1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isNullValue()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOneValue()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnesValue()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// Given a signed integer type and a set of known zero and one bits, compute 99 /// the maximum and minimum values that could have the specified known zero and 100 /// known one bits, returning them in Min/Max. 101 /// TODO: Move to method on KnownBits struct? 102 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 103 APInt &Min, APInt &Max) { 104 assert(Known.getBitWidth() == Min.getBitWidth() && 105 Known.getBitWidth() == Max.getBitWidth() && 106 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 107 APInt UnknownBits = ~(Known.Zero|Known.One); 108 109 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 110 // bit if it is unknown. 111 Min = Known.One; 112 Max = Known.One|UnknownBits; 113 114 if (UnknownBits.isNegative()) { // Sign bit is unknown 115 Min.setSignBit(); 116 Max.clearSignBit(); 117 } 118 } 119 120 /// Given an unsigned integer type and a set of known zero and one bits, compute 121 /// the maximum and minimum values that could have the specified known zero and 122 /// known one bits, returning them in Min/Max. 123 /// TODO: Move to method on KnownBits struct? 124 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 125 APInt &Min, APInt &Max) { 126 assert(Known.getBitWidth() == Min.getBitWidth() && 127 Known.getBitWidth() == Max.getBitWidth() && 128 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 129 APInt UnknownBits = ~(Known.Zero|Known.One); 130 131 // The minimum value is when the unknown bits are all zeros. 132 Min = Known.One; 133 // The maximum value is when the unknown bits are all ones. 134 Max = Known.One|UnknownBits; 135 } 136 137 /// This is called when we see this pattern: 138 /// cmp pred (load (gep GV, ...)), cmpcst 139 /// where GV is a global variable with a constant initializer. Try to simplify 140 /// this into some simple computation that does not need the load. For example 141 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 142 /// 143 /// If AndCst is non-null, then the loaded value is masked with that constant 144 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 145 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 146 GlobalVariable *GV, 147 CmpInst &ICI, 148 ConstantInt *AndCst) { 149 Constant *Init = GV->getInitializer(); 150 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 151 return nullptr; 152 153 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 154 // Don't blow up on huge arrays. 155 if (ArrayElementCount > MaxArraySizeForCombine) 156 return nullptr; 157 158 // There are many forms of this optimization we can handle, for now, just do 159 // the simple index into a single-dimensional array. 160 // 161 // Require: GEP GV, 0, i {{, constant indices}} 162 if (GEP->getNumOperands() < 3 || 163 !isa<ConstantInt>(GEP->getOperand(1)) || 164 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 165 isa<Constant>(GEP->getOperand(2))) 166 return nullptr; 167 168 // Check that indices after the variable are constants and in-range for the 169 // type they index. Collect the indices. This is typically for arrays of 170 // structs. 171 SmallVector<unsigned, 4> LaterIndices; 172 173 Type *EltTy = Init->getType()->getArrayElementType(); 174 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 175 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 176 if (!Idx) return nullptr; // Variable index. 177 178 uint64_t IdxVal = Idx->getZExtValue(); 179 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 180 181 if (StructType *STy = dyn_cast<StructType>(EltTy)) 182 EltTy = STy->getElementType(IdxVal); 183 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 184 if (IdxVal >= ATy->getNumElements()) return nullptr; 185 EltTy = ATy->getElementType(); 186 } else { 187 return nullptr; // Unknown type. 188 } 189 190 LaterIndices.push_back(IdxVal); 191 } 192 193 enum { Overdefined = -3, Undefined = -2 }; 194 195 // Variables for our state machines. 196 197 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 198 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 199 // and 87 is the second (and last) index. FirstTrueElement is -2 when 200 // undefined, otherwise set to the first true element. SecondTrueElement is 201 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 202 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 203 204 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 205 // form "i != 47 & i != 87". Same state transitions as for true elements. 206 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 207 208 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 209 /// define a state machine that triggers for ranges of values that the index 210 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 211 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 212 /// index in the range (inclusive). We use -2 for undefined here because we 213 /// use relative comparisons and don't want 0-1 to match -1. 214 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 215 216 // MagicBitvector - This is a magic bitvector where we set a bit if the 217 // comparison is true for element 'i'. If there are 64 elements or less in 218 // the array, this will fully represent all the comparison results. 219 uint64_t MagicBitvector = 0; 220 221 // Scan the array and see if one of our patterns matches. 222 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 223 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 224 Constant *Elt = Init->getAggregateElement(i); 225 if (!Elt) return nullptr; 226 227 // If this is indexing an array of structures, get the structure element. 228 if (!LaterIndices.empty()) 229 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 230 231 // If the element is masked, handle it. 232 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 233 234 // Find out if the comparison would be true or false for the i'th element. 235 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 236 CompareRHS, DL, &TLI); 237 // If the result is undef for this element, ignore it. 238 if (isa<UndefValue>(C)) { 239 // Extend range state machines to cover this element in case there is an 240 // undef in the middle of the range. 241 if (TrueRangeEnd == (int)i-1) 242 TrueRangeEnd = i; 243 if (FalseRangeEnd == (int)i-1) 244 FalseRangeEnd = i; 245 continue; 246 } 247 248 // If we can't compute the result for any of the elements, we have to give 249 // up evaluating the entire conditional. 250 if (!isa<ConstantInt>(C)) return nullptr; 251 252 // Otherwise, we know if the comparison is true or false for this element, 253 // update our state machines. 254 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 255 256 // State machine for single/double/range index comparison. 257 if (IsTrueForElt) { 258 // Update the TrueElement state machine. 259 if (FirstTrueElement == Undefined) 260 FirstTrueElement = TrueRangeEnd = i; // First true element. 261 else { 262 // Update double-compare state machine. 263 if (SecondTrueElement == Undefined) 264 SecondTrueElement = i; 265 else 266 SecondTrueElement = Overdefined; 267 268 // Update range state machine. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 else 272 TrueRangeEnd = Overdefined; 273 } 274 } else { 275 // Update the FalseElement state machine. 276 if (FirstFalseElement == Undefined) 277 FirstFalseElement = FalseRangeEnd = i; // First false element. 278 else { 279 // Update double-compare state machine. 280 if (SecondFalseElement == Undefined) 281 SecondFalseElement = i; 282 else 283 SecondFalseElement = Overdefined; 284 285 // Update range state machine. 286 if (FalseRangeEnd == (int)i-1) 287 FalseRangeEnd = i; 288 else 289 FalseRangeEnd = Overdefined; 290 } 291 } 292 293 // If this element is in range, update our magic bitvector. 294 if (i < 64 && IsTrueForElt) 295 MagicBitvector |= 1ULL << i; 296 297 // If all of our states become overdefined, bail out early. Since the 298 // predicate is expensive, only check it every 8 elements. This is only 299 // really useful for really huge arrays. 300 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 301 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 302 FalseRangeEnd == Overdefined) 303 return nullptr; 304 } 305 306 // Now that we've scanned the entire array, emit our new comparison(s). We 307 // order the state machines in complexity of the generated code. 308 Value *Idx = GEP->getOperand(2); 309 310 // If the index is larger than the pointer size of the target, truncate the 311 // index down like the GEP would do implicitly. We don't have to do this for 312 // an inbounds GEP because the index can't be out of range. 313 if (!GEP->isInBounds()) { 314 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 315 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 316 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 317 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 318 } 319 320 // If the comparison is only true for one or two elements, emit direct 321 // comparisons. 322 if (SecondTrueElement != Overdefined) { 323 // None true -> false. 324 if (FirstTrueElement == Undefined) 325 return replaceInstUsesWith(ICI, Builder.getFalse()); 326 327 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 328 329 // True for one element -> 'i == 47'. 330 if (SecondTrueElement == Undefined) 331 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 332 333 // True for two elements -> 'i == 47 | i == 72'. 334 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 335 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 336 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 337 return BinaryOperator::CreateOr(C1, C2); 338 } 339 340 // If the comparison is only false for one or two elements, emit direct 341 // comparisons. 342 if (SecondFalseElement != Overdefined) { 343 // None false -> true. 344 if (FirstFalseElement == Undefined) 345 return replaceInstUsesWith(ICI, Builder.getTrue()); 346 347 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 348 349 // False for one element -> 'i != 47'. 350 if (SecondFalseElement == Undefined) 351 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 352 353 // False for two elements -> 'i != 47 & i != 72'. 354 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 355 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 356 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 357 return BinaryOperator::CreateAnd(C1, C2); 358 } 359 360 // If the comparison can be replaced with a range comparison for the elements 361 // where it is true, emit the range check. 362 if (TrueRangeEnd != Overdefined) { 363 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 364 365 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 366 if (FirstTrueElement) { 367 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 368 Idx = Builder.CreateAdd(Idx, Offs); 369 } 370 371 Value *End = ConstantInt::get(Idx->getType(), 372 TrueRangeEnd-FirstTrueElement+1); 373 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 374 } 375 376 // False range check. 377 if (FalseRangeEnd != Overdefined) { 378 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 379 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 380 if (FirstFalseElement) { 381 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 382 Idx = Builder.CreateAdd(Idx, Offs); 383 } 384 385 Value *End = ConstantInt::get(Idx->getType(), 386 FalseRangeEnd-FirstFalseElement); 387 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 388 } 389 390 // If a magic bitvector captures the entire comparison state 391 // of this load, replace it with computation that does: 392 // ((magic_cst >> i) & 1) != 0 393 { 394 Type *Ty = nullptr; 395 396 // Look for an appropriate type: 397 // - The type of Idx if the magic fits 398 // - The smallest fitting legal type 399 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 400 Ty = Idx->getType(); 401 else 402 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 403 404 if (Ty) { 405 Value *V = Builder.CreateIntCast(Idx, Ty, false); 406 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 407 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 408 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 409 } 410 } 411 412 return nullptr; 413 } 414 415 /// Return a value that can be used to compare the *offset* implied by a GEP to 416 /// zero. For example, if we have &A[i], we want to return 'i' for 417 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 418 /// are involved. The above expression would also be legal to codegen as 419 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 420 /// This latter form is less amenable to optimization though, and we are allowed 421 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 422 /// 423 /// If we can't emit an optimized form for this expression, this returns null. 424 /// 425 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 426 const DataLayout &DL) { 427 gep_type_iterator GTI = gep_type_begin(GEP); 428 429 // Check to see if this gep only has a single variable index. If so, and if 430 // any constant indices are a multiple of its scale, then we can compute this 431 // in terms of the scale of the variable index. For example, if the GEP 432 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 433 // because the expression will cross zero at the same point. 434 unsigned i, e = GEP->getNumOperands(); 435 int64_t Offset = 0; 436 for (i = 1; i != e; ++i, ++GTI) { 437 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 438 // Compute the aggregate offset of constant indices. 439 if (CI->isZero()) continue; 440 441 // Handle a struct index, which adds its field offset to the pointer. 442 if (StructType *STy = GTI.getStructTypeOrNull()) { 443 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 444 } else { 445 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 446 Offset += Size*CI->getSExtValue(); 447 } 448 } else { 449 // Found our variable index. 450 break; 451 } 452 } 453 454 // If there are no variable indices, we must have a constant offset, just 455 // evaluate it the general way. 456 if (i == e) return nullptr; 457 458 Value *VariableIdx = GEP->getOperand(i); 459 // Determine the scale factor of the variable element. For example, this is 460 // 4 if the variable index is into an array of i32. 461 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 462 463 // Verify that there are no other variable indices. If so, emit the hard way. 464 for (++i, ++GTI; i != e; ++i, ++GTI) { 465 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 466 if (!CI) return nullptr; 467 468 // Compute the aggregate offset of constant indices. 469 if (CI->isZero()) continue; 470 471 // Handle a struct index, which adds its field offset to the pointer. 472 if (StructType *STy = GTI.getStructTypeOrNull()) { 473 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 474 } else { 475 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 476 Offset += Size*CI->getSExtValue(); 477 } 478 } 479 480 // Okay, we know we have a single variable index, which must be a 481 // pointer/array/vector index. If there is no offset, life is simple, return 482 // the index. 483 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 484 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 485 if (Offset == 0) { 486 // Cast to intptrty in case a truncation occurs. If an extension is needed, 487 // we don't need to bother extending: the extension won't affect where the 488 // computation crosses zero. 489 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 490 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 491 } 492 return VariableIdx; 493 } 494 495 // Otherwise, there is an index. The computation we will do will be modulo 496 // the pointer size. 497 Offset = SignExtend64(Offset, IntPtrWidth); 498 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 499 500 // To do this transformation, any constant index must be a multiple of the 501 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 502 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 503 // multiple of the variable scale. 504 int64_t NewOffs = Offset / (int64_t)VariableScale; 505 if (Offset != NewOffs*(int64_t)VariableScale) 506 return nullptr; 507 508 // Okay, we can do this evaluation. Start by converting the index to intptr. 509 if (VariableIdx->getType() != IntPtrTy) 510 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 511 true /*Signed*/); 512 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 513 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 514 } 515 516 /// Returns true if we can rewrite Start as a GEP with pointer Base 517 /// and some integer offset. The nodes that need to be re-written 518 /// for this transformation will be added to Explored. 519 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 520 const DataLayout &DL, 521 SetVector<Value *> &Explored) { 522 SmallVector<Value *, 16> WorkList(1, Start); 523 Explored.insert(Base); 524 525 // The following traversal gives us an order which can be used 526 // when doing the final transformation. Since in the final 527 // transformation we create the PHI replacement instructions first, 528 // we don't have to get them in any particular order. 529 // 530 // However, for other instructions we will have to traverse the 531 // operands of an instruction first, which means that we have to 532 // do a post-order traversal. 533 while (!WorkList.empty()) { 534 SetVector<PHINode *> PHIs; 535 536 while (!WorkList.empty()) { 537 if (Explored.size() >= 100) 538 return false; 539 540 Value *V = WorkList.back(); 541 542 if (Explored.count(V) != 0) { 543 WorkList.pop_back(); 544 continue; 545 } 546 547 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 548 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 549 // We've found some value that we can't explore which is different from 550 // the base. Therefore we can't do this transformation. 551 return false; 552 553 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 554 auto *CI = dyn_cast<CastInst>(V); 555 if (!CI->isNoopCast(DL)) 556 return false; 557 558 if (Explored.count(CI->getOperand(0)) == 0) 559 WorkList.push_back(CI->getOperand(0)); 560 } 561 562 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 563 // We're limiting the GEP to having one index. This will preserve 564 // the original pointer type. We could handle more cases in the 565 // future. 566 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 567 GEP->getType() != Start->getType()) 568 return false; 569 570 if (Explored.count(GEP->getOperand(0)) == 0) 571 WorkList.push_back(GEP->getOperand(0)); 572 } 573 574 if (WorkList.back() == V) { 575 WorkList.pop_back(); 576 // We've finished visiting this node, mark it as such. 577 Explored.insert(V); 578 } 579 580 if (auto *PN = dyn_cast<PHINode>(V)) { 581 // We cannot transform PHIs on unsplittable basic blocks. 582 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 583 return false; 584 Explored.insert(PN); 585 PHIs.insert(PN); 586 } 587 } 588 589 // Explore the PHI nodes further. 590 for (auto *PN : PHIs) 591 for (Value *Op : PN->incoming_values()) 592 if (Explored.count(Op) == 0) 593 WorkList.push_back(Op); 594 } 595 596 // Make sure that we can do this. Since we can't insert GEPs in a basic 597 // block before a PHI node, we can't easily do this transformation if 598 // we have PHI node users of transformed instructions. 599 for (Value *Val : Explored) { 600 for (Value *Use : Val->uses()) { 601 602 auto *PHI = dyn_cast<PHINode>(Use); 603 auto *Inst = dyn_cast<Instruction>(Val); 604 605 if (Inst == Base || Inst == PHI || !Inst || !PHI || 606 Explored.count(PHI) == 0) 607 continue; 608 609 if (PHI->getParent() == Inst->getParent()) 610 return false; 611 } 612 } 613 return true; 614 } 615 616 // Sets the appropriate insert point on Builder where we can add 617 // a replacement Instruction for V (if that is possible). 618 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 619 bool Before = true) { 620 if (auto *PHI = dyn_cast<PHINode>(V)) { 621 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 622 return; 623 } 624 if (auto *I = dyn_cast<Instruction>(V)) { 625 if (!Before) 626 I = &*std::next(I->getIterator()); 627 Builder.SetInsertPoint(I); 628 return; 629 } 630 if (auto *A = dyn_cast<Argument>(V)) { 631 // Set the insertion point in the entry block. 632 BasicBlock &Entry = A->getParent()->getEntryBlock(); 633 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 634 return; 635 } 636 // Otherwise, this is a constant and we don't need to set a new 637 // insertion point. 638 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 639 } 640 641 /// Returns a re-written value of Start as an indexed GEP using Base as a 642 /// pointer. 643 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 644 const DataLayout &DL, 645 SetVector<Value *> &Explored) { 646 // Perform all the substitutions. This is a bit tricky because we can 647 // have cycles in our use-def chains. 648 // 1. Create the PHI nodes without any incoming values. 649 // 2. Create all the other values. 650 // 3. Add the edges for the PHI nodes. 651 // 4. Emit GEPs to get the original pointers. 652 // 5. Remove the original instructions. 653 Type *IndexType = IntegerType::get( 654 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 655 656 DenseMap<Value *, Value *> NewInsts; 657 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 658 659 // Create the new PHI nodes, without adding any incoming values. 660 for (Value *Val : Explored) { 661 if (Val == Base) 662 continue; 663 // Create empty phi nodes. This avoids cyclic dependencies when creating 664 // the remaining instructions. 665 if (auto *PHI = dyn_cast<PHINode>(Val)) 666 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 667 PHI->getName() + ".idx", PHI); 668 } 669 IRBuilder<> Builder(Base->getContext()); 670 671 // Create all the other instructions. 672 for (Value *Val : Explored) { 673 674 if (NewInsts.find(Val) != NewInsts.end()) 675 continue; 676 677 if (auto *CI = dyn_cast<CastInst>(Val)) { 678 // Don't get rid of the intermediate variable here; the store can grow 679 // the map which will invalidate the reference to the input value. 