1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isNullValue())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOneValue()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnesValue()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// Given a signed integer type and a set of known zero and one bits, compute
99 /// the maximum and minimum values that could have the specified known zero and
100 /// known one bits, returning them in Min/Max.
101 /// TODO: Move to method on KnownBits struct?
102 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
103                                                    APInt &Min, APInt &Max) {
104   assert(Known.getBitWidth() == Min.getBitWidth() &&
105          Known.getBitWidth() == Max.getBitWidth() &&
106          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
107   APInt UnknownBits = ~(Known.Zero|Known.One);
108 
109   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
110   // bit if it is unknown.
111   Min = Known.One;
112   Max = Known.One|UnknownBits;
113 
114   if (UnknownBits.isNegative()) { // Sign bit is unknown
115     Min.setSignBit();
116     Max.clearSignBit();
117   }
118 }
119 
120 /// Given an unsigned integer type and a set of known zero and one bits, compute
121 /// the maximum and minimum values that could have the specified known zero and
122 /// known one bits, returning them in Min/Max.
123 /// TODO: Move to method on KnownBits struct?
124 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
125                                                      APInt &Min, APInt &Max) {
126   assert(Known.getBitWidth() == Min.getBitWidth() &&
127          Known.getBitWidth() == Max.getBitWidth() &&
128          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
129   APInt UnknownBits = ~(Known.Zero|Known.One);
130 
131   // The minimum value is when the unknown bits are all zeros.
132   Min = Known.One;
133   // The maximum value is when the unknown bits are all ones.
134   Max = Known.One|UnknownBits;
135 }
136 
137 /// This is called when we see this pattern:
138 ///   cmp pred (load (gep GV, ...)), cmpcst
139 /// where GV is a global variable with a constant initializer. Try to simplify
140 /// this into some simple computation that does not need the load. For example
141 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
142 ///
143 /// If AndCst is non-null, then the loaded value is masked with that constant
144 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
145 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
146                                                         GlobalVariable *GV,
147                                                         CmpInst &ICI,
148                                                         ConstantInt *AndCst) {
149   Constant *Init = GV->getInitializer();
150   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
151     return nullptr;
152 
153   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
154   // Don't blow up on huge arrays.
155   if (ArrayElementCount > MaxArraySizeForCombine)
156     return nullptr;
157 
158   // There are many forms of this optimization we can handle, for now, just do
159   // the simple index into a single-dimensional array.
160   //
161   // Require: GEP GV, 0, i {{, constant indices}}
162   if (GEP->getNumOperands() < 3 ||
163       !isa<ConstantInt>(GEP->getOperand(1)) ||
164       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
165       isa<Constant>(GEP->getOperand(2)))
166     return nullptr;
167 
168   // Check that indices after the variable are constants and in-range for the
169   // type they index.  Collect the indices.  This is typically for arrays of
170   // structs.
171   SmallVector<unsigned, 4> LaterIndices;
172 
173   Type *EltTy = Init->getType()->getArrayElementType();
174   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
175     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
176     if (!Idx) return nullptr;  // Variable index.
177 
178     uint64_t IdxVal = Idx->getZExtValue();
179     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
180 
181     if (StructType *STy = dyn_cast<StructType>(EltTy))
182       EltTy = STy->getElementType(IdxVal);
183     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
184       if (IdxVal >= ATy->getNumElements()) return nullptr;
185       EltTy = ATy->getElementType();
186     } else {
187       return nullptr; // Unknown type.
188     }
189 
190     LaterIndices.push_back(IdxVal);
191   }
192 
193   enum { Overdefined = -3, Undefined = -2 };
194 
195   // Variables for our state machines.
196 
197   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
198   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
199   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
200   // undefined, otherwise set to the first true element.  SecondTrueElement is
201   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
202   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
203 
204   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
205   // form "i != 47 & i != 87".  Same state transitions as for true elements.
206   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
207 
208   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
209   /// define a state machine that triggers for ranges of values that the index
210   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
211   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
212   /// index in the range (inclusive).  We use -2 for undefined here because we
213   /// use relative comparisons and don't want 0-1 to match -1.
214   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
215 
216   // MagicBitvector - This is a magic bitvector where we set a bit if the
217   // comparison is true for element 'i'.  If there are 64 elements or less in
218   // the array, this will fully represent all the comparison results.
219   uint64_t MagicBitvector = 0;
220 
221   // Scan the array and see if one of our patterns matches.
222   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
223   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
224     Constant *Elt = Init->getAggregateElement(i);
225     if (!Elt) return nullptr;
226 
227     // If this is indexing an array of structures, get the structure element.
228     if (!LaterIndices.empty())
229       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
230 
231     // If the element is masked, handle it.
232     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
233 
234     // Find out if the comparison would be true or false for the i'th element.
235     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
236                                                   CompareRHS, DL, &TLI);
237     // If the result is undef for this element, ignore it.
238     if (isa<UndefValue>(C)) {
239       // Extend range state machines to cover this element in case there is an
240       // undef in the middle of the range.
241       if (TrueRangeEnd == (int)i-1)
242         TrueRangeEnd = i;
243       if (FalseRangeEnd == (int)i-1)
244         FalseRangeEnd = i;
245       continue;
246     }
247 
248     // If we can't compute the result for any of the elements, we have to give
249     // up evaluating the entire conditional.
250     if (!isa<ConstantInt>(C)) return nullptr;
251 
252     // Otherwise, we know if the comparison is true or false for this element,
253     // update our state machines.
254     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
255 
256     // State machine for single/double/range index comparison.
257     if (IsTrueForElt) {
258       // Update the TrueElement state machine.
259       if (FirstTrueElement == Undefined)
260         FirstTrueElement = TrueRangeEnd = i;  // First true element.
261       else {
262         // Update double-compare state machine.
263         if (SecondTrueElement == Undefined)
264           SecondTrueElement = i;
265         else
266           SecondTrueElement = Overdefined;
267 
268         // Update range state machine.
269         if (TrueRangeEnd == (int)i-1)
270           TrueRangeEnd = i;
271         else
272           TrueRangeEnd = Overdefined;
273       }
274     } else {
275       // Update the FalseElement state machine.
276       if (FirstFalseElement == Undefined)
277         FirstFalseElement = FalseRangeEnd = i; // First false element.
278       else {
279         // Update double-compare state machine.
280         if (SecondFalseElement == Undefined)
281           SecondFalseElement = i;
282         else
283           SecondFalseElement = Overdefined;
284 
285         // Update range state machine.
286         if (FalseRangeEnd == (int)i-1)
287           FalseRangeEnd = i;
288         else
289           FalseRangeEnd = Overdefined;
290       }
291     }
292 
293     // If this element is in range, update our magic bitvector.
294     if (i < 64 && IsTrueForElt)
295       MagicBitvector |= 1ULL << i;
296 
297     // If all of our states become overdefined, bail out early.  Since the
298     // predicate is expensive, only check it every 8 elements.  This is only
299     // really useful for really huge arrays.
300     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
301         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
302         FalseRangeEnd == Overdefined)
303       return nullptr;
304   }
305 
306   // Now that we've scanned the entire array, emit our new comparison(s).  We
307   // order the state machines in complexity of the generated code.
308   Value *Idx = GEP->getOperand(2);
309 
310   // If the index is larger than the pointer size of the target, truncate the
311   // index down like the GEP would do implicitly.  We don't have to do this for
312   // an inbounds GEP because the index can't be out of range.
313   if (!GEP->isInBounds()) {
314     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
315     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
316     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
317       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
318   }
319 
320   // If the comparison is only true for one or two elements, emit direct
321   // comparisons.
322   if (SecondTrueElement != Overdefined) {
323     // None true -> false.
324     if (FirstTrueElement == Undefined)
325       return replaceInstUsesWith(ICI, Builder.getFalse());
326 
327     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
328 
329     // True for one element -> 'i == 47'.
330     if (SecondTrueElement == Undefined)
331       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
332 
333     // True for two elements -> 'i == 47 | i == 72'.
334     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
335     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
336     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
337     return BinaryOperator::CreateOr(C1, C2);
338   }
339 
340   // If the comparison is only false for one or two elements, emit direct
341   // comparisons.
342   if (SecondFalseElement != Overdefined) {
343     // None false -> true.
344     if (FirstFalseElement == Undefined)
345       return replaceInstUsesWith(ICI, Builder.getTrue());
346 
347     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
348 
349     // False for one element -> 'i != 47'.
350     if (SecondFalseElement == Undefined)
351       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
352 
353     // False for two elements -> 'i != 47 & i != 72'.
354     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
355     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
356     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
357     return BinaryOperator::CreateAnd(C1, C2);
358   }
359 
360   // If the comparison can be replaced with a range comparison for the elements
361   // where it is true, emit the range check.
362   if (TrueRangeEnd != Overdefined) {
363     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
364 
365     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
366     if (FirstTrueElement) {
367       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
368       Idx = Builder.CreateAdd(Idx, Offs);
369     }
370 
371     Value *End = ConstantInt::get(Idx->getType(),
372                                   TrueRangeEnd-FirstTrueElement+1);
373     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
374   }
375 
376   // False range check.
377   if (FalseRangeEnd != Overdefined) {
378     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
379     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
380     if (FirstFalseElement) {
381       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
382       Idx = Builder.CreateAdd(Idx, Offs);
383     }
384 
385     Value *End = ConstantInt::get(Idx->getType(),
386                                   FalseRangeEnd-FirstFalseElement);
387     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
388   }
389 
390   // If a magic bitvector captures the entire comparison state
391   // of this load, replace it with computation that does:
392   //   ((magic_cst >> i) & 1) != 0
393   {
394     Type *Ty = nullptr;
395 
396     // Look for an appropriate type:
397     // - The type of Idx if the magic fits
398     // - The smallest fitting legal type
399     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
400       Ty = Idx->getType();
401     else
402       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
403 
404     if (Ty) {
405       Value *V = Builder.CreateIntCast(Idx, Ty, false);
406       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
407       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
408       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
409     }
410   }
411 
412   return nullptr;
413 }
414 
415 /// Return a value that can be used to compare the *offset* implied by a GEP to
416 /// zero. For example, if we have &A[i], we want to return 'i' for
417 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
418 /// are involved. The above expression would also be legal to codegen as
419 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
420 /// This latter form is less amenable to optimization though, and we are allowed
421 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
422 ///
423 /// If we can't emit an optimized form for this expression, this returns null.
424 ///
425 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
426                                           const DataLayout &DL) {
427   gep_type_iterator GTI = gep_type_begin(GEP);
428 
429   // Check to see if this gep only has a single variable index.  If so, and if
430   // any constant indices are a multiple of its scale, then we can compute this
431   // in terms of the scale of the variable index.  For example, if the GEP
432   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
433   // because the expression will cross zero at the same point.
434   unsigned i, e = GEP->getNumOperands();
435   int64_t Offset = 0;
436   for (i = 1; i != e; ++i, ++GTI) {
437     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
438       // Compute the aggregate offset of constant indices.
439       if (CI->isZero()) continue;
440 
441       // Handle a struct index, which adds its field offset to the pointer.
442       if (StructType *STy = GTI.getStructTypeOrNull()) {
443         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
444       } else {
445         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
446         Offset += Size*CI->getSExtValue();
447       }
448     } else {
449       // Found our variable index.
450       break;
451     }
452   }
453 
454   // If there are no variable indices, we must have a constant offset, just
455   // evaluate it the general way.
456   if (i == e) return nullptr;
457 
458   Value *VariableIdx = GEP->getOperand(i);
459   // Determine the scale factor of the variable element.  For example, this is
460   // 4 if the variable index is into an array of i32.
461   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
462 
463   // Verify that there are no other variable indices.  If so, emit the hard way.
464   for (++i, ++GTI; i != e; ++i, ++GTI) {
465     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
466     if (!CI) return nullptr;
467 
468     // Compute the aggregate offset of constant indices.
469     if (CI->isZero()) continue;
470 
471     // Handle a struct index, which adds its field offset to the pointer.
472     if (StructType *STy = GTI.getStructTypeOrNull()) {
473       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
474     } else {
475       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
476       Offset += Size*CI->getSExtValue();
477     }
478   }
479 
480   // Okay, we know we have a single variable index, which must be a
481   // pointer/array/vector index.  If there is no offset, life is simple, return
482   // the index.
483   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
484   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
485   if (Offset == 0) {
486     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
487     // we don't need to bother extending: the extension won't affect where the
488     // computation crosses zero.
489     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
490       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
491     }
492     return VariableIdx;
493   }
494 
495   // Otherwise, there is an index.  The computation we will do will be modulo
496   // the pointer size.
497   Offset = SignExtend64(Offset, IntPtrWidth);
498   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
499 
500   // To do this transformation, any constant index must be a multiple of the
501   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
502   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
503   // multiple of the variable scale.
504   int64_t NewOffs = Offset / (int64_t)VariableScale;
505   if (Offset != NewOffs*(int64_t)VariableScale)
506     return nullptr;
507 
508   // Okay, we can do this evaluation.  Start by converting the index to intptr.
509   if (VariableIdx->getType() != IntPtrTy)
510     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
511                                             true /*Signed*/);
512   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
513   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
514 }
515 
516 /// Returns true if we can rewrite Start as a GEP with pointer Base
517 /// and some integer offset. The nodes that need to be re-written
518 /// for this transformation will be added to Explored.
519 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
520                                   const DataLayout &DL,
521                                   SetVector<Value *> &Explored) {
522   SmallVector<Value *, 16> WorkList(1, Start);
523   Explored.insert(Base);
524 
525   // The following traversal gives us an order which can be used
526   // when doing the final transformation. Since in the final
527   // transformation we create the PHI replacement instructions first,
528   // we don't have to get them in any particular order.
529   //
530   // However, for other instructions we will have to traverse the
531   // operands of an instruction first, which means that we have to
532   // do a post-order traversal.
533   while (!WorkList.empty()) {
534     SetVector<PHINode *> PHIs;
535 
536     while (!WorkList.empty()) {
537       if (Explored.size() >= 100)
538         return false;
539 
540       Value *V = WorkList.back();
541 
542       if (Explored.count(V) != 0) {
543         WorkList.pop_back();
544         continue;
545       }
546 
547       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
548           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
549         // We've found some value that we can't explore which is different from
550         // the base. Therefore we can't do this transformation.
551         return false;
552 
553       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
554         auto *CI = dyn_cast<CastInst>(V);
555         if (!CI->isNoopCast(DL))
556           return false;
557 
558         if (Explored.count(CI->getOperand(0)) == 0)
559           WorkList.push_back(CI->getOperand(0));
560       }
561 
562       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
563         // We're limiting the GEP to having one index. This will preserve
564         // the original pointer type. We could handle more cases in the
565         // future.
566         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
567             GEP->getType() != Start->getType())
568           return false;
569 
570         if (Explored.count(GEP->getOperand(0)) == 0)
571           WorkList.push_back(GEP->getOperand(0));
572       }
573 
574       if (WorkList.back() == V) {
575         WorkList.pop_back();
576         // We've finished visiting this node, mark it as such.
577         Explored.insert(V);
578       }
579 
580       if (auto *PN = dyn_cast<PHINode>(V)) {
581         // We cannot transform PHIs on unsplittable basic blocks.
582         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
583           return false;
584         Explored.insert(PN);
585         PHIs.insert(PN);
586       }
587     }
588 
589     // Explore the PHI nodes further.
590     for (auto *PN : PHIs)
591       for (Value *Op : PN->incoming_values())
592         if (Explored.count(Op) == 0)
593           WorkList.push_back(Op);
594   }
595 
596   // Make sure that we can do this. Since we can't insert GEPs in a basic
597   // block before a PHI node, we can't easily do this transformation if
598   // we have PHI node users of transformed instructions.
599   for (Value *Val : Explored) {
600     for (Value *Use : Val->uses()) {
601 
602       auto *PHI = dyn_cast<PHINode>(Use);
603       auto *Inst = dyn_cast<Instruction>(Val);
604 
605       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
606           Explored.count(PHI) == 0)
607         continue;
608 
609       if (PHI->getParent() == Inst->getParent())
610         return false;
611     }
612   }
613   return true;
614 }
615 
616 // Sets the appropriate insert point on Builder where we can add
617 // a replacement Instruction for V (if that is possible).
618 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
619                               bool Before = true) {
620   if (auto *PHI = dyn_cast<PHINode>(V)) {
621     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
622     return;
623   }
624   if (auto *I = dyn_cast<Instruction>(V)) {
625     if (!Before)
626       I = &*std::next(I->getIterator());
627     Builder.SetInsertPoint(I);
628     return;
629   }
630   if (auto *A = dyn_cast<Argument>(V)) {
631     // Set the insertion point in the entry block.
632     BasicBlock &Entry = A->getParent()->getEntryBlock();
633     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
634     return;
635   }
636   // Otherwise, this is a constant and we don't need to set a new
637   // insertion point.
638   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
639 }
640 
641 /// Returns a re-written value of Start as an indexed GEP using Base as a
642 /// pointer.
643 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
644                                  const DataLayout &DL,
645                                  SetVector<Value *> &Explored) {
646   // Perform all the substitutions. This is a bit tricky because we can
647   // have cycles in our use-def chains.
648   // 1. Create the PHI nodes without any incoming values.
649   // 2. Create all the other values.
650   // 3. Add the edges for the PHI nodes.
651   // 4. Emit GEPs to get the original pointers.
652   // 5. Remove the original instructions.
653   Type *IndexType = IntegerType::get(
654       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
655 
656   DenseMap<Value *, Value *> NewInsts;
657   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
658 
659   // Create the new PHI nodes, without adding any incoming values.
660   for (Value *Val : Explored) {
661     if (Val == Base)
662       continue;
663     // Create empty phi nodes. This avoids cyclic dependencies when creating
664     // the remaining instructions.
665     if (auto *PHI = dyn_cast<PHINode>(Val))
666       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
667                                       PHI->getName() + ".idx", PHI);
668   }
669   IRBuilder<> Builder(Base->getContext());
670 
671   // Create all the other instructions.
672   for (Value *Val : Explored) {
673 
674     if (NewInsts.find(Val) != NewInsts.end())
675       continue;
676 
677     if (auto *CI = dyn_cast<CastInst>(Val)) {
678       // Don't get rid of the intermediate variable here; the store can grow
679       // the map which will invalidate the reference to the input value.
680       Value *V = NewInsts[CI->getOperand(0)];
681       NewInsts[CI] = V;
682       continue;
683     }
684     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
685       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
686                                                   : GEP->getOperand(1);
687       setInsertionPoint(Builder, GEP);
688       // Indices might need to be sign extended. GEPs will magically do
689       // this, but we need to do it ourselves here.
690       if (Index->getType()->getScalarSizeInBits() !=
691           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
692         Index = Builder.CreateSExtOrTrunc(
693             Index, NewInsts[GEP->getOperand(0)]->getType(),
694             GEP->getOperand(0)->getName() + ".sext");
695       }
696 
697       auto *Op = NewInsts[GEP->getOperand(0)];
698       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
699         NewInsts[GEP] = Index;
700       else
701         NewInsts[GEP] = Builder.CreateNSWAdd(
702             Op, Index, GEP->getOperand(0)->getName() + ".add");
703       continue;
704     }
705     if (isa<PHINode>(Val))
706       continue;
707 
708     llvm_unreachable("Unexpected instruction type");
709   }
710 
711   // Add the incoming values to the PHI nodes.
712   for (Value *Val : Explored) {
713     if (Val == Base)
714       continue;
715     // All the instructions have been created, we can now add edges to the
716     // phi nodes.
717     if (auto *PHI = dyn_cast<PHINode>(Val)) {
718       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
719       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
720         Value *NewIncoming = PHI->getIncomingValue(I);
721 
722         if (NewInsts.find(NewIncoming) != NewInsts.end())
723           NewIncoming = NewInsts[NewIncoming];
724 
725         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
726       }
727     }
728   }
729 
730   for (Value *Val : Explored) {
731     if (Val == Base)
732       continue;
733 
734     // Depending on the type, for external users we have to emit
735     // a GEP or a GEP + ptrtoint.
736     setInsertionPoint(Builder, Val, false);
737 
738     // If required, create an inttoptr instruction for Base.
739     Value *NewBase = Base;
740     if (!Base->getType()->isPointerTy())
741       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
742                                                Start->getName() + "to.ptr");
743 
744     Value *GEP = Builder.CreateInBoundsGEP(
745         Start->getType()->getPointerElementType(), NewBase,
746         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
747 
748     if (!Val->getType()->isPointerTy()) {
749       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
750                                               Val->getName() + ".conv");
751       GEP = Cast;
752     }
753     Val->replaceAllUsesWith(GEP);
754   }
755 
756   return NewInsts[Start];
757 }
758 
759 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
760 /// the input Value as a constant indexed GEP. Returns a pair containing
761 /// the GEPs Pointer and Index.
762 static std::pair<Value *, Value *>
763 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
764   Type *IndexType = IntegerType::get(V->getContext(),
765                                      DL.getIndexTypeSizeInBits(V->getType()));
766 
767   Constant *Index = ConstantInt::getNullValue(IndexType);
768   while (true) {
769     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
770       // We accept only inbouds GEPs here to exclude the possibility of
771       // overflow.
772       if (!GEP->isInBounds())
773         break;
774       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
775           GEP->getType() == V->getType()) {
776         V = GEP->getOperand(0);
777         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
778         Index = ConstantExpr::getAdd(
779             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
780         continue;
781       }
782       break;
783     }
784     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
785       if (!CI->isNoopCast(DL))
786         break;
787       V = CI->getOperand(0);
788       continue;
789     }
790     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
791       if (!CI->isNoopCast(DL))
792         break;
793       V = CI->getOperand(0);
794       continue;
795     }
796     break;
797   }
798   return {V, Index};
799 }
800 
801 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
802 /// We can look through PHIs, GEPs and casts in order to determine a common base
803 /// between GEPLHS and RHS.
804 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
805                                               ICmpInst::Predicate Cond,
806                                               const DataLayout &DL) {
807   // FIXME: Support vector of pointers.
808   if (GEPLHS->getType()->isVectorTy())
809     return nullptr;
810 
811   if (!GEPLHS->hasAllConstantIndices())
812     return nullptr;
813 
814   // Make sure the pointers have the same type.
815   if (GEPLHS->getType() != RHS->getType())
816     return nullptr;
817 
818   Value *PtrBase, *Index;
819   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
820 
821   // The set of nodes that will take part in this transformation.
822   SetVector<Value *> Nodes;
823 
824   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
825     return nullptr;
826 
827   // We know we can re-write this as
828   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
829   // Since we've only looked through inbouds GEPs we know that we
830   // can't have overflow on either side. We can therefore re-write
831   // this as:
832   //   OFFSET1 cmp OFFSET2
833   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
834 
835   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
836   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
837   // offset. Since Index is the offset of LHS to the base pointer, we will now
838   // compare the offsets instead of comparing the pointers.
839   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
840 }
841 
842 /// Fold comparisons between a GEP instruction and something else. At this point
843 /// we know that the GEP is on the LHS of the comparison.
