256 } 2257 if (Pred == CmpInst::ICMP_UGT) { 2258 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2259 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2260 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2261 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2262 } 2263 2264 // If the compare constant has significant bits above the lowest sign-bit, 2265 // then convert an unsigned cmp to a test of the sign-bit: 2266 // (ashr X, ShiftC) u> C --> X s< 0 2267 // (ashr X, ShiftC) u< C --> X s> -1 2268 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2269 if (Pred == CmpInst::ICMP_UGT) { 2270 return new ICmpInst(CmpInst::ICMP_SLT, X, 2271 ConstantInt::getNullValue(ShrTy)); 2272 } 2273 if (Pred == CmpInst::ICMP_ULT) { 2274 return new ICmpInst(CmpInst::ICMP_SGT, X, 2275 ConstantInt::getAllOnesValue(ShrTy)); 2276 } 2277 } 2278 } else { 2279 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2280 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2281 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2282 APInt ShiftedC = C.shl(ShAmtVal); 2283 if (ShiftedC.lshr(ShAmtVal) == C) 2284 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2285 } 2286 if (Pred == CmpInst::ICMP_UGT) { 2287 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2288 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2289 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2290 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2291 } 2292 } 2293 2294 if (!Cmp.isEquality()) 2295 return nullptr; 2296 2297 // Handle equality comparisons of shift-by-constant. 2298 2299 // If the comparison constant changes with the shift, the comparison cannot 2300 // succeed (bits of the comparison constant cannot match the shifted value). 2301 // This should be known by InstSimplify and already be folded to true/false. 2302 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2303 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2304 "Expected icmp+shr simplify did not occur."); 2305 2306 // If the bits shifted out are known zero, compare the unshifted value: 2307 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2308 if (Shr->isExact()) 2309 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2310 2311 if (C.isZero()) { 2312 // == 0 is u< 1. 2313 if (Pred == CmpInst::ICMP_EQ) 2314 return new ICmpInst(CmpInst::ICMP_ULT, X, 2315 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2316 else 2317 return new ICmpInst(CmpInst::ICMP_UGT, X, 2318 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2319 } 2320 2321 if (Shr->hasOneUse()) { 2322 // Canonicalize the shift into an 'and': 2323 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2324 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2325 Constant *Mask = ConstantInt::get(ShrTy, Val); 2326 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2327 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2328 } 2329 2330 return nullptr; 2331 } 2332 2333 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2334 BinaryOperator *SRem, 2335 const APInt &C) { 2336 // Match an 'is positive' or 'is negative' comparison of remainder by a 2337 // constant power-of-2 value: 2338 // (X % pow2C) sgt/slt 0 2339 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2340 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2341 return nullptr; 2342 2343 // TODO: The one-use check is standard because we do not typically want to 2344 // create longer instruction sequences, but this might be a special-case 2345 // because srem is not good for analysis or codegen. 2346 if (!SRem->hasOneUse()) 2347 return nullptr; 2348 2349 const APInt *DivisorC; 2350 if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2351 return nullptr; 2352 2353 // Mask off the sign bit and the modulo bits (low-bits). 2354 Type *Ty = SRem->getType(); 2355 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2356 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2357 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2358 2359 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2360 // bit is set. Example: 2361 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2362 if (Pred == ICmpInst::ICMP_SGT) 2363 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2364 2365 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2366 // bit is set. Example: 2367 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2368 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2369 } 2370 2371 /// Fold icmp (udiv X, Y), C. 2372 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2373 BinaryOperator *UDiv, 2374 const APInt &C) { 2375 const APInt *C2; 2376 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2377 return nullptr; 2378 2379 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2380 2381 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2382 Value *Y = UDiv->getOperand(1); 2383 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2384 assert(!C.isMaxValue() && 2385 "icmp ugt X, UINT_MAX should have been simplified already."); 2386 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2387 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2388 } 2389 2390 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2391 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2392 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2393 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2394 ConstantInt::get(Y->getType(), C2->udiv(C))); 2395 } 2396 2397 return nullptr; 2398 } 2399 2400 /// Fold icmp ({su}div X, Y), C. 2401 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2402 BinaryOperator *Div, 2403 const APInt &C) { 2404 // Fold: icmp pred ([us]div X, C2), C -> range test 2405 // Fold this div into the comparison, producing a range check. 2406 // Determine, based on the divide type, what the range is being 2407 // checked. If there is an overflow on the low or high side, remember 2408 // it, otherwise compute the range [low, hi) bounding the new value. 2409 // See: InsertRangeTest above for the kinds of replacements possible. 2410 const APInt *C2; 2411 if (!match(Div->getOperand(1), m_APInt(C2))) 2412 return nullptr; 2413 2414 // FIXME: If the operand types don't match the type of the divide 2415 // then don't attempt this transform. The code below doesn't have the 2416 // logic to deal with a signed divide and an unsigned compare (and 2417 // vice versa). This is because (x /s C2) <s C produces different 2418 // results than (x /s C2) <u C or (x /u C2) <s C or even 2419 // (x /u C2) <u C. Simply casting the operands and result won't 2420 // work. :( The if statement below tests that condition and bails 2421 // if it finds it. 2422 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2423 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2424 return nullptr; 2425 2426 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2427 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2428 // division-by-constant cases should be present, we can not assert that they 2429 // have happened before we reach this icmp instruction. 2430 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2431 return nullptr; 2432 2433 // Compute Prod = C * C2. We are essentially solving an equation of 2434 // form X / C2 = C. We solve for X by multiplying C2 and C. 2435 // By solving for X, we can turn this into a range check instead of computing 2436 // a divide. 2437 APInt Prod = C * *C2; 2438 2439 // Determine if the product overflows by seeing if the product is not equal to 2440 // the divide. Make sure we do the same kind of divide as in the LHS 2441 // instruction that we're folding. 2442 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2443 2444 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2445 2446 // If the division is known to be exact, then there is no remainder from the 2447 // divide, so the covered range size is unit, otherwise it is the divisor. 2448 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2449 2450 // Figure out the interval that is being checked. For example, a comparison 2451 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2452 // Compute this interval based on the constants involved and the signedness of 2453 // the compare/divide. This computes a half-open interval, keeping track of 2454 // whether either value in the interval overflows. After analysis each 2455 // overflow variable is set to 0 if it's corresponding bound variable is valid 2456 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2457 int LoOverflow = 0, HiOverflow = 0; 2458 APInt LoBound, HiBound; 2459 2460 if (!DivIsSigned) { // udiv 2461 // e.g. X/5 op 3 --> [15, 20) 2462 LoBound = Prod; 2463 HiOverflow = LoOverflow = ProdOV; 2464 if (!HiOverflow) { 2465 // If this is not an exact divide, then many values in the range collapse 2466 // to the same result value. 2467 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2468 } 2469 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2470 if (C.isZero()) { // (X / pos) op 0 2471 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2472 LoBound = -(RangeSize - 1); 2473 HiBound = RangeSize; 2474 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2475 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2476 HiOverflow = LoOverflow = ProdOV; 2477 if (!HiOverflow) 2478 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2479 } else { // (X / pos) op neg 2480 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2481 HiBound = Prod + 1; 2482 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2483 if (!LoOverflow) { 2484 APInt DivNeg = -RangeSize; 2485 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2486 } 2487 } 2488 } else if (C2->isNegative()) { // Divisor is < 0. 2489 if (Div->isExact()) 2490 RangeSize.negate(); 2491 if (C.isZero()) { // (X / neg) op 0 2492 // e.g. X/-5 op 0 --> [-4, 5) 2493 LoBound = RangeSize + 1; 2494 HiBound = -RangeSize; 2495 if (HiBound == *C2) { // -INTMIN = INTMIN 2496 HiOverflow = 1; // [INTMIN+1, overflow) 2497 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2498 } 2499 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2500 // e.g. X/-5 op 3 --> [-19, -14) 2501 HiBound = Prod + 1; 2502 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2503 if (!LoOverflow) 2504 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2505 } else { // (X / neg) op neg 2506 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2507 LoOverflow = HiOverflow = ProdOV; 2508 if (!HiOverflow) 2509 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2510 } 2511 2512 // Dividing by a negative swaps the condition. LT <-> GT 2513 Pred = ICmpInst::getSwappedPredicate(Pred); 2514 } 2515 2516 Value *X = Div->getOperand(0); 2517 switch (Pred) { 2518 default: llvm_unreachable("Unhandled icmp opcode!"); 2519 case ICmpInst::ICMP_EQ: 2520 if (LoOverflow && HiOverflow) 2521 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2522 if (HiOverflow) 2523 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2524 ICmpInst::ICMP_UGE, X, 2525 ConstantInt::get(Div->getType(), LoBound)); 2526 if (LoOverflow) 2527 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2528 ICmpInst::ICMP_ULT, X, 2529 ConstantInt::get(Div->getType(), HiBound)); 2530 return replaceInstUsesWith( 2531 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2532 case ICmpInst::ICMP_NE: 2533 if (LoOverflow && HiOverflow) 2534 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2535 if (HiOverflow) 2536 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2537 ICmpInst::ICMP_ULT, X, 2538 ConstantInt::get(Div->getType(), LoBound)); 2539 if (LoOverflow) 2540 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2541 ICmpInst::ICMP_UGE, X, 2542 ConstantInt::get(Div->getType(), HiBound)); 2543 return replaceInstUsesWith(Cmp, 2544 insertRangeTest(X, LoBound, HiBound, 2545 DivIsSigned, false)); 2546 case ICmpInst::ICMP_ULT: 2547 case ICmpInst::ICMP_SLT: 2548 if (LoOverflow == +1) // Low bound is greater than input range. 2549 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2550 if (LoOverflow == -1) // Low bound is less than input range. 2551 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2552 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2553 case ICmpInst::ICMP_UGT: 2554 case ICmpInst::ICMP_SGT: 2555 if (HiOverflow == +1) // High bound greater than input range. 2556 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2557 if (HiOverflow == -1) // High bound less than input range. 2558 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2559 if (Pred == ICmpInst::ICMP_UGT) 2560 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2561 ConstantInt::get(Div->getType(), HiBound)); 2562 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2563 ConstantInt::get(Div->getType(), HiBound)); 2564 } 2565 2566 return nullptr; 2567 } 2568 2569 /// Fold icmp (sub X, Y), C. 2570 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2571 BinaryOperator *Sub, 2572 const APInt &C) { 2573 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2574 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2575 Type *Ty = Sub->getType(); 2576 2577 // (SubC - Y) == C) --> Y == (SubC - C) 2578 // (SubC - Y) != C) --> Y != (SubC - C) 2579 Constant *SubC; 2580 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2581 return new ICmpInst(Pred, Y, 2582 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2583 } 2584 2585 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2586 const APInt *C2; 2587 APInt SubResult; 2588 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2589 bool HasNSW = Sub->hasNoSignedWrap(); 2590 bool HasNUW = Sub->hasNoUnsignedWrap(); 2591 if (match(X, m_APInt(C2)) && 2592 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2593 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2594 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2595 2596 // X - Y == 0 --> X == Y. 2597 // X - Y != 0 --> X != Y. 2598 if (Cmp.isEquality() && C.isZero()) 2599 return new ICmpInst(Pred, X, Y); 2600 2601 // The following transforms are only worth it if the only user of the subtract 2602 // is the icmp. 2603 // TODO: This is an artificial restriction for all of the transforms below 2604 // that only need a single replacement icmp. 2605 if (!Sub->hasOneUse()) 2606 return nullptr; 2607 2608 if (Sub->hasNoSignedWrap()) { 2609 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2610 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2611 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2612 2613 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2614 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2615 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2616 2617 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2618 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2619 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2620 2621 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2622 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2623 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2624 } 2625 2626 if (!match(X, m_APInt(C2))) 2627 return nullptr; 2628 2629 // C2 - Y <u C -> (Y | (C - 1)) == C2 2630 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2631 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2632 (*C2 & (C - 1)) == (C - 1)) 2633 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2634 2635 // C2 - Y >u C -> (Y | C) != C2 2636 // iff C2 & C == C and C + 1 is a power of 2 2637 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2638 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2639 2640 // We have handled special cases that reduce. 2641 // Canonicalize any remaining sub to add as: 2642 // (C2 - Y) > C --> (Y + ~C2) < ~C 2643 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2644 HasNUW, HasNSW); 2645 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2646 } 2647 2648 /// Fold icmp (add X, Y), C. 2649 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2650 BinaryOperator *Add, 2651 const APInt &C) { 2652 Value *Y = Add->getOperand(1); 2653 const APInt *C2; 2654 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2655 return nullptr; 2656 2657 // Fold icmp pred (add X, C2), C. 2658 Value *X = Add->getOperand(0); 2659 Type *Ty = Add->getType(); 2660 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2661 2662 // If the add does not wrap, we can always adjust the compare by subtracting 2663 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2664 // are canonicalized to SGT/SLT/UGT/ULT. 2665 if ((Add->hasNoSignedWrap() && 2666 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2667 (Add->hasNoUnsignedWrap() && 2668 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2669 bool Overflow; 2670 APInt NewC = 2671 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2672 // If there is overflow, the result must be true or false. 2673 // TODO: Can we assert there is no overflow because InstSimplify always 2674 // handles those cases? 2675 if (!Overflow) 2676 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2677 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2678 } 2679 2680 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2681 const APInt &Upper = CR.getUpper(); 2682 const APInt &Lower = CR.getLower(); 2683 if (Cmp.isSigned()) { 2684 if (Lower.isSignMask()) 2685 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2686 if (Upper.isSignMask()) 2687 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2688 } else { 2689 if (Lower.isMinValue()) 2690 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2691 if (Upper.isMinValue()) 2692 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2693 } 2694 2695 // This set of folds is intentionally placed after folds that use no-wrapping 2696 // flags because those folds are likely better for later analysis/codegen. 2697 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2698 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2699 2700 // Fold compare with offset to opposite sign compare if it eliminates offset: 2701 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2702 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2703 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2704 2705 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2706 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2707 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2708 2709 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2710 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2711 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2712 2713 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2714 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2715 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2716 2717 if (!Add->hasOneUse()) 2718 return nullptr; 2719 2720 // X+C <u C2 -> (X & -C2) == C 2721 // iff C & (C2-1) == 0 2722 // C2 is a power of 2 2723 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2724 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2725 ConstantExpr::getNeg(cast<Constant>(Y))); 2726 2727 // X+C >u C2 -> (X & ~C2) != C 2728 // iff C & C2 == 0 2729 // C2+1 is a power of 2 2730 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2731 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2732 ConstantExpr::getNeg(cast<Constant>(Y))); 2733 2734 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2735 // to the ult form. 2736 // X+C2 >u C -> X+(C2-C-1) <u ~C 2737 if (Pred == ICmpInst::ICMP_UGT) 2738 return new ICmpInst(ICmpInst::ICMP_ULT, 2739 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2740 ConstantInt::get(Ty, ~C)); 2741 2742 return nullptr; 2743 } 2744 2745 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2746 Value *&RHS, ConstantInt *&Less, 2747 ConstantInt *&Equal, 2748 ConstantInt *&Greater) { 2749 // TODO: Generalize this to work with other comparison idioms or ensure 2750 // they get canonicalized into this form. 2751 2752 // select i1 (a == b), 2753 // i32 Equal, 2754 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2755 // where Equal, Less and Greater are placeholders for any three constants. 2756 ICmpInst::Predicate PredA; 2757 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2758 !ICmpInst::isEquality(PredA)) 2759 return false; 2760 Value *EqualVal = SI->getTrueValue(); 2761 Value *UnequalVal = SI->getFalseValue(); 2762 // We still can get non-canonical predicate here, so canonicalize. 2763 if (PredA == ICmpInst::ICMP_NE) 2764 std::swap(EqualVal, UnequalVal); 2765 if (!match(EqualVal, m_ConstantInt(Equal))) 2766 return false; 2767 ICmpInst::Predicate PredB; 2768 Value *LHS2, *RHS2; 2769 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2770 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2771 return false; 2772 // We can get predicate mismatch here, so canonicalize if possible: 2773 // First, ensure that 'LHS' match. 2774 if (LHS2 != LHS) { 2775 // x sgt y <--> y slt x 2776 std::swap(LHS2, RHS2); 2777 PredB = ICmpInst::getSwappedPredicate(PredB); 2778 } 2779 if (LHS2 != LHS) 2780 return false; 2781 // We also need to canonicalize 'RHS'. 