1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isNullValue()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOneValue()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnesValue()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// Given a signed integer type and a set of known zero and one bits, compute 99 /// the maximum and minimum values that could have the specified known zero and 100 /// known one bits, returning them in Min/Max. 101 /// TODO: Move to method on KnownBits struct? 102 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 103 APInt &Min, APInt &Max) { 104 assert(Known.getBitWidth() == Min.getBitWidth() && 105 Known.getBitWidth() == Max.getBitWidth() && 106 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 107 APInt UnknownBits = ~(Known.Zero|Known.One); 108 109 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 110 // bit if it is unknown. 111 Min = Known.One; 112 Max = Known.One|UnknownBits; 113 114 if (UnknownBits.isNegative()) { // Sign bit is unknown 115 Min.setSignBit(); 116 Max.clearSignBit(); 117 } 118 } 119 120 /// Given an unsigned integer type and a set of known zero and one bits, compute 121 /// the maximum and minimum values that could have the specified known zero and 122 /// known one bits, returning them in Min/Max. 123 /// TODO: Move to method on KnownBits struct? 124 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 125 APInt &Min, APInt &Max) { 126 assert(Known.getBitWidth() == Min.getBitWidth() && 127 Known.getBitWidth() == Max.getBitWidth() && 128 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 129 APInt UnknownBits = ~(Known.Zero|Known.One); 130 131 // The minimum value is when the unknown bits are all zeros. 132 Min = Known.One; 133 // The maximum value is when the unknown bits are all ones. 134 Max = Known.One|UnknownBits; 135 } 136 137 /// This is called when we see this pattern: 138 /// cmp pred (load (gep GV, ...)), cmpcst 139 /// where GV is a global variable with a constant initializer. Try to simplify 140 /// this into some simple computation that does not need the load. For example 141 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 142 /// 143 /// If AndCst is non-null, then the loaded value is masked with that constant 144 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 145 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 146 GlobalVariable *GV, 147 CmpInst &ICI, 148 ConstantInt *AndCst) { 149 Constant *Init = GV->getInitializer(); 150 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 151 return nullptr; 152 153 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 154 // Don't blow up on huge arrays. 155 if (ArrayElementCount > MaxArraySizeForCombine) 156 return nullptr; 157 158 // There are many forms of this optimization we can handle, for now, just do 159 // the simple index into a single-dimensional array. 160 // 161 // Require: GEP GV, 0, i {{, constant indices}} 162 if (GEP->getNumOperands() < 3 || 163 !isa<ConstantInt>(GEP->getOperand(1)) || 164 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 165 isa<Constant>(GEP->getOperand(2))) 166 return nullptr; 167 168 // Check that indices after the variable are constants and in-range for the 169 // type they index. Collect the indices. This is typically for arrays of 170 // structs. 171 SmallVector<unsigned, 4> LaterIndices; 172 173 Type *EltTy = Init->getType()->getArrayElementType(); 174 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 175 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 176 if (!Idx) return nullptr; // Variable index. 177 178 uint64_t IdxVal = Idx->getZExtValue(); 179 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 180 181 if (StructType *STy = dyn_cast<StructType>(EltTy)) 182 EltTy = STy->getElementType(IdxVal); 183 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 184 if (IdxVal >= ATy->getNumElements()) return nullptr; 185 EltTy = ATy->getElementType(); 186 } else { 187 return nullptr; // Unknown type. 188 } 189 190 LaterIndices.push_back(IdxVal); 191 } 192 193 enum { Overdefined = -3, Undefined = -2 }; 194 195 // Variables for our state machines. 196 197 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 198 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 199 // and 87 is the second (and last) index. FirstTrueElement is -2 when 200 // undefined, otherwise set to the first true element. SecondTrueElement is 201 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 202 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 203 204 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 205 // form "i != 47 & i != 87". Same state transitions as for true elements. 206 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 207 208 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 209 /// define a state machine that triggers for ranges of values that the index 210 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 211 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 212 /// index in the range (inclusive). We use -2 for undefined here because we 213 /// use relative comparisons and don't want 0-1 to match -1. 214 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 215 216 // MagicBitvector - This is a magic bitvector where we set a bit if the 217 // comparison is true for element 'i'. If there are 64 elements or less in 218 // the array, this will fully represent all the comparison results. 219 uint64_t MagicBitvector = 0; 220 221 // Scan the array and see if one of our patterns matches. 222 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 223 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 224 Constant *Elt = Init->getAggregateElement(i); 225 if (!Elt) return nullptr; 226 227 // If this is indexing an array of structures, get the structure element. 228 if (!LaterIndices.empty()) 229 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 230 231 // If the element is masked, handle it. 232 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 233 234 // Find out if the comparison would be true or false for the i'th element. 235 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 236 CompareRHS, DL, &TLI); 237 // If the result is undef for this element, ignore it. 238 if (isa<UndefValue>(C)) { 239 // Extend range state machines to cover this element in case there is an 240 // undef in the middle of the range. 241 if (TrueRangeEnd == (int)i-1) 242 TrueRangeEnd = i; 243 if (FalseRangeEnd == (int)i-1) 244 FalseRangeEnd = i; 245 continue; 246 } 247 248 // If we can't compute the result for any of the elements, we have to give 249 // up evaluating the entire conditional. 250 if (!isa<ConstantInt>(C)) return nullptr; 251 252 // Otherwise, we know if the comparison is true or false for this element, 253 // update our state machines. 254 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 255 256 // State machine for single/double/range index comparison. 257 if (IsTrueForElt) { 258 // Update the TrueElement state machine. 259 if (FirstTrueElement == Undefined) 260 FirstTrueElement = TrueRangeEnd = i; // First true element. 261 else { 262 // Update double-compare state machine. 263 if (SecondTrueElement == Undefined) 264 SecondTrueElement = i; 265 else 266 SecondTrueElement = Overdefined; 267 268 // Update range state machine. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 else 272 TrueRangeEnd = Overdefined; 273 } 274 } else { 275 // Update the FalseElement state machine. 276 if (FirstFalseElement == Undefined) 277 FirstFalseElement = FalseRangeEnd = i; // First false element. 278 else { 279 // Update double-compare state machine. 280 if (SecondFalseElement == Undefined) 281 SecondFalseElement = i; 282 else 283 SecondFalseElement = Overdefined; 284 285 // Update range state machine. 286 if (FalseRangeEnd == (int)i-1) 287 FalseRangeEnd = i; 288 else 289 FalseRangeEnd = Overdefined; 290 } 291 } 292 293 // If this element is in range, update our magic bitvector. 294 if (i < 64 && IsTrueForElt) 295 MagicBitvector |= 1ULL << i; 296 297 // If all of our states become overdefined, bail out early. Since the 298 // predicate is expensive, only check it every 8 elements. This is only 299 // really useful for really huge arrays. 300 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 301 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 302 FalseRangeEnd == Overdefined) 303 return nullptr; 304 } 305 306 // Now that we've scanned the entire array, emit our new comparison(s). We 307 // order the state machines in complexity of the generated code. 308 Value *Idx = GEP->getOperand(2); 309 310 // If the index is larger than the pointer size of the target, truncate the 311 // index down like the GEP would do implicitly. We don't have to do this for 312 // an inbounds GEP because the index can't be out of range. 313 if (!GEP->isInBounds()) { 314 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 315 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 316 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 317 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 318 } 319 320 // If the comparison is only true for one or two elements, emit direct 321 // comparisons. 322 if (SecondTrueElement != Overdefined) { 323 // None true -> false. 324 if (FirstTrueElement == Undefined) 325 return replaceInstUsesWith(ICI, Builder.getFalse()); 326 327 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 328 329 // True for one element -> 'i == 47'. 330 if (SecondTrueElement == Undefined) 331 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 332 333 // True for two elements -> 'i == 47 | i == 72'. 334 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 335 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 336 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 337 return BinaryOperator::CreateOr(C1, C2); 338 } 339 340 // If the comparison is only false for one or two elements, emit direct 341 // comparisons. 342 if (SecondFalseElement != Overdefined) { 343 // None false -> true. 344 if (FirstFalseElement == Undefined) 345 return replaceInstUsesWith(ICI, Builder.getTrue()); 346 347 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 348 349 // False for one element -> 'i != 47'. 350 if (SecondFalseElement == Undefined) 351 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 352 353 // False for two elements -> 'i != 47 & i != 72'. 354 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 355 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 356 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 357 return BinaryOperator::CreateAnd(C1, C2); 358 } 359 360 // If the comparison can be replaced with a range comparison for the elements 361 // where it is true, emit the range check. 362 if (TrueRangeEnd != Overdefined) { 363 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 364 365 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 366 if (FirstTrueElement) { 367 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 368 Idx = Builder.CreateAdd(Idx, Offs); 369 } 370 371 Value *End = ConstantInt::get(Idx->getType(), 372 TrueRangeEnd-FirstTrueElement+1); 373 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 374 } 375 376 // False range check. 377 if (FalseRangeEnd != Overdefined) { 378 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 379 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 380 if (FirstFalseElement) { 381 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 382 Idx = Builder.CreateAdd(Idx, Offs); 383 } 384 385 Value *End = ConstantInt::get(Idx->getType(), 386 FalseRangeEnd-FirstFalseElement); 387 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 388 } 389 390 // If a magic bitvector captures the entire comparison state 391 // of this load, replace it with computation that does: 392 // ((magic_cst >> i) & 1) != 0 393 { 394 Type *Ty = nullptr; 395 396 // Look for an appropriate type: 397 // - The type of Idx if the magic fits 398 // - The smallest fitting legal type 399 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 400 Ty = Idx->getType(); 401 else 402 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 403 404 if (Ty) { 405 Value *V = Builder.CreateIntCast(Idx, Ty, false); 406 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 407 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 408 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 409 } 410 } 411 412 return nullptr; 413 } 414 415 /// Return a value that can be used to compare the *offset* implied by a GEP to 416 /// zero. For example, if we have &A[i], we want to return 'i' for 417 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 418 /// are involved. The above expression would also be legal to codegen as 419 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 420 /// This latter form is less amenable to optimization though, and we are allowed 421 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 422 /// 423 /// If we can't emit an optimized form for this expression, this returns null. 424 /// 425 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 426 const DataLayout &DL) { 427 gep_type_iterator GTI = gep_type_begin(GEP); 428 429 // Check to see if this gep only has a single variable index. If so, and if 430 // any constant indices are a multiple of its scale, then we can compute this 431 // in terms of the scale of the variable index. For example, if the GEP 432 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 433 // because the expression will cross zero at the same point. 434 unsigned i, e = GEP->getNumOperands(); 435 int64_t Offset = 0; 436 for (i = 1; i != e; ++i, ++GTI) { 437 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 438 // Compute the aggregate offset of constant indices. 439 if (CI->isZero()) continue; 440 441 // Handle a struct index, which adds its field offset to the pointer. 442 if (StructType *STy = GTI.getStructTypeOrNull()) { 443 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 444 } else { 445 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 446 Offset += Size*CI->getSExtValue(); 447 } 448 } else { 449 // Found our variable index. 450 break; 451 } 452 } 453 454 // If there are no variable indices, we must have a constant offset, just 455 // evaluate it the general way. 456 if (i == e) return nullptr; 457 458 Value *VariableIdx = GEP->getOperand(i); 459 // Determine the scale factor of the variable element. For example, this is 460 // 4 if the variable index is into an array of i32. 461 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 462 463 // Verify that there are no other variable indices. If so, emit the hard way. 464 for (++i, ++GTI; i != e; ++i, ++GTI) { 465 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 466 if (!CI) return nullptr; 467 468 // Compute the aggregate offset of constant indices. 469 if (CI->isZero()) continue; 470 471 // Handle a struct index, which adds its field offset to the pointer. 472 if (StructType *STy = GTI.getStructTypeOrNull()) { 473 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 474 } else { 475 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 476 Offset += Size*CI->getSExtValue(); 477 } 478 } 479 480 // Okay, we know we have a single variable index, which must be a 481 // pointer/array/vector index. If there is no offset, life is simple, return 482 // the index. 483 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 484 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 485 if (Offset == 0) { 486 // Cast to intptrty in case a truncation occurs. If an extension is needed, 487 // we don't need to bother extending: the extension won't affect where the 488 // computation crosses zero. 489 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 490 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 491 } 492 return VariableIdx; 493 } 494 495 // Otherwise, there is an index. The computation we will do will be modulo 496 // the pointer size. 497 Offset = SignExtend64(Offset, IntPtrWidth); 498 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 499 500 // To do this transformation, any constant index must be a multiple of the 501 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 502 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 503 // multiple of the variable scale. 504 int64_t NewOffs = Offset / (int64_t)VariableScale; 505 if (Offset != NewOffs*(int64_t)VariableScale) 506 return nullptr; 507 508 // Okay, we can do this evaluation. Start by converting the index to intptr. 509 if (VariableIdx->getType() != IntPtrTy) 510 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 511 true /*Signed*/); 512 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 513 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 514 } 515 516 /// Returns true if we can rewrite Start as a GEP with pointer Base 517 /// and some integer offset. The nodes that need to be re-written 518 /// for this transformation will be added to Explored. 519 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 520 const DataLayout &DL, 521 SetVector<Value *> &Explored) { 522 SmallVector<Value *, 16> WorkList(1, Start); 523 Explored.insert(Base); 524 525 // The following traversal gives us an order which can be used 526 // when doing the final transformation. Since in the final 527 // transformation we create the PHI replacement instructions first, 528 // we don't have to get them in any particular order. 529 // 530 // However, for other instructions we will have to traverse the 531 // operands of an instruction first, which means that we have to 532 // do a post-order traversal. 533 while (!WorkList.empty()) { 534 SetVector<PHINode *> PHIs; 535 536 while (!WorkList.empty()) { 537 if (Explored.size() >= 100) 538 return false; 539 540 Value *V = WorkList.back(); 541 542 if (Explored.count(V) != 0) { 543 WorkList.pop_back(); 544 continue; 545 } 546 547 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 548 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 549 // We've found some value that we can't explore which is different from 550 // the base. Therefore we can't do this transformation. 551 return false; 552 553 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 554 auto *CI = dyn_cast<CastInst>(V); 555 if (!CI->isNoopCast(DL)) 556 return false; 557 558 if (Explored.count(CI->getOperand(0)) == 0) 559 WorkList.push_back(CI->getOperand(0)); 560 } 561 562 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 563 // We're limiting the GEP to having one index. This will preserve 564 // the original pointer type. We could handle more cases in the 565 // future. 566 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 567 GEP->getType() != Start->getType()) 568 return false; 569 570 if (Explored.count(GEP->getOperand(0)) == 0) 571 WorkList.push_back(GEP->getOperand(0)); 572 } 573 574 if (WorkList.back() == V) { 575 WorkList.pop_back(); 576 // We've finished visiting this node, mark it as such. 577 Explored.insert(V); 578 } 579 580 if (auto *PN = dyn_cast<PHINode>(V)) { 581 // We cannot transform PHIs on unsplittable basic blocks. 582 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 583 return false; 584 Explored.insert(PN); 585 PHIs.insert(PN); 586 } 587 } 588 589 // Explore the PHI nodes further. 590 for (auto *PN : PHIs) 591 for (Value *Op : PN->incoming_values()) 592 if (Explored.count(Op) == 0) 593 WorkList.push_back(Op); 594 } 595 596 // Make sure that we can do this. Since we can't insert GEPs in a basic 597 // block before a PHI node, we can't easily do this transformation if 598 // we have PHI node users of transformed instructions. 599 for (Value *Val : Explored) { 600 for (Value *Use : Val->uses()) { 601 602 auto *PHI = dyn_cast<PHINode>(Use); 603 auto *Inst = dyn_cast<Instruction>(Val); 604 605 if (Inst == Base || Inst == PHI || !Inst || !PHI || 606 Explored.count(PHI) == 0) 607 continue; 608 609 if (PHI->getParent() == Inst->getParent()) 610 return false; 611 } 612 } 613 return true; 614 } 615 616 // Sets the appropriate insert point on Builder where we can add 617 // a replacement Instruction for V (if that is possible). 618 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 619 bool Before = true) { 620 if (auto *PHI = dyn_cast<PHINode>(V)) { 621 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 622 return; 623 } 624 if (auto *I = dyn_cast<Instruction>(V)) { 625 if (!Before) 626 I = &*std::next(I->getIterator()); 627 Builder.SetInsertPoint(I); 628 return; 629 } 630 if (auto *A = dyn_cast<Argument>(V)) { 631 // Set the insertion point in the entry block. 632 BasicBlock &Entry = A->getParent()->getEntryBlock(); 633 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 634 return; 635 } 636 // Otherwise, this is a constant and we don't need to set a new 637 // insertion point. 638 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 639 } 640 641 /// Returns a re-written value of Start as an indexed GEP using Base as a 642 /// pointer. 643 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 644 const DataLayout &DL, 645 SetVector<Value *> &Explored) { 646 // Perform all the substitutions. This is a bit tricky because we can 647 // have cycles in our use-def chains. 648 // 1. Create the PHI nodes without any incoming values. 649 // 2. Create all the other values. 650 // 3. Add the edges for the PHI nodes. 651 // 4. Emit GEPs to get the original pointers. 652 // 5. Remove the original instructions. 653 Type *IndexType = IntegerType::get( 654 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 655 656 DenseMap<Value *, Value *> NewInsts; 657 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 658 659 // Create the new PHI nodes, without adding any incoming values. 660 for (Value *Val : Explored) { 661 if (Val == Base) 662 continue; 663 // Create empty phi nodes. This avoids cyclic dependencies when creating 664 // the remaining instructions. 665 if (auto *PHI = dyn_cast<PHINode>(Val)) 666 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 667 PHI->getName() + ".idx", PHI); 668 } 669 IRBuilder<> Builder(Base->getContext()); 670 671 // Create all the other instructions. 672 for (Value *Val : Explored) { 673 674 if (NewInsts.find(Val) != NewInsts.end()) 675 continue; 676 677 if (auto *CI = dyn_cast<CastInst>(Val)) { 678 // Don't get rid of the intermediate variable here; the store can grow 679 // the map which will invalidate the reference to the input value. 680 Value *V = NewInsts[CI->getOperand(0)]; 681 NewInsts[CI] = V; 682 continue; 683 } 684 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 685 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 686 : GEP->getOperand(1); 687 setInsertionPoint(Builder, GEP); 688 // Indices might need to be sign extended. GEPs will magically do 689 // this, but we need to do it ourselves here. 690 if (Index->getType()->getScalarSizeInBits() != 691 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 692 Index = Builder.CreateSExtOrTrunc( 693 Index, NewInsts[GEP->getOperand(0)]->getType(), 694 GEP->getOperand(0)->getName() + ".sext"); 695 } 696 697 auto *Op = NewInsts[GEP->getOperand(0)]; 698 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 699 NewInsts[GEP] = Index; 700 else 701 NewInsts[GEP] = Builder.CreateNSWAdd( 702 Op, Index, GEP->getOperand(0)->getName() + ".add"); 703 continue; 704 } 705 if (isa<PHINode>(Val)) 706 continue; 707 708 llvm_unreachable("Unexpected instruction type"); 709 } 710 711 // Add the incoming values to the PHI nodes. 712 for (Value *Val : Explored) { 713 if (Val == Base) 714 continue; 715 // All the instructions have been created, we can now add edges to the 716 // phi nodes. 717 if (auto *PHI = dyn_cast<PHINode>(Val)) { 718 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 719 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 720 Value *NewIncoming = PHI->getIncomingValue(I); 721 722 if (NewInsts.find(NewIncoming) != NewInsts.end()) 723 NewIncoming = NewInsts[NewIncoming]; 724 725 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 726 } 727 } 728 } 729 730 for (Value *Val : Explored) { 731 if (Val == Base) 732 continue; 733 734 // Depending on the type, for external users we have to emit 735 // a GEP or a GEP + ptrtoint. 736 setInsertionPoint(Builder, Val, false); 737 738 // If required, create an inttoptr instruction for Base. 739 Value *NewBase = Base; 740 if (!Base->getType()->isPointerTy()) 741 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 742 Start->getName() + "to.ptr"); 743 744 Value *GEP = Builder.CreateInBoundsGEP( 745 Start->getType()->getPointerElementType(), NewBase, 746 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 747 748 if (!Val->getType()->isPointerTy()) { 749 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 750 Val->getName() + ".conv"); 751 GEP = Cast; 752 } 753 Val->replaceAllUsesWith(GEP); 754 } 755 756 return NewInsts[Start]; 757 } 758 759 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 760 /// the input Value as a constant indexed GEP. Returns a pair containing 761 /// the GEPs Pointer and Index. 762 static std::pair<Value *, Value *> 763 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 764 Type *IndexType = IntegerType::get(V->getContext(), 765 DL.getIndexTypeSizeInBits(V->getType())); 766 767 Constant *Index = ConstantInt::getNullValue(IndexType); 768 while (true) { 769 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 770 // We accept only inbouds GEPs here to exclude the possibility of 771 // overflow. 772 if (!GEP->isInBounds()) 773 break; 774 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 775 GEP->getType() == V->getType()) { 776 V = GEP->getOperand(0); 777 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 778 Index = ConstantExpr::getAdd( 779 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 780 continue; 781 } 782 break; 783 } 784 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 785 if (!CI->isNoopCast(DL)) 786 break; 787 V = CI->getOperand(0); 788 continue; 789 } 790 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 791 if (!CI->isNoopCast(DL)) 792 break; 793 V = CI->getOperand(0); 794 continue; 795 } 796 break; 797 } 798 return {V, Index}; 799 } 800 801 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 802 /// We can look through PHIs, GEPs and casts in order to determine a common base 803 /// between GEPLHS and RHS. 804 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 805 ICmpInst::Predicate Cond, 806 const DataLayout &DL) { 807 // FIXME: Support vector of pointers. 808 if (GEPLHS->getType()->isVectorTy()) 809 return nullptr; 810 811 if (!GEPLHS->hasAllConstantIndices()) 812 return nullptr; 813 814 // Make sure the pointers have the same type. 815 if (GEPLHS->getType() != RHS->getType()) 816 return nullptr; 817 818 Value *PtrBase, *Index; 819 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 820 821 // The set of nodes that will take part in this transformation. 822 SetVector<Value *> Nodes; 823 824 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 825 return nullptr; 826 827 // We know we can re-write this as 828 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 829 // Since we've only looked through inbouds GEPs we know that we 830 // can't have overflow on either side. We can therefore re-write 831 // this as: 832 // OFFSET1 cmp OFFSET2 833 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 834 835 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 836 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 837 // offset. Since Index is the offset of LHS to the base pointer, we will now 838 // compare the offsets instead of comparing the pointers. 839 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 840 } 841 842 /// Fold comparisons between a GEP instruction and something else. At this point 843 /// we know that the GEP is on the LHS of the comparison. 844 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 845 ICmpInst::Predicate Cond, 846 Instruction &I) { 847 // Don't transform signed compares of GEPs into index compares. Even if the 848 // GEP is inbounds, the final add of the base pointer can have signed overflow 849 // and would change the result of the icmp. 850 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 851 // the maximum signed value for the pointer type. 852 if (ICmpInst::isSigned(Cond)) 853 return nullptr; 854 855 // Look through bitcasts and addrspacecasts. We do not however want to remove 856 // 0 GEPs. 857 if (!isa<GetElementPtrInst>(RHS)) 858 RHS = RHS->stripPointerCasts(); 859 860 Value *PtrBase = GEPLHS->getOperand(0); 861 // FIXME: Support vector pointer GEPs. 862 if (PtrBase == RHS && GEPLHS->isInBounds() && 863 !GEPLHS->getType()->isVectorTy()) { 864 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 865 // This transformation (ignoring the base and scales) is valid because we 866 // know pointers can't overflow since the gep is inbounds. See if we can 867 // output an optimized form. 868 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 869 870 // If not, synthesize the offset the hard way. 871 if (!Offset) 872 Offset = EmitGEPOffset(GEPLHS); 873 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 874 Constant::getNullValue(Offset->getType())); 875 } 876 877 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 878 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 879 !NullPointerIsDefined(I.getFunction(), 880 RHS->getType()->getPointerAddressSpace())) { 881 // For most address spaces, an allocation can't be placed at null, but null 882 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 883 // the only valid inbounds address derived from null, is null itself. 