844 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
845                                        ICmpInst::Predicate Cond,
846                                        Instruction &I) {
847   // Don't transform signed compares of GEPs into index compares. Even if the
848   // GEP is inbounds, the final add of the base pointer can have signed overflow
849   // and would change the result of the icmp.
850   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
851   // the maximum signed value for the pointer type.
852   if (ICmpInst::isSigned(Cond))
853     return nullptr;
854 
855   // Look through bitcasts and addrspacecasts. We do not however want to remove
856   // 0 GEPs.
857   if (!isa<GetElementPtrInst>(RHS))
858     RHS = RHS->stripPointerCasts();
859 
860   Value *PtrBase = GEPLHS->getOperand(0);
861   // FIXME: Support vector pointer GEPs.
862   if (PtrBase == RHS && GEPLHS->isInBounds() &&
863       !GEPLHS->getType()->isVectorTy()) {
864     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
865     // This transformation (ignoring the base and scales) is valid because we
866     // know pointers can't overflow since the gep is inbounds.  See if we can
867     // output an optimized form.
868     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
869 
870     // If not, synthesize the offset the hard way.
871     if (!Offset)
872       Offset = EmitGEPOffset(GEPLHS);
873     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
874                         Constant::getNullValue(Offset->getType()));
875   }
876 
877   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
878       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
879       !NullPointerIsDefined(I.getFunction(),
880                             RHS->getType()->getPointerAddressSpace())) {
881     // For most address spaces, an allocation can't be placed at null, but null
882     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
883     // the only valid inbounds address derived from null, is null itself.
884     // Thus, we have four cases to consider:
885     // 1) Base == nullptr, Offset == 0 -> inbounds, null
886     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
887     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
888     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
889     //
890     // (Note if we're indexing a type of size 0, that simply collapses into one
891     //  of the buckets above.)
892     //
893     // In general, we're allowed to make values less poison (i.e. remove
894     //   sources of full UB), so in this case, we just select between the two
895     //   non-poison cases (1 and 4 above).
896     //
897     // For vectors, we apply the same reasoning on a per-lane basis.
898     auto *Base = GEPLHS->getPointerOperand();
899     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
900       int NumElts = cast<VectorType>(GEPLHS->getType())->getNumElements();
901       Base = Builder.CreateVectorSplat(NumElts, Base);
902     }
903     return new ICmpInst(Cond, Base,
904                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
905                             cast<Constant>(RHS), Base->getType()));
906   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
907     // If the base pointers are different, but the indices are the same, just
908     // compare the base pointer.
909     if (PtrBase != GEPRHS->getOperand(0)) {
910       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
911       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
912                         GEPRHS->getOperand(0)->getType();
913       if (IndicesTheSame)
914         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
915           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
916             IndicesTheSame = false;
917             break;
918           }
919 
920       // If all indices are the same, just compare the base pointers.
921       Type *BaseType = GEPLHS->getOperand(0)->getType();
922       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
923         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
924 
925       // If we're comparing GEPs with two base pointers that only differ in type
926       // and both GEPs have only constant indices or just one use, then fold
927       // the compare with the adjusted indices.
928       // FIXME: Support vector of pointers.
929       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
930           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
931           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
932           PtrBase->stripPointerCasts() ==
933               GEPRHS->getOperand(0)->stripPointerCasts() &&
934           !GEPLHS->getType()->isVectorTy()) {
935         Value *LOffset = EmitGEPOffset(GEPLHS);
936         Value *ROffset = EmitGEPOffset(GEPRHS);
937 
938         // If we looked through an addrspacecast between different sized address
939         // spaces, the LHS and RHS pointers are different sized
940         // integers. Truncate to the smaller one.
941         Type *LHSIndexTy = LOffset->getType();
942         Type *RHSIndexTy = ROffset->getType();
943         if (LHSIndexTy != RHSIndexTy) {
944           if (LHSIndexTy->getPrimitiveSizeInBits() <
945               RHSIndexTy->getPrimitiveSizeInBits()) {
946             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
947           } else
948             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
949         }
950 
951         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
952                                         LOffset, ROffset);
953         return replaceInstUsesWith(I, Cmp);
954       }
955 
956       // Otherwise, the base pointers are different and the indices are
957       // different. Try convert this to an indexed compare by looking through
958       // PHIs/casts.
959       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
960     }
961 
962     // If one of the GEPs has all zero indices, recurse.
963     // FIXME: Handle vector of pointers.
964     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
965       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
966                          ICmpInst::getSwappedPredicate(Cond), I);
967 
968     // If the other GEP has all zero indices, recurse.
969     // FIXME: Handle vector of pointers.
970     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
971       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
972 
973     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
974     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
975       // If the GEPs only differ by one index, compare it.
976       unsigned NumDifferences = 0;  // Keep track of # differences.
977       unsigned DiffOperand = 0;     // The operand that differs.
978       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
979         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
980           Type *LHSType = GEPLHS->getOperand(i)->getType();
981           Type *RHSType = GEPRHS->getOperand(i)->getType();
982           // FIXME: Better support for vector of pointers.
983           if (LHSType->getPrimitiveSizeInBits() !=
984                    RHSType->getPrimitiveSizeInBits() ||
985               (GEPLHS->getType()->isVectorTy() &&
986                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
987             // Irreconcilable differences.
988             NumDifferences = 2;
989             break;
990           }
991 
992           if (NumDifferences++) break;
993           DiffOperand = i;
994         }
995 
996       if (NumDifferences == 0)   // SAME GEP?
997         return replaceInstUsesWith(I, // No comparison is needed here.
998           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
999 
1000       else if (NumDifferences == 1 && GEPsInBounds) {
1001         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1002         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1003         // Make sure we do a signed comparison here.
1004         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1005       }
1006     }
1007 
1008     // Only lower this if the icmp is the only user of the GEP or if we expect
1009     // the result to fold to a constant!
1010     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1011         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1012       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1013       Value *L = EmitGEPOffset(GEPLHS);
1014       Value *R = EmitGEPOffset(GEPRHS);
1015       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1016     }
1017   }
1018 
1019   // Try convert this to an indexed compare by looking through PHIs/casts as a
1020   // last resort.
1021   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1022 }
1023 
1024 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1025                                          const AllocaInst *Alloca,
1026                                          const Value *Other) {
1027   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1028 
1029   // It would be tempting to fold away comparisons between allocas and any
1030   // pointer not based on that alloca (e.g. an argument). However, even
1031   // though such pointers cannot alias, they can still compare equal.
1032   //
1033   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1034   // doesn't escape we can argue that it's impossible to guess its value, and we
1035   // can therefore act as if any such guesses are wrong.
1036   //
1037   // The code below checks that the alloca doesn't escape, and that it's only
1038   // used in a comparison once (the current instruction). The
1039   // single-comparison-use condition ensures that we're trivially folding all
1040   // comparisons against the alloca consistently, and avoids the risk of
1041   // erroneously folding a comparison of the pointer with itself.
1042 
1043   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1044 
1045   SmallVector<const Use *, 32> Worklist;
1046   for (const Use &U : Alloca->uses()) {
1047     if (Worklist.size() >= MaxIter)
1048       return nullptr;
1049     Worklist.push_back(&U);
1050   }
1051 
1052   unsigned NumCmps = 0;
1053   while (!Worklist.empty()) {
1054     assert(Worklist.size() <= MaxIter);
1055     const Use *U = Worklist.pop_back_val();
1056     const Value *V = U->getUser();
1057     --MaxIter;
1058 
1059     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1060         isa<SelectInst>(V)) {
1061       // Track the uses.
1062     } else if (isa<LoadInst>(V)) {
1063       // Loading from the pointer doesn't escape it.
1064       continue;
1065     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1066       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1067       if (SI->getValueOperand() == U->get())
1068         return nullptr;
1069       continue;
1070     } else if (isa<ICmpInst>(V)) {
1071       if (NumCmps++)
1072         return nullptr; // Found more than one cmp.
1073       continue;
1074     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1075       switch (Intrin->getIntrinsicID()) {
1076         // These intrinsics don't escape or compare the pointer. Memset is safe
1077         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1078         // we don't allow stores, so src cannot point to V.
1079         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1080         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1081           continue;
1082         default:
1083           return nullptr;
1084       }
1085     } else {
1086       return nullptr;
1087     }
1088     for (const Use &U : V->uses()) {
1089       if (Worklist.size() >= MaxIter)
1090         return nullptr;
1091       Worklist.push_back(&U);
1092     }
1093   }
1094 
1095   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1096   return replaceInstUsesWith(
1097       ICI,
1098       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1099 }
1100 
1101 /// Fold "icmp pred (X+C), X".
1102 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1103                                               ICmpInst::Predicate Pred) {
1104   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1105   // so the values can never be equal.  Similarly for all other "or equals"
1106   // operators.
1107   assert(!!C && "C should not be zero!");
1108 
1109   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1110   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1111   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1112   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1113     Constant *R = ConstantInt::get(X->getType(),
1114                                    APInt::getMaxValue(C.getBitWidth()) - C);
1115     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1116   }
1117 
1118   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1119   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1120   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1121   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1122     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1123                         ConstantInt::get(X->getType(), -C));
1124 
1125   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1126 
1127   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1128   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1129   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1130   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1131   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1132   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1133   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1134     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1135                         ConstantInt::get(X->getType(), SMax - C));
1136 
1137   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1138   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1139   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1140   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1141   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1142   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1143 
1144   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1145   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1146                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1147 }
1148 
1149 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1150 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1151 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1152 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1153                                                  const APInt &AP1,
1154                                                  const APInt &AP2) {
1155   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1156 
1157   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1158     if (I.getPredicate() == I.ICMP_NE)
1159       Pred = CmpInst::getInversePredicate(Pred);
1160     return new ICmpInst(Pred, LHS, RHS);
1161   };
1162 
1163   // Don't bother doing any work for cases which InstSimplify handles.
1164   if (AP2.isNullValue())
1165     return nullptr;
1166 
1167   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1168   if (IsAShr) {
1169     if (AP2.isAllOnesValue())
1170       return nullptr;
1171     if (AP2.isNegative() != AP1.isNegative())
1172       return nullptr;
1173     if (AP2.sgt(AP1))
1174       return nullptr;
1175   }
1176 
1177   if (!AP1)
1178     // 'A' must be large enough to shift out the highest set bit.
1179     return getICmp(I.ICMP_UGT, A,
1180                    ConstantInt::get(A->getType(), AP2.logBase2()));
1181 
1182   if (AP1 == AP2)
1183     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1184 
1185   int Shift;
1186   if (IsAShr && AP1.isNegative())
1187     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1188   else
1189     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1190 
1191   if (Shift > 0) {
1192     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1193       // There are multiple solutions if we are comparing against -1 and the LHS
1194       // of the ashr is not a power of two.
1195       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1196         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1197       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1198     } else if (AP1 == AP2.lshr(Shift)) {
1199       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1200     }
1201   }
1202 
1203   // Shifting const2 will never be equal to const1.
1204   // FIXME: This should always be handled by InstSimplify?
1205   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1206   return replaceInstUsesWith(I, TorF);
1207 }
1208 
1209 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1210 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1211 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1212                                                  const APInt &AP1,
1213                                                  const APInt &AP2) {
1214   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1215 
1216   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1217     if (I.getPredicate() == I.ICMP_NE)
1218       Pred = CmpInst::getInversePredicate(Pred);
1219     return new ICmpInst(Pred, LHS, RHS);
1220   };
1221 
1222   // Don't bother doing any work for cases which InstSimplify handles.
1223   if (AP2.isNullValue())
1224     return nullptr;
1225 
1226   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1227 
1228   if (!AP1 && AP2TrailingZeros != 0)
1229     return getICmp(
1230         I.ICMP_UGE, A,
1231         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1232 
1233   if (AP1 == AP2)
1234     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1235 
1236   // Get the distance between the lowest bits that are set.
1237   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1238 
1239   if (Shift > 0 && AP2.shl(Shift) == AP1)
1240     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1241 
1242   // Shifting const2 will never be equal to const1.
1243   // FIXME: This should always be handled by InstSimplify?
1244   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1245   return replaceInstUsesWith(I, TorF);
1246 }
1247 
1248 /// The caller has matched a pattern of the form:
1249 ///   I = icmp ugt (add (add A, B), CI2), CI1
1250 /// If this is of the form:
1251 ///   sum = a + b
1252 ///   if (sum+128 >u 255)
1253 /// Then replace it with llvm.sadd.with.overflow.i8.
1254 ///
1255 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1256                                           ConstantInt *CI2, ConstantInt *CI1,
1257                                           InstCombiner &IC) {
1258   // The transformation we're trying to do here is to transform this into an
1259   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1260   // with a narrower add, and discard the add-with-constant that is part of the
1261   // range check (if we can't eliminate it, this isn't profitable).
1262 
1263   // In order to eliminate the add-with-constant, the compare can be its only
1264   // use.
1265   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1266   if (!AddWithCst->hasOneUse())
1267     return nullptr;
1268 
1269   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1270   if (!CI2->getValue().isPowerOf2())
1271     return nullptr;
1272   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1273   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1274     return nullptr;
1275 
1276   // The width of the new add formed is 1 more than the bias.
1277   ++NewWidth;
1278 
1279   // Check to see that CI1 is an all-ones value with NewWidth bits.
1280   if (CI1->getBitWidth() == NewWidth ||
1281       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1282     return nullptr;
1283 
1284   // This is only really a signed overflow check if the inputs have been
1285   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1286   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1287   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1288   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1289       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1290     return nullptr;
1291 
1292   // In order to replace the original add with a narrower
1293   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1294   // and truncates that discard the high bits of the add.  Verify that this is
1295   // the case.
1296   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1297   for (User *U : OrigAdd->users()) {
1298     if (U == AddWithCst)
1299       continue;
1300 
1301     // Only accept truncates for now.  We would really like a nice recursive
1302     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1303     // chain to see which bits of a value are actually demanded.  If the
1304     // original add had another add which was then immediately truncated, we
1305     // could still do the transformation.
1306     TruncInst *TI = dyn_cast<TruncInst>(U);
1307     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1308       return nullptr;
1309   }
1310 
1311   // If the pattern matches, truncate the inputs to the narrower type and
1312   // use the sadd_with_overflow intrinsic to efficiently compute both the
1313   // result and the overflow bit.
1314   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1315   Function *F = Intrinsic::getDeclaration(
1316       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1317 
1318   InstCombiner::BuilderTy &Builder = IC.Builder;
1319 
1320   // Put the new code above the original add, in case there are any uses of the
1321   // add between the add and the compare.
1322   Builder.SetInsertPoint(OrigAdd);
1323 
1324   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1325   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1326   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1327   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1328   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1329 
1330   // The inner add was the result of the narrow add, zero extended to the
1331   // wider type.  Replace it with the result computed by the intrinsic.
1332   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1333   IC.eraseInstFromFunction(*OrigAdd);
1334 
1335   // The original icmp gets replaced with the overflow value.
1336   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1337 }
1338 
1339 /// If we have:
1340 ///   icmp eq/ne (urem/srem %x, %y), 0
1341 /// iff %y is a power-of-two, we can replace this with a bit test:
1342 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1343 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1344   // This fold is only valid for equality predicates.
1345   if (!I.isEquality())
1346     return nullptr;
1347   ICmpInst::Predicate Pred;
1348   Value *X, *Y, *Zero;
1349   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1350                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1351     return nullptr;
1352   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1353     return nullptr;
1354   // This may increase instruction count, we don't enforce that Y is a constant.
1355   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1356   Value *Masked = Builder.CreateAnd(X, Mask);
1357   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1358 }
1359 
1360 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1361 /// by one-less-than-bitwidth into a sign test on the original value.
1362 Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) {
1363   Instruction *Val;
1364   ICmpInst::Predicate Pred;
1365   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1366     return nullptr;
1367 
1368   Value *X;
1369   Type *XTy;
1370 
1371   Constant *C;
1372   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1373     XTy = X->getType();
1374     unsigned XBitWidth = XTy->getScalarSizeInBits();
1375     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1376                                      APInt(XBitWidth, XBitWidth - 1))))
1377       return nullptr;
1378   } else if (isa<BinaryOperator>(Val) &&
1379              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1380                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1381                   /*AnalyzeForSignBitExtraction=*/true))) {
1382     XTy = X->getType();
1383   } else
1384     return nullptr;
1385 
1386   return ICmpInst::Create(Instruction::ICmp,
1387                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1388                                                     : ICmpInst::ICMP_SLT,
1389                           X, ConstantInt::getNullValue(XTy));
1390 }
1391 
1392 // Handle  icmp pred X, 0
1393 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1394   CmpInst::Predicate Pred = Cmp.getPredicate();
1395   if (!match(Cmp.getOperand(1), m_Zero()))
1396     return nullptr;
1397 
1398   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1399   if (Pred == ICmpInst::ICMP_SGT) {
1400     Value *A, *B;
1401     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1402     if (SPR.Flavor == SPF_SMIN) {
1403       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1404         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1405       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1406         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1407     }
1408   }
1409 
1410   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1411     return New;
1412 
1413   // Given:
1414   //   icmp eq/ne (urem %x, %y), 0
1415   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1416   //   icmp eq/ne %x, 0
1417   Value *X, *Y;
1418   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1419       ICmpInst::isEquality(Pred)) {
1420     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1421     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1422     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1423       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1424   }
1425 
1426   return nullptr;
1427 }
1428 
1429 /// Fold icmp Pred X, C.
1430 /// TODO: This code structure does not make sense. The saturating add fold
1431 /// should be moved to some other helper and extended as noted below (it is also
1432 /// possible that code has been made unnecessary - do we canonicalize IR to
1433 /// overflow/saturating intrinsics or not?).
1434 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1435   // Match the following pattern, which is a common idiom when writing
1436   // overflow-safe integer arithmetic functions. The source performs an addition
1437   // in wider type and explicitly checks for overflow using comparisons against
1438   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1439   //
1440   // TODO: This could probably be generalized to handle other overflow-safe
1441   // operations if we worked out the formulas to compute the appropriate magic
1442   // constants.
1443   //
1444   // sum = a + b
1445   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1446   CmpInst::Predicate Pred = Cmp.getPredicate();
1447   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1448   Value *A, *B;
1449   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1450   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1451       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1452     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1453       return Res;
1454 
1455   return nullptr;
1456 }
1457 
1458 /// Canonicalize icmp instructions based on dominating conditions.
1459 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1460   // This is a cheap/incomplete check for dominance - just match a single
1461   // predecessor with a conditional branch.
1462   BasicBlock *CmpBB = Cmp.getParent();
1463   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1464   if (!DomBB)
1465     return nullptr;
1466 
1467   Value *DomCond;
1468   BasicBlock *TrueBB, *FalseBB;
1469   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1470     return nullptr;
1471 
1472   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1473          "Predecessor block does not point to successor?");
1474 
1475   // The branch should get simplified. Don't bother simplifying this condition.
1476   if (TrueBB == FalseBB)
1477     return nullptr;
1478 
1479   // Try to simplify this compare to T/F based on the dominating condition.
1480   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1481   if (Imp)
1482     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1483 
1484   CmpInst::Predicate Pred = Cmp.getPredicate();
1485   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1486   ICmpInst::Predicate DomPred;
1487   const APInt *C, *DomC;
1488   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1489       match(Y, m_APInt(C))) {
1490     // We have 2 compares of a variable with constants. Calculate the constant
1491     // ranges of those compares to see if we can transform the 2nd compare:
1492     // DomBB:
1493     //   DomCond = icmp DomPred X, DomC
1494     //   br DomCond, CmpBB, FalseBB
1495     // CmpBB:
1496     //   Cmp = icmp Pred X, C
1497     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1498     ConstantRange DominatingCR =
1499         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1500                           : ConstantRange::makeExactICmpRegion(
1501                                 CmpInst::getInversePredicate(DomPred), *DomC);
1502     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1503     ConstantRange Difference = DominatingCR.difference(CR);
1504     if (Intersection.isEmptySet())
1505       return replaceInstUsesWith(Cmp, Builder.getFalse());
1506     if (Difference.isEmptySet())
1507       return replaceInstUsesWith(Cmp, Builder.getTrue());
1508 
1509     // Canonicalizing a sign bit comparison that gets used in a branch,
1510     // pessimizes codegen by generating branch on zero instruction instead
1511     // of a test and branch. So we avoid canonicalizing in such situations
1512     // because test and branch instruction has better branch displacement
1513     // than compare and branch instruction.
1514     bool UnusedBit;
1515     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1516     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1517       return nullptr;
1518 
1519     if (const APInt *EqC = Intersection.getSingleElement())
1520       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1521     if (const APInt *NeC = Difference.getSingleElement())
1522       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1523   }
1524 
1525   return nullptr;
1526 }
1527 
1528 /// Fold icmp (trunc X, Y), C.
1529 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1530                                                  TruncInst *Trunc,
1531                                                  const APInt &C) {
1532   ICmpInst::Predicate Pred = Cmp.getPredicate();
1533   Value *X = Trunc->getOperand(0);
1534   if (C.isOneValue() && C.getBitWidth() > 1) {
1535     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1536     Value *V = nullptr;
1537     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1538       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1539                           ConstantInt::get(V->getType(), 1));
1540   }
1541 
1542   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1543     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1544     // of the high bits truncated out of x are known.
1545     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1546              SrcBits = X->getType()->getScalarSizeInBits();
1547     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1548 
1549     // If all the high bits are known, we can do this xform.
1550     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1551       // Pull in the high bits from known-ones set.
1552       APInt NewRHS = C.zext(SrcBits);
1553       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1554       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1555     }
1556   }
1557 
1558   return nullptr;
1559 }
1560 
1561 /// Fold icmp (xor X, Y), C.
1562 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1563                                                BinaryOperator *Xor,
1564                                                const APInt &C) {
1565   Value *X = Xor->getOperand(0);
1566   Value *Y = Xor->getOperand(1);
1567   const APInt *XorC;
1568   if (!match(Y, m_APInt(XorC)))
1569     return nullptr;
1570 
1571   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1572   // fold the xor.
1573   ICmpInst::Predicate Pred = Cmp.getPredicate();
1574   bool TrueIfSigned = false;
1575   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1576 
1577     // If the sign bit of the XorCst is not set, there is no change to
1578     // the operation, just stop using the Xor.
1579     if (!XorC->isNegative())
1580       return replaceOperand(Cmp, 0, X);
1581 
1582     // Emit the opposite comparison.