2782 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2783 // x sgt C-1 <--> x sge C <--> not(x slt C) 2784 auto FlippedStrictness = 2785 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2786 PredB, cast<Constant>(RHS2)); 2787 if (!FlippedStrictness) 2788 return false; 2789 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2790 "basic correctness failure"); 2791 RHS2 = FlippedStrictness->second; 2792 // And kind-of perform the result swap. 2793 std::swap(Less, Greater); 2794 PredB = ICmpInst::ICMP_SLT; 2795 } 2796 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2797 } 2798 2799 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2800 SelectInst *Select, 2801 ConstantInt *C) { 2802 2803 assert(C && "Cmp RHS should be a constant int!"); 2804 // If we're testing a constant value against the result of a three way 2805 // comparison, the result can be expressed directly in terms of the 2806 // original values being compared. Note: We could possibly be more 2807 // aggressive here and remove the hasOneUse test. The original select is 2808 // really likely to simplify or sink when we remove a test of the result. 2809 Value *OrigLHS, *OrigRHS; 2810 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2811 if (Cmp.hasOneUse() && 2812 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2813 C3GreaterThan)) { 2814 assert(C1LessThan && C2Equal && C3GreaterThan); 2815 2816 bool TrueWhenLessThan = 2817 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2818 ->isAllOnesValue(); 2819 bool TrueWhenEqual = 2820 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2821 ->isAllOnesValue(); 2822 bool TrueWhenGreaterThan = 2823 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2824 ->isAllOnesValue(); 2825 2826 // This generates the new instruction that will replace the original Cmp 2827 // Instruction. Instead of enumerating the various combinations when 2828 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2829 // false, we rely on chaining of ORs and future passes of InstCombine to 2830 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2831 2832 // When none of the three constants satisfy the predicate for the RHS (C), 2833 // the entire original Cmp can be simplified to a false. 2834 Value *Cond = Builder.getFalse(); 2835 if (TrueWhenLessThan) 2836 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2837 OrigLHS, OrigRHS)); 2838 if (TrueWhenEqual) 2839 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2840 OrigLHS, OrigRHS)); 2841 if (TrueWhenGreaterThan) 2842 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2843 OrigLHS, OrigRHS)); 2844 2845 return replaceInstUsesWith(Cmp, Cond); 2846 } 2847 return nullptr; 2848 } 2849 2850 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2851 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2852 if (!Bitcast) 2853 return nullptr; 2854 2855 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2856 Value *Op1 = Cmp.getOperand(1); 2857 Value *BCSrcOp = Bitcast->getOperand(0); 2858 2859 // Make sure the bitcast doesn't change the number of vector elements. 2860 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2861 Bitcast->getDestTy()->getScalarSizeInBits()) { 2862 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2863 Value *X; 2864 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2865 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2866 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2867 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2868 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2869 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2870 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2871 match(Op1, m_Zero())) 2872 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2873 2874 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2875 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2876 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2877 2878 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2879 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2880 return new ICmpInst(Pred, X, 2881 ConstantInt::getAllOnesValue(X->getType())); 2882 } 2883 2884 // Zero-equality checks are preserved through unsigned floating-point casts: 2885 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2886 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2887 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2888 if (Cmp.isEquality() && match(Op1, m_Zero())) 2889 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2890 2891 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2892 // the FP extend/truncate because that cast does not change the sign-bit. 2893 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2894 // The sign-bit is always the most significant bit in those types. 2895 const APInt *C; 2896 bool TrueIfSigned; 2897 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2898 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2899 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2900 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2901 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2902 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2903 Type *XType = X->getType(); 2904 2905 // We can't currently handle Power style floating point operations here. 2906 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2907 2908 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2909 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2910 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2911 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2912 if (TrueIfSigned) 2913 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2914 ConstantInt::getNullValue(NewType)); 2915 else 2916 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2917 ConstantInt::getAllOnesValue(NewType)); 2918 } 2919 } 2920 } 2921 } 2922 2923 // Test to see if the operands of the icmp are casted versions of other 2924 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2925 if (Bitcast->getType()->isPointerTy() && 2926 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2927 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2928 // so eliminate it as well. 2929 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2930 Op1 = BC2->getOperand(0); 2931 2932 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2933 return new ICmpInst(Pred, BCSrcOp, Op1); 2934 } 2935 2936 const APInt *C; 2937 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2938 !Bitcast->getType()->isIntegerTy() || 2939 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2940 return nullptr; 2941 2942 // If this is checking if all elements of a vector compare are set or not, 2943 // invert the casted vector equality compare and test if all compare 2944 // elements are clear or not. Compare against zero is generally easier for 2945 // analysis and codegen. 2946 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2947 // Example: are all elements equal? --> are zero elements not equal? 2948 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2949 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2950 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2951 Type *ScalarTy = Bitcast->getType(); 2952 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy); 2953 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy)); 2954 } 2955 2956 // If this is checking if all elements of an extended vector are clear or not, 2957 // compare in a narrow type to eliminate the extend: 2958 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2959 Value *X; 2960 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2961 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2962 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2963 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2964 Value *NewCast = Builder.CreateBitCast(X, NewType); 2965 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2966 } 2967 } 2968 2969 // Folding: icmp <pred> iN X, C 2970 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2971 // and C is a splat of a K-bit pattern 2972 // and SC is a constant vector = <C', C', C', ..., C'> 2973 // Into: 2974 // %E = extractelement <M x iK> %vec, i32 C' 2975 // icmp <pred> iK %E, trunc(C) 2976 Value *Vec; 2977 ArrayRef<int> Mask; 2978 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2979 // Check whether every element of Mask is the same constant 2980 if (is_splat(Mask)) { 2981 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2982 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2983 if (C->isSplat(EltTy->getBitWidth())) { 2984 // Fold the icmp based on the value of C 2985 // If C is M copies of an iK sized bit pattern, 2986 // then: 2987 // => %E = extractelement <N x iK> %vec, i32 Elem 2988 // icmp <pred> iK %SplatVal, <pattern> 2989 Value *Elem = Builder.getInt32(Mask[0]); 2990 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2991 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2992 return new ICmpInst(Pred, Extract, NewC); 2993 } 2994 } 2995 } 2996 return nullptr; 2997 } 2998 2999 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3000 /// where X is some kind of instruction. 3001 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3002 const APInt *C; 3003 if (!match(Cmp.getOperand(1), m_APInt(C))) 3004 return nullptr; 3005 3006 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 3007 switch (BO->getOpcode()) { 3008 case Instruction::Xor: 3009 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 3010 return I; 3011 break; 3012 case Instruction::And: 3013 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 3014 return I; 3015 break; 3016 case Instruction::Or: 3017 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 3018 return I; 3019 break; 3020 case Instruction::Mul: 3021 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 3022 return I; 3023 break; 3024 case Instruction::Shl: 3025 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 3026 return I; 3027 break; 3028 case Instruction::LShr: 3029 case Instruction::AShr: 3030 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 3031 return I; 3032 break; 3033 case Instruction::SRem: 3034 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 3035 return I; 3036 break; 3037 case Instruction::UDiv: 3038 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 3039 return I; 3040 LLVM_FALLTHROUGH; 3041 case Instruction::SDiv: 3042 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 3043 return I; 3044 break; 3045 case Instruction::Sub: 3046 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 3047 return I; 3048 break; 3049 case Instruction::Add: 3050 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 3051 return I; 3052 break; 3053 default: 3054 break; 3055 } 3056 // TODO: These folds could be refactored to be part of the above calls. 3057 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 3058 return I; 3059 } 3060 3061 // Match against CmpInst LHS being instructions other than binary operators. 3062 3063 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 3064 // For now, we only support constant integers while folding the 3065 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3066 // similar to the cases handled by binary ops above. 3067 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3068 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3069 return I; 3070 } 3071 3072 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 3073 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3074 return I; 3075 } 3076 3077 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3078 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3079 return I; 3080 3081 return nullptr; 3082 } 3083 3084 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3085 /// icmp eq/ne BO, C. 3086 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3087 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3088 // TODO: Some of these folds could work with arbitrary constants, but this 3089 // function is limited to scalar and vector splat constants. 3090 if (!Cmp.isEquality()) 3091 return nullptr; 3092 3093 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3094 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3095 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3096 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3097 3098 switch (BO->getOpcode()) { 3099 case Instruction::SRem: 3100 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3101 if (C.isZero() && BO->hasOneUse()) { 3102 const APInt *BOC; 3103 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3104 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3105 return new ICmpInst(Pred, NewRem, 3106 Constant::getNullValue(BO->getType())); 3107 } 3108 } 3109 break; 3110 case Instruction::Add: { 3111 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3112 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3113 if (BO->hasOneUse()) 3114 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3115 } else if (C.isZero()) { 3116 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3117 // efficiently invertible, or if the add has just this one use. 3118 if (Value *NegVal = dyn_castNegVal(BOp1)) 3119 return new ICmpInst(Pred, BOp0, NegVal); 3120 if (Value *NegVal = dyn_castNegVal(BOp0)) 3121 return new ICmpInst(Pred, NegVal, BOp1); 3122 if (BO->hasOneUse()) { 3123 Value *Neg = Builder.CreateNeg(BOp1); 3124 Neg->takeName(BO); 3125 return new ICmpInst(Pred, BOp0, Neg); 3126 } 3127 } 3128 break; 3129 } 3130 case Instruction::Xor: 3131 if (BO->hasOneUse()) { 3132 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3133 // For the xor case, we can xor two constants together, eliminating 3134 // the explicit xor. 3135 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3136 } else if (C.isZero()) { 3137 // Replace ((xor A, B) != 0) with (A != B) 3138 return new ICmpInst(Pred, BOp0, BOp1); 3139 } 3140 } 3141 break; 3142 case Instruction::Or: { 3143 const APInt *BOC; 3144 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3145 // Comparing if all bits outside of a constant mask are set? 3146 // Replace (X | C) == -1 with (X & ~C) == ~C. 3147 // This removes the -1 constant. 3148 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3149 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3150 return new ICmpInst(Pred, And, NotBOC); 3151 } 3152 break; 3153 } 3154 case Instruction::And: { 3155 const APInt *BOC; 3156 if (match(BOp1, m_APInt(BOC))) { 3157 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3158 if (C == *BOC && C.isPowerOf2()) 3159 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3160 BO, Constant::getNullValue(RHS->getType())); 3161 } 3162 break; 3163 } 3164 case Instruction::UDiv: 3165 if (C.isZero()) { 3166 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3167 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3168 return new ICmpInst(NewPred, BOp1, BOp0); 3169 } 3170 break; 3171 default: 3172 break; 3173 } 3174 return nullptr; 3175 } 3176 3177 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3178 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3179 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3180 Type *Ty = II->getType(); 3181 unsigned BitWidth = C.getBitWidth(); 3182 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3183 3184 switch (II->getIntrinsicID()) { 3185 case Intrinsic::abs: 3186 // abs(A) == 0 -> A == 0 3187 // abs(A) == INT_MIN -> A == INT_MIN 3188 if (C.isZero() || C.isMinSignedValue()) 3189 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3190 break; 3191 3192 case Intrinsic::bswap: 3193 // bswap(A) == C -> A == bswap(C) 3194 return new ICmpInst(Pred, II->getArgOperand(0), 3195 ConstantInt::get(Ty, C.byteSwap())); 3196 3197 case Intrinsic::ctlz: 3198 case Intrinsic::cttz: { 3199 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3200 if (C == BitWidth) 3201 return new ICmpInst(Pred, II->getArgOperand(0), 3202 ConstantInt::getNullValue(Ty)); 3203 3204 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3205 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3206 // Limit to one use to ensure we don't increase instruction count. 3207 unsigned Num = C.getLimitedValue(BitWidth); 3208 if (Num != BitWidth && II->hasOneUse()) { 3209 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3210 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3211 : APInt::getHighBitsSet(BitWidth, Num + 1); 3212 APInt Mask2 = IsTrailing 3213 ? APInt::getOneBitSet(BitWidth, Num) 3214 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3215 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3216 ConstantInt::get(Ty, Mask2)); 3217 } 3218 break; 3219 } 3220 3221 case Intrinsic::ctpop: { 3222 // popcount(A) == 0 -> A == 0 and likewise for != 3223 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3224 bool IsZero = C.isZero(); 3225 if (IsZero || C == BitWidth) 3226 return new ICmpInst(Pred, II->getArgOperand(0), 3227 IsZero ? Constant::getNullValue(Ty) 3228 : Constant::getAllOnesValue(Ty)); 3229 3230 break; 3231 } 3232 3233 case Intrinsic::fshl: 3234 case Intrinsic::fshr: 3235 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3236 // (rot X, ?) == 0/-1 --> X == 0/-1 3237 // TODO: This transform is safe to re-use undef elts in a vector, but 3238 // the constant value passed in by the caller doesn't allow that. 3239 if (C.isZero() || C.isAllOnes()) 3240 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3241 3242 const APInt *RotAmtC; 3243 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3244 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3245 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3246 return new ICmpInst(Pred, II->getArgOperand(0), 3247 II->getIntrinsicID() == Intrinsic::fshl 3248 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3249 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3250 } 3251 break; 3252 3253 case Intrinsic::uadd_sat: { 3254 // uadd.sat(a, b) == 0 -> (a | b) == 0 3255 if (C.isZero()) { 3256 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3257 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3258 } 3259 break; 3260 } 3261 3262 case Intrinsic::usub_sat: { 3263 // usub.sat(a, b) == 0 -> a <= b 3264 if (C.isZero()) { 3265 ICmpInst::Predicate NewPred = 3266 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3267 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3268 } 3269 break; 3270 } 3271 default: 3272 break; 3273 } 3274 3275 return nullptr; 3276 } 3277 3278 /// Fold an icmp with LLVM intrinsics 3279 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3280 assert(Cmp.isEquality()); 3281 3282 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3283 Value *Op0 = Cmp.getOperand(0); 3284 Value *Op1 = Cmp.getOperand(1); 3285 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3286 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3287 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3288 return nullptr; 3289 3290 switch (IIOp0->getIntrinsicID()) { 3291 case Intrinsic::bswap: 3292 case Intrinsic::bitreverse: 3293 // If both operands are byte-swapped or bit-reversed, just compare the 3294 // original values. 3295 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3296 case Intrinsic::fshl: 3297 case Intrinsic::fshr: 3298 // If both operands are rotated by same amount, just compare the 3299 // original values. 3300 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3301 break; 3302 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3303 break; 3304 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3305 break; 3306 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3307 default: 3308 break; 3309 } 3310 3311 return nullptr; 3312 } 3313 3314 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3315 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3316 IntrinsicInst *II, 3317 const APInt &C) { 3318 if (Cmp.isEquality()) 3319 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3320 3321 Type *Ty = II->getType(); 3322 unsigned BitWidth = C.getBitWidth(); 3323 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3324 switch (II->getIntrinsicID()) { 3325 case Intrinsic::ctpop: { 3326 // (ctpop X > BitWidth - 1) --> X == -1 3327 Value *X = II->getArgOperand(0); 3328 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3329 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3330 ConstantInt::getAllOnesValue(Ty)); 3331 // (ctpop X < BitWidth) --> X != -1 3332 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3333 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3334 ConstantInt::getAllOnesValue(Ty)); 3335 break; 3336 } 3337 case Intrinsic::ctlz: { 3338 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3339 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3340 unsigned Num = C.getLimitedValue(); 3341 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3342 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3343 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3344 } 3345 3346 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3347 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3348 unsigned Num = C.getLimitedValue(); 3349 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3350 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3351 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3352 } 3353 break; 3354 } 3355 case Intrinsic::cttz: { 3356 // Limit to one use to ensure we don't increase instruction count. 