884 // Thus, we have four cases to consider: 885 // 1) Base == nullptr, Offset == 0 -> inbounds, null 886 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 887 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 888 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 889 // 890 // (Note if we're indexing a type of size 0, that simply collapses into one 891 // of the buckets above.) 892 // 893 // In general, we're allowed to make values less poison (i.e. remove 894 // sources of full UB), so in this case, we just select between the two 895 // non-poison cases (1 and 4 above). 896 // 897 // For vectors, we apply the same reasoning on a per-lane basis. 898 auto *Base = GEPLHS->getPointerOperand(); 899 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 900 int NumElts = cast<VectorType>(GEPLHS->getType())->getNumElements(); 901 Base = Builder.CreateVectorSplat(NumElts, Base); 902 } 903 return new ICmpInst(Cond, Base, 904 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 905 cast<Constant>(RHS), Base->getType())); 906 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 907 // If the base pointers are different, but the indices are the same, just 908 // compare the base pointer. 909 if (PtrBase != GEPRHS->getOperand(0)) { 910 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 911 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 912 GEPRHS->getOperand(0)->getType(); 913 if (IndicesTheSame) 914 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 915 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 916 IndicesTheSame = false; 917 break; 918 } 919 920 // If all indices are the same, just compare the base pointers. 921 Type *BaseType = GEPLHS->getOperand(0)->getType(); 922 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 923 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 924 925 // If we're comparing GEPs with two base pointers that only differ in type 926 // and both GEPs have only constant indices or just one use, then fold 927 // the compare with the adjusted indices. 928 // FIXME: Support vector of pointers. 929 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 930 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 931 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 932 PtrBase->stripPointerCasts() == 933 GEPRHS->getOperand(0)->stripPointerCasts() && 934 !GEPLHS->getType()->isVectorTy()) { 935 Value *LOffset = EmitGEPOffset(GEPLHS); 936 Value *ROffset = EmitGEPOffset(GEPRHS); 937 938 // If we looked through an addrspacecast between different sized address 939 // spaces, the LHS and RHS pointers are different sized 940 // integers. Truncate to the smaller one. 941 Type *LHSIndexTy = LOffset->getType(); 942 Type *RHSIndexTy = ROffset->getType(); 943 if (LHSIndexTy != RHSIndexTy) { 944 if (LHSIndexTy->getPrimitiveSizeInBits() < 945 RHSIndexTy->getPrimitiveSizeInBits()) { 946 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 947 } else 948 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 949 } 950 951 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 952 LOffset, ROffset); 953 return replaceInstUsesWith(I, Cmp); 954 } 955 956 // Otherwise, the base pointers are different and the indices are 957 // different. Try convert this to an indexed compare by looking through 958 // PHIs/casts. 959 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 960 } 961 962 // If one of the GEPs has all zero indices, recurse. 963 // FIXME: Handle vector of pointers. 964 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 965 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 966 ICmpInst::getSwappedPredicate(Cond), I); 967 968 // If the other GEP has all zero indices, recurse. 969 // FIXME: Handle vector of pointers. 970 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 971 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 972 973 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 974 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 975 // If the GEPs only differ by one index, compare it. 976 unsigned NumDifferences = 0; // Keep track of # differences. 977 unsigned DiffOperand = 0; // The operand that differs. 978 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 979 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 980 Type *LHSType = GEPLHS->getOperand(i)->getType(); 981 Type *RHSType = GEPRHS->getOperand(i)->getType(); 982 // FIXME: Better support for vector of pointers. 983 if (LHSType->getPrimitiveSizeInBits() != 984 RHSType->getPrimitiveSizeInBits() || 985 (GEPLHS->getType()->isVectorTy() && 986 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 987 // Irreconcilable differences. 988 NumDifferences = 2; 989 break; 990 } 991 992 if (NumDifferences++) break; 993 DiffOperand = i; 994 } 995 996 if (NumDifferences == 0) // SAME GEP? 997 return replaceInstUsesWith(I, // No comparison is needed here. 998 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 999 1000 else if (NumDifferences == 1 && GEPsInBounds) { 1001 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1002 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1003 // Make sure we do a signed comparison here. 1004 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1005 } 1006 } 1007 1008 // Only lower this if the icmp is the only user of the GEP or if we expect 1009 // the result to fold to a constant! 1010 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1011 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1012 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1013 Value *L = EmitGEPOffset(GEPLHS); 1014 Value *R = EmitGEPOffset(GEPRHS); 1015 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1016 } 1017 } 1018 1019 // Try convert this to an indexed compare by looking through PHIs/casts as a 1020 // last resort. 1021 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1022 } 1023 1024 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1025 const AllocaInst *Alloca, 1026 const Value *Other) { 1027 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1028 1029 // It would be tempting to fold away comparisons between allocas and any 1030 // pointer not based on that alloca (e.g. an argument). However, even 1031 // though such pointers cannot alias, they can still compare equal. 1032 // 1033 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1034 // doesn't escape we can argue that it's impossible to guess its value, and we 1035 // can therefore act as if any such guesses are wrong. 1036 // 1037 // The code below checks that the alloca doesn't escape, and that it's only 1038 // used in a comparison once (the current instruction). The 1039 // single-comparison-use condition ensures that we're trivially folding all 1040 // comparisons against the alloca consistently, and avoids the risk of 1041 // erroneously folding a comparison of the pointer with itself. 1042 1043 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1044 1045 SmallVector<const Use *, 32> Worklist; 1046 for (const Use &U : Alloca->uses()) { 1047 if (Worklist.size() >= MaxIter) 1048 return nullptr; 1049 Worklist.push_back(&U); 1050 } 1051 1052 unsigned NumCmps = 0; 1053 while (!Worklist.empty()) { 1054 assert(Worklist.size() <= MaxIter); 1055 const Use *U = Worklist.pop_back_val(); 1056 const Value *V = U->getUser(); 1057 --MaxIter; 1058 1059 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1060 isa<SelectInst>(V)) { 1061 // Track the uses. 1062 } else if (isa<LoadInst>(V)) { 1063 // Loading from the pointer doesn't escape it. 1064 continue; 1065 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1066 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1067 if (SI->getValueOperand() == U->get()) 1068 return nullptr; 1069 continue; 1070 } else if (isa<ICmpInst>(V)) { 1071 if (NumCmps++) 1072 return nullptr; // Found more than one cmp. 1073 continue; 1074 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1075 switch (Intrin->getIntrinsicID()) { 1076 // These intrinsics don't escape or compare the pointer. Memset is safe 1077 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1078 // we don't allow stores, so src cannot point to V. 1079 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1080 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1081 continue; 1082 default: 1083 return nullptr; 1084 } 1085 } else { 1086 return nullptr; 1087 } 1088 for (const Use &U : V->uses()) { 1089 if (Worklist.size() >= MaxIter) 1090 return nullptr; 1091 Worklist.push_back(&U); 1092 } 1093 } 1094 1095 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1096 return replaceInstUsesWith( 1097 ICI, 1098 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1099 } 1100 1101 /// Fold "icmp pred (X+C), X". 1102 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1103 ICmpInst::Predicate Pred) { 1104 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1105 // so the values can never be equal. Similarly for all other "or equals" 1106 // operators. 1107 assert(!!C && "C should not be zero!"); 1108 1109 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1110 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1111 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1112 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1113 Constant *R = ConstantInt::get(X->getType(), 1114 APInt::getMaxValue(C.getBitWidth()) - C); 1115 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1116 } 1117 1118 // (X+1) >u X --> X <u (0-1) --> X != 255 1119 // (X+2) >u X --> X <u (0-2) --> X <u 254 1120 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1121 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1122 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1123 ConstantInt::get(X->getType(), -C)); 1124 1125 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1126 1127 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1128 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1129 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1130 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1131 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1132 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1133 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1134 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1135 ConstantInt::get(X->getType(), SMax - C)); 1136 1137 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1138 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1139 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1140 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1141 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1142 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1143 1144 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1145 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1146 ConstantInt::get(X->getType(), SMax - (C - 1))); 1147 } 1148 1149 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1150 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1151 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1152 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1153 const APInt &AP1, 1154 const APInt &AP2) { 1155 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1156 1157 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1158 if (I.getPredicate() == I.ICMP_NE) 1159 Pred = CmpInst::getInversePredicate(Pred); 1160 return new ICmpInst(Pred, LHS, RHS); 1161 }; 1162 1163 // Don't bother doing any work for cases which InstSimplify handles. 1164 if (AP2.isNullValue()) 1165 return nullptr; 1166 1167 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1168 if (IsAShr) { 1169 if (AP2.isAllOnesValue()) 1170 return nullptr; 1171 if (AP2.isNegative() != AP1.isNegative()) 1172 return nullptr; 1173 if (AP2.sgt(AP1)) 1174 return nullptr; 1175 } 1176 1177 if (!AP1) 1178 // 'A' must be large enough to shift out the highest set bit. 1179 return getICmp(I.ICMP_UGT, A, 1180 ConstantInt::get(A->getType(), AP2.logBase2())); 1181 1182 if (AP1 == AP2) 1183 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1184 1185 int Shift; 1186 if (IsAShr && AP1.isNegative()) 1187 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1188 else 1189 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1190 1191 if (Shift > 0) { 1192 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1193 // There are multiple solutions if we are comparing against -1 and the LHS 1194 // of the ashr is not a power of two. 1195 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1196 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1197 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1198 } else if (AP1 == AP2.lshr(Shift)) { 1199 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1200 } 1201 } 1202 1203 // Shifting const2 will never be equal to const1. 1204 // FIXME: This should always be handled by InstSimplify? 1205 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1206 return replaceInstUsesWith(I, TorF); 1207 } 1208 1209 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1210 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1211 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1212 const APInt &AP1, 1213 const APInt &AP2) { 1214 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1215 1216 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1217 if (I.getPredicate() == I.ICMP_NE) 1218 Pred = CmpInst::getInversePredicate(Pred); 1219 return new ICmpInst(Pred, LHS, RHS); 1220 }; 1221 1222 // Don't bother doing any work for cases which InstSimplify handles. 1223 if (AP2.isNullValue()) 1224 return nullptr; 1225 1226 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1227 1228 if (!AP1 && AP2TrailingZeros != 0) 1229 return getICmp( 1230 I.ICMP_UGE, A, 1231 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1232 1233 if (AP1 == AP2) 1234 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1235 1236 // Get the distance between the lowest bits that are set. 1237 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1238 1239 if (Shift > 0 && AP2.shl(Shift) == AP1) 1240 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1241 1242 // Shifting const2 will never be equal to const1. 1243 // FIXME: This should always be handled by InstSimplify? 1244 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1245 return replaceInstUsesWith(I, TorF); 1246 } 1247 1248 /// The caller has matched a pattern of the form: 1249 /// I = icmp ugt (add (add A, B), CI2), CI1 1250 /// If this is of the form: 1251 /// sum = a + b 1252 /// if (sum+128 >u 255) 1253 /// Then replace it with llvm.sadd.with.overflow.i8. 1254 /// 1255 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1256 ConstantInt *CI2, ConstantInt *CI1, 1257 InstCombiner &IC) { 1258 // The transformation we're trying to do here is to transform this into an 1259 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1260 // with a narrower add, and discard the add-with-constant that is part of the 1261 // range check (if we can't eliminate it, this isn't profitable). 1262 1263 // In order to eliminate the add-with-constant, the compare can be its only 1264 // use. 1265 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1266 if (!AddWithCst->hasOneUse()) 1267 return nullptr; 1268 1269 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1270 if (!CI2->getValue().isPowerOf2()) 1271 return nullptr; 1272 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1273 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1274 return nullptr; 1275 1276 // The width of the new add formed is 1 more than the bias. 1277 ++NewWidth; 1278 1279 // Check to see that CI1 is an all-ones value with NewWidth bits. 1280 if (CI1->getBitWidth() == NewWidth || 1281 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1282 return nullptr; 1283 1284 // This is only really a signed overflow check if the inputs have been 1285 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1286 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1287 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1288 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1289 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1290 return nullptr; 1291 1292 // In order to replace the original add with a narrower 1293 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1294 // and truncates that discard the high bits of the add. Verify that this is 1295 // the case. 1296 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1297 for (User *U : OrigAdd->users()) { 1298 if (U == AddWithCst) 1299 continue; 1300 1301 // Only accept truncates for now. We would really like a nice recursive 1302 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1303 // chain to see which bits of a value are actually demanded. If the 1304 // original add had another add which was then immediately truncated, we 1305 // could still do the transformation. 1306 TruncInst *TI = dyn_cast<TruncInst>(U); 1307 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1308 return nullptr; 1309 } 1310 1311 // If the pattern matches, truncate the inputs to the narrower type and 1312 // use the sadd_with_overflow intrinsic to efficiently compute both the 1313 // result and the overflow bit. 1314 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1315 Function *F = Intrinsic::getDeclaration( 1316 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1317 1318 InstCombiner::BuilderTy &Builder = IC.Builder; 1319 1320 // Put the new code above the original add, in case there are any uses of the 1321 // add between the add and the compare. 1322 Builder.SetInsertPoint(OrigAdd); 1323 1324 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1325 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1326 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1327 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1328 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1329 1330 // The inner add was the result of the narrow add, zero extended to the 1331 // wider type. Replace it with the result computed by the intrinsic. 1332 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1333 IC.eraseInstFromFunction(*OrigAdd); 1334 1335 // The original icmp gets replaced with the overflow value. 1336 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1337 } 1338 1339 /// If we have: 1340 /// icmp eq/ne (urem/srem %x, %y), 0 1341 /// iff %y is a power-of-two, we can replace this with a bit test: 1342 /// icmp eq/ne (and %x, (add %y, -1)), 0 1343 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1344 // This fold is only valid for equality predicates. 1345 if (!I.isEquality()) 1346 return nullptr; 1347 ICmpInst::Predicate Pred; 1348 Value *X, *Y, *Zero; 1349 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1350 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1351 return nullptr; 1352 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1353 return nullptr; 1354 // This may increase instruction count, we don't enforce that Y is a constant. 1355 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1356 Value *Masked = Builder.CreateAnd(X, Mask); 1357 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1358 } 1359 1360 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1361 /// by one-less-than-bitwidth into a sign test on the original value. 1362 Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) { 1363 Instruction *Val; 1364 ICmpInst::Predicate Pred; 1365 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1366 return nullptr; 1367 1368 Value *X; 1369 Type *XTy; 1370 1371 Constant *C; 1372 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1373 XTy = X->getType(); 1374 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1375 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1376 APInt(XBitWidth, XBitWidth - 1)))) 1377 return nullptr; 1378 } else if (isa<BinaryOperator>(Val) && 1379 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1380 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1381 /*AnalyzeForSignBitExtraction=*/true))) { 1382 XTy = X->getType(); 1383 } else 1384 return nullptr; 1385 1386 return ICmpInst::Create(Instruction::ICmp, 1387 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1388 : ICmpInst::ICMP_SLT, 1389 X, ConstantInt::getNullValue(XTy)); 1390 } 1391 1392 // Handle icmp pred X, 0 1393 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1394 CmpInst::Predicate Pred = Cmp.getPredicate(); 1395 if (!match(Cmp.getOperand(1), m_Zero())) 1396 return nullptr; 1397 1398 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1399 if (Pred == ICmpInst::ICMP_SGT) { 1400 Value *A, *B; 1401 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1402 if (SPR.Flavor == SPF_SMIN) { 1403 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1404 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1405 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1406 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1407 } 1408 } 1409 1410 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1411 return New; 1412 1413 // Given: 1414 // icmp eq/ne (urem %x, %y), 0 1415 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1416 // icmp eq/ne %x, 0 1417 Value *X, *Y; 1418 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1419 ICmpInst::isEquality(Pred)) { 1420 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1421 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1422 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1423 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1424 } 1425 1426 return nullptr; 1427 } 1428 1429 /// Fold icmp Pred X, C. 1430 /// TODO: This code structure does not make sense. The saturating add fold 1431 /// should be moved to some other helper and extended as noted below (it is also 1432 /// possible that code has been made unnecessary - do we canonicalize IR to 1433 /// overflow/saturating intrinsics or not?). 1434 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1435 // Match the following pattern, which is a common idiom when writing 1436 // overflow-safe integer arithmetic functions. The source performs an addition 1437 // in wider type and explicitly checks for overflow using comparisons against 1438 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1439 // 1440 // TODO: This could probably be generalized to handle other overflow-safe 1441 // operations if we worked out the formulas to compute the appropriate magic 1442 // constants. 1443 // 1444 // sum = a + b 1445 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1446 CmpInst::Predicate Pred = Cmp.getPredicate(); 1447 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1448 Value *A, *B; 1449 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1450 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1451 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1452 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1453 return Res; 1454 1455 return nullptr; 1456 } 1457 1458 /// Canonicalize icmp instructions based on dominating conditions. 1459 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1460 // This is a cheap/incomplete check for dominance - just match a single 1461 // predecessor with a conditional branch. 1462 BasicBlock *CmpBB = Cmp.getParent(); 1463 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1464 if (!DomBB) 1465 return nullptr; 1466 1467 Value *DomCond; 1468 BasicBlock *TrueBB, *FalseBB; 1469 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1470 return nullptr; 1471 1472 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1473 "Predecessor block does not point to successor?"); 1474 1475 // The branch should get simplified. Don't bother simplifying this condition. 1476 if (TrueBB == FalseBB) 1477 return nullptr; 1478 1479 // Try to simplify this compare to T/F based on the dominating condition. 1480 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1481 if (Imp) 1482 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1483 1484 CmpInst::Predicate Pred = Cmp.getPredicate(); 1485 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1486 ICmpInst::Predicate DomPred; 1487 const APInt *C, *DomC; 1488 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1489 match(Y, m_APInt(C))) { 1490 // We have 2 compares of a variable with constants. Calculate the constant 1491 // ranges of those compares to see if we can transform the 2nd compare: 1492 // DomBB: 1493 // DomCond = icmp DomPred X, DomC 1494 // br DomCond, CmpBB, FalseBB 1495 // CmpBB: 1496 // Cmp = icmp Pred X, C 1497 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1498 ConstantRange DominatingCR = 1499 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1500 : ConstantRange::makeExactICmpRegion( 1501 CmpInst::getInversePredicate(DomPred), *DomC); 1502 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1503 ConstantRange Difference = DominatingCR.difference(CR); 1504 if (Intersection.isEmptySet()) 1505 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1506 if (Difference.isEmptySet()) 1507 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1508 1509 // Canonicalizing a sign bit comparison that gets used in a branch, 1510 // pessimizes codegen by generating branch on zero instruction instead 1511 // of a test and branch. So we avoid canonicalizing in such situations 1512 // because test and branch instruction has better branch displacement 1513 // than compare and branch instruction. 1514 bool UnusedBit; 1515 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1516 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1517 return nullptr; 1518 1519 if (const APInt *EqC = Intersection.getSingleElement()) 1520 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1521 if (const APInt *NeC = Difference.getSingleElement()) 1522 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1523 } 1524 1525 return nullptr; 1526 } 1527 1528 /// Fold icmp (trunc X, Y), C. 1529 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1530 TruncInst *Trunc, 1531 const APInt &C) { 1532 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1533 Value *X = Trunc->getOperand(0); 1534 if (C.isOneValue() && C.getBitWidth() > 1) { 1535 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1536 Value *V = nullptr; 1537 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1538 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1539 ConstantInt::get(V->getType(), 1)); 1540 } 1541 1542 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1543 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1544 // of the high bits truncated out of x are known. 1545 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1546 SrcBits = X->getType()->getScalarSizeInBits(); 1547 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1548 1549 // If all the high bits are known, we can do this xform. 1550 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1551 // Pull in the high bits from known-ones set. 1552 APInt NewRHS = C.zext(SrcBits); 1553 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1554 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1555 } 1556 } 1557 1558 return nullptr; 1559 } 1560 1561 /// Fold icmp (xor X, Y), C. 1562 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1563 BinaryOperator *Xor, 1564 const APInt &C) { 1565 Value *X = Xor->getOperand(0); 1566 Value *Y = Xor->getOperand(1); 1567 const APInt *XorC; 1568 if (!match(Y, m_APInt(XorC))) 1569 return nullptr; 1570 1571 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1572 // fold the xor. 1573 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1574 bool TrueIfSigned = false; 1575 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1576 1577 // If the sign bit of the XorCst is not set, there is no change to 1578 // the operation, just stop using the Xor. 1579 if (!XorC->isNegative()) 1580 return replaceOperand(Cmp, 0, X); 1581 1582 // Emit the opposite comparison. 