680 Value *V = NewInsts[CI->getOperand(0)]; 681 NewInsts[CI] = V; 682 continue; 683 } 684 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 685 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 686 : GEP->getOperand(1); 687 setInsertionPoint(Builder, GEP); 688 // Indices might need to be sign extended. GEPs will magically do 689 // this, but we need to do it ourselves here. 690 if (Index->getType()->getScalarSizeInBits() != 691 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 692 Index = Builder.CreateSExtOrTrunc( 693 Index, NewInsts[GEP->getOperand(0)]->getType(), 694 GEP->getOperand(0)->getName() + ".sext"); 695 } 696 697 auto *Op = NewInsts[GEP->getOperand(0)]; 698 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 699 NewInsts[GEP] = Index; 700 else 701 NewInsts[GEP] = Builder.CreateNSWAdd( 702 Op, Index, GEP->getOperand(0)->getName() + ".add"); 703 continue; 704 } 705 if (isa<PHINode>(Val)) 706 continue; 707 708 llvm_unreachable("Unexpected instruction type"); 709 } 710 711 // Add the incoming values to the PHI nodes. 712 for (Value *Val : Explored) { 713 if (Val == Base) 714 continue; 715 // All the instructions have been created, we can now add edges to the 716 // phi nodes. 717 if (auto *PHI = dyn_cast<PHINode>(Val)) { 718 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 719 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 720 Value *NewIncoming = PHI->getIncomingValue(I); 721 722 if (NewInsts.find(NewIncoming) != NewInsts.end()) 723 NewIncoming = NewInsts[NewIncoming]; 724 725 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 726 } 727 } 728 } 729 730 for (Value *Val : Explored) { 731 if (Val == Base) 732 continue; 733 734 // Depending on the type, for external users we have to emit 735 // a GEP or a GEP + ptrtoint. 736 setInsertionPoint(Builder, Val, false); 737 738 // If required, create an inttoptr instruction for Base. 739 Value *NewBase = Base; 740 if (!Base->getType()->isPointerTy()) 741 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 742 Start->getName() + "to.ptr"); 743 744 Value *GEP = Builder.CreateInBoundsGEP( 745 Start->getType()->getPointerElementType(), NewBase, 746 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 747 748 if (!Val->getType()->isPointerTy()) { 749 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 750 Val->getName() + ".conv"); 751 GEP = Cast; 752 } 753 Val->replaceAllUsesWith(GEP); 754 } 755 756 return NewInsts[Start]; 757 } 758 759 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 760 /// the input Value as a constant indexed GEP. Returns a pair containing 761 /// the GEPs Pointer and Index. 762 static std::pair<Value *, Value *> 763 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 764 Type *IndexType = IntegerType::get(V->getContext(), 765 DL.getIndexTypeSizeInBits(V->getType())); 766 767 Constant *Index = ConstantInt::getNullValue(IndexType); 768 while (true) { 769 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 770 // We accept only inbouds GEPs here to exclude the possibility of 771 // overflow. 772 if (!GEP->isInBounds()) 773 break; 774 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 775 GEP->getType() == V->getType()) { 776 V = GEP->getOperand(0); 777 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 778 Index = ConstantExpr::getAdd( 779 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 780 continue; 781 } 782 break; 783 } 784 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 785 if (!CI->isNoopCast(DL)) 786 break; 787 V = CI->getOperand(0); 788 continue; 789 } 790 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 791 if (!CI->isNoopCast(DL)) 792 break; 793 V = CI->getOperand(0); 794 continue; 795 } 796 break; 797 } 798 return {V, Index}; 799 } 800 801 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 802 /// We can look through PHIs, GEPs and casts in order to determine a common base 803 /// between GEPLHS and RHS. 804 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 805 ICmpInst::Predicate Cond, 806 const DataLayout &DL) { 807 // FIXME: Support vector of pointers. 808 if (GEPLHS->getType()->isVectorTy()) 809 return nullptr; 810 811 if (!GEPLHS->hasAllConstantIndices()) 812 return nullptr; 813 814 // Make sure the pointers have the same type. 815 if (GEPLHS->getType() != RHS->getType()) 816 return nullptr; 817 818 Value *PtrBase, *Index; 819 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 820 821 // The set of nodes that will take part in this transformation. 822 SetVector<Value *> Nodes; 823 824 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 825 return nullptr; 826 827 // We know we can re-write this as 828 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 829 // Since we've only looked through inbouds GEPs we know that we 830 // can't have overflow on either side. We can therefore re-write 831 // this as: 832 // OFFSET1 cmp OFFSET2 833 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 834 835 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 836 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 837 // offset. Since Index is the offset of LHS to the base pointer, we will now 838 // compare the offsets instead of comparing the pointers. 839 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 840 } 841 842 /// Fold comparisons between a GEP instruction and something else. At this point 843 /// we know that the GEP is on the LHS of the comparison. 844 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 845 ICmpInst::Predicate Cond, 846 Instruction &I) { 847 // Don't transform signed compares of GEPs into index compares. Even if the 848 // GEP is inbounds, the final add of the base pointer can have signed overflow 849 // and would change the result of the icmp. 850 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 851 // the maximum signed value for the pointer type. 852 if (ICmpInst::isSigned(Cond)) 853 return nullptr; 854 855 // Look through bitcasts and addrspacecasts. We do not however want to remove 856 // 0 GEPs. 857 if (!isa<GetElementPtrInst>(RHS)) 858 RHS = RHS->stripPointerCasts(); 859 860 Value *PtrBase = GEPLHS->getOperand(0); 861 // FIXME: Support vector pointer GEPs. 862 if (PtrBase == RHS && GEPLHS->isInBounds() && 863 !GEPLHS->getType()->isVectorTy()) { 864 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 865 // This transformation (ignoring the base and scales) is valid because we 866 // know pointers can't overflow since the gep is inbounds. See if we can 867 // output an optimized form. 868 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 869 870 // If not, synthesize the offset the hard way. 871 if (!Offset) 872 Offset = EmitGEPOffset(GEPLHS); 873 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 874 Constant::getNullValue(Offset->getType())); 875 } 876 877 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 878 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 879 !NullPointerIsDefined(I.getFunction(), 880 RHS->getType()->getPointerAddressSpace())) { 881 // For most address spaces, an allocation can't be placed at null, but null 882 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 883 // the only valid inbounds address derived from null, is null itself. 884 // Thus, we have four cases to consider: 885 // 1) Base == nullptr, Offset == 0 -> inbounds, null 886 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 887 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 888 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 889 // 890 // (Note if we're indexing a type of size 0, that simply collapses into one 891 // of the buckets above.) 892 // 893 // In general, we're allowed to make values less poison (i.e. remove 894 // sources of full UB), so in this case, we just select between the two 895 // non-poison cases (1 and 4 above). 896 // 897 // For vectors, we apply the same reasoning on a per-lane basis. 898 auto *Base = GEPLHS->getPointerOperand(); 899 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 900 int NumElts = GEPLHS->getType()->getVectorNumElements(); 901 Base = Builder.CreateVectorSplat(NumElts, Base); 902 } 903 return new ICmpInst(Cond, Base, 904 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 905 cast<Constant>(RHS), Base->getType())); 906 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 907 // If the base pointers are different, but the indices are the same, just 908 // compare the base pointer. 909 if (PtrBase != GEPRHS->getOperand(0)) { 910 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 911 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 912 GEPRHS->getOperand(0)->getType(); 913 if (IndicesTheSame) 914 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 915 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 916 IndicesTheSame = false; 917 break; 918 } 919 920 // If all indices are the same, just compare the base pointers. 921 Type *BaseType = GEPLHS->getOperand(0)->getType(); 922 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 923 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 924 925 // If we're comparing GEPs with two base pointers that only differ in type 926 // and both GEPs have only constant indices or just one use, then fold 927 // the compare with the adjusted indices. 928 // FIXME: Support vector of pointers. 929 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 930 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 931 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 932 PtrBase->stripPointerCasts() == 933 GEPRHS->getOperand(0)->stripPointerCasts() && 934 !GEPLHS->getType()->isVectorTy()) { 935 Value *LOffset = EmitGEPOffset(GEPLHS); 936 Value *ROffset = EmitGEPOffset(GEPRHS); 937 938 // If we looked through an addrspacecast between different sized address 939 // spaces, the LHS and RHS pointers are different sized 940 // integers. Truncate to the smaller one. 941 Type *LHSIndexTy = LOffset->getType(); 942 Type *RHSIndexTy = ROffset->getType(); 943 if (LHSIndexTy != RHSIndexTy) { 944 if (LHSIndexTy->getPrimitiveSizeInBits() < 945 RHSIndexTy->getPrimitiveSizeInBits()) { 946 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 947 } else 948 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 949 } 950 951 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 952 LOffset, ROffset); 953 return replaceInstUsesWith(I, Cmp); 954 } 955 956 // Otherwise, the base pointers are different and the indices are 957 // different. Try convert this to an indexed compare by looking through 958 // PHIs/casts. 959 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 960 } 961 962 // If one of the GEPs has all zero indices, recurse. 963 // FIXME: Handle vector of pointers. 964 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 965 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 966 ICmpInst::getSwappedPredicate(Cond), I); 967 968 // If the other GEP has all zero indices, recurse. 969 // FIXME: Handle vector of pointers. 970 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 971 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 972 973 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 974 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 975 // If the GEPs only differ by one index, compare it. 976 unsigned NumDifferences = 0; // Keep track of # differences. 977 unsigned DiffOperand = 0; // The operand that differs. 978 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 979 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 980 Type *LHSType = GEPLHS->getOperand(i)->getType(); 981 Type *RHSType = GEPRHS->getOperand(i)->getType(); 982 // FIXME: Better support for vector of pointers. 983 if (LHSType->getPrimitiveSizeInBits() != 984 RHSType->getPrimitiveSizeInBits() || 985 (GEPLHS->getType()->isVectorTy() && 986 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 987 // Irreconcilable differences. 988 NumDifferences = 2; 989 break; 990 } 991 992 if (NumDifferences++) break; 993 DiffOperand = i; 994 } 995 996 if (NumDifferences == 0) // SAME GEP? 997 return replaceInstUsesWith(I, // No comparison is needed here. 998 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 999 1000 else if (NumDifferences == 1 && GEPsInBounds) { 1001 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1002 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1003 // Make sure we do a signed comparison here. 1004 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1005 } 1006 } 1007 1008 // Only lower this if the icmp is the only user of the GEP or if we expect 1009 // the result to fold to a constant! 1010 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1011 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1012 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1013 Value *L = EmitGEPOffset(GEPLHS); 1014 Value *R = EmitGEPOffset(GEPRHS); 1015 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1016 } 1017 } 1018 1019 // Try convert this to an indexed compare by looking through PHIs/casts as a 1020 // last resort. 1021 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1022 } 1023 1024 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1025 const AllocaInst *Alloca, 1026 const Value *Other) { 1027 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1028 1029 // It would be tempting to fold away comparisons between allocas and any 1030 // pointer not based on that alloca (e.g. an argument). However, even 1031 // though such pointers cannot alias, they can still compare equal. 1032 // 1033 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1034 // doesn't escape we can argue that it's impossible to guess its value, and we 1035 // can therefore act as if any such guesses are wrong. 1036 // 1037 // The code below checks that the alloca doesn't escape, and that it's only 1038 // used in a comparison once (the current instruction). The 1039 // single-comparison-use condition ensures that we're trivially folding all 1040 // comparisons against the alloca consistently, and avoids the risk of 1041 // erroneously folding a comparison of the pointer with itself. 1042 1043 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1044 1045 SmallVector<const Use *, 32> Worklist; 1046 for (const Use &U : Alloca->uses()) { 1047 if (Worklist.size() >= MaxIter) 1048 return nullptr; 1049 Worklist.push_back(&U); 1050 } 1051 1052 unsigned NumCmps = 0; 1053 while (!Worklist.empty()) { 1054 assert(Worklist.size() <= MaxIter); 1055 const Use *U = Worklist.pop_back_val(); 1056 const Value *V = U->getUser(); 1057 --MaxIter; 1058 1059 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1060 isa<SelectInst>(V)) { 1061 // Track the uses. 1062 } else if (isa<LoadInst>(V)) { 1063 // Loading from the pointer doesn't escape it. 1064 continue; 1065 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1066 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1067 if (SI->getValueOperand() == U->get()) 1068 return nullptr; 1069 continue; 1070 } else if (isa<ICmpInst>(V)) { 1071 if (NumCmps++) 1072 return nullptr; // Found more than one cmp. 1073 continue; 1074 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1075 switch (Intrin->getIntrinsicID()) { 1076 // These intrinsics don't escape or compare the pointer. Memset is safe 1077 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1078 // we don't allow stores, so src cannot point to V. 1079 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1080 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1081 continue; 1082 default: 1083 return nullptr; 1084 } 1085 } else { 1086 return nullptr; 1087 } 1088 for (const Use &U : V->uses()) { 1089 if (Worklist.size() >= MaxIter) 1090 return nullptr; 1091 Worklist.push_back(&U); 1092 } 1093 } 1094 1095 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1096 return replaceInstUsesWith( 1097 ICI, 1098 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1099 } 1100 1101 /// Fold "icmp pred (X+C), X". 1102 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1103 ICmpInst::Predicate Pred) { 1104 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1105 // so the values can never be equal. Similarly for all other "or equals" 1106 // operators. 1107 assert(!!C && "C should not be zero!"); 1108 1109 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1110 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1111 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1112 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1113 Constant *R = ConstantInt::get(X->getType(), 1114 APInt::getMaxValue(C.getBitWidth()) - C); 1115 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1116 } 1117 1118 // (X+1) >u X --> X <u (0-1) --> X != 255 1119 // (X+2) >u X --> X <u (0-2) --> X <u 254 1120 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1121 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1122 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1123 ConstantInt::get(X->getType(), -C)); 1124 1125 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1126 1127 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1128 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1129 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1130 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1131 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1132 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1133 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1134 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1135 ConstantInt::get(X->getType(), SMax - C)); 1136 1137 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1138 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1139 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1140 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1141 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1142 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1143 1144 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1145 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1146 ConstantInt::get(X->getType(), SMax - (C - 1))); 1147 } 1148 1149 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1150 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1151 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1152 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1153 const APInt &AP1, 1154 const APInt &AP2) { 1155 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1156 1157 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1158 if (I.getPredicate() == I.ICMP_NE) 1159 Pred = CmpInst::getInversePredicate(Pred); 1160 return new ICmpInst(Pred, LHS, RHS); 1161 }; 1162 1163 // Don't bother doing any work for cases which InstSimplify handles. 1164 if (AP2.isNullValue()) 1165 return nullptr; 1166 1167 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1168 if (IsAShr) { 1169 if (AP2.isAllOnesValue()) 1170 return nullptr; 1171 if (AP2.isNegative() != AP1.isNegative()) 1172 return nullptr; 1173 if (AP2.sgt(AP1)) 1174 return nullptr; 1175 } 1176 1177 if (!AP1) 1178 // 'A' must be large enough to shift out the highest set bit. 1179 return getICmp(I.ICMP_UGT, A, 1180 ConstantInt::get(A->getType(), AP2.logBase2())); 1181 1182 if (AP1 == AP2) 1183 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1184 1185 int Shift; 1186 if (IsAShr && AP1.isNegative()) 1187 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1188 else 1189 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1190 1191 if (Shift > 0) { 1192 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1193 // There are multiple solutions if we are comparing against -1 and the LHS 1194 // of the ashr is not a power of two. 1195 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1196 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1197 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1198 } else if (AP1 == AP2.lshr(Shift)) { 1199 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1200 } 1201 } 1202 1203 // Shifting const2 will never be equal to const1. 1204 // FIXME: This should always be handled by InstSimplify? 1205 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1206 return replaceInstUsesWith(I, TorF); 1207 } 1208 1209 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1210 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1211 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1212 const APInt &AP1, 1213 const APInt &AP2) { 1214 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1215 1216 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1217 if (I.getPredicate() == I.ICMP_NE) 1218 Pred = CmpInst::getInversePredicate(Pred); 1219 return new ICmpInst(Pred, LHS, RHS); 1220 }; 1221 1222 // Don't bother doing any work for cases which InstSimplify handles. 1223 if (AP2.isNullValue()) 1224 return nullptr; 1225 1226 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1227 1228 if (!AP1 && AP2TrailingZeros != 0) 1229 return getICmp( 1230 I.ICMP_UGE, A, 1231 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1232 1233 if (AP1 == AP2) 1234 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1235 1236 // Get the distance between the lowest bits that are set. 1237 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1238 1239 if (Shift > 0 && AP2.shl(Shift) == AP1) 1240 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1241 1242 // Shifting const2 will never be equal to const1. 1243 // FIXME: This should always be handled by InstSimplify? 1244 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1245 return replaceInstUsesWith(I, TorF); 1246 } 1247 1248 /// The caller has matched a pattern of the form: 1249 /// I = icmp ugt (add (add A, B), CI2), CI1 1250 /// If this is of the form: 1251 /// sum = a + b 1252 /// if (sum+128 >u 255) 1253 /// Then replace it with llvm.sadd.with.overflow.i8. 1254 /// 1255 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1256 ConstantInt *CI2, ConstantInt *CI1, 1257 InstCombiner &IC) { 1258 // The transformation we're trying to do here is to transform this into an 1259 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1260 // with a narrower add, and discard the add-with-constant that is part of the 1261 // range check (if we can't eliminate it, this isn't profitable). 