1583     if (TrueIfSigned)
1584       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1585                           ConstantInt::getAllOnesValue(X->getType()));
1586     else
1587       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1588                           ConstantInt::getNullValue(X->getType()));
1589   }
1590 
1591   if (Xor->hasOneUse()) {
1592     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1593     if (!Cmp.isEquality() && XorC->isSignMask()) {
1594       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1595                             : Cmp.getSignedPredicate();
1596       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1597     }
1598 
1599     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1600     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1601       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1602                             : Cmp.getSignedPredicate();
1603       Pred = Cmp.getSwappedPredicate(Pred);
1604       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1605     }
1606   }
1607 
1608   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1609   if (Pred == ICmpInst::ICMP_UGT) {
1610     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1611     if (*XorC == ~C && (C + 1).isPowerOf2())
1612       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1613     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1614     if (*XorC == C && (C + 1).isPowerOf2())
1615       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1616   }
1617   if (Pred == ICmpInst::ICMP_ULT) {
1618     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1619     if (*XorC == -C && C.isPowerOf2())
1620       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1621                           ConstantInt::get(X->getType(), ~C));
1622     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1623     if (*XorC == C && (-C).isPowerOf2())
1624       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1625                           ConstantInt::get(X->getType(), ~C));
1626   }
1627   return nullptr;
1628 }
1629 
1630 /// Fold icmp (and (sh X, Y), C2), C1.
1631 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1632                                             const APInt &C1, const APInt &C2) {
1633   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1634   if (!Shift || !Shift->isShift())
1635     return nullptr;
1636 
1637   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1638   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1639   // code produced by the clang front-end, for bitfield access.
1640   // This seemingly simple opportunity to fold away a shift turns out to be
1641   // rather complicated. See PR17827 for details.
1642   unsigned ShiftOpcode = Shift->getOpcode();
1643   bool IsShl = ShiftOpcode == Instruction::Shl;
1644   const APInt *C3;
1645   if (match(Shift->getOperand(1), m_APInt(C3))) {
1646     APInt NewAndCst, NewCmpCst;
1647     bool AnyCmpCstBitsShiftedOut;
1648     if (ShiftOpcode == Instruction::Shl) {
1649       // For a left shift, we can fold if the comparison is not signed. We can
1650       // also fold a signed comparison if the mask value and comparison value
1651       // are not negative. These constraints may not be obvious, but we can
1652       // prove that they are correct using an SMT solver.
1653       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1654         return nullptr;
1655 
1656       NewCmpCst = C1.lshr(*C3);
1657       NewAndCst = C2.lshr(*C3);
1658       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1659     } else if (ShiftOpcode == Instruction::LShr) {
1660       // For a logical right shift, we can fold if the comparison is not signed.
1661       // We can also fold a signed comparison if the shifted mask value and the
1662       // shifted comparison value are not negative. These constraints may not be
1663       // obvious, but we can prove that they are correct using an SMT solver.
1664       NewCmpCst = C1.shl(*C3);
1665       NewAndCst = C2.shl(*C3);
1666       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1667       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1668         return nullptr;
1669     } else {
1670       // For an arithmetic shift, check that both constants don't use (in a
1671       // signed sense) the top bits being shifted out.
1672       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1673       NewCmpCst = C1.shl(*C3);
1674       NewAndCst = C2.shl(*C3);
1675       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1676       if (NewAndCst.ashr(*C3) != C2)
1677         return nullptr;
1678     }
1679 
1680     if (AnyCmpCstBitsShiftedOut) {
1681       // If we shifted bits out, the fold is not going to work out. As a
1682       // special case, check to see if this means that the result is always
1683       // true or false now.
1684       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1685         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1686       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1687         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1688     } else {
1689       Value *NewAnd = Builder.CreateAnd(
1690           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1691       return new ICmpInst(Cmp.getPredicate(),
1692           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1693     }
1694   }
1695 
1696   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1697   // preferable because it allows the C2 << Y expression to be hoisted out of a
1698   // loop if Y is invariant and X is not.
1699   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1700       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1701     // Compute C2 << Y.
1702     Value *NewShift =
1703         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1704               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1705 
1706     // Compute X & (C2 << Y).
1707     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1708     return replaceOperand(Cmp, 0, NewAnd);
1709   }
1710 
1711   return nullptr;
1712 }
1713 
1714 /// Fold icmp (and X, C2), C1.
1715 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1716                                                  BinaryOperator *And,
1717                                                  const APInt &C1) {
1718   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1719 
1720   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1721   // TODO: We canonicalize to the longer form for scalars because we have
1722   // better analysis/folds for icmp, and codegen may be better with icmp.
1723   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1724       match(And->getOperand(1), m_One()))
1725     return new TruncInst(And->getOperand(0), Cmp.getType());
1726 
1727   const APInt *C2;
1728   Value *X;
1729   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1730     return nullptr;
1731 
1732   // Don't perform the following transforms if the AND has multiple uses
1733   if (!And->hasOneUse())
1734     return nullptr;
1735 
1736   if (Cmp.isEquality() && C1.isNullValue()) {
1737     // Restrict this fold to single-use 'and' (PR10267).
1738     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1739     if (C2->isSignMask()) {
1740       Constant *Zero = Constant::getNullValue(X->getType());
1741       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1742       return new ICmpInst(NewPred, X, Zero);
1743     }
1744 
1745     // Restrict this fold only for single-use 'and' (PR10267).
1746     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1747     if ((~(*C2) + 1).isPowerOf2()) {
1748       Constant *NegBOC =
1749           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1750       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1751       return new ICmpInst(NewPred, X, NegBOC);
1752     }
1753   }
1754 
1755   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1756   // the input width without changing the value produced, eliminate the cast:
1757   //
1758   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1759   //
1760   // We can do this transformation if the constants do not have their sign bits
1761   // set or if it is an equality comparison. Extending a relational comparison
1762   // when we're checking the sign bit would not work.
1763   Value *W;
1764   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1765       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1766     // TODO: Is this a good transform for vectors? Wider types may reduce
1767     // throughput. Should this transform be limited (even for scalars) by using
1768     // shouldChangeType()?
1769     if (!Cmp.getType()->isVectorTy()) {
1770       Type *WideType = W->getType();
1771       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1772       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1773       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1774       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1775       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1776     }
1777   }
1778 
1779   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1780     return I;
1781 
1782   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1783   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1784   //
1785   // iff pred isn't signed
1786   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1787       match(And->getOperand(1), m_One())) {
1788     Constant *One = cast<Constant>(And->getOperand(1));
1789     Value *Or = And->getOperand(0);
1790     Value *A, *B, *LShr;
1791     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1792         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1793       unsigned UsesRemoved = 0;
1794       if (And->hasOneUse())
1795         ++UsesRemoved;
1796       if (Or->hasOneUse())
1797         ++UsesRemoved;
1798       if (LShr->hasOneUse())
1799         ++UsesRemoved;
1800 
1801       // Compute A & ((1 << B) | 1)
1802       Value *NewOr = nullptr;
1803       if (auto *C = dyn_cast<Constant>(B)) {
1804         if (UsesRemoved >= 1)
1805           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1806       } else {
1807         if (UsesRemoved >= 3)
1808           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1809                                                      /*HasNUW=*/true),
1810                                    One, Or->getName());
1811       }
1812       if (NewOr) {
1813         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1814         return replaceOperand(Cmp, 0, NewAnd);
1815       }
1816     }
1817   }
1818 
1819   return nullptr;
1820 }
1821 
1822 /// Fold icmp (and X, Y), C.
1823 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1824                                                BinaryOperator *And,
1825                                                const APInt &C) {
1826   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1827     return I;
1828 
1829   // TODO: These all require that Y is constant too, so refactor with the above.
1830 
1831   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1832   Value *X = And->getOperand(0);
1833   Value *Y = And->getOperand(1);
1834   if (auto *LI = dyn_cast<LoadInst>(X))
1835     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1836       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1837         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1838             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1839           ConstantInt *C2 = cast<ConstantInt>(Y);
1840           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1841             return Res;
1842         }
1843 
1844   if (!Cmp.isEquality())
1845     return nullptr;
1846 
1847   // X & -C == -C -> X >  u ~C
1848   // X & -C != -C -> X <= u ~C
1849   //   iff C is a power of 2
1850   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1851     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1852                                                           : CmpInst::ICMP_ULE;
1853     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1854   }
1855 
1856   // (X & C2) == 0 -> (trunc X) >= 0
1857   // (X & C2) != 0 -> (trunc X) <  0
1858   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1859   const APInt *C2;
1860   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1861     int32_t ExactLogBase2 = C2->exactLogBase2();
1862     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1863       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1864       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1865         NTy = VectorType::get(NTy, AndVTy->getNumElements());
1866       Value *Trunc = Builder.CreateTrunc(X, NTy);
1867       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1868                                                             : CmpInst::ICMP_SLT;
1869       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1870     }
1871   }
1872 
1873   return nullptr;
1874 }
1875 
1876 /// Fold icmp (or X, Y), C.
1877 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1878                                               const APInt &C) {
1879   ICmpInst::Predicate Pred = Cmp.getPredicate();
1880   if (C.isOneValue()) {
1881     // icmp slt signum(V) 1 --> icmp slt V, 1
1882     Value *V = nullptr;
1883     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1884       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1885                           ConstantInt::get(V->getType(), 1));
1886   }
1887 
1888   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1889   const APInt *MaskC;
1890   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1891     if (*MaskC == C && (C + 1).isPowerOf2()) {
1892       // X | C == C --> X <=u C
1893       // X | C != C --> X  >u C
1894       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1895       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1896       return new ICmpInst(Pred, OrOp0, OrOp1);
1897     }
1898 
1899     // More general: canonicalize 'equality with set bits mask' to
1900     // 'equality with clear bits mask'.
1901     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1902     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1903     if (Or->hasOneUse()) {
1904       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1905       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1906       return new ICmpInst(Pred, And, NewC);
1907     }
1908   }
1909 
1910   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1911     return nullptr;
1912 
1913   Value *P, *Q;
1914   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1915     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1916     // -> and (icmp eq P, null), (icmp eq Q, null).
1917     Value *CmpP =
1918         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1919     Value *CmpQ =
1920         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1921     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1922     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1923   }
1924 
1925   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1926   // a shorter form that has more potential to be folded even further.
1927   Value *X1, *X2, *X3, *X4;
1928   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1929       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1930     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1931     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1932     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1933     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1934     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1935     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1936   }
1937 
1938   return nullptr;
1939 }
1940 
1941 /// Fold icmp (mul X, Y), C.
1942 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1943                                                BinaryOperator *Mul,
1944                                                const APInt &C) {
1945   const APInt *MulC;
1946   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1947     return nullptr;
1948 
1949   // If this is a test of the sign bit and the multiply is sign-preserving with
1950   // a constant operand, use the multiply LHS operand instead.
1951   ICmpInst::Predicate Pred = Cmp.getPredicate();
1952   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1953     if (MulC->isNegative())
1954       Pred = ICmpInst::getSwappedPredicate(Pred);
1955     return new ICmpInst(Pred, Mul->getOperand(0),
1956                         Constant::getNullValue(Mul->getType()));
1957   }
1958 
1959   return nullptr;
1960 }
1961 
1962 /// Fold icmp (shl 1, Y), C.
1963 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1964                                    const APInt &C) {
1965   Value *Y;
1966   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1967     return nullptr;
1968 
1969   Type *ShiftType = Shl->getType();
1970   unsigned TypeBits = C.getBitWidth();
1971   bool CIsPowerOf2 = C.isPowerOf2();
1972   ICmpInst::Predicate Pred = Cmp.getPredicate();
1973   if (Cmp.isUnsigned()) {
1974     // (1 << Y) pred C -> Y pred Log2(C)
1975     if (!CIsPowerOf2) {
1976       // (1 << Y) <  30 -> Y <= 4
1977       // (1 << Y) <= 30 -> Y <= 4
1978       // (1 << Y) >= 30 -> Y >  4
1979       // (1 << Y) >  30 -> Y >  4
1980       if (Pred == ICmpInst::ICMP_ULT)
1981         Pred = ICmpInst::ICMP_ULE;
1982       else if (Pred == ICmpInst::ICMP_UGE)
1983         Pred = ICmpInst::ICMP_UGT;
1984     }
1985 
1986     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1987     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1988     unsigned CLog2 = C.logBase2();
1989     if (CLog2 == TypeBits - 1) {
1990       if (Pred == ICmpInst::ICMP_UGE)
1991         Pred = ICmpInst::ICMP_EQ;
1992       else if (Pred == ICmpInst::ICMP_ULT)
1993         Pred = ICmpInst::ICMP_NE;
1994     }
1995     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1996   } else if (Cmp.isSigned()) {
1997     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1998     if (C.isAllOnesValue()) {
1999       // (1 << Y) <= -1 -> Y == 31
2000       if (Pred == ICmpInst::ICMP_SLE)
2001         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2002 
2003       // (1 << Y) >  -1 -> Y != 31
2004       if (Pred == ICmpInst::ICMP_SGT)
2005         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2006     } else if (!C) {
2007       // (1 << Y) <  0 -> Y == 31
2008       // (1 << Y) <= 0 -> Y == 31
2009       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2010         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2011 
2012       // (1 << Y) >= 0 -> Y != 31
2013       // (1 << Y) >  0 -> Y != 31
2014       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2015         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2016     }
2017   } else if (Cmp.isEquality() && CIsPowerOf2) {
2018     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2019   }
2020 
2021   return nullptr;
2022 }
2023 
2024 /// Fold icmp (shl X, Y), C.
2025 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
2026                                                BinaryOperator *Shl,
2027                                                const APInt &C) {
2028   const APInt *ShiftVal;
2029   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2030     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2031 
2032   const APInt *ShiftAmt;
2033   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2034     return foldICmpShlOne(Cmp, Shl, C);
2035 
2036   // Check that the shift amount is in range. If not, don't perform undefined
2037   // shifts. When the shift is visited, it will be simplified.
2038   unsigned TypeBits = C.getBitWidth();
2039   if (ShiftAmt->uge(TypeBits))
2040     return nullptr;
2041 
2042   ICmpInst::Predicate Pred = Cmp.getPredicate();
2043   Value *X = Shl->getOperand(0);
2044   Type *ShType = Shl->getType();
2045 
2046   // NSW guarantees that we are only shifting out sign bits from the high bits,
2047   // so we can ASHR the compare constant without needing a mask and eliminate
2048   // the shift.
2049   if (Shl->hasNoSignedWrap()) {
2050     if (Pred == ICmpInst::ICMP_SGT) {
2051       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2052       APInt ShiftedC = C.ashr(*ShiftAmt);
2053       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2054     }
2055     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2056         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2057       APInt ShiftedC = C.ashr(*ShiftAmt);
2058       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2059     }
2060     if (Pred == ICmpInst::ICMP_SLT) {
2061       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2062       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2063       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2064       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2065       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2066       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2067       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2068     }
2069     // If this is a signed comparison to 0 and the shift is sign preserving,
2070     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2071     // do that if we're sure to not continue on in this function.
2072     if (isSignTest(Pred, C))
2073       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2074   }
2075 
2076   // NUW guarantees that we are only shifting out zero bits from the high bits,
2077   // so we can LSHR the compare constant without needing a mask and eliminate
2078   // the shift.
2079   if (Shl->hasNoUnsignedWrap()) {
2080     if (Pred == ICmpInst::ICMP_UGT) {
2081       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2082       APInt ShiftedC = C.lshr(*ShiftAmt);
2083       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2084     }
2085     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2086         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2087       APInt ShiftedC = C.lshr(*ShiftAmt);
2088       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2089     }
2090     if (Pred == ICmpInst::ICMP_ULT) {
2091       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2092       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2093       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2094       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2095       assert(C.ugt(0) && "ult 0 should have been eliminated");
2096       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2097       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2098     }
2099   }
2100 
2101   if (Cmp.isEquality() && Shl->hasOneUse()) {
2102     // Strength-reduce the shift into an 'and'.
2103     Constant *Mask = ConstantInt::get(
2104         ShType,
2105         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2106     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2107     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2108     return new ICmpInst(Pred, And, LShrC);
2109   }
2110 
2111   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2112   bool TrueIfSigned = false;
2113   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2114     // (X << 31) <s 0  --> (X & 1) != 0
2115     Constant *Mask = ConstantInt::get(
2116         ShType,
2117         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2118     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2119     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2120                         And, Constant::getNullValue(ShType));
2121   }
2122 
2123   // Simplify 'shl' inequality test into 'and' equality test.
2124   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2125     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2126     if ((C + 1).isPowerOf2() &&
2127         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2128       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2129       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2130                                                      : ICmpInst::ICMP_NE,
2131                           And, Constant::getNullValue(ShType));
2132     }
2133     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2134     if (C.isPowerOf2() &&
2135         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2136       Value *And =
2137           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2138       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2139                                                      : ICmpInst::ICMP_NE,
2140                           And, Constant::getNullValue(ShType));
2141     }
2142   }
2143 
2144   // Transform (icmp pred iM (shl iM %v, N), C)
2145   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2146   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2147   // This enables us to get rid of the shift in favor of a trunc that may be
2148   // free on the target. It has the additional benefit of comparing to a
2149   // smaller constant that may be more target-friendly.
2150   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2151   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2152       DL.isLegalInteger(TypeBits - Amt)) {
2153     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2154     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2155       TruncTy = VectorType::get(TruncTy, ShVTy->getNumElements());
2156     Constant *NewC =
2157         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2158     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2159   }
2160 
2161   return nullptr;
2162 }
2163 
2164 /// Fold icmp ({al}shr X, Y), C.
2165 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2166                                                BinaryOperator *Shr,
2167                                                const APInt &C) {
2168   // An exact shr only shifts out zero bits, so:
2169   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2170   Value *X = Shr->getOperand(0);
2171   CmpInst::Predicate Pred = Cmp.getPredicate();
2172   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2173       C.isNullValue())
2174     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2175 
2176   const APInt *ShiftVal;
2177   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2178     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2179 
2180   const APInt *ShiftAmt;
2181   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2182     return nullptr;
2183 
2184   // Check that the shift amount is in range. If not, don't perform undefined
2185   // shifts. When the shift is visited it will be simplified.
2186   unsigned TypeBits = C.getBitWidth();
2187   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2188   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2189     return nullptr;
2190 
2191   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2192   bool IsExact = Shr->isExact();
2193   Type *ShrTy = Shr->getType();
2194   // TODO: If we could guarantee that InstSimplify would handle all of the
2195   // constant-value-based preconditions in the folds below, then we could assert
2196   // those conditions rather than checking them. This is difficult because of
2197   // undef/poison (PR34838).
2198   if (IsAShr) {
2199     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2200       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2201       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2202       APInt ShiftedC = C.shl(ShAmtVal);
2203       if (ShiftedC.ashr(ShAmtVal) == C)
2204         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2205     }
2206     if (Pred == CmpInst::ICMP_SGT) {
2207       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2208       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2209       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2210           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2211         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2212     }
2213   } else {
2214     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2215       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2216       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2217       APInt ShiftedC = C.shl(ShAmtVal);
2218       if (ShiftedC.lshr(ShAmtVal) == C)
2219         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2220     }
2221     if (Pred == CmpInst::ICMP_UGT) {
2222       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2223       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2224       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2225         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2226     }
2227   }
2228 
2229   if (!Cmp.isEquality())
2230     return nullptr;
2231 
2232   // Handle equality comparisons of shift-by-constant.
2233 
2234   // If the comparison constant changes with the shift, the comparison cannot
2235   // succeed (bits of the comparison constant cannot match the shifted value).
2236   // This should be known by InstSimplify and already be folded to true/false.
2237   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2238           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2239          "Expected icmp+shr simplify did not occur.");
2240 
2241   // If the bits shifted out are known zero, compare the unshifted value:
2242   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2243   if (Shr->isExact())
2244     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2245 
2246   if (Shr->hasOneUse()) {
2247     // Canonicalize the shift into an 'and':
2248     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2249     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2250     Constant *Mask = ConstantInt::get(ShrTy, Val);
2251     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2252     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2253   }
2254 
2255   return nullptr;
2256 }
2257 
2258 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
2259                                                 BinaryOperator *SRem,
2260                                                 const APInt &C) {
2261   // Match an 'is positive' or 'is negative' comparison of remainder by a
2262   // constant power-of-2 value:
2263   // (X % pow2C) sgt/slt 0
2264   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2265   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2266     return nullptr;
2267 
2268   // TODO: The one-use check is standard because we do not typically want to
2269   //       create longer instruction sequences, but this might be a special-case
2270   //       because srem is not good for analysis or codegen.
2271   if (!SRem->hasOneUse())
2272     return nullptr;
2273 
2274   const APInt *DivisorC;
2275   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2276     return nullptr;
2277 
2278   // Mask off the sign bit and the modulo bits (low-bits).
2279   Type *Ty = SRem->getType();
2280   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2281   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2282   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2283 
2284   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2285   // bit is set. Example:
2286   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2287   if (Pred == ICmpInst::ICMP_SGT)
2288     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2289 
2290   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2291   // bit is set. Example:
2292   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2293   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2294 }
2295 
2296 /// Fold icmp (udiv X, Y), C.
2297 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2298                                                 BinaryOperator *UDiv,
2299                                                 const APInt &C) {
2300   const APInt *C2;
2301   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2302     return nullptr;
2303 
2304   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2305 
2306   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2307   Value *Y = UDiv->getOperand(1);
2308   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2309     assert(!C.isMaxValue() &&
2310            "icmp ugt X, UINT_MAX should have been simplified already.");
2311     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2312                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2313   }
2314 
2315   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2316   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2317     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2318     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2319                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2320   }
2321 
2322   return nullptr;
2323 }
2324 
2325 /// Fold icmp ({su}div X, Y), C.
2326 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2327                                                BinaryOperator *Div,
2328                                                const APInt &C) {
2329   // Fold: icmp pred ([us]div X, C2), C -> range test
2330   // Fold this div into the comparison, producing a range check.
2331   // Determine, based on the divide type, what the range is being
2332   // checked.  If there is an overflow on the low or high side, remember
2333   // it, otherwise compute the range [low, hi) bounding the new value.
2334   // See: InsertRangeTest above for the kinds of replacements possible.
2335   const APInt *C2;
2336   if (!match(Div->getOperand(1), m_APInt(C2)))
2337     return nullptr;
2338 
2339   // FIXME: If the operand types don't match the type of the divide
2340   // then don't attempt this transform. The code below doesn't have the
2341   // logic to deal with a signed divide and an unsigned compare (and
2342   // vice versa). This is because (x /s C2) <s C  produces different
2343   // results than (x /s C2) <u C or (x /u C2) <s C or even
2344   // (x /u C2) <u C.  Simply casting the operands and result won't
2345   // work. :(  The if statement below tests that condition and bails
2346   // if it finds it.
2347   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2348   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2349     return nullptr;
2350 
2351   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2352   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2353   // division-by-constant cases should be present, we can not assert that they
2354   // have happened before we reach this icmp instruction.
2355   if (C2->isNullValue() || C2->isOneValue() ||
2356       (DivIsSigned && C2->isAllOnesValue()))
2357     return nullptr;
2358 
2359   // Compute Prod = C * C2. We are essentially solving an equation of
2360   // form X / C2 = C. We solve for X by multiplying C2 and C.
2361   // By solving for X, we can turn this into a range check instead of computing
2362   // a divide.
2363   APInt Prod = C * *C2;
2364 
2365   // Determine if the product overflows by seeing if the product is not equal to
2366   // the divide. Make sure we do the same kind of divide as in the LHS
2367   // instruction that we're folding.
2368   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2369 
2370   ICmpInst::Predicate Pred = Cmp.getPredicate();
2371 
2372   // If the division is known to be exact, then there is no remainder from the
2373   // divide, so the covered range size is unit, otherwise it is the divisor.