1583 if (TrueIfSigned) 1584 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1585 ConstantInt::getAllOnesValue(X->getType())); 1586 else 1587 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1588 ConstantInt::getNullValue(X->getType())); 1589 } 1590 1591 if (Xor->hasOneUse()) { 1592 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1593 if (!Cmp.isEquality() && XorC->isSignMask()) { 1594 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1595 : Cmp.getSignedPredicate(); 1596 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1597 } 1598 1599 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1600 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1601 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1602 : Cmp.getSignedPredicate(); 1603 Pred = Cmp.getSwappedPredicate(Pred); 1604 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1605 } 1606 } 1607 1608 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1609 if (Pred == ICmpInst::ICMP_UGT) { 1610 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1611 if (*XorC == ~C && (C + 1).isPowerOf2()) 1612 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1613 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1614 if (*XorC == C && (C + 1).isPowerOf2()) 1615 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1616 } 1617 if (Pred == ICmpInst::ICMP_ULT) { 1618 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1619 if (*XorC == -C && C.isPowerOf2()) 1620 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1621 ConstantInt::get(X->getType(), ~C)); 1622 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1623 if (*XorC == C && (-C).isPowerOf2()) 1624 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1625 ConstantInt::get(X->getType(), ~C)); 1626 } 1627 return nullptr; 1628 } 1629 1630 /// Fold icmp (and (sh X, Y), C2), C1. 1631 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1632 const APInt &C1, const APInt &C2) { 1633 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1634 if (!Shift || !Shift->isShift()) 1635 return nullptr; 1636 1637 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1638 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1639 // code produced by the clang front-end, for bitfield access. 1640 // This seemingly simple opportunity to fold away a shift turns out to be 1641 // rather complicated. See PR17827 for details. 1642 unsigned ShiftOpcode = Shift->getOpcode(); 1643 bool IsShl = ShiftOpcode == Instruction::Shl; 1644 const APInt *C3; 1645 if (match(Shift->getOperand(1), m_APInt(C3))) { 1646 APInt NewAndCst, NewCmpCst; 1647 bool AnyCmpCstBitsShiftedOut; 1648 if (ShiftOpcode == Instruction::Shl) { 1649 // For a left shift, we can fold if the comparison is not signed. We can 1650 // also fold a signed comparison if the mask value and comparison value 1651 // are not negative. These constraints may not be obvious, but we can 1652 // prove that they are correct using an SMT solver. 1653 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1654 return nullptr; 1655 1656 NewCmpCst = C1.lshr(*C3); 1657 NewAndCst = C2.lshr(*C3); 1658 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1659 } else if (ShiftOpcode == Instruction::LShr) { 1660 // For a logical right shift, we can fold if the comparison is not signed. 1661 // We can also fold a signed comparison if the shifted mask value and the 1662 // shifted comparison value are not negative. These constraints may not be 1663 // obvious, but we can prove that they are correct using an SMT solver. 1664 NewCmpCst = C1.shl(*C3); 1665 NewAndCst = C2.shl(*C3); 1666 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1667 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1668 return nullptr; 1669 } else { 1670 // For an arithmetic shift, check that both constants don't use (in a 1671 // signed sense) the top bits being shifted out. 1672 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1673 NewCmpCst = C1.shl(*C3); 1674 NewAndCst = C2.shl(*C3); 1675 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1676 if (NewAndCst.ashr(*C3) != C2) 1677 return nullptr; 1678 } 1679 1680 if (AnyCmpCstBitsShiftedOut) { 1681 // If we shifted bits out, the fold is not going to work out. As a 1682 // special case, check to see if this means that the result is always 1683 // true or false now. 1684 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1685 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1686 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1687 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1688 } else { 1689 Value *NewAnd = Builder.CreateAnd( 1690 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1691 return new ICmpInst(Cmp.getPredicate(), 1692 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1693 } 1694 } 1695 1696 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1697 // preferable because it allows the C2 << Y expression to be hoisted out of a 1698 // loop if Y is invariant and X is not. 1699 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1700 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1701 // Compute C2 << Y. 1702 Value *NewShift = 1703 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1704 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1705 1706 // Compute X & (C2 << Y). 1707 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1708 return replaceOperand(Cmp, 0, NewAnd); 1709 } 1710 1711 return nullptr; 1712 } 1713 1714 /// Fold icmp (and X, C2), C1. 1715 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1716 BinaryOperator *And, 1717 const APInt &C1) { 1718 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1719 1720 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1721 // TODO: We canonicalize to the longer form for scalars because we have 1722 // better analysis/folds for icmp, and codegen may be better with icmp. 1723 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1724 match(And->getOperand(1), m_One())) 1725 return new TruncInst(And->getOperand(0), Cmp.getType()); 1726 1727 const APInt *C2; 1728 Value *X; 1729 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1730 return nullptr; 1731 1732 // Don't perform the following transforms if the AND has multiple uses 1733 if (!And->hasOneUse()) 1734 return nullptr; 1735 1736 if (Cmp.isEquality() && C1.isNullValue()) { 1737 // Restrict this fold to single-use 'and' (PR10267). 1738 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1739 if (C2->isSignMask()) { 1740 Constant *Zero = Constant::getNullValue(X->getType()); 1741 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1742 return new ICmpInst(NewPred, X, Zero); 1743 } 1744 1745 // Restrict this fold only for single-use 'and' (PR10267). 1746 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1747 if ((~(*C2) + 1).isPowerOf2()) { 1748 Constant *NegBOC = 1749 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1750 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1751 return new ICmpInst(NewPred, X, NegBOC); 1752 } 1753 } 1754 1755 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1756 // the input width without changing the value produced, eliminate the cast: 1757 // 1758 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1759 // 1760 // We can do this transformation if the constants do not have their sign bits 1761 // set or if it is an equality comparison. Extending a relational comparison 1762 // when we're checking the sign bit would not work. 1763 Value *W; 1764 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1765 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1766 // TODO: Is this a good transform for vectors? Wider types may reduce 1767 // throughput. Should this transform be limited (even for scalars) by using 1768 // shouldChangeType()? 1769 if (!Cmp.getType()->isVectorTy()) { 1770 Type *WideType = W->getType(); 1771 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1772 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1773 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1774 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1775 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1776 } 1777 } 1778 1779 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1780 return I; 1781 1782 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1783 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1784 // 1785 // iff pred isn't signed 1786 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1787 match(And->getOperand(1), m_One())) { 1788 Constant *One = cast<Constant>(And->getOperand(1)); 1789 Value *Or = And->getOperand(0); 1790 Value *A, *B, *LShr; 1791 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1792 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1793 unsigned UsesRemoved = 0; 1794 if (And->hasOneUse()) 1795 ++UsesRemoved; 1796 if (Or->hasOneUse()) 1797 ++UsesRemoved; 1798 if (LShr->hasOneUse()) 1799 ++UsesRemoved; 1800 1801 // Compute A & ((1 << B) | 1) 1802 Value *NewOr = nullptr; 1803 if (auto *C = dyn_cast<Constant>(B)) { 1804 if (UsesRemoved >= 1) 1805 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1806 } else { 1807 if (UsesRemoved >= 3) 1808 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1809 /*HasNUW=*/true), 1810 One, Or->getName()); 1811 } 1812 if (NewOr) { 1813 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1814 return replaceOperand(Cmp, 0, NewAnd); 1815 } 1816 } 1817 } 1818 1819 return nullptr; 1820 } 1821 1822 /// Fold icmp (and X, Y), C. 1823 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1824 BinaryOperator *And, 1825 const APInt &C) { 1826 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1827 return I; 1828 1829 // TODO: These all require that Y is constant too, so refactor with the above. 1830 1831 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1832 Value *X = And->getOperand(0); 1833 Value *Y = And->getOperand(1); 1834 if (auto *LI = dyn_cast<LoadInst>(X)) 1835 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1836 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1837 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1838 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1839 ConstantInt *C2 = cast<ConstantInt>(Y); 1840 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1841 return Res; 1842 } 1843 1844 if (!Cmp.isEquality()) 1845 return nullptr; 1846 1847 // X & -C == -C -> X > u ~C 1848 // X & -C != -C -> X <= u ~C 1849 // iff C is a power of 2 1850 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1851 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1852 : CmpInst::ICMP_ULE; 1853 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1854 } 1855 1856 // (X & C2) == 0 -> (trunc X) >= 0 1857 // (X & C2) != 0 -> (trunc X) < 0 1858 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1859 const APInt *C2; 1860 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1861 int32_t ExactLogBase2 = C2->exactLogBase2(); 1862 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1863 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1864 if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) 1865 NTy = VectorType::get(NTy, AndVTy->getNumElements()); 1866 Value *Trunc = Builder.CreateTrunc(X, NTy); 1867 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1868 : CmpInst::ICMP_SLT; 1869 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1870 } 1871 } 1872 1873 return nullptr; 1874 } 1875 1876 /// Fold icmp (or X, Y), C. 1877 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1878 const APInt &C) { 1879 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1880 if (C.isOneValue()) { 1881 // icmp slt signum(V) 1 --> icmp slt V, 1 1882 Value *V = nullptr; 1883 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1884 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1885 ConstantInt::get(V->getType(), 1)); 1886 } 1887 1888 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1889 const APInt *MaskC; 1890 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1891 if (*MaskC == C && (C + 1).isPowerOf2()) { 1892 // X | C == C --> X <=u C 1893 // X | C != C --> X >u C 1894 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1895 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1896 return new ICmpInst(Pred, OrOp0, OrOp1); 1897 } 1898 1899 // More general: canonicalize 'equality with set bits mask' to 1900 // 'equality with clear bits mask'. 1901 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1902 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1903 if (Or->hasOneUse()) { 1904 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1905 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1906 return new ICmpInst(Pred, And, NewC); 1907 } 1908 } 1909 1910 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1911 return nullptr; 1912 1913 Value *P, *Q; 1914 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1915 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1916 // -> and (icmp eq P, null), (icmp eq Q, null). 1917 Value *CmpP = 1918 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1919 Value *CmpQ = 1920 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1921 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1922 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1923 } 1924 1925 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1926 // a shorter form that has more potential to be folded even further. 1927 Value *X1, *X2, *X3, *X4; 1928 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1929 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1930 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1931 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1932 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1933 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1934 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1935 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1936 } 1937 1938 return nullptr; 1939 } 1940 1941 /// Fold icmp (mul X, Y), C. 1942 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1943 BinaryOperator *Mul, 1944 const APInt &C) { 1945 const APInt *MulC; 1946 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1947 return nullptr; 1948 1949 // If this is a test of the sign bit and the multiply is sign-preserving with 1950 // a constant operand, use the multiply LHS operand instead. 1951 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1952 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1953 if (MulC->isNegative()) 1954 Pred = ICmpInst::getSwappedPredicate(Pred); 1955 return new ICmpInst(Pred, Mul->getOperand(0), 1956 Constant::getNullValue(Mul->getType())); 1957 } 1958 1959 return nullptr; 1960 } 1961 1962 /// Fold icmp (shl 1, Y), C. 1963 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1964 const APInt &C) { 1965 Value *Y; 1966 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1967 return nullptr; 1968 1969 Type *ShiftType = Shl->getType(); 1970 unsigned TypeBits = C.getBitWidth(); 1971 bool CIsPowerOf2 = C.isPowerOf2(); 1972 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1973 if (Cmp.isUnsigned()) { 1974 // (1 << Y) pred C -> Y pred Log2(C) 1975 if (!CIsPowerOf2) { 1976 // (1 << Y) < 30 -> Y <= 4 1977 // (1 << Y) <= 30 -> Y <= 4 1978 // (1 << Y) >= 30 -> Y > 4 1979 // (1 << Y) > 30 -> Y > 4 1980 if (Pred == ICmpInst::ICMP_ULT) 1981 Pred = ICmpInst::ICMP_ULE; 1982 else if (Pred == ICmpInst::ICMP_UGE) 1983 Pred = ICmpInst::ICMP_UGT; 1984 } 1985 1986 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1987 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1988 unsigned CLog2 = C.logBase2(); 1989 if (CLog2 == TypeBits - 1) { 1990 if (Pred == ICmpInst::ICMP_UGE) 1991 Pred = ICmpInst::ICMP_EQ; 1992 else if (Pred == ICmpInst::ICMP_ULT) 1993 Pred = ICmpInst::ICMP_NE; 1994 } 1995 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1996 } else if (Cmp.isSigned()) { 1997 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1998 if (C.isAllOnesValue()) { 1999 // (1 << Y) <= -1 -> Y == 31 2000 if (Pred == ICmpInst::ICMP_SLE) 2001 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2002 2003 // (1 << Y) > -1 -> Y != 31 2004 if (Pred == ICmpInst::ICMP_SGT) 2005 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2006 } else if (!C) { 2007 // (1 << Y) < 0 -> Y == 31 2008 // (1 << Y) <= 0 -> Y == 31 2009 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2010 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2011 2012 // (1 << Y) >= 0 -> Y != 31 2013 // (1 << Y) > 0 -> Y != 31 2014 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2015 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2016 } 2017 } else if (Cmp.isEquality() && CIsPowerOf2) { 2018 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2019 } 2020 2021 return nullptr; 2022 } 2023 2024 /// Fold icmp (shl X, Y), C. 2025 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 2026 BinaryOperator *Shl, 2027 const APInt &C) { 2028 const APInt *ShiftVal; 2029 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2030 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2031 2032 const APInt *ShiftAmt; 2033 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2034 return foldICmpShlOne(Cmp, Shl, C); 2035 2036 // Check that the shift amount is in range. If not, don't perform undefined 2037 // shifts. When the shift is visited, it will be simplified. 2038 unsigned TypeBits = C.getBitWidth(); 2039 if (ShiftAmt->uge(TypeBits)) 2040 return nullptr; 2041 2042 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2043 Value *X = Shl->getOperand(0); 2044 Type *ShType = Shl->getType(); 2045 2046 // NSW guarantees that we are only shifting out sign bits from the high bits, 2047 // so we can ASHR the compare constant without needing a mask and eliminate 2048 // the shift. 2049 if (Shl->hasNoSignedWrap()) { 2050 if (Pred == ICmpInst::ICMP_SGT) { 2051 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2052 APInt ShiftedC = C.ashr(*ShiftAmt); 2053 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2054 } 2055 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2056 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2057 APInt ShiftedC = C.ashr(*ShiftAmt); 2058 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2059 } 2060 if (Pred == ICmpInst::ICMP_SLT) { 2061 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2062 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2063 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2064 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2065 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2066 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2067 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2068 } 2069 // If this is a signed comparison to 0 and the shift is sign preserving, 2070 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2071 // do that if we're sure to not continue on in this function. 2072 if (isSignTest(Pred, C)) 2073 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2074 } 2075 2076 // NUW guarantees that we are only shifting out zero bits from the high bits, 2077 // so we can LSHR the compare constant without needing a mask and eliminate 2078 // the shift. 2079 if (Shl->hasNoUnsignedWrap()) { 2080 if (Pred == ICmpInst::ICMP_UGT) { 2081 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2082 APInt ShiftedC = C.lshr(*ShiftAmt); 2083 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2084 } 2085 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2086 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2087 APInt ShiftedC = C.lshr(*ShiftAmt); 2088 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2089 } 2090 if (Pred == ICmpInst::ICMP_ULT) { 2091 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2092 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2093 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2094 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2095 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2096 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2097 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2098 } 2099 } 2100 2101 if (Cmp.isEquality() && Shl->hasOneUse()) { 2102 // Strength-reduce the shift into an 'and'. 2103 Constant *Mask = ConstantInt::get( 2104 ShType, 2105 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2106 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2107 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2108 return new ICmpInst(Pred, And, LShrC); 2109 } 2110 2111 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2112 bool TrueIfSigned = false; 2113 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2114 // (X << 31) <s 0 --> (X & 1) != 0 2115 Constant *Mask = ConstantInt::get( 2116 ShType, 2117 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2118 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2119 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2120 And, Constant::getNullValue(ShType)); 2121 } 2122 2123 // Simplify 'shl' inequality test into 'and' equality test. 2124 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2125 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2126 if ((C + 1).isPowerOf2() && 2127 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2128 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2129 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2130 : ICmpInst::ICMP_NE, 2131 And, Constant::getNullValue(ShType)); 2132 } 2133 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2134 if (C.isPowerOf2() && 2135 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2136 Value *And = 2137 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2138 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2139 : ICmpInst::ICMP_NE, 2140 And, Constant::getNullValue(ShType)); 2141 } 2142 } 2143 2144 // Transform (icmp pred iM (shl iM %v, N), C) 2145 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2146 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2147 // This enables us to get rid of the shift in favor of a trunc that may be 2148 // free on the target. It has the additional benefit of comparing to a 2149 // smaller constant that may be more target-friendly. 2150 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2151 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2152 DL.isLegalInteger(TypeBits - Amt)) { 2153 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2154 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2155 TruncTy = VectorType::get(TruncTy, ShVTy->getNumElements()); 2156 Constant *NewC = 2157 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2158 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2159 } 2160 2161 return nullptr; 2162 } 2163 2164 /// Fold icmp ({al}shr X, Y), C. 2165 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2166 BinaryOperator *Shr, 2167 const APInt &C) { 2168 // An exact shr only shifts out zero bits, so: 2169 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2170 Value *X = Shr->getOperand(0); 2171 CmpInst::Predicate Pred = Cmp.getPredicate(); 2172 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2173 C.isNullValue()) 2174 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2175 2176 const APInt *ShiftVal; 2177 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2178 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2179 2180 const APInt *ShiftAmt; 2181 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2182 return nullptr; 2183 2184 // Check that the shift amount is in range. If not, don't perform undefined 2185 // shifts. When the shift is visited it will be simplified. 2186 unsigned TypeBits = C.getBitWidth(); 2187 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2188 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2189 return nullptr; 2190 2191 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2192 bool IsExact = Shr->isExact(); 2193 Type *ShrTy = Shr->getType(); 2194 // TODO: If we could guarantee that InstSimplify would handle all of the 2195 // constant-value-based preconditions in the folds below, then we could assert 2196 // those conditions rather than checking them. This is difficult because of 2197 // undef/poison (PR34838). 2198 if (IsAShr) { 2199 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2200 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2201 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2202 APInt ShiftedC = C.shl(ShAmtVal); 2203 if (ShiftedC.ashr(ShAmtVal) == C) 2204 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2205 } 2206 if (Pred == CmpInst::ICMP_SGT) { 2207 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2208 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2209 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2210 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2211 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2212 } 2213 } else { 2214 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2215 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2216 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2217 APInt ShiftedC = C.shl(ShAmtVal); 2218 if (ShiftedC.lshr(ShAmtVal) == C) 2219 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2220 } 2221 if (Pred == CmpInst::ICMP_UGT) { 2222 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2223 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2224 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2225 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2226 } 2227 } 2228 2229 if (!Cmp.isEquality()) 2230 return nullptr; 2231 2232 // Handle equality comparisons of shift-by-constant. 2233 2234 // If the comparison constant changes with the shift, the comparison cannot 2235 // succeed (bits of the comparison constant cannot match the shifted value). 2236 // This should be known by InstSimplify and already be folded to true/false. 2237 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2238 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2239 "Expected icmp+shr simplify did not occur."); 2240 2241 // If the bits shifted out are known zero, compare the unshifted value: 2242 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2243 if (Shr->isExact()) 2244 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2245 2246 if (Shr->hasOneUse()) { 2247 // Canonicalize the shift into an 'and': 2248 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2249 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2250 Constant *Mask = ConstantInt::get(ShrTy, Val); 2251 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2252 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2253 } 2254 2255 return nullptr; 2256 } 2257 2258 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp, 2259 BinaryOperator *SRem, 2260 const APInt &C) { 2261 // Match an 'is positive' or 'is negative' comparison of remainder by a 2262 // constant power-of-2 value: 2263 // (X % pow2C) sgt/slt 0 2264 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2265 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2266 return nullptr; 2267 2268 // TODO: The one-use check is standard because we do not typically want to 2269 // create longer instruction sequences, but this might be a special-case 2270 // because srem is not good for analysis or codegen. 2271 if (!SRem->hasOneUse()) 2272 return nullptr; 2273 2274 const APInt *DivisorC; 2275 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2276 return nullptr; 2277 2278 // Mask off the sign bit and the modulo bits (low-bits). 2279 Type *Ty = SRem->getType(); 2280 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2281 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2282 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2283 2284 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2285 // bit is set. Example: 2286 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2287 if (Pred == ICmpInst::ICMP_SGT) 2288 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2289 2290 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2291 // bit is set. Example: 2292 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2293 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2294 } 2295 2296 /// Fold icmp (udiv X, Y), C. 2297 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2298 BinaryOperator *UDiv, 2299 const APInt &C) { 2300 const APInt *C2; 2301 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2302 return nullptr; 2303 2304 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2305 2306 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2307 Value *Y = UDiv->getOperand(1); 2308 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2309 assert(!C.isMaxValue() && 2310 "icmp ugt X, UINT_MAX should have been simplified already."); 2311 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2312 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2313 } 2314 2315 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2316 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2317 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2318 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2319 ConstantInt::get(Y->getType(), C2->udiv(C))); 2320 } 2321 2322 return nullptr; 2323 } 2324 2325 /// Fold icmp ({su}div X, Y), C. 2326 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2327 BinaryOperator *Div, 2328 const APInt &C) { 2329 // Fold: icmp pred ([us]div X, C2), C -> range test 2330 // Fold this div into the comparison, producing a range check. 2331 // Determine, based on the divide type, what the range is being 2332 // checked. If there is an overflow on the low or high side, remember 2333 // it, otherwise compute the range [low, hi) bounding the new value. 2334 // See: InsertRangeTest above for the kinds of replacements possible. 