1262 1263 // In order to eliminate the add-with-constant, the compare can be its only 1264 // use. 1265 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1266 if (!AddWithCst->hasOneUse()) 1267 return nullptr; 1268 1269 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1270 if (!CI2->getValue().isPowerOf2()) 1271 return nullptr; 1272 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1273 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1274 return nullptr; 1275 1276 // The width of the new add formed is 1 more than the bias. 1277 ++NewWidth; 1278 1279 // Check to see that CI1 is an all-ones value with NewWidth bits. 1280 if (CI1->getBitWidth() == NewWidth || 1281 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1282 return nullptr; 1283 1284 // This is only really a signed overflow check if the inputs have been 1285 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1286 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1287 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1288 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1289 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1290 return nullptr; 1291 1292 // In order to replace the original add with a narrower 1293 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1294 // and truncates that discard the high bits of the add. Verify that this is 1295 // the case. 1296 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1297 for (User *U : OrigAdd->users()) { 1298 if (U == AddWithCst) 1299 continue; 1300 1301 // Only accept truncates for now. We would really like a nice recursive 1302 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1303 // chain to see which bits of a value are actually demanded. If the 1304 // original add had another add which was then immediately truncated, we 1305 // could still do the transformation. 1306 TruncInst *TI = dyn_cast<TruncInst>(U); 1307 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1308 return nullptr; 1309 } 1310 1311 // If the pattern matches, truncate the inputs to the narrower type and 1312 // use the sadd_with_overflow intrinsic to efficiently compute both the 1313 // result and the overflow bit. 1314 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1315 Function *F = Intrinsic::getDeclaration( 1316 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1317 1318 InstCombiner::BuilderTy &Builder = IC.Builder; 1319 1320 // Put the new code above the original add, in case there are any uses of the 1321 // add between the add and the compare. 1322 Builder.SetInsertPoint(OrigAdd); 1323 1324 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1325 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1326 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1327 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1328 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1329 1330 // The inner add was the result of the narrow add, zero extended to the 1331 // wider type. Replace it with the result computed by the intrinsic. 1332 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1333 1334 // The original icmp gets replaced with the overflow value. 1335 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1336 } 1337 1338 /// If we have: 1339 /// icmp eq/ne (urem/srem %x, %y), 0 1340 /// iff %y is a power-of-two, we can replace this with a bit test: 1341 /// icmp eq/ne (and %x, (add %y, -1)), 0 1342 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1343 // This fold is only valid for equality predicates. 1344 if (!I.isEquality()) 1345 return nullptr; 1346 ICmpInst::Predicate Pred; 1347 Value *X, *Y, *Zero; 1348 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1349 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1350 return nullptr; 1351 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1352 return nullptr; 1353 // This may increase instruction count, we don't enforce that Y is a constant. 1354 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1355 Value *Masked = Builder.CreateAnd(X, Mask); 1356 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1357 } 1358 1359 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1360 /// by one-less-than-bitwidth into a sign test on the original value. 1361 Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) { 1362 Instruction *Val; 1363 ICmpInst::Predicate Pred; 1364 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1365 return nullptr; 1366 1367 Value *X; 1368 Type *XTy; 1369 1370 Constant *C; 1371 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1372 XTy = X->getType(); 1373 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1374 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1375 APInt(XBitWidth, XBitWidth - 1)))) 1376 return nullptr; 1377 } else if (isa<BinaryOperator>(Val) && 1378 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1379 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1380 /*AnalyzeForSignBitExtraction=*/true))) { 1381 XTy = X->getType(); 1382 } else 1383 return nullptr; 1384 1385 return ICmpInst::Create(Instruction::ICmp, 1386 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1387 : ICmpInst::ICMP_SLT, 1388 X, ConstantInt::getNullValue(XTy)); 1389 } 1390 1391 // Handle icmp pred X, 0 1392 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1393 CmpInst::Predicate Pred = Cmp.getPredicate(); 1394 if (!match(Cmp.getOperand(1), m_Zero())) 1395 return nullptr; 1396 1397 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1398 if (Pred == ICmpInst::ICMP_SGT) { 1399 Value *A, *B; 1400 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1401 if (SPR.Flavor == SPF_SMIN) { 1402 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1403 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1404 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1405 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1406 } 1407 } 1408 1409 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1410 return New; 1411 1412 // Given: 1413 // icmp eq/ne (urem %x, %y), 0 1414 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1415 // icmp eq/ne %x, 0 1416 Value *X, *Y; 1417 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1418 ICmpInst::isEquality(Pred)) { 1419 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1420 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1421 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1422 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1423 } 1424 1425 return nullptr; 1426 } 1427 1428 /// Fold icmp Pred X, C. 1429 /// TODO: This code structure does not make sense. The saturating add fold 1430 /// should be moved to some other helper and extended as noted below (it is also 1431 /// possible that code has been made unnecessary - do we canonicalize IR to 1432 /// overflow/saturating intrinsics or not?). 1433 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1434 // Match the following pattern, which is a common idiom when writing 1435 // overflow-safe integer arithmetic functions. The source performs an addition 1436 // in wider type and explicitly checks for overflow using comparisons against 1437 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1438 // 1439 // TODO: This could probably be generalized to handle other overflow-safe 1440 // operations if we worked out the formulas to compute the appropriate magic 1441 // constants. 1442 // 1443 // sum = a + b 1444 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1445 CmpInst::Predicate Pred = Cmp.getPredicate(); 1446 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1447 Value *A, *B; 1448 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1449 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1450 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1451 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1452 return Res; 1453 1454 return nullptr; 1455 } 1456 1457 /// Canonicalize icmp instructions based on dominating conditions. 1458 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1459 // This is a cheap/incomplete check for dominance - just match a single 1460 // predecessor with a conditional branch. 1461 BasicBlock *CmpBB = Cmp.getParent(); 1462 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1463 if (!DomBB) 1464 return nullptr; 1465 1466 Value *DomCond; 1467 BasicBlock *TrueBB, *FalseBB; 1468 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1469 return nullptr; 1470 1471 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1472 "Predecessor block does not point to successor?"); 1473 1474 // The branch should get simplified. Don't bother simplifying this condition. 1475 if (TrueBB == FalseBB) 1476 return nullptr; 1477 1478 // Try to simplify this compare to T/F based on the dominating condition. 1479 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1480 if (Imp) 1481 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1482 1483 CmpInst::Predicate Pred = Cmp.getPredicate(); 1484 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1485 ICmpInst::Predicate DomPred; 1486 const APInt *C, *DomC; 1487 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1488 match(Y, m_APInt(C))) { 1489 // We have 2 compares of a variable with constants. Calculate the constant 1490 // ranges of those compares to see if we can transform the 2nd compare: 1491 // DomBB: 1492 // DomCond = icmp DomPred X, DomC 1493 // br DomCond, CmpBB, FalseBB 1494 // CmpBB: 1495 // Cmp = icmp Pred X, C 1496 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1497 ConstantRange DominatingCR = 1498 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1499 : ConstantRange::makeExactICmpRegion( 1500 CmpInst::getInversePredicate(DomPred), *DomC); 1501 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1502 ConstantRange Difference = DominatingCR.difference(CR); 1503 if (Intersection.isEmptySet()) 1504 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1505 if (Difference.isEmptySet()) 1506 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1507 1508 // Canonicalizing a sign bit comparison that gets used in a branch, 1509 // pessimizes codegen by generating branch on zero instruction instead 1510 // of a test and branch. So we avoid canonicalizing in such situations 1511 // because test and branch instruction has better branch displacement 1512 // than compare and branch instruction. 1513 bool UnusedBit; 1514 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1515 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1516 return nullptr; 1517 1518 if (const APInt *EqC = Intersection.getSingleElement()) 1519 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1520 if (const APInt *NeC = Difference.getSingleElement()) 1521 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1522 } 1523 1524 return nullptr; 1525 } 1526 1527 /// Fold icmp (trunc X, Y), C. 1528 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1529 TruncInst *Trunc, 1530 const APInt &C) { 1531 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1532 Value *X = Trunc->getOperand(0); 1533 if (C.isOneValue() && C.getBitWidth() > 1) { 1534 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1535 Value *V = nullptr; 1536 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1537 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1538 ConstantInt::get(V->getType(), 1)); 1539 } 1540 1541 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1542 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1543 // of the high bits truncated out of x are known. 1544 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1545 SrcBits = X->getType()->getScalarSizeInBits(); 1546 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1547 1548 // If all the high bits are known, we can do this xform. 1549 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1550 // Pull in the high bits from known-ones set. 1551 APInt NewRHS = C.zext(SrcBits); 1552 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1553 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1554 } 1555 } 1556 1557 return nullptr; 1558 } 1559 1560 /// Fold icmp (xor X, Y), C. 1561 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1562 BinaryOperator *Xor, 1563 const APInt &C) { 1564 Value *X = Xor->getOperand(0); 1565 Value *Y = Xor->getOperand(1); 1566 const APInt *XorC; 1567 if (!match(Y, m_APInt(XorC))) 1568 return nullptr; 1569 1570 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1571 // fold the xor. 1572 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1573 bool TrueIfSigned = false; 1574 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1575 1576 // If the sign bit of the XorCst is not set, there is no change to 1577 // the operation, just stop using the Xor. 1578 if (!XorC->isNegative()) 1579 return replaceOperand(Cmp, 0, X); 1580 1581 // Emit the opposite comparison. 1582 if (TrueIfSigned) 1583 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1584 ConstantInt::getAllOnesValue(X->getType())); 1585 else 1586 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1587 ConstantInt::getNullValue(X->getType())); 1588 } 1589 1590 if (Xor->hasOneUse()) { 1591 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1592 if (!Cmp.isEquality() && XorC->isSignMask()) { 1593 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1594 : Cmp.getSignedPredicate(); 1595 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1596 } 1597 1598 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1599 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1600 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1601 : Cmp.getSignedPredicate(); 1602 Pred = Cmp.getSwappedPredicate(Pred); 1603 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1604 } 1605 } 1606 1607 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1608 if (Pred == ICmpInst::ICMP_UGT) { 1609 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1610 if (*XorC == ~C && (C + 1).isPowerOf2()) 1611 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1612 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1613 if (*XorC == C && (C + 1).isPowerOf2()) 1614 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1615 } 1616 if (Pred == ICmpInst::ICMP_ULT) { 1617 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1618 if (*XorC == -C && C.isPowerOf2()) 1619 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1620 ConstantInt::get(X->getType(), ~C)); 1621 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1622 if (*XorC == C && (-C).isPowerOf2()) 1623 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1624 ConstantInt::get(X->getType(), ~C)); 1625 } 1626 return nullptr; 1627 } 1628 1629 /// Fold icmp (and (sh X, Y), C2), C1. 1630 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1631 const APInt &C1, const APInt &C2) { 1632 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1633 if (!Shift || !Shift->isShift()) 1634 return nullptr; 1635 1636 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1637 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1638 // code produced by the clang front-end, for bitfield access. 1639 // This seemingly simple opportunity to fold away a shift turns out to be 1640 // rather complicated. See PR17827 for details. 1641 unsigned ShiftOpcode = Shift->getOpcode(); 1642 bool IsShl = ShiftOpcode == Instruction::Shl; 1643 const APInt *C3; 1644 if (match(Shift->getOperand(1), m_APInt(C3))) { 1645 APInt NewAndCst, NewCmpCst; 1646 bool AnyCmpCstBitsShiftedOut; 1647 if (ShiftOpcode == Instruction::Shl) { 1648 // For a left shift, we can fold if the comparison is not signed. We can 1649 // also fold a signed comparison if the mask value and comparison value 1650 // are not negative. These constraints may not be obvious, but we can 1651 // prove that they are correct using an SMT solver. 1652 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1653 return nullptr; 1654 1655 NewCmpCst = C1.lshr(*C3); 1656 NewAndCst = C2.lshr(*C3); 1657 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1658 } else if (ShiftOpcode == Instruction::LShr) { 1659 // For a logical right shift, we can fold if the comparison is not signed. 1660 // We can also fold a signed comparison if the shifted mask value and the 1661 // shifted comparison value are not negative. These constraints may not be 1662 // obvious, but we can prove that they are correct using an SMT solver. 1663 NewCmpCst = C1.shl(*C3); 1664 NewAndCst = C2.shl(*C3); 1665 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1666 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1667 return nullptr; 1668 } else { 1669 // For an arithmetic shift, check that both constants don't use (in a 1670 // signed sense) the top bits being shifted out. 1671 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1672 NewCmpCst = C1.shl(*C3); 1673 NewAndCst = C2.shl(*C3); 1674 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1675 if (NewAndCst.ashr(*C3) != C2) 1676 return nullptr; 1677 } 1678 1679 if (AnyCmpCstBitsShiftedOut) { 1680 // If we shifted bits out, the fold is not going to work out. As a 1681 // special case, check to see if this means that the result is always 1682 // true or false now. 1683 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1684 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1685 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1686 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1687 } else { 1688 Value *NewAnd = Builder.CreateAnd( 1689 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1690 return new ICmpInst(Cmp.getPredicate(), 1691 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1692 } 1693 } 1694 1695 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1696 // preferable because it allows the C2 << Y expression to be hoisted out of a 1697 // loop if Y is invariant and X is not. 1698 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1699 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1700 // Compute C2 << Y. 1701 Value *NewShift = 1702 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1703 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1704 1705 // Compute X & (C2 << Y). 1706 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1707 return replaceOperand(Cmp, 0, NewAnd); 1708 } 1709 1710 return nullptr; 1711 } 1712 1713 /// Fold icmp (and X, C2), C1. 1714 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1715 BinaryOperator *And, 1716 const APInt &C1) { 1717 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1718 1719 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1720 // TODO: We canonicalize to the longer form for scalars because we have 1721 // better analysis/folds for icmp, and codegen may be better with icmp. 1722 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1723 match(And->getOperand(1), m_One())) 1724 return new TruncInst(And->getOperand(0), Cmp.getType()); 1725 1726 const APInt *C2; 1727 Value *X; 1728 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1729 return nullptr; 1730 1731 // Don't perform the following transforms if the AND has multiple uses 1732 if (!And->hasOneUse()) 1733 return nullptr; 1734 1735 if (Cmp.isEquality() && C1.isNullValue()) { 1736 // Restrict this fold to single-use 'and' (PR10267). 1737 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1738 if (C2->isSignMask()) { 1739 Constant *Zero = Constant::getNullValue(X->getType()); 1740 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1741 return new ICmpInst(NewPred, X, Zero); 1742 } 1743 1744 // Restrict this fold only for single-use 'and' (PR10267). 1745 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1746 if ((~(*C2) + 1).isPowerOf2()) { 1747 Constant *NegBOC = 1748 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1749 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1750 return new ICmpInst(NewPred, X, NegBOC); 1751 } 1752 } 1753 1754 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1755 // the input width without changing the value produced, eliminate the cast: 1756 // 1757 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1758 // 1759 // We can do this transformation if the constants do not have their sign bits 1760 // set or if it is an equality comparison. Extending a relational comparison 1761 // when we're checking the sign bit would not work. 1762 Value *W; 1763 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1764 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1765 // TODO: Is this a good transform for vectors? Wider types may reduce 1766 // throughput. Should this transform be limited (even for scalars) by using 1767 // shouldChangeType()? 1768 if (!Cmp.getType()->isVectorTy()) { 1769 Type *WideType = W->getType(); 1770 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1771 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1772 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1773 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1774 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1775 } 1776 } 1777 1778 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1779 return I; 1780 1781 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1782 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1783 // 1784 // iff pred isn't signed 1785 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1786 match(And->getOperand(1), m_One())) { 1787 Constant *One = cast<Constant>(And->getOperand(1)); 1788 Value *Or = And->getOperand(0); 1789 Value *A, *B, *LShr; 1790 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1791 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1792 unsigned UsesRemoved = 0; 1793 if (And->hasOneUse()) 1794 ++UsesRemoved; 1795 if (Or->hasOneUse()) 1796 ++UsesRemoved; 1797 if (LShr->hasOneUse()) 1798 ++UsesRemoved; 1799 1800 // Compute A & ((1 << B) | 1) 1801 Value *NewOr = nullptr; 1802 if (auto *C = dyn_cast<Constant>(B)) { 1803 if (UsesRemoved >= 1) 1804 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1805 } else { 1806 if (UsesRemoved >= 3) 1807 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1808 /*HasNUW=*/true), 1809 One, Or->getName()); 1810 } 1811 if (NewOr) { 1812 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1813 return replaceOperand(Cmp, 0, NewAnd); 1814 } 1815 } 1816 } 1817 1818 return nullptr; 1819 } 1820 1821 /// Fold icmp (and X, Y), C. 1822 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1823 BinaryOperator *And, 1824 const APInt &C) { 1825 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1826 return I; 1827 1828 // TODO: These all require that Y is constant too, so refactor with the above. 