2374   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2375 
2376   // Figure out the interval that is being checked.  For example, a comparison
2377   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2378   // Compute this interval based on the constants involved and the signedness of
2379   // the compare/divide.  This computes a half-open interval, keeping track of
2380   // whether either value in the interval overflows.  After analysis each
2381   // overflow variable is set to 0 if it's corresponding bound variable is valid
2382   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2383   int LoOverflow = 0, HiOverflow = 0;
2384   APInt LoBound, HiBound;
2385 
2386   if (!DivIsSigned) {  // udiv
2387     // e.g. X/5 op 3  --> [15, 20)
2388     LoBound = Prod;
2389     HiOverflow = LoOverflow = ProdOV;
2390     if (!HiOverflow) {
2391       // If this is not an exact divide, then many values in the range collapse
2392       // to the same result value.
2393       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2394     }
2395   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2396     if (C.isNullValue()) {       // (X / pos) op 0
2397       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2398       LoBound = -(RangeSize - 1);
2399       HiBound = RangeSize;
2400     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2401       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2402       HiOverflow = LoOverflow = ProdOV;
2403       if (!HiOverflow)
2404         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2405     } else {                       // (X / pos) op neg
2406       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2407       HiBound = Prod + 1;
2408       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2409       if (!LoOverflow) {
2410         APInt DivNeg = -RangeSize;
2411         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2412       }
2413     }
2414   } else if (C2->isNegative()) { // Divisor is < 0.
2415     if (Div->isExact())
2416       RangeSize.negate();
2417     if (C.isNullValue()) { // (X / neg) op 0
2418       // e.g. X/-5 op 0  --> [-4, 5)
2419       LoBound = RangeSize + 1;
2420       HiBound = -RangeSize;
2421       if (HiBound == *C2) {        // -INTMIN = INTMIN
2422         HiOverflow = 1;            // [INTMIN+1, overflow)
2423         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2424       }
2425     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2426       // e.g. X/-5 op 3  --> [-19, -14)
2427       HiBound = Prod + 1;
2428       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2429       if (!LoOverflow)
2430         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2431     } else {                       // (X / neg) op neg
2432       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2433       LoOverflow = HiOverflow = ProdOV;
2434       if (!HiOverflow)
2435         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2436     }
2437 
2438     // Dividing by a negative swaps the condition.  LT <-> GT
2439     Pred = ICmpInst::getSwappedPredicate(Pred);
2440   }
2441 
2442   Value *X = Div->getOperand(0);
2443   switch (Pred) {
2444     default: llvm_unreachable("Unhandled icmp opcode!");
2445     case ICmpInst::ICMP_EQ:
2446       if (LoOverflow && HiOverflow)
2447         return replaceInstUsesWith(Cmp, Builder.getFalse());
2448       if (HiOverflow)
2449         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2450                             ICmpInst::ICMP_UGE, X,
2451                             ConstantInt::get(Div->getType(), LoBound));
2452       if (LoOverflow)
2453         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2454                             ICmpInst::ICMP_ULT, X,
2455                             ConstantInt::get(Div->getType(), HiBound));
2456       return replaceInstUsesWith(
2457           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2458     case ICmpInst::ICMP_NE:
2459       if (LoOverflow && HiOverflow)
2460         return replaceInstUsesWith(Cmp, Builder.getTrue());
2461       if (HiOverflow)
2462         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2463                             ICmpInst::ICMP_ULT, X,
2464                             ConstantInt::get(Div->getType(), LoBound));
2465       if (LoOverflow)
2466         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2467                             ICmpInst::ICMP_UGE, X,
2468                             ConstantInt::get(Div->getType(), HiBound));
2469       return replaceInstUsesWith(Cmp,
2470                                  insertRangeTest(X, LoBound, HiBound,
2471                                                  DivIsSigned, false));
2472     case ICmpInst::ICMP_ULT:
2473     case ICmpInst::ICMP_SLT:
2474       if (LoOverflow == +1)   // Low bound is greater than input range.
2475         return replaceInstUsesWith(Cmp, Builder.getTrue());
2476       if (LoOverflow == -1)   // Low bound is less than input range.
2477         return replaceInstUsesWith(Cmp, Builder.getFalse());
2478       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2479     case ICmpInst::ICMP_UGT:
2480     case ICmpInst::ICMP_SGT:
2481       if (HiOverflow == +1)       // High bound greater than input range.
2482         return replaceInstUsesWith(Cmp, Builder.getFalse());
2483       if (HiOverflow == -1)       // High bound less than input range.
2484         return replaceInstUsesWith(Cmp, Builder.getTrue());
2485       if (Pred == ICmpInst::ICMP_UGT)
2486         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2487                             ConstantInt::get(Div->getType(), HiBound));
2488       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2489                           ConstantInt::get(Div->getType(), HiBound));
2490   }
2491 
2492   return nullptr;
2493 }
2494 
2495 /// Fold icmp (sub X, Y), C.
2496 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2497                                                BinaryOperator *Sub,
2498                                                const APInt &C) {
2499   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2500   ICmpInst::Predicate Pred = Cmp.getPredicate();
2501   const APInt *C2;
2502   APInt SubResult;
2503 
2504   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2505   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2506     return new ICmpInst(Cmp.getPredicate(), Y,
2507                         ConstantInt::get(Y->getType(), 0));
2508 
2509   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2510   if (match(X, m_APInt(C2)) &&
2511       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2512        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2513       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2514     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2515                         ConstantInt::get(Y->getType(), SubResult));
2516 
2517   // The following transforms are only worth it if the only user of the subtract
2518   // is the icmp.
2519   if (!Sub->hasOneUse())
2520     return nullptr;
2521 
2522   if (Sub->hasNoSignedWrap()) {
2523     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2524     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2525       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2526 
2527     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2528     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2529       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2530 
2531     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2532     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2533       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2534 
2535     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2536     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2537       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2538   }
2539 
2540   if (!match(X, m_APInt(C2)))
2541     return nullptr;
2542 
2543   // C2 - Y <u C -> (Y | (C - 1)) == C2
2544   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2545   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2546       (*C2 & (C - 1)) == (C - 1))
2547     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2548 
2549   // C2 - Y >u C -> (Y | C) != C2
2550   //   iff C2 & C == C and C + 1 is a power of 2
2551   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2552     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2553 
2554   return nullptr;
2555 }
2556 
2557 /// Fold icmp (add X, Y), C.
2558 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2559                                                BinaryOperator *Add,
2560                                                const APInt &C) {
2561   Value *Y = Add->getOperand(1);
2562   const APInt *C2;
2563   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2564     return nullptr;
2565 
2566   // Fold icmp pred (add X, C2), C.
2567   Value *X = Add->getOperand(0);
2568   Type *Ty = Add->getType();
2569   CmpInst::Predicate Pred = Cmp.getPredicate();
2570 
2571   // If the add does not wrap, we can always adjust the compare by subtracting
2572   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2573   // are canonicalized to SGT/SLT/UGT/ULT.
2574   if ((Add->hasNoSignedWrap() &&
2575        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2576       (Add->hasNoUnsignedWrap() &&
2577        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2578     bool Overflow;
2579     APInt NewC =
2580         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2581     // If there is overflow, the result must be true or false.
2582     // TODO: Can we assert there is no overflow because InstSimplify always
2583     // handles those cases?
2584     if (!Overflow)
2585       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2586       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2587   }
2588 
2589   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2590   const APInt &Upper = CR.getUpper();
2591   const APInt &Lower = CR.getLower();
2592   if (Cmp.isSigned()) {
2593     if (Lower.isSignMask())
2594       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2595     if (Upper.isSignMask())
2596       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2597   } else {
2598     if (Lower.isMinValue())
2599       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2600     if (Upper.isMinValue())
2601       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2602   }
2603 
2604   if (!Add->hasOneUse())
2605     return nullptr;
2606 
2607   // X+C <u C2 -> (X & -C2) == C
2608   //   iff C & (C2-1) == 0
2609   //       C2 is a power of 2
2610   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2611     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2612                         ConstantExpr::getNeg(cast<Constant>(Y)));
2613 
2614   // X+C >u C2 -> (X & ~C2) != C
2615   //   iff C & C2 == 0
2616   //       C2+1 is a power of 2
2617   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2618     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2619                         ConstantExpr::getNeg(cast<Constant>(Y)));
2620 
2621   return nullptr;
2622 }
2623 
2624 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2625                                            Value *&RHS, ConstantInt *&Less,
2626                                            ConstantInt *&Equal,
2627                                            ConstantInt *&Greater) {
2628   // TODO: Generalize this to work with other comparison idioms or ensure
2629   // they get canonicalized into this form.
2630 
2631   // select i1 (a == b),
2632   //        i32 Equal,
2633   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2634   // where Equal, Less and Greater are placeholders for any three constants.
2635   ICmpInst::Predicate PredA;
2636   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2637       !ICmpInst::isEquality(PredA))
2638     return false;
2639   Value *EqualVal = SI->getTrueValue();
2640   Value *UnequalVal = SI->getFalseValue();
2641   // We still can get non-canonical predicate here, so canonicalize.
2642   if (PredA == ICmpInst::ICMP_NE)
2643     std::swap(EqualVal, UnequalVal);
2644   if (!match(EqualVal, m_ConstantInt(Equal)))
2645     return false;
2646   ICmpInst::Predicate PredB;
2647   Value *LHS2, *RHS2;
2648   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2649                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2650     return false;
2651   // We can get predicate mismatch here, so canonicalize if possible:
2652   // First, ensure that 'LHS' match.
2653   if (LHS2 != LHS) {
2654     // x sgt y <--> y slt x
2655     std::swap(LHS2, RHS2);
2656     PredB = ICmpInst::getSwappedPredicate(PredB);
2657   }
2658   if (LHS2 != LHS)
2659     return false;
2660   // We also need to canonicalize 'RHS'.
2661   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2662     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2663     auto FlippedStrictness =
2664         getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
2665     if (!FlippedStrictness)
2666       return false;
2667     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2668     RHS2 = FlippedStrictness->second;
2669     // And kind-of perform the result swap.
2670     std::swap(Less, Greater);
2671     PredB = ICmpInst::ICMP_SLT;
2672   }
2673   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2674 }
2675 
2676 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2677                                                   SelectInst *Select,
2678                                                   ConstantInt *C) {
2679 
2680   assert(C && "Cmp RHS should be a constant int!");
2681   // If we're testing a constant value against the result of a three way
2682   // comparison, the result can be expressed directly in terms of the
2683   // original values being compared.  Note: We could possibly be more
2684   // aggressive here and remove the hasOneUse test. The original select is
2685   // really likely to simplify or sink when we remove a test of the result.
2686   Value *OrigLHS, *OrigRHS;
2687   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2688   if (Cmp.hasOneUse() &&
2689       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2690                               C3GreaterThan)) {
2691     assert(C1LessThan && C2Equal && C3GreaterThan);
2692 
2693     bool TrueWhenLessThan =
2694         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2695             ->isAllOnesValue();
2696     bool TrueWhenEqual =
2697         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2698             ->isAllOnesValue();
2699     bool TrueWhenGreaterThan =
2700         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2701             ->isAllOnesValue();
2702 
2703     // This generates the new instruction that will replace the original Cmp
2704     // Instruction. Instead of enumerating the various combinations when
2705     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2706     // false, we rely on chaining of ORs and future passes of InstCombine to
2707     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2708 
2709     // When none of the three constants satisfy the predicate for the RHS (C),
2710     // the entire original Cmp can be simplified to a false.
2711     Value *Cond = Builder.getFalse();
2712     if (TrueWhenLessThan)
2713       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2714                                                        OrigLHS, OrigRHS));
2715     if (TrueWhenEqual)
2716       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2717                                                        OrigLHS, OrigRHS));
2718     if (TrueWhenGreaterThan)
2719       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2720                                                        OrigLHS, OrigRHS));
2721 
2722     return replaceInstUsesWith(Cmp, Cond);
2723   }
2724   return nullptr;
2725 }
2726 
2727 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2728                                     InstCombiner::BuilderTy &Builder) {
2729   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2730   if (!Bitcast)
2731     return nullptr;
2732 
2733   ICmpInst::Predicate Pred = Cmp.getPredicate();
2734   Value *Op1 = Cmp.getOperand(1);
2735   Value *BCSrcOp = Bitcast->getOperand(0);
2736 
2737   // Make sure the bitcast doesn't change the number of vector elements.
2738   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2739           Bitcast->getDestTy()->getScalarSizeInBits()) {
2740     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2741     Value *X;
2742     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2743       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2744       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2745       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2746       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2747       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2748            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2749           match(Op1, m_Zero()))
2750         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2751 
2752       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2753       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2754         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2755 
2756       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2757       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2758         return new ICmpInst(Pred, X,
2759                             ConstantInt::getAllOnesValue(X->getType()));
2760     }
2761 
2762     // Zero-equality checks are preserved through unsigned floating-point casts:
2763     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2764     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2765     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2766       if (Cmp.isEquality() && match(Op1, m_Zero()))
2767         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2768 
2769     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2770     // the FP extend/truncate because that cast does not change the sign-bit.
2771     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2772     // The sign-bit is always the most significant bit in those types.
2773     const APInt *C;
2774     bool TrueIfSigned;
2775     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2776         isSignBitCheck(Pred, *C, TrueIfSigned)) {
2777       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2778           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2779         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2780         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2781         Type *XType = X->getType();
2782 
2783         // We can't currently handle Power style floating point operations here.
2784         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2785 
2786           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2787           if (auto *XVTy = dyn_cast<VectorType>(XType))
2788             NewType = VectorType::get(NewType, XVTy->getNumElements());
2789           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2790           if (TrueIfSigned)
2791             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2792                                 ConstantInt::getNullValue(NewType));
2793           else
2794             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2795                                 ConstantInt::getAllOnesValue(NewType));
2796         }
2797       }
2798     }
2799   }
2800 
2801   // Test to see if the operands of the icmp are casted versions of other
2802   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2803   if (Bitcast->getType()->isPointerTy() &&
2804       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2805     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2806     // so eliminate it as well.
2807     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2808       Op1 = BC2->getOperand(0);
2809 
2810     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2811     return new ICmpInst(Pred, BCSrcOp, Op1);
2812   }
2813 
2814   // Folding: icmp <pred> iN X, C
2815   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2816   //    and C is a splat of a K-bit pattern
2817   //    and SC is a constant vector = <C', C', C', ..., C'>
2818   // Into:
2819   //   %E = extractelement <M x iK> %vec, i32 C'
2820   //   icmp <pred> iK %E, trunc(C)
2821   const APInt *C;
2822   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2823       !Bitcast->getType()->isIntegerTy() ||
2824       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2825     return nullptr;
2826 
2827   Value *Vec;
2828   ArrayRef<int> Mask;
2829   if (match(BCSrcOp, m_ShuffleVector(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2830     // Check whether every element of Mask is the same constant
2831     if (is_splat(Mask)) {
2832       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2833       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2834       if (C->isSplat(EltTy->getBitWidth())) {
2835         // Fold the icmp based on the value of C
2836         // If C is M copies of an iK sized bit pattern,
2837         // then:
2838         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2839         //       icmp <pred> iK %SplatVal, <pattern>
2840         Value *Elem = Builder.getInt32(Mask[0]);
2841         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2842         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2843         return new ICmpInst(Pred, Extract, NewC);
2844       }
2845     }
2846   }
2847   return nullptr;
2848 }
2849 
2850 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2851 /// where X is some kind of instruction.
2852 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2853   const APInt *C;
2854   if (!match(Cmp.getOperand(1), m_APInt(C)))
2855     return nullptr;
2856 
2857   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2858     switch (BO->getOpcode()) {
2859     case Instruction::Xor:
2860       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2861         return I;
2862       break;
2863     case Instruction::And:
2864       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2865         return I;
2866       break;
2867     case Instruction::Or:
2868       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2869         return I;
2870       break;
2871     case Instruction::Mul:
2872       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2873         return I;
2874       break;
2875     case Instruction::Shl:
2876       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2877         return I;
2878       break;
2879     case Instruction::LShr:
2880     case Instruction::AShr:
2881       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2882         return I;
2883       break;
2884     case Instruction::SRem:
2885       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2886         return I;
2887       break;
2888     case Instruction::UDiv:
2889       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2890         return I;
2891       LLVM_FALLTHROUGH;
2892     case Instruction::SDiv:
2893       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2894         return I;
2895       break;
2896     case Instruction::Sub:
2897       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2898         return I;
2899       break;
2900     case Instruction::Add:
2901       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2902         return I;
2903       break;
2904     default:
2905       break;
2906     }
2907     // TODO: These folds could be refactored to be part of the above calls.
2908     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2909       return I;
2910   }
2911 
2912   // Match against CmpInst LHS being instructions other than binary operators.
2913 
2914   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2915     // For now, we only support constant integers while folding the
2916     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2917     // similar to the cases handled by binary ops above.
2918     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2919       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2920         return I;
2921   }
2922 
2923   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2924     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2925       return I;
2926   }
2927 
2928   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2929     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2930       return I;
2931 
2932   return nullptr;
2933 }
2934 
2935 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2936 /// icmp eq/ne BO, C.
2937 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2938                                                              BinaryOperator *BO,
2939                                                              const APInt &C) {
2940   // TODO: Some of these folds could work with arbitrary constants, but this
2941   // function is limited to scalar and vector splat constants.
2942   if (!Cmp.isEquality())
2943     return nullptr;
2944 
2945   ICmpInst::Predicate Pred = Cmp.getPredicate();
2946   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2947   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2948   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2949 
2950   switch (BO->getOpcode()) {
2951   case Instruction::SRem:
2952     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2953     if (C.isNullValue() && BO->hasOneUse()) {
2954       const APInt *BOC;
2955       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2956         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2957         return new ICmpInst(Pred, NewRem,
2958                             Constant::getNullValue(BO->getType()));
2959       }
2960     }
2961     break;
2962   case Instruction::Add: {
2963     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2964     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2965       if (BO->hasOneUse())
2966         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
2967     } else if (C.isNullValue()) {
2968       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2969       // efficiently invertible, or if the add has just this one use.
2970       if (Value *NegVal = dyn_castNegVal(BOp1))
2971         return new ICmpInst(Pred, BOp0, NegVal);
2972       if (Value *NegVal = dyn_castNegVal(BOp0))
2973         return new ICmpInst(Pred, NegVal, BOp1);
2974       if (BO->hasOneUse()) {
2975         Value *Neg = Builder.CreateNeg(BOp1);
2976         Neg->takeName(BO);
2977         return new ICmpInst(Pred, BOp0, Neg);
2978       }
2979     }
2980     break;
2981   }
2982   case Instruction::Xor:
2983     if (BO->hasOneUse()) {
2984       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2985         // For the xor case, we can xor two constants together, eliminating
2986         // the explicit xor.
2987         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2988       } else if (C.isNullValue()) {
2989         // Replace ((xor A, B) != 0) with (A != B)
2990         return new ICmpInst(Pred, BOp0, BOp1);
2991       }
2992     }
2993     break;
2994   case Instruction::Sub:
2995     if (BO->hasOneUse()) {
2996       // Only check for constant LHS here, as constant RHS will be canonicalized
2997       // to add and use the fold above.
2998       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
2999         // Replace ((sub BOC, B) != C) with (B != BOC-C).
3000         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3001       } else if (C.isNullValue()) {
3002         // Replace ((sub A, B) != 0) with (A != B).
3003         return new ICmpInst(Pred, BOp0, BOp1);
3004       }
3005     }
3006     break;
3007   case Instruction::Or: {
3008     const APInt *BOC;
3009     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3010       // Comparing if all bits outside of a constant mask are set?
3011       // Replace (X | C) == -1 with (X & ~C) == ~C.
3012       // This removes the -1 constant.
3013       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3014       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3015       return new ICmpInst(Pred, And, NotBOC);
3016     }
3017     break;
3018   }
3019   case Instruction::And: {
3020     const APInt *BOC;
3021     if (match(BOp1, m_APInt(BOC))) {
3022       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3023       if (C == *BOC && C.isPowerOf2())
3024         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3025                             BO, Constant::getNullValue(RHS->getType()));
3026     }
3027     break;
3028   }
3029   case Instruction::Mul:
3030     if (C.isNullValue() && BO->hasNoSignedWrap()) {
3031       const APInt *BOC;
3032       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
3033         // The trivial case (mul X, 0) is handled by InstSimplify.
3034         // General case : (mul X, C) != 0 iff X != 0
3035         //                (mul X, C) == 0 iff X == 0
3036         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
3037       }
3038     }
3039     break;
3040   case Instruction::UDiv:
3041     if (C.isNullValue()) {
3042       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3043       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3044       return new ICmpInst(NewPred, BOp1, BOp0);
3045     }
3046     break;
3047   default:
3048     break;
3049   }
3050   return nullptr;
3051 }
3052 
3053 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3054 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
3055                                                            IntrinsicInst *II,
3056                                                            const APInt &C) {
3057   Type *Ty = II->getType();
3058   unsigned BitWidth = C.getBitWidth();
3059   switch (II->getIntrinsicID()) {
3060   case Intrinsic::bswap:
3061     // bswap(A) == C  ->  A == bswap(C)
3062     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3063                         ConstantInt::get(Ty, C.byteSwap()));
3064 
3065   case Intrinsic::ctlz:
3066   case Intrinsic::cttz: {
3067     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3068     if (C == BitWidth)
3069       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3070                           ConstantInt::getNullValue(Ty));
3071 
3072     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3073     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3074     // Limit to one use to ensure we don't increase instruction count.
3075     unsigned Num = C.getLimitedValue(BitWidth);
3076     if (Num != BitWidth && II->hasOneUse()) {
3077       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3078       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3079                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3080       APInt Mask2 = IsTrailing
3081         ? APInt::getOneBitSet(BitWidth, Num)
3082         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3083       return new ICmpInst(Cmp.getPredicate(),
3084           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3085           ConstantInt::get(Ty, Mask2));
3086     }
3087     break;
3088   }
3089 
3090   case Intrinsic::ctpop: {
3091     // popcount(A) == 0  ->  A == 0 and likewise for !=
3092     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3093     bool IsZero = C.isNullValue();
3094     if (IsZero || C == BitWidth)
3095       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3096           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3097 
3098     break;
3099   }
3100 
3101   case Intrinsic::uadd_sat: {
3102     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3103     if (C.isNullValue()) {
3104       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3105       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3106     }
3107     break;
3108   }
3109 
3110   case Intrinsic::usub_sat: {
3111     // usub.sat(a, b) == 0  ->  a <= b
3112     if (C.isNullValue()) {
3113       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3114           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3115       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3116     }
3117     break;
3118   }
3119   default:
3120     break;
3121   }
3122 
3123   return nullptr;
3124 }
3125 
3126 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3127 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3128                                                          IntrinsicInst *II,
3129                                                          const APInt &C) {
3130   if (Cmp.isEquality())
3131     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3132 
3133   Type *Ty = II->getType();
3134   unsigned BitWidth = C.getBitWidth();
3135   switch (II->getIntrinsicID()) {
3136   case Intrinsic::ctlz: {
3137     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3138     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3139       unsigned Num = C.getLimitedValue();
3140       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3141       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3142                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3143     }
3144 
3145     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3146     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3147         C.uge(1) && C.ule(BitWidth)) {
3148       unsigned Num = C.getLimitedValue();
3149       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3150       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3151                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3152     }
3153     break;
3154   }
3155   case Intrinsic::cttz: {
3156     // Limit to one use to ensure we don't increase instruction count.