2335 const APInt *C2; 2336 if (!match(Div->getOperand(1), m_APInt(C2))) 2337 return nullptr; 2338 2339 // FIXME: If the operand types don't match the type of the divide 2340 // then don't attempt this transform. The code below doesn't have the 2341 // logic to deal with a signed divide and an unsigned compare (and 2342 // vice versa). This is because (x /s C2) <s C produces different 2343 // results than (x /s C2) <u C or (x /u C2) <s C or even 2344 // (x /u C2) <u C. Simply casting the operands and result won't 2345 // work. :( The if statement below tests that condition and bails 2346 // if it finds it. 2347 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2348 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2349 return nullptr; 2350 2351 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2352 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2353 // division-by-constant cases should be present, we can not assert that they 2354 // have happened before we reach this icmp instruction. 2355 if (C2->isNullValue() || C2->isOneValue() || 2356 (DivIsSigned && C2->isAllOnesValue())) 2357 return nullptr; 2358 2359 // Compute Prod = C * C2. We are essentially solving an equation of 2360 // form X / C2 = C. We solve for X by multiplying C2 and C. 2361 // By solving for X, we can turn this into a range check instead of computing 2362 // a divide. 2363 APInt Prod = C * *C2; 2364 2365 // Determine if the product overflows by seeing if the product is not equal to 2366 // the divide. Make sure we do the same kind of divide as in the LHS 2367 // instruction that we're folding. 2368 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2369 2370 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2371 2372 // If the division is known to be exact, then there is no remainder from the 2373 // divide, so the covered range size is unit, otherwise it is the divisor. 2374 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2375 2376 // Figure out the interval that is being checked. For example, a comparison 2377 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2378 // Compute this interval based on the constants involved and the signedness of 2379 // the compare/divide. This computes a half-open interval, keeping track of 2380 // whether either value in the interval overflows. After analysis each 2381 // overflow variable is set to 0 if it's corresponding bound variable is valid 2382 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2383 int LoOverflow = 0, HiOverflow = 0; 2384 APInt LoBound, HiBound; 2385 2386 if (!DivIsSigned) { // udiv 2387 // e.g. X/5 op 3 --> [15, 20) 2388 LoBound = Prod; 2389 HiOverflow = LoOverflow = ProdOV; 2390 if (!HiOverflow) { 2391 // If this is not an exact divide, then many values in the range collapse 2392 // to the same result value. 2393 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2394 } 2395 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2396 if (C.isNullValue()) { // (X / pos) op 0 2397 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2398 LoBound = -(RangeSize - 1); 2399 HiBound = RangeSize; 2400 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2401 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2402 HiOverflow = LoOverflow = ProdOV; 2403 if (!HiOverflow) 2404 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2405 } else { // (X / pos) op neg 2406 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2407 HiBound = Prod + 1; 2408 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2409 if (!LoOverflow) { 2410 APInt DivNeg = -RangeSize; 2411 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2412 } 2413 } 2414 } else if (C2->isNegative()) { // Divisor is < 0. 2415 if (Div->isExact()) 2416 RangeSize.negate(); 2417 if (C.isNullValue()) { // (X / neg) op 0 2418 // e.g. X/-5 op 0 --> [-4, 5) 2419 LoBound = RangeSize + 1; 2420 HiBound = -RangeSize; 2421 if (HiBound == *C2) { // -INTMIN = INTMIN 2422 HiOverflow = 1; // [INTMIN+1, overflow) 2423 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2424 } 2425 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2426 // e.g. X/-5 op 3 --> [-19, -14) 2427 HiBound = Prod + 1; 2428 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2429 if (!LoOverflow) 2430 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2431 } else { // (X / neg) op neg 2432 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2433 LoOverflow = HiOverflow = ProdOV; 2434 if (!HiOverflow) 2435 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2436 } 2437 2438 // Dividing by a negative swaps the condition. LT <-> GT 2439 Pred = ICmpInst::getSwappedPredicate(Pred); 2440 } 2441 2442 Value *X = Div->getOperand(0); 2443 switch (Pred) { 2444 default: llvm_unreachable("Unhandled icmp opcode!"); 2445 case ICmpInst::ICMP_EQ: 2446 if (LoOverflow && HiOverflow) 2447 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2448 if (HiOverflow) 2449 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2450 ICmpInst::ICMP_UGE, X, 2451 ConstantInt::get(Div->getType(), LoBound)); 2452 if (LoOverflow) 2453 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2454 ICmpInst::ICMP_ULT, X, 2455 ConstantInt::get(Div->getType(), HiBound)); 2456 return replaceInstUsesWith( 2457 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2458 case ICmpInst::ICMP_NE: 2459 if (LoOverflow && HiOverflow) 2460 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2461 if (HiOverflow) 2462 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2463 ICmpInst::ICMP_ULT, X, 2464 ConstantInt::get(Div->getType(), LoBound)); 2465 if (LoOverflow) 2466 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2467 ICmpInst::ICMP_UGE, X, 2468 ConstantInt::get(Div->getType(), HiBound)); 2469 return replaceInstUsesWith(Cmp, 2470 insertRangeTest(X, LoBound, HiBound, 2471 DivIsSigned, false)); 2472 case ICmpInst::ICMP_ULT: 2473 case ICmpInst::ICMP_SLT: 2474 if (LoOverflow == +1) // Low bound is greater than input range. 2475 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2476 if (LoOverflow == -1) // Low bound is less than input range. 2477 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2478 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2479 case ICmpInst::ICMP_UGT: 2480 case ICmpInst::ICMP_SGT: 2481 if (HiOverflow == +1) // High bound greater than input range. 2482 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2483 if (HiOverflow == -1) // High bound less than input range. 2484 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2485 if (Pred == ICmpInst::ICMP_UGT) 2486 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2487 ConstantInt::get(Div->getType(), HiBound)); 2488 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2489 ConstantInt::get(Div->getType(), HiBound)); 2490 } 2491 2492 return nullptr; 2493 } 2494 2495 /// Fold icmp (sub X, Y), C. 2496 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2497 BinaryOperator *Sub, 2498 const APInt &C) { 2499 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2500 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2501 const APInt *C2; 2502 APInt SubResult; 2503 2504 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2505 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2506 return new ICmpInst(Cmp.getPredicate(), Y, 2507 ConstantInt::get(Y->getType(), 0)); 2508 2509 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2510 if (match(X, m_APInt(C2)) && 2511 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2512 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2513 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2514 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2515 ConstantInt::get(Y->getType(), SubResult)); 2516 2517 // The following transforms are only worth it if the only user of the subtract 2518 // is the icmp. 2519 if (!Sub->hasOneUse()) 2520 return nullptr; 2521 2522 if (Sub->hasNoSignedWrap()) { 2523 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2524 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2525 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2526 2527 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2528 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2529 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2530 2531 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2532 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2533 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2534 2535 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2536 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2537 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2538 } 2539 2540 if (!match(X, m_APInt(C2))) 2541 return nullptr; 2542 2543 // C2 - Y <u C -> (Y | (C - 1)) == C2 2544 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2545 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2546 (*C2 & (C - 1)) == (C - 1)) 2547 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2548 2549 // C2 - Y >u C -> (Y | C) != C2 2550 // iff C2 & C == C and C + 1 is a power of 2 2551 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2552 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2553 2554 return nullptr; 2555 } 2556 2557 /// Fold icmp (add X, Y), C. 2558 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2559 BinaryOperator *Add, 2560 const APInt &C) { 2561 Value *Y = Add->getOperand(1); 2562 const APInt *C2; 2563 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2564 return nullptr; 2565 2566 // Fold icmp pred (add X, C2), C. 2567 Value *X = Add->getOperand(0); 2568 Type *Ty = Add->getType(); 2569 CmpInst::Predicate Pred = Cmp.getPredicate(); 2570 2571 // If the add does not wrap, we can always adjust the compare by subtracting 2572 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2573 // are canonicalized to SGT/SLT/UGT/ULT. 2574 if ((Add->hasNoSignedWrap() && 2575 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2576 (Add->hasNoUnsignedWrap() && 2577 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2578 bool Overflow; 2579 APInt NewC = 2580 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2581 // If there is overflow, the result must be true or false. 2582 // TODO: Can we assert there is no overflow because InstSimplify always 2583 // handles those cases? 2584 if (!Overflow) 2585 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2586 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2587 } 2588 2589 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2590 const APInt &Upper = CR.getUpper(); 2591 const APInt &Lower = CR.getLower(); 2592 if (Cmp.isSigned()) { 2593 if (Lower.isSignMask()) 2594 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2595 if (Upper.isSignMask()) 2596 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2597 } else { 2598 if (Lower.isMinValue()) 2599 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2600 if (Upper.isMinValue()) 2601 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2602 } 2603 2604 if (!Add->hasOneUse()) 2605 return nullptr; 2606 2607 // X+C <u C2 -> (X & -C2) == C 2608 // iff C & (C2-1) == 0 2609 // C2 is a power of 2 2610 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2611 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2612 ConstantExpr::getNeg(cast<Constant>(Y))); 2613 2614 // X+C >u C2 -> (X & ~C2) != C 2615 // iff C & C2 == 0 2616 // C2+1 is a power of 2 2617 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2618 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2619 ConstantExpr::getNeg(cast<Constant>(Y))); 2620 2621 return nullptr; 2622 } 2623 2624 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2625 Value *&RHS, ConstantInt *&Less, 2626 ConstantInt *&Equal, 2627 ConstantInt *&Greater) { 2628 // TODO: Generalize this to work with other comparison idioms or ensure 2629 // they get canonicalized into this form. 2630 2631 // select i1 (a == b), 2632 // i32 Equal, 2633 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2634 // where Equal, Less and Greater are placeholders for any three constants. 2635 ICmpInst::Predicate PredA; 2636 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2637 !ICmpInst::isEquality(PredA)) 2638 return false; 2639 Value *EqualVal = SI->getTrueValue(); 2640 Value *UnequalVal = SI->getFalseValue(); 2641 // We still can get non-canonical predicate here, so canonicalize. 2642 if (PredA == ICmpInst::ICMP_NE) 2643 std::swap(EqualVal, UnequalVal); 2644 if (!match(EqualVal, m_ConstantInt(Equal))) 2645 return false; 2646 ICmpInst::Predicate PredB; 2647 Value *LHS2, *RHS2; 2648 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2649 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2650 return false; 2651 // We can get predicate mismatch here, so canonicalize if possible: 2652 // First, ensure that 'LHS' match. 2653 if (LHS2 != LHS) { 2654 // x sgt y <--> y slt x 2655 std::swap(LHS2, RHS2); 2656 PredB = ICmpInst::getSwappedPredicate(PredB); 2657 } 2658 if (LHS2 != LHS) 2659 return false; 2660 // We also need to canonicalize 'RHS'. 2661 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2662 // x sgt C-1 <--> x sge C <--> not(x slt C) 2663 auto FlippedStrictness = 2664 getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2)); 2665 if (!FlippedStrictness) 2666 return false; 2667 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2668 RHS2 = FlippedStrictness->second; 2669 // And kind-of perform the result swap. 2670 std::swap(Less, Greater); 2671 PredB = ICmpInst::ICMP_SLT; 2672 } 2673 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2674 } 2675 2676 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2677 SelectInst *Select, 2678 ConstantInt *C) { 2679 2680 assert(C && "Cmp RHS should be a constant int!"); 2681 // If we're testing a constant value against the result of a three way 2682 // comparison, the result can be expressed directly in terms of the 2683 // original values being compared. Note: We could possibly be more 2684 // aggressive here and remove the hasOneUse test. The original select is 2685 // really likely to simplify or sink when we remove a test of the result. 2686 Value *OrigLHS, *OrigRHS; 2687 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2688 if (Cmp.hasOneUse() && 2689 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2690 C3GreaterThan)) { 2691 assert(C1LessThan && C2Equal && C3GreaterThan); 2692 2693 bool TrueWhenLessThan = 2694 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2695 ->isAllOnesValue(); 2696 bool TrueWhenEqual = 2697 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2698 ->isAllOnesValue(); 2699 bool TrueWhenGreaterThan = 2700 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2701 ->isAllOnesValue(); 2702 2703 // This generates the new instruction that will replace the original Cmp 2704 // Instruction. Instead of enumerating the various combinations when 2705 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2706 // false, we rely on chaining of ORs and future passes of InstCombine to 2707 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2708 2709 // When none of the three constants satisfy the predicate for the RHS (C), 2710 // the entire original Cmp can be simplified to a false. 2711 Value *Cond = Builder.getFalse(); 2712 if (TrueWhenLessThan) 2713 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2714 OrigLHS, OrigRHS)); 2715 if (TrueWhenEqual) 2716 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2717 OrigLHS, OrigRHS)); 2718 if (TrueWhenGreaterThan) 2719 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2720 OrigLHS, OrigRHS)); 2721 2722 return replaceInstUsesWith(Cmp, Cond); 2723 } 2724 return nullptr; 2725 } 2726 2727 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2728 InstCombiner::BuilderTy &Builder) { 2729 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2730 if (!Bitcast) 2731 return nullptr; 2732 2733 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2734 Value *Op1 = Cmp.getOperand(1); 2735 Value *BCSrcOp = Bitcast->getOperand(0); 2736 2737 // Make sure the bitcast doesn't change the number of vector elements. 2738 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2739 Bitcast->getDestTy()->getScalarSizeInBits()) { 2740 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2741 Value *X; 2742 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2743 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2744 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2745 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2746 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2747 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2748 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2749 match(Op1, m_Zero())) 2750 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2751 2752 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2753 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2754 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2755 2756 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2757 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2758 return new ICmpInst(Pred, X, 2759 ConstantInt::getAllOnesValue(X->getType())); 2760 } 2761 2762 // Zero-equality checks are preserved through unsigned floating-point casts: 2763 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2764 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2765 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2766 if (Cmp.isEquality() && match(Op1, m_Zero())) 2767 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2768 2769 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2770 // the FP extend/truncate because that cast does not change the sign-bit. 2771 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2772 // The sign-bit is always the most significant bit in those types. 2773 const APInt *C; 2774 bool TrueIfSigned; 2775 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2776 isSignBitCheck(Pred, *C, TrueIfSigned)) { 2777 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2778 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2779 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2780 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2781 Type *XType = X->getType(); 2782 2783 // We can't currently handle Power style floating point operations here. 2784 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2785 2786 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2787 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2788 NewType = VectorType::get(NewType, XVTy->getNumElements()); 2789 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2790 if (TrueIfSigned) 2791 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2792 ConstantInt::getNullValue(NewType)); 2793 else 2794 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2795 ConstantInt::getAllOnesValue(NewType)); 2796 } 2797 } 2798 } 2799 } 2800 2801 // Test to see if the operands of the icmp are casted versions of other 2802 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2803 if (Bitcast->getType()->isPointerTy() && 2804 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2805 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2806 // so eliminate it as well. 2807 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2808 Op1 = BC2->getOperand(0); 2809 2810 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2811 return new ICmpInst(Pred, BCSrcOp, Op1); 2812 } 2813 2814 // Folding: icmp <pred> iN X, C 2815 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2816 // and C is a splat of a K-bit pattern 2817 // and SC is a constant vector = <C', C', C', ..., C'> 2818 // Into: 2819 // %E = extractelement <M x iK> %vec, i32 C' 2820 // icmp <pred> iK %E, trunc(C) 2821 const APInt *C; 2822 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2823 !Bitcast->getType()->isIntegerTy() || 2824 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2825 return nullptr; 2826 2827 Value *Vec; 2828 ArrayRef<int> Mask; 2829 if (match(BCSrcOp, m_ShuffleVector(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2830 // Check whether every element of Mask is the same constant 2831 if (is_splat(Mask)) { 2832 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2833 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2834 if (C->isSplat(EltTy->getBitWidth())) { 2835 // Fold the icmp based on the value of C 2836 // If C is M copies of an iK sized bit pattern, 2837 // then: 2838 // => %E = extractelement <N x iK> %vec, i32 Elem 2839 // icmp <pred> iK %SplatVal, <pattern> 2840 Value *Elem = Builder.getInt32(Mask[0]); 2841 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2842 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2843 return new ICmpInst(Pred, Extract, NewC); 2844 } 2845 } 2846 } 2847 return nullptr; 2848 } 2849 2850 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2851 /// where X is some kind of instruction. 2852 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2853 const APInt *C; 2854 if (!match(Cmp.getOperand(1), m_APInt(C))) 2855 return nullptr; 2856 2857 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2858 switch (BO->getOpcode()) { 2859 case Instruction::Xor: 2860 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2861 return I; 2862 break; 2863 case Instruction::And: 2864 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2865 return I; 2866 break; 2867 case Instruction::Or: 2868 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2869 return I; 2870 break; 2871 case Instruction::Mul: 2872 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2873 return I; 2874 break; 2875 case Instruction::Shl: 2876 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2877 return I; 2878 break; 2879 case Instruction::LShr: 2880 case Instruction::AShr: 2881 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2882 return I; 2883 break; 2884 case Instruction::SRem: 2885 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 2886 return I; 2887 break; 2888 case Instruction::UDiv: 2889 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2890 return I; 2891 LLVM_FALLTHROUGH; 2892 case Instruction::SDiv: 2893 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2894 return I; 2895 break; 2896 case Instruction::Sub: 2897 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2898 return I; 2899 break; 2900 case Instruction::Add: 2901 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2902 return I; 2903 break; 2904 default: 2905 break; 2906 } 2907 // TODO: These folds could be refactored to be part of the above calls. 2908 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2909 return I; 2910 } 2911 2912 // Match against CmpInst LHS being instructions other than binary operators. 2913 2914 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2915 // For now, we only support constant integers while folding the 2916 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2917 // similar to the cases handled by binary ops above. 2918 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2919 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2920 return I; 2921 } 2922 2923 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2924 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2925 return I; 2926 } 2927 2928 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2929 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2930 return I; 2931 2932 return nullptr; 2933 } 2934 2935 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2936 /// icmp eq/ne BO, C. 2937 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2938 BinaryOperator *BO, 2939 const APInt &C) { 2940 // TODO: Some of these folds could work with arbitrary constants, but this 2941 // function is limited to scalar and vector splat constants. 2942 if (!Cmp.isEquality()) 2943 return nullptr; 2944 2945 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2946 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2947 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2948 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2949 2950 switch (BO->getOpcode()) { 2951 case Instruction::SRem: 2952 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2953 if (C.isNullValue() && BO->hasOneUse()) { 2954 const APInt *BOC; 2955 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2956 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2957 return new ICmpInst(Pred, NewRem, 2958 Constant::getNullValue(BO->getType())); 2959 } 2960 } 2961 break; 2962 case Instruction::Add: { 2963 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2964 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2965 if (BO->hasOneUse()) 2966 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 2967 } else if (C.isNullValue()) { 2968 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2969 // efficiently invertible, or if the add has just this one use. 2970 if (Value *NegVal = dyn_castNegVal(BOp1)) 2971 return new ICmpInst(Pred, BOp0, NegVal); 2972 if (Value *NegVal = dyn_castNegVal(BOp0)) 2973 return new ICmpInst(Pred, NegVal, BOp1); 2974 if (BO->hasOneUse()) { 2975 Value *Neg = Builder.CreateNeg(BOp1); 2976 Neg->takeName(BO); 2977 return new ICmpInst(Pred, BOp0, Neg); 2978 } 2979 } 2980 break; 2981 } 2982 case Instruction::Xor: 2983 if (BO->hasOneUse()) { 2984 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2985 // For the xor case, we can xor two constants together, eliminating 2986 // the explicit xor. 2987 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2988 } else if (C.isNullValue()) { 2989 // Replace ((xor A, B) != 0) with (A != B) 2990 return new ICmpInst(Pred, BOp0, BOp1); 2991 } 2992 } 2993 break; 2994 case Instruction::Sub: 2995 if (BO->hasOneUse()) { 2996 // Only check for constant LHS here, as constant RHS will be canonicalized 2997 // to add and use the fold above. 2998 if (Constant *BOC = dyn_cast<Constant>(BOp0)) { 2999 // Replace ((sub BOC, B) != C) with (B != BOC-C). 3000 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); 3001 } else if (C.isNullValue()) { 3002 // Replace ((sub A, B) != 0) with (A != B). 3003 return new ICmpInst(Pred, BOp0, BOp1); 3004 } 3005 } 3006 break; 3007 case Instruction::Or: { 3008 const APInt *BOC; 3009 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3010 // Comparing if all bits outside of a constant mask are set? 3011 // Replace (X | C) == -1 with (X & ~C) == ~C. 3012 // This removes the -1 constant. 3013 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3014 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3015 return new ICmpInst(Pred, And, NotBOC); 3016 } 3017 break; 3018 } 3019 case Instruction::And: { 3020 const APInt *BOC; 3021 if (match(BOp1, m_APInt(BOC))) { 3022 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3023 if (C == *BOC && C.isPowerOf2()) 3024 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3025 BO, Constant::getNullValue(RHS->getType())); 3026 } 3027 break; 3028 } 3029 case Instruction::Mul: 3030 if (C.isNullValue() && BO->hasNoSignedWrap()) { 3031 const APInt *BOC; 3032 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 3033 // The trivial case (mul X, 0) is handled by InstSimplify. 3034 // General case : (mul X, C) != 0 iff X != 0 3035 // (mul X, C) == 0 iff X == 0 3036 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 3037 } 3038 } 3039 break; 3040 case Instruction::UDiv: 3041 if (C.isNullValue()) { 3042 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3043 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3044 return new ICmpInst(NewPred, BOp1, BOp0); 3045 } 3046 break; 3047 default: 3048 break; 3049 } 3050 return nullptr; 3051 } 3052 3053 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3054 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 3055 IntrinsicInst *II, 3056 const APInt &C) { 3057 Type *Ty = II->getType(); 3058 unsigned BitWidth = C.getBitWidth(); 3059 switch (II->getIntrinsicID()) { 3060 case Intrinsic::bswap: 3061 // bswap(A) == C -> A == bswap(C) 3062 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3063 ConstantInt::get(Ty, C.byteSwap())); 3064 3065 case Intrinsic::ctlz: 3066 case Intrinsic::cttz: { 3067 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3068 if (C == BitWidth) 3069 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3070 ConstantInt::getNullValue(Ty)); 3071 3072 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3073 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3074 // Limit to one use to ensure we don't increase instruction count. 