3357 if (!II->hasOneUse()) 3358 return nullptr; 3359 3360 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3361 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3362 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3363 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3364 Builder.CreateAnd(II->getArgOperand(0), Mask), 3365 ConstantInt::getNullValue(Ty)); 3366 } 3367 3368 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3369 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3370 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3371 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3372 Builder.CreateAnd(II->getArgOperand(0), Mask), 3373 ConstantInt::getNullValue(Ty)); 3374 } 3375 break; 3376 } 3377 default: 3378 break; 3379 } 3380 3381 return nullptr; 3382 } 3383 3384 /// Handle icmp with constant (but not simple integer constant) RHS. 3385 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3386 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3387 Constant *RHSC = dyn_cast<Constant>(Op1); 3388 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3389 if (!RHSC || !LHSI) 3390 return nullptr; 3391 3392 switch (LHSI->getOpcode()) { 3393 case Instruction::GetElementPtr: 3394 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3395 if (RHSC->isNullValue() && 3396 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3397 return new ICmpInst( 3398 I.getPredicate(), LHSI->getOperand(0), 3399 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3400 break; 3401 case Instruction::PHI: 3402 // Only fold icmp into the PHI if the phi and icmp are in the same 3403 // block. If in the same block, we're encouraging jump threading. If 3404 // not, we are just pessimizing the code by making an i1 phi. 3405 if (LHSI->getParent() == I.getParent()) 3406 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3407 return NV; 3408 break; 3409 case Instruction::Select: { 3410 // If either operand of the select is a constant, we can fold the 3411 // comparison into the select arms, which will cause one to be 3412 // constant folded and the select turned into a bitwise or. 3413 Value *Op1 = nullptr, *Op2 = nullptr; 3414 ConstantInt *CI = nullptr; 3415 3416 auto SimplifyOp = [&](Value *V) { 3417 Value *Op = nullptr; 3418 if (Constant *C = dyn_cast<Constant>(V)) { 3419 Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3420 } else if (RHSC->isNullValue()) { 3421 // If null is being compared, check if it can be further simplified. 3422 Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ); 3423 } 3424 return Op; 3425 }; 3426 Op1 = SimplifyOp(LHSI->getOperand(1)); 3427 if (Op1) 3428 CI = dyn_cast<ConstantInt>(Op1); 3429 3430 Op2 = SimplifyOp(LHSI->getOperand(2)); 3431 if (Op2) 3432 CI = dyn_cast<ConstantInt>(Op2); 3433 3434 // We only want to perform this transformation if it will not lead to 3435 // additional code. This is true if either both sides of the select 3436 // fold to a constant (in which case the icmp is replaced with a select 3437 // which will usually simplify) or this is the only user of the 3438 // select (in which case we are trading a select+icmp for a simpler 3439 // select+icmp) or all uses of the select can be replaced based on 3440 // dominance information ("Global cases"). 3441 bool Transform = false; 3442 if (Op1 && Op2) 3443 Transform = true; 3444 else if (Op1 || Op2) { 3445 // Local case 3446 if (LHSI->hasOneUse()) 3447 Transform = true; 3448 // Global cases 3449 else if (CI && !CI->isZero()) 3450 // When Op1 is constant try replacing select with second operand. 3451 // Otherwise Op2 is constant and try replacing select with first 3452 // operand. 3453 Transform = 3454 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3455 } 3456 if (Transform) { 3457 if (!Op1) 3458 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3459 I.getName()); 3460 if (!Op2) 3461 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3462 I.getName()); 3463 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3464 } 3465 break; 3466 } 3467 case Instruction::IntToPtr: 3468 // icmp pred inttoptr(X), null -> icmp pred X, 0 3469 if (RHSC->isNullValue() && 3470 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3471 return new ICmpInst( 3472 I.getPredicate(), LHSI->getOperand(0), 3473 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3474 break; 3475 3476 case Instruction::Load: 3477 // Try to optimize things like "A[i] > 4" to index computations. 3478 if (GetElementPtrInst *GEP = 3479 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3480 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3481 if (Instruction *Res = 3482 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3483 return Res; 3484 break; 3485 } 3486 3487 return nullptr; 3488 } 3489 3490 /// Some comparisons can be simplified. 3491 /// In this case, we are looking for comparisons that look like 3492 /// a check for a lossy truncation. 3493 /// Folds: 3494 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3495 /// Where Mask is some pattern that produces all-ones in low bits: 3496 /// (-1 >> y) 3497 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3498 /// ~(-1 << y) 3499 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3500 /// The Mask can be a constant, too. 3501 /// For some predicates, the operands are commutative. 3502 /// For others, x can only be on a specific side. 3503 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3504 InstCombiner::BuilderTy &Builder) { 3505 ICmpInst::Predicate SrcPred; 3506 Value *X, *M, *Y; 3507 auto m_VariableMask = m_CombineOr( 3508 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3509 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3510 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3511 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3512 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3513 if (!match(&I, m_c_ICmp(SrcPred, 3514 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3515 m_Deferred(X)))) 3516 return nullptr; 3517 3518 ICmpInst::Predicate DstPred; 3519 switch (SrcPred) { 3520 case ICmpInst::Predicate::ICMP_EQ: 3521 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3522 DstPred = ICmpInst::Predicate::ICMP_ULE; 3523 break; 3524 case ICmpInst::Predicate::ICMP_NE: 3525 // x & (-1 >> y) != x -> x u> (-1 >> y) 3526 DstPred = ICmpInst::Predicate::ICMP_UGT; 3527 break; 3528 case ICmpInst::Predicate::ICMP_ULT: 3529 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3530 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3531 DstPred = ICmpInst::Predicate::ICMP_UGT; 3532 break; 3533 case ICmpInst::Predicate::ICMP_UGE: 3534 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3535 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3536 DstPred = ICmpInst::Predicate::ICMP_ULE; 3537 break; 3538 case ICmpInst::Predicate::ICMP_SLT: 3539 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3540 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3541 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3542 return nullptr; 3543 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3544 return nullptr; 3545 DstPred = ICmpInst::Predicate::ICMP_SGT; 3546 break; 3547 case ICmpInst::Predicate::ICMP_SGE: 3548 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3549 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3550 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3551 return nullptr; 3552 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3553 return nullptr; 3554 DstPred = ICmpInst::Predicate::ICMP_SLE; 3555 break; 3556 case ICmpInst::Predicate::ICMP_SGT: 3557 case ICmpInst::Predicate::ICMP_SLE: 3558 return nullptr; 3559 case ICmpInst::Predicate::ICMP_UGT: 3560 case ICmpInst::Predicate::ICMP_ULE: 3561 llvm_unreachable("Instsimplify took care of commut. variant"); 3562 break; 3563 default: 3564 llvm_unreachable("All possible folds are handled."); 3565 } 3566 3567 // The mask value may be a vector constant that has undefined elements. But it 3568 // may not be safe to propagate those undefs into the new compare, so replace 3569 // those elements by copying an existing, defined, and safe scalar constant. 3570 Type *OpTy = M->getType(); 3571 auto *VecC = dyn_cast<Constant>(M); 3572 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3573 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3574 Constant *SafeReplacementConstant = nullptr; 3575 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3576 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3577 SafeReplacementConstant = VecC->getAggregateElement(i); 3578 break; 3579 } 3580 } 3581 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3582 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3583 } 3584 3585 return Builder.CreateICmp(DstPred, X, M); 3586 } 3587 3588 /// Some comparisons can be simplified. 3589 /// In this case, we are looking for comparisons that look like 3590 /// a check for a lossy signed truncation. 3591 /// Folds: (MaskedBits is a constant.) 3592 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3593 /// Into: 3594 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3595 /// Where KeptBits = bitwidth(%x) - MaskedBits 3596 static Value * 3597 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3598 InstCombiner::BuilderTy &Builder) { 3599 ICmpInst::Predicate SrcPred; 3600 Value *X; 3601 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3602 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3603 if (!match(&I, m_c_ICmp(SrcPred, 3604 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3605 m_APInt(C1))), 3606 m_Deferred(X)))) 3607 return nullptr; 3608 3609 // Potential handling of non-splats: for each element: 3610 // * if both are undef, replace with constant 0. 3611 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3612 // * if both are not undef, and are different, bailout. 3613 // * else, only one is undef, then pick the non-undef one. 3614 3615 // The shift amount must be equal. 3616 if (*C0 != *C1) 3617 return nullptr; 3618 const APInt &MaskedBits = *C0; 3619 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3620 3621 ICmpInst::Predicate DstPred; 3622 switch (SrcPred) { 3623 case ICmpInst::Predicate::ICMP_EQ: 3624 // ((%x << MaskedBits) a>> MaskedBits) == %x 3625 // => 3626 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3627 DstPred = ICmpInst::Predicate::ICMP_ULT; 3628 break; 3629 case ICmpInst::Predicate::ICMP_NE: 3630 // ((%x << MaskedBits) a>> MaskedBits) != %x 3631 // => 3632 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3633 DstPred = ICmpInst::Predicate::ICMP_UGE; 3634 break; 3635 // FIXME: are more folds possible? 3636 default: 3637 return nullptr; 3638 } 3639 3640 auto *XType = X->getType(); 3641 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3642 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3643 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3644 3645 // KeptBits = bitwidth(%x) - MaskedBits 3646 const APInt KeptBits = BitWidth - MaskedBits; 3647 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3648 // ICmpCst = (1 << KeptBits) 3649 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3650 assert(ICmpCst.isPowerOf2()); 3651 // AddCst = (1 << (KeptBits-1)) 3652 const APInt AddCst = ICmpCst.lshr(1); 3653 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3654 3655 // T0 = add %x, AddCst 3656 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3657 // T1 = T0 DstPred ICmpCst 3658 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3659 3660 return T1; 3661 } 3662 3663 // Given pattern: 3664 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3665 // we should move shifts to the same hand of 'and', i.e. rewrite as 3666 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3667 // We are only interested in opposite logical shifts here. 3668 // One of the shifts can be truncated. 3669 // If we can, we want to end up creating 'lshr' shift. 3670 static Value * 3671 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3672 InstCombiner::BuilderTy &Builder) { 3673 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3674 !I.getOperand(0)->hasOneUse()) 3675 return nullptr; 3676 3677 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3678 3679 // Look for an 'and' of two logical shifts, one of which may be truncated. 3680 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3681 Instruction *XShift, *MaybeTruncation, *YShift; 3682 if (!match( 3683 I.getOperand(0), 3684 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3685 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3686 m_AnyLogicalShift, m_Instruction(YShift))), 3687 m_Instruction(MaybeTruncation))))) 3688 return nullptr; 3689 3690 // We potentially looked past 'trunc', but only when matching YShift, 3691 // therefore YShift must have the widest type. 3692 Instruction *WidestShift = YShift; 3693 // Therefore XShift must have the shallowest type. 3694 // Or they both have identical types if there was no truncation. 3695 Instruction *NarrowestShift = XShift; 3696 3697 Type *WidestTy = WidestShift->getType(); 3698 Type *NarrowestTy = NarrowestShift->getType(); 3699 assert(NarrowestTy == I.getOperand(0)->getType() && 3700 "We did not look past any shifts while matching XShift though."); 3701 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3702 3703 // If YShift is a 'lshr', swap the shifts around. 3704 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3705 std::swap(XShift, YShift); 3706 3707 // The shifts must be in opposite directions. 3708 auto XShiftOpcode = XShift->getOpcode(); 3709 if (XShiftOpcode == YShift->getOpcode()) 3710 return nullptr; // Do not care about same-direction shifts here. 3711 3712 Value *X, *XShAmt, *Y, *YShAmt; 3713 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3714 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3715 3716 // If one of the values being shifted is a constant, then we will end with 3717 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3718 // however, we will need to ensure that we won't increase instruction count. 3719 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3720 // At least one of the hands of the 'and' should be one-use shift. 3721 if (!match(I.getOperand(0), 3722 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3723 return nullptr; 3724 if (HadTrunc) { 3725 // Due to the 'trunc', we will need to widen X. For that either the old 3726 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3727 if (!MaybeTruncation->hasOneUse() && 3728 !NarrowestShift->getOperand(1)->hasOneUse()) 3729 return nullptr; 3730 } 3731 } 3732 3733 // We have two shift amounts from two different shifts. The types of those 3734 // shift amounts may not match. If that's the case let's bailout now. 3735 if (XShAmt->getType() != YShAmt->getType()) 3736 return nullptr; 3737 3738 // As input, we have the following pattern: 3739 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3740 // We want to rewrite that as: 3741 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3742 // While we know that originally (Q+K) would not overflow 3743 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3744 // shift amounts. so it may now overflow in smaller bitwidth. 3745 // To ensure that does not happen, we need to ensure that the total maximal 3746 // shift amount is still representable in that smaller bit width. 3747 unsigned MaximalPossibleTotalShiftAmount = 3748 (WidestTy->getScalarSizeInBits() - 1) + 3749 (NarrowestTy->getScalarSizeInBits() - 1); 3750 APInt MaximalRepresentableShiftAmount = 3751 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3752 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3753 return nullptr; 3754 3755 // Can we fold (XShAmt+YShAmt) ? 3756 auto *NewShAmt = dyn_cast_or_null<Constant>( 3757 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3758 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3759 if (!NewShAmt) 3760 return nullptr; 3761 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3762 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3763 3764 // Is the new shift amount smaller than the bit width? 3765 // FIXME: could also rely on ConstantRange. 3766 if (!match(NewShAmt, 3767 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3768 APInt(WidestBitWidth, WidestBitWidth)))) 3769 return nullptr; 3770 3771 // An extra legality check is needed if we had trunc-of-lshr. 3772 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3773 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3774 WidestShift]() { 3775 // It isn't obvious whether it's worth it to analyze non-constants here. 3776 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3777 // If *any* of these preconditions matches we can perform the fold. 3778 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3779 ? NewShAmt->getSplatValue() 3780 : NewShAmt; 3781 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3782 if (NewShAmtSplat && 3783 (NewShAmtSplat->isNullValue() || 3784 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3785 return true; 3786 // We consider *min* leading zeros so a single outlier 3787 // blocks the transform as opposed to allowing it. 3788 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3789 KnownBits Known = computeKnownBits(C, SQ.DL); 3790 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3791 // If the value being shifted has at most lowest bit set we can fold. 3792 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3793 if (MaxActiveBits <= 1) 3794 return true; 3795 // Precondition: NewShAmt u<= countLeadingZeros(C) 3796 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3797 return true; 3798 } 3799 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3800 KnownBits Known = computeKnownBits(C, SQ.DL); 3801 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3802 // If the value being shifted has at most lowest bit set we can fold. 3803 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3804 if (MaxActiveBits <= 1) 3805 return true; 3806 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3807 if (NewShAmtSplat) { 3808 APInt AdjNewShAmt = 3809 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3810 if (AdjNewShAmt.ule(MinLeadZero)) 3811 return true; 3812 } 3813 } 3814 return false; // Can't tell if it's ok. 3815 }; 3816 if (!CanFold()) 3817 return nullptr; 3818 } 3819 3820 // All good, we can do this fold. 3821 X = Builder.CreateZExt(X, WidestTy); 3822 Y = Builder.CreateZExt(Y, WidestTy); 3823 // The shift is the same that was for X. 3824 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3825 ? Builder.CreateLShr(X, NewShAmt) 3826 : Builder.CreateShl(X, NewShAmt); 3827 Value *T1 = Builder.CreateAnd(T0, Y); 3828 return Builder.CreateICmp(I.getPredicate(), T1, 3829 Constant::getNullValue(WidestTy)); 3830 } 3831 3832 /// Fold 3833 /// (-1 u/ x) u< y 3834 /// ((x * y) ?/ x) != y 3835 /// to 3836 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3837 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3838 /// will mean that we are looking for the opposite answer. 3839 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3840 ICmpInst::Predicate Pred; 3841 Value *X, *Y; 3842 Instruction *Mul; 3843 Instruction *Div; 3844 bool NeedNegation; 3845 // Look for: (-1 u/ x) u</u>= y 3846 if (!I.isEquality() && 3847 match(&I, m_c_ICmp(Pred, 3848 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3849 m_Instruction(Div)), 3850 m_Value(Y)))) { 3851 Mul = nullptr; 3852 3853 // Are we checking that overflow does not happen, or does happen? 3854 switch (Pred) { 3855 case ICmpInst::Predicate::ICMP_ULT: 3856 NeedNegation = false; 3857 break; // OK 3858 case ICmpInst::Predicate::ICMP_UGE: 3859 NeedNegation = true; 3860 break; // OK 3861 default: 3862 return nullptr; // Wrong predicate. 3863 } 3864 } else // Look for: ((x * y) / x) !