3157     if (!II->hasOneUse())
3158       return nullptr;
3159 
3160     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3161     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3162       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3163       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3164                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3165                              ConstantInt::getNullValue(Ty));
3166     }
3167 
3168     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3169     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3170         C.uge(1) && C.ule(BitWidth)) {
3171       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3172       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3173                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3174                              ConstantInt::getNullValue(Ty));
3175     }
3176     break;
3177   }
3178   default:
3179     break;
3180   }
3181 
3182   return nullptr;
3183 }
3184 
3185 /// Handle icmp with constant (but not simple integer constant) RHS.
3186 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3187   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3188   Constant *RHSC = dyn_cast<Constant>(Op1);
3189   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3190   if (!RHSC || !LHSI)
3191     return nullptr;
3192 
3193   switch (LHSI->getOpcode()) {
3194   case Instruction::GetElementPtr:
3195     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3196     if (RHSC->isNullValue() &&
3197         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3198       return new ICmpInst(
3199           I.getPredicate(), LHSI->getOperand(0),
3200           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3201     break;
3202   case Instruction::PHI:
3203     // Only fold icmp into the PHI if the phi and icmp are in the same
3204     // block.  If in the same block, we're encouraging jump threading.  If
3205     // not, we are just pessimizing the code by making an i1 phi.
3206     if (LHSI->getParent() == I.getParent())
3207       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3208         return NV;
3209     break;
3210   case Instruction::Select: {
3211     // If either operand of the select is a constant, we can fold the
3212     // comparison into the select arms, which will cause one to be
3213     // constant folded and the select turned into a bitwise or.
3214     Value *Op1 = nullptr, *Op2 = nullptr;
3215     ConstantInt *CI = nullptr;
3216     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3217       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3218       CI = dyn_cast<ConstantInt>(Op1);
3219     }
3220     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3221       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3222       CI = dyn_cast<ConstantInt>(Op2);
3223     }
3224 
3225     // We only want to perform this transformation if it will not lead to
3226     // additional code. This is true if either both sides of the select
3227     // fold to a constant (in which case the icmp is replaced with a select
3228     // which will usually simplify) or this is the only user of the
3229     // select (in which case we are trading a select+icmp for a simpler
3230     // select+icmp) or all uses of the select can be replaced based on
3231     // dominance information ("Global cases").
3232     bool Transform = false;
3233     if (Op1 && Op2)
3234       Transform = true;
3235     else if (Op1 || Op2) {
3236       // Local case
3237       if (LHSI->hasOneUse())
3238         Transform = true;
3239       // Global cases
3240       else if (CI && !CI->isZero())
3241         // When Op1 is constant try replacing select with second operand.
3242         // Otherwise Op2 is constant and try replacing select with first
3243         // operand.
3244         Transform =
3245             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3246     }
3247     if (Transform) {
3248       if (!Op1)
3249         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3250                                  I.getName());
3251       if (!Op2)
3252         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3253                                  I.getName());
3254       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3255     }
3256     break;
3257   }
3258   case Instruction::IntToPtr:
3259     // icmp pred inttoptr(X), null -> icmp pred X, 0
3260     if (RHSC->isNullValue() &&
3261         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3262       return new ICmpInst(
3263           I.getPredicate(), LHSI->getOperand(0),
3264           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3265     break;
3266 
3267   case Instruction::Load:
3268     // Try to optimize things like "A[i] > 4" to index computations.
3269     if (GetElementPtrInst *GEP =
3270             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3271       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3272         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3273             !cast<LoadInst>(LHSI)->isVolatile())
3274           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3275             return Res;
3276     }
3277     break;
3278   }
3279 
3280   return nullptr;
3281 }
3282 
3283 /// Some comparisons can be simplified.
3284 /// In this case, we are looking for comparisons that look like
3285 /// a check for a lossy truncation.
3286 /// Folds:
3287 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3288 /// Where Mask is some pattern that produces all-ones in low bits:
3289 ///    (-1 >> y)
3290 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3291 ///   ~(-1 << y)
3292 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3293 /// The Mask can be a constant, too.
3294 /// For some predicates, the operands are commutative.
3295 /// For others, x can only be on a specific side.
3296 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3297                                           InstCombiner::BuilderTy &Builder) {
3298   ICmpInst::Predicate SrcPred;
3299   Value *X, *M, *Y;
3300   auto m_VariableMask = m_CombineOr(
3301       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3302                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3303       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3304                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3305   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3306   if (!match(&I, m_c_ICmp(SrcPred,
3307                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3308                           m_Deferred(X))))
3309     return nullptr;
3310 
3311   ICmpInst::Predicate DstPred;
3312   switch (SrcPred) {
3313   case ICmpInst::Predicate::ICMP_EQ:
3314     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3315     DstPred = ICmpInst::Predicate::ICMP_ULE;
3316     break;
3317   case ICmpInst::Predicate::ICMP_NE:
3318     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3319     DstPred = ICmpInst::Predicate::ICMP_UGT;
3320     break;
3321   case ICmpInst::Predicate::ICMP_ULT:
3322     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3323     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3324     DstPred = ICmpInst::Predicate::ICMP_UGT;
3325     break;
3326   case ICmpInst::Predicate::ICMP_UGE:
3327     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3328     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3329     DstPred = ICmpInst::Predicate::ICMP_ULE;
3330     break;
3331   case ICmpInst::Predicate::ICMP_SLT:
3332     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3333     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3334     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3335       return nullptr;
3336     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3337       return nullptr;
3338     DstPred = ICmpInst::Predicate::ICMP_SGT;
3339     break;
3340   case ICmpInst::Predicate::ICMP_SGE:
3341     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3342     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3343     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3344       return nullptr;
3345     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3346       return nullptr;
3347     DstPred = ICmpInst::Predicate::ICMP_SLE;
3348     break;
3349   case ICmpInst::Predicate::ICMP_SGT:
3350   case ICmpInst::Predicate::ICMP_SLE:
3351     return nullptr;
3352   case ICmpInst::Predicate::ICMP_UGT:
3353   case ICmpInst::Predicate::ICMP_ULE:
3354     llvm_unreachable("Instsimplify took care of commut. variant");
3355     break;
3356   default:
3357     llvm_unreachable("All possible folds are handled.");
3358   }
3359 
3360   // The mask value may be a vector constant that has undefined elements. But it
3361   // may not be safe to propagate those undefs into the new compare, so replace
3362   // those elements by copying an existing, defined, and safe scalar constant.
3363   Type *OpTy = M->getType();
3364   auto *VecC = dyn_cast<Constant>(M);
3365   if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3366     auto *OpVTy = cast<VectorType>(OpTy);
3367     Constant *SafeReplacementConstant = nullptr;
3368     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3369       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3370         SafeReplacementConstant = VecC->getAggregateElement(i);
3371         break;
3372       }
3373     }
3374     assert(SafeReplacementConstant && "Failed to find undef replacement");
3375     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3376   }
3377 
3378   return Builder.CreateICmp(DstPred, X, M);
3379 }
3380 
3381 /// Some comparisons can be simplified.
3382 /// In this case, we are looking for comparisons that look like
3383 /// a check for a lossy signed truncation.
3384 /// Folds:   (MaskedBits is a constant.)
3385 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3386 /// Into:
3387 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3388 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3389 static Value *
3390 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3391                                  InstCombiner::BuilderTy &Builder) {
3392   ICmpInst::Predicate SrcPred;
3393   Value *X;
3394   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3395   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3396   if (!match(&I, m_c_ICmp(SrcPred,
3397                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3398                                           m_APInt(C1))),
3399                           m_Deferred(X))))
3400     return nullptr;
3401 
3402   // Potential handling of non-splats: for each element:
3403   //  * if both are undef, replace with constant 0.
3404   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3405   //  * if both are not undef, and are different, bailout.
3406   //  * else, only one is undef, then pick the non-undef one.
3407 
3408   // The shift amount must be equal.
3409   if (*C0 != *C1)
3410     return nullptr;
3411   const APInt &MaskedBits = *C0;
3412   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3413 
3414   ICmpInst::Predicate DstPred;
3415   switch (SrcPred) {
3416   case ICmpInst::Predicate::ICMP_EQ:
3417     // ((%x << MaskedBits) a>> MaskedBits) == %x
3418     //   =>
3419     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3420     DstPred = ICmpInst::Predicate::ICMP_ULT;
3421     break;
3422   case ICmpInst::Predicate::ICMP_NE:
3423     // ((%x << MaskedBits) a>> MaskedBits) != %x
3424     //   =>
3425     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3426     DstPred = ICmpInst::Predicate::ICMP_UGE;
3427     break;
3428   // FIXME: are more folds possible?
3429   default:
3430     return nullptr;
3431   }
3432 
3433   auto *XType = X->getType();
3434   const unsigned XBitWidth = XType->getScalarSizeInBits();
3435   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3436   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3437 
3438   // KeptBits = bitwidth(%x) - MaskedBits
3439   const APInt KeptBits = BitWidth - MaskedBits;
3440   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3441   // ICmpCst = (1 << KeptBits)
3442   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3443   assert(ICmpCst.isPowerOf2());
3444   // AddCst = (1 << (KeptBits-1))
3445   const APInt AddCst = ICmpCst.lshr(1);
3446   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3447 
3448   // T0 = add %x, AddCst
3449   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3450   // T1 = T0 DstPred ICmpCst
3451   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3452 
3453   return T1;
3454 }
3455 
3456 // Given pattern:
3457 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3458 // we should move shifts to the same hand of 'and', i.e. rewrite as
3459 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3460 // We are only interested in opposite logical shifts here.
3461 // One of the shifts can be truncated.
3462 // If we can, we want to end up creating 'lshr' shift.
3463 static Value *
3464 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3465                                            InstCombiner::BuilderTy &Builder) {
3466   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3467       !I.getOperand(0)->hasOneUse())
3468     return nullptr;
3469 
3470   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3471 
3472   // Look for an 'and' of two logical shifts, one of which may be truncated.
3473   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3474   Instruction *XShift, *MaybeTruncation, *YShift;
3475   if (!match(
3476           I.getOperand(0),
3477           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3478                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3479                                    m_AnyLogicalShift, m_Instruction(YShift))),
3480                                m_Instruction(MaybeTruncation)))))
3481     return nullptr;
3482 
3483   // We potentially looked past 'trunc', but only when matching YShift,
3484   // therefore YShift must have the widest type.
3485   Instruction *WidestShift = YShift;
3486   // Therefore XShift must have the shallowest type.
3487   // Or they both have identical types if there was no truncation.
3488   Instruction *NarrowestShift = XShift;
3489 
3490   Type *WidestTy = WidestShift->getType();
3491   Type *NarrowestTy = NarrowestShift->getType();
3492   assert(NarrowestTy == I.getOperand(0)->getType() &&
3493          "We did not look past any shifts while matching XShift though.");
3494   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3495 
3496   // If YShift is a 'lshr', swap the shifts around.
3497   if (match(YShift, m_LShr(m_Value(), m_Value())))
3498     std::swap(XShift, YShift);
3499 
3500   // The shifts must be in opposite directions.
3501   auto XShiftOpcode = XShift->getOpcode();
3502   if (XShiftOpcode == YShift->getOpcode())
3503     return nullptr; // Do not care about same-direction shifts here.
3504 
3505   Value *X, *XShAmt, *Y, *YShAmt;
3506   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3507   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3508 
3509   // If one of the values being shifted is a constant, then we will end with
3510   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3511   // however, we will need to ensure that we won't increase instruction count.
3512   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3513     // At least one of the hands of the 'and' should be one-use shift.
3514     if (!match(I.getOperand(0),
3515                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3516       return nullptr;
3517     if (HadTrunc) {
3518       // Due to the 'trunc', we will need to widen X. For that either the old
3519       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3520       if (!MaybeTruncation->hasOneUse() &&
3521           !NarrowestShift->getOperand(1)->hasOneUse())
3522         return nullptr;
3523     }
3524   }
3525 
3526   // We have two shift amounts from two different shifts. The types of those
3527   // shift amounts may not match. If that's the case let's bailout now.
3528   if (XShAmt->getType() != YShAmt->getType())
3529     return nullptr;
3530 
3531   // As input, we have the following pattern:
3532   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3533   // We want to rewrite that as:
3534   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3535   // While we know that originally (Q+K) would not overflow
3536   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3537   // shift amounts. so it may now overflow in smaller bitwidth.
3538   // To ensure that does not happen, we need to ensure that the total maximal
3539   // shift amount is still representable in that smaller bit width.
3540   unsigned MaximalPossibleTotalShiftAmount =
3541       (WidestTy->getScalarSizeInBits() - 1) +
3542       (NarrowestTy->getScalarSizeInBits() - 1);
3543   APInt MaximalRepresentableShiftAmount =
3544       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3545   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3546     return nullptr;
3547 
3548   // Can we fold (XShAmt+YShAmt) ?
3549   auto *NewShAmt = dyn_cast_or_null<Constant>(
3550       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3551                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3552   if (!NewShAmt)
3553     return nullptr;
3554   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3555   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3556 
3557   // Is the new shift amount smaller than the bit width?
3558   // FIXME: could also rely on ConstantRange.
3559   if (!match(NewShAmt,
3560              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3561                                 APInt(WidestBitWidth, WidestBitWidth))))
3562     return nullptr;
3563 
3564   // An extra legality check is needed if we had trunc-of-lshr.
3565   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3566     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3567                     WidestShift]() {
3568       // It isn't obvious whether it's worth it to analyze non-constants here.
3569       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3570       // If *any* of these preconditions matches we can perform the fold.
3571       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3572                                     ? NewShAmt->getSplatValue()
3573                                     : NewShAmt;
3574       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3575       if (NewShAmtSplat &&
3576           (NewShAmtSplat->isNullValue() ||
3577            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3578         return true;
3579       // We consider *min* leading zeros so a single outlier
3580       // blocks the transform as opposed to allowing it.
3581       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3582         KnownBits Known = computeKnownBits(C, SQ.DL);
3583         unsigned MinLeadZero = Known.countMinLeadingZeros();
3584         // If the value being shifted has at most lowest bit set we can fold.
3585         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3586         if (MaxActiveBits <= 1)
3587           return true;
3588         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3589         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3590           return true;
3591       }
3592       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3593         KnownBits Known = computeKnownBits(C, SQ.DL);
3594         unsigned MinLeadZero = Known.countMinLeadingZeros();
3595         // If the value being shifted has at most lowest bit set we can fold.
3596         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3597         if (MaxActiveBits <= 1)
3598           return true;
3599         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3600         if (NewShAmtSplat) {
3601           APInt AdjNewShAmt =
3602               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3603           if (AdjNewShAmt.ule(MinLeadZero))
3604             return true;
3605         }
3606       }
3607       return false; // Can't tell if it's ok.
3608     };
3609     if (!CanFold())
3610       return nullptr;
3611   }
3612 
3613   // All good, we can do this fold.
3614   X = Builder.CreateZExt(X, WidestTy);
3615   Y = Builder.CreateZExt(Y, WidestTy);
3616   // The shift is the same that was for X.
3617   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3618                   ? Builder.CreateLShr(X, NewShAmt)
3619                   : Builder.CreateShl(X, NewShAmt);
3620   Value *T1 = Builder.CreateAnd(T0, Y);
3621   return Builder.CreateICmp(I.getPredicate(), T1,
3622                             Constant::getNullValue(WidestTy));
3623 }
3624 
3625 /// Fold
3626 ///   (-1 u/ x) u< y
3627 ///   ((x * y) u/ x) != y
3628 /// to
3629 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3630 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3631 /// will mean that we are looking for the opposite answer.
3632 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3633   ICmpInst::Predicate Pred;
3634   Value *X, *Y;
3635   Instruction *Mul;
3636   bool NeedNegation;
3637   // Look for: (-1 u/ x) u</u>= y
3638   if (!I.isEquality() &&
3639       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3640                          m_Value(Y)))) {
3641     Mul = nullptr;
3642 
3643     // Are we checking that overflow does not happen, or does happen?
3644     switch (Pred) {
3645     case ICmpInst::Predicate::ICMP_ULT:
3646       NeedNegation = false;
3647       break; // OK
3648     case ICmpInst::Predicate::ICMP_UGE:
3649       NeedNegation = true;
3650       break; // OK
3651     default:
3652       return nullptr; // Wrong predicate.
3653     }
3654   } else // Look for: ((x * y) u/ x) !=/== y
3655       if (I.isEquality() &&
3656           match(&I, m_c_ICmp(Pred, m_Value(Y),
3657                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3658                                                                   m_Value(X)),
3659                                                           m_Instruction(Mul)),
3660                                              m_Deferred(X)))))) {
3661     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3662   } else
3663     return nullptr;
3664 
3665   BuilderTy::InsertPointGuard Guard(Builder);
3666   // If the pattern included (x * y), we'll want to insert new instructions
3667   // right before that original multiplication so that we can replace it.
3668   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3669   if (MulHadOtherUses)
3670     Builder.SetInsertPoint(Mul);
3671 
3672   Function *F = Intrinsic::getDeclaration(
3673       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3674   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3675 
3676   // If the multiplication was used elsewhere, to ensure that we don't leave
3677   // "duplicate" instructions, replace uses of that original multiplication
3678   // with the multiplication result from the with.overflow intrinsic.
3679   if (MulHadOtherUses)
3680     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3681 
3682   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3683   if (NeedNegation) // This technically increases instruction count.
3684     Res = Builder.CreateNot(Res, "umul.not.ov");
3685 
3686   // If we replaced the mul, erase it. Do this after all uses of Builder,
3687   // as the mul is used as insertion point.
3688   if (MulHadOtherUses)
3689     eraseInstFromFunction(*Mul);
3690 
3691   return Res;
3692 }
3693 
3694 /// Try to fold icmp (binop), X or icmp X, (binop).
3695 /// TODO: A large part of this logic is duplicated in InstSimplify's
3696 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3697 /// duplication.
3698 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) {
3699   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3700   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3701 
3702   // Special logic for binary operators.
3703   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3704   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3705   if (!BO0 && !BO1)
3706     return nullptr;
3707 
3708   const CmpInst::Predicate Pred = I.getPredicate();
3709   Value *X;
3710 
3711   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3712   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3713   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3714       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3715     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3716   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3717   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3718       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3719     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3720 
3721   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3722   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3723     NoOp0WrapProblem =
3724         ICmpInst::isEquality(Pred) ||
3725         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3726         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3727   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3728     NoOp1WrapProblem =
3729         ICmpInst::isEquality(Pred) ||
3730         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3731         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3732 
3733   // Analyze the case when either Op0 or Op1 is an add instruction.
3734   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3735   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3736   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3737     A = BO0->getOperand(0);
3738     B = BO0->getOperand(1);
3739   }
3740   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3741     C = BO1->getOperand(0);
3742     D = BO1->getOperand(1);
3743   }
3744 
3745   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3746   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3747   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3748     return new ICmpInst(Pred, A == Op1 ? B : A,
3749                         Constant::getNullValue(Op1->getType()));
3750 
3751   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3752   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3753   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3754     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3755                         C == Op0 ? D : C);
3756 
3757   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3758   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3759       NoOp1WrapProblem) {
3760     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3761     Value *Y, *Z;
3762     if (A == C) {
3763       // C + B == C + D  ->  B == D
3764       Y = B;
3765       Z = D;
3766     } else if (A == D) {
3767       // D + B == C + D  ->  B == C
3768       Y = B;
3769       Z = C;
3770     } else if (B == C) {
3771       // A + C == C + D  ->  A == D
3772       Y = A;
3773       Z = D;
3774     } else {
3775       assert(B == D);
3776       // A + D == C + D  ->  A == C
3777       Y = A;
3778       Z = C;
3779     }
3780     return new ICmpInst(Pred, Y, Z);
3781   }
3782 
3783   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3784   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3785       match(B, m_AllOnes()))
3786     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3787 
3788   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3789   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3790       match(B, m_AllOnes()))
3791     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3792 
3793   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3794   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3795     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3796 
3797   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3798   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3799     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3800 
3801   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3802   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3803       match(D, m_AllOnes()))
3804     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3805 
3806   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3807   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3808       match(D, m_AllOnes()))
3809     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3810 
3811   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3812   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3813     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3814 
3815   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3816   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3817     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3818 
3819   // TODO: The subtraction-related identities shown below also hold, but
3820   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3821   // wouldn't happen even if they were implemented.
3822   //
3823   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3824   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3825   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3826   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3827 
3828   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3829   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3830     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3831 
3832   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3833   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3834     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3835 
3836   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3837   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3838     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3839 
3840   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3841   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3842     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3843 
3844   // if C1 has greater magnitude than C2:
3845   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3846   //  s.t. C3 = C1 - C2
3847   //
3848   // if C2 has greater magnitude than C1:
3849   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3850   //  s.t. C3 = C2 - C1
3851   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3852       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3853     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3854       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3855         const APInt &AP1 = C1->getValue();
3856         const APInt &AP2 = C2->getValue();
3857         if (AP1.isNegative() == AP2.isNegative()) {
3858           APInt AP1Abs = C1->getValue().abs();
3859           APInt AP2Abs = C2->getValue().abs();
3860           if (AP1Abs.uge(AP2Abs)) {
3861             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3862             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3863             return new ICmpInst(Pred, NewAdd, C);
3864           } else {
3865             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3866             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3867             return new ICmpInst(Pred, A, NewAdd);
3868           }
3869         }
3870       }
3871 
3872   // Analyze the case when either Op0 or Op1 is a sub instruction.
3873   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3874   A = nullptr;
3875   B = nullptr;
3876   C = nullptr;
3877   D = nullptr;
3878   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3879     A = BO0->getOperand(0);
3880     B = BO0->getOperand(1);
3881   }
3882   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3883     C = BO1->getOperand(0);
3884     D = BO1->getOperand(1);
3885   }
3886 
3887   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3888   if (A == Op1 && NoOp0WrapProblem)
3889     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3890   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3891   if (C == Op0 && NoOp1WrapProblem)
3892     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3893 
3894   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3895   // (A - B) u>/u<= A --> B u>/u<= A
3896   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3897     return new ICmpInst(Pred, B, A);
3898   // C u</u>= (C - D) --> C u</u>= D
3899   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3900     return new ICmpInst(Pred, C, D);
3901   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3902   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3903       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3904     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3905   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3906   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3907       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3908     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3909 
3910   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3911   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3912     return new ICmpInst(Pred, A, C);
3913 
3914   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3915   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3916     return new ICmpInst(Pred, D, B);
3917 
3918   // icmp (0-X) < cst --> x > -cst
3919   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3920     Value *X;
3921     if (match(BO0, m_Neg(m_Value(X))))
3922       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3923         if (RHSC->isNotMinSignedValue())
3924           return new ICmpInst(I.getSwappedPredicate(), X,
3925                               ConstantExpr::getNeg(RHSC));
3926   }
3927 
3928   BinaryOperator *SRem = nullptr;
3929   // icmp (srem X, Y), Y
3930   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3931     SRem = BO0;
3932   // icmp Y, (srem X, Y)
3933   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3934            Op0 == BO1->getOperand(1))
3935     SRem = BO1;
3936   if (SRem) {
3937     // We don't check hasOneUse to avoid increasing register pressure because
3938     // the value we use is the same value this instruction was already using.