3075 unsigned Num = C.getLimitedValue(BitWidth); 3076 if (Num != BitWidth && II->hasOneUse()) { 3077 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3078 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3079 : APInt::getHighBitsSet(BitWidth, Num + 1); 3080 APInt Mask2 = IsTrailing 3081 ? APInt::getOneBitSet(BitWidth, Num) 3082 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3083 return new ICmpInst(Cmp.getPredicate(), 3084 Builder.CreateAnd(II->getArgOperand(0), Mask1), 3085 ConstantInt::get(Ty, Mask2)); 3086 } 3087 break; 3088 } 3089 3090 case Intrinsic::ctpop: { 3091 // popcount(A) == 0 -> A == 0 and likewise for != 3092 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3093 bool IsZero = C.isNullValue(); 3094 if (IsZero || C == BitWidth) 3095 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3096 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); 3097 3098 break; 3099 } 3100 3101 case Intrinsic::uadd_sat: { 3102 // uadd.sat(a, b) == 0 -> (a | b) == 0 3103 if (C.isNullValue()) { 3104 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3105 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); 3106 } 3107 break; 3108 } 3109 3110 case Intrinsic::usub_sat: { 3111 // usub.sat(a, b) == 0 -> a <= b 3112 if (C.isNullValue()) { 3113 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ 3114 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3115 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3116 } 3117 break; 3118 } 3119 default: 3120 break; 3121 } 3122 3123 return nullptr; 3124 } 3125 3126 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3127 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3128 IntrinsicInst *II, 3129 const APInt &C) { 3130 if (Cmp.isEquality()) 3131 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3132 3133 Type *Ty = II->getType(); 3134 unsigned BitWidth = C.getBitWidth(); 3135 switch (II->getIntrinsicID()) { 3136 case Intrinsic::ctlz: { 3137 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3138 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3139 unsigned Num = C.getLimitedValue(); 3140 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3141 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3142 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3143 } 3144 3145 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3146 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3147 C.uge(1) && C.ule(BitWidth)) { 3148 unsigned Num = C.getLimitedValue(); 3149 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3150 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3151 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3152 } 3153 break; 3154 } 3155 case Intrinsic::cttz: { 3156 // Limit to one use to ensure we don't increase instruction count. 3157 if (!II->hasOneUse()) 3158 return nullptr; 3159 3160 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3161 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3162 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3163 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3164 Builder.CreateAnd(II->getArgOperand(0), Mask), 3165 ConstantInt::getNullValue(Ty)); 3166 } 3167 3168 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3169 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3170 C.uge(1) && C.ule(BitWidth)) { 3171 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3172 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3173 Builder.CreateAnd(II->getArgOperand(0), Mask), 3174 ConstantInt::getNullValue(Ty)); 3175 } 3176 break; 3177 } 3178 default: 3179 break; 3180 } 3181 3182 return nullptr; 3183 } 3184 3185 /// Handle icmp with constant (but not simple integer constant) RHS. 3186 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3187 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3188 Constant *RHSC = dyn_cast<Constant>(Op1); 3189 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3190 if (!RHSC || !LHSI) 3191 return nullptr; 3192 3193 switch (LHSI->getOpcode()) { 3194 case Instruction::GetElementPtr: 3195 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3196 if (RHSC->isNullValue() && 3197 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3198 return new ICmpInst( 3199 I.getPredicate(), LHSI->getOperand(0), 3200 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3201 break; 3202 case Instruction::PHI: 3203 // Only fold icmp into the PHI if the phi and icmp are in the same 3204 // block. If in the same block, we're encouraging jump threading. If 3205 // not, we are just pessimizing the code by making an i1 phi. 3206 if (LHSI->getParent() == I.getParent()) 3207 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3208 return NV; 3209 break; 3210 case Instruction::Select: { 3211 // If either operand of the select is a constant, we can fold the 3212 // comparison into the select arms, which will cause one to be 3213 // constant folded and the select turned into a bitwise or. 3214 Value *Op1 = nullptr, *Op2 = nullptr; 3215 ConstantInt *CI = nullptr; 3216 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3217 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3218 CI = dyn_cast<ConstantInt>(Op1); 3219 } 3220 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3221 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3222 CI = dyn_cast<ConstantInt>(Op2); 3223 } 3224 3225 // We only want to perform this transformation if it will not lead to 3226 // additional code. This is true if either both sides of the select 3227 // fold to a constant (in which case the icmp is replaced with a select 3228 // which will usually simplify) or this is the only user of the 3229 // select (in which case we are trading a select+icmp for a simpler 3230 // select+icmp) or all uses of the select can be replaced based on 3231 // dominance information ("Global cases"). 3232 bool Transform = false; 3233 if (Op1 && Op2) 3234 Transform = true; 3235 else if (Op1 || Op2) { 3236 // Local case 3237 if (LHSI->hasOneUse()) 3238 Transform = true; 3239 // Global cases 3240 else if (CI && !CI->isZero()) 3241 // When Op1 is constant try replacing select with second operand. 3242 // Otherwise Op2 is constant and try replacing select with first 3243 // operand. 3244 Transform = 3245 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3246 } 3247 if (Transform) { 3248 if (!Op1) 3249 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3250 I.getName()); 3251 if (!Op2) 3252 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3253 I.getName()); 3254 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3255 } 3256 break; 3257 } 3258 case Instruction::IntToPtr: 3259 // icmp pred inttoptr(X), null -> icmp pred X, 0 3260 if (RHSC->isNullValue() && 3261 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3262 return new ICmpInst( 3263 I.getPredicate(), LHSI->getOperand(0), 3264 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3265 break; 3266 3267 case Instruction::Load: 3268 // Try to optimize things like "A[i] > 4" to index computations. 3269 if (GetElementPtrInst *GEP = 3270 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3271 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3272 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3273 !cast<LoadInst>(LHSI)->isVolatile()) 3274 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3275 return Res; 3276 } 3277 break; 3278 } 3279 3280 return nullptr; 3281 } 3282 3283 /// Some comparisons can be simplified. 3284 /// In this case, we are looking for comparisons that look like 3285 /// a check for a lossy truncation. 3286 /// Folds: 3287 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3288 /// Where Mask is some pattern that produces all-ones in low bits: 3289 /// (-1 >> y) 3290 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3291 /// ~(-1 << y) 3292 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3293 /// The Mask can be a constant, too. 3294 /// For some predicates, the operands are commutative. 3295 /// For others, x can only be on a specific side. 3296 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3297 InstCombiner::BuilderTy &Builder) { 3298 ICmpInst::Predicate SrcPred; 3299 Value *X, *M, *Y; 3300 auto m_VariableMask = m_CombineOr( 3301 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3302 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3303 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3304 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3305 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3306 if (!match(&I, m_c_ICmp(SrcPred, 3307 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3308 m_Deferred(X)))) 3309 return nullptr; 3310 3311 ICmpInst::Predicate DstPred; 3312 switch (SrcPred) { 3313 case ICmpInst::Predicate::ICMP_EQ: 3314 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3315 DstPred = ICmpInst::Predicate::ICMP_ULE; 3316 break; 3317 case ICmpInst::Predicate::ICMP_NE: 3318 // x & (-1 >> y) != x -> x u> (-1 >> y) 3319 DstPred = ICmpInst::Predicate::ICMP_UGT; 3320 break; 3321 case ICmpInst::Predicate::ICMP_ULT: 3322 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3323 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3324 DstPred = ICmpInst::Predicate::ICMP_UGT; 3325 break; 3326 case ICmpInst::Predicate::ICMP_UGE: 3327 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3328 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3329 DstPred = ICmpInst::Predicate::ICMP_ULE; 3330 break; 3331 case ICmpInst::Predicate::ICMP_SLT: 3332 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3333 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3334 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3335 return nullptr; 3336 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3337 return nullptr; 3338 DstPred = ICmpInst::Predicate::ICMP_SGT; 3339 break; 3340 case ICmpInst::Predicate::ICMP_SGE: 3341 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3342 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3343 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3344 return nullptr; 3345 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3346 return nullptr; 3347 DstPred = ICmpInst::Predicate::ICMP_SLE; 3348 break; 3349 case ICmpInst::Predicate::ICMP_SGT: 3350 case ICmpInst::Predicate::ICMP_SLE: 3351 return nullptr; 3352 case ICmpInst::Predicate::ICMP_UGT: 3353 case ICmpInst::Predicate::ICMP_ULE: 3354 llvm_unreachable("Instsimplify took care of commut. variant"); 3355 break; 3356 default: 3357 llvm_unreachable("All possible folds are handled."); 3358 } 3359 3360 // The mask value may be a vector constant that has undefined elements. But it 3361 // may not be safe to propagate those undefs into the new compare, so replace 3362 // those elements by copying an existing, defined, and safe scalar constant. 3363 Type *OpTy = M->getType(); 3364 auto *VecC = dyn_cast<Constant>(M); 3365 if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) { 3366 auto *OpVTy = cast<VectorType>(OpTy); 3367 Constant *SafeReplacementConstant = nullptr; 3368 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3369 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3370 SafeReplacementConstant = VecC->getAggregateElement(i); 3371 break; 3372 } 3373 } 3374 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3375 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3376 } 3377 3378 return Builder.CreateICmp(DstPred, X, M); 3379 } 3380 3381 /// Some comparisons can be simplified. 3382 /// In this case, we are looking for comparisons that look like 3383 /// a check for a lossy signed truncation. 3384 /// Folds: (MaskedBits is a constant.) 3385 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3386 /// Into: 3387 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3388 /// Where KeptBits = bitwidth(%x) - MaskedBits 3389 static Value * 3390 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3391 InstCombiner::BuilderTy &Builder) { 3392 ICmpInst::Predicate SrcPred; 3393 Value *X; 3394 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3395 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3396 if (!match(&I, m_c_ICmp(SrcPred, 3397 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3398 m_APInt(C1))), 3399 m_Deferred(X)))) 3400 return nullptr; 3401 3402 // Potential handling of non-splats: for each element: 3403 // * if both are undef, replace with constant 0. 3404 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3405 // * if both are not undef, and are different, bailout. 3406 // * else, only one is undef, then pick the non-undef one. 3407 3408 // The shift amount must be equal. 3409 if (*C0 != *C1) 3410 return nullptr; 3411 const APInt &MaskedBits = *C0; 3412 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3413 3414 ICmpInst::Predicate DstPred; 3415 switch (SrcPred) { 3416 case ICmpInst::Predicate::ICMP_EQ: 3417 // ((%x << MaskedBits) a>> MaskedBits) == %x 3418 // => 3419 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3420 DstPred = ICmpInst::Predicate::ICMP_ULT; 3421 break; 3422 case ICmpInst::Predicate::ICMP_NE: 3423 // ((%x << MaskedBits) a>> MaskedBits) != %x 3424 // => 3425 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3426 DstPred = ICmpInst::Predicate::ICMP_UGE; 3427 break; 3428 // FIXME: are more folds possible? 3429 default: 3430 return nullptr; 3431 } 3432 3433 auto *XType = X->getType(); 3434 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3435 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3436 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3437 3438 // KeptBits = bitwidth(%x) - MaskedBits 3439 const APInt KeptBits = BitWidth - MaskedBits; 3440 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3441 // ICmpCst = (1 << KeptBits) 3442 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3443 assert(ICmpCst.isPowerOf2()); 3444 // AddCst = (1 << (KeptBits-1)) 3445 const APInt AddCst = ICmpCst.lshr(1); 3446 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3447 3448 // T0 = add %x, AddCst 3449 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3450 // T1 = T0 DstPred ICmpCst 3451 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3452 3453 return T1; 3454 } 3455 3456 // Given pattern: 3457 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3458 // we should move shifts to the same hand of 'and', i.e. rewrite as 3459 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3460 // We are only interested in opposite logical shifts here. 3461 // One of the shifts can be truncated. 3462 // If we can, we want to end up creating 'lshr' shift. 3463 static Value * 3464 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3465 InstCombiner::BuilderTy &Builder) { 3466 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3467 !I.getOperand(0)->hasOneUse()) 3468 return nullptr; 3469 3470 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3471 3472 // Look for an 'and' of two logical shifts, one of which may be truncated. 3473 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3474 Instruction *XShift, *MaybeTruncation, *YShift; 3475 if (!match( 3476 I.getOperand(0), 3477 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3478 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3479 m_AnyLogicalShift, m_Instruction(YShift))), 3480 m_Instruction(MaybeTruncation))))) 3481 return nullptr; 3482 3483 // We potentially looked past 'trunc', but only when matching YShift, 3484 // therefore YShift must have the widest type. 3485 Instruction *WidestShift = YShift; 3486 // Therefore XShift must have the shallowest type. 3487 // Or they both have identical types if there was no truncation. 3488 Instruction *NarrowestShift = XShift; 3489 3490 Type *WidestTy = WidestShift->getType(); 3491 Type *NarrowestTy = NarrowestShift->getType(); 3492 assert(NarrowestTy == I.getOperand(0)->getType() && 3493 "We did not look past any shifts while matching XShift though."); 3494 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3495 3496 // If YShift is a 'lshr', swap the shifts around. 3497 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3498 std::swap(XShift, YShift); 3499 3500 // The shifts must be in opposite directions. 3501 auto XShiftOpcode = XShift->getOpcode(); 3502 if (XShiftOpcode == YShift->getOpcode()) 3503 return nullptr; // Do not care about same-direction shifts here. 3504 3505 Value *X, *XShAmt, *Y, *YShAmt; 3506 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3507 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3508 3509 // If one of the values being shifted is a constant, then we will end with 3510 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3511 // however, we will need to ensure that we won't increase instruction count. 3512 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3513 // At least one of the hands of the 'and' should be one-use shift. 3514 if (!match(I.getOperand(0), 3515 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3516 return nullptr; 3517 if (HadTrunc) { 3518 // Due to the 'trunc', we will need to widen X. For that either the old 3519 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3520 if (!MaybeTruncation->hasOneUse() && 3521 !NarrowestShift->getOperand(1)->hasOneUse()) 3522 return nullptr; 3523 } 3524 } 3525 3526 // We have two shift amounts from two different shifts. The types of those 3527 // shift amounts may not match. If that's the case let's bailout now. 3528 if (XShAmt->getType() != YShAmt->getType()) 3529 return nullptr; 3530 3531 // As input, we have the following pattern: 3532 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3533 // We want to rewrite that as: 3534 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3535 // While we know that originally (Q+K) would not overflow 3536 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3537 // shift amounts. so it may now overflow in smaller bitwidth. 3538 // To ensure that does not happen, we need to ensure that the total maximal 3539 // shift amount is still representable in that smaller bit width. 3540 unsigned MaximalPossibleTotalShiftAmount = 3541 (WidestTy->getScalarSizeInBits() - 1) + 3542 (NarrowestTy->getScalarSizeInBits() - 1); 3543 APInt MaximalRepresentableShiftAmount = 3544 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); 3545 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3546 return nullptr; 3547 3548 // Can we fold (XShAmt+YShAmt) ? 3549 auto *NewShAmt = dyn_cast_or_null<Constant>( 3550 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3551 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3552 if (!NewShAmt) 3553 return nullptr; 3554 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3555 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3556 3557 // Is the new shift amount smaller than the bit width? 3558 // FIXME: could also rely on ConstantRange. 3559 if (!match(NewShAmt, 3560 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3561 APInt(WidestBitWidth, WidestBitWidth)))) 3562 return nullptr; 3563 3564 // An extra legality check is needed if we had trunc-of-lshr. 3565 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3566 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3567 WidestShift]() { 3568 // It isn't obvious whether it's worth it to analyze non-constants here. 3569 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3570 // If *any* of these preconditions matches we can perform the fold. 3571 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3572 ? NewShAmt->getSplatValue() 3573 : NewShAmt; 3574 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3575 if (NewShAmtSplat && 3576 (NewShAmtSplat->isNullValue() || 3577 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3578 return true; 3579 // We consider *min* leading zeros so a single outlier 3580 // blocks the transform as opposed to allowing it. 3581 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3582 KnownBits Known = computeKnownBits(C, SQ.DL); 3583 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3584 // If the value being shifted has at most lowest bit set we can fold. 3585 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3586 if (MaxActiveBits <= 1) 3587 return true; 3588 // Precondition: NewShAmt u<= countLeadingZeros(C) 3589 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3590 return true; 3591 } 3592 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3593 KnownBits Known = computeKnownBits(C, SQ.DL); 3594 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3595 // If the value being shifted has at most lowest bit set we can fold. 3596 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3597 if (MaxActiveBits <= 1) 3598 return true; 3599 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3600 if (NewShAmtSplat) { 3601 APInt AdjNewShAmt = 3602 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3603 if (AdjNewShAmt.ule(MinLeadZero)) 3604 return true; 3605 } 3606 } 3607 return false; // Can't tell if it's ok. 3608 }; 3609 if (!CanFold()) 3610 return nullptr; 3611 } 3612 3613 // All good, we can do this fold. 3614 X = Builder.CreateZExt(X, WidestTy); 3615 Y = Builder.CreateZExt(Y, WidestTy); 3616 // The shift is the same that was for X. 3617 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3618 ? Builder.CreateLShr(X, NewShAmt) 3619 : Builder.CreateShl(X, NewShAmt); 3620 Value *T1 = Builder.CreateAnd(T0, Y); 3621 return Builder.CreateICmp(I.getPredicate(), T1, 3622 Constant::getNullValue(WidestTy)); 3623 } 3624 3625 /// Fold 3626 /// (-1 u/ x) u< y 3627 /// ((x * y) u/ x) != y 3628 /// to 3629 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit 3630 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3631 /// will mean that we are looking for the opposite answer. 3632 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { 3633 ICmpInst::Predicate Pred; 3634 Value *X, *Y; 3635 Instruction *Mul; 3636 bool NeedNegation; 3637 // Look for: (-1 u/ x) u</u>= y 3638 if (!I.isEquality() && 3639 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3640 m_Value(Y)))) { 3641 Mul = nullptr; 3642 3643 // Are we checking that overflow does not happen, or does happen? 3644 switch (Pred) { 3645 case ICmpInst::Predicate::ICMP_ULT: 3646 NeedNegation = false; 3647 break; // OK 3648 case ICmpInst::Predicate::ICMP_UGE: 3649 NeedNegation = true; 3650 break; // OK 3651 default: 3652 return nullptr; // Wrong predicate. 3653 } 3654 } else // Look for: ((x * y) u/ x) !=/== y 3655 if (I.isEquality() && 3656 match(&I, m_c_ICmp(Pred, m_Value(Y), 3657 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3658 m_Value(X)), 3659 m_Instruction(Mul)), 3660 m_Deferred(X)))))) { 3661 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3662 } else 3663 return nullptr; 3664 3665 BuilderTy::InsertPointGuard Guard(Builder); 3666 // If the pattern included (x * y), we'll want to insert new instructions 3667 // right before that original multiplication so that we can replace it. 3668 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3669 if (MulHadOtherUses) 3670 Builder.SetInsertPoint(Mul); 3671 3672 Function *F = Intrinsic::getDeclaration( 3673 I.getModule(), Intrinsic::umul_with_overflow, X->getType()); 3674 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); 3675 3676 // If the multiplication was used elsewhere, to ensure that we don't leave 3677 // "duplicate" instructions, replace uses of that original multiplication 3678 // with the multiplication result from the with.overflow intrinsic. 3679 if (MulHadOtherUses) 3680 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); 3681 3682 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); 3683 if (NeedNegation) // This technically increases instruction count. 3684 Res = Builder.CreateNot(Res, "umul.not.ov"); 3685 3686 // If we replaced the mul, erase it. Do this after all uses of Builder, 3687 // as the mul is used as insertion point. 3688 if (MulHadOtherUses) 3689 eraseInstFromFunction(*Mul); 3690 3691 return Res; 3692 } 3693 3694 /// Try to fold icmp (binop), X or icmp X, (binop). 3695 /// TODO: A large part of this logic is duplicated in InstSimplify's 3696 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3697 /// duplication. 3698 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) { 3699 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3700 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3701 3702 // Special logic for binary operators. 3703 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3704 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3705 if (!BO0 && !BO1) 3706 return nullptr; 3707 3708 const CmpInst::Predicate Pred = I.getPredicate(); 3709 Value *X; 3710 3711 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3712 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3713 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3714 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3715 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3716 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3717 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3718 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3719 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3720 3721 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3722 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3723 NoOp0WrapProblem = 3724 ICmpInst::isEquality(Pred) || 3725 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3726 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3727 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3728 NoOp1WrapProblem = 3729 ICmpInst::isEquality(Pred) || 3730 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3731 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3732 3733 // Analyze the case when either Op0 or Op1 is an add instruction. 3734 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3735 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3736 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3737 A = BO0->getOperand(0); 3738 B = BO0->getOperand(1); 3739 } 3740 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3741 C = BO1->getOperand(0); 3742 D = BO1->getOperand(1); 3743 } 3744 3745 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3746 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3747 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3748 return new ICmpInst(Pred, A == Op1 ? B : A, 3749 Constant::getNullValue(Op1->getType())); 3750 3751 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3752 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3753 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3754 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3755 C == Op0 ? D : C); 3756 3757 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3758 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3759 NoOp1WrapProblem) { 3760 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3761 Value *Y, *Z; 3762 if (A == C) { 3763 // C + B == C + D -> B == D 3764 Y = B; 3765 Z = D; 3766 } else if (A == D) { 3767 // D + B == C + D -> B == C 3768 Y = B; 3769 Z = C; 3770 } else if (B == C) { 3771 // A + C == C + D -> A == D 3772 Y = A; 3773 Z = D; 3774 } else { 3775 assert(B == D); 3776 // A + D == C + D -> A == C 3777 Y = A; 3778 Z = C; 3779 } 3780 return new ICmpInst(Pred, Y, Z); 3781 } 3782 3783 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 3784 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3785 match(B, m_AllOnes())) 3786 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3787 3788 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 3789 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3790 match(B, m_AllOnes())) 3791 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3792 3793 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 3794 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3795 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3796 3797 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 3798 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3799 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3800 3801 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 3802 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3803 match(D, m_AllOnes())) 3804 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3805 3806 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 3807 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3808 match(D, m_AllOnes())) 3809 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3810 3811 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 3812 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3813 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3814 3815 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 3816 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3817 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3818 3819 // TODO: The subtraction-related identities shown below also hold, but 3820 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3821 // wouldn't happen even if they were implemented. 