1829 1830 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1831 Value *X = And->getOperand(0); 1832 Value *Y = And->getOperand(1); 1833 if (auto *LI = dyn_cast<LoadInst>(X)) 1834 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1835 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1836 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1837 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1838 ConstantInt *C2 = cast<ConstantInt>(Y); 1839 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1840 return Res; 1841 } 1842 1843 if (!Cmp.isEquality()) 1844 return nullptr; 1845 1846 // X & -C == -C -> X > u ~C 1847 // X & -C != -C -> X <= u ~C 1848 // iff C is a power of 2 1849 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1850 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1851 : CmpInst::ICMP_ULE; 1852 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1853 } 1854 1855 // (X & C2) == 0 -> (trunc X) >= 0 1856 // (X & C2) != 0 -> (trunc X) < 0 1857 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1858 const APInt *C2; 1859 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1860 int32_t ExactLogBase2 = C2->exactLogBase2(); 1861 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1862 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1863 if (And->getType()->isVectorTy()) 1864 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1865 Value *Trunc = Builder.CreateTrunc(X, NTy); 1866 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1867 : CmpInst::ICMP_SLT; 1868 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1869 } 1870 } 1871 1872 return nullptr; 1873 } 1874 1875 /// Fold icmp (or X, Y), C. 1876 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1877 const APInt &C) { 1878 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1879 if (C.isOneValue()) { 1880 // icmp slt signum(V) 1 --> icmp slt V, 1 1881 Value *V = nullptr; 1882 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1883 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1884 ConstantInt::get(V->getType(), 1)); 1885 } 1886 1887 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1888 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) { 1889 // X | C == C --> X <=u C 1890 // X | C != C --> X >u C 1891 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1892 if ((C + 1).isPowerOf2()) { 1893 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1894 return new ICmpInst(Pred, OrOp0, OrOp1); 1895 } 1896 // More general: are all bits outside of a mask constant set or not set? 1897 // X | C == C --> (X & ~C) == 0 1898 // X | C != C --> (X & ~C) != 0 1899 if (Or->hasOneUse()) { 1900 Value *A = Builder.CreateAnd(OrOp0, ~C); 1901 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType())); 1902 } 1903 } 1904 1905 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1906 return nullptr; 1907 1908 Value *P, *Q; 1909 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1910 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1911 // -> and (icmp eq P, null), (icmp eq Q, null). 1912 Value *CmpP = 1913 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1914 Value *CmpQ = 1915 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1916 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1917 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1918 } 1919 1920 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1921 // a shorter form that has more potential to be folded even further. 1922 Value *X1, *X2, *X3, *X4; 1923 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1924 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1925 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1926 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1927 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1928 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1929 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1930 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1931 } 1932 1933 return nullptr; 1934 } 1935 1936 /// Fold icmp (mul X, Y), C. 1937 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1938 BinaryOperator *Mul, 1939 const APInt &C) { 1940 const APInt *MulC; 1941 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1942 return nullptr; 1943 1944 // If this is a test of the sign bit and the multiply is sign-preserving with 1945 // a constant operand, use the multiply LHS operand instead. 1946 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1947 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1948 if (MulC->isNegative()) 1949 Pred = ICmpInst::getSwappedPredicate(Pred); 1950 return new ICmpInst(Pred, Mul->getOperand(0), 1951 Constant::getNullValue(Mul->getType())); 1952 } 1953 1954 return nullptr; 1955 } 1956 1957 /// Fold icmp (shl 1, Y), C. 1958 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1959 const APInt &C) { 1960 Value *Y; 1961 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1962 return nullptr; 1963 1964 Type *ShiftType = Shl->getType(); 1965 unsigned TypeBits = C.getBitWidth(); 1966 bool CIsPowerOf2 = C.isPowerOf2(); 1967 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1968 if (Cmp.isUnsigned()) { 1969 // (1 << Y) pred C -> Y pred Log2(C) 1970 if (!CIsPowerOf2) { 1971 // (1 << Y) < 30 -> Y <= 4 1972 // (1 << Y) <= 30 -> Y <= 4 1973 // (1 << Y) >= 30 -> Y > 4 1974 // (1 << Y) > 30 -> Y > 4 1975 if (Pred == ICmpInst::ICMP_ULT) 1976 Pred = ICmpInst::ICMP_ULE; 1977 else if (Pred == ICmpInst::ICMP_UGE) 1978 Pred = ICmpInst::ICMP_UGT; 1979 } 1980 1981 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1982 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1983 unsigned CLog2 = C.logBase2(); 1984 if (CLog2 == TypeBits - 1) { 1985 if (Pred == ICmpInst::ICMP_UGE) 1986 Pred = ICmpInst::ICMP_EQ; 1987 else if (Pred == ICmpInst::ICMP_ULT) 1988 Pred = ICmpInst::ICMP_NE; 1989 } 1990 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1991 } else if (Cmp.isSigned()) { 1992 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1993 if (C.isAllOnesValue()) { 1994 // (1 << Y) <= -1 -> Y == 31 1995 if (Pred == ICmpInst::ICMP_SLE) 1996 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1997 1998 // (1 << Y) > -1 -> Y != 31 1999 if (Pred == ICmpInst::ICMP_SGT) 2000 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2001 } else if (!C) { 2002 // (1 << Y) < 0 -> Y == 31 2003 // (1 << Y) <= 0 -> Y == 31 2004 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2005 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2006 2007 // (1 << Y) >= 0 -> Y != 31 2008 // (1 << Y) > 0 -> Y != 31 2009 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2010 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2011 } 2012 } else if (Cmp.isEquality() && CIsPowerOf2) { 2013 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2014 } 2015 2016 return nullptr; 2017 } 2018 2019 /// Fold icmp (shl X, Y), C. 2020 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 2021 BinaryOperator *Shl, 2022 const APInt &C) { 2023 const APInt *ShiftVal; 2024 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2025 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2026 2027 const APInt *ShiftAmt; 2028 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2029 return foldICmpShlOne(Cmp, Shl, C); 2030 2031 // Check that the shift amount is in range. If not, don't perform undefined 2032 // shifts. When the shift is visited, it will be simplified. 2033 unsigned TypeBits = C.getBitWidth(); 2034 if (ShiftAmt->uge(TypeBits)) 2035 return nullptr; 2036 2037 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2038 Value *X = Shl->getOperand(0); 2039 Type *ShType = Shl->getType(); 2040 2041 // NSW guarantees that we are only shifting out sign bits from the high bits, 2042 // so we can ASHR the compare constant without needing a mask and eliminate 2043 // the shift. 2044 if (Shl->hasNoSignedWrap()) { 2045 if (Pred == ICmpInst::ICMP_SGT) { 2046 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2047 APInt ShiftedC = C.ashr(*ShiftAmt); 2048 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2049 } 2050 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2051 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2052 APInt ShiftedC = C.ashr(*ShiftAmt); 2053 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2054 } 2055 if (Pred == ICmpInst::ICMP_SLT) { 2056 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2057 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2058 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2059 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2060 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2061 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2062 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2063 } 2064 // If this is a signed comparison to 0 and the shift is sign preserving, 2065 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2066 // do that if we're sure to not continue on in this function. 2067 if (isSignTest(Pred, C)) 2068 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2069 } 2070 2071 // NUW guarantees that we are only shifting out zero bits from the high bits, 2072 // so we can LSHR the compare constant without needing a mask and eliminate 2073 // the shift. 2074 if (Shl->hasNoUnsignedWrap()) { 2075 if (Pred == ICmpInst::ICMP_UGT) { 2076 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2077 APInt ShiftedC = C.lshr(*ShiftAmt); 2078 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2079 } 2080 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2081 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2082 APInt ShiftedC = C.lshr(*ShiftAmt); 2083 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2084 } 2085 if (Pred == ICmpInst::ICMP_ULT) { 2086 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2087 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2088 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2089 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2090 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2091 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2092 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2093 } 2094 } 2095 2096 if (Cmp.isEquality() && Shl->hasOneUse()) { 2097 // Strength-reduce the shift into an 'and'. 2098 Constant *Mask = ConstantInt::get( 2099 ShType, 2100 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2101 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2102 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2103 return new ICmpInst(Pred, And, LShrC); 2104 } 2105 2106 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2107 bool TrueIfSigned = false; 2108 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2109 // (X << 31) <s 0 --> (X & 1) != 0 2110 Constant *Mask = ConstantInt::get( 2111 ShType, 2112 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2113 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2114 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2115 And, Constant::getNullValue(ShType)); 2116 } 2117 2118 // Simplify 'shl' inequality test into 'and' equality test. 2119 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2120 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2121 if ((C + 1).isPowerOf2() && 2122 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2123 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2124 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2125 : ICmpInst::ICMP_NE, 2126 And, Constant::getNullValue(ShType)); 2127 } 2128 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2129 if (C.isPowerOf2() && 2130 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2131 Value *And = 2132 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2133 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2134 : ICmpInst::ICMP_NE, 2135 And, Constant::getNullValue(ShType)); 2136 } 2137 } 2138 2139 // Transform (icmp pred iM (shl iM %v, N), C) 2140 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2141 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2142 // This enables us to get rid of the shift in favor of a trunc that may be 2143 // free on the target. It has the additional benefit of comparing to a 2144 // smaller constant that may be more target-friendly. 2145 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2146 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2147 DL.isLegalInteger(TypeBits - Amt)) { 2148 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2149 if (ShType->isVectorTy()) 2150 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2151 Constant *NewC = 2152 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2153 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2154 } 2155 2156 return nullptr; 2157 } 2158 2159 /// Fold icmp ({al}shr X, Y), C. 2160 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2161 BinaryOperator *Shr, 2162 const APInt &C) { 2163 // An exact shr only shifts out zero bits, so: 2164 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2165 Value *X = Shr->getOperand(0); 2166 CmpInst::Predicate Pred = Cmp.getPredicate(); 2167 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2168 C.isNullValue()) 2169 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2170 2171 const APInt *ShiftVal; 2172 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2173 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2174 2175 const APInt *ShiftAmt; 2176 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2177 return nullptr; 2178 2179 // Check that the shift amount is in range. If not, don't perform undefined 2180 // shifts. When the shift is visited it will be simplified. 2181 unsigned TypeBits = C.getBitWidth(); 2182 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2183 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2184 return nullptr; 2185 2186 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2187 bool IsExact = Shr->isExact(); 2188 Type *ShrTy = Shr->getType(); 2189 // TODO: If we could guarantee that InstSimplify would handle all of the 2190 // constant-value-based preconditions in the folds below, then we could assert 2191 // those conditions rather than checking them. This is difficult because of 2192 // undef/poison (PR34838). 2193 if (IsAShr) { 2194 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2195 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2196 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2197 APInt ShiftedC = C.shl(ShAmtVal); 2198 if (ShiftedC.ashr(ShAmtVal) == C) 2199 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2200 } 2201 if (Pred == CmpInst::ICMP_SGT) { 2202 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2203 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2204 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2205 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2206 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2207 } 2208 } else { 2209 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2210 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2211 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2212 APInt ShiftedC = C.shl(ShAmtVal); 2213 if (ShiftedC.lshr(ShAmtVal) == C) 2214 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2215 } 2216 if (Pred == CmpInst::ICMP_UGT) { 2217 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2218 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2219 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2220 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2221 } 2222 } 2223 2224 if (!Cmp.isEquality()) 2225 return nullptr; 2226 2227 // Handle equality comparisons of shift-by-constant. 2228 2229 // If the comparison constant changes with the shift, the comparison cannot 2230 // succeed (bits of the comparison constant cannot match the shifted value). 2231 // This should be known by InstSimplify and already be folded to true/false. 2232 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2233 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2234 "Expected icmp+shr simplify did not occur."); 2235 2236 // If the bits shifted out are known zero, compare the unshifted value: 2237 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2238 if (Shr->isExact()) 2239 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2240 2241 if (Shr->hasOneUse()) { 2242 // Canonicalize the shift into an 'and': 2243 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2244 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2245 Constant *Mask = ConstantInt::get(ShrTy, Val); 2246 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2247 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2248 } 2249 2250 return nullptr; 2251 } 2252 2253 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp, 2254 BinaryOperator *SRem, 2255 const APInt &C) { 2256 // Match an 'is positive' or 'is negative' comparison of remainder by a 2257 // constant power-of-2 value: 2258 // (X % pow2C) sgt/slt 0 2259 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2260 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2261 return nullptr; 2262 2263 // TODO: The one-use check is standard because we do not typically want to 2264 // create longer instruction sequences, but this might be a special-case 2265 // because srem is not good for analysis or codegen. 2266 if (!SRem->hasOneUse()) 2267 return nullptr; 2268 2269 const APInt *DivisorC; 2270 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2271 return nullptr; 2272 2273 // Mask off the sign bit and the modulo bits (low-bits). 2274 Type *Ty = SRem->getType(); 2275 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2276 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2277 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2278 2279 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2280 // bit is set. Example: 2281 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2282 if (Pred == ICmpInst::ICMP_SGT) 2283 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2284 2285 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2286 // bit is set. Example: 2287 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2288 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2289 } 2290 2291 /// Fold icmp (udiv X, Y), C. 2292 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2293 BinaryOperator *UDiv, 2294 const APInt &C) { 2295 const APInt *C2; 2296 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2297 return nullptr; 2298 2299 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2300 2301 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2302 Value *Y = UDiv->getOperand(1); 2303 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2304 assert(!C.isMaxValue() && 2305 "icmp ugt X, UINT_MAX should have been simplified already."); 2306 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2307 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2308 } 2309 2310 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2311 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2312 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2313 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2314 ConstantInt::get(Y->getType(), C2->udiv(C))); 2315 } 2316 2317 return nullptr; 2318 } 2319 2320 /// Fold icmp ({su}div X, Y), C. 2321 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2322 BinaryOperator *Div, 2323 const APInt &C) { 2324 // Fold: icmp pred ([us]div X, C2), C -> range test 2325 // Fold this div into the comparison, producing a range check. 2326 // Determine, based on the divide type, what the range is being 2327 // checked. If there is an overflow on the low or high side, remember 2328 // it, otherwise compute the range [low, hi) bounding the new value. 2329 // See: InsertRangeTest above for the kinds of replacements possible. 2330 const APInt *C2; 2331 if (!match(Div->getOperand(1), m_APInt(C2))) 2332 return nullptr; 2333 2334 // FIXME: If the operand types don't match the type of the divide 2335 // then don't attempt this transform. The code below doesn't have the 2336 // logic to deal with a signed divide and an unsigned compare (and 2337 // vice versa). This is because (x /s C2) <s C produces different 2338 // results than (x /s C2) <u C or (x /u C2) <s C or even 2339 // (x /u C2) <u C. Simply casting the operands and result won't 2340 // work. :( The if statement below tests that condition and bails 2341 // if it finds it. 2342 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2343 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2344 return nullptr; 2345 2346 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2347 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2348 // division-by-constant cases should be present, we can not assert that they 2349 // have happened before we reach this icmp instruction. 2350 if (C2->isNullValue() || C2->isOneValue() || 2351 (DivIsSigned && C2->isAllOnesValue())) 2352 return nullptr; 2353 2354 // Compute Prod = C * C2. We are essentially solving an equation of 2355 // form X / C2 = C. We solve for X by multiplying C2 and C. 2356 // By solving for X, we can turn this into a range check instead of computing 2357 // a divide. 2358 APInt Prod = C * *C2; 2359 2360 // Determine if the product overflows by seeing if the product is not equal to 2361 // the divide. Make sure we do the same kind of divide as in the LHS 2362 // instruction that we're folding. 2363 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2364 2365 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2366 2367 // If the division is known to be exact, then there is no remainder from the 2368 // divide, so the covered range size is unit, otherwise it is the divisor. 2369 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2370 2371 // Figure out the interval that is being checked. For example, a comparison 2372 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2373 // Compute this interval based on the constants involved and the signedness of 2374 // the compare/divide. This computes a half-open interval, keeping track of 2375 // whether either value in the interval overflows. After analysis each 2376 // overflow variable is set to 0 if it's corresponding bound variable is valid 2377 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2378 int LoOverflow = 0, HiOverflow = 0; 2379 APInt LoBound, HiBound; 2380 2381 if (!DivIsSigned) { // udiv 2382 // e.g. X/5 op 3 --> [15, 20) 2383 LoBound = Prod; 2384 HiOverflow = LoOverflow = ProdOV; 2385 if (!HiOverflow) { 2386 // If this is not an exact divide, then many values in the range collapse 2387 // to the same result value. 2388 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2389 } 2390 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2391 if (C.isNullValue()) { // (X / pos) op 0 2392 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2393 LoBound = -(RangeSize - 1); 2394 HiBound = RangeSize; 2395 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2396 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2397 HiOverflow = LoOverflow = ProdOV; 2398 if (!HiOverflow) 2399 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2400 } else { // (X / pos) op neg 2401 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2402 HiBound = Prod + 1; 2403 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2404 if (!LoOverflow) { 2405 APInt DivNeg = -RangeSize; 2406 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2407 } 2408 } 2409 } else if (C2->isNegative()) { // Divisor is < 0. 