3939     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3940     default:
3941       break;
3942     case ICmpInst::ICMP_EQ:
3943       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3944     case ICmpInst::ICMP_NE:
3945       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3946     case ICmpInst::ICMP_SGT:
3947     case ICmpInst::ICMP_SGE:
3948       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3949                           Constant::getAllOnesValue(SRem->getType()));
3950     case ICmpInst::ICMP_SLT:
3951     case ICmpInst::ICMP_SLE:
3952       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3953                           Constant::getNullValue(SRem->getType()));
3954     }
3955   }
3956 
3957   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3958       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3959     switch (BO0->getOpcode()) {
3960     default:
3961       break;
3962     case Instruction::Add:
3963     case Instruction::Sub:
3964     case Instruction::Xor: {
3965       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3966         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3967 
3968       const APInt *C;
3969       if (match(BO0->getOperand(1), m_APInt(C))) {
3970         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3971         if (C->isSignMask()) {
3972           ICmpInst::Predicate NewPred =
3973               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3974           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3975         }
3976 
3977         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3978         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3979           ICmpInst::Predicate NewPred =
3980               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3981           NewPred = I.getSwappedPredicate(NewPred);
3982           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3983         }
3984       }
3985       break;
3986     }
3987     case Instruction::Mul: {
3988       if (!I.isEquality())
3989         break;
3990 
3991       const APInt *C;
3992       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3993           !C->isOneValue()) {
3994         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3995         // Mask = -1 >> count-trailing-zeros(C).
3996         if (unsigned TZs = C->countTrailingZeros()) {
3997           Constant *Mask = ConstantInt::get(
3998               BO0->getType(),
3999               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4000           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4001           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4002           return new ICmpInst(Pred, And1, And2);
4003         }
4004         // If there are no trailing zeros in the multiplier, just eliminate
4005         // the multiplies (no masking is needed):
4006         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
4007         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4008       }
4009       break;
4010     }
4011     case Instruction::UDiv:
4012     case Instruction::LShr:
4013       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4014         break;
4015       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4016 
4017     case Instruction::SDiv:
4018       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4019         break;
4020       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4021 
4022     case Instruction::AShr:
4023       if (!BO0->isExact() || !BO1->isExact())
4024         break;
4025       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4026 
4027     case Instruction::Shl: {
4028       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4029       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4030       if (!NUW && !NSW)
4031         break;
4032       if (!NSW && I.isSigned())
4033         break;
4034       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4035     }
4036     }
4037   }
4038 
4039   if (BO0) {
4040     // Transform  A & (L - 1) `ult` L --> L != 0
4041     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4042     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4043 
4044     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4045       auto *Zero = Constant::getNullValue(BO0->getType());
4046       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4047     }
4048   }
4049 
4050   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4051     return replaceInstUsesWith(I, V);
4052 
4053   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4054     return replaceInstUsesWith(I, V);
4055 
4056   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4057     return replaceInstUsesWith(I, V);
4058 
4059   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4060     return replaceInstUsesWith(I, V);
4061 
4062   return nullptr;
4063 }
4064 
4065 /// Fold icmp Pred min|max(X, Y), X.
4066 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4067   ICmpInst::Predicate Pred = Cmp.getPredicate();
4068   Value *Op0 = Cmp.getOperand(0);
4069   Value *X = Cmp.getOperand(1);
4070 
4071   // Canonicalize minimum or maximum operand to LHS of the icmp.
4072   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4073       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4074       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4075       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4076     std::swap(Op0, X);
4077     Pred = Cmp.getSwappedPredicate();
4078   }
4079 
4080   Value *Y;
4081   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4082     // smin(X, Y)  == X --> X s<= Y
4083     // smin(X, Y) s>= X --> X s<= Y
4084     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4085       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4086 
4087     // smin(X, Y) != X --> X s> Y
4088     // smin(X, Y) s< X --> X s> Y
4089     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4090       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4091 
4092     // These cases should be handled in InstSimplify:
4093     // smin(X, Y) s<= X --> true
4094     // smin(X, Y) s> X --> false
4095     return nullptr;
4096   }
4097 
4098   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4099     // smax(X, Y)  == X --> X s>= Y
4100     // smax(X, Y) s<= X --> X s>= Y
4101     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4102       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4103 
4104     // smax(X, Y) != X --> X s< Y
4105     // smax(X, Y) s> X --> X s< Y
4106     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4107       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4108 
4109     // These cases should be handled in InstSimplify:
4110     // smax(X, Y) s>= X --> true
4111     // smax(X, Y) s< X --> false
4112     return nullptr;
4113   }
4114 
4115   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4116     // umin(X, Y)  == X --> X u<= Y
4117     // umin(X, Y) u>= X --> X u<= Y
4118     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4119       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4120 
4121     // umin(X, Y) != X --> X u> Y
4122     // umin(X, Y) u< X --> X u> Y
4123     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4124       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4125 
4126     // These cases should be handled in InstSimplify:
4127     // umin(X, Y) u<= X --> true
4128     // umin(X, Y) u> X --> false
4129     return nullptr;
4130   }
4131 
4132   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4133     // umax(X, Y)  == X --> X u>= Y
4134     // umax(X, Y) u<= X --> X u>= Y
4135     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4136       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4137 
4138     // umax(X, Y) != X --> X u< Y
4139     // umax(X, Y) u> X --> X u< Y
4140     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4141       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4142 
4143     // These cases should be handled in InstSimplify:
4144     // umax(X, Y) u>= X --> true
4145     // umax(X, Y) u< X --> false
4146     return nullptr;
4147   }
4148 
4149   return nullptr;
4150 }
4151 
4152 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
4153   if (!I.isEquality())
4154     return nullptr;
4155 
4156   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4157   const CmpInst::Predicate Pred = I.getPredicate();
4158   Value *A, *B, *C, *D;
4159   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4160     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4161       Value *OtherVal = A == Op1 ? B : A;
4162       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4163     }
4164 
4165     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4166       // A^c1 == C^c2 --> A == C^(c1^c2)
4167       ConstantInt *C1, *C2;
4168       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4169           Op1->hasOneUse()) {
4170         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4171         Value *Xor = Builder.CreateXor(C, NC);
4172         return new ICmpInst(Pred, A, Xor);
4173       }
4174 
4175       // A^B == A^D -> B == D
4176       if (A == C)
4177         return new ICmpInst(Pred, B, D);
4178       if (A == D)
4179         return new ICmpInst(Pred, B, C);
4180       if (B == C)
4181         return new ICmpInst(Pred, A, D);
4182       if (B == D)
4183         return new ICmpInst(Pred, A, C);
4184     }
4185   }
4186 
4187   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4188     // A == (A^B)  ->  B == 0
4189     Value *OtherVal = A == Op0 ? B : A;
4190     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4191   }
4192 
4193   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4194   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4195       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4196     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4197 
4198     if (A == C) {
4199       X = B;
4200       Y = D;
4201       Z = A;
4202     } else if (A == D) {
4203       X = B;
4204       Y = C;
4205       Z = A;
4206     } else if (B == C) {
4207       X = A;
4208       Y = D;
4209       Z = B;
4210     } else if (B == D) {
4211       X = A;
4212       Y = C;
4213       Z = B;
4214     }
4215 
4216     if (X) { // Build (X^Y) & Z
4217       Op1 = Builder.CreateXor(X, Y);
4218       Op1 = Builder.CreateAnd(Op1, Z);
4219       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4220     }
4221   }
4222 
4223   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4224   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4225   ConstantInt *Cst1;
4226   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4227        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4228       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4229        match(Op1, m_ZExt(m_Value(A))))) {
4230     APInt Pow2 = Cst1->getValue() + 1;
4231     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4232         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4233       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4234   }
4235 
4236   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4237   // For lshr and ashr pairs.
4238   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4239        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4240       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4241        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4242     unsigned TypeBits = Cst1->getBitWidth();
4243     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4244     if (ShAmt < TypeBits && ShAmt != 0) {
4245       ICmpInst::Predicate NewPred =
4246           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4247       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4248       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4249       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4250     }
4251   }
4252 
4253   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4254   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4255       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4256     unsigned TypeBits = Cst1->getBitWidth();
4257     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4258     if (ShAmt < TypeBits && ShAmt != 0) {
4259       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4260       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4261       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4262                                       I.getName() + ".mask");
4263       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4264     }
4265   }
4266 
4267   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4268   // "icmp (and X, mask), cst"
4269   uint64_t ShAmt = 0;
4270   if (Op0->hasOneUse() &&
4271       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4272       match(Op1, m_ConstantInt(Cst1)) &&
4273       // Only do this when A has multiple uses.  This is most important to do
4274       // when it exposes other optimizations.
4275       !A->hasOneUse()) {
4276     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4277 
4278     if (ShAmt < ASize) {
4279       APInt MaskV =
4280           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4281       MaskV <<= ShAmt;
4282 
4283       APInt CmpV = Cst1->getValue().zext(ASize);
4284       CmpV <<= ShAmt;
4285 
4286       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4287       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4288     }
4289   }
4290 
4291   // If both operands are byte-swapped or bit-reversed, just compare the
4292   // original values.
4293   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4294   // and handle more intrinsics.
4295   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4296       (match(Op0, m_BitReverse(m_Value(A))) &&
4297        match(Op1, m_BitReverse(m_Value(B)))))
4298     return new ICmpInst(Pred, A, B);
4299 
4300   // Canonicalize checking for a power-of-2-or-zero value:
4301   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4302   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4303   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4304                                    m_Deferred(A)))) ||
4305       !match(Op1, m_ZeroInt()))
4306     A = nullptr;
4307 
4308   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4309   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4310   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4311     A = Op1;
4312   else if (match(Op1,
4313                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4314     A = Op0;
4315 
4316   if (A) {
4317     Type *Ty = A->getType();
4318     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4319     return Pred == ICmpInst::ICMP_EQ
4320         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4321         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4322   }
4323 
4324   return nullptr;
4325 }
4326 
4327 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4328                                            InstCombiner::BuilderTy &Builder) {
4329   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4330   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4331   Value *X;
4332   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4333     return nullptr;
4334 
4335   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4336   bool IsSignedCmp = ICmp.isSigned();
4337   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4338     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4339     // and the other is a zext), then we can't handle this.
4340     // TODO: This is too strict. We can handle some predicates (equality?).
4341     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4342       return nullptr;
4343 
4344     // Not an extension from the same type?
4345     Value *Y = CastOp1->getOperand(0);
4346     Type *XTy = X->getType(), *YTy = Y->getType();
4347     if (XTy != YTy) {
4348       // One of the casts must have one use because we are creating a new cast.
4349       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4350         return nullptr;
4351       // Extend the narrower operand to the type of the wider operand.
4352       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4353         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4354       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4355         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4356       else
4357         return nullptr;
4358     }
4359 
4360     // (zext X) == (zext Y) --> X == Y
4361     // (sext X) == (sext Y) --> X == Y
4362     if (ICmp.isEquality())
4363       return new ICmpInst(ICmp.getPredicate(), X, Y);
4364 
4365     // A signed comparison of sign extended values simplifies into a
4366     // signed comparison.
4367     if (IsSignedCmp && IsSignedExt)
4368       return new ICmpInst(ICmp.getPredicate(), X, Y);
4369 
4370     // The other three cases all fold into an unsigned comparison.
4371     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4372   }
4373 
4374   // Below here, we are only folding a compare with constant.
4375   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4376   if (!C)
4377     return nullptr;
4378 
4379   // Compute the constant that would happen if we truncated to SrcTy then
4380   // re-extended to DestTy.
4381   Type *SrcTy = CastOp0->getSrcTy();
4382   Type *DestTy = CastOp0->getDestTy();
4383   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4384   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4385 
4386   // If the re-extended constant didn't change...
4387   if (Res2 == C) {
4388     if (ICmp.isEquality())
4389       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4390 
4391     // A signed comparison of sign extended values simplifies into a
4392     // signed comparison.
4393     if (IsSignedExt && IsSignedCmp)
4394       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4395 
4396     // The other three cases all fold into an unsigned comparison.
4397     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4398   }
4399 
4400   // The re-extended constant changed, partly changed (in the case of a vector),
4401   // or could not be determined to be equal (in the case of a constant
4402   // expression), so the constant cannot be represented in the shorter type.
4403   // All the cases that fold to true or false will have already been handled
4404   // by SimplifyICmpInst, so only deal with the tricky case.
4405   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4406     return nullptr;
4407 
4408   // Is source op positive?
4409   // icmp ult (sext X), C --> icmp sgt X, -1
4410   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4411     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4412 
4413   // Is source op negative?
4414   // icmp ugt (sext X), C --> icmp slt X, 0
4415   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4416   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4417 }
4418 
4419 /// Handle icmp (cast x), (cast or constant).
4420 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
4421   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4422   if (!CastOp0)
4423     return nullptr;
4424   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4425     return nullptr;
4426 
4427   Value *Op0Src = CastOp0->getOperand(0);
4428   Type *SrcTy = CastOp0->getSrcTy();
4429   Type *DestTy = CastOp0->getDestTy();
4430 
4431   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4432   // integer type is the same size as the pointer type.
4433   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4434     if (isa<VectorType>(SrcTy)) {
4435       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4436       DestTy = cast<VectorType>(DestTy)->getElementType();
4437     }
4438     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4439   };
4440   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4441       CompatibleSizes(SrcTy, DestTy)) {
4442     Value *NewOp1 = nullptr;
4443     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4444       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4445       if (PtrSrc->getType()->getPointerAddressSpace() ==
4446           Op0Src->getType()->getPointerAddressSpace()) {
4447         NewOp1 = PtrToIntOp1->getOperand(0);
4448         // If the pointer types don't match, insert a bitcast.
4449         if (Op0Src->getType() != NewOp1->getType())
4450           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4451       }
4452     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4453       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4454     }
4455 
4456     if (NewOp1)
4457       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4458   }
4459 
4460   return foldICmpWithZextOrSext(ICmp, Builder);
4461 }
4462 
4463 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4464   switch (BinaryOp) {
4465     default:
4466       llvm_unreachable("Unsupported binary op");
4467     case Instruction::Add:
4468     case Instruction::Sub:
4469       return match(RHS, m_Zero());
4470     case Instruction::Mul:
4471       return match(RHS, m_One());
4472   }
4473 }
4474 
4475 OverflowResult InstCombiner::computeOverflow(
4476     Instruction::BinaryOps BinaryOp, bool IsSigned,
4477     Value *LHS, Value *RHS, Instruction *CxtI) const {
4478   switch (BinaryOp) {
4479     default:
4480       llvm_unreachable("Unsupported binary op");
4481     case Instruction::Add:
4482       if (IsSigned)
4483         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4484       else
4485         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4486     case Instruction::Sub:
4487       if (IsSigned)
4488         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4489       else
4490         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4491     case Instruction::Mul:
4492       if (IsSigned)
4493         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4494       else
4495         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4496   }
4497 }
4498 
4499 bool InstCombiner::OptimizeOverflowCheck(
4500     Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4501     Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4502   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4503     std::swap(LHS, RHS);
4504 
4505   // If the overflow check was an add followed by a compare, the insertion point
4506   // may be pointing to the compare.  We want to insert the new instructions
4507   // before the add in case there are uses of the add between the add and the
4508   // compare.
4509   Builder.SetInsertPoint(&OrigI);
4510 
4511   if (isNeutralValue(BinaryOp, RHS)) {
4512     Result = LHS;
4513     Overflow = Builder.getFalse();
4514     return true;
4515   }
4516 
4517   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4518     case OverflowResult::MayOverflow:
4519       return false;
4520     case OverflowResult::AlwaysOverflowsLow:
4521     case OverflowResult::AlwaysOverflowsHigh:
4522       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4523       Result->takeName(&OrigI);
4524       Overflow = Builder.getTrue();
4525       return true;
4526     case OverflowResult::NeverOverflows:
4527       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4528       Result->takeName(&OrigI);
4529       Overflow = Builder.getFalse();
4530       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4531         if (IsSigned)
4532           Inst->setHasNoSignedWrap();
4533         else
4534           Inst->setHasNoUnsignedWrap();
4535       }
4536       return true;
4537   }
4538 
4539   llvm_unreachable("Unexpected overflow result");
4540 }
4541 
4542 /// Recognize and process idiom involving test for multiplication
4543 /// overflow.
4544 ///
4545 /// The caller has matched a pattern of the form:
4546 ///   I = cmp u (mul(zext A, zext B), V
4547 /// The function checks if this is a test for overflow and if so replaces
4548 /// multiplication with call to 'mul.with.overflow' intrinsic.
4549 ///
4550 /// \param I Compare instruction.
4551 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4552 ///               the compare instruction.  Must be of integer type.
4553 /// \param OtherVal The other argument of compare instruction.
4554 /// \returns Instruction which must replace the compare instruction, NULL if no
4555 ///          replacement required.
4556 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4557                                          Value *OtherVal, InstCombiner &IC) {
4558   // Don't bother doing this transformation for pointers, don't do it for
4559   // vectors.
4560   if (!isa<IntegerType>(MulVal->getType()))
4561     return nullptr;
4562 
4563   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4564   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4565   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4566   if (!MulInstr)
4567     return nullptr;
4568   assert(MulInstr->getOpcode() == Instruction::Mul);
4569 
4570   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4571        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4572   assert(LHS->getOpcode() == Instruction::ZExt);
4573   assert(RHS->getOpcode() == Instruction::ZExt);
4574   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4575 
4576   // Calculate type and width of the result produced by mul.with.overflow.
4577   Type *TyA = A->getType(), *TyB = B->getType();
4578   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4579            WidthB = TyB->getPrimitiveSizeInBits();
4580   unsigned MulWidth;
4581   Type *MulType;
4582   if (WidthB > WidthA) {
4583     MulWidth = WidthB;
4584     MulType = TyB;
4585   } else {
4586     MulWidth = WidthA;
4587     MulType = TyA;
4588   }
4589 
4590   // In order to replace the original mul with a narrower mul.with.overflow,
4591   // all uses must ignore upper bits of the product.  The number of used low
4592   // bits must be not greater than the width of mul.with.overflow.
4593   if (MulVal->hasNUsesOrMore(2))
4594     for (User *U : MulVal->users()) {
4595       if (U == &I)
4596         continue;
4597       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4598         // Check if truncation ignores bits above MulWidth.
4599         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4600         if (TruncWidth > MulWidth)
4601           return nullptr;
4602       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4603         // Check if AND ignores bits above MulWidth.
4604         if (BO->getOpcode() != Instruction::And)
4605           return nullptr;
4606         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4607           const APInt &CVal = CI->getValue();
4608           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4609             return nullptr;
4610         } else {
4611           // In this case we could have the operand of the binary operation
4612           // being defined in another block, and performing the replacement
4613           // could break the dominance relation.
4614           return nullptr;
4615         }
4616       } else {
4617         // Other uses prohibit this transformation.
4618         return nullptr;
4619       }
4620     }
4621 
4622   // Recognize patterns
4623   switch (I.getPredicate()) {
4624   case ICmpInst::ICMP_EQ:
4625   case ICmpInst::ICMP_NE:
4626     // Recognize pattern:
4627     //   mulval = mul(zext A, zext B)
4628     //   cmp eq/neq mulval, zext trunc mulval
4629     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4630       if (Zext->hasOneUse()) {
4631         Value *ZextArg = Zext->getOperand(0);
4632         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4633           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4634             break; //Recognized
4635       }
4636 
4637     // Recognize pattern:
4638     //   mulval = mul(zext A, zext B)
4639     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4640     ConstantInt *CI;
4641     Value *ValToMask;
4642     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4643       if (ValToMask != MulVal)
4644         return nullptr;
4645       const APInt &CVal = CI->getValue() + 1;
4646       if (CVal.isPowerOf2()) {
4647         unsigned MaskWidth = CVal.logBase2();
4648         if (MaskWidth == MulWidth)
4649           break; // Recognized
4650       }
4651     }
4652     return nullptr;
4653 
4654   case ICmpInst::ICMP_UGT:
4655     // Recognize pattern:
4656     //   mulval = mul(zext A, zext B)
4657     //   cmp ugt mulval, max
4658     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4659       APInt MaxVal = APInt::getMaxValue(MulWidth);
4660       MaxVal = MaxVal.zext(CI->getBitWidth());
4661       if (MaxVal.eq(CI->getValue()))
4662         break; // Recognized
4663     }
4664     return nullptr;
4665 
4666   case ICmpInst::ICMP_UGE:
4667     // Recognize pattern:
4668     //   mulval = mul(zext A, zext B)
4669     //   cmp uge mulval, max+1
4670     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4671       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4672       if (MaxVal.eq(CI->getValue()))
4673         break; // Recognized
4674     }
4675     return nullptr;
4676 
4677   case ICmpInst::ICMP_ULE:
4678     // Recognize pattern:
4679     //   mulval = mul(zext A, zext B)
4680     //   cmp ule mulval, max
4681     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4682       APInt MaxVal = APInt::getMaxValue(MulWidth);
4683       MaxVal = MaxVal.zext(CI->getBitWidth());
4684       if (MaxVal.eq(CI->getValue()))
4685         break; // Recognized
4686     }
4687     return nullptr;
4688 
4689   case ICmpInst::ICMP_ULT:
4690     // Recognize pattern:
4691     //   mulval = mul(zext A, zext B)
4692     //   cmp ule mulval, max + 1
4693     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4694       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4695       if (MaxVal.eq(CI->getValue()))
4696         break; // Recognized
4697     }
4698     return nullptr;
4699 
4700   default:
4701     return nullptr;
4702   }
4703 
4704   InstCombiner::BuilderTy &Builder = IC.Builder;
4705   Builder.SetInsertPoint(MulInstr);
4706 
4707   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4708   Value *MulA = A, *MulB = B;
4709   if (WidthA < MulWidth)
4710     MulA = Builder.CreateZExt(A, MulType);
4711   if (WidthB < MulWidth)
4712     MulB = Builder.CreateZExt(B, MulType);
4713   Function *F = Intrinsic::getDeclaration(
4714       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4715   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4716   IC.Worklist.push(MulInstr);
4717 
4718   // If there are uses of mul result other than the comparison, we know that
4719   // they are truncation or binary AND. Change them to use result of
4720   // mul.with.overflow and adjust properly mask/size.