=/== y 3865 if (I.isEquality() && 3866 match(&I, 3867 m_c_ICmp(Pred, m_Value(Y), 3868 m_CombineAnd( 3869 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3870 m_Value(X)), 3871 m_Instruction(Mul)), 3872 m_Deferred(X))), 3873 m_Instruction(Div))))) { 3874 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3875 } else 3876 return nullptr; 3877 3878 BuilderTy::InsertPointGuard Guard(Builder); 3879 // If the pattern included (x * y), we'll want to insert new instructions 3880 // right before that original multiplication so that we can replace it. 3881 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3882 if (MulHadOtherUses) 3883 Builder.SetInsertPoint(Mul); 3884 3885 Function *F = Intrinsic::getDeclaration(I.getModule(), 3886 Div->getOpcode() == Instruction::UDiv 3887 ? Intrinsic::umul_with_overflow 3888 : Intrinsic::smul_with_overflow, 3889 X->getType()); 3890 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3891 3892 // If the multiplication was used elsewhere, to ensure that we don't leave 3893 // "duplicate" instructions, replace uses of that original multiplication 3894 // with the multiplication result from the with.overflow intrinsic. 3895 if (MulHadOtherUses) 3896 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3897 3898 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3899 if (NeedNegation) // This technically increases instruction count. 3900 Res = Builder.CreateNot(Res, "mul.not.ov"); 3901 3902 // If we replaced the mul, erase it. Do this after all uses of Builder, 3903 // as the mul is used as insertion point. 3904 if (MulHadOtherUses) 3905 eraseInstFromFunction(*Mul); 3906 3907 return Res; 3908 } 3909 3910 static Instruction *foldICmpXNegX(ICmpInst &I) { 3911 CmpInst::Predicate Pred; 3912 Value *X; 3913 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3914 return nullptr; 3915 3916 if (ICmpInst::isSigned(Pred)) 3917 Pred = ICmpInst::getSwappedPredicate(Pred); 3918 else if (ICmpInst::isUnsigned(Pred)) 3919 Pred = ICmpInst::getSignedPredicate(Pred); 3920 // else for equality-comparisons just keep the predicate. 3921 3922 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3923 Constant::getNullValue(X->getType()), I.getName()); 3924 } 3925 3926 /// Try to fold icmp (binop), X or icmp X, (binop). 3927 /// TODO: A large part of this logic is duplicated in InstSimplify's 3928 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3929 /// duplication. 3930 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3931 const SimplifyQuery &SQ) { 3932 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3933 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3934 3935 // Special logic for binary operators. 3936 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3937 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3938 if (!BO0 && !BO1) 3939 return nullptr; 3940 3941 if (Instruction *NewICmp = foldICmpXNegX(I)) 3942 return NewICmp; 3943 3944 const CmpInst::Predicate Pred = I.getPredicate(); 3945 Value *X; 3946 3947 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3948 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3949 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3950 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3951 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3952 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3953 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3954 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3955 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3956 3957 { 3958 // Similar to above: an unsigned overflow comparison may use offset + mask: 3959 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 3960 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 3961 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 3962 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 3963 BinaryOperator *BO; 3964 const APInt *C; 3965 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 3966 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3967 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 3968 CmpInst::Predicate NewPred = 3969 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 3970 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 3971 return new ICmpInst(NewPred, Op1, Zero); 3972 } 3973 3974 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 3975 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3976 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 3977 CmpInst::Predicate NewPred = 3978 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 3979 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 3980 return new ICmpInst(NewPred, Op0, Zero); 3981 } 3982 } 3983 3984 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3985 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3986 NoOp0WrapProblem = 3987 ICmpInst::isEquality(Pred) || 3988 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3989 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3990 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3991 NoOp1WrapProblem = 3992 ICmpInst::isEquality(Pred) || 3993 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3994 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3995 3996 // Analyze the case when either Op0 or Op1 is an add instruction. 3997 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3998 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3999 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4000 A = BO0->getOperand(0); 4001 B = BO0->getOperand(1); 4002 } 4003 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4004 C = BO1->getOperand(0); 4005 D = BO1->getOperand(1); 4006 } 4007 4008 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4009 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4010 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4011 return new ICmpInst(Pred, A == Op1 ? B : A, 4012 Constant::getNullValue(Op1->getType())); 4013 4014 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4015 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4016 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4017 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4018 C == Op0 ? D : C); 4019 4020 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4021 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4022 NoOp1WrapProblem) { 4023 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4024 Value *Y, *Z; 4025 if (A == C) { 4026 // C + B == C + D -> B == D 4027 Y = B; 4028 Z = D; 4029 } else if (A == D) { 4030 // D + B == C + D -> B == C 4031 Y = B; 4032 Z = C; 4033 } else if (B == C) { 4034 // A + C == C + D -> A == D 4035 Y = A; 4036 Z = D; 4037 } else { 4038 assert(B == D); 4039 // A + D == C + D -> A == C 4040 Y = A; 4041 Z = C; 4042 } 4043 return new ICmpInst(Pred, Y, Z); 4044 } 4045 4046 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4047 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4048 match(B, m_AllOnes())) 4049 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4050 4051 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4052 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4053 match(B, m_AllOnes())) 4054 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4055 4056 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4057 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4058 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4059 4060 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4061 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4062 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4063 4064 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4065 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4066 match(D, m_AllOnes())) 4067 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4068 4069 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4070 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4071 match(D, m_AllOnes())) 4072 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4073 4074 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4075 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4076 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4077 4078 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4079 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4080 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4081 4082 // TODO: The subtraction-related identities shown below also hold, but 4083 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4084 // wouldn't happen even if they were implemented. 4085 // 4086 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4087 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4088 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4089 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4090 4091 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4092 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4093 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4094 4095 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4096 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4097 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4098 4099 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4100 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4101 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4102 4103 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4104 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4105 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4106 4107 // if C1 has greater magnitude than C2: 4108 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4109 // s.t. C3 = C1 - C2 4110 // 4111 // if C2 has greater magnitude than C1: 4112 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4113 // s.t. C3 = C2 - C1 4114 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4115 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 4116 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 4117 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 4118 const APInt &AP1 = C1->getValue(); 4119 const APInt &AP2 = C2->getValue(); 4120 if (AP1.isNegative() == AP2.isNegative()) { 4121 APInt AP1Abs = C1->getValue().abs(); 4122 APInt AP2Abs = C2->getValue().abs(); 4123 if (AP1Abs.uge(AP2Abs)) { 4124 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 4125 bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1); 4126 bool HasNSW = BO0->hasNoSignedWrap(); 4127 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4128 return new ICmpInst(Pred, NewAdd, C); 4129 } else { 4130 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 4131 bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2); 4132 bool HasNSW = BO1->hasNoSignedWrap(); 4133 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4134 return new ICmpInst(Pred, A, NewAdd); 4135 } 4136 } 4137 } 4138 4139 // Analyze the case when either Op0 or Op1 is a sub instruction. 4140 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4141 A = nullptr; 4142 B = nullptr; 4143 C = nullptr; 4144 D = nullptr; 4145 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4146 A = BO0->getOperand(0); 4147 B = BO0->getOperand(1); 4148 } 4149 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4150 C = BO1->getOperand(0); 4151 D = BO1->getOperand(1); 4152 } 4153 4154 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4155 if (A == Op1 && NoOp0WrapProblem) 4156 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4157 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4158 if (C == Op0 && NoOp1WrapProblem) 4159 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4160 4161 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4162 // (A - B) u>/u<= A --> B u>/u<= A 4163 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4164 return new ICmpInst(Pred, B, A); 4165 // C u</u>= (C - D) --> C u</u>= D 4166 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4167 return new ICmpInst(Pred, C, D); 4168 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4169 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4170 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4171 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4172 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4173 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4174 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4175 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4176 4177 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4178 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4179 return new ICmpInst(Pred, A, C); 4180 4181 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4182 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4183 return new ICmpInst(Pred, D, B); 4184 4185 // icmp (0-X) < cst --> x > -cst 4186 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4187 Value *X; 4188 if (match(BO0, m_Neg(m_Value(X)))) 4189 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4190 if (RHSC->isNotMinSignedValue()) 4191 return new ICmpInst(I.getSwappedPredicate(), X, 4192 ConstantExpr::getNeg(RHSC)); 4193 } 4194 4195 { 4196 // Try to remove shared constant multiplier from equality comparison: 4197 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4198 Value *X, *Y; 4199 const APInt *C; 4200 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4201 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4202 if (!C->countTrailingZeros() || 4203 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4204 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4205 return new ICmpInst(Pred, X, Y); 4206 } 4207 4208 BinaryOperator *SRem = nullptr; 4209 // icmp (srem X, Y), Y 4210 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4211 SRem = BO0; 4212 // icmp Y, (srem X, Y) 4213 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4214 Op0 == BO1->getOperand(1)) 4215 SRem = BO1; 4216 if (SRem) { 4217 // We don't check hasOneUse to avoid increasing register pressure because 4218 // the value we use is the same value this instruction was already using. 4219 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4220 default: 4221 break; 4222 case ICmpInst::ICMP_EQ: 4223 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4224 case ICmpInst::ICMP_NE: 4225 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4226 case ICmpInst::ICMP_SGT: 4227 case ICmpInst::ICMP_SGE: 4228 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4229 Constant::getAllOnesValue(SRem->getType())); 4230 case ICmpInst::ICMP_SLT: 4231 case ICmpInst::ICMP_SLE: 4232 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4233 Constant::getNullValue(SRem->getType())); 4234 } 4235 } 4236 4237 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4238 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4239 switch (BO0->getOpcode()) { 4240 default: 4241 break; 4242 case Instruction::Add: 4243 case Instruction::Sub: 4244 case Instruction::Xor: { 4245 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4246 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4247 4248 const APInt *C; 4249 if (match(BO0->getOperand(1), m_APInt(C))) { 4250 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4251 if (C->isSignMask()) { 4252 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4253 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4254 } 4255 4256 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4257 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4258 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4259 NewPred = I.getSwappedPredicate(NewPred); 4260 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4261 } 4262 } 4263 break; 4264 } 4265 case Instruction::Mul: { 4266 if (!I.isEquality()) 4267 break; 4268 4269 const APInt *C; 4270 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4271 !C->isOne()) { 4272 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4273 // Mask = -1 >> count-trailing-zeros(C). 4274 if (unsigned TZs = C->countTrailingZeros()) { 4275 Constant *Mask = ConstantInt::get( 4276 BO0->getType(), 4277 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4278 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4279 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4280 return new ICmpInst(Pred, And1, And2); 4281 } 4282 } 4283 break; 4284 } 4285 case Instruction::UDiv: 4286 case Instruction::LShr: 4287 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4288 break; 4289 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4290 4291 case Instruction::SDiv: 4292 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4293 break; 4294 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4295 4296 case Instruction::AShr: 4297 if (!BO0->isExact() || !BO1->isExact()) 4298 break; 4299 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4300 4301 case Instruction::Shl: { 4302 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4303 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4304 if (!NUW && !NSW) 4305 break; 4306 if (!NSW && I.isSigned()) 4307 break; 4308 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4309 } 4310 } 4311 } 4312 4313 if (BO0) { 4314 // Transform A & (L - 1) `ult` L --> L != 0 4315 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4316 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4317 4318 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4319 auto *Zero = Constant::getNullValue(BO0->getType()); 4320 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4321 } 4322 } 4323 4324 if (Value *V = foldMultiplicationOverflowCheck(I)) 4325 return replaceInstUsesWith(I, V); 4326 4327 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4328 return replaceInstUsesWith(I, V); 4329 4330 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4331 return replaceInstUsesWith(I, V); 4332 4333 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4334 return replaceInstUsesWith(I, V); 4335 4336 return nullptr; 4337 } 4338 4339 /// Fold icmp Pred min|max(X, Y), X. 4340 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4341 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4342 Value *Op0 = Cmp.getOperand(0); 4343 Value *X = Cmp.getOperand(1); 4344 4345 // Canonicalize minimum or maximum operand to LHS of the icmp. 4346 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4347 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4348 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4349 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4350 std::swap(Op0, X); 4351 Pred = Cmp.getSwappedPredicate(); 4352 } 4353 4354 Value *Y; 4355 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4356 // smin(X, Y) == X --> X s<= Y 4357 // smin(X, Y) s>= X --> X s<= Y 4358 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4359 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4360 4361 // smin(X, Y) != X --> X s> Y 4362 // smin(X, Y) s< X --> X s> Y 4363 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4364 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4365 4366 // These cases should be handled in InstSimplify: 4367 // smin(X, Y) s<= X --> true 4368 // smin(X, Y) s> X --> false 4369 return nullptr; 4370 } 4371 4372 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4373 // smax(X, Y) == X --> X s>= Y 4374 // smax(X, Y) s<= X --> X s>= Y 4375 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4376 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4377 4378 // smax(X, Y) != X --> X s< Y 4379 // smax(X, Y) s> X --> X s< Y 4380 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4381 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4382 4383 // These cases should be handled in InstSimplify: 4384 // smax(X, Y) s>= X --> true 4385 // smax(X, Y) s< X --> false 4386 return nullptr; 4387 } 4388 4389 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4390 // umin(X, Y) == X --> X u<= Y 4391 // umin(X, Y) u>= X --> X u<= Y 4392 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4393 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4394 4395 // umin(X, Y) != X --> X u> Y 4396 // umin(X, Y) u< X --> X u> Y 4397 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4398 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4399 4400 // These cases should be handled in InstSimplify: 4401 // umin(X, Y) u<= X --> true 4402 // umin(X, Y) u> X --> false 4403 return nullptr; 4404 } 4405 4406 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4407 // umax(X, Y) == X --> X u>= Y 4408 // umax(X, Y) u<= X --> X u>= Y 4409 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4410 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4411 4412 // umax(X, Y) != X --> X u< Y 4413 // umax(X, Y) u> X --> X u< Y 4414 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4415 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4416 4417 // These cases should be handled in InstSimplify: 4418 // umax(X, Y) u>= X --> true 4419 // umax(X, Y) u< X --> false 4420 return nullptr; 4421 } 4422 4423 return nullptr; 4424 } 4425 4426 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4427 if (!I.isEquality()) 4428 return nullptr; 4429 4430 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4431 const CmpInst::Predicate Pred = I.getPredicate(); 4432 Value *A, *B, *C, *D; 4433 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4434 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4435 Value *OtherVal = A == Op1 ? B : A; 4436 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4437 } 4438 4439 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4440 // A^c1 == C^c2 --> A == C^(c1^c2) 4441 ConstantInt *C1, *C2; 4442 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4443 Op1->hasOneUse()) { 4444 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4445 Value *Xor = Builder.CreateXor(C, NC); 4446 return new ICmpInst(Pred, A, Xor); 4447 } 4448 4449 // A^B == A^D -> B == D 4450 if (A == C) 4451 return new ICmpInst(Pred, B, D); 4452 if (A == D) 4453 return new ICmpInst(Pred, B, C); 4454 if (B == C) 4455 return new ICmpInst(Pred, A, D); 4456 if (B == D) 4457 return new ICmpInst(Pred, A, C); 4458 } 4459 } 4460 4461 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4462 // A == (A^B) -> B == 0 4463 Value *OtherVal = A == Op0 ? B : A; 4464 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4465 } 4466 4467 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4468 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4469 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4470 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4471 4472 if (A == C) { 4473 X = B; 4474 Y = D; 4475 Z = A; 4476 } else if (A == D) { 4477 X = B; 4478 Y = C; 4479 Z = A; 4480 } else if (B == C) { 4481 X = A; 4482 Y = D; 4483 Z = B; 4484 } else if (B == D) { 4485 X = A; 4486 Y = C; 4487 Z = B; 4488 } 4489 4490 if (X) { // Build (X^Y) & Z 4491 Op1 = Builder.CreateXor(X, Y); 4492 Op1 = Builder.CreateAnd(Op1, Z); 4493 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4494 } 4495 } 4496 4497 { 4498 // Similar to above, but specialized for constant because invert is needed: 4499 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4500 Value *X, *Y; 4501 Constant *C; 4502 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4503 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4504 Value *Xor = Builder.CreateXor(X, Y); 4505 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4506 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4507 } 4508 } 4509 4510 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4511 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4512 ConstantInt *Cst1; 4513 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4514 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4515 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4516 match(Op1, m_ZExt(m_Value(A))))) { 4517 APInt Pow2 = Cst1->getValue() + 1; 4518 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4519 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4520 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4521 } 4522 4523 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4524 // For lshr and ashr pairs. 