2410 if (Div->isExact()) 2411 RangeSize.negate(); 2412 if (C.isNullValue()) { // (X / neg) op 0 2413 // e.g. X/-5 op 0 --> [-4, 5) 2414 LoBound = RangeSize + 1; 2415 HiBound = -RangeSize; 2416 if (HiBound == *C2) { // -INTMIN = INTMIN 2417 HiOverflow = 1; // [INTMIN+1, overflow) 2418 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2419 } 2420 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2421 // e.g. X/-5 op 3 --> [-19, -14) 2422 HiBound = Prod + 1; 2423 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2424 if (!LoOverflow) 2425 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2426 } else { // (X / neg) op neg 2427 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2428 LoOverflow = HiOverflow = ProdOV; 2429 if (!HiOverflow) 2430 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2431 } 2432 2433 // Dividing by a negative swaps the condition. LT <-> GT 2434 Pred = ICmpInst::getSwappedPredicate(Pred); 2435 } 2436 2437 Value *X = Div->getOperand(0); 2438 switch (Pred) { 2439 default: llvm_unreachable("Unhandled icmp opcode!"); 2440 case ICmpInst::ICMP_EQ: 2441 if (LoOverflow && HiOverflow) 2442 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2443 if (HiOverflow) 2444 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2445 ICmpInst::ICMP_UGE, X, 2446 ConstantInt::get(Div->getType(), LoBound)); 2447 if (LoOverflow) 2448 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2449 ICmpInst::ICMP_ULT, X, 2450 ConstantInt::get(Div->getType(), HiBound)); 2451 return replaceInstUsesWith( 2452 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2453 case ICmpInst::ICMP_NE: 2454 if (LoOverflow && HiOverflow) 2455 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2456 if (HiOverflow) 2457 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2458 ICmpInst::ICMP_ULT, X, 2459 ConstantInt::get(Div->getType(), LoBound)); 2460 if (LoOverflow) 2461 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2462 ICmpInst::ICMP_UGE, X, 2463 ConstantInt::get(Div->getType(), HiBound)); 2464 return replaceInstUsesWith(Cmp, 2465 insertRangeTest(X, LoBound, HiBound, 2466 DivIsSigned, false)); 2467 case ICmpInst::ICMP_ULT: 2468 case ICmpInst::ICMP_SLT: 2469 if (LoOverflow == +1) // Low bound is greater than input range. 2470 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2471 if (LoOverflow == -1) // Low bound is less than input range. 2472 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2473 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2474 case ICmpInst::ICMP_UGT: 2475 case ICmpInst::ICMP_SGT: 2476 if (HiOverflow == +1) // High bound greater than input range. 2477 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2478 if (HiOverflow == -1) // High bound less than input range. 2479 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2480 if (Pred == ICmpInst::ICMP_UGT) 2481 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2482 ConstantInt::get(Div->getType(), HiBound)); 2483 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2484 ConstantInt::get(Div->getType(), HiBound)); 2485 } 2486 2487 return nullptr; 2488 } 2489 2490 /// Fold icmp (sub X, Y), C. 2491 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2492 BinaryOperator *Sub, 2493 const APInt &C) { 2494 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2495 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2496 const APInt *C2; 2497 APInt SubResult; 2498 2499 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2500 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2501 return new ICmpInst(Cmp.getPredicate(), Y, 2502 ConstantInt::get(Y->getType(), 0)); 2503 2504 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2505 if (match(X, m_APInt(C2)) && 2506 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2507 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2508 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2509 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2510 ConstantInt::get(Y->getType(), SubResult)); 2511 2512 // The following transforms are only worth it if the only user of the subtract 2513 // is the icmp. 2514 if (!Sub->hasOneUse()) 2515 return nullptr; 2516 2517 if (Sub->hasNoSignedWrap()) { 2518 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2519 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2520 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2521 2522 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2523 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2524 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2525 2526 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2527 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2528 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2529 2530 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2531 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2532 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2533 } 2534 2535 if (!match(X, m_APInt(C2))) 2536 return nullptr; 2537 2538 // C2 - Y <u C -> (Y | (C - 1)) == C2 2539 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2540 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2541 (*C2 & (C - 1)) == (C - 1)) 2542 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2543 2544 // C2 - Y >u C -> (Y | C) != C2 2545 // iff C2 & C == C and C + 1 is a power of 2 2546 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2547 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2548 2549 return nullptr; 2550 } 2551 2552 /// Fold icmp (add X, Y), C. 2553 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2554 BinaryOperator *Add, 2555 const APInt &C) { 2556 Value *Y = Add->getOperand(1); 2557 const APInt *C2; 2558 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2559 return nullptr; 2560 2561 // Fold icmp pred (add X, C2), C. 2562 Value *X = Add->getOperand(0); 2563 Type *Ty = Add->getType(); 2564 CmpInst::Predicate Pred = Cmp.getPredicate(); 2565 2566 // If the add does not wrap, we can always adjust the compare by subtracting 2567 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2568 // are canonicalized to SGT/SLT/UGT/ULT. 2569 if ((Add->hasNoSignedWrap() && 2570 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2571 (Add->hasNoUnsignedWrap() && 2572 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2573 bool Overflow; 2574 APInt NewC = 2575 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2576 // If there is overflow, the result must be true or false. 2577 // TODO: Can we assert there is no overflow because InstSimplify always 2578 // handles those cases? 2579 if (!Overflow) 2580 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2581 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2582 } 2583 2584 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2585 const APInt &Upper = CR.getUpper(); 2586 const APInt &Lower = CR.getLower(); 2587 if (Cmp.isSigned()) { 2588 if (Lower.isSignMask()) 2589 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2590 if (Upper.isSignMask()) 2591 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2592 } else { 2593 if (Lower.isMinValue()) 2594 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2595 if (Upper.isMinValue()) 2596 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2597 } 2598 2599 if (!Add->hasOneUse()) 2600 return nullptr; 2601 2602 // X+C <u C2 -> (X & -C2) == C 2603 // iff C & (C2-1) == 0 2604 // C2 is a power of 2 2605 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2606 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2607 ConstantExpr::getNeg(cast<Constant>(Y))); 2608 2609 // X+C >u C2 -> (X & ~C2) != C 2610 // iff C & C2 == 0 2611 // C2+1 is a power of 2 2612 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2613 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2614 ConstantExpr::getNeg(cast<Constant>(Y))); 2615 2616 return nullptr; 2617 } 2618 2619 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2620 Value *&RHS, ConstantInt *&Less, 2621 ConstantInt *&Equal, 2622 ConstantInt *&Greater) { 2623 // TODO: Generalize this to work with other comparison idioms or ensure 2624 // they get canonicalized into this form. 2625 2626 // select i1 (a == b), 2627 // i32 Equal, 2628 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2629 // where Equal, Less and Greater are placeholders for any three constants. 2630 ICmpInst::Predicate PredA; 2631 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2632 !ICmpInst::isEquality(PredA)) 2633 return false; 2634 Value *EqualVal = SI->getTrueValue(); 2635 Value *UnequalVal = SI->getFalseValue(); 2636 // We still can get non-canonical predicate here, so canonicalize. 2637 if (PredA == ICmpInst::ICMP_NE) 2638 std::swap(EqualVal, UnequalVal); 2639 if (!match(EqualVal, m_ConstantInt(Equal))) 2640 return false; 2641 ICmpInst::Predicate PredB; 2642 Value *LHS2, *RHS2; 2643 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2644 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2645 return false; 2646 // We can get predicate mismatch here, so canonicalize if possible: 2647 // First, ensure that 'LHS' match. 2648 if (LHS2 != LHS) { 2649 // x sgt y <--> y slt x 2650 std::swap(LHS2, RHS2); 2651 PredB = ICmpInst::getSwappedPredicate(PredB); 2652 } 2653 if (LHS2 != LHS) 2654 return false; 2655 // We also need to canonicalize 'RHS'. 2656 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2657 // x sgt C-1 <--> x sge C <--> not(x slt C) 2658 auto FlippedStrictness = 2659 getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2)); 2660 if (!FlippedStrictness) 2661 return false; 2662 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2663 RHS2 = FlippedStrictness->second; 2664 // And kind-of perform the result swap. 2665 std::swap(Less, Greater); 2666 PredB = ICmpInst::ICMP_SLT; 2667 } 2668 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2669 } 2670 2671 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2672 SelectInst *Select, 2673 ConstantInt *C) { 2674 2675 assert(C && "Cmp RHS should be a constant int!"); 2676 // If we're testing a constant value against the result of a three way 2677 // comparison, the result can be expressed directly in terms of the 2678 // original values being compared. Note: We could possibly be more 2679 // aggressive here and remove the hasOneUse test. The original select is 2680 // really likely to simplify or sink when we remove a test of the result. 2681 Value *OrigLHS, *OrigRHS; 2682 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2683 if (Cmp.hasOneUse() && 2684 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2685 C3GreaterThan)) { 2686 assert(C1LessThan && C2Equal && C3GreaterThan); 2687 2688 bool TrueWhenLessThan = 2689 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2690 ->isAllOnesValue(); 2691 bool TrueWhenEqual = 2692 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2693 ->isAllOnesValue(); 2694 bool TrueWhenGreaterThan = 2695 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2696 ->isAllOnesValue(); 2697 2698 // This generates the new instruction that will replace the original Cmp 2699 // Instruction. Instead of enumerating the various combinations when 2700 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2701 // false, we rely on chaining of ORs and future passes of InstCombine to 2702 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2703 2704 // When none of the three constants satisfy the predicate for the RHS (C), 2705 // the entire original Cmp can be simplified to a false. 2706 Value *Cond = Builder.getFalse(); 2707 if (TrueWhenLessThan) 2708 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2709 OrigLHS, OrigRHS)); 2710 if (TrueWhenEqual) 2711 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2712 OrigLHS, OrigRHS)); 2713 if (TrueWhenGreaterThan) 2714 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2715 OrigLHS, OrigRHS)); 2716 2717 return replaceInstUsesWith(Cmp, Cond); 2718 } 2719 return nullptr; 2720 } 2721 2722 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2723 InstCombiner::BuilderTy &Builder) { 2724 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2725 if (!Bitcast) 2726 return nullptr; 2727 2728 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2729 Value *Op1 = Cmp.getOperand(1); 2730 Value *BCSrcOp = Bitcast->getOperand(0); 2731 2732 // Make sure the bitcast doesn't change the number of vector elements. 2733 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2734 Bitcast->getDestTy()->getScalarSizeInBits()) { 2735 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2736 Value *X; 2737 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2738 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2739 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2740 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2741 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2742 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2743 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2744 match(Op1, m_Zero())) 2745 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2746 2747 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2748 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2749 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2750 2751 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2752 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2753 return new ICmpInst(Pred, X, 2754 ConstantInt::getAllOnesValue(X->getType())); 2755 } 2756 2757 // Zero-equality checks are preserved through unsigned floating-point casts: 2758 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2759 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2760 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2761 if (Cmp.isEquality() && match(Op1, m_Zero())) 2762 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2763 } 2764 2765 // Test to see if the operands of the icmp are casted versions of other 2766 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2767 if (Bitcast->getType()->isPointerTy() && 2768 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2769 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2770 // so eliminate it as well. 2771 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2772 Op1 = BC2->getOperand(0); 2773 2774 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2775 return new ICmpInst(Pred, BCSrcOp, Op1); 2776 } 2777 2778 // Folding: icmp <pred> iN X, C 2779 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2780 // and C is a splat of a K-bit pattern 2781 // and SC is a constant vector = <C', C', C', ..., C'> 2782 // Into: 2783 // %E = extractelement <M x iK> %vec, i32 C' 2784 // icmp <pred> iK %E, trunc(C) 2785 const APInt *C; 2786 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2787 !Bitcast->getType()->isIntegerTy() || 2788 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2789 return nullptr; 2790 2791 Value *Vec; 2792 Constant *Mask; 2793 if (match(BCSrcOp, 2794 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { 2795 // Check whether every element of Mask is the same constant 2796 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { 2797 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2798 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2799 if (C->isSplat(EltTy->getBitWidth())) { 2800 // Fold the icmp based on the value of C 2801 // If C is M copies of an iK sized bit pattern, 2802 // then: 2803 // => %E = extractelement <N x iK> %vec, i32 Elem 2804 // icmp <pred> iK %SplatVal, <pattern> 2805 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2806 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2807 return new ICmpInst(Pred, Extract, NewC); 2808 } 2809 } 2810 } 2811 return nullptr; 2812 } 2813 2814 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2815 /// where X is some kind of instruction. 2816 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2817 const APInt *C; 2818 if (!match(Cmp.getOperand(1), m_APInt(C))) 2819 return nullptr; 2820 2821 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2822 switch (BO->getOpcode()) { 2823 case Instruction::Xor: 2824 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2825 return I; 2826 break; 2827 case Instruction::And: 2828 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2829 return I; 2830 break; 2831 case Instruction::Or: 2832 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2833 return I; 2834 break; 2835 case Instruction::Mul: 2836 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2837 return I; 2838 break; 2839 case Instruction::Shl: 2840 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2841 return I; 2842 break; 2843 case Instruction::LShr: 2844 case Instruction::AShr: 2845 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2846 return I; 2847 break; 2848 case Instruction::SRem: 2849 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 2850 return I; 2851 break; 2852 case Instruction::UDiv: 2853 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2854 return I; 2855 LLVM_FALLTHROUGH; 2856 case Instruction::SDiv: 2857 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2858 return I; 2859 break; 2860 case Instruction::Sub: 2861 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2862 return I; 2863 break; 2864 case Instruction::Add: 2865 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2866 return I; 2867 break; 2868 default: 2869 break; 2870 } 2871 // TODO: These folds could be refactored to be part of the above calls. 2872 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2873 return I; 2874 } 2875 2876 // Match against CmpInst LHS being instructions other than binary operators. 2877 2878 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2879 // For now, we only support constant integers while folding the 2880 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2881 // similar to the cases handled by binary ops above. 2882 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2883 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2884 return I; 2885 } 2886 2887 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2888 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2889 return I; 2890 } 2891 2892 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2893 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2894 return I; 2895 2896 return nullptr; 2897 } 2898 2899 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2900 /// icmp eq/ne BO, C. 2901 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2902 BinaryOperator *BO, 2903 const APInt &C) { 2904 // TODO: Some of these folds could work with arbitrary constants, but this 2905 // function is limited to scalar and vector splat constants. 2906 if (!Cmp.isEquality()) 2907 return nullptr; 2908 2909 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2910 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2911 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2912 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2913 2914 switch (BO->getOpcode()) { 2915 case Instruction::SRem: 2916 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2917 if (C.isNullValue() && BO->hasOneUse()) { 2918 const APInt *BOC; 2919 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2920 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2921 return new ICmpInst(Pred, NewRem, 2922 Constant::getNullValue(BO->getType())); 2923 } 2924 } 2925 break; 2926 case Instruction::Add: { 2927 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2928 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2929 if (BO->hasOneUse()) 2930 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 2931 } else if (C.isNullValue()) { 2932 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2933 // efficiently invertible, or if the add has just this one use. 2934 if (Value *NegVal = dyn_castNegVal(BOp1)) 2935 return new ICmpInst(Pred, BOp0, NegVal); 2936 if (Value *NegVal = dyn_castNegVal(BOp0)) 2937 return new ICmpInst(Pred, NegVal, BOp1); 2938 if (BO->hasOneUse()) { 2939 Value *Neg = Builder.CreateNeg(BOp1); 2940 Neg->takeName(BO); 2941 return new ICmpInst(Pred, BOp0, Neg); 2942 } 2943 } 2944 break; 2945 } 2946 case Instruction::Xor: 2947 if (BO->hasOneUse()) { 2948 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2949 // For the xor case, we can xor two constants together, eliminating 2950 // the explicit xor. 2951 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2952 } else if (C.isNullValue()) { 2953 // Replace ((xor A, B) != 0) with (A != B) 2954 return new ICmpInst(Pred, BOp0, BOp1); 2955 } 2956 } 2957 break; 2958 case Instruction::Sub: 2959 if (BO->hasOneUse()) { 2960 // Only check for constant LHS here, as constant RHS will be canonicalized 2961 // to add and use the fold above. 2962 if (Constant *BOC = dyn_cast<Constant>(BOp0)) { 2963 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2964 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); 2965 } else if (C.isNullValue()) { 2966 // Replace ((sub A, B) != 0) with (A != B). 2967 return new ICmpInst(Pred, BOp0, BOp1); 2968 } 2969 } 2970 break; 2971 case Instruction::Or: { 2972 const APInt *BOC; 2973 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2974 // Comparing if all bits outside of a constant mask are set? 2975 // Replace (X | C) == -1 with (X & ~C) == ~C. 2976 // This removes the -1 constant. 2977 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2978 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2979 return new ICmpInst(Pred, And, NotBOC); 2980 } 2981 break; 2982 } 2983 case Instruction::And: { 2984 const APInt *BOC; 2985 if (match(BOp1, m_APInt(BOC))) { 2986 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2987 if (C == *BOC && C.isPowerOf2()) 2988 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2989 BO, Constant::getNullValue(RHS->getType())); 2990 } 2991 break; 2992 } 2993 case Instruction::Mul: 2994 if (C.isNullValue() && BO->hasNoSignedWrap()) { 2995 const APInt *BOC; 2996 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 2997 // The trivial case (mul X, 0) is handled by InstSimplify. 2998 // General case : (mul X, C) != 0 iff X != 0 2999 // (mul X, C) == 0 iff X == 0 3000 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 3001 } 3002 } 3003 break; 3004 case Instruction::UDiv: 3005 if (C.isNullValue()) { 3006 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3007 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3008 return new ICmpInst(NewPred, BOp1, BOp0); 3009 } 3010 break; 3011 default: 3012 break; 3013 } 3014 return nullptr; 3015 } 3016 3017 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3018 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 3019 IntrinsicInst *II, 3020 const APInt &C) { 3021 Type *Ty = II->getType(); 3022 unsigned BitWidth = C.getBitWidth(); 3023 switch (II->getIntrinsicID()) { 3024 case Intrinsic::bswap: 3025 // bswap(A) == C -> A == bswap(C) 3026 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3027 ConstantInt::get(Ty, C.byteSwap())); 3028 3029 case Intrinsic::ctlz: 3030 case Intrinsic::cttz: { 3031 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3032 if (C == BitWidth) 3033 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3034 ConstantInt::getNullValue(Ty)); 3035 3036 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3037 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3038 // Limit to one use to ensure we don't increase instruction count. 