4721   if (MulVal->hasNUsesOrMore(2)) {
4722     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4723     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4724       User *U = *UI++;
4725       if (U == &I || U == OtherVal)
4726         continue;
4727       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4728         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4729           IC.replaceInstUsesWith(*TI, Mul);
4730         else
4731           TI->setOperand(0, Mul);
4732       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4733         assert(BO->getOpcode() == Instruction::And);
4734         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4735         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4736         APInt ShortMask = CI->getValue().trunc(MulWidth);
4737         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4738         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4739         IC.replaceInstUsesWith(*BO, Zext);
4740       } else {
4741         llvm_unreachable("Unexpected Binary operation");
4742       }
4743       IC.Worklist.push(cast<Instruction>(U));
4744     }
4745   }
4746   if (isa<Instruction>(OtherVal))
4747     IC.Worklist.push(cast<Instruction>(OtherVal));
4748 
4749   // The original icmp gets replaced with the overflow value, maybe inverted
4750   // depending on predicate.
4751   bool Inverse = false;
4752   switch (I.getPredicate()) {
4753   case ICmpInst::ICMP_NE:
4754     break;
4755   case ICmpInst::ICMP_EQ:
4756     Inverse = true;
4757     break;
4758   case ICmpInst::ICMP_UGT:
4759   case ICmpInst::ICMP_UGE:
4760     if (I.getOperand(0) == MulVal)
4761       break;
4762     Inverse = true;
4763     break;
4764   case ICmpInst::ICMP_ULT:
4765   case ICmpInst::ICMP_ULE:
4766     if (I.getOperand(1) == MulVal)
4767       break;
4768     Inverse = true;
4769     break;
4770   default:
4771     llvm_unreachable("Unexpected predicate");
4772   }
4773   if (Inverse) {
4774     Value *Res = Builder.CreateExtractValue(Call, 1);
4775     return BinaryOperator::CreateNot(Res);
4776   }
4777 
4778   return ExtractValueInst::Create(Call, 1);
4779 }
4780 
4781 /// When performing a comparison against a constant, it is possible that not all
4782 /// the bits in the LHS are demanded. This helper method computes the mask that
4783 /// IS demanded.
4784 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4785   const APInt *RHS;
4786   if (!match(I.getOperand(1), m_APInt(RHS)))
4787     return APInt::getAllOnesValue(BitWidth);
4788 
4789   // If this is a normal comparison, it demands all bits. If it is a sign bit
4790   // comparison, it only demands the sign bit.
4791   bool UnusedBit;
4792   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4793     return APInt::getSignMask(BitWidth);
4794 
4795   switch (I.getPredicate()) {
4796   // For a UGT comparison, we don't care about any bits that
4797   // correspond to the trailing ones of the comparand.  The value of these
4798   // bits doesn't impact the outcome of the comparison, because any value
4799   // greater than the RHS must differ in a bit higher than these due to carry.
4800   case ICmpInst::ICMP_UGT:
4801     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4802 
4803   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4804   // Any value less than the RHS must differ in a higher bit because of carries.
4805   case ICmpInst::ICMP_ULT:
4806     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4807 
4808   default:
4809     return APInt::getAllOnesValue(BitWidth);
4810   }
4811 }
4812 
4813 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4814 /// should be swapped.
4815 /// The decision is based on how many times these two operands are reused
4816 /// as subtract operands and their positions in those instructions.
4817 /// The rationale is that several architectures use the same instruction for
4818 /// both subtract and cmp. Thus, it is better if the order of those operands
4819 /// match.
4820 /// \return true if Op0 and Op1 should be swapped.
4821 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4822   // Filter out pointer values as those cannot appear directly in subtract.
4823   // FIXME: we may want to go through inttoptrs or bitcasts.
4824   if (Op0->getType()->isPointerTy())
4825     return false;
4826   // If a subtract already has the same operands as a compare, swapping would be
4827   // bad. If a subtract has the same operands as a compare but in reverse order,
4828   // then swapping is good.
4829   int GoodToSwap = 0;
4830   for (const User *U : Op0->users()) {
4831     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4832       GoodToSwap++;
4833     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4834       GoodToSwap--;
4835   }
4836   return GoodToSwap > 0;
4837 }
4838 
4839 /// Check that one use is in the same block as the definition and all
4840 /// other uses are in blocks dominated by a given block.
4841 ///
4842 /// \param DI Definition
4843 /// \param UI Use
4844 /// \param DB Block that must dominate all uses of \p DI outside
4845 ///           the parent block
4846 /// \return true when \p UI is the only use of \p DI in the parent block
4847 /// and all other uses of \p DI are in blocks dominated by \p DB.
4848 ///
4849 bool InstCombiner::dominatesAllUses(const Instruction *DI,
4850                                     const Instruction *UI,
4851                                     const BasicBlock *DB) const {
4852   assert(DI && UI && "Instruction not defined\n");
4853   // Ignore incomplete definitions.
4854   if (!DI->getParent())
4855     return false;
4856   // DI and UI must be in the same block.
4857   if (DI->getParent() != UI->getParent())
4858     return false;
4859   // Protect from self-referencing blocks.
4860   if (DI->getParent() == DB)
4861     return false;
4862   for (const User *U : DI->users()) {
4863     auto *Usr = cast<Instruction>(U);
4864     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4865       return false;
4866   }
4867   return true;
4868 }
4869 
4870 /// Return true when the instruction sequence within a block is select-cmp-br.
4871 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4872   const BasicBlock *BB = SI->getParent();
4873   if (!BB)
4874     return false;
4875   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4876   if (!BI || BI->getNumSuccessors() != 2)
4877     return false;
4878   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4879   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4880     return false;
4881   return true;
4882 }
4883 
4884 /// True when a select result is replaced by one of its operands
4885 /// in select-icmp sequence. This will eventually result in the elimination
4886 /// of the select.
4887 ///
4888 /// \param SI    Select instruction
4889 /// \param Icmp  Compare instruction
4890 /// \param SIOpd Operand that replaces the select
4891 ///
4892 /// Notes:
4893 /// - The replacement is global and requires dominator information
4894 /// - The caller is responsible for the actual replacement
4895 ///
4896 /// Example:
4897 ///
4898 /// entry:
4899 ///  %4 = select i1 %3, %C* %0, %C* null
4900 ///  %5 = icmp eq %C* %4, null
4901 ///  br i1 %5, label %9, label %7
4902 ///  ...
4903 ///  ; <label>:7                                       ; preds = %entry
4904 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4905 ///  ...
4906 ///
4907 /// can be transformed to
4908 ///
4909 ///  %5 = icmp eq %C* %0, null
4910 ///  %6 = select i1 %3, i1 %5, i1 true
4911 ///  br i1 %6, label %9, label %7
4912 ///  ...
4913 ///  ; <label>:7                                       ; preds = %entry
4914 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4915 ///
4916 /// Similar when the first operand of the select is a constant or/and
4917 /// the compare is for not equal rather than equal.
4918 ///
4919 /// NOTE: The function is only called when the select and compare constants
4920 /// are equal, the optimization can work only for EQ predicates. This is not a
4921 /// major restriction since a NE compare should be 'normalized' to an equal
4922 /// compare, which usually happens in the combiner and test case
4923 /// select-cmp-br.ll checks for it.
4924 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4925                                              const ICmpInst *Icmp,
4926                                              const unsigned SIOpd) {
4927   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4928   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4929     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4930     // The check for the single predecessor is not the best that can be
4931     // done. But it protects efficiently against cases like when SI's
4932     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4933     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4934     // replaced can be reached on either path. So the uniqueness check
4935     // guarantees that the path all uses of SI (outside SI's parent) are on
4936     // is disjoint from all other paths out of SI. But that information
4937     // is more expensive to compute, and the trade-off here is in favor
4938     // of compile-time. It should also be noticed that we check for a single
4939     // predecessor and not only uniqueness. This to handle the situation when
4940     // Succ and Succ1 points to the same basic block.
4941     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4942       NumSel++;
4943       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4944       return true;
4945     }
4946   }
4947   return false;
4948 }
4949 
4950 /// Try to fold the comparison based on range information we can get by checking
4951 /// whether bits are known to be zero or one in the inputs.
4952 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4953   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4954   Type *Ty = Op0->getType();
4955   ICmpInst::Predicate Pred = I.getPredicate();
4956 
4957   // Get scalar or pointer size.
4958   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4959                           ? Ty->getScalarSizeInBits()
4960                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
4961 
4962   if (!BitWidth)
4963     return nullptr;
4964 
4965   KnownBits Op0Known(BitWidth);
4966   KnownBits Op1Known(BitWidth);
4967 
4968   if (SimplifyDemandedBits(&I, 0,
4969                            getDemandedBitsLHSMask(I, BitWidth),
4970                            Op0Known, 0))
4971     return &I;
4972 
4973   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4974                            Op1Known, 0))
4975     return &I;
4976 
4977   // Given the known and unknown bits, compute a range that the LHS could be
4978   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4979   // EQ and NE we use unsigned values.
4980   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4981   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4982   if (I.isSigned()) {
4983     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4984     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4985   } else {
4986     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4987     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4988   }
4989 
4990   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4991   // out that the LHS or RHS is a constant. Constant fold this now, so that
4992   // code below can assume that Min != Max.
4993   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4994     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4995   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4996     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4997 
4998   // Based on the range information we know about the LHS, see if we can
4999   // simplify this comparison.  For example, (x&4) < 8 is always true.
5000   switch (Pred) {
5001   default:
5002     llvm_unreachable("Unknown icmp opcode!");
5003   case ICmpInst::ICMP_EQ:
5004   case ICmpInst::ICMP_NE: {
5005     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
5006       return Pred == CmpInst::ICMP_EQ
5007                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
5008                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5009     }
5010 
5011     // If all bits are known zero except for one, then we know at most one bit
5012     // is set. If the comparison is against zero, then this is a check to see if
5013     // *that* bit is set.
5014     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5015     if (Op1Known.isZero()) {
5016       // If the LHS is an AND with the same constant, look through it.
5017       Value *LHS = nullptr;
5018       const APInt *LHSC;
5019       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5020           *LHSC != Op0KnownZeroInverted)
5021         LHS = Op0;
5022 
5023       Value *X;
5024       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5025         APInt ValToCheck = Op0KnownZeroInverted;
5026         Type *XTy = X->getType();
5027         if (ValToCheck.isPowerOf2()) {
5028           // ((1 << X) & 8) == 0 -> X != 3
5029           // ((1 << X) & 8) != 0 -> X == 3
5030           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5031           auto NewPred = ICmpInst::getInversePredicate(Pred);
5032           return new ICmpInst(NewPred, X, CmpC);
5033         } else if ((++ValToCheck).isPowerOf2()) {
5034           // ((1 << X) & 7) == 0 -> X >= 3
5035           // ((1 << X) & 7) != 0 -> X  < 3
5036           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5037           auto NewPred =
5038               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5039           return new ICmpInst(NewPred, X, CmpC);
5040         }
5041       }
5042 
5043       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5044       const APInt *CI;
5045       if (Op0KnownZeroInverted.isOneValue() &&
5046           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5047         // ((8 >>u X) & 1) == 0 -> X != 3
5048         // ((8 >>u X) & 1) != 0 -> X == 3
5049         unsigned CmpVal = CI->countTrailingZeros();
5050         auto NewPred = ICmpInst::getInversePredicate(Pred);
5051         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5052       }
5053     }
5054     break;
5055   }
5056   case ICmpInst::ICMP_ULT: {
5057     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5058       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5059     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5060       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5061     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5062       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5063 
5064     const APInt *CmpC;
5065     if (match(Op1, m_APInt(CmpC))) {
5066       // A <u C -> A == C-1 if min(A)+1 == C
5067       if (*CmpC == Op0Min + 1)
5068         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5069                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5070       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5071       // exceeds the log2 of C.
5072       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5073         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5074                             Constant::getNullValue(Op1->getType()));
5075     }
5076     break;
5077   }
5078   case ICmpInst::ICMP_UGT: {
5079     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5080       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5081     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5082       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5083     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5084       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5085 
5086     const APInt *CmpC;
5087     if (match(Op1, m_APInt(CmpC))) {
5088       // A >u C -> A == C+1 if max(a)-1 == C
5089       if (*CmpC == Op0Max - 1)
5090         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5091                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5092       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5093       // exceeds the log2 of C.
5094       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5095         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5096                             Constant::getNullValue(Op1->getType()));
5097     }
5098     break;
5099   }
5100   case ICmpInst::ICMP_SLT: {
5101     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5102       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5103     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5104       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5105     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5106       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5107     const APInt *CmpC;
5108     if (match(Op1, m_APInt(CmpC))) {
5109       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5110         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5111                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5112     }
5113     break;
5114   }
5115   case ICmpInst::ICMP_SGT: {
5116     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5117       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5118     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5119       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5120     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5121       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5122     const APInt *CmpC;
5123     if (match(Op1, m_APInt(CmpC))) {
5124       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5125         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5126                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5127     }
5128     break;
5129   }
5130   case ICmpInst::ICMP_SGE:
5131     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5132     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5133       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5134     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5135       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5136     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5137       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5138     break;
5139   case ICmpInst::ICMP_SLE:
5140     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5141     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5142       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5143     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5144       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5145     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5146       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5147     break;
5148   case ICmpInst::ICMP_UGE:
5149     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5150     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5151       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5152     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5153       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5154     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5155       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5156     break;
5157   case ICmpInst::ICMP_ULE:
5158     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5159     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5160       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5161     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5162       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5163     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5164       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5165     break;
5166   }
5167 
5168   // Turn a signed comparison into an unsigned one if both operands are known to
5169   // have the same sign.
5170   if (I.isSigned() &&
5171       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5172        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5173     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5174 
5175   return nullptr;
5176 }
5177 
5178 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5179 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5180                                                Constant *C) {
5181   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5182          "Only for relational integer predicates.");
5183 
5184   Type *Type = C->getType();
5185   bool IsSigned = ICmpInst::isSigned(Pred);
5186 
5187   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5188   bool WillIncrement =
5189       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5190 
5191   // Check if the constant operand can be safely incremented/decremented
5192   // without overflowing/underflowing.
5193   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5194     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5195   };
5196 
5197   Constant *SafeReplacementConstant = nullptr;
5198   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5199     // Bail out if the constant can't be safely incremented/decremented.
5200     if (!ConstantIsOk(CI))
5201       return llvm::None;
5202   } else if (auto *VTy = dyn_cast<VectorType>(Type)) {
5203     unsigned NumElts = VTy->getNumElements();
5204     for (unsigned i = 0; i != NumElts; ++i) {
5205       Constant *Elt = C->getAggregateElement(i);
5206       if (!Elt)
5207         return llvm::None;
5208 
5209       if (isa<UndefValue>(Elt))
5210         continue;
5211 
5212       // Bail out if we can't determine if this constant is min/max or if we
5213       // know that this constant is min/max.
5214       auto *CI = dyn_cast<ConstantInt>(Elt);
5215       if (!CI || !ConstantIsOk(CI))
5216         return llvm::None;
5217 
5218       if (!SafeReplacementConstant)
5219         SafeReplacementConstant = CI;
5220     }
5221   } else {
5222     // ConstantExpr?
5223     return llvm::None;
5224   }
5225 
5226   // It may not be safe to change a compare predicate in the presence of
5227   // undefined elements, so replace those elements with the first safe constant
5228   // that we found.
5229   if (C->containsUndefElement()) {
5230     assert(SafeReplacementConstant && "Replacement constant not set");
5231     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5232   }
5233 
5234   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5235 
5236   // Increment or decrement the constant.
5237   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5238   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5239 
5240   return std::make_pair(NewPred, NewC);
5241 }
5242 
5243 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5244 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5245 /// allows them to be folded in visitICmpInst.
5246 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5247   ICmpInst::Predicate Pred = I.getPredicate();
5248   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5249       isCanonicalPredicate(Pred))
5250     return nullptr;
5251 
5252   Value *Op0 = I.getOperand(0);
5253   Value *Op1 = I.getOperand(1);
5254   auto *Op1C = dyn_cast<Constant>(Op1);
5255   if (!Op1C)
5256     return nullptr;
5257 
5258   auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5259   if (!FlippedStrictness)
5260     return nullptr;
5261 
5262   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5263 }
5264 
5265 /// Integer compare with boolean values can always be turned into bitwise ops.
5266 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5267                                          InstCombiner::BuilderTy &Builder) {
5268   Value *A = I.getOperand(0), *B = I.getOperand(1);
5269   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5270 
5271   // A boolean compared to true/false can be simplified to Op0/true/false in
5272   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5273   // Cases not handled by InstSimplify are always 'not' of Op0.
5274   if (match(B, m_Zero())) {
5275     switch (I.getPredicate()) {
5276       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5277       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5278       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5279         return BinaryOperator::CreateNot(A);
5280       default:
5281         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5282     }
5283   } else if (match(B, m_One())) {
5284     switch (I.getPredicate()) {
5285       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5286       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5287       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5288         return BinaryOperator::CreateNot(A);
5289       default:
5290         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5291     }
5292   }
5293 
5294   switch (I.getPredicate()) {
5295   default:
5296     llvm_unreachable("Invalid icmp instruction!");
5297   case ICmpInst::ICMP_EQ:
5298     // icmp eq i1 A, B -> ~(A ^ B)
5299     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5300 
5301   case ICmpInst::ICMP_NE:
5302     // icmp ne i1 A, B -> A ^ B
5303     return BinaryOperator::CreateXor(A, B);
5304 
5305   case ICmpInst::ICMP_UGT:
5306     // icmp ugt -> icmp ult
5307     std::swap(A, B);
5308     LLVM_FALLTHROUGH;
5309   case ICmpInst::ICMP_ULT:
5310     // icmp ult i1 A, B -> ~A & B
5311     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5312 
5313   case ICmpInst::ICMP_SGT:
5314     // icmp sgt -> icmp slt
5315     std::swap(A, B);
5316     LLVM_FALLTHROUGH;
5317   case ICmpInst::ICMP_SLT:
5318     // icmp slt i1 A, B -> A & ~B
5319     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5320 
5321   case ICmpInst::ICMP_UGE:
5322     // icmp uge -> icmp ule
5323     std::swap(A, B);
5324     LLVM_FALLTHROUGH;
5325   case ICmpInst::ICMP_ULE:
5326     // icmp ule i1 A, B -> ~A | B
5327     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5328 
5329   case ICmpInst::ICMP_SGE:
5330     // icmp sge -> icmp sle
5331     std::swap(A, B);
5332     LLVM_FALLTHROUGH;
5333   case ICmpInst::ICMP_SLE:
5334     // icmp sle i1 A, B -> A | ~B
5335     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5336   }
5337 }
5338 
5339 // Transform pattern like:
5340 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5341 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5342 // Into:
5343 //   (X l>> Y) != 0
5344 //   (X l>> Y) == 0
5345 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5346                                             InstCombiner::BuilderTy &Builder) {
5347   ICmpInst::Predicate Pred, NewPred;
5348   Value *X, *Y;
5349   if (match(&Cmp,
5350             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5351     switch (Pred) {
5352     case ICmpInst::ICMP_ULE:
5353       NewPred = ICmpInst::ICMP_NE;
5354       break;
5355     case ICmpInst::ICMP_UGT:
5356       NewPred = ICmpInst::ICMP_EQ;
5357       break;
5358     default:
5359       return nullptr;
5360     }
5361   } else if (match(&Cmp, m_c_ICmp(Pred,
5362                                   m_OneUse(m_CombineOr(
5363                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5364                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5365                                             m_AllOnes()))),
5366                                   m_Value(X)))) {
5367     // The variant with 'add' is not canonical, (the variant with 'not' is)
5368     // we only get it because it has extra uses, and can't be canonicalized,
5369 
5370     switch (Pred) {
5371     case ICmpInst::ICMP_ULT:
5372       NewPred = ICmpInst::ICMP_NE;
5373       break;
5374     case ICmpInst::ICMP_UGE:
5375       NewPred = ICmpInst::ICMP_EQ;
5376       break;
5377     default:
5378       return nullptr;
5379     }
5380   } else
5381     return nullptr;
5382 
5383   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5384   Constant *Zero = Constant::getNullValue(NewX->getType());
5385   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5386 }
5387 
5388 static Instruction *foldVectorCmp(CmpInst &Cmp,
5389                                   InstCombiner::BuilderTy &Builder) {
5390   const CmpInst::Predicate Pred = Cmp.getPredicate();
5391   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5392   bool IsFP = isa<FCmpInst>(Cmp);
5393 
5394   Value *V1, *V2;
5395   ArrayRef<int> M;
5396   if (!match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Mask(M))))
5397     return nullptr;
5398 
5399   // If both arguments of the cmp are shuffles that use the same mask and
5400   // shuffle within a single vector, move the shuffle after the cmp:
5401   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5402   Type *V1Ty = V1->getType();
5403   if (match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5404       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5405     Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, V2)
5406                          : Builder.CreateICmp(Pred, V1, V2);
5407     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5408   }
5409 
5410   // Try to canonicalize compare with splatted operand and splat constant.
5411   // TODO: We could generalize this for more than splats. See/use the code in
5412   //       InstCombiner::foldVectorBinop().
5413   Constant *C;
5414   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5415     return nullptr;
5416 
5417   // Length-changing splats are ok, so adjust the constants as needed:
5418   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5419   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5420   int MaskSplatIndex;
5421   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5422     // We allow undefs in matching, but this transform removes those for safety.
5423     // Demanded elements analysis should be able to recover some/all of that.
5424     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5425                                  ScalarC);
5426     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5427     Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, C)
5428                          : Builder.CreateICmp(Pred, V1, C);
5429     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5430                                  NewM);
5431   }
5432 
5433   return nullptr;
5434 }
5435 
5436 // extract(uadd.with.overflow(A, B), 0) ult A
5437 //  -> extract(uadd.with.overflow(A, B), 1)
5438 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5439   CmpInst::Predicate Pred = I.getPredicate();
5440   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5441 
5442   Value *UAddOv;
5443   Value *A, *B;
5444   auto UAddOvResultPat = m_ExtractValue<0>(
5445       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5446   if (match(Op0, UAddOvResultPat) &&
5447       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5448        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5449         (match(A, m_One()) || match(B, m_One()))) ||
5450        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5451         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5452     // extract(uadd.with.overflow(A, B), 0) < A
5453     // extract(uadd.with.overflow(A, 1), 0) == 0
5454     // extract(uadd.with.overflow(A, -1), 0) != -1
5455     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5456   else if (match(Op1, UAddOvResultPat) &&
5457            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5458     // A > extract(uadd.with.overflow(A, B), 0)
5459     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5460   else
5461     return nullptr;
5462 
5463   return ExtractValueInst::Create(UAddOv, 1);
5464 }
5465 
5466 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5467   bool Changed = false;
5468   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5469   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5470   unsigned Op0Cplxity = getComplexity(Op0);
5471   unsigned Op1Cplxity = getComplexity(Op1);
5472 
5473   /// Orders the operands of the compare so that they are listed from most
5474   /// complex to least complex.  This puts constants before unary operators,
5475   /// before binary operators.