3822 // 3823 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 3824 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 3825 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 3826 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 3827 3828 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 3829 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3830 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3831 3832 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 3833 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3834 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3835 3836 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 3837 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3838 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3839 3840 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 3841 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3842 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3843 3844 // if C1 has greater magnitude than C2: 3845 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 3846 // s.t. C3 = C1 - C2 3847 // 3848 // if C2 has greater magnitude than C1: 3849 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 3850 // s.t. C3 = C2 - C1 3851 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3852 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3853 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3854 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3855 const APInt &AP1 = C1->getValue(); 3856 const APInt &AP2 = C2->getValue(); 3857 if (AP1.isNegative() == AP2.isNegative()) { 3858 APInt AP1Abs = C1->getValue().abs(); 3859 APInt AP2Abs = C2->getValue().abs(); 3860 if (AP1Abs.uge(AP2Abs)) { 3861 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3862 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3863 return new ICmpInst(Pred, NewAdd, C); 3864 } else { 3865 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3866 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3867 return new ICmpInst(Pred, A, NewAdd); 3868 } 3869 } 3870 } 3871 3872 // Analyze the case when either Op0 or Op1 is a sub instruction. 3873 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3874 A = nullptr; 3875 B = nullptr; 3876 C = nullptr; 3877 D = nullptr; 3878 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3879 A = BO0->getOperand(0); 3880 B = BO0->getOperand(1); 3881 } 3882 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3883 C = BO1->getOperand(0); 3884 D = BO1->getOperand(1); 3885 } 3886 3887 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 3888 if (A == Op1 && NoOp0WrapProblem) 3889 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3890 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 3891 if (C == Op0 && NoOp1WrapProblem) 3892 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3893 3894 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 3895 // (A - B) u>/u<= A --> B u>/u<= A 3896 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3897 return new ICmpInst(Pred, B, A); 3898 // C u</u>= (C - D) --> C u</u>= D 3899 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3900 return new ICmpInst(Pred, C, D); 3901 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 3902 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 3903 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3904 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 3905 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 3906 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 3907 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3908 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 3909 3910 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 3911 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 3912 return new ICmpInst(Pred, A, C); 3913 3914 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 3915 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 3916 return new ICmpInst(Pred, D, B); 3917 3918 // icmp (0-X) < cst --> x > -cst 3919 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3920 Value *X; 3921 if (match(BO0, m_Neg(m_Value(X)))) 3922 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3923 if (RHSC->isNotMinSignedValue()) 3924 return new ICmpInst(I.getSwappedPredicate(), X, 3925 ConstantExpr::getNeg(RHSC)); 3926 } 3927 3928 BinaryOperator *SRem = nullptr; 3929 // icmp (srem X, Y), Y 3930 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3931 SRem = BO0; 3932 // icmp Y, (srem X, Y) 3933 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3934 Op0 == BO1->getOperand(1)) 3935 SRem = BO1; 3936 if (SRem) { 3937 // We don't check hasOneUse to avoid increasing register pressure because 3938 // the value we use is the same value this instruction was already using. 3939 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3940 default: 3941 break; 3942 case ICmpInst::ICMP_EQ: 3943 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3944 case ICmpInst::ICMP_NE: 3945 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3946 case ICmpInst::ICMP_SGT: 3947 case ICmpInst::ICMP_SGE: 3948 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3949 Constant::getAllOnesValue(SRem->getType())); 3950 case ICmpInst::ICMP_SLT: 3951 case ICmpInst::ICMP_SLE: 3952 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3953 Constant::getNullValue(SRem->getType())); 3954 } 3955 } 3956 3957 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3958 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3959 switch (BO0->getOpcode()) { 3960 default: 3961 break; 3962 case Instruction::Add: 3963 case Instruction::Sub: 3964 case Instruction::Xor: { 3965 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3966 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3967 3968 const APInt *C; 3969 if (match(BO0->getOperand(1), m_APInt(C))) { 3970 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3971 if (C->isSignMask()) { 3972 ICmpInst::Predicate NewPred = 3973 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3974 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3975 } 3976 3977 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3978 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3979 ICmpInst::Predicate NewPred = 3980 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3981 NewPred = I.getSwappedPredicate(NewPred); 3982 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3983 } 3984 } 3985 break; 3986 } 3987 case Instruction::Mul: { 3988 if (!I.isEquality()) 3989 break; 3990 3991 const APInt *C; 3992 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3993 !C->isOneValue()) { 3994 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3995 // Mask = -1 >> count-trailing-zeros(C). 3996 if (unsigned TZs = C->countTrailingZeros()) { 3997 Constant *Mask = ConstantInt::get( 3998 BO0->getType(), 3999 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4000 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4001 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4002 return new ICmpInst(Pred, And1, And2); 4003 } 4004 // If there are no trailing zeros in the multiplier, just eliminate 4005 // the multiplies (no masking is needed): 4006 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 4007 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4008 } 4009 break; 4010 } 4011 case Instruction::UDiv: 4012 case Instruction::LShr: 4013 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4014 break; 4015 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4016 4017 case Instruction::SDiv: 4018 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4019 break; 4020 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4021 4022 case Instruction::AShr: 4023 if (!BO0->isExact() || !BO1->isExact()) 4024 break; 4025 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4026 4027 case Instruction::Shl: { 4028 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4029 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4030 if (!NUW && !NSW) 4031 break; 4032 if (!NSW && I.isSigned()) 4033 break; 4034 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4035 } 4036 } 4037 } 4038 4039 if (BO0) { 4040 // Transform A & (L - 1) `ult` L --> L != 0 4041 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4042 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4043 4044 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4045 auto *Zero = Constant::getNullValue(BO0->getType()); 4046 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4047 } 4048 } 4049 4050 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) 4051 return replaceInstUsesWith(I, V); 4052 4053 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4054 return replaceInstUsesWith(I, V); 4055 4056 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4057 return replaceInstUsesWith(I, V); 4058 4059 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4060 return replaceInstUsesWith(I, V); 4061 4062 return nullptr; 4063 } 4064 4065 /// Fold icmp Pred min|max(X, Y), X. 4066 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4067 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4068 Value *Op0 = Cmp.getOperand(0); 4069 Value *X = Cmp.getOperand(1); 4070 4071 // Canonicalize minimum or maximum operand to LHS of the icmp. 4072 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4073 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4074 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4075 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4076 std::swap(Op0, X); 4077 Pred = Cmp.getSwappedPredicate(); 4078 } 4079 4080 Value *Y; 4081 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4082 // smin(X, Y) == X --> X s<= Y 4083 // smin(X, Y) s>= X --> X s<= Y 4084 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4085 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4086 4087 // smin(X, Y) != X --> X s> Y 4088 // smin(X, Y) s< X --> X s> Y 4089 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4090 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4091 4092 // These cases should be handled in InstSimplify: 4093 // smin(X, Y) s<= X --> true 4094 // smin(X, Y) s> X --> false 4095 return nullptr; 4096 } 4097 4098 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4099 // smax(X, Y) == X --> X s>= Y 4100 // smax(X, Y) s<= X --> X s>= Y 4101 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4102 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4103 4104 // smax(X, Y) != X --> X s< Y 4105 // smax(X, Y) s> X --> X s< Y 4106 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4107 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4108 4109 // These cases should be handled in InstSimplify: 4110 // smax(X, Y) s>= X --> true 4111 // smax(X, Y) s< X --> false 4112 return nullptr; 4113 } 4114 4115 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4116 // umin(X, Y) == X --> X u<= Y 4117 // umin(X, Y) u>= X --> X u<= Y 4118 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4119 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4120 4121 // umin(X, Y) != X --> X u> Y 4122 // umin(X, Y) u< X --> X u> Y 4123 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4124 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4125 4126 // These cases should be handled in InstSimplify: 4127 // umin(X, Y) u<= X --> true 4128 // umin(X, Y) u> X --> false 4129 return nullptr; 4130 } 4131 4132 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4133 // umax(X, Y) == X --> X u>= Y 4134 // umax(X, Y) u<= X --> X u>= Y 4135 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4136 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4137 4138 // umax(X, Y) != X --> X u< Y 4139 // umax(X, Y) u> X --> X u< Y 4140 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4141 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4142 4143 // These cases should be handled in InstSimplify: 4144 // umax(X, Y) u>= X --> true 4145 // umax(X, Y) u< X --> false 4146 return nullptr; 4147 } 4148 4149 return nullptr; 4150 } 4151 4152 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 4153 if (!I.isEquality()) 4154 return nullptr; 4155 4156 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4157 const CmpInst::Predicate Pred = I.getPredicate(); 4158 Value *A, *B, *C, *D; 4159 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4160 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4161 Value *OtherVal = A == Op1 ? B : A; 4162 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4163 } 4164 4165 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4166 // A^c1 == C^c2 --> A == C^(c1^c2) 4167 ConstantInt *C1, *C2; 4168 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4169 Op1->hasOneUse()) { 4170 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4171 Value *Xor = Builder.CreateXor(C, NC); 4172 return new ICmpInst(Pred, A, Xor); 4173 } 4174 4175 // A^B == A^D -> B == D 4176 if (A == C) 4177 return new ICmpInst(Pred, B, D); 4178 if (A == D) 4179 return new ICmpInst(Pred, B, C); 4180 if (B == C) 4181 return new ICmpInst(Pred, A, D); 4182 if (B == D) 4183 return new ICmpInst(Pred, A, C); 4184 } 4185 } 4186 4187 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4188 // A == (A^B) -> B == 0 4189 Value *OtherVal = A == Op0 ? B : A; 4190 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4191 } 4192 4193 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4194 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4195 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4196 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4197 4198 if (A == C) { 4199 X = B; 4200 Y = D; 4201 Z = A; 4202 } else if (A == D) { 4203 X = B; 4204 Y = C; 4205 Z = A; 4206 } else if (B == C) { 4207 X = A; 4208 Y = D; 4209 Z = B; 4210 } else if (B == D) { 4211 X = A; 4212 Y = C; 4213 Z = B; 4214 } 4215 4216 if (X) { // Build (X^Y) & Z 4217 Op1 = Builder.CreateXor(X, Y); 4218 Op1 = Builder.CreateAnd(Op1, Z); 4219 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4220 } 4221 } 4222 4223 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4224 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4225 ConstantInt *Cst1; 4226 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4227 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4228 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4229 match(Op1, m_ZExt(m_Value(A))))) { 4230 APInt Pow2 = Cst1->getValue() + 1; 4231 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4232 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4233 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4234 } 4235 4236 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4237 // For lshr and ashr pairs. 4238 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4239 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4240 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4241 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4242 unsigned TypeBits = Cst1->getBitWidth(); 4243 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4244 if (ShAmt < TypeBits && ShAmt != 0) { 4245 ICmpInst::Predicate NewPred = 4246 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4247 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4248 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4249 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4250 } 4251 } 4252 4253 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4254 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4255 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4256 unsigned TypeBits = Cst1->getBitWidth(); 4257 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4258 if (ShAmt < TypeBits && ShAmt != 0) { 4259 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4260 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4261 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4262 I.getName() + ".mask"); 4263 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4264 } 4265 } 4266 4267 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4268 // "icmp (and X, mask), cst" 4269 uint64_t ShAmt = 0; 4270 if (Op0->hasOneUse() && 4271 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4272 match(Op1, m_ConstantInt(Cst1)) && 4273 // Only do this when A has multiple uses. This is most important to do 4274 // when it exposes other optimizations. 4275 !A->hasOneUse()) { 4276 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4277 4278 if (ShAmt < ASize) { 4279 APInt MaskV = 4280 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4281 MaskV <<= ShAmt; 4282 4283 APInt CmpV = Cst1->getValue().zext(ASize); 4284 CmpV <<= ShAmt; 4285 4286 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4287 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4288 } 4289 } 4290 4291 // If both operands are byte-swapped or bit-reversed, just compare the 4292 // original values. 4293 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 4294 // and handle more intrinsics. 4295 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 4296 (match(Op0, m_BitReverse(m_Value(A))) && 4297 match(Op1, m_BitReverse(m_Value(B))))) 4298 return new ICmpInst(Pred, A, B); 4299 4300 // Canonicalize checking for a power-of-2-or-zero value: 4301 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4302 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4303 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4304 m_Deferred(A)))) || 4305 !match(Op1, m_ZeroInt())) 4306 A = nullptr; 4307 4308 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4309 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4310 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4311 A = Op1; 4312 else if (match(Op1, 4313 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4314 A = Op0; 4315 4316 if (A) { 4317 Type *Ty = A->getType(); 4318 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4319 return Pred == ICmpInst::ICMP_EQ 4320 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4321 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4322 } 4323 4324 return nullptr; 4325 } 4326 4327 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4328 InstCombiner::BuilderTy &Builder) { 4329 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4330 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4331 Value *X; 4332 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4333 return nullptr; 4334 4335 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4336 bool IsSignedCmp = ICmp.isSigned(); 4337 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4338 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4339 // and the other is a zext), then we can't handle this. 4340 // TODO: This is too strict. We can handle some predicates (equality?). 4341 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4342 return nullptr; 4343 4344 // Not an extension from the same type? 4345 Value *Y = CastOp1->getOperand(0); 4346 Type *XTy = X->getType(), *YTy = Y->getType(); 4347 if (XTy != YTy) { 4348 // One of the casts must have one use because we are creating a new cast. 4349 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4350 return nullptr; 4351 // Extend the narrower operand to the type of the wider operand. 4352 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4353 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4354 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4355 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4356 else 4357 return nullptr; 4358 } 4359 4360 // (zext X) == (zext Y) --> X == Y 4361 // (sext X) == (sext Y) --> X == Y 4362 if (ICmp.isEquality()) 4363 return new ICmpInst(ICmp.getPredicate(), X, Y); 4364 4365 // A signed comparison of sign extended values simplifies into a 4366 // signed comparison. 4367 if (IsSignedCmp && IsSignedExt) 4368 return new ICmpInst(ICmp.getPredicate(), X, Y); 4369 4370 // The other three cases all fold into an unsigned comparison. 4371 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4372 } 4373 4374 // Below here, we are only folding a compare with constant. 4375 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4376 if (!C) 4377 return nullptr; 4378 4379 // Compute the constant that would happen if we truncated to SrcTy then 4380 // re-extended to DestTy. 4381 Type *SrcTy = CastOp0->getSrcTy(); 4382 Type *DestTy = CastOp0->getDestTy(); 4383 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4384 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4385 4386 // If the re-extended constant didn't change... 4387 if (Res2 == C) { 4388 if (ICmp.isEquality()) 4389 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4390 4391 // A signed comparison of sign extended values simplifies into a 4392 // signed comparison. 4393 if (IsSignedExt && IsSignedCmp) 4394 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4395 4396 // The other three cases all fold into an unsigned comparison. 4397 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4398 } 4399 4400 // The re-extended constant changed, partly changed (in the case of a vector), 4401 // or could not be determined to be equal (in the case of a constant 4402 // expression), so the constant cannot be represented in the shorter type. 4403 // All the cases that fold to true or false will have already been handled 4404 // by SimplifyICmpInst, so only deal with the tricky case. 4405 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4406 return nullptr; 4407 4408 // Is source op positive? 4409 // icmp ult (sext X), C --> icmp sgt X, -1 4410 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4411 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4412 4413 // Is source op negative? 4414 // icmp ugt (sext X), C --> icmp slt X, 0 4415 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4416 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4417 } 4418 4419 /// Handle icmp (cast x), (cast or constant). 4420 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) { 4421 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4422 if (!CastOp0) 4423 return nullptr; 4424 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4425 return nullptr; 4426 4427 Value *Op0Src = CastOp0->getOperand(0); 4428 Type *SrcTy = CastOp0->getSrcTy(); 4429 Type *DestTy = CastOp0->getDestTy(); 4430 4431 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4432 // integer type is the same size as the pointer type. 4433 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4434 if (isa<VectorType>(SrcTy)) { 4435 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4436 DestTy = cast<VectorType>(DestTy)->getElementType(); 4437 } 4438 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4439 }; 4440 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4441 CompatibleSizes(SrcTy, DestTy)) { 4442 Value *NewOp1 = nullptr; 4443 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4444 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4445 if (PtrSrc->getType()->getPointerAddressSpace() == 4446 Op0Src->getType()->getPointerAddressSpace()) { 4447 NewOp1 = PtrToIntOp1->getOperand(0); 4448 // If the pointer types don't match, insert a bitcast. 4449 if (Op0Src->getType() != NewOp1->getType()) 4450 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4451 } 4452 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4453 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4454 } 4455 4456 if (NewOp1) 4457 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4458 } 4459 4460 return foldICmpWithZextOrSext(ICmp, Builder); 4461 } 4462 4463 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4464 switch (BinaryOp) { 4465 default: 4466 llvm_unreachable("Unsupported binary op"); 4467 case Instruction::Add: 4468 case Instruction::Sub: 4469 return match(RHS, m_Zero()); 4470 case Instruction::Mul: 4471 return match(RHS, m_One()); 4472 } 4473 } 4474 4475 OverflowResult InstCombiner::computeOverflow( 4476 Instruction::BinaryOps BinaryOp, bool IsSigned, 4477 Value *LHS, Value *RHS, Instruction *CxtI) const { 4478 switch (BinaryOp) { 4479 default: 4480 llvm_unreachable("Unsupported binary op"); 4481 case Instruction::Add: 4482 if (IsSigned) 4483 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4484 else 4485 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4486 case Instruction::Sub: 4487 if (IsSigned) 4488 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4489 else 4490 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4491 case Instruction::Mul: 4492 if (IsSigned) 4493 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4494 else 4495 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4496 } 4497 } 4498 4499 bool InstCombiner::OptimizeOverflowCheck( 4500 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, 4501 Instruction &OrigI, Value *&Result, Constant *&Overflow) { 4502 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4503 std::swap(LHS, RHS); 4504 4505 // If the overflow check was an add followed by a compare, the insertion point 4506 // may be pointing to the compare. We want to insert the new instructions 4507 // before the add in case there are uses of the add between the add and the 4508 // compare. 4509 Builder.SetInsertPoint(&OrigI); 4510 4511 if (isNeutralValue(BinaryOp, RHS)) { 4512 Result = LHS; 4513 Overflow = Builder.getFalse(); 4514 return true; 4515 } 4516 4517 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4518 case OverflowResult::MayOverflow: 4519 return false; 4520 case OverflowResult::AlwaysOverflowsLow: 4521 case OverflowResult::AlwaysOverflowsHigh: 4522 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4523 Result->takeName(&OrigI); 4524 Overflow = Builder.getTrue(); 4525 return true; 4526 case OverflowResult::NeverOverflows: 4527 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4528 Result->takeName(&OrigI); 4529 Overflow = Builder.getFalse(); 4530 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4531 if (IsSigned) 4532 Inst->setHasNoSignedWrap(); 4533 else 4534 Inst->setHasNoUnsignedWrap(); 4535 } 4536 return true; 4537 } 4538 4539 llvm_unreachable("Unexpected overflow result"); 4540 } 4541 4542 /// Recognize and process idiom involving test for multiplication 4543 /// overflow. 4544 /// 4545 /// The caller has matched a pattern of the form: 4546 /// I = cmp u (mul(zext A, zext B), V 4547 /// The function checks if this is a test for overflow and if so replaces 4548 /// multiplication with call to 'mul.with.overflow' intrinsic. 4549 /// 4550 /// \param I Compare instruction. 4551 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4552 /// the compare instruction. Must be of integer type. 4553 /// \param OtherVal The other argument of compare instruction. 4554 /// \returns Instruction which must replace the compare instruction, NULL if no 4555 /// replacement required. 4556 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4557 Value *OtherVal, InstCombiner &IC) { 4558 // Don't bother doing this transformation for pointers, don't do it for 4559 // vectors. 4560 if (!isa<IntegerType>(MulVal->getType())) 4561 return nullptr; 4562 4563 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4564 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4565 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4566 if (!MulInstr) 4567 return nullptr; 4568 assert(MulInstr->getOpcode() == Instruction::Mul); 4569 4570 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4571 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4572 assert(LHS->getOpcode() == Instruction::ZExt); 4573 assert(RHS->getOpcode() == Instruction::ZExt); 4574 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4575 4576 // Calculate type and width of the result produced by mul.with.overflow. 4577 Type *TyA = A->getType(), *TyB = B->getType(); 4578 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4579 WidthB = TyB->getPrimitiveSizeInBits(); 4580 unsigned MulWidth; 4581 Type *MulType; 4582 if (WidthB > WidthA) { 4583 MulWidth = WidthB; 4584 MulType = TyB; 4585 } else { 4586 MulWidth = WidthA; 4587 MulType = TyA; 4588 } 4589 4590 // In order to replace the original mul with a narrower mul.with.overflow, 4591 // all uses must ignore upper bits of the product. The number of used low 4592 // bits must be not greater than the width of mul.with.overflow. 4593 if (MulVal->hasNUsesOrMore(2)) 4594 for (User *U : MulVal->users()) { 4595 if (U == &I) 4596 continue; 4597 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4598 // Check if truncation ignores bits above MulWidth. 4599 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4600 if (TruncWidth > MulWidth) 4601 return nullptr; 4602 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4603 // Check if AND ignores bits above MulWidth. 4604 if (BO->getOpcode() != Instruction::And) 4605 return nullptr; 4606 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4607 const APInt &CVal = CI->getValue(); 4608 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4609 return nullptr; 4610 } else { 4611 // In this case we could have the operand of the binary operation 4612 // being defined in another block, and performing the replacement 4613 // could break the dominance relation. 4614 return nullptr; 4615 } 4616 } else { 4617 // Other uses prohibit this transformation. 