4525 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4526 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4527 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4528 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4529 unsigned TypeBits = Cst1->getBitWidth(); 4530 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4531 if (ShAmt < TypeBits && ShAmt != 0) { 4532 ICmpInst::Predicate NewPred = 4533 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4534 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4535 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4536 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4537 } 4538 } 4539 4540 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4541 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4542 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4543 unsigned TypeBits = Cst1->getBitWidth(); 4544 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4545 if (ShAmt < TypeBits && ShAmt != 0) { 4546 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4547 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4548 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4549 I.getName() + ".mask"); 4550 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4551 } 4552 } 4553 4554 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4555 // "icmp (and X, mask), cst" 4556 uint64_t ShAmt = 0; 4557 if (Op0->hasOneUse() && 4558 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4559 match(Op1, m_ConstantInt(Cst1)) && 4560 // Only do this when A has multiple uses. This is most important to do 4561 // when it exposes other optimizations. 4562 !A->hasOneUse()) { 4563 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4564 4565 if (ShAmt < ASize) { 4566 APInt MaskV = 4567 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4568 MaskV <<= ShAmt; 4569 4570 APInt CmpV = Cst1->getValue().zext(ASize); 4571 CmpV <<= ShAmt; 4572 4573 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4574 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4575 } 4576 } 4577 4578 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4579 return ICmp; 4580 4581 // Canonicalize checking for a power-of-2-or-zero value: 4582 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4583 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4584 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4585 m_Deferred(A)))) || 4586 !match(Op1, m_ZeroInt())) 4587 A = nullptr; 4588 4589 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4590 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4591 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4592 A = Op1; 4593 else if (match(Op1, 4594 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4595 A = Op0; 4596 4597 if (A) { 4598 Type *Ty = A->getType(); 4599 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4600 return Pred == ICmpInst::ICMP_EQ 4601 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4602 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4603 } 4604 4605 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4606 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4607 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4608 // of instcombine. 4609 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4610 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4611 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4612 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4613 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4614 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4615 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4616 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4617 : ICmpInst::ICMP_UGE, 4618 Add, ConstantInt::get(A->getType(), C.shl(1))); 4619 } 4620 4621 return nullptr; 4622 } 4623 4624 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4625 InstCombiner::BuilderTy &Builder) { 4626 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4627 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4628 4629 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4630 // The trunc masks high bits while the compare may effectively mask low bits. 4631 Value *X; 4632 const APInt *C; 4633 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4634 return nullptr; 4635 4636 // This matches patterns corresponding to tests of the signbit as well as: 4637 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4638 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4639 APInt Mask; 4640 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4641 Value *And = Builder.CreateAnd(X, Mask); 4642 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4643 return new ICmpInst(Pred, And, Zero); 4644 } 4645 4646 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4647 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4648 // If C is a negative power-of-2 (high-bit mask): 4649 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4650 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4651 Value *And = Builder.CreateAnd(X, MaskC); 4652 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4653 } 4654 4655 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4656 // If C is not-of-power-of-2 (one clear bit): 4657 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4658 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4659 Value *And = Builder.CreateAnd(X, MaskC); 4660 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4661 } 4662 4663 return nullptr; 4664 } 4665 4666 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4667 InstCombiner::BuilderTy &Builder) { 4668 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4669 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4670 Value *X; 4671 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4672 return nullptr; 4673 4674 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4675 bool IsSignedCmp = ICmp.isSigned(); 4676 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4677 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4678 // and the other is a zext), then we can't handle this. 4679 // TODO: This is too strict. We can handle some predicates (equality?). 4680 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4681 return nullptr; 4682 4683 // Not an extension from the same type? 4684 Value *Y = CastOp1->getOperand(0); 4685 Type *XTy = X->getType(), *YTy = Y->getType(); 4686 if (XTy != YTy) { 4687 // One of the casts must have one use because we are creating a new cast. 4688 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4689 return nullptr; 4690 // Extend the narrower operand to the type of the wider operand. 4691 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4692 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4693 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4694 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4695 else 4696 return nullptr; 4697 } 4698 4699 // (zext X) == (zext Y) --> X == Y 4700 // (sext X) == (sext Y) --> X == Y 4701 if (ICmp.isEquality()) 4702 return new ICmpInst(ICmp.getPredicate(), X, Y); 4703 4704 // A signed comparison of sign extended values simplifies into a 4705 // signed comparison. 4706 if (IsSignedCmp && IsSignedExt) 4707 return new ICmpInst(ICmp.getPredicate(), X, Y); 4708 4709 // The other three cases all fold into an unsigned comparison. 4710 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4711 } 4712 4713 // Below here, we are only folding a compare with constant. 4714 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4715 if (!C) 4716 return nullptr; 4717 4718 // Compute the constant that would happen if we truncated to SrcTy then 4719 // re-extended to DestTy. 4720 Type *SrcTy = CastOp0->getSrcTy(); 4721 Type *DestTy = CastOp0->getDestTy(); 4722 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4723 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4724 4725 // If the re-extended constant didn't change... 4726 if (Res2 == C) { 4727 if (ICmp.isEquality()) 4728 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4729 4730 // A signed comparison of sign extended values simplifies into a 4731 // signed comparison. 4732 if (IsSignedExt && IsSignedCmp) 4733 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4734 4735 // The other three cases all fold into an unsigned comparison. 4736 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4737 } 4738 4739 // The re-extended constant changed, partly changed (in the case of a vector), 4740 // or could not be determined to be equal (in the case of a constant 4741 // expression), so the constant cannot be represented in the shorter type. 4742 // All the cases that fold to true or false will have already been handled 4743 // by SimplifyICmpInst, so only deal with the tricky case. 4744 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4745 return nullptr; 4746 4747 // Is source op positive? 4748 // icmp ult (sext X), C --> icmp sgt X, -1 4749 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4750 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4751 4752 // Is source op negative? 4753 // icmp ugt (sext X), C --> icmp slt X, 0 4754 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4755 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4756 } 4757 4758 /// Handle icmp (cast x), (cast or constant). 4759 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4760 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4761 // icmp compares only pointer's value. 4762 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4763 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4764 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4765 if (SimplifiedOp0 || SimplifiedOp1) 4766 return new ICmpInst(ICmp.getPredicate(), 4767 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4768 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4769 4770 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4771 if (!CastOp0) 4772 return nullptr; 4773 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4774 return nullptr; 4775 4776 Value *Op0Src = CastOp0->getOperand(0); 4777 Type *SrcTy = CastOp0->getSrcTy(); 4778 Type *DestTy = CastOp0->getDestTy(); 4779 4780 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4781 // integer type is the same size as the pointer type. 4782 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4783 if (isa<VectorType>(SrcTy)) { 4784 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4785 DestTy = cast<VectorType>(DestTy)->getElementType(); 4786 } 4787 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4788 }; 4789 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4790 CompatibleSizes(SrcTy, DestTy)) { 4791 Value *NewOp1 = nullptr; 4792 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4793 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4794 if (PtrSrc->getType()->getPointerAddressSpace() == 4795 Op0Src->getType()->getPointerAddressSpace()) { 4796 NewOp1 = PtrToIntOp1->getOperand(0); 4797 // If the pointer types don't match, insert a bitcast. 4798 if (Op0Src->getType() != NewOp1->getType()) 4799 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4800 } 4801 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4802 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4803 } 4804 4805 if (NewOp1) 4806 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4807 } 4808 4809 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4810 return R; 4811 4812 return foldICmpWithZextOrSext(ICmp, Builder); 4813 } 4814 4815 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4816 switch (BinaryOp) { 4817 default: 4818 llvm_unreachable("Unsupported binary op"); 4819 case Instruction::Add: 4820 case Instruction::Sub: 4821 return match(RHS, m_Zero()); 4822 case Instruction::Mul: 4823 return match(RHS, m_One()); 4824 } 4825 } 4826 4827 OverflowResult 4828 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4829 bool IsSigned, Value *LHS, Value *RHS, 4830 Instruction *CxtI) const { 4831 switch (BinaryOp) { 4832 default: 4833 llvm_unreachable("Unsupported binary op"); 4834 case Instruction::Add: 4835 if (IsSigned) 4836 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4837 else 4838 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4839 case Instruction::Sub: 4840 if (IsSigned) 4841 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4842 else 4843 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4844 case Instruction::Mul: 4845 if (IsSigned) 4846 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4847 else 4848 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4849 } 4850 } 4851 4852 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4853 bool IsSigned, Value *LHS, 4854 Value *RHS, Instruction &OrigI, 4855 Value *&Result, 4856 Constant *&Overflow) { 4857 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4858 std::swap(LHS, RHS); 4859 4860 // If the overflow check was an add followed by a compare, the insertion point 4861 // may be pointing to the compare. We want to insert the new instructions 4862 // before the add in case there are uses of the add between the add and the 4863 // compare. 4864 Builder.SetInsertPoint(&OrigI); 4865 4866 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4867 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4868 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4869 4870 if (isNeutralValue(BinaryOp, RHS)) { 4871 Result = LHS; 4872 Overflow = ConstantInt::getFalse(OverflowTy); 4873 return true; 4874 } 4875 4876 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4877 case OverflowResult::MayOverflow: 4878 return false; 4879 case OverflowResult::AlwaysOverflowsLow: 4880 case OverflowResult::AlwaysOverflowsHigh: 4881 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4882 Result->takeName(&OrigI); 4883 Overflow = ConstantInt::getTrue(OverflowTy); 4884 return true; 4885 case OverflowResult::NeverOverflows: 4886 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4887 Result->takeName(&OrigI); 4888 Overflow = ConstantInt::getFalse(OverflowTy); 4889 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4890 if (IsSigned) 4891 Inst->setHasNoSignedWrap(); 4892 else 4893 Inst->setHasNoUnsignedWrap(); 4894 } 4895 return true; 4896 } 4897 4898 llvm_unreachable("Unexpected overflow result"); 4899 } 4900 4901 /// Recognize and process idiom involving test for multiplication 4902 /// overflow. 4903 /// 4904 /// The caller has matched a pattern of the form: 4905 /// I = cmp u (mul(zext A, zext B), V 4906 /// The function checks if this is a test for overflow and if so replaces 4907 /// multiplication with call to 'mul.with.overflow' intrinsic. 4908 /// 4909 /// \param I Compare instruction. 4910 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4911 /// the compare instruction. Must be of integer type. 4912 /// \param OtherVal The other argument of compare instruction. 4913 /// \returns Instruction which must replace the compare instruction, NULL if no 4914 /// replacement required. 4915 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4916 Value *OtherVal, 4917 InstCombinerImpl &IC) { 4918 // Don't bother doing this transformation for pointers, don't do it for 4919 // vectors. 4920 if (!isa<IntegerType>(MulVal->getType())) 4921 return nullptr; 4922 4923 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4924 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4925 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4926 if (!MulInstr) 4927 return nullptr; 4928 assert(MulInstr->getOpcode() == Instruction::Mul); 4929 4930 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4931 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4932 assert(LHS->getOpcode() == Instruction::ZExt); 4933 assert(RHS->getOpcode() == Instruction::ZExt); 4934 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4935 4936 // Calculate type and width of the result produced by mul.with.overflow. 4937 Type *TyA = A->getType(), *TyB = B->getType(); 4938 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4939 WidthB = TyB->getPrimitiveSizeInBits(); 4940 unsigned MulWidth; 4941 Type *MulType; 4942 if (WidthB > WidthA) { 4943 MulWidth = WidthB; 4944 MulType = TyB; 4945 } else { 4946 MulWidth = WidthA; 4947 MulType = TyA; 4948 } 4949 4950 // In order to replace the original mul with a narrower mul.with.overflow, 4951 // all uses must ignore upper bits of the product. The number of used low 4952 // bits must be not greater than the width of mul.with.overflow. 4953 if (MulVal->hasNUsesOrMore(2)) 4954 for (User *U : MulVal->users()) { 4955 if (U == &I) 4956 continue; 4957 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4958 // Check if truncation ignores bits above MulWidth. 4959 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4960 if (TruncWidth > MulWidth) 4961 return nullptr; 4962 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4963 // Check if AND ignores bits above MulWidth. 4964 if (BO->getOpcode() != Instruction::And) 4965 return nullptr; 4966 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4967 const APInt &CVal = CI->getValue(); 4968 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4969 return nullptr; 4970 } else { 4971 // In this case we could have the operand of the binary operation 4972 // being defined in another block, and performing the replacement 4973 // could break the dominance relation. 4974 return nullptr; 4975 } 4976 } else { 4977 // Other uses prohibit this transformation. 