3039 unsigned Num = C.getLimitedValue(BitWidth); 3040 if (Num != BitWidth && II->hasOneUse()) { 3041 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3042 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3043 : APInt::getHighBitsSet(BitWidth, Num + 1); 3044 APInt Mask2 = IsTrailing 3045 ? APInt::getOneBitSet(BitWidth, Num) 3046 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3047 return new ICmpInst(Cmp.getPredicate(), 3048 Builder.CreateAnd(II->getArgOperand(0), Mask1), 3049 ConstantInt::get(Ty, Mask2)); 3050 } 3051 break; 3052 } 3053 3054 case Intrinsic::ctpop: { 3055 // popcount(A) == 0 -> A == 0 and likewise for != 3056 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3057 bool IsZero = C.isNullValue(); 3058 if (IsZero || C == BitWidth) 3059 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3060 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); 3061 3062 break; 3063 } 3064 3065 case Intrinsic::uadd_sat: { 3066 // uadd.sat(a, b) == 0 -> (a | b) == 0 3067 if (C.isNullValue()) { 3068 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3069 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); 3070 } 3071 break; 3072 } 3073 3074 case Intrinsic::usub_sat: { 3075 // usub.sat(a, b) == 0 -> a <= b 3076 if (C.isNullValue()) { 3077 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ 3078 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3079 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3080 } 3081 break; 3082 } 3083 default: 3084 break; 3085 } 3086 3087 return nullptr; 3088 } 3089 3090 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3091 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3092 IntrinsicInst *II, 3093 const APInt &C) { 3094 if (Cmp.isEquality()) 3095 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3096 3097 Type *Ty = II->getType(); 3098 unsigned BitWidth = C.getBitWidth(); 3099 switch (II->getIntrinsicID()) { 3100 case Intrinsic::ctlz: { 3101 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3102 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3103 unsigned Num = C.getLimitedValue(); 3104 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3105 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3106 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3107 } 3108 3109 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3110 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3111 C.uge(1) && C.ule(BitWidth)) { 3112 unsigned Num = C.getLimitedValue(); 3113 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3114 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3115 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3116 } 3117 break; 3118 } 3119 case Intrinsic::cttz: { 3120 // Limit to one use to ensure we don't increase instruction count. 3121 if (!II->hasOneUse()) 3122 return nullptr; 3123 3124 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3125 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3126 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3127 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3128 Builder.CreateAnd(II->getArgOperand(0), Mask), 3129 ConstantInt::getNullValue(Ty)); 3130 } 3131 3132 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3133 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3134 C.uge(1) && C.ule(BitWidth)) { 3135 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3136 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3137 Builder.CreateAnd(II->getArgOperand(0), Mask), 3138 ConstantInt::getNullValue(Ty)); 3139 } 3140 break; 3141 } 3142 default: 3143 break; 3144 } 3145 3146 return nullptr; 3147 } 3148 3149 /// Handle icmp with constant (but not simple integer constant) RHS. 3150 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3151 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3152 Constant *RHSC = dyn_cast<Constant>(Op1); 3153 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3154 if (!RHSC || !LHSI) 3155 return nullptr; 3156 3157 switch (LHSI->getOpcode()) { 3158 case Instruction::GetElementPtr: 3159 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3160 if (RHSC->isNullValue() && 3161 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3162 return new ICmpInst( 3163 I.getPredicate(), LHSI->getOperand(0), 3164 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3165 break; 3166 case Instruction::PHI: 3167 // Only fold icmp into the PHI if the phi and icmp are in the same 3168 // block. If in the same block, we're encouraging jump threading. If 3169 // not, we are just pessimizing the code by making an i1 phi. 3170 if (LHSI->getParent() == I.getParent()) 3171 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3172 return NV; 3173 break; 3174 case Instruction::Select: { 3175 // If either operand of the select is a constant, we can fold the 3176 // comparison into the select arms, which will cause one to be 3177 // constant folded and the select turned into a bitwise or. 3178 Value *Op1 = nullptr, *Op2 = nullptr; 3179 ConstantInt *CI = nullptr; 3180 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3181 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3182 CI = dyn_cast<ConstantInt>(Op1); 3183 } 3184 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3185 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3186 CI = dyn_cast<ConstantInt>(Op2); 3187 } 3188 3189 // We only want to perform this transformation if it will not lead to 3190 // additional code. This is true if either both sides of the select 3191 // fold to a constant (in which case the icmp is replaced with a select 3192 // which will usually simplify) or this is the only user of the 3193 // select (in which case we are trading a select+icmp for a simpler 3194 // select+icmp) or all uses of the select can be replaced based on 3195 // dominance information ("Global cases"). 3196 bool Transform = false; 3197 if (Op1 && Op2) 3198 Transform = true; 3199 else if (Op1 || Op2) { 3200 // Local case 3201 if (LHSI->hasOneUse()) 3202 Transform = true; 3203 // Global cases 3204 else if (CI && !CI->isZero()) 3205 // When Op1 is constant try replacing select with second operand. 3206 // Otherwise Op2 is constant and try replacing select with first 3207 // operand. 3208 Transform = 3209 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3210 } 3211 if (Transform) { 3212 if (!Op1) 3213 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3214 I.getName()); 3215 if (!Op2) 3216 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3217 I.getName()); 3218 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3219 } 3220 break; 3221 } 3222 case Instruction::IntToPtr: 3223 // icmp pred inttoptr(X), null -> icmp pred X, 0 3224 if (RHSC->isNullValue() && 3225 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3226 return new ICmpInst( 3227 I.getPredicate(), LHSI->getOperand(0), 3228 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3229 break; 3230 3231 case Instruction::Load: 3232 // Try to optimize things like "A[i] > 4" to index computations. 3233 if (GetElementPtrInst *GEP = 3234 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3235 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3236 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3237 !cast<LoadInst>(LHSI)->isVolatile()) 3238 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3239 return Res; 3240 } 3241 break; 3242 } 3243 3244 return nullptr; 3245 } 3246 3247 /// Some comparisons can be simplified. 3248 /// In this case, we are looking for comparisons that look like 3249 /// a check for a lossy truncation. 3250 /// Folds: 3251 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3252 /// Where Mask is some pattern that produces all-ones in low bits: 3253 /// (-1 >> y) 3254 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3255 /// ~(-1 << y) 3256 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3257 /// The Mask can be a constant, too. 3258 /// For some predicates, the operands are commutative. 3259 /// For others, x can only be on a specific side. 3260 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3261 InstCombiner::BuilderTy &Builder) { 3262 ICmpInst::Predicate SrcPred; 3263 Value *X, *M, *Y; 3264 auto m_VariableMask = m_CombineOr( 3265 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3266 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3267 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3268 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3269 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3270 if (!match(&I, m_c_ICmp(SrcPred, 3271 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3272 m_Deferred(X)))) 3273 return nullptr; 3274 3275 ICmpInst::Predicate DstPred; 3276 switch (SrcPred) { 3277 case ICmpInst::Predicate::ICMP_EQ: 3278 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3279 DstPred = ICmpInst::Predicate::ICMP_ULE; 3280 break; 3281 case ICmpInst::Predicate::ICMP_NE: 3282 // x & (-1 >> y) != x -> x u> (-1 >> y) 3283 DstPred = ICmpInst::Predicate::ICMP_UGT; 3284 break; 3285 case ICmpInst::Predicate::ICMP_ULT: 3286 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3287 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3288 DstPred = ICmpInst::Predicate::ICMP_UGT; 3289 break; 3290 case ICmpInst::Predicate::ICMP_UGE: 3291 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3292 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3293 DstPred = ICmpInst::Predicate::ICMP_ULE; 3294 break; 3295 case ICmpInst::Predicate::ICMP_SLT: 3296 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3297 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3298 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3299 return nullptr; 3300 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3301 return nullptr; 3302 DstPred = ICmpInst::Predicate::ICMP_SGT; 3303 break; 3304 case ICmpInst::Predicate::ICMP_SGE: 3305 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3306 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3307 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3308 return nullptr; 3309 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3310 return nullptr; 3311 DstPred = ICmpInst::Predicate::ICMP_SLE; 3312 break; 3313 case ICmpInst::Predicate::ICMP_SGT: 3314 case ICmpInst::Predicate::ICMP_SLE: 3315 return nullptr; 3316 case ICmpInst::Predicate::ICMP_UGT: 3317 case ICmpInst::Predicate::ICMP_ULE: 3318 llvm_unreachable("Instsimplify took care of commut. variant"); 3319 break; 3320 default: 3321 llvm_unreachable("All possible folds are handled."); 3322 } 3323 3324 // The mask value may be a vector constant that has undefined elements. But it 3325 // may not be safe to propagate those undefs into the new compare, so replace 3326 // those elements by copying an existing, defined, and safe scalar constant. 3327 Type *OpTy = M->getType(); 3328 auto *VecC = dyn_cast<Constant>(M); 3329 if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) { 3330 Constant *SafeReplacementConstant = nullptr; 3331 for (unsigned i = 0, e = OpTy->getVectorNumElements(); i != e; ++i) { 3332 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3333 SafeReplacementConstant = VecC->getAggregateElement(i); 3334 break; 3335 } 3336 } 3337 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3338 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3339 } 3340 3341 return Builder.CreateICmp(DstPred, X, M); 3342 } 3343 3344 /// Some comparisons can be simplified. 3345 /// In this case, we are looking for comparisons that look like 3346 /// a check for a lossy signed truncation. 3347 /// Folds: (MaskedBits is a constant.) 3348 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3349 /// Into: 3350 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3351 /// Where KeptBits = bitwidth(%x) - MaskedBits 3352 static Value * 3353 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3354 InstCombiner::BuilderTy &Builder) { 3355 ICmpInst::Predicate SrcPred; 3356 Value *X; 3357 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3358 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3359 if (!match(&I, m_c_ICmp(SrcPred, 3360 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3361 m_APInt(C1))), 3362 m_Deferred(X)))) 3363 return nullptr; 3364 3365 // Potential handling of non-splats: for each element: 3366 // * if both are undef, replace with constant 0. 3367 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3368 // * if both are not undef, and are different, bailout. 3369 // * else, only one is undef, then pick the non-undef one. 3370 3371 // The shift amount must be equal. 3372 if (*C0 != *C1) 3373 return nullptr; 3374 const APInt &MaskedBits = *C0; 3375 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3376 3377 ICmpInst::Predicate DstPred; 3378 switch (SrcPred) { 3379 case ICmpInst::Predicate::ICMP_EQ: 3380 // ((%x << MaskedBits) a>> MaskedBits) == %x 3381 // => 3382 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3383 DstPred = ICmpInst::Predicate::ICMP_ULT; 3384 break; 3385 case ICmpInst::Predicate::ICMP_NE: 3386 // ((%x << MaskedBits) a>> MaskedBits) != %x 3387 // => 3388 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3389 DstPred = ICmpInst::Predicate::ICMP_UGE; 3390 break; 3391 // FIXME: are more folds possible? 3392 default: 3393 return nullptr; 3394 } 3395 3396 auto *XType = X->getType(); 3397 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3398 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3399 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3400 3401 // KeptBits = bitwidth(%x) - MaskedBits 3402 const APInt KeptBits = BitWidth - MaskedBits; 3403 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3404 // ICmpCst = (1 << KeptBits) 3405 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3406 assert(ICmpCst.isPowerOf2()); 3407 // AddCst = (1 << (KeptBits-1)) 3408 const APInt AddCst = ICmpCst.lshr(1); 3409 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3410 3411 // T0 = add %x, AddCst 3412 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3413 // T1 = T0 DstPred ICmpCst 3414 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3415 3416 return T1; 3417 } 3418 3419 // Given pattern: 3420 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3421 // we should move shifts to the same hand of 'and', i.e. rewrite as 3422 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3423 // We are only interested in opposite logical shifts here. 3424 // One of the shifts can be truncated. 3425 // If we can, we want to end up creating 'lshr' shift. 3426 static Value * 3427 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3428 InstCombiner::BuilderTy &Builder) { 3429 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3430 !I.getOperand(0)->hasOneUse()) 3431 return nullptr; 3432 3433 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3434 3435 // Look for an 'and' of two logical shifts, one of which may be truncated. 3436 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3437 Instruction *XShift, *MaybeTruncation, *YShift; 3438 if (!match( 3439 I.getOperand(0), 3440 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3441 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3442 m_AnyLogicalShift, m_Instruction(YShift))), 3443 m_Instruction(MaybeTruncation))))) 3444 return nullptr; 3445 3446 // We potentially looked past 'trunc', but only when matching YShift, 3447 // therefore YShift must have the widest type. 3448 Instruction *WidestShift = YShift; 3449 // Therefore XShift must have the shallowest type. 3450 // Or they both have identical types if there was no truncation. 3451 Instruction *NarrowestShift = XShift; 3452 3453 Type *WidestTy = WidestShift->getType(); 3454 Type *NarrowestTy = NarrowestShift->getType(); 3455 assert(NarrowestTy == I.getOperand(0)->getType() && 3456 "We did not look past any shifts while matching XShift though."); 3457 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3458 3459 // If YShift is a 'lshr', swap the shifts around. 3460 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3461 std::swap(XShift, YShift); 3462 3463 // The shifts must be in opposite directions. 3464 auto XShiftOpcode = XShift->getOpcode(); 3465 if (XShiftOpcode == YShift->getOpcode()) 3466 return nullptr; // Do not care about same-direction shifts here. 3467 3468 Value *X, *XShAmt, *Y, *YShAmt; 3469 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3470 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3471 3472 // If one of the values being shifted is a constant, then we will end with 3473 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3474 // however, we will need to ensure that we won't increase instruction count. 3475 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3476 // At least one of the hands of the 'and' should be one-use shift. 3477 if (!match(I.getOperand(0), 3478 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3479 return nullptr; 3480 if (HadTrunc) { 3481 // Due to the 'trunc', we will need to widen X. For that either the old 3482 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3483 if (!MaybeTruncation->hasOneUse() && 3484 !NarrowestShift->getOperand(1)->hasOneUse()) 3485 return nullptr; 3486 } 3487 } 3488 3489 // We have two shift amounts from two different shifts. The types of those 3490 // shift amounts may not match. If that's the case let's bailout now. 3491 if (XShAmt->getType() != YShAmt->getType()) 3492 return nullptr; 3493 3494 // As input, we have the following pattern: 3495 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3496 // We want to rewrite that as: 3497 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3498 // While we know that originally (Q+K) would not overflow 3499 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3500 // shift amounts. so it may now overflow in smaller bitwidth. 3501 // To ensure that does not happen, we need to ensure that the total maximal 3502 // shift amount is still representable in that smaller bit width. 3503 unsigned MaximalPossibleTotalShiftAmount = 3504 (WidestTy->getScalarSizeInBits() - 1) + 3505 (NarrowestTy->getScalarSizeInBits() - 1); 3506 APInt MaximalRepresentableShiftAmount = 3507 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); 3508 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3509 return nullptr; 3510 3511 // Can we fold (XShAmt+YShAmt) ? 3512 auto *NewShAmt = dyn_cast_or_null<Constant>( 3513 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3514 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3515 if (!NewShAmt) 3516 return nullptr; 3517 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3518 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3519 3520 // Is the new shift amount smaller than the bit width? 3521 // FIXME: could also rely on ConstantRange. 3522 if (!match(NewShAmt, 3523 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3524 APInt(WidestBitWidth, WidestBitWidth)))) 3525 return nullptr; 3526 3527 // An extra legality check is needed if we had trunc-of-lshr. 3528 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3529 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3530 WidestShift]() { 3531 // It isn't obvious whether it's worth it to analyze non-constants here. 3532 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3533 // If *any* of these preconditions matches we can perform the fold. 3534 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3535 ? NewShAmt->getSplatValue() 3536 : NewShAmt; 3537 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3538 if (NewShAmtSplat && 3539 (NewShAmtSplat->isNullValue() || 3540 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3541 return true; 3542 // We consider *min* leading zeros so a single outlier 3543 // blocks the transform as opposed to allowing it. 3544 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3545 KnownBits Known = computeKnownBits(C, SQ.DL); 3546 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3547 // If the value being shifted has at most lowest bit set we can fold. 3548 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3549 if (MaxActiveBits <= 1) 3550 return true; 3551 // Precondition: NewShAmt u<= countLeadingZeros(C) 3552 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3553 return true; 3554 } 3555 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3556 KnownBits Known = computeKnownBits(C, SQ.DL); 3557 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3558 // If the value being shifted has at most lowest bit set we can fold. 3559 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3560 if (MaxActiveBits <= 1) 3561 return true; 3562 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3563 if (NewShAmtSplat) { 3564 APInt AdjNewShAmt = 3565 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3566 if (AdjNewShAmt.ule(MinLeadZero)) 3567 return true; 3568 } 3569 } 3570 return false; // Can't tell if it's ok. 3571 }; 3572 if (!CanFold()) 3573 return nullptr; 3574 } 3575 3576 // All good, we can do this fold. 3577 X = Builder.CreateZExt(X, WidestTy); 3578 Y = Builder.CreateZExt(Y, WidestTy); 3579 // The shift is the same that was for X. 3580 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3581 ? Builder.CreateLShr(X, NewShAmt) 3582 : Builder.CreateShl(X, NewShAmt); 3583 Value *T1 = Builder.CreateAnd(T0, Y); 3584 return Builder.CreateICmp(I.getPredicate(), T1, 3585 Constant::getNullValue(WidestTy)); 3586 } 3587 3588 /// Fold 3589 /// (-1 u/ x) u< y 3590 /// ((x * y) u/ x) != y 3591 /// to 3592 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit 3593 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3594 /// will mean that we are looking for the opposite answer. 3595 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { 3596 ICmpInst::Predicate Pred; 3597 Value *X, *Y; 3598 Instruction *Mul; 3599 bool NeedNegation; 3600 // Look for: (-1 u/ x) u</u>= y 3601 if (!I.isEquality() && 3602 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3603 m_Value(Y)))) { 3604 Mul = nullptr; 3605 3606 // Are we checking that overflow does not happen, or does happen? 3607 switch (Pred) { 3608 case ICmpInst::Predicate::ICMP_ULT: 3609 NeedNegation = false; 3610 break; // OK 3611 case ICmpInst::Predicate::ICMP_UGE: 3612 NeedNegation = true; 3613 break; // OK 3614 default: 3615 return nullptr; // Wrong predicate. 