4618 return nullptr; 4619 } 4620 } 4621 4622 // Recognize patterns 4623 switch (I.getPredicate()) { 4624 case ICmpInst::ICMP_EQ: 4625 case ICmpInst::ICMP_NE: 4626 // Recognize pattern: 4627 // mulval = mul(zext A, zext B) 4628 // cmp eq/neq mulval, zext trunc mulval 4629 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4630 if (Zext->hasOneUse()) { 4631 Value *ZextArg = Zext->getOperand(0); 4632 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4633 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4634 break; //Recognized 4635 } 4636 4637 // Recognize pattern: 4638 // mulval = mul(zext A, zext B) 4639 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4640 ConstantInt *CI; 4641 Value *ValToMask; 4642 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4643 if (ValToMask != MulVal) 4644 return nullptr; 4645 const APInt &CVal = CI->getValue() + 1; 4646 if (CVal.isPowerOf2()) { 4647 unsigned MaskWidth = CVal.logBase2(); 4648 if (MaskWidth == MulWidth) 4649 break; // Recognized 4650 } 4651 } 4652 return nullptr; 4653 4654 case ICmpInst::ICMP_UGT: 4655 // Recognize pattern: 4656 // mulval = mul(zext A, zext B) 4657 // cmp ugt mulval, max 4658 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4659 APInt MaxVal = APInt::getMaxValue(MulWidth); 4660 MaxVal = MaxVal.zext(CI->getBitWidth()); 4661 if (MaxVal.eq(CI->getValue())) 4662 break; // Recognized 4663 } 4664 return nullptr; 4665 4666 case ICmpInst::ICMP_UGE: 4667 // Recognize pattern: 4668 // mulval = mul(zext A, zext B) 4669 // cmp uge mulval, max+1 4670 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4671 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4672 if (MaxVal.eq(CI->getValue())) 4673 break; // Recognized 4674 } 4675 return nullptr; 4676 4677 case ICmpInst::ICMP_ULE: 4678 // Recognize pattern: 4679 // mulval = mul(zext A, zext B) 4680 // cmp ule mulval, max 4681 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4682 APInt MaxVal = APInt::getMaxValue(MulWidth); 4683 MaxVal = MaxVal.zext(CI->getBitWidth()); 4684 if (MaxVal.eq(CI->getValue())) 4685 break; // Recognized 4686 } 4687 return nullptr; 4688 4689 case ICmpInst::ICMP_ULT: 4690 // Recognize pattern: 4691 // mulval = mul(zext A, zext B) 4692 // cmp ule mulval, max + 1 4693 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4694 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4695 if (MaxVal.eq(CI->getValue())) 4696 break; // Recognized 4697 } 4698 return nullptr; 4699 4700 default: 4701 return nullptr; 4702 } 4703 4704 InstCombiner::BuilderTy &Builder = IC.Builder; 4705 Builder.SetInsertPoint(MulInstr); 4706 4707 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4708 Value *MulA = A, *MulB = B; 4709 if (WidthA < MulWidth) 4710 MulA = Builder.CreateZExt(A, MulType); 4711 if (WidthB < MulWidth) 4712 MulB = Builder.CreateZExt(B, MulType); 4713 Function *F = Intrinsic::getDeclaration( 4714 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4715 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4716 IC.Worklist.push(MulInstr); 4717 4718 // If there are uses of mul result other than the comparison, we know that 4719 // they are truncation or binary AND. Change them to use result of 4720 // mul.with.overflow and adjust properly mask/size. 4721 if (MulVal->hasNUsesOrMore(2)) { 4722 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4723 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4724 User *U = *UI++; 4725 if (U == &I || U == OtherVal) 4726 continue; 4727 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4728 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4729 IC.replaceInstUsesWith(*TI, Mul); 4730 else 4731 TI->setOperand(0, Mul); 4732 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4733 assert(BO->getOpcode() == Instruction::And); 4734 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4735 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4736 APInt ShortMask = CI->getValue().trunc(MulWidth); 4737 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4738 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 4739 IC.replaceInstUsesWith(*BO, Zext); 4740 } else { 4741 llvm_unreachable("Unexpected Binary operation"); 4742 } 4743 IC.Worklist.push(cast<Instruction>(U)); 4744 } 4745 } 4746 if (isa<Instruction>(OtherVal)) 4747 IC.Worklist.push(cast<Instruction>(OtherVal)); 4748 4749 // The original icmp gets replaced with the overflow value, maybe inverted 4750 // depending on predicate. 4751 bool Inverse = false; 4752 switch (I.getPredicate()) { 4753 case ICmpInst::ICMP_NE: 4754 break; 4755 case ICmpInst::ICMP_EQ: 4756 Inverse = true; 4757 break; 4758 case ICmpInst::ICMP_UGT: 4759 case ICmpInst::ICMP_UGE: 4760 if (I.getOperand(0) == MulVal) 4761 break; 4762 Inverse = true; 4763 break; 4764 case ICmpInst::ICMP_ULT: 4765 case ICmpInst::ICMP_ULE: 4766 if (I.getOperand(1) == MulVal) 4767 break; 4768 Inverse = true; 4769 break; 4770 default: 4771 llvm_unreachable("Unexpected predicate"); 4772 } 4773 if (Inverse) { 4774 Value *Res = Builder.CreateExtractValue(Call, 1); 4775 return BinaryOperator::CreateNot(Res); 4776 } 4777 4778 return ExtractValueInst::Create(Call, 1); 4779 } 4780 4781 /// When performing a comparison against a constant, it is possible that not all 4782 /// the bits in the LHS are demanded. This helper method computes the mask that 4783 /// IS demanded. 4784 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4785 const APInt *RHS; 4786 if (!match(I.getOperand(1), m_APInt(RHS))) 4787 return APInt::getAllOnesValue(BitWidth); 4788 4789 // If this is a normal comparison, it demands all bits. If it is a sign bit 4790 // comparison, it only demands the sign bit. 4791 bool UnusedBit; 4792 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4793 return APInt::getSignMask(BitWidth); 4794 4795 switch (I.getPredicate()) { 4796 // For a UGT comparison, we don't care about any bits that 4797 // correspond to the trailing ones of the comparand. The value of these 4798 // bits doesn't impact the outcome of the comparison, because any value 4799 // greater than the RHS must differ in a bit higher than these due to carry. 4800 case ICmpInst::ICMP_UGT: 4801 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4802 4803 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4804 // Any value less than the RHS must differ in a higher bit because of carries. 4805 case ICmpInst::ICMP_ULT: 4806 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4807 4808 default: 4809 return APInt::getAllOnesValue(BitWidth); 4810 } 4811 } 4812 4813 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4814 /// should be swapped. 4815 /// The decision is based on how many times these two operands are reused 4816 /// as subtract operands and their positions in those instructions. 4817 /// The rationale is that several architectures use the same instruction for 4818 /// both subtract and cmp. Thus, it is better if the order of those operands 4819 /// match. 4820 /// \return true if Op0 and Op1 should be swapped. 4821 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4822 // Filter out pointer values as those cannot appear directly in subtract. 4823 // FIXME: we may want to go through inttoptrs or bitcasts. 4824 if (Op0->getType()->isPointerTy()) 4825 return false; 4826 // If a subtract already has the same operands as a compare, swapping would be 4827 // bad. If a subtract has the same operands as a compare but in reverse order, 4828 // then swapping is good. 4829 int GoodToSwap = 0; 4830 for (const User *U : Op0->users()) { 4831 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4832 GoodToSwap++; 4833 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4834 GoodToSwap--; 4835 } 4836 return GoodToSwap > 0; 4837 } 4838 4839 /// Check that one use is in the same block as the definition and all 4840 /// other uses are in blocks dominated by a given block. 4841 /// 4842 /// \param DI Definition 4843 /// \param UI Use 4844 /// \param DB Block that must dominate all uses of \p DI outside 4845 /// the parent block 4846 /// \return true when \p UI is the only use of \p DI in the parent block 4847 /// and all other uses of \p DI are in blocks dominated by \p DB. 4848 /// 4849 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4850 const Instruction *UI, 4851 const BasicBlock *DB) const { 4852 assert(DI && UI && "Instruction not defined\n"); 4853 // Ignore incomplete definitions. 4854 if (!DI->getParent()) 4855 return false; 4856 // DI and UI must be in the same block. 4857 if (DI->getParent() != UI->getParent()) 4858 return false; 4859 // Protect from self-referencing blocks. 4860 if (DI->getParent() == DB) 4861 return false; 4862 for (const User *U : DI->users()) { 4863 auto *Usr = cast<Instruction>(U); 4864 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4865 return false; 4866 } 4867 return true; 4868 } 4869 4870 /// Return true when the instruction sequence within a block is select-cmp-br. 4871 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4872 const BasicBlock *BB = SI->getParent(); 4873 if (!BB) 4874 return false; 4875 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4876 if (!BI || BI->getNumSuccessors() != 2) 4877 return false; 4878 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4879 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4880 return false; 4881 return true; 4882 } 4883 4884 /// True when a select result is replaced by one of its operands 4885 /// in select-icmp sequence. This will eventually result in the elimination 4886 /// of the select. 4887 /// 4888 /// \param SI Select instruction 4889 /// \param Icmp Compare instruction 4890 /// \param SIOpd Operand that replaces the select 4891 /// 4892 /// Notes: 4893 /// - The replacement is global and requires dominator information 4894 /// - The caller is responsible for the actual replacement 4895 /// 4896 /// Example: 4897 /// 4898 /// entry: 4899 /// %4 = select i1 %3, %C* %0, %C* null 4900 /// %5 = icmp eq %C* %4, null 4901 /// br i1 %5, label %9, label %7 4902 /// ... 4903 /// ; <label>:7 ; preds = %entry 4904 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4905 /// ... 4906 /// 4907 /// can be transformed to 4908 /// 4909 /// %5 = icmp eq %C* %0, null 4910 /// %6 = select i1 %3, i1 %5, i1 true 4911 /// br i1 %6, label %9, label %7 4912 /// ... 4913 /// ; <label>:7 ; preds = %entry 4914 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4915 /// 4916 /// Similar when the first operand of the select is a constant or/and 4917 /// the compare is for not equal rather than equal. 4918 /// 4919 /// NOTE: The function is only called when the select and compare constants 4920 /// are equal, the optimization can work only for EQ predicates. This is not a 4921 /// major restriction since a NE compare should be 'normalized' to an equal 4922 /// compare, which usually happens in the combiner and test case 4923 /// select-cmp-br.ll checks for it. 4924 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4925 const ICmpInst *Icmp, 4926 const unsigned SIOpd) { 4927 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4928 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4929 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4930 // The check for the single predecessor is not the best that can be 4931 // done. But it protects efficiently against cases like when SI's 4932 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4933 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4934 // replaced can be reached on either path. So the uniqueness check 4935 // guarantees that the path all uses of SI (outside SI's parent) are on 4936 // is disjoint from all other paths out of SI. But that information 4937 // is more expensive to compute, and the trade-off here is in favor 4938 // of compile-time. It should also be noticed that we check for a single 4939 // predecessor and not only uniqueness. This to handle the situation when 4940 // Succ and Succ1 points to the same basic block. 4941 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4942 NumSel++; 4943 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4944 return true; 4945 } 4946 } 4947 return false; 4948 } 4949 4950 /// Try to fold the comparison based on range information we can get by checking 4951 /// whether bits are known to be zero or one in the inputs. 4952 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4953 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4954 Type *Ty = Op0->getType(); 4955 ICmpInst::Predicate Pred = I.getPredicate(); 4956 4957 // Get scalar or pointer size. 4958 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4959 ? Ty->getScalarSizeInBits() 4960 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 4961 4962 if (!BitWidth) 4963 return nullptr; 4964 4965 KnownBits Op0Known(BitWidth); 4966 KnownBits Op1Known(BitWidth); 4967 4968 if (SimplifyDemandedBits(&I, 0, 4969 getDemandedBitsLHSMask(I, BitWidth), 4970 Op0Known, 0)) 4971 return &I; 4972 4973 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4974 Op1Known, 0)) 4975 return &I; 4976 4977 // Given the known and unknown bits, compute a range that the LHS could be 4978 // in. Compute the Min, Max and RHS values based on the known bits. For the 4979 // EQ and NE we use unsigned values. 4980 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4981 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4982 if (I.isSigned()) { 4983 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4984 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4985 } else { 4986 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4987 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4988 } 4989 4990 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4991 // out that the LHS or RHS is a constant. Constant fold this now, so that 4992 // code below can assume that Min != Max. 4993 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4994 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4995 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4996 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4997 4998 // Based on the range information we know about the LHS, see if we can 4999 // simplify this comparison. For example, (x&4) < 8 is always true. 5000 switch (Pred) { 5001 default: 5002 llvm_unreachable("Unknown icmp opcode!"); 5003 case ICmpInst::ICMP_EQ: 5004 case ICmpInst::ICMP_NE: { 5005 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 5006 return Pred == CmpInst::ICMP_EQ 5007 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 5008 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5009 } 5010 5011 // If all bits are known zero except for one, then we know at most one bit 5012 // is set. If the comparison is against zero, then this is a check to see if 5013 // *that* bit is set. 5014 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5015 if (Op1Known.isZero()) { 5016 // If the LHS is an AND with the same constant, look through it. 5017 Value *LHS = nullptr; 5018 const APInt *LHSC; 5019 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5020 *LHSC != Op0KnownZeroInverted) 5021 LHS = Op0; 5022 5023 Value *X; 5024 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5025 APInt ValToCheck = Op0KnownZeroInverted; 5026 Type *XTy = X->getType(); 5027 if (ValToCheck.isPowerOf2()) { 5028 // ((1 << X) & 8) == 0 -> X != 3 5029 // ((1 << X) & 8) != 0 -> X == 3 5030 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5031 auto NewPred = ICmpInst::getInversePredicate(Pred); 5032 return new ICmpInst(NewPred, X, CmpC); 5033 } else if ((++ValToCheck).isPowerOf2()) { 5034 // ((1 << X) & 7) == 0 -> X >= 3 5035 // ((1 << X) & 7) != 0 -> X < 3 5036 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5037 auto NewPred = 5038 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5039 return new ICmpInst(NewPred, X, CmpC); 5040 } 5041 } 5042 5043 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5044 const APInt *CI; 5045 if (Op0KnownZeroInverted.isOneValue() && 5046 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5047 // ((8 >>u X) & 1) == 0 -> X != 3 5048 // ((8 >>u X) & 1) != 0 -> X == 3 5049 unsigned CmpVal = CI->countTrailingZeros(); 5050 auto NewPred = ICmpInst::getInversePredicate(Pred); 5051 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5052 } 5053 } 5054 break; 5055 } 5056 case ICmpInst::ICMP_ULT: { 5057 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5058 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5059 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5060 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5061 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5062 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5063 5064 const APInt *CmpC; 5065 if (match(Op1, m_APInt(CmpC))) { 5066 // A <u C -> A == C-1 if min(A)+1 == C 5067 if (*CmpC == Op0Min + 1) 5068 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5069 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5070 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5071 // exceeds the log2 of C. 5072 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5073 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5074 Constant::getNullValue(Op1->getType())); 5075 } 5076 break; 5077 } 5078 case ICmpInst::ICMP_UGT: { 5079 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5080 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5081 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5082 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5083 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5084 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5085 5086 const APInt *CmpC; 5087 if (match(Op1, m_APInt(CmpC))) { 5088 // A >u C -> A == C+1 if max(a)-1 == C 5089 if (*CmpC == Op0Max - 1) 5090 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5091 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5092 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5093 // exceeds the log2 of C. 5094 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5095 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5096 Constant::getNullValue(Op1->getType())); 5097 } 5098 break; 5099 } 5100 case ICmpInst::ICMP_SLT: { 5101 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5102 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5103 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5104 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5105 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5106 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5107 const APInt *CmpC; 5108 if (match(Op1, m_APInt(CmpC))) { 5109 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5110 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5111 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5112 } 5113 break; 5114 } 5115 case ICmpInst::ICMP_SGT: { 5116 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5117 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5118 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5119 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5120 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5121 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5122 const APInt *CmpC; 5123 if (match(Op1, m_APInt(CmpC))) { 5124 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5125 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5126 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5127 } 5128 break; 5129 } 5130 case ICmpInst::ICMP_SGE: 5131 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5132 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5133 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5134 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5135 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5136 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5137 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5138 break; 5139 case ICmpInst::ICMP_SLE: 5140 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5141 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5142 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5143 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5144 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5145 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5146 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5147 break; 5148 case ICmpInst::ICMP_UGE: 5149 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5150 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5151 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5152 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5153 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5154 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5155 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5156 break; 5157 case ICmpInst::ICMP_ULE: 5158 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5159 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5160 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5161 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5162 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5163 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5164 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5165 break; 5166 } 5167 5168 // Turn a signed comparison into an unsigned one if both operands are known to 5169 // have the same sign. 5170 if (I.isSigned() && 5171 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5172 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5173 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5174 5175 return nullptr; 5176 } 5177 5178 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5179 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5180 Constant *C) { 5181 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5182 "Only for relational integer predicates."); 5183 5184 Type *Type = C->getType(); 5185 bool IsSigned = ICmpInst::isSigned(Pred); 5186 5187 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5188 bool WillIncrement = 5189 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5190 5191 // Check if the constant operand can be safely incremented/decremented 5192 // without overflowing/underflowing. 5193 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5194 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5195 }; 5196 5197 Constant *SafeReplacementConstant = nullptr; 5198 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5199 // Bail out if the constant can't be safely incremented/decremented. 5200 if (!ConstantIsOk(CI)) 5201 return llvm::None; 5202 } else if (auto *VTy = dyn_cast<VectorType>(Type)) { 5203 unsigned NumElts = VTy->getNumElements(); 5204 for (unsigned i = 0; i != NumElts; ++i) { 5205 Constant *Elt = C->getAggregateElement(i); 5206 if (!Elt) 5207 return llvm::None; 5208 5209 if (isa<UndefValue>(Elt)) 5210 continue; 5211 5212 // Bail out if we can't determine if this constant is min/max or if we 5213 // know that this constant is min/max. 5214 auto *CI = dyn_cast<ConstantInt>(Elt); 5215 if (!CI || !ConstantIsOk(CI)) 5216 return llvm::None; 5217 5218 if (!SafeReplacementConstant) 5219 SafeReplacementConstant = CI; 5220 } 5221 } else { 5222 // ConstantExpr? 5223 return llvm::None; 5224 } 5225 5226 // It may not be safe to change a compare predicate in the presence of 5227 // undefined elements, so replace those elements with the first safe constant 5228 // that we found. 5229 if (C->containsUndefElement()) { 5230 assert(SafeReplacementConstant && "Replacement constant not set"); 5231 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5232 } 5233 5234 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5235 5236 // Increment or decrement the constant. 5237 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5238 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5239 5240 return std::make_pair(NewPred, NewC); 5241 } 5242 5243 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5244 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5245 /// allows them to be folded in visitICmpInst. 5246 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5247 ICmpInst::Predicate Pred = I.getPredicate(); 5248 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5249 isCanonicalPredicate(Pred)) 5250 return nullptr; 5251 5252 Value *Op0 = I.getOperand(0); 5253 Value *Op1 = I.getOperand(1); 5254 auto *Op1C = dyn_cast<Constant>(Op1); 5255 if (!Op1C) 5256 return nullptr; 5257 5258 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5259 if (!FlippedStrictness) 5260 return nullptr; 5261 5262 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5263 } 5264 5265 /// Integer compare with boolean values can always be turned into bitwise ops. 5266 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5267 InstCombiner::BuilderTy &Builder) { 5268 Value *A = I.getOperand(0), *B = I.getOperand(1); 5269 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5270 5271 // A boolean compared to true/false can be simplified to Op0/true/false in 5272 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5273 // Cases not handled by InstSimplify are always 'not' of Op0. 5274 if (match(B, m_Zero())) { 5275 switch (I.getPredicate()) { 5276 case CmpInst::ICMP_EQ: // A == 0 -> !A 5277 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5278 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5279 return BinaryOperator::CreateNot(A); 5280 default: 5281 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5282 } 5283 } else if (match(B, m_One())) { 5284 switch (I.getPredicate()) { 5285 case CmpInst::ICMP_NE: // A != 1 -> !A 5286 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5287 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5288 return BinaryOperator::CreateNot(A); 5289 default: 5290 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5291 } 5292 } 5293 5294 switch (I.getPredicate()) { 5295 default: 5296 llvm_unreachable("Invalid icmp instruction!"); 5297 case ICmpInst::ICMP_EQ: 5298 // icmp eq i1 A, B -> ~(A ^ B) 5299 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5300 5301 case ICmpInst::ICMP_NE: 5302 // icmp ne i1 A, B -> A ^ B 5303 return BinaryOperator::CreateXor(A, B); 5304 5305 case ICmpInst::ICMP_UGT: 5306 // icmp ugt -> icmp ult 5307 std::swap(A, B); 5308 LLVM_FALLTHROUGH; 5309 case ICmpInst::ICMP_ULT: 5310 // icmp ult i1 A, B -> ~A & B 5311 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5312 5313 case ICmpInst::ICMP_SGT: 5314 // icmp sgt -> icmp slt 5315 std::swap(A, B); 5316 LLVM_FALLTHROUGH; 5317 case ICmpInst::ICMP_SLT: 5318 // icmp slt i1 A, B -> A & ~B 5319 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5320 5321 case ICmpInst::ICMP_UGE: 5322 // icmp uge -> icmp ule 5323 std::swap(A, B); 5324 LLVM_FALLTHROUGH; 5325 case ICmpInst::ICMP_ULE: 5326 // icmp ule i1 A, B -> ~A | B 5327 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5328 5329 case ICmpInst::ICMP_SGE: 5330 // icmp sge -> icmp sle 5331 std::swap(A, B); 5332 LLVM_FALLTHROUGH; 5333 case ICmpInst::ICMP_SLE: 5334 // icmp sle i1 A, B -> A | ~B 5335 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5336 } 5337 } 5338 5339 // Transform pattern like: 5340 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5341 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5342 // Into: 5343 // (X l>> Y) != 0 5344 // (X l>> Y) == 0 5345 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5346 InstCombiner::BuilderTy &Builder) { 5347 ICmpInst::Predicate Pred, NewPred; 5348 Value *X, *Y; 5349 if (match(&Cmp, 5350 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5351 switch (Pred) { 5352 case ICmpInst::ICMP_ULE: 5353 NewPred = ICmpInst::ICMP_NE; 5354 break; 5355 case ICmpInst::ICMP_UGT: 5356 NewPred = ICmpInst::ICMP_EQ; 5357 break; 5358 default: 5359 return nullptr; 5360 } 5361 } else if (match(&Cmp, m_c_ICmp(Pred, 5362 m_OneUse(m_CombineOr( 5363 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5364 m_Add(m_Shl(m_One(), m_Value(Y)), 5365 m_AllOnes()))), 5366 m_Value(X)))) { 5367 // The variant with 'add' is not canonical, (the variant with 'not' is) 5368 // we only get it because it has extra uses, and can't be canonicalized, 5369 5370 switch (Pred) { 5371 case ICmpInst::ICMP_ULT: 5372 NewPred = ICmpInst::ICMP_NE; 5373 break; 5374 case ICmpInst::ICMP_UGE: 5375 NewPred = ICmpInst::ICMP_EQ; 5376 break; 5377 default: 5378 return nullptr; 5379 } 5380 } else 5381 return nullptr; 5382 5383 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5384 Constant *Zero = Constant::getNullValue(NewX->getType()); 5385 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5386 } 5387 5388 static Instruction *foldVectorCmp(CmpInst &Cmp, 5389 InstCombiner::BuilderTy &Builder) { 5390 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5391 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5392 bool IsFP = isa<FCmpInst>(Cmp); 5393 5394 Value *V1, *V2; 5395 ArrayRef<int> M; 5396 if (!match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Mask(M)))) 5397 return nullptr; 5398 5399 // If both arguments of the cmp are shuffles that use the same mask and 5400 // shuffle within a single vector, move the shuffle after the cmp: 5401 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5402 Type *V1Ty = V1->getType(); 5403 if (match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5404 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5405 Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, V2) 5406 : Builder.CreateICmp(Pred, V1, V2); 5407 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5408 } 5409 5410 // Try to canonicalize compare with splatted operand and splat constant. 5411 // TODO: We could generalize this for more than splats. See/use the code in 5412 // InstCombiner::foldVectorBinop(). 