4978 return nullptr; 4979 } 4980 } 4981 4982 // Recognize patterns 4983 switch (I.getPredicate()) { 4984 case ICmpInst::ICMP_EQ: 4985 case ICmpInst::ICMP_NE: 4986 // Recognize pattern: 4987 // mulval = mul(zext A, zext B) 4988 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4989 ConstantInt *CI; 4990 Value *ValToMask; 4991 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4992 if (ValToMask != MulVal) 4993 return nullptr; 4994 const APInt &CVal = CI->getValue() + 1; 4995 if (CVal.isPowerOf2()) { 4996 unsigned MaskWidth = CVal.logBase2(); 4997 if (MaskWidth == MulWidth) 4998 break; // Recognized 4999 } 5000 } 5001 return nullptr; 5002 5003 case ICmpInst::ICMP_UGT: 5004 // Recognize pattern: 5005 // mulval = mul(zext A, zext B) 5006 // cmp ugt mulval, max 5007 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5008 APInt MaxVal = APInt::getMaxValue(MulWidth); 5009 MaxVal = MaxVal.zext(CI->getBitWidth()); 5010 if (MaxVal.eq(CI->getValue())) 5011 break; // Recognized 5012 } 5013 return nullptr; 5014 5015 case ICmpInst::ICMP_UGE: 5016 // Recognize pattern: 5017 // mulval = mul(zext A, zext B) 5018 // cmp uge mulval, max+1 5019 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5020 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5021 if (MaxVal.eq(CI->getValue())) 5022 break; // Recognized 5023 } 5024 return nullptr; 5025 5026 case ICmpInst::ICMP_ULE: 5027 // Recognize pattern: 5028 // mulval = mul(zext A, zext B) 5029 // cmp ule mulval, max 5030 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5031 APInt MaxVal = APInt::getMaxValue(MulWidth); 5032 MaxVal = MaxVal.zext(CI->getBitWidth()); 5033 if (MaxVal.eq(CI->getValue())) 5034 break; // Recognized 5035 } 5036 return nullptr; 5037 5038 case ICmpInst::ICMP_ULT: 5039 // Recognize pattern: 5040 // mulval = mul(zext A, zext B) 5041 // cmp ule mulval, max + 1 5042 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5043 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5044 if (MaxVal.eq(CI->getValue())) 5045 break; // Recognized 5046 } 5047 return nullptr; 5048 5049 default: 5050 return nullptr; 5051 } 5052 5053 InstCombiner::BuilderTy &Builder = IC.Builder; 5054 Builder.SetInsertPoint(MulInstr); 5055 5056 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5057 Value *MulA = A, *MulB = B; 5058 if (WidthA < MulWidth) 5059 MulA = Builder.CreateZExt(A, MulType); 5060 if (WidthB < MulWidth) 5061 MulB = Builder.CreateZExt(B, MulType); 5062 Function *F = Intrinsic::getDeclaration( 5063 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5064 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5065 IC.addToWorklist(MulInstr); 5066 5067 // If there are uses of mul result other than the comparison, we know that 5068 // they are truncation or binary AND. Change them to use result of 5069 // mul.with.overflow and adjust properly mask/size. 5070 if (MulVal->hasNUsesOrMore(2)) { 5071 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5072 for (User *U : make_early_inc_range(MulVal->users())) { 5073 if (U == &I || U == OtherVal) 5074 continue; 5075 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5076 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5077 IC.replaceInstUsesWith(*TI, Mul); 5078 else 5079 TI->setOperand(0, Mul); 5080 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5081 assert(BO->getOpcode() == Instruction::And); 5082 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5083 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5084 APInt ShortMask = CI->getValue().trunc(MulWidth); 5085 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5086 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5087 IC.replaceInstUsesWith(*BO, Zext); 5088 } else { 5089 llvm_unreachable("Unexpected Binary operation"); 5090 } 5091 IC.addToWorklist(cast<Instruction>(U)); 5092 } 5093 } 5094 if (isa<Instruction>(OtherVal)) 5095 IC.addToWorklist(cast<Instruction>(OtherVal)); 5096 5097 // The original icmp gets replaced with the overflow value, maybe inverted 5098 // depending on predicate. 5099 bool Inverse = false; 5100 switch (I.getPredicate()) { 5101 case ICmpInst::ICMP_NE: 5102 break; 5103 case ICmpInst::ICMP_EQ: 5104 Inverse = true; 5105 break; 5106 case ICmpInst::ICMP_UGT: 5107 case ICmpInst::ICMP_UGE: 5108 if (I.getOperand(0) == MulVal) 5109 break; 5110 Inverse = true; 5111 break; 5112 case ICmpInst::ICMP_ULT: 5113 case ICmpInst::ICMP_ULE: 5114 if (I.getOperand(1) == MulVal) 5115 break; 5116 Inverse = true; 5117 break; 5118 default: 5119 llvm_unreachable("Unexpected predicate"); 5120 } 5121 if (Inverse) { 5122 Value *Res = Builder.CreateExtractValue(Call, 1); 5123 return BinaryOperator::CreateNot(Res); 5124 } 5125 5126 return ExtractValueInst::Create(Call, 1); 5127 } 5128 5129 /// When performing a comparison against a constant, it is possible that not all 5130 /// the bits in the LHS are demanded. This helper method computes the mask that 5131 /// IS demanded. 5132 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5133 const APInt *RHS; 5134 if (!match(I.getOperand(1), m_APInt(RHS))) 5135 return APInt::getAllOnes(BitWidth); 5136 5137 // If this is a normal comparison, it demands all bits. If it is a sign bit 5138 // comparison, it only demands the sign bit. 5139 bool UnusedBit; 5140 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5141 return APInt::getSignMask(BitWidth); 5142 5143 switch (I.getPredicate()) { 5144 // For a UGT comparison, we don't care about any bits that 5145 // correspond to the trailing ones of the comparand. The value of these 5146 // bits doesn't impact the outcome of the comparison, because any value 5147 // greater than the RHS must differ in a bit higher than these due to carry. 5148 case ICmpInst::ICMP_UGT: 5149 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5150 5151 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5152 // Any value less than the RHS must differ in a higher bit because of carries. 5153 case ICmpInst::ICMP_ULT: 5154 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5155 5156 default: 5157 return APInt::getAllOnes(BitWidth); 5158 } 5159 } 5160 5161 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5162 /// should be swapped. 5163 /// The decision is based on how many times these two operands are reused 5164 /// as subtract operands and their positions in those instructions. 5165 /// The rationale is that several architectures use the same instruction for 5166 /// both subtract and cmp. Thus, it is better if the order of those operands 5167 /// match. 5168 /// \return true if Op0 and Op1 should be swapped. 5169 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5170 // Filter out pointer values as those cannot appear directly in subtract. 5171 // FIXME: we may want to go through inttoptrs or bitcasts. 5172 if (Op0->getType()->isPointerTy()) 5173 return false; 5174 // If a subtract already has the same operands as a compare, swapping would be 5175 // bad. If a subtract has the same operands as a compare but in reverse order, 5176 // then swapping is good. 5177 int GoodToSwap = 0; 5178 for (const User *U : Op0->users()) { 5179 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5180 GoodToSwap++; 5181 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5182 GoodToSwap--; 5183 } 5184 return GoodToSwap > 0; 5185 } 5186 5187 /// Check that one use is in the same block as the definition and all 5188 /// other uses are in blocks dominated by a given block. 5189 /// 5190 /// \param DI Definition 5191 /// \param UI Use 5192 /// \param DB Block that must dominate all uses of \p DI outside 5193 /// the parent block 5194 /// \return true when \p UI is the only use of \p DI in the parent block 5195 /// and all other uses of \p DI are in blocks dominated by \p DB. 5196 /// 5197 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5198 const Instruction *UI, 5199 const BasicBlock *DB) const { 5200 assert(DI && UI && "Instruction not defined\n"); 5201 // Ignore incomplete definitions. 5202 if (!DI->getParent()) 5203 return false; 5204 // DI and UI must be in the same block. 5205 if (DI->getParent() != UI->getParent()) 5206 return false; 5207 // Protect from self-referencing blocks. 5208 if (DI->getParent() == DB) 5209 return false; 5210 for (const User *U : DI->users()) { 5211 auto *Usr = cast<Instruction>(U); 5212 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5213 return false; 5214 } 5215 return true; 5216 } 5217 5218 /// Return true when the instruction sequence within a block is select-cmp-br. 5219 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5220 const BasicBlock *BB = SI->getParent(); 5221 if (!BB) 5222 return false; 5223 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5224 if (!BI || BI->getNumSuccessors() != 2) 5225 return false; 5226 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5227 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5228 return false; 5229 return true; 5230 } 5231 5232 /// True when a select result is replaced by one of its operands 5233 /// in select-icmp sequence. This will eventually result in the elimination 5234 /// of the select. 5235 /// 5236 /// \param SI Select instruction 5237 /// \param Icmp Compare instruction 5238 /// \param SIOpd Operand that replaces the select 5239 /// 5240 /// Notes: 5241 /// - The replacement is global and requires dominator information 5242 /// - The caller is responsible for the actual replacement 5243 /// 5244 /// Example: 5245 /// 5246 /// entry: 5247 /// %4 = select i1 %3, %C* %0, %C* null 5248 /// %5 = icmp eq %C* %4, null 5249 /// br i1 %5, label %9, label %7 5250 /// ... 5251 /// ; <label>:7 ; preds = %entry 5252 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5253 /// ... 5254 /// 5255 /// can be transformed to 5256 /// 5257 /// %5 = icmp eq %C* %0, null 5258 /// %6 = select i1 %3, i1 %5, i1 true 5259 /// br i1 %6, label %9, label %7 5260 /// ... 5261 /// ; <label>:7 ; preds = %entry 5262 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5263 /// 5264 /// Similar when the first operand of the select is a constant or/and 5265 /// the compare is for not equal rather than equal. 5266 /// 5267 /// NOTE: The function is only called when the select and compare constants 5268 /// are equal, the optimization can work only for EQ predicates. This is not a 5269 /// major restriction since a NE compare should be 'normalized' to an equal 5270 /// compare, which usually happens in the combiner and test case 5271 /// select-cmp-br.ll checks for it. 5272 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5273 const ICmpInst *Icmp, 5274 const unsigned SIOpd) { 5275 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5276 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5277 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5278 // The check for the single predecessor is not the best that can be 5279 // done. But it protects efficiently against cases like when SI's 5280 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5281 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5282 // replaced can be reached on either path. So the uniqueness check 5283 // guarantees that the path all uses of SI (outside SI's parent) are on 5284 // is disjoint from all other paths out of SI. But that information 5285 // is more expensive to compute, and the trade-off here is in favor 5286 // of compile-time. It should also be noticed that we check for a single 5287 // predecessor and not only uniqueness. This to handle the situation when 5288 // Succ and Succ1 points to the same basic block. 5289 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5290 NumSel++; 5291 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5292 return true; 5293 } 5294 } 5295 return false; 5296 } 5297 5298 /// Try to fold the comparison based on range information we can get by checking 5299 /// whether bits are known to be zero or one in the inputs. 5300 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5301 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5302 Type *Ty = Op0->getType(); 5303 ICmpInst::Predicate Pred = I.getPredicate(); 5304 5305 // Get scalar or pointer size. 5306 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5307 ? Ty->getScalarSizeInBits() 5308 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5309 5310 if (!BitWidth) 5311 return nullptr; 5312 5313 KnownBits Op0Known(BitWidth); 5314 KnownBits Op1Known(BitWidth); 5315 5316 if (SimplifyDemandedBits(&I, 0, 5317 getDemandedBitsLHSMask(I, BitWidth), 5318 Op0Known, 0)) 5319 return &I; 5320 5321 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5322 return &I; 5323 5324 // Given the known and unknown bits, compute a range that the LHS could be 5325 // in. Compute the Min, Max and RHS values based on the known bits. For the 5326 // EQ and NE we use unsigned values. 5327 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5328 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5329 if (I.isSigned()) { 5330 Op0Min = Op0Known.getSignedMinValue(); 5331 Op0Max = Op0Known.getSignedMaxValue(); 5332 Op1Min = Op1Known.getSignedMinValue(); 5333 Op1Max = Op1Known.getSignedMaxValue(); 5334 } else { 5335 Op0Min = Op0Known.getMinValue(); 5336 Op0Max = Op0Known.getMaxValue(); 5337 Op1Min = Op1Known.getMinValue(); 5338 Op1Max = Op1Known.getMaxValue(); 5339 } 5340 5341 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5342 // out that the LHS or RHS is a constant. Constant fold this now, so that 5343 // code below can assume that Min != Max. 5344 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5345 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5346 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5347 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5348 5349 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5350 // min/max canonical compare with some other compare. That could lead to 5351 // conflict with select canonicalization and infinite looping. 5352 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5353 auto isMinMaxCmp = [&](Instruction &Cmp) { 5354 if (!Cmp.hasOneUse()) 5355 return false; 5356 Value *A, *B; 5357 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5358 if (!SelectPatternResult::isMinOrMax(SPF)) 5359 return false; 5360 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5361 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5362 }; 5363 if (!isMinMaxCmp(I)) { 5364 switch (Pred) { 5365 default: 5366 break; 5367 case ICmpInst::ICMP_ULT: { 5368 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5369 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5370 const APInt *CmpC; 5371 if (match(Op1, m_APInt(CmpC))) { 5372 // A <u C -> A == C-1 if min(A)+1 == C 5373 if (*CmpC == Op0Min + 1) 5374 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5375 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5376 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5377 // exceeds the log2 of C. 5378 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5379 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5380 Constant::getNullValue(Op1->getType())); 5381 } 5382 break; 5383 } 5384 case ICmpInst::ICMP_UGT: { 5385 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5386 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5387 const APInt *CmpC; 5388 if (match(Op1, m_APInt(CmpC))) { 5389 // A >u C -> A == C+1 if max(a)-1 == C 5390 if (*CmpC == Op0Max - 1) 5391 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5392 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5393 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5394 // exceeds the log2 of C. 5395 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5396 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5397 Constant::getNullValue(Op1->getType())); 5398 } 5399 break; 5400 } 5401 case ICmpInst::ICMP_SLT: { 5402 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5403 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5404 const APInt *CmpC; 5405 if (match(Op1, m_APInt(CmpC))) { 5406 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5407 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5408 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5409 } 5410 break; 5411 } 5412 case ICmpInst::ICMP_SGT: { 5413 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5414 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5415 const APInt *CmpC; 5416 if (match(Op1, m_APInt(CmpC))) { 5417 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5418 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5419 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5420 } 5421 break; 5422 } 5423 } 5424 } 5425 5426 // Based on the range information we know about the LHS, see if we can 5427 // simplify this comparison. For example, (x&4) < 8 is always true. 5428 switch (Pred) { 5429 default: 5430 llvm_unreachable("Unknown icmp opcode!"); 5431 case ICmpInst::ICMP_EQ: 5432 case ICmpInst::ICMP_NE: { 5433 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5434 return replaceInstUsesWith( 5435 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5436 5437 // If all bits are known zero except for one, then we know at most one bit 5438 // is set. If the comparison is against zero, then this is a check to see if 5439 // *that* bit is set. 5440 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5441 if (Op1Known.isZero()) { 5442 // If the LHS is an AND with the same constant, look through it. 5443 Value *LHS = nullptr; 5444 const APInt *LHSC; 5445 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5446 *LHSC != Op0KnownZeroInverted) 5447 LHS = Op0; 5448 5449 Value *X; 5450 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5451 APInt ValToCheck = Op0KnownZeroInverted; 5452 Type *XTy = X->getType(); 5453 if (ValToCheck.isPowerOf2()) { 5454 // ((1 << X) & 8) == 0 -> X != 3 5455 // ((1 << X) & 8) != 0 -> X == 3 5456 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5457 auto NewPred = ICmpInst::getInversePredicate(Pred); 5458 return new ICmpInst(NewPred, X, CmpC); 5459 } else if ((++ValToCheck).isPowerOf2()) { 5460 // ((1 << X) & 7) == 0 -> X >= 3 5461 // ((1 << X) & 7) != 0 -> X < 3 5462 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5463 auto NewPred = 5464 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5465 return new ICmpInst(NewPred, X, CmpC); 5466 } 5467 } 5468 5469 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5470 const APInt *CI; 5471 if (Op0KnownZeroInverted.isOne() && 5472 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5473 // ((8 >>u X) & 1) == 0 -> X != 3 5474 // ((8 >>u X) & 1) != 0 -> X == 3 5475 unsigned CmpVal = CI->countTrailingZeros(); 5476 auto NewPred = ICmpInst::getInversePredicate(Pred); 5477 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5478 } 5479 } 5480 break; 5481 } 5482 case ICmpInst::ICMP_ULT: { 5483 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5484 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5485 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5486 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5487 break; 5488 } 5489 case ICmpInst::ICMP_UGT: { 5490 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5491 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5492 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5493 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5494 break; 5495 } 5496 case ICmpInst::ICMP_SLT: { 5497 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5498 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5499 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5500 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5501 break; 5502 } 5503 case ICmpInst::ICMP_SGT: { 5504 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5505 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5506 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5507 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5508 break; 5509 } 5510 case ICmpInst::ICMP_SGE: 5511 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5512 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5513 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5514 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5515 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5516 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5517 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5518 break; 5519 case ICmpInst::ICMP_SLE: 5520 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5521 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5522 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5523 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5524 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5525 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5526 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5527 break; 5528 case ICmpInst::ICMP_UGE: 5529 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5530 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5531 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5532 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5533 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5534 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5535 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5536 break; 5537 case ICmpInst::ICMP_ULE: 5538 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5539 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5540 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5541 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5542 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5543 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5544 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5545 break; 5546 } 5547 5548 // Turn a signed comparison into an unsigned one if both operands are known to 5549 // have the same sign. 5550 if (I.isSigned() && 5551 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5552 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5553 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5554 5555 return nullptr; 5556 } 5557 5558 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5559 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5560 Constant *C) { 5561 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5562 "Only for relational integer predicates."); 5563 5564 Type *Type = C->getType(); 5565 bool IsSigned = ICmpInst::isSigned(Pred); 5566 5567 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5568 bool WillIncrement = 5569 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5570 5571 // Check if the constant operand can be safely incremented/decremented 5572 // without overflowing/underflowing. 