3616 } 3617 } else // Look for: ((x * y) u/ x) !=/== y 3618 if (I.isEquality() && 3619 match(&I, m_c_ICmp(Pred, m_Value(Y), 3620 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3621 m_Value(X)), 3622 m_Instruction(Mul)), 3623 m_Deferred(X)))))) { 3624 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3625 } else 3626 return nullptr; 3627 3628 BuilderTy::InsertPointGuard Guard(Builder); 3629 // If the pattern included (x * y), we'll want to insert new instructions 3630 // right before that original multiplication so that we can replace it. 3631 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3632 if (MulHadOtherUses) 3633 Builder.SetInsertPoint(Mul); 3634 3635 Function *F = Intrinsic::getDeclaration( 3636 I.getModule(), Intrinsic::umul_with_overflow, X->getType()); 3637 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); 3638 3639 // If the multiplication was used elsewhere, to ensure that we don't leave 3640 // "duplicate" instructions, replace uses of that original multiplication 3641 // with the multiplication result from the with.overflow intrinsic. 3642 if (MulHadOtherUses) 3643 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); 3644 3645 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); 3646 if (NeedNegation) // This technically increases instruction count. 3647 Res = Builder.CreateNot(Res, "umul.not.ov"); 3648 3649 return Res; 3650 } 3651 3652 /// Try to fold icmp (binop), X or icmp X, (binop). 3653 /// TODO: A large part of this logic is duplicated in InstSimplify's 3654 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3655 /// duplication. 3656 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) { 3657 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3658 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3659 3660 // Special logic for binary operators. 3661 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3662 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3663 if (!BO0 && !BO1) 3664 return nullptr; 3665 3666 const CmpInst::Predicate Pred = I.getPredicate(); 3667 Value *X; 3668 3669 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3670 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3671 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3672 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3673 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3674 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3675 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3676 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3677 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3678 3679 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3680 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3681 NoOp0WrapProblem = 3682 ICmpInst::isEquality(Pred) || 3683 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3684 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3685 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3686 NoOp1WrapProblem = 3687 ICmpInst::isEquality(Pred) || 3688 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3689 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3690 3691 // Analyze the case when either Op0 or Op1 is an add instruction. 3692 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3693 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3694 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3695 A = BO0->getOperand(0); 3696 B = BO0->getOperand(1); 3697 } 3698 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3699 C = BO1->getOperand(0); 3700 D = BO1->getOperand(1); 3701 } 3702 3703 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3704 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3705 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3706 return new ICmpInst(Pred, A == Op1 ? B : A, 3707 Constant::getNullValue(Op1->getType())); 3708 3709 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3710 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3711 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3712 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3713 C == Op0 ? D : C); 3714 3715 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3716 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3717 NoOp1WrapProblem) { 3718 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3719 Value *Y, *Z; 3720 if (A == C) { 3721 // C + B == C + D -> B == D 3722 Y = B; 3723 Z = D; 3724 } else if (A == D) { 3725 // D + B == C + D -> B == C 3726 Y = B; 3727 Z = C; 3728 } else if (B == C) { 3729 // A + C == C + D -> A == D 3730 Y = A; 3731 Z = D; 3732 } else { 3733 assert(B == D); 3734 // A + D == C + D -> A == C 3735 Y = A; 3736 Z = C; 3737 } 3738 return new ICmpInst(Pred, Y, Z); 3739 } 3740 3741 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 3742 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3743 match(B, m_AllOnes())) 3744 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3745 3746 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 3747 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3748 match(B, m_AllOnes())) 3749 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3750 3751 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 3752 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3753 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3754 3755 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 3756 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3757 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3758 3759 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 3760 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3761 match(D, m_AllOnes())) 3762 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3763 3764 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 3765 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3766 match(D, m_AllOnes())) 3767 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3768 3769 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 3770 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3771 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3772 3773 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 3774 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3775 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3776 3777 // TODO: The subtraction-related identities shown below also hold, but 3778 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3779 // wouldn't happen even if they were implemented. 3780 // 3781 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 3782 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 3783 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 3784 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 3785 3786 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 3787 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3788 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3789 3790 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 3791 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3792 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3793 3794 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 3795 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3796 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3797 3798 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 3799 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3800 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3801 3802 // if C1 has greater magnitude than C2: 3803 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 3804 // s.t. C3 = C1 - C2 3805 // 3806 // if C2 has greater magnitude than C1: 3807 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 3808 // s.t. C3 = C2 - C1 3809 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3810 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3811 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3812 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3813 const APInt &AP1 = C1->getValue(); 3814 const APInt &AP2 = C2->getValue(); 3815 if (AP1.isNegative() == AP2.isNegative()) { 3816 APInt AP1Abs = C1->getValue().abs(); 3817 APInt AP2Abs = C2->getValue().abs(); 3818 if (AP1Abs.uge(AP2Abs)) { 3819 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3820 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3821 return new ICmpInst(Pred, NewAdd, C); 3822 } else { 3823 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3824 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3825 return new ICmpInst(Pred, A, NewAdd); 3826 } 3827 } 3828 } 3829 3830 // Analyze the case when either Op0 or Op1 is a sub instruction. 3831 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3832 A = nullptr; 3833 B = nullptr; 3834 C = nullptr; 3835 D = nullptr; 3836 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3837 A = BO0->getOperand(0); 3838 B = BO0->getOperand(1); 3839 } 3840 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3841 C = BO1->getOperand(0); 3842 D = BO1->getOperand(1); 3843 } 3844 3845 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 3846 if (A == Op1 && NoOp0WrapProblem) 3847 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3848 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 3849 if (C == Op0 && NoOp1WrapProblem) 3850 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3851 3852 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 3853 // (A - B) u>/u<= A --> B u>/u<= A 3854 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3855 return new ICmpInst(Pred, B, A); 3856 // C u</u>= (C - D) --> C u</u>= D 3857 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3858 return new ICmpInst(Pred, C, D); 3859 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 3860 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 3861 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3862 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 3863 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 3864 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 3865 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3866 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 3867 3868 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 3869 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 3870 return new ICmpInst(Pred, A, C); 3871 3872 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 3873 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 3874 return new ICmpInst(Pred, D, B); 3875 3876 // icmp (0-X) < cst --> x > -cst 3877 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3878 Value *X; 3879 if (match(BO0, m_Neg(m_Value(X)))) 3880 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3881 if (RHSC->isNotMinSignedValue()) 3882 return new ICmpInst(I.getSwappedPredicate(), X, 3883 ConstantExpr::getNeg(RHSC)); 3884 } 3885 3886 BinaryOperator *SRem = nullptr; 3887 // icmp (srem X, Y), Y 3888 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3889 SRem = BO0; 3890 // icmp Y, (srem X, Y) 3891 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3892 Op0 == BO1->getOperand(1)) 3893 SRem = BO1; 3894 if (SRem) { 3895 // We don't check hasOneUse to avoid increasing register pressure because 3896 // the value we use is the same value this instruction was already using. 3897 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3898 default: 3899 break; 3900 case ICmpInst::ICMP_EQ: 3901 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3902 case ICmpInst::ICMP_NE: 3903 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3904 case ICmpInst::ICMP_SGT: 3905 case ICmpInst::ICMP_SGE: 3906 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3907 Constant::getAllOnesValue(SRem->getType())); 3908 case ICmpInst::ICMP_SLT: 3909 case ICmpInst::ICMP_SLE: 3910 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3911 Constant::getNullValue(SRem->getType())); 3912 } 3913 } 3914 3915 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3916 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3917 switch (BO0->getOpcode()) { 3918 default: 3919 break; 3920 case Instruction::Add: 3921 case Instruction::Sub: 3922 case Instruction::Xor: { 3923 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3924 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3925 3926 const APInt *C; 3927 if (match(BO0->getOperand(1), m_APInt(C))) { 3928 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3929 if (C->isSignMask()) { 3930 ICmpInst::Predicate NewPred = 3931 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3932 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3933 } 3934 3935 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3936 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3937 ICmpInst::Predicate NewPred = 3938 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3939 NewPred = I.getSwappedPredicate(NewPred); 3940 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3941 } 3942 } 3943 break; 3944 } 3945 case Instruction::Mul: { 3946 if (!I.isEquality()) 3947 break; 3948 3949 const APInt *C; 3950 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3951 !C->isOneValue()) { 3952 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3953 // Mask = -1 >> count-trailing-zeros(C). 3954 if (unsigned TZs = C->countTrailingZeros()) { 3955 Constant *Mask = ConstantInt::get( 3956 BO0->getType(), 3957 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 3958 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 3959 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 3960 return new ICmpInst(Pred, And1, And2); 3961 } 3962 // If there are no trailing zeros in the multiplier, just eliminate 3963 // the multiplies (no masking is needed): 3964 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 3965 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3966 } 3967 break; 3968 } 3969 case Instruction::UDiv: 3970 case Instruction::LShr: 3971 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 3972 break; 3973 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3974 3975 case Instruction::SDiv: 3976 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 3977 break; 3978 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3979 3980 case Instruction::AShr: 3981 if (!BO0->isExact() || !BO1->isExact()) 3982 break; 3983 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3984 3985 case Instruction::Shl: { 3986 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3987 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3988 if (!NUW && !NSW) 3989 break; 3990 if (!NSW && I.isSigned()) 3991 break; 3992 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3993 } 3994 } 3995 } 3996 3997 if (BO0) { 3998 // Transform A & (L - 1) `ult` L --> L != 0 3999 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4000 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4001 4002 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4003 auto *Zero = Constant::getNullValue(BO0->getType()); 4004 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4005 } 4006 } 4007 4008 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) 4009 return replaceInstUsesWith(I, V); 4010 4011 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4012 return replaceInstUsesWith(I, V); 4013 4014 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4015 return replaceInstUsesWith(I, V); 4016 4017 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4018 return replaceInstUsesWith(I, V); 4019 4020 return nullptr; 4021 } 4022 4023 /// Fold icmp Pred min|max(X, Y), X. 4024 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4025 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4026 Value *Op0 = Cmp.getOperand(0); 4027 Value *X = Cmp.getOperand(1); 4028 4029 // Canonicalize minimum or maximum operand to LHS of the icmp. 4030 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4031 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4032 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4033 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4034 std::swap(Op0, X); 4035 Pred = Cmp.getSwappedPredicate(); 4036 } 4037 4038 Value *Y; 4039 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4040 // smin(X, Y) == X --> X s<= Y 4041 // smin(X, Y) s>= X --> X s<= Y 4042 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4043 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4044 4045 // smin(X, Y) != X --> X s> Y 4046 // smin(X, Y) s< X --> X s> Y 4047 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4048 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4049 4050 // These cases should be handled in InstSimplify: 4051 // smin(X, Y) s<= X --> true 4052 // smin(X, Y) s> X --> false 4053 return nullptr; 4054 } 4055 4056 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4057 // smax(X, Y) == X --> X s>= Y 4058 // smax(X, Y) s<= X --> X s>= Y 4059 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4060 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4061 4062 // smax(X, Y) != X --> X s< Y 4063 // smax(X, Y) s> X --> X s< Y 4064 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4065 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4066 4067 // These cases should be handled in InstSimplify: 4068 // smax(X, Y) s>= X --> true 4069 // smax(X, Y) s< X --> false 4070 return nullptr; 4071 } 4072 4073 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4074 // umin(X, Y) == X --> X u<= Y 4075 // umin(X, Y) u>= X --> X u<= Y 4076 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4077 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4078 4079 // umin(X, Y) != X --> X u> Y 4080 // umin(X, Y) u< X --> X u> Y 4081 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4082 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4083 4084 // These cases should be handled in InstSimplify: 4085 // umin(X, Y) u<= X --> true 4086 // umin(X, Y) u> X --> false 4087 return nullptr; 4088 } 4089 4090 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4091 // umax(X, Y) == X --> X u>= Y 4092 // umax(X, Y) u<= X --> X u>= Y 4093 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4094 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4095 4096 // umax(X, Y) != X --> X u< Y 4097 // umax(X, Y) u> X --> X u< Y 4098 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4099 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4100 4101 // These cases should be handled in InstSimplify: 4102 // umax(X, Y) u>= X --> true 4103 // umax(X, Y) u< X --> false 4104 return nullptr; 4105 } 4106 4107 return nullptr; 4108 } 4109 4110 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 4111 if (!I.isEquality()) 4112 return nullptr; 4113 4114 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4115 const CmpInst::Predicate Pred = I.getPredicate(); 4116 Value *A, *B, *C, *D; 4117 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4118 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4119 Value *OtherVal = A == Op1 ? B : A; 4120 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4121 } 4122 4123 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4124 // A^c1 == C^c2 --> A == C^(c1^c2) 4125 ConstantInt *C1, *C2; 4126 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4127 Op1->hasOneUse()) { 4128 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4129 Value *Xor = Builder.CreateXor(C, NC); 4130 return new ICmpInst(Pred, A, Xor); 4131 } 4132 4133 // A^B == A^D -> B == D 4134 if (A == C) 4135 return new ICmpInst(Pred, B, D); 4136 if (A == D) 4137 return new ICmpInst(Pred, B, C); 4138 if (B == C) 4139 return new ICmpInst(Pred, A, D); 4140 if (B == D) 4141 return new ICmpInst(Pred, A, C); 4142 } 4143 } 4144 4145 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4146 // A == (A^B) -> B == 0 4147 Value *OtherVal = A == Op0 ? B : A; 4148 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4149 } 4150 4151 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4152 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4153 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4154 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4155 4156 if (A == C) { 4157 X = B; 4158 Y = D; 4159 Z = A; 4160 } else if (A == D) { 4161 X = B; 4162 Y = C; 4163 Z = A; 4164 } else if (B == C) { 4165 X = A; 4166 Y = D; 4167 Z = B; 4168 } else if (B == D) { 4169 X = A; 4170 Y = C; 4171 Z = B; 4172 } 4173 4174 if (X) { // Build (X^Y) & Z 4175 Op1 = Builder.CreateXor(X, Y); 4176 Op1 = Builder.CreateAnd(Op1, Z); 4177 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4178 } 4179 } 4180 4181 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4182 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4183 ConstantInt *Cst1; 4184 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4185 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4186 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4187 match(Op1, m_ZExt(m_Value(A))))) { 4188 APInt Pow2 = Cst1->getValue() + 1; 4189 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4190 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4191 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4192 } 4193 4194 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4195 // For lshr and ashr pairs. 4196 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4197 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4198 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4199 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4200 unsigned TypeBits = Cst1->getBitWidth(); 4201 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4202 if (ShAmt < TypeBits && ShAmt != 0) { 4203 ICmpInst::Predicate NewPred = 4204 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4205 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4206 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4207 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4208 } 4209 } 4210 4211 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4212 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4213 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4214 unsigned TypeBits = Cst1->getBitWidth(); 4215 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4216 if (ShAmt < TypeBits && ShAmt != 0) { 4217 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4218 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4219 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4220 I.getName() + ".mask"); 4221 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4222 } 4223 } 4224 4225 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4226 // "icmp (and X, mask), cst" 4227 uint64_t ShAmt = 0; 4228 if (Op0->hasOneUse() && 4229 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4230 match(Op1, m_ConstantInt(Cst1)) && 4231 // Only do this when A has multiple uses. This is most important to do 4232 // when it exposes other optimizations. 4233 !A->hasOneUse()) { 4234 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4235 4236 if (ShAmt < ASize) { 4237 APInt MaskV = 4238 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4239 MaskV <<= ShAmt; 4240 4241 APInt CmpV = Cst1->getValue().zext(ASize); 4242 CmpV <<= ShAmt; 4243 4244 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4245 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4246 } 4247 } 4248 4249 // If both operands are byte-swapped or bit-reversed, just compare the 4250 // original values. 4251 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 4252 // and handle more intrinsics. 4253 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 4254 (match(Op0, m_BitReverse(m_Value(A))) && 4255 match(Op1, m_BitReverse(m_Value(B))))) 4256 return new ICmpInst(Pred, A, B); 4257 4258 // Canonicalize checking for a power-of-2-or-zero value: 4259 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4260 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4261 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4262 m_Deferred(A)))) || 4263 !match(Op1, m_ZeroInt())) 4264 A = nullptr; 4265 4266 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4267 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4268 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4269 A = Op1; 4270 else if (match(Op1, 4271 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4272 A = Op0; 4273 4274 if (A) { 4275 Type *Ty = A->getType(); 4276 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4277 return Pred == ICmpInst::ICMP_EQ 4278 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4279 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4280 } 4281 4282 return nullptr; 4283 } 4284 4285 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4286 InstCombiner::BuilderTy &Builder) { 4287 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4288 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4289 Value *X; 4290 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4291 return nullptr; 4292 4293 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4294 bool IsSignedCmp = ICmp.isSigned(); 4295 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4296 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4297 // and the other is a zext), then we can't handle this. 4298 // TODO: This is too strict. We can handle some predicates (equality?). 4299 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4300 return nullptr; 4301 4302 // Not an extension from the same type? 4303 Value *Y = CastOp1->getOperand(0); 4304 Type *XTy = X->getType(), *YTy = Y->getType(); 4305 if (XTy != YTy) { 4306 // One of the casts must have one use because we are creating a new cast. 4307 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4308 return nullptr; 4309 // Extend the narrower operand to the type of the wider operand. 4310 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4311 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4312 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4313 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4314 else 4315 return nullptr; 4316 } 4317 4318 // (zext X) == (zext Y) --> X == Y 4319 // (sext X) == (sext Y) --> X == Y 4320 if (ICmp.isEquality()) 4321 return new ICmpInst(ICmp.getPredicate(), X, Y); 4322 4323 // A signed comparison of sign extended values simplifies into a 4324 // signed comparison. 4325 if (IsSignedCmp && IsSignedExt) 4326 return new ICmpInst(ICmp.getPredicate(), X, Y); 4327 4328 // The other three cases all fold into an unsigned comparison. 4329 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4330 } 4331 4332 // Below here, we are only folding a compare with constant. 4333 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4334 if (!C) 4335 return nullptr; 4336 4337 // Compute the constant that would happen if we truncated to SrcTy then 4338 // re-extended to DestTy. 4339 Type *SrcTy = CastOp0->getSrcTy(); 4340 Type *DestTy = CastOp0->getDestTy(); 4341 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4342 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4343 4344 // If the re-extended constant didn't change... 4345 if (Res2 == C) { 4346 if (ICmp.isEquality()) 4347 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4348 4349 // A signed comparison of sign extended values simplifies into a 4350 // signed comparison. 4351 if (IsSignedExt && IsSignedCmp) 4352 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4353 4354 // The other three cases all fold into an unsigned comparison. 4355 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4356 } 4357 4358 // The re-extended constant changed, partly changed (in the case of a vector), 4359 // or could not be determined to be equal (in the case of a constant 4360 // expression), so the constant cannot be represented in the shorter type. 4361 // All the cases that fold to true or false will have already been handled 4362 // by SimplifyICmpInst, so only deal with the tricky case. 4363 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4364 return nullptr; 4365 4366 // Is source op positive? 4367 // icmp ult (sext X), C --> icmp sgt X, -1 4368 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4369 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4370 4371 // Is source op negative? 4372 // icmp ugt (sext X), C --> icmp slt X, 0 4373 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4374 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4375 } 4376 4377 /// Handle icmp (cast x), (cast or constant). 4378 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) { 4379 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4380 if (!CastOp0) 4381 return nullptr; 4382 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4383 return nullptr; 4384 4385 Value *Op0Src = CastOp0->getOperand(0); 4386 Type *SrcTy = CastOp0->getSrcTy(); 4387 Type *DestTy = CastOp0->getDestTy(); 4388 4389 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4390 // integer type is the same size as the pointer type. 4391 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4392 if (isa<VectorType>(SrcTy)) { 4393 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4394 DestTy = cast<VectorType>(DestTy)->getElementType(); 4395 } 4396 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4397 }; 4398 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4399 CompatibleSizes(SrcTy, DestTy)) { 4400 Value *NewOp1 = nullptr; 4401 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4402 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4403 if (PtrSrc->getType()->getPointerAddressSpace() == 4404 Op0Src->getType()->getPointerAddressSpace()) { 4405 NewOp1 = PtrToIntOp1->getOperand(0); 4406 // If the pointer types don't match, insert a bitcast. 4407 if (Op0Src->getType() != NewOp1->getType()) 4408 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4409 } 4410 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4411 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4412 } 4413 4414 if (NewOp1) 4415 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4416 } 4417 4418 return foldICmpWithZextOrSext(ICmp, Builder); 4419 } 4420 4421 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4422 switch (BinaryOp) { 4423 default: 4424 llvm_unreachable("Unsupported binary op"); 4425 case Instruction::Add: 4426 case Instruction::Sub: 4427 return match(RHS, m_Zero()); 4428 case Instruction::Mul: 4429 return match(RHS, m_One()); 4430 } 4431 } 4432 4433 OverflowResult InstCombiner::computeOverflow( 4434 Instruction::BinaryOps BinaryOp, bool IsSigned, 4435 Value *LHS, Value *RHS, Instruction *CxtI) const { 4436 switch (BinaryOp) { 4437 default: 4438 llvm_unreachable("Unsupported binary op"); 4439 case Instruction::Add: 4440 if (IsSigned) 4441 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4442 else 4443 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4444 case Instruction::Sub: 4445 if (IsSigned) 4446 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4447 else 4448 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4449 case Instruction::Mul: 4450 if (IsSigned) 4451 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4452 else 4453 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4454 } 4455 } 4456 4457 bool InstCombiner::OptimizeOverflowCheck( 4458 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, 4459 Instruction &OrigI, Value *&Result, Constant *&Overflow) { 4460 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4461 std::swap(LHS, RHS); 4462 4463 // If the overflow check was an add followed by a compare, the insertion point 4464 // may be pointing to the compare. We want to insert the new instructions 4465 // before the add in case there are uses of the add between the add and the 4466 // compare. 4467 Builder.SetInsertPoint(&OrigI); 4468 4469 if (isNeutralValue(BinaryOp, RHS)) { 4470 Result = LHS; 4471 Overflow = Builder.getFalse(); 4472 return true; 4473 } 4474 4475 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4476 case OverflowResult::MayOverflow: 4477 return false; 4478 case OverflowResult::AlwaysOverflowsLow: 4479 case OverflowResult::AlwaysOverflowsHigh: 4480 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4481 Result->takeName(&OrigI); 4482 Overflow = Builder.getTrue(); 4483 return true; 4484 case OverflowResult::NeverOverflows: 4485 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4486 Result->takeName(&OrigI); 4487 Overflow = Builder.getFalse(); 4488 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4489 if (IsSigned) 4490 Inst->setHasNoSignedWrap(); 4491 else 4492 Inst->setHasNoUnsignedWrap(); 4493 } 4494 return true; 4495 } 4496 4497 llvm_unreachable("Unexpected overflow result"); 4498 } 4499 4500 /// Recognize and process idiom involving test for multiplication 4501 /// overflow. 4502 /// 4503 /// The caller has matched a pattern of the form: 4504 /// I = cmp u (mul(zext A, zext B), V 4505 /// The function checks if this is a test for overflow and if so replaces 4506 /// multiplication with call to 'mul.with.overflow' intrinsic. 4507 /// 4508 /// \param I Compare instruction. 4509 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4510 /// the compare instruction. Must be of integer type. 4511 /// \param OtherVal The other argument of compare instruction. 4512 /// \returns Instruction which must replace the compare instruction, NULL if no 4513 /// replacement required. 4514 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4515 Value *OtherVal, InstCombiner &IC) { 4516 // Don't bother doing this transformation for pointers, don't do it for 4517 // vectors. 4518 if (!isa<IntegerType>(MulVal->getType())) 4519 return nullptr; 4520 4521 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4522 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4523 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4524 if (!MulInstr) 4525 return nullptr; 4526 assert(MulInstr->getOpcode() == Instruction::Mul); 4527 4528 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4529 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4530 assert(LHS->getOpcode() == Instruction::ZExt); 4531 assert(RHS->getOpcode() == Instruction::ZExt); 4532 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4533 4534 // Calculate type and width of the result produced by mul.with.overflow. 4535 Type *TyA = A->getType(), *TyB = B->getType(); 4536 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4537 WidthB = TyB->getPrimitiveSizeInBits(); 4538 unsigned MulWidth; 4539 Type *MulType; 4540 if (WidthB > WidthA) { 4541 MulWidth = WidthB; 4542 MulType = TyB; 4543 } else { 4544 MulWidth = WidthA; 4545 MulType = TyA; 4546 } 4547 4548 // In order to replace the original mul with a narrower mul.with.overflow, 4549 // all uses must ignore upper bits of the product. The number of used low 4550 // bits must be not greater than the width of mul.with.overflow. 4551 if (MulVal->hasNUsesOrMore(2)) 4552 for (User *U : MulVal->users()) { 4553 if (U == &I) 4554 continue; 4555 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4556 // Check if truncation ignores bits above MulWidth. 4557 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4558 if (TruncWidth > MulWidth) 4559 return nullptr; 4560 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4561 // Check if AND ignores bits above MulWidth. 4562 if (BO->getOpcode() != Instruction::And) 4563 return nullptr; 4564 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4565 const APInt &CVal = CI->getValue(); 4566 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4567 return nullptr; 4568 } else { 4569 // In this case we could have the operand of the binary operation 4570 // being defined in another block, and performing the replacement 4571 // could break the dominance relation. 4572 return nullptr; 4573 } 4574 } else { 4575 // Other uses prohibit this transformation. 4576 return nullptr; 4577 } 4578 } 4579 4580 // Recognize patterns 4581 switch (I.getPredicate()) { 4582 case ICmpInst::ICMP_EQ: 4583 case ICmpInst::ICMP_NE: 4584 // Recognize pattern: 4585 // mulval = mul(zext A, zext B) 4586 // cmp eq/neq mulval, zext trunc mulval 4587 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4588 if (Zext->hasOneUse()) { 4589 Value *ZextArg = Zext->getOperand(0); 4590 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4591 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4592 break; //Recognized 4593 } 4594 4595 // Recognize pattern: 4596 // mulval = mul(zext A, zext B) 4597 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4598 ConstantInt *CI; 4599 Value *ValToMask; 4600 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4601 if (ValToMask != MulVal) 4602 return nullptr; 4603 const APInt &CVal = CI->getValue() + 1; 4604 if (CVal.isPowerOf2()) { 4605 unsigned MaskWidth = CVal.logBase2(); 4606 if (MaskWidth == MulWidth) 4607 break; // Recognized 4608 } 4609 } 4610 return nullptr; 4611 4612 case ICmpInst::ICMP_UGT: 4613 // Recognize pattern: 4614 // mulval = mul(zext A, zext B) 4615 // cmp ugt mulval, max 4616 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4617 APInt MaxVal = APInt::getMaxValue(MulWidth); 4618 MaxVal = MaxVal.zext(CI->getBitWidth()); 4619 if (MaxVal.eq(CI->getValue())) 4620 break; // Recognized 4621 } 4622 return nullptr; 4623 4624 case ICmpInst::ICMP_UGE: 4625 // Recognize pattern: 4626 // mulval = mul(zext A, zext B) 4627 // cmp uge mulval, max+1 4628 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4629 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4630 if (MaxVal.eq(CI->getValue())) 4631 break; // Recognized 4632 } 4633 return nullptr; 4634 4635 case ICmpInst::ICMP_ULE: 4636 // Recognize pattern: 4637 // mulval = mul(zext A, zext B) 4638 // cmp ule mulval, max 4639 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4640 APInt MaxVal = APInt::getMaxValue(MulWidth); 4641 MaxVal = MaxVal.zext(CI->getBitWidth()); 4642 if (MaxVal.eq(CI->getValue())) 4643 break; // Recognized 4644 } 4645 return nullptr; 4646 4647 case ICmpInst::ICMP_ULT: 4648 // Recognize pattern: 4649 // mulval = mul(zext A, zext B) 4650 // cmp ule mulval, max + 1 4651 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4652 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4653 if (MaxVal.eq(CI->getValue())) 4654 break; // Recognized 4655 } 4656 return nullptr; 4657 4658 default: 4659 return nullptr; 4660 } 4661 4662 InstCombiner::BuilderTy &Builder = IC.Builder; 4663 Builder.SetInsertPoint(MulInstr); 4664 4665 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4666 Value *MulA = A, *MulB = B; 4667 if (WidthA < MulWidth) 4668 MulA = Builder.CreateZExt(A, MulType); 4669 if (WidthB < MulWidth) 4670 MulB = Builder.CreateZExt(B, MulType); 4671 Function *F = Intrinsic::getDeclaration( 4672 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4673 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4674 IC.Worklist.push(MulInstr); 4675 4676 // If there are uses of mul result other than the comparison, we know that 4677 // they are truncation or binary AND. Change them to use result of 4678 // mul.with.overflow and adjust properly mask/size. 4679 if (MulVal->hasNUsesOrMore(2)) { 4680 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4681 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4682 User *U = *UI++; 4683 if (U == &I || U == OtherVal) 4684 continue; 4685 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4686 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4687 IC.replaceInstUsesWith(*TI, Mul); 4688 else 4689 TI->setOperand(0, Mul); 4690 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4691 assert(BO->getOpcode() == Instruction::And); 4692 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4693 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4694 APInt ShortMask = CI->getValue().trunc(MulWidth); 4695 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4696 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 4697 IC.replaceInstUsesWith(*BO, Zext); 4698 } else { 4699 llvm_unreachable("Unexpected Binary operation"); 4700 } 4701 IC.Worklist.push(cast<Instruction>(U)); 4702 } 4703 } 4704 if (isa<Instruction>(OtherVal)) 4705 IC.Worklist.push(cast<Instruction>(OtherVal)); 4706 4707 // The original icmp gets replaced with the overflow value, maybe inverted 4708 // depending on predicate. 4709 bool Inverse = false; 4710 switch (I.getPredicate()) { 4711 case ICmpInst::ICMP_NE: 4712 break; 4713 case ICmpInst::ICMP_EQ: 4714 Inverse = true; 4715 break; 4716 case ICmpInst::ICMP_UGT: 4717 case ICmpInst::ICMP_UGE: 4718 if (I.getOperand(0) == MulVal) 4719 break; 4720 Inverse = true; 4721 break; 4722 case ICmpInst::ICMP_ULT: 4723 case ICmpInst::ICMP_ULE: 4724 if (I.getOperand(1) == MulVal) 4725 break; 4726 Inverse = true; 4727 break; 4728 default: 4729 llvm_unreachable("Unexpected predicate"); 4730 } 4731 if (Inverse) { 4732 Value *Res = Builder.CreateExtractValue(Call, 1); 4733 return BinaryOperator::CreateNot(Res); 4734 } 4735 4736 return ExtractValueInst::Create(Call, 1); 4737 } 4738 4739 /// When performing a comparison against a constant, it is possible that not all 4740 /// the bits in the LHS are demanded. This helper method computes the mask that 4741 /// IS demanded. 4742 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4743 const APInt *RHS; 4744 if (!match(I.getOperand(1), m_APInt(RHS))) 4745 return APInt::getAllOnesValue(BitWidth); 4746 4747 // If this is a normal comparison, it demands all bits. If it is a sign bit 4748 // comparison, it only demands the sign bit. 4749 bool UnusedBit; 4750 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4751 return APInt::getSignMask(BitWidth); 4752 4753 switch (I.getPredicate()) { 4754 // For a UGT comparison, we don't care about any bits that 4755 // correspond to the trailing ones of the comparand. The value of these 4756 // bits doesn't impact the outcome of the comparison, because any value 4757 // greater than the RHS must differ in a bit higher than these due to carry. 4758 case ICmpInst::ICMP_UGT: 4759 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4760 4761 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4762 // Any value less than the RHS must differ in a higher bit because of carries. 4763 case ICmpInst::ICMP_ULT: 4764 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4765 4766 default: 4767 return APInt::getAllOnesValue(BitWidth); 4768 } 4769 } 4770 4771 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4772 /// should be swapped. 4773 /// The decision is based on how many times these two operands are reused 4774 /// as subtract operands and their positions in those instructions. 4775 /// The rationale is that several architectures use the same instruction for 4776 /// both subtract and cmp. Thus, it is better if the order of those operands 4777 /// match. 4778 /// \return true if Op0 and Op1 should be swapped. 4779 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4780 // Filter out pointer values as those cannot appear directly in subtract. 4781 // FIXME: we may want to go through inttoptrs or bitcasts. 4782 if (Op0->getType()->isPointerTy()) 4783 return false; 4784 // If a subtract already has the same operands as a compare, swapping would be 4785 // bad. If a subtract has the same operands as a compare but in reverse order, 4786 // then swapping is good. 4787 int GoodToSwap = 0; 4788 for (const User *U : Op0->users()) { 4789 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4790 GoodToSwap++; 4791 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4792 GoodToSwap--; 4793 } 4794 return GoodToSwap > 0; 4795 } 4796 4797 /// Check that one use is in the same block as the definition and all 4798 /// other uses are in blocks dominated by a given block. 4799 /// 4800 /// \param DI Definition 4801 /// \param UI Use 4802 /// \param DB Block that must dominate all uses of \p DI outside 4803 /// the parent block 4804 /// \return true when \p UI is the only use of \p DI in the parent block 4805 /// and all other uses of \p DI are in blocks dominated by \p DB. 4806 /// 4807 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4808 const Instruction *UI, 4809 const BasicBlock *DB) const { 4810 assert(DI && UI && "Instruction not defined\n"); 4811 // Ignore incomplete definitions. 4812 if (!DI->getParent()) 4813 return false; 4814 // DI and UI must be in the same block. 4815 if (DI->getParent() != UI->getParent()) 4816 return false; 4817 // Protect from self-referencing blocks. 4818 if (DI->getParent() == DB) 4819 return false; 4820 for (const User *U : DI->users()) { 4821 auto *Usr = cast<Instruction>(U); 4822 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4823 return false; 4824 } 4825 return true; 4826 } 4827 4828 /// Return true when the instruction sequence within a block is select-cmp-br. 4829 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4830 const BasicBlock *BB = SI->getParent(); 4831 if (!BB) 4832 return false; 4833 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4834 if (!BI || BI->getNumSuccessors() != 2) 4835 return false; 4836 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4837 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4838 return false; 4839 return true; 4840 } 4841 4842 /// True when a select result is replaced by one of its operands 4843 /// in select-icmp sequence. This will eventually result in the elimination 4844 /// of the select. 4845 /// 4846 /// \param SI Select instruction 4847 /// \