5476   if (Op0Cplxity < Op1Cplxity ||
5477       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5478     I.swapOperands();
5479     std::swap(Op0, Op1);
5480     Changed = true;
5481   }
5482 
5483   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5484     return replaceInstUsesWith(I, V);
5485 
5486   // Comparing -val or val with non-zero is the same as just comparing val
5487   // ie, abs(val) != 0 -> val != 0
5488   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5489     Value *Cond, *SelectTrue, *SelectFalse;
5490     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5491                             m_Value(SelectFalse)))) {
5492       if (Value *V = dyn_castNegVal(SelectTrue)) {
5493         if (V == SelectFalse)
5494           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5495       }
5496       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5497         if (V == SelectTrue)
5498           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5499       }
5500     }
5501   }
5502 
5503   if (Op0->getType()->isIntOrIntVectorTy(1))
5504     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5505       return Res;
5506 
5507   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
5508     return NewICmp;
5509 
5510   if (Instruction *Res = foldICmpWithConstant(I))
5511     return Res;
5512 
5513   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5514     return Res;
5515 
5516   if (Instruction *Res = foldICmpBinOp(I, Q))
5517     return Res;
5518 
5519   if (Instruction *Res = foldICmpUsingKnownBits(I))
5520     return Res;
5521 
5522   // Test if the ICmpInst instruction is used exclusively by a select as
5523   // part of a minimum or maximum operation. If so, refrain from doing
5524   // any other folding. This helps out other analyses which understand
5525   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5526   // and CodeGen. And in this case, at least one of the comparison
5527   // operands has at least one user besides the compare (the select),
5528   // which would often largely negate the benefit of folding anyway.
5529   //
5530   // Do the same for the other patterns recognized by matchSelectPattern.
5531   if (I.hasOneUse())
5532     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5533       Value *A, *B;
5534       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5535       if (SPR.Flavor != SPF_UNKNOWN)
5536         return nullptr;
5537     }
5538 
5539   // Do this after checking for min/max to prevent infinite looping.
5540   if (Instruction *Res = foldICmpWithZero(I))
5541     return Res;
5542 
5543   // FIXME: We only do this after checking for min/max to prevent infinite
5544   // looping caused by a reverse canonicalization of these patterns for min/max.
5545   // FIXME: The organization of folds is a mess. These would naturally go into
5546   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5547   // down here after the min/max restriction.
5548   ICmpInst::Predicate Pred = I.getPredicate();
5549   const APInt *C;
5550   if (match(Op1, m_APInt(C))) {
5551     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5552     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5553       Constant *Zero = Constant::getNullValue(Op0->getType());
5554       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5555     }
5556 
5557     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5558     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5559       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5560       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5561     }
5562   }
5563 
5564   if (Instruction *Res = foldICmpInstWithConstant(I))
5565     return Res;
5566 
5567   // Try to match comparison as a sign bit test. Intentionally do this after
5568   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5569   if (Instruction *New = foldSignBitTest(I))
5570     return New;
5571 
5572   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5573     return Res;
5574 
5575   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5576   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5577     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5578       return NI;
5579   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5580     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5581                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5582       return NI;
5583 
5584   // Try to optimize equality comparisons against alloca-based pointers.
5585   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5586     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5587     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5588       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5589         return New;
5590     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5591       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5592         return New;
5593   }
5594 
5595   if (Instruction *Res = foldICmpBitCast(I, Builder))
5596     return Res;
5597 
5598   // TODO: Hoist this above the min/max bailout.
5599   if (Instruction *R = foldICmpWithCastOp(I))
5600     return R;
5601 
5602   if (Instruction *Res = foldICmpWithMinMax(I))
5603     return Res;
5604 
5605   {
5606     Value *A, *B;
5607     // Transform (A & ~B) == 0 --> (A & B) != 0
5608     // and       (A & ~B) != 0 --> (A & B) == 0
5609     // if A is a power of 2.
5610     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5611         match(Op1, m_Zero()) &&
5612         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5613       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5614                           Op1);
5615 
5616     // ~X < ~Y --> Y < X
5617     // ~X < C -->  X > ~C
5618     if (match(Op0, m_Not(m_Value(A)))) {
5619       if (match(Op1, m_Not(m_Value(B))))
5620         return new ICmpInst(I.getPredicate(), B, A);
5621 
5622       const APInt *C;
5623       if (match(Op1, m_APInt(C)))
5624         return new ICmpInst(I.getSwappedPredicate(), A,
5625                             ConstantInt::get(Op1->getType(), ~(*C)));
5626     }
5627 
5628     Instruction *AddI = nullptr;
5629     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5630                                      m_Instruction(AddI))) &&
5631         isa<IntegerType>(A->getType())) {
5632       Value *Result;
5633       Constant *Overflow;
5634       // m_UAddWithOverflow can match patterns that do not include  an explicit
5635       // "add" instruction, so check the opcode of the matched op.
5636       if (AddI->getOpcode() == Instruction::Add &&
5637           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5638                                 Result, Overflow)) {
5639         replaceInstUsesWith(*AddI, Result);
5640         eraseInstFromFunction(*AddI);
5641         return replaceInstUsesWith(I, Overflow);
5642       }
5643     }
5644 
5645     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5646     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5647       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5648         return R;
5649     }
5650     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5651       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5652         return R;
5653     }
5654   }
5655 
5656   if (Instruction *Res = foldICmpEquality(I))
5657     return Res;
5658 
5659   if (Instruction *Res = foldICmpOfUAddOv(I))
5660     return Res;
5661 
5662   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5663   // an i1 which indicates whether or not we successfully did the swap.
5664   //
5665   // Replace comparisons between the old value and the expected value with the
5666   // indicator that 'cmpxchg' returns.
5667   //
5668   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5669   // spuriously fail.  In those cases, the old value may equal the expected
5670   // value but it is possible for the swap to not occur.
5671   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5672     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5673       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5674         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5675             !ACXI->isWeak())
5676           return ExtractValueInst::Create(ACXI, 1);
5677 
5678   {
5679     Value *X;
5680     const APInt *C;
5681     // icmp X+Cst, X
5682     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5683       return foldICmpAddOpConst(X, *C, I.getPredicate());
5684 
5685     // icmp X, X+Cst
5686     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5687       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5688   }
5689 
5690   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5691     return Res;
5692 
5693   if (I.getType()->isVectorTy())
5694     if (Instruction *Res = foldVectorCmp(I, Builder))
5695       return Res;
5696 
5697   return Changed ? &I : nullptr;
5698 }
5699 
5700 /// Fold fcmp ([us]itofp x, cst) if possible.
5701 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5702                                                 Constant *RHSC) {
5703   if (!isa<ConstantFP>(RHSC)) return nullptr;
5704   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5705 
5706   // Get the width of the mantissa.  We don't want to hack on conversions that
5707   // might lose information from the integer, e.g. "i64 -> float"
5708   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5709   if (MantissaWidth == -1) return nullptr;  // Unknown.
5710 
5711   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5712 
5713   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5714 
5715   if (I.isEquality()) {
5716     FCmpInst::Predicate P = I.getPredicate();
5717     bool IsExact = false;
5718     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5719     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5720 
5721     // If the floating point constant isn't an integer value, we know if we will
5722     // ever compare equal / not equal to it.
5723     if (!IsExact) {
5724       // TODO: Can never be -0.0 and other non-representable values
5725       APFloat RHSRoundInt(RHS);
5726       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5727       if (RHS != RHSRoundInt) {
5728         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5729           return replaceInstUsesWith(I, Builder.getFalse());
5730 
5731         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5732         return replaceInstUsesWith(I, Builder.getTrue());
5733       }
5734     }
5735 
5736     // TODO: If the constant is exactly representable, is it always OK to do
5737     // equality compares as integer?
5738   }
5739 
5740   // Check to see that the input is converted from an integer type that is small
5741   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5742   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5743   unsigned InputSize = IntTy->getScalarSizeInBits();
5744 
5745   // Following test does NOT adjust InputSize downwards for signed inputs,
5746   // because the most negative value still requires all the mantissa bits
5747   // to distinguish it from one less than that value.
5748   if ((int)InputSize > MantissaWidth) {
5749     // Conversion would lose accuracy. Check if loss can impact comparison.
5750     int Exp = ilogb(RHS);
5751     if (Exp == APFloat::IEK_Inf) {
5752       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5753       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5754         // Conversion could create infinity.
5755         return nullptr;
5756     } else {
5757       // Note that if RHS is zero or NaN, then Exp is negative
5758       // and first condition is trivially false.
5759       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5760         // Conversion could affect comparison.
5761         return nullptr;
5762     }
5763   }
5764 
5765   // Otherwise, we can potentially simplify the comparison.  We know that it
5766   // will always come through as an integer value and we know the constant is
5767   // not a NAN (it would have been previously simplified).
5768   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5769 
5770   ICmpInst::Predicate Pred;
5771   switch (I.getPredicate()) {
5772   default: llvm_unreachable("Unexpected predicate!");
5773   case FCmpInst::FCMP_UEQ:
5774   case FCmpInst::FCMP_OEQ:
5775     Pred = ICmpInst::ICMP_EQ;
5776     break;
5777   case FCmpInst::FCMP_UGT:
5778   case FCmpInst::FCMP_OGT:
5779     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5780     break;
5781   case FCmpInst::FCMP_UGE:
5782   case FCmpInst::FCMP_OGE:
5783     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5784     break;
5785   case FCmpInst::FCMP_ULT:
5786   case FCmpInst::FCMP_OLT:
5787     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5788     break;
5789   case FCmpInst::FCMP_ULE:
5790   case FCmpInst::FCMP_OLE:
5791     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5792     break;
5793   case FCmpInst::FCMP_UNE:
5794   case FCmpInst::FCMP_ONE:
5795     Pred = ICmpInst::ICMP_NE;
5796     break;
5797   case FCmpInst::FCMP_ORD:
5798     return replaceInstUsesWith(I, Builder.getTrue());
5799   case FCmpInst::FCMP_UNO:
5800     return replaceInstUsesWith(I, Builder.getFalse());
5801   }
5802 
5803   // Now we know that the APFloat is a normal number, zero or inf.
5804 
5805   // See if the FP constant is too large for the integer.  For example,
5806   // comparing an i8 to 300.0.
5807   unsigned IntWidth = IntTy->getScalarSizeInBits();
5808 
5809   if (!LHSUnsigned) {
5810     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5811     // and large values.
5812     APFloat SMax(RHS.getSemantics());
5813     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5814                           APFloat::rmNearestTiesToEven);
5815     if (SMax < RHS) { // smax < 13123.0
5816       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5817           Pred == ICmpInst::ICMP_SLE)
5818         return replaceInstUsesWith(I, Builder.getTrue());
5819       return replaceInstUsesWith(I, Builder.getFalse());
5820     }
5821   } else {
5822     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5823     // +INF and large values.
5824     APFloat UMax(RHS.getSemantics());
5825     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5826                           APFloat::rmNearestTiesToEven);
5827     if (UMax < RHS) { // umax < 13123.0
5828       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5829           Pred == ICmpInst::ICMP_ULE)
5830         return replaceInstUsesWith(I, Builder.getTrue());
5831       return replaceInstUsesWith(I, Builder.getFalse());
5832     }
5833   }
5834 
5835   if (!LHSUnsigned) {
5836     // See if the RHS value is < SignedMin.
5837     APFloat SMin(RHS.getSemantics());
5838     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5839                           APFloat::rmNearestTiesToEven);
5840     if (SMin > RHS) { // smin > 12312.0
5841       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5842           Pred == ICmpInst::ICMP_SGE)
5843         return replaceInstUsesWith(I, Builder.getTrue());
5844       return replaceInstUsesWith(I, Builder.getFalse());
5845     }
5846   } else {
5847     // See if the RHS value is < UnsignedMin.
5848     APFloat UMin(RHS.getSemantics());
5849     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5850                           APFloat::rmNearestTiesToEven);
5851     if (UMin > RHS) { // umin > 12312.0
5852       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5853           Pred == ICmpInst::ICMP_UGE)
5854         return replaceInstUsesWith(I, Builder.getTrue());
5855       return replaceInstUsesWith(I, Builder.getFalse());
5856     }
5857   }
5858 
5859   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5860   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5861   // casting the FP value to the integer value and back, checking for equality.
5862   // Don't do this for zero, because -0.0 is not fractional.
5863   Constant *RHSInt = LHSUnsigned
5864     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5865     : ConstantExpr::getFPToSI(RHSC, IntTy);
5866   if (!RHS.isZero()) {
5867     bool Equal = LHSUnsigned
5868       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5869       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5870     if (!Equal) {
5871       // If we had a comparison against a fractional value, we have to adjust
5872       // the compare predicate and sometimes the value.  RHSC is rounded towards
5873       // zero at this point.
5874       switch (Pred) {
5875       default: llvm_unreachable("Unexpected integer comparison!");
5876       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5877         return replaceInstUsesWith(I, Builder.getTrue());
5878       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5879         return replaceInstUsesWith(I, Builder.getFalse());
5880       case ICmpInst::ICMP_ULE:
5881         // (float)int <= 4.4   --> int <= 4
5882         // (float)int <= -4.4  --> false
5883         if (RHS.isNegative())
5884           return replaceInstUsesWith(I, Builder.getFalse());
5885         break;
5886       case ICmpInst::ICMP_SLE:
5887         // (float)int <= 4.4   --> int <= 4
5888         // (float)int <= -4.4  --> int < -4
5889         if (RHS.isNegative())
5890           Pred = ICmpInst::ICMP_SLT;
5891         break;
5892       case ICmpInst::ICMP_ULT:
5893         // (float)int < -4.4   --> false
5894         // (float)int < 4.4    --> int <= 4
5895         if (RHS.isNegative())
5896           return replaceInstUsesWith(I, Builder.getFalse());
5897         Pred = ICmpInst::ICMP_ULE;
5898         break;
5899       case ICmpInst::ICMP_SLT:
5900         // (float)int < -4.4   --> int < -4
5901         // (float)int < 4.4    --> int <= 4
5902         if (!RHS.isNegative())
5903           Pred = ICmpInst::ICMP_SLE;
5904         break;
5905       case ICmpInst::ICMP_UGT:
5906         // (float)int > 4.4    --> int > 4
5907         // (float)int > -4.4   --> true
5908         if (RHS.isNegative())
5909           return replaceInstUsesWith(I, Builder.getTrue());
5910         break;
5911       case ICmpInst::ICMP_SGT:
5912         // (float)int > 4.4    --> int > 4
5913         // (float)int > -4.4   --> int >= -4
5914         if (RHS.isNegative())
5915           Pred = ICmpInst::ICMP_SGE;
5916         break;
5917       case ICmpInst::ICMP_UGE:
5918         // (float)int >= -4.4   --> true
5919         // (float)int >= 4.4    --> int > 4
5920         if (RHS.isNegative())
5921           return replaceInstUsesWith(I, Builder.getTrue());
5922         Pred = ICmpInst::ICMP_UGT;
5923         break;
5924       case ICmpInst::ICMP_SGE:
5925         // (float)int >= -4.4   --> int >= -4
5926         // (float)int >= 4.4    --> int > 4
5927         if (!RHS.isNegative())
5928           Pred = ICmpInst::ICMP_SGT;
5929         break;
5930       }
5931     }
5932   }
5933 
5934   // Lower this FP comparison into an appropriate integer version of the
5935   // comparison.
5936   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5937 }
5938 
5939 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5940 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5941                                               Constant *RHSC) {
5942   // When C is not 0.0 and infinities are not allowed:
5943   // (C / X) < 0.0 is a sign-bit test of X
5944   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5945   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5946   //
5947   // Proof:
5948   // Multiply (C / X) < 0.0 by X * X / C.
5949   // - X is non zero, if it is the flag 'ninf' is violated.
5950   // - C defines the sign of X * X * C. Thus it also defines whether to swap
5951   //   the predicate. C is also non zero by definition.
5952   //
5953   // Thus X * X / C is non zero and the transformation is valid. [qed]
5954 
5955   FCmpInst::Predicate Pred = I.getPredicate();
5956 
5957   // Check that predicates are valid.
5958   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5959       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5960     return nullptr;
5961 
5962   // Check that RHS operand is zero.
5963   if (!match(RHSC, m_AnyZeroFP()))
5964     return nullptr;
5965 
5966   // Check fastmath flags ('ninf').
5967   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5968     return nullptr;
5969 
5970   // Check the properties of the dividend. It must not be zero to avoid a
5971   // division by zero (see Proof).
5972   const APFloat *C;
5973   if (!match(LHSI->getOperand(0), m_APFloat(C)))
5974     return nullptr;
5975 
5976   if (C->isZero())
5977     return nullptr;
5978 
5979   // Get swapped predicate if necessary.
5980   if (C->isNegative())
5981     Pred = I.getSwappedPredicate();
5982 
5983   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5984 }
5985 
5986 /// Optimize fabs(X) compared with zero.
5987 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombiner &IC) {
5988   Value *X;
5989   if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5990       !match(I.getOperand(1), m_PosZeroFP()))
5991     return nullptr;
5992 
5993   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5994     I->setPredicate(P);
5995     return IC.replaceOperand(*I, 0, X);
5996   };
5997 
5998   switch (I.getPredicate()) {
5999   case FCmpInst::FCMP_UGE:
6000   case FCmpInst::FCMP_OLT:
6001     // fabs(X) >= 0.0 --> true
6002     // fabs(X) <  0.0 --> false
6003     llvm_unreachable("fcmp should have simplified");
6004 
6005   case FCmpInst::FCMP_OGT:
6006     // fabs(X) > 0.0 --> X != 0.0
6007     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6008 
6009   case FCmpInst::FCMP_UGT:
6010     // fabs(X) u> 0.0 --> X u!= 0.0
6011     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6012 
6013   case FCmpInst::FCMP_OLE:
6014     // fabs(X) <= 0.0 --> X == 0.0
6015     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6016 
6017   case FCmpInst::FCMP_ULE:
6018     // fabs(X) u<= 0.0 --> X u== 0.0
6019     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6020 
6021   case FCmpInst::FCMP_OGE:
6022     // fabs(X) >= 0.0 --> !isnan(X)
6023     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6024     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6025 
6026   case FCmpInst::FCMP_ULT:
6027     // fabs(X) u< 0.0 --> isnan(X)
6028     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6029     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6030 
6031   case FCmpInst::FCMP_OEQ:
6032   case FCmpInst::FCMP_UEQ:
6033   case FCmpInst::FCMP_ONE:
6034   case FCmpInst::FCMP_UNE:
6035   case FCmpInst::FCMP_ORD:
6036   case FCmpInst::FCMP_UNO:
6037     // Look through the fabs() because it doesn't change anything but the sign.
6038     // fabs(X) == 0.0 --> X == 0.0,
6039     // fabs(X) != 0.0 --> X != 0.0
6040     // isnan(fabs(X)) --> isnan(X)
6041     // !isnan(fabs(X) --> !isnan(X)
6042     return replacePredAndOp0(&I, I.getPredicate(), X);
6043 
6044   default:
6045     return nullptr;
6046   }
6047 }
6048 
6049 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
6050   bool Changed = false;
6051 
6052   /// Orders the operands of the compare so that they are listed from most
6053   /// complex to least complex.  This puts constants before unary operators,
6054   /// before binary operators.
6055   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6056     I.swapOperands();
6057     Changed = true;
6058   }
6059 
6060   const CmpInst::Predicate Pred = I.getPredicate();
6061   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6062   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6063                                   SQ.getWithInstruction(&I)))
6064     return replaceInstUsesWith(I, V);
6065 
6066   // Simplify 'fcmp pred X, X'
6067   Type *OpType = Op0->getType();
6068   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6069   if (Op0 == Op1) {
6070     switch (Pred) {
6071       default: break;
6072     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6073     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6074     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6075     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6076       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6077       I.setPredicate(FCmpInst::FCMP_UNO);
6078       I.setOperand(1, Constant::getNullValue(OpType));
6079       return &I;
6080 
6081     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6082     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6083     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6084     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6085       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6086       I.setPredicate(FCmpInst::FCMP_ORD);
6087       I.setOperand(1, Constant::getNullValue(OpType));
6088       return &I;
6089     }
6090   }
6091 
6092   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6093   // then canonicalize the operand to 0.0.
6094   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6095     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6096       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6097 
6098     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6099       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6100   }
6101 
6102   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6103   Value *X, *Y;
6104   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6105     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6106 
6107   // Test if the FCmpInst instruction is used exclusively by a select as
6108   // part of a minimum or maximum operation. If so, refrain from doing
6109   // any other folding. This helps out other analyses which understand
6110   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6111   // and CodeGen. And in this case, at least one of the comparison
6112   // operands has at least one user besides the compare (the select),
6113   // which would often largely negate the benefit of folding anyway.
6114   if (I.hasOneUse())
6115     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6116       Value *A, *B;
6117       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6118       if (SPR.Flavor != SPF_UNKNOWN)
6119         return nullptr;
6120     }
6121 
6122   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6123   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6124   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6125     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6126 
6127   // Handle fcmp with instruction LHS and constant RHS.
6128   Instruction *LHSI;
6129   Constant *RHSC;
6130   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6131     switch (LHSI->getOpcode()) {
6132     case Instruction::PHI:
6133       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6134       // block.  If in the same block, we're encouraging jump threading.  If
6135       // not, we are just pessimizing the code by making an i1 phi.
6136       if (LHSI->getParent() == I.getParent())
6137         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6138           return NV;
6139       break;
6140     case Instruction::SIToFP:
6141     case Instruction::UIToFP:
6142       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6143         return NV;
6144       break;
6145     case Instruction::FDiv:
6146       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6147         return NV;
6148       break;
6149     case Instruction::Load:
6150       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6151         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6152           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6153               !cast<LoadInst>(LHSI)->isVolatile())
6154             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6155               return Res;
6156       break;
6157   }
6158   }
6159 
6160   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6161     return R;
6162 
6163   if (match(Op0, m_FNeg(m_Value(X)))) {
6164     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6165     Constant *C;
6166     if (match(Op1, m_Constant(C))) {
6167       Constant *NegC = ConstantExpr::getFNeg(C);
6168       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6169     }
6170   }
6171 
6172   if (match(Op0, m_FPExt(m_Value(X)))) {
6173     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6174     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6175       return new FCmpInst(Pred, X, Y, "", &I);
6176 
6177     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6178     const APFloat *C;
6179     if (match(Op1, m_APFloat(C))) {
6180       const fltSemantics &FPSem =
6181           X->getType()->getScalarType()->getFltSemantics();
6182       bool Lossy;
6183       APFloat TruncC = *C;
6184       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6185 
6186       // Avoid lossy conversions and denormals.
6187       // Zero is a special case that's OK to convert.
6188       APFloat Fabs = TruncC;
6189       Fabs.clearSign();
6190       if (!Lossy &&
6191           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6192         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6193         return new FCmpInst(Pred, X, NewC, "", &I);
6194       }
6195     }
6196   }
6197 
6198   if (I.getType()->isVectorTy())
6199     if (Instruction *Res = foldVectorCmp(I, Builder))
6200       return Res;
6201 
6202   return Changed ? &I : nullptr;
6203 }
6204