5573 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5574 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5575 }; 5576 5577 Constant *SafeReplacementConstant = nullptr; 5578 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5579 // Bail out if the constant can't be safely incremented/decremented. 5580 if (!ConstantIsOk(CI)) 5581 return llvm::None; 5582 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5583 unsigned NumElts = FVTy->getNumElements(); 5584 for (unsigned i = 0; i != NumElts; ++i) { 5585 Constant *Elt = C->getAggregateElement(i); 5586 if (!Elt) 5587 return llvm::None; 5588 5589 if (isa<UndefValue>(Elt)) 5590 continue; 5591 5592 // Bail out if we can't determine if this constant is min/max or if we 5593 // know that this constant is min/max. 5594 auto *CI = dyn_cast<ConstantInt>(Elt); 5595 if (!CI || !ConstantIsOk(CI)) 5596 return llvm::None; 5597 5598 if (!SafeReplacementConstant) 5599 SafeReplacementConstant = CI; 5600 } 5601 } else { 5602 // ConstantExpr? 5603 return llvm::None; 5604 } 5605 5606 // It may not be safe to change a compare predicate in the presence of 5607 // undefined elements, so replace those elements with the first safe constant 5608 // that we found. 5609 // TODO: in case of poison, it is safe; let's replace undefs only. 5610 if (C->containsUndefOrPoisonElement()) { 5611 assert(SafeReplacementConstant && "Replacement constant not set"); 5612 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5613 } 5614 5615 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5616 5617 // Increment or decrement the constant. 5618 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5619 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5620 5621 return std::make_pair(NewPred, NewC); 5622 } 5623 5624 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5625 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5626 /// allows them to be folded in visitICmpInst. 5627 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5628 ICmpInst::Predicate Pred = I.getPredicate(); 5629 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5630 InstCombiner::isCanonicalPredicate(Pred)) 5631 return nullptr; 5632 5633 Value *Op0 = I.getOperand(0); 5634 Value *Op1 = I.getOperand(1); 5635 auto *Op1C = dyn_cast<Constant>(Op1); 5636 if (!Op1C) 5637 return nullptr; 5638 5639 auto FlippedStrictness = 5640 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5641 if (!FlippedStrictness) 5642 return nullptr; 5643 5644 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5645 } 5646 5647 /// If we have a comparison with a non-canonical predicate, if we can update 5648 /// all the users, invert the predicate and adjust all the users. 5649 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5650 // Is the predicate already canonical? 5651 CmpInst::Predicate Pred = I.getPredicate(); 5652 if (InstCombiner::isCanonicalPredicate(Pred)) 5653 return nullptr; 5654 5655 // Can all users be adjusted to predicate inversion? 5656 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5657 return nullptr; 5658 5659 // Ok, we can canonicalize comparison! 5660 // Let's first invert the comparison's predicate. 5661 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5662 I.setName(I.getName() + ".not"); 5663 5664 // And, adapt users. 5665 freelyInvertAllUsersOf(&I); 5666 5667 return &I; 5668 } 5669 5670 /// Integer compare with boolean values can always be turned into bitwise ops. 5671 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5672 InstCombiner::BuilderTy &Builder) { 5673 Value *A = I.getOperand(0), *B = I.getOperand(1); 5674 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5675 5676 // A boolean compared to true/false can be simplified to Op0/true/false in 5677 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5678 // Cases not handled by InstSimplify are always 'not' of Op0. 5679 if (match(B, m_Zero())) { 5680 switch (I.getPredicate()) { 5681 case CmpInst::ICMP_EQ: // A == 0 -> !A 5682 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5683 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5684 return BinaryOperator::CreateNot(A); 5685 default: 5686 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5687 } 5688 } else if (match(B, m_One())) { 5689 switch (I.getPredicate()) { 5690 case CmpInst::ICMP_NE: // A != 1 -> !A 5691 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5692 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5693 return BinaryOperator::CreateNot(A); 5694 default: 5695 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5696 } 5697 } 5698 5699 switch (I.getPredicate()) { 5700 default: 5701 llvm_unreachable("Invalid icmp instruction!"); 5702 case ICmpInst::ICMP_EQ: 5703 // icmp eq i1 A, B -> ~(A ^ B) 5704 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5705 5706 case ICmpInst::ICMP_NE: 5707 // icmp ne i1 A, B -> A ^ B 5708 return BinaryOperator::CreateXor(A, B); 5709 5710 case ICmpInst::ICMP_UGT: 5711 // icmp ugt -> icmp ult 5712 std::swap(A, B); 5713 LLVM_FALLTHROUGH; 5714 case ICmpInst::ICMP_ULT: 5715 // icmp ult i1 A, B -> ~A & B 5716 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5717 5718 case ICmpInst::ICMP_SGT: 5719 // icmp sgt -> icmp slt 5720 std::swap(A, B); 5721 LLVM_FALLTHROUGH; 5722 case ICmpInst::ICMP_SLT: 5723 // icmp slt i1 A, B -> A & ~B 5724 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5725 5726 case ICmpInst::ICMP_UGE: 5727 // icmp uge -> icmp ule 5728 std::swap(A, B); 5729 LLVM_FALLTHROUGH; 5730 case ICmpInst::ICMP_ULE: 5731 // icmp ule i1 A, B -> ~A | B 5732 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5733 5734 case ICmpInst::ICMP_SGE: 5735 // icmp sge -> icmp sle 5736 std::swap(A, B); 5737 LLVM_FALLTHROUGH; 5738 case ICmpInst::ICMP_SLE: 5739 // icmp sle i1 A, B -> A | ~B 5740 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5741 } 5742 } 5743 5744 // Transform pattern like: 5745 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5746 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5747 // Into: 5748 // (X l>> Y) != 0 5749 // (X l>> Y) == 0 5750 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5751 InstCombiner::BuilderTy &Builder) { 5752 ICmpInst::Predicate Pred, NewPred; 5753 Value *X, *Y; 5754 if (match(&Cmp, 5755 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5756 switch (Pred) { 5757 case ICmpInst::ICMP_ULE: 5758 NewPred = ICmpInst::ICMP_NE; 5759 break; 5760 case ICmpInst::ICMP_UGT: 5761 NewPred = ICmpInst::ICMP_EQ; 5762 break; 5763 default: 5764 return nullptr; 5765 } 5766 } else if (match(&Cmp, m_c_ICmp(Pred, 5767 m_OneUse(m_CombineOr( 5768 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5769 m_Add(m_Shl(m_One(), m_Value(Y)), 5770 m_AllOnes()))), 5771 m_Value(X)))) { 5772 // The variant with 'add' is not canonical, (the variant with 'not' is) 5773 // we only get it because it has extra uses, and can't be canonicalized, 5774 5775 switch (Pred) { 5776 case ICmpInst::ICMP_ULT: 5777 NewPred = ICmpInst::ICMP_NE; 5778 break; 5779 case ICmpInst::ICMP_UGE: 5780 NewPred = ICmpInst::ICMP_EQ; 5781 break; 5782 default: 5783 return nullptr; 5784 } 5785 } else 5786 return nullptr; 5787 5788 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5789 Constant *Zero = Constant::getNullValue(NewX->getType()); 5790 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5791 } 5792 5793 static Instruction *foldVectorCmp(CmpInst &Cmp, 5794 InstCombiner::BuilderTy &Builder) { 5795 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5796 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5797 Value *V1, *V2; 5798 ArrayRef<int> M; 5799 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5800 return nullptr; 5801 5802 // If both arguments of the cmp are shuffles that use the same mask and 5803 // shuffle within a single vector, move the shuffle after the cmp: 5804 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5805 Type *V1Ty = V1->getType(); 5806 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5807 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5808 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5809 return new ShuffleVectorInst(NewCmp, M); 5810 } 5811 5812 // Try to canonicalize compare with splatted operand and splat constant. 5813 // TODO: We could generalize this for more than splats. See/use the code in 5814 // InstCombiner::foldVectorBinop(). 5815 Constant *C; 5816 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5817 return nullptr; 5818 5819 // Length-changing splats are ok, so adjust the constants as needed: 5820 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5821 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5822 int MaskSplatIndex; 5823 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5824 // We allow undefs in matching, but this transform removes those for safety. 5825 // Demanded elements analysis should be able to recover some/all of that. 5826 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5827 ScalarC); 5828 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5829 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5830 return new ShuffleVectorInst(NewCmp, NewM); 5831 } 5832 5833 return nullptr; 5834 } 5835 5836 // extract(uadd.with.overflow(A, B), 0) ult A 5837 // -> extract(uadd.with.overflow(A, B), 1) 5838 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5839 CmpInst::Predicate Pred = I.getPredicate(); 5840 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5841 5842 Value *UAddOv; 5843 Value *A, *B; 5844 auto UAddOvResultPat = m_ExtractValue<0>( 5845 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5846 if (match(Op0, UAddOvResultPat) && 5847 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5848 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5849 (match(A, m_One()) || match(B, m_One()))) || 5850 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5851 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5852 // extract(uadd.with.overflow(A, B), 0) < A 5853 // extract(uadd.with.overflow(A, 1), 0) == 0 5854 // extract(uadd.with.overflow(A, -1), 0) != -1 5855 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5856 else if (match(Op1, UAddOvResultPat) && 5857 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5858 // A > extract(uadd.with.overflow(A, B), 0) 5859 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5860 else 5861 return nullptr; 5862 5863 return ExtractValueInst::Create(UAddOv, 1); 5864 } 5865 5866 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5867 if (!I.getOperand(0)->getType()->isPointerTy() || 5868 NullPointerIsDefined( 5869 I.getParent()->getParent(), 5870 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5871 return nullptr; 5872 } 5873 Instruction *Op; 5874 if (match(I.getOperand(0), m_Instruction(Op)) && 5875 match(I.getOperand(1), m_Zero()) && 5876 Op->isLaunderOrStripInvariantGroup()) { 5877 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5878 Op->getOperand(0), I.getOperand(1)); 5879 } 5880 return nullptr; 5881 } 5882 5883 /// This function folds patterns produced by lowering of reduce idioms, such as 5884 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 5885 /// attempts to generate fewer number of scalar comparisons instead of vector 5886 /// comparisons when possible. 5887 static Instruction *foldReductionIdiom(ICmpInst &I, 5888 InstCombiner::BuilderTy &Builder, 5889 const DataLayout &DL) { 5890 if (I.getType()->isVectorTy()) 5891 return nullptr; 5892 ICmpInst::Predicate OuterPred, InnerPred; 5893 Value *LHS, *RHS; 5894 5895 // Match lowering of @llvm.vector.reduce.and. Turn 5896 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 5897 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 5898 /// %res = icmp <pred> i8 %scalar_ne, 0 5899 /// 5900 /// into 5901 /// 5902 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 5903 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 5904 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 5905 /// 5906 /// for <pred> in {ne, eq}. 5907 if (!match(&I, m_ICmp(OuterPred, 5908 m_OneUse(m_BitCast(m_OneUse( 5909 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 5910 m_Zero()))) 5911 return nullptr; 5912 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 5913 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 5914 return nullptr; 5915 unsigned NumBits = 5916 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 5917 // TODO: Relax this to "not wider than max legal integer type"? 5918 if (!DL.isLegalInteger(NumBits)) 5919 return nullptr; 5920 5921 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 5922 auto *ScalarTy = Builder.getIntNTy(NumBits); 5923 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 5924 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 5925 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 5926 I.getName()); 5927 } 5928 5929 return nullptr; 5930 } 5931 5932 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5933 bool Changed = false; 5934 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5935 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5936 unsigned Op0Cplxity = getComplexity(Op0); 5937 unsigned Op1Cplxity = getComplexity(Op1); 5938 5939 /// Orders the operands of the compare so that they are listed from most 5940 /// complex to least complex. This puts constants before unary operators, 5941 /// before binary operators. 5942 if (Op0Cplxity < Op1Cplxity || 5943 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5944 I.swapOperands(); 5945 std::swap(Op0, Op1); 5946 Changed = true; 5947 } 5948 5949 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5950 return replaceInstUsesWith(I, V); 5951 5952 // Comparing -val or val with non-zero is the same as just comparing val 5953 // ie, abs(val) != 0 -> val != 0 5954 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5955 Value *Cond, *SelectTrue, *SelectFalse; 5956 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5957 m_Value(SelectFalse)))) { 5958 if (Value *V = dyn_castNegVal(SelectTrue)) { 5959 if (V == SelectFalse) 5960 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5961 } 5962 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5963 if (V == SelectTrue) 5964 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5965 } 5966 } 5967 } 5968 5969 if (Op0->getType()->isIntOrIntVectorTy(1)) 5970 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5971 return Res; 5972 5973 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5974 return Res; 5975 5976 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5977 return Res; 5978 5979 if (Instruction *Res = foldICmpWithConstant(I)) 5980 return Res; 5981 5982 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5983 return Res; 5984 5985 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5986 return Res; 5987 5988 // Test if the ICmpInst instruction is used exclusively by a select as 5989 // part of a minimum or maximum operation. If so, refrain from doing 5990 // any other folding. This helps out other analyses which understand 5991 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5992 // and CodeGen. And in this case, at least one of the comparison 5993 // operands has at least one user besides the compare (the select), 5994 // which would often largely negate the benefit of folding anyway. 5995 // 5996 // Do the same for the other patterns recognized by matchSelectPattern. 5997 if (I.hasOneUse()) 5998 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5999 Value *A, *B; 6000 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6001 if (SPR.Flavor != SPF_UNKNOWN) 6002 return nullptr; 6003 } 6004 6005 // Do this after checking for min/max to prevent infinite looping. 6006 if (Instruction *Res = foldICmpWithZero(I)) 6007 return Res; 6008 6009 // FIXME: We only do this after checking for min/max to prevent infinite 6010 // looping caused by a reverse canonicalization of these patterns for min/max. 6011 // FIXME: The organization of folds is a mess. These would naturally go into 6012 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6013 // down here after the min/max restriction. 6014 ICmpInst::Predicate Pred = I.getPredicate(); 6015 const APInt *C; 6016 if (match(Op1, m_APInt(C))) { 6017 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6018 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6019 Constant *Zero = Constant::getNullValue(Op0->getType()); 6020 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6021 } 6022 6023 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6024 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6025 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6026 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6027 } 6028 } 6029 6030 // The folds in here may rely on wrapping flags and special constants, so 6031 // they can break up min/max idioms in some cases but not seemingly similar 6032 // patterns. 6033 // FIXME: It may be possible to enhance select folding to make this 6034 // unnecessary. It may also be moot if we canonicalize to min/max 6035 // intrinsics. 6036 if (Instruction *Res = foldICmpBinOp(I, Q)) 6037 return Res; 6038 6039 if (Instruction *Res = foldICmpInstWithConstant(I)) 6040 return Res; 6041 6042 // Try to match comparison as a sign bit test. Intentionally do this after 6043 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6044 if (Instruction *New = foldSignBitTest(I)) 6045 return New; 6046 6047 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6048 return Res; 6049 6050 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6051 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6052 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6053 return NI; 6054 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6055 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6056 return NI; 6057 6058 // Try to optimize equality comparisons against alloca-based pointers. 6059 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6060 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6061 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6062 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6063 return New; 6064 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6065 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6066 return New; 6067 } 6068 6069 if (Instruction *Res = foldICmpBitCast(I)) 6070 return Res; 6071 6072 // TODO: Hoist this above the min/max bailout. 6073 if (Instruction *R = foldICmpWithCastOp(I)) 6074 return R; 6075 6076 if (Instruction *Res = foldICmpWithMinMax(I)) 6077 return Res; 6078 6079 { 6080 Value *A, *B; 6081 // Transform (A & ~B) == 0 --> (A & B) != 0 6082 // and (A & ~B) != 0 --> (A & B) == 0 6083 // if A is a power of 2. 6084 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6085 match(Op1, m_Zero()) && 6086 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6087 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6088 Op1); 6089 6090 // ~X < ~Y --> Y < X 6091 // ~X < C --> X > ~C 6092 if (match(Op0, m_Not(m_Value(A)))) { 6093 if (match(Op1, m_Not(m_Value(B)))) 6094 return new ICmpInst(I.getPredicate(), B, A); 6095 6096 const APInt *C; 6097 if (match(Op1, m_APInt(C))) 6098 return new ICmpInst(I.getSwappedPredicate(), A, 6099 ConstantInt::get(Op1->getType(), ~(*C))); 6100 } 6101 6102 Instruction *AddI = nullptr; 6103 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6104 m_Instruction(AddI))) && 6105 isa<IntegerType>(A->getType())) { 6106 Value *Result; 6107 Constant *Overflow; 6108 // m_UAddWithOverflow can match patterns that do not include an explicit 6109 // "add" instruction, so check the opcode of the matched op. 6110 if (AddI->getOpcode() == Instruction::Add && 6111 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6112 Result, Overflow)) { 6113 replaceInstUsesWith(*AddI, Result); 6114 eraseInstFromFunction(*AddI); 6115 return replaceInstUsesWith(I, Overflow); 6116 } 6117 } 6118 6119 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6120 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6121 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6122 return R; 6123 } 6124 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6125 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6126 return R; 6127 } 6128 } 6129 6130 if (Instruction *Res = foldICmpEquality(I)) 6131 return Res; 6132 6133 if (Instruction *Res = foldICmpOfUAddOv(I)) 6134 return Res; 6135 6136 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6137 // an i1 which indicates whether or not we successfully did the swap. 6138 // 6139 // Replace comparisons between the old value and the expected value with the 6140 // indicator that 'cmpxchg' returns. 