5413 Constant *C; 5414 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5415 return nullptr; 5416 5417 // Length-changing splats are ok, so adjust the constants as needed: 5418 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5419 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5420 int MaskSplatIndex; 5421 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5422 // We allow undefs in matching, but this transform removes those for safety. 5423 // Demanded elements analysis should be able to recover some/all of that. 5424 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5425 ScalarC); 5426 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5427 Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, C) 5428 : Builder.CreateICmp(Pred, V1, C); 5429 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), 5430 NewM); 5431 } 5432 5433 return nullptr; 5434 } 5435 5436 // extract(uadd.with.overflow(A, B), 0) ult A 5437 // -> extract(uadd.with.overflow(A, B), 1) 5438 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5439 CmpInst::Predicate Pred = I.getPredicate(); 5440 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5441 5442 Value *UAddOv; 5443 Value *A, *B; 5444 auto UAddOvResultPat = m_ExtractValue<0>( 5445 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5446 if (match(Op0, UAddOvResultPat) && 5447 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5448 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5449 (match(A, m_One()) || match(B, m_One()))) || 5450 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5451 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5452 // extract(uadd.with.overflow(A, B), 0) < A 5453 // extract(uadd.with.overflow(A, 1), 0) == 0 5454 // extract(uadd.with.overflow(A, -1), 0) != -1 5455 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5456 else if (match(Op1, UAddOvResultPat) && 5457 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5458 // A > extract(uadd.with.overflow(A, B), 0) 5459 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5460 else 5461 return nullptr; 5462 5463 return ExtractValueInst::Create(UAddOv, 1); 5464 } 5465 5466 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 5467 bool Changed = false; 5468 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5469 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5470 unsigned Op0Cplxity = getComplexity(Op0); 5471 unsigned Op1Cplxity = getComplexity(Op1); 5472 5473 /// Orders the operands of the compare so that they are listed from most 5474 /// complex to least complex. This puts constants before unary operators, 5475 /// before binary operators. 5476 if (Op0Cplxity < Op1Cplxity || 5477 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5478 I.swapOperands(); 5479 std::swap(Op0, Op1); 5480 Changed = true; 5481 } 5482 5483 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5484 return replaceInstUsesWith(I, V); 5485 5486 // Comparing -val or val with non-zero is the same as just comparing val 5487 // ie, abs(val) != 0 -> val != 0 5488 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5489 Value *Cond, *SelectTrue, *SelectFalse; 5490 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5491 m_Value(SelectFalse)))) { 5492 if (Value *V = dyn_castNegVal(SelectTrue)) { 5493 if (V == SelectFalse) 5494 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5495 } 5496 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5497 if (V == SelectTrue) 5498 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5499 } 5500 } 5501 } 5502 5503 if (Op0->getType()->isIntOrIntVectorTy(1)) 5504 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5505 return Res; 5506 5507 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 5508 return NewICmp; 5509 5510 if (Instruction *Res = foldICmpWithConstant(I)) 5511 return Res; 5512 5513 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5514 return Res; 5515 5516 if (Instruction *Res = foldICmpBinOp(I, Q)) 5517 return Res; 5518 5519 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5520 return Res; 5521 5522 // Test if the ICmpInst instruction is used exclusively by a select as 5523 // part of a minimum or maximum operation. If so, refrain from doing 5524 // any other folding. This helps out other analyses which understand 5525 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5526 // and CodeGen. And in this case, at least one of the comparison 5527 // operands has at least one user besides the compare (the select), 5528 // which would often largely negate the benefit of folding anyway. 5529 // 5530 // Do the same for the other patterns recognized by matchSelectPattern. 5531 if (I.hasOneUse()) 5532 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5533 Value *A, *B; 5534 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5535 if (SPR.Flavor != SPF_UNKNOWN) 5536 return nullptr; 5537 } 5538 5539 // Do this after checking for min/max to prevent infinite looping. 5540 if (Instruction *Res = foldICmpWithZero(I)) 5541 return Res; 5542 5543 // FIXME: We only do this after checking for min/max to prevent infinite 5544 // looping caused by a reverse canonicalization of these patterns for min/max. 5545 // FIXME: The organization of folds is a mess. These would naturally go into 5546 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5547 // down here after the min/max restriction. 5548 ICmpInst::Predicate Pred = I.getPredicate(); 5549 const APInt *C; 5550 if (match(Op1, m_APInt(C))) { 5551 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5552 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5553 Constant *Zero = Constant::getNullValue(Op0->getType()); 5554 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5555 } 5556 5557 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5558 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5559 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5560 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5561 } 5562 } 5563 5564 if (Instruction *Res = foldICmpInstWithConstant(I)) 5565 return Res; 5566 5567 // Try to match comparison as a sign bit test. Intentionally do this after 5568 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5569 if (Instruction *New = foldSignBitTest(I)) 5570 return New; 5571 5572 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5573 return Res; 5574 5575 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5576 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5577 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5578 return NI; 5579 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5580 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5581 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5582 return NI; 5583 5584 // Try to optimize equality comparisons against alloca-based pointers. 5585 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5586 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5587 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 5588 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5589 return New; 5590 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 5591 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5592 return New; 5593 } 5594 5595 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5596 return Res; 5597 5598 // TODO: Hoist this above the min/max bailout. 5599 if (Instruction *R = foldICmpWithCastOp(I)) 5600 return R; 5601 5602 if (Instruction *Res = foldICmpWithMinMax(I)) 5603 return Res; 5604 5605 { 5606 Value *A, *B; 5607 // Transform (A & ~B) == 0 --> (A & B) != 0 5608 // and (A & ~B) != 0 --> (A & B) == 0 5609 // if A is a power of 2. 5610 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5611 match(Op1, m_Zero()) && 5612 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5613 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5614 Op1); 5615 5616 // ~X < ~Y --> Y < X 5617 // ~X < C --> X > ~C 5618 if (match(Op0, m_Not(m_Value(A)))) { 5619 if (match(Op1, m_Not(m_Value(B)))) 5620 return new ICmpInst(I.getPredicate(), B, A); 5621 5622 const APInt *C; 5623 if (match(Op1, m_APInt(C))) 5624 return new ICmpInst(I.getSwappedPredicate(), A, 5625 ConstantInt::get(Op1->getType(), ~(*C))); 5626 } 5627 5628 Instruction *AddI = nullptr; 5629 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5630 m_Instruction(AddI))) && 5631 isa<IntegerType>(A->getType())) { 5632 Value *Result; 5633 Constant *Overflow; 5634 // m_UAddWithOverflow can match patterns that do not include an explicit 5635 // "add" instruction, so check the opcode of the matched op. 5636 if (AddI->getOpcode() == Instruction::Add && 5637 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 5638 Result, Overflow)) { 5639 replaceInstUsesWith(*AddI, Result); 5640 eraseInstFromFunction(*AddI); 5641 return replaceInstUsesWith(I, Overflow); 5642 } 5643 } 5644 5645 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5646 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5647 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5648 return R; 5649 } 5650 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5651 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5652 return R; 5653 } 5654 } 5655 5656 if (Instruction *Res = foldICmpEquality(I)) 5657 return Res; 5658 5659 if (Instruction *Res = foldICmpOfUAddOv(I)) 5660 return Res; 5661 5662 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5663 // an i1 which indicates whether or not we successfully did the swap. 5664 // 5665 // Replace comparisons between the old value and the expected value with the 5666 // indicator that 'cmpxchg' returns. 5667 // 5668 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5669 // spuriously fail. In those cases, the old value may equal the expected 5670 // value but it is possible for the swap to not occur. 5671 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5672 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5673 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5674 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5675 !ACXI->isWeak()) 5676 return ExtractValueInst::Create(ACXI, 1); 5677 5678 { 5679 Value *X; 5680 const APInt *C; 5681 // icmp X+Cst, X 5682 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5683 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5684 5685 // icmp X, X+Cst 5686 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5687 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5688 } 5689 5690 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5691 return Res; 5692 5693 if (I.getType()->isVectorTy()) 5694 if (Instruction *Res = foldVectorCmp(I, Builder)) 5695 return Res; 5696 5697 return Changed ? &I : nullptr; 5698 } 5699 5700 /// Fold fcmp ([us]itofp x, cst) if possible. 5701 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5702 Constant *RHSC) { 5703 if (!isa<ConstantFP>(RHSC)) return nullptr; 5704 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5705 5706 // Get the width of the mantissa. We don't want to hack on conversions that 5707 // might lose information from the integer, e.g. "i64 -> float" 5708 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5709 if (MantissaWidth == -1) return nullptr; // Unknown. 5710 5711 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5712 5713 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5714 5715 if (I.isEquality()) { 5716 FCmpInst::Predicate P = I.getPredicate(); 5717 bool IsExact = false; 5718 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5719 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5720 5721 // If the floating point constant isn't an integer value, we know if we will 5722 // ever compare equal / not equal to it. 5723 if (!IsExact) { 5724 // TODO: Can never be -0.0 and other non-representable values 5725 APFloat RHSRoundInt(RHS); 5726 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5727 if (RHS != RHSRoundInt) { 5728 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5729 return replaceInstUsesWith(I, Builder.getFalse()); 5730 5731 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5732 return replaceInstUsesWith(I, Builder.getTrue()); 5733 } 5734 } 5735 5736 // TODO: If the constant is exactly representable, is it always OK to do 5737 // equality compares as integer? 5738 } 5739 5740 // Check to see that the input is converted from an integer type that is small 5741 // enough that preserves all bits. TODO: check here for "known" sign bits. 5742 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5743 unsigned InputSize = IntTy->getScalarSizeInBits(); 5744 5745 // Following test does NOT adjust InputSize downwards for signed inputs, 5746 // because the most negative value still requires all the mantissa bits 5747 // to distinguish it from one less than that value. 5748 if ((int)InputSize > MantissaWidth) { 5749 // Conversion would lose accuracy. Check if loss can impact comparison. 5750 int Exp = ilogb(RHS); 5751 if (Exp == APFloat::IEK_Inf) { 5752 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5753 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5754 // Conversion could create infinity. 5755 return nullptr; 5756 } else { 5757 // Note that if RHS is zero or NaN, then Exp is negative 5758 // and first condition is trivially false. 5759 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5760 // Conversion could affect comparison. 5761 return nullptr; 5762 } 5763 } 5764 5765 // Otherwise, we can potentially simplify the comparison. We know that it 5766 // will always come through as an integer value and we know the constant is 5767 // not a NAN (it would have been previously simplified). 5768 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5769 5770 ICmpInst::Predicate Pred; 5771 switch (I.getPredicate()) { 5772 default: llvm_unreachable("Unexpected predicate!"); 5773 case FCmpInst::FCMP_UEQ: 5774 case FCmpInst::FCMP_OEQ: 5775 Pred = ICmpInst::ICMP_EQ; 5776 break; 5777 case FCmpInst::FCMP_UGT: 5778 case FCmpInst::FCMP_OGT: 5779 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5780 break; 5781 case FCmpInst::FCMP_UGE: 5782 case FCmpInst::FCMP_OGE: 5783 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5784 break; 5785 case FCmpInst::FCMP_ULT: 5786 case FCmpInst::FCMP_OLT: 5787 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5788 break; 5789 case FCmpInst::FCMP_ULE: 5790 case FCmpInst::FCMP_OLE: 5791 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5792 break; 5793 case FCmpInst::FCMP_UNE: 5794 case FCmpInst::FCMP_ONE: 5795 Pred = ICmpInst::ICMP_NE; 5796 break; 5797 case FCmpInst::FCMP_ORD: 5798 return replaceInstUsesWith(I, Builder.getTrue()); 5799 case FCmpInst::FCMP_UNO: 5800 return replaceInstUsesWith(I, Builder.getFalse()); 5801 } 5802 5803 // Now we know that the APFloat is a normal number, zero or inf. 5804 5805 // See if the FP constant is too large for the integer. For example, 5806 // comparing an i8 to 300.0. 5807 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5808 5809 if (!LHSUnsigned) { 5810 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5811 // and large values. 5812 APFloat SMax(RHS.getSemantics()); 5813 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5814 APFloat::rmNearestTiesToEven); 5815 if (SMax < RHS) { // smax < 13123.0 5816 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5817 Pred == ICmpInst::ICMP_SLE) 5818 return replaceInstUsesWith(I, Builder.getTrue()); 5819 return replaceInstUsesWith(I, Builder.getFalse()); 5820 } 5821 } else { 5822 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5823 // +INF and large values. 5824 APFloat UMax(RHS.getSemantics()); 5825 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5826 APFloat::rmNearestTiesToEven); 5827 if (UMax < RHS) { // umax < 13123.0 5828 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5829 Pred == ICmpInst::ICMP_ULE) 5830 return replaceInstUsesWith(I, Builder.getTrue()); 5831 return replaceInstUsesWith(I, Builder.getFalse()); 5832 } 5833 } 5834 5835 if (!LHSUnsigned) { 5836 // See if the RHS value is < SignedMin. 5837 APFloat SMin(RHS.getSemantics()); 5838 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5839 APFloat::rmNearestTiesToEven); 5840 if (SMin > RHS) { // smin > 12312.0 5841 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5842 Pred == ICmpInst::ICMP_SGE) 5843 return replaceInstUsesWith(I, Builder.getTrue()); 5844 return replaceInstUsesWith(I, Builder.getFalse()); 5845 } 5846 } else { 5847 // See if the RHS value is < UnsignedMin. 5848 APFloat UMin(RHS.getSemantics()); 5849 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 5850 APFloat::rmNearestTiesToEven); 5851 if (UMin > RHS) { // umin > 12312.0 5852 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5853 Pred == ICmpInst::ICMP_UGE) 5854 return replaceInstUsesWith(I, Builder.getTrue()); 5855 return replaceInstUsesWith(I, Builder.getFalse()); 5856 } 5857 } 5858 5859 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5860 // [0, UMAX], but it may still be fractional. See if it is fractional by 5861 // casting the FP value to the integer value and back, checking for equality. 5862 // Don't do this for zero, because -0.0 is not fractional. 5863 Constant *RHSInt = LHSUnsigned 5864 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5865 : ConstantExpr::getFPToSI(RHSC, IntTy); 5866 if (!RHS.isZero()) { 5867 bool Equal = LHSUnsigned 5868 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5869 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5870 if (!Equal) { 5871 // If we had a comparison against a fractional value, we have to adjust 5872 // the compare predicate and sometimes the value. RHSC is rounded towards 5873 // zero at this point. 5874 switch (Pred) { 5875 default: llvm_unreachable("Unexpected integer comparison!"); 5876 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5877 return replaceInstUsesWith(I, Builder.getTrue()); 5878 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5879 return replaceInstUsesWith(I, Builder.getFalse()); 5880 case ICmpInst::ICMP_ULE: 5881 // (float)int <= 4.4 --> int <= 4 5882 // (float)int <= -4.4 --> false 5883 if (RHS.isNegative()) 5884 return replaceInstUsesWith(I, Builder.getFalse()); 5885 break; 5886 case ICmpInst::ICMP_SLE: 5887 // (float)int <= 4.4 --> int <= 4 5888 // (float)int <= -4.4 --> int < -4 5889 if (RHS.isNegative()) 5890 Pred = ICmpInst::ICMP_SLT; 5891 break; 5892 case ICmpInst::ICMP_ULT: 5893 // (float)int < -4.4 --> false 5894 // (float)int < 4.4 --> int <= 4 5895 if (RHS.isNegative()) 5896 return replaceInstUsesWith(I, Builder.getFalse()); 5897 Pred = ICmpInst::ICMP_ULE; 5898 break; 5899 case ICmpInst::ICMP_SLT: 5900 // (float)int < -4.4 --> int < -4 5901 // (float)int < 4.4 --> int <= 4 5902 if (!RHS.isNegative()) 5903 Pred = ICmpInst::ICMP_SLE; 5904 break; 5905 case ICmpInst::ICMP_UGT: 5906 // (float)int > 4.4 --> int > 4 5907 // (float)int > -4.4 --> true 5908 if (RHS.isNegative()) 5909 return replaceInstUsesWith(I, Builder.getTrue()); 5910 break; 5911 case ICmpInst::ICMP_SGT: 5912 // (float)int > 4.4 --> int > 4 5913 // (float)int > -4.4 --> int >= -4 5914 if (RHS.isNegative()) 5915 Pred = ICmpInst::ICMP_SGE; 5916 break; 5917 case ICmpInst::ICMP_UGE: 5918 // (float)int >= -4.4 --> true 5919 // (float)int >= 4.4 --> int > 4 5920 if (RHS.isNegative()) 5921 return replaceInstUsesWith(I, Builder.getTrue()); 5922 Pred = ICmpInst::ICMP_UGT; 5923 break; 5924 case ICmpInst::ICMP_SGE: 5925 // (float)int >= -4.4 --> int >= -4 5926 // (float)int >= 4.4 --> int > 4 5927 if (!RHS.isNegative()) 5928 Pred = ICmpInst::ICMP_SGT; 5929 break; 5930 } 5931 } 5932 } 5933 5934 // Lower this FP comparison into an appropriate integer version of the 5935 // comparison. 5936 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5937 } 5938 5939 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5940 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5941 Constant *RHSC) { 5942 // When C is not 0.0 and infinities are not allowed: 5943 // (C / X) < 0.0 is a sign-bit test of X 5944 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5945 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5946 // 5947 // Proof: 5948 // Multiply (C / X) < 0.0 by X * X / C. 5949 // - X is non zero, if it is the flag 'ninf' is violated. 5950 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5951 // the predicate. C is also non zero by definition. 5952 // 5953 // Thus X * X / C is non zero and the transformation is valid. [qed] 5954 5955 FCmpInst::Predicate Pred = I.getPredicate(); 5956 5957 // Check that predicates are valid. 5958 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5959 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5960 return nullptr; 5961 5962 // Check that RHS operand is zero. 5963 if (!match(RHSC, m_AnyZeroFP())) 5964 return nullptr; 5965 5966 // Check fastmath flags ('ninf'). 5967 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5968 return nullptr; 5969 5970 // Check the properties of the dividend. It must not be zero to avoid a 5971 // division by zero (see Proof). 5972 const APFloat *C; 5973 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5974 return nullptr; 5975 5976 if (C->isZero()) 5977 return nullptr; 5978 5979 // Get swapped predicate if necessary. 5980 if (C->isNegative()) 5981 Pred = I.getSwappedPredicate(); 5982 5983 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5984 } 5985 5986 /// Optimize fabs(X) compared with zero. 5987 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombiner &IC) { 5988 Value *X; 5989 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5990 !match(I.getOperand(1), m_PosZeroFP())) 5991 return nullptr; 5992 5993 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5994 I->setPredicate(P); 5995 return IC.replaceOperand(*I, 0, X); 5996 }; 5997 5998 switch (I.getPredicate()) { 5999 case FCmpInst::FCMP_UGE: 6000 case FCmpInst::FCMP_OLT: 6001 // fabs(X) >= 0.0 --> true 6002 // fabs(X) < 0.0 --> false 6003 llvm_unreachable("fcmp should have simplified"); 6004 6005 case FCmpInst::FCMP_OGT: 6006 // fabs(X) > 0.0 --> X != 0.0 6007 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6008 6009 case FCmpInst::FCMP_UGT: 6010 // fabs(X) u> 0.0 --> X u!= 0.0 6011 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6012 6013 case FCmpInst::FCMP_OLE: 6014 // fabs(X) <= 0.0 --> X == 0.0 6015 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6016 6017 case FCmpInst::FCMP_ULE: 6018 // fabs(X) u<= 0.0 --> X u== 0.0 6019 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6020 6021 case FCmpInst::FCMP_OGE: 6022 // fabs(X) >= 0.0 --> !isnan(X) 6023 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6024 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6025 6026 case FCmpInst::FCMP_ULT: 6027 // fabs(X) u< 0.0 --> isnan(X) 6028 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6029 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6030 6031 case FCmpInst::FCMP_OEQ: 6032 case FCmpInst::FCMP_UEQ: 6033 case FCmpInst::FCMP_ONE: 6034 case FCmpInst::FCMP_UNE: 6035 case FCmpInst::FCMP_ORD: 6036 case FCmpInst::FCMP_UNO: 6037 // Look through the fabs() because it doesn't change anything but the sign. 6038 // fabs(X) == 0.0 --> X == 0.0, 6039 // fabs(X) != 0.0 --> X != 0.0 6040 // isnan(fabs(X)) --> isnan(X) 6041 // !isnan(fabs(X) --> !isnan(X) 6042 return replacePredAndOp0(&I, I.getPredicate(), X); 6043 6044 default: 6045 return nullptr; 6046 } 6047 } 6048 6049 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 6050 bool Changed = false; 6051 6052 /// Orders the operands of the compare so that they are listed from most 6053 /// complex to least complex. This puts constants before unary operators, 6054 /// before binary operators. 6055 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6056 I.swapOperands(); 6057 Changed = true; 6058 } 6059 6060 const CmpInst::Predicate Pred = I.getPredicate(); 6061 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6062 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6063 SQ.getWithInstruction(&I))) 6064 return replaceInstUsesWith(I, V); 6065 6066 // Simplify 'fcmp pred X, X' 6067 Type *OpType = Op0->getType(); 6068 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6069 if (Op0 == Op1) { 6070 switch (Pred) { 6071 default: break; 6072 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6073 case FCmpInst::FCMP_ULT: // True if unordered or less than 6074 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6075 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6076 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6077 I.setPredicate(FCmpInst::FCMP_UNO); 6078 I.setOperand(1, Constant::getNullValue(OpType)); 6079 return &I; 6080 6081 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6082 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6083 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6084 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6085 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6086 I.setPredicate(FCmpInst::FCMP_ORD); 6087 I.setOperand(1, Constant::getNullValue(OpType)); 6088 return &I; 6089 } 6090 } 6091 6092 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6093 // then canonicalize the operand to 0.0. 6094 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6095 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6096 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6097 6098 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6099 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6100 } 6101 6102 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6103 Value *X, *Y; 6104 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6105 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6106 6107 // Test if the FCmpInst instruction is used exclusively by a select as 6108 // part of a minimum or maximum operation. If so, refrain from doing 6109 // any other folding. This helps out other analyses which understand 6110 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6111 // and CodeGen. And in this case, at least one of the comparison 6112 // operands has at least one user besides the compare (the select), 6113 // which would often largely negate the benefit of folding anyway. 6114 if (I.hasOneUse()) 6115 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6116 Value *A, *B; 6117 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6118 if (SPR.Flavor != SPF_UNKNOWN) 6119 return nullptr; 6120 } 6121 6122 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6123 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6124 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6125 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6126 6127 // Handle fcmp with instruction LHS and constant RHS. 6128 Instruction *LHSI; 6129 Constant *RHSC; 6130 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6131 switch (LHSI->getOpcode()) { 6132 case Instruction::PHI: 6133 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6134 // block. If in the same block, we're encouraging jump threading. If 6135 // not, we are just pessimizing the code by making an i1 phi. 6136 if (LHSI->getParent() == I.getParent()) 6137 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6138 return NV; 6139 break; 6140 case Instruction::SIToFP: 6141 case Instruction::UIToFP: 6142 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6143 return NV; 6144 break; 6145 case Instruction::FDiv: 6146 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6147 return NV; 6148 break; 6149 case Instruction::Load: 6150 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6151 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6152 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6153 !cast<LoadInst>(LHSI)->isVolatile()) 6154 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6155 return Res; 6156 break; 6157 } 6158 } 6159 6160 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6161 return R; 6162 6163 if (match(Op0, m_FNeg(m_Value(X)))) { 6164 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6165 Constant *C; 6166 if (match(Op1, m_Constant(C))) { 6167 Constant *NegC = ConstantExpr::getFNeg(C); 6168 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6169 } 6170 } 6171 6172 if (match(Op0, m_FPExt(m_Value(X)))) { 6173 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6174 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6175 return new FCmpInst(Pred, X, Y, "", &I); 6176 6177 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6178 const APFloat *C; 6179 if (match(Op1, m_APFloat(C))) { 6180 const fltSemantics &FPSem = 6181 X->getType()->getScalarType()->getFltSemantics(); 6182 bool Lossy; 6183 APFloat TruncC = *C; 6184 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6185 6186 // Avoid lossy conversions and denormals. 6187 // Zero is a special case that's OK to convert. 6188 APFloat Fabs = TruncC; 6189 Fabs.clearSign(); 6190 if (!Lossy && 6191 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6192 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6193 return new FCmpInst(Pred, X, NewC, "", &I); 6194 } 6195 } 6196 } 6197 6198 if (I.getType()->isVectorTy()) 6199 if (Instruction *Res = foldVectorCmp(I, Builder)) 6200 return Res; 6201 6202 return Changed ? &I : nullptr; 6203 } 6204