6141 // 6142 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6143 // spuriously fail. In those cases, the old value may equal the expected 6144 // value but it is possible for the swap to not occur. 6145 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6146 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6147 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6148 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6149 !ACXI->isWeak()) 6150 return ExtractValueInst::Create(ACXI, 1); 6151 6152 { 6153 Value *X; 6154 const APInt *C; 6155 // icmp X+Cst, X 6156 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6157 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6158 6159 // icmp X, X+Cst 6160 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6161 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6162 } 6163 6164 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6165 return Res; 6166 6167 if (I.getType()->isVectorTy()) 6168 if (Instruction *Res = foldVectorCmp(I, Builder)) 6169 return Res; 6170 6171 if (Instruction *Res = foldICmpInvariantGroup(I)) 6172 return Res; 6173 6174 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 6175 return Res; 6176 6177 return Changed ? &I : nullptr; 6178 } 6179 6180 /// Fold fcmp ([us]itofp x, cst) if possible. 6181 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6182 Instruction *LHSI, 6183 Constant *RHSC) { 6184 if (!isa<ConstantFP>(RHSC)) return nullptr; 6185 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6186 6187 // Get the width of the mantissa. We don't want to hack on conversions that 6188 // might lose information from the integer, e.g. "i64 -> float" 6189 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6190 if (MantissaWidth == -1) return nullptr; // Unknown. 6191 6192 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6193 6194 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6195 6196 if (I.isEquality()) { 6197 FCmpInst::Predicate P = I.getPredicate(); 6198 bool IsExact = false; 6199 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6200 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6201 6202 // If the floating point constant isn't an integer value, we know if we will 6203 // ever compare equal / not equal to it. 6204 if (!IsExact) { 6205 // TODO: Can never be -0.0 and other non-representable values 6206 APFloat RHSRoundInt(RHS); 6207 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6208 if (RHS != RHSRoundInt) { 6209 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6210 return replaceInstUsesWith(I, Builder.getFalse()); 6211 6212 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6213 return replaceInstUsesWith(I, Builder.getTrue()); 6214 } 6215 } 6216 6217 // TODO: If the constant is exactly representable, is it always OK to do 6218 // equality compares as integer? 6219 } 6220 6221 // Check to see that the input is converted from an integer type that is small 6222 // enough that preserves all bits. TODO: check here for "known" sign bits. 6223 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6224 unsigned InputSize = IntTy->getScalarSizeInBits(); 6225 6226 // Following test does NOT adjust InputSize downwards for signed inputs, 6227 // because the most negative value still requires all the mantissa bits 6228 // to distinguish it from one less than that value. 6229 if ((int)InputSize > MantissaWidth) { 6230 // Conversion would lose accuracy. Check if loss can impact comparison. 6231 int Exp = ilogb(RHS); 6232 if (Exp == APFloat::IEK_Inf) { 6233 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6234 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6235 // Conversion could create infinity. 6236 return nullptr; 6237 } else { 6238 // Note that if RHS is zero or NaN, then Exp is negative 6239 // and first condition is trivially false. 6240 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6241 // Conversion could affect comparison. 6242 return nullptr; 6243 } 6244 } 6245 6246 // Otherwise, we can potentially simplify the comparison. We know that it 6247 // will always come through as an integer value and we know the constant is 6248 // not a NAN (it would have been previously simplified). 6249 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6250 6251 ICmpInst::Predicate Pred; 6252 switch (I.getPredicate()) { 6253 default: llvm_unreachable("Unexpected predicate!"); 6254 case FCmpInst::FCMP_UEQ: 6255 case FCmpInst::FCMP_OEQ: 6256 Pred = ICmpInst::ICMP_EQ; 6257 break; 6258 case FCmpInst::FCMP_UGT: 6259 case FCmpInst::FCMP_OGT: 6260 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6261 break; 6262 case FCmpInst::FCMP_UGE: 6263 case FCmpInst::FCMP_OGE: 6264 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6265 break; 6266 case FCmpInst::FCMP_ULT: 6267 case FCmpInst::FCMP_OLT: 6268 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6269 break; 6270 case FCmpInst::FCMP_ULE: 6271 case FCmpInst::FCMP_OLE: 6272 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6273 break; 6274 case FCmpInst::FCMP_UNE: 6275 case FCmpInst::FCMP_ONE: 6276 Pred = ICmpInst::ICMP_NE; 6277 break; 6278 case FCmpInst::FCMP_ORD: 6279 return replaceInstUsesWith(I, Builder.getTrue()); 6280 case FCmpInst::FCMP_UNO: 6281 return replaceInstUsesWith(I, Builder.getFalse()); 6282 } 6283 6284 // Now we know that the APFloat is a normal number, zero or inf. 6285 6286 // See if the FP constant is too large for the integer. For example, 6287 // comparing an i8 to 300.0. 6288 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6289 6290 if (!LHSUnsigned) { 6291 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6292 // and large values. 6293 APFloat SMax(RHS.getSemantics()); 6294 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6295 APFloat::rmNearestTiesToEven); 6296 if (SMax < RHS) { // smax < 13123.0 6297 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6298 Pred == ICmpInst::ICMP_SLE) 6299 return replaceInstUsesWith(I, Builder.getTrue()); 6300 return replaceInstUsesWith(I, Builder.getFalse()); 6301 } 6302 } else { 6303 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6304 // +INF and large values. 6305 APFloat UMax(RHS.getSemantics()); 6306 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6307 APFloat::rmNearestTiesToEven); 6308 if (UMax < RHS) { // umax < 13123.0 6309 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6310 Pred == ICmpInst::ICMP_ULE) 6311 return replaceInstUsesWith(I, Builder.getTrue()); 6312 return replaceInstUsesWith(I, Builder.getFalse()); 6313 } 6314 } 6315 6316 if (!LHSUnsigned) { 6317 // See if the RHS value is < SignedMin. 6318 APFloat SMin(RHS.getSemantics()); 6319 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6320 APFloat::rmNearestTiesToEven); 6321 if (SMin > RHS) { // smin > 12312.0 6322 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6323 Pred == ICmpInst::ICMP_SGE) 6324 return replaceInstUsesWith(I, Builder.getTrue()); 6325 return replaceInstUsesWith(I, Builder.getFalse()); 6326 } 6327 } else { 6328 // See if the RHS value is < UnsignedMin. 6329 APFloat UMin(RHS.getSemantics()); 6330 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6331 APFloat::rmNearestTiesToEven); 6332 if (UMin > RHS) { // umin > 12312.0 6333 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6334 Pred == ICmpInst::ICMP_UGE) 6335 return replaceInstUsesWith(I, Builder.getTrue()); 6336 return replaceInstUsesWith(I, Builder.getFalse()); 6337 } 6338 } 6339 6340 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6341 // [0, UMAX], but it may still be fractional. See if it is fractional by 6342 // casting the FP value to the integer value and back, checking for equality. 6343 // Don't do this for zero, because -0.0 is not fractional. 6344 Constant *RHSInt = LHSUnsigned 6345 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6346 : ConstantExpr::getFPToSI(RHSC, IntTy); 6347 if (!RHS.isZero()) { 6348 bool Equal = LHSUnsigned 6349 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6350 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6351 if (!Equal) { 6352 // If we had a comparison against a fractional value, we have to adjust 6353 // the compare predicate and sometimes the value. RHSC is rounded towards 6354 // zero at this point. 6355 switch (Pred) { 6356 default: llvm_unreachable("Unexpected integer comparison!"); 6357 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6358 return replaceInstUsesWith(I, Builder.getTrue()); 6359 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6360 return replaceInstUsesWith(I, Builder.getFalse()); 6361 case ICmpInst::ICMP_ULE: 6362 // (float)int <= 4.4 --> int <= 4 6363 // (float)int <= -4.4 --> false 6364 if (RHS.isNegative()) 6365 return replaceInstUsesWith(I, Builder.getFalse()); 6366 break; 6367 case ICmpInst::ICMP_SLE: 6368 // (float)int <= 4.4 --> int <= 4 6369 // (float)int <= -4.4 --> int < -4 6370 if (RHS.isNegative()) 6371 Pred = ICmpInst::ICMP_SLT; 6372 break; 6373 case ICmpInst::ICMP_ULT: 6374 // (float)int < -4.4 --> false 6375 // (float)int < 4.4 --> int <= 4 6376 if (RHS.isNegative()) 6377 return replaceInstUsesWith(I, Builder.getFalse()); 6378 Pred = ICmpInst::ICMP_ULE; 6379 break; 6380 case ICmpInst::ICMP_SLT: 6381 // (float)int < -4.4 --> int < -4 6382 // (float)int < 4.4 --> int <= 4 6383 if (!RHS.isNegative()) 6384 Pred = ICmpInst::ICMP_SLE; 6385 break; 6386 case ICmpInst::ICMP_UGT: 6387 // (float)int > 4.4 --> int > 4 6388 // (float)int > -4.4 --> true 6389 if (RHS.isNegative()) 6390 return replaceInstUsesWith(I, Builder.getTrue()); 6391 break; 6392 case ICmpInst::ICMP_SGT: 6393 // (float)int > 4.4 --> int > 4 6394 // (float)int > -4.4 --> int >= -4 6395 if (RHS.isNegative()) 6396 Pred = ICmpInst::ICMP_SGE; 6397 break; 6398 case ICmpInst::ICMP_UGE: 6399 // (float)int >= -4.4 --> true 6400 // (float)int >= 4.4 --> int > 4 6401 if (RHS.isNegative()) 6402 return replaceInstUsesWith(I, Builder.getTrue()); 6403 Pred = ICmpInst::ICMP_UGT; 6404 break; 6405 case ICmpInst::ICMP_SGE: 6406 // (float)int >= -4.4 --> int >= -4 6407 // (float)int >= 4.4 --> int > 4 6408 if (!RHS.isNegative()) 6409 Pred = ICmpInst::ICMP_SGT; 6410 break; 6411 } 6412 } 6413 } 6414 6415 // Lower this FP comparison into an appropriate integer version of the 6416 // comparison. 6417 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6418 } 6419 6420 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6421 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6422 Constant *RHSC) { 6423 // When C is not 0.0 and infinities are not allowed: 6424 // (C / X) < 0.0 is a sign-bit test of X 6425 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6426 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6427 // 6428 // Proof: 6429 // Multiply (C / X) < 0.0 by X * X / C. 6430 // - X is non zero, if it is the flag 'ninf' is violated. 6431 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6432 // the predicate. C is also non zero by definition. 6433 // 6434 // Thus X * X / C is non zero and the transformation is valid. [qed] 6435 6436 FCmpInst::Predicate Pred = I.getPredicate(); 6437 6438 // Check that predicates are valid. 6439 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6440 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6441 return nullptr; 6442 6443 // Check that RHS operand is zero. 6444 if (!match(RHSC, m_AnyZeroFP())) 6445 return nullptr; 6446 6447 // Check fastmath flags ('ninf'). 6448 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6449 return nullptr; 6450 6451 // Check the properties of the dividend. It must not be zero to avoid a 6452 // division by zero (see Proof). 6453 const APFloat *C; 6454 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6455 return nullptr; 6456 6457 if (C->isZero()) 6458 return nullptr; 6459 6460 // Get swapped predicate if necessary. 6461 if (C->isNegative()) 6462 Pred = I.getSwappedPredicate(); 6463 6464 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6465 } 6466 6467 /// Optimize fabs(X) compared with zero. 6468 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6469 Value *X; 6470 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6471 !match(I.getOperand(1), m_PosZeroFP())) 6472 return nullptr; 6473 6474 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6475 I->setPredicate(P); 6476 return IC.replaceOperand(*I, 0, X); 6477 }; 6478 6479 switch (I.getPredicate()) { 6480 case FCmpInst::FCMP_UGE: 6481 case FCmpInst::FCMP_OLT: 6482 // fabs(X) >= 0.0 --> true 6483 // fabs(X) < 0.0 --> false 6484 llvm_unreachable("fcmp should have simplified"); 6485 6486 case FCmpInst::FCMP_OGT: 6487 // fabs(X) > 0.0 --> X != 0.0 6488 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6489 6490 case FCmpInst::FCMP_UGT: 6491 // fabs(X) u> 0.0 --> X u!= 0.0 6492 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6493 6494 case FCmpInst::FCMP_OLE: 6495 // fabs(X) <= 0.0 --> X == 0.0 6496 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6497 6498 case FCmpInst::FCMP_ULE: 6499 // fabs(X) u<= 0.0 --> X u== 0.0 6500 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6501 6502 case FCmpInst::FCMP_OGE: 6503 // fabs(X) >= 0.0 --> !isnan(X) 6504 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6505 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6506 6507 case FCmpInst::FCMP_ULT: 6508 // fabs(X) u< 0.0 --> isnan(X) 6509 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6510 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6511 6512 case FCmpInst::FCMP_OEQ: 6513 case FCmpInst::FCMP_UEQ: 6514 case FCmpInst::FCMP_ONE: 6515 case FCmpInst::FCMP_UNE: 6516 case FCmpInst::FCMP_ORD: 6517 case FCmpInst::FCMP_UNO: 6518 // Look through the fabs() because it doesn't change anything but the sign. 6519 // fabs(X) == 0.0 --> X == 0.0, 6520 // fabs(X) != 0.0 --> X != 0.0 6521 // isnan(fabs(X)) --> isnan(X) 6522 // !isnan(fabs(X) --> !isnan(X) 6523 return replacePredAndOp0(&I, I.getPredicate(), X); 6524 6525 default: 6526 return nullptr; 6527 } 6528 } 6529 6530 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6531 bool Changed = false; 6532 6533 /// Orders the operands of the compare so that they are listed from most 6534 /// complex to least complex. This puts constants before unary operators, 6535 /// before binary operators. 6536 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6537 I.swapOperands(); 6538 Changed = true; 6539 } 6540 6541 const CmpInst::Predicate Pred = I.getPredicate(); 6542 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6543 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6544 SQ.getWithInstruction(&I))) 6545 return replaceInstUsesWith(I, V); 6546 6547 // Simplify 'fcmp pred X, X' 6548 Type *OpType = Op0->getType(); 6549 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6550 if (Op0 == Op1) { 6551 switch (Pred) { 6552 default: break; 6553 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6554 case FCmpInst::FCMP_ULT: // True if unordered or less than 6555 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6556 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6557 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6558 I.setPredicate(FCmpInst::FCMP_UNO); 6559 I.setOperand(1, Constant::getNullValue(OpType)); 6560 return &I; 6561 6562 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6563 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6564 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6565 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6566 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6567 I.setPredicate(FCmpInst::FCMP_ORD); 6568 I.setOperand(1, Constant::getNullValue(OpType)); 6569 return &I; 6570 } 6571 } 6572 6573 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6574 // then canonicalize the operand to 0.0. 6575 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6576 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6577 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6578 6579 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6580 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6581 } 6582 6583 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6584 Value *X, *Y; 6585 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6586 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6587 6588 // Test if the FCmpInst instruction is used exclusively by a select as 6589 // part of a minimum or maximum operation. If so, refrain from doing 6590 // any other folding. This helps out other analyses which understand 6591 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6592 // and CodeGen. And in this case, at least one of the comparison 6593 // operands has at least one user besides the compare (the select), 6594 // which would often largely negate the benefit of folding anyway. 6595 if (I.hasOneUse()) 6596 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6597 Value *A, *B; 6598 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6599 if (SPR.Flavor != SPF_UNKNOWN) 6600 return nullptr; 6601 } 6602 6603 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6604 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6605 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6606 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6607 6608 // Handle fcmp with instruction LHS and constant RHS. 6609 Instruction *LHSI; 6610 Constant *RHSC; 6611 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6612 switch (LHSI->getOpcode()) { 6613 case Instruction::PHI: 6614 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6615 // block. If in the same block, we're encouraging jump threading. If 6616 // not, we are just pessimizing the code by making an i1 phi. 6617 if (LHSI->getParent() == I.getParent()) 6618 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6619 return NV; 6620 break; 6621 case Instruction::SIToFP: 6622 case Instruction::UIToFP: 6623 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6624 return NV; 6625 break; 6626 case Instruction::FDiv: 6627 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6628 return NV; 6629 break; 6630 case Instruction::Load: 6631 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6632 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6633 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 6634 cast<LoadInst>(LHSI), GEP, GV, I)) 6635 return Res; 6636 break; 6637 } 6638 } 6639 6640 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6641 return R; 6642 6643 if (match(Op0, m_FNeg(m_Value(X)))) { 6644 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6645 Constant *C; 6646 if (match(Op1, m_Constant(C))) { 6647 Constant *NegC = ConstantExpr::getFNeg(C); 6648 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6649 } 6650 } 6651 6652 if (match(Op0, m_FPExt(m_Value(X)))) { 6653 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6654 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6655 return new FCmpInst(Pred, X, Y, "", &I); 6656 6657 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6658 const APFloat *C; 6659 if (match(Op1, m_APFloat(C))) { 6660 const fltSemantics &FPSem = 6661 X->getType()->getScalarType()->getFltSemantics(); 6662 bool Lossy; 6663 APFloat TruncC = *C; 6664 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6665 6666 // Avoid lossy conversions and denormals. 6667 // Zero is a special case that's OK to convert. 6668 APFloat Fabs = TruncC; 6669 Fabs.clearSign(); 6670 if (!Lossy && 6671 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6672 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6673 return new FCmpInst(Pred, X, NewC, "", &I); 6674 } 6675 } 6676 } 6677 6678 // Convert a sign-bit test of an FP value into a cast and integer compare. 6679 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6680 // TODO: Handle non-zero compare constants. 6681 // TODO: Handle other predicates. 6682 const APFloat *C; 6683 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6684 m_Value(X)))) && 6685 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6686 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6687 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6688 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6689 6690 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6691 if (Pred == FCmpInst::FCMP_OLT) { 6692 Value *IntX = Builder.CreateBitCast(X, IntType); 6693 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6694 ConstantInt::getNullValue(IntType)); 6695 } 6696 } 6697 6698 if (I.getType()->isVectorTy()) 6699 if (Instruction *Res = foldVectorCmp(I, Builder)) 6700 return Res; 6701 6702 return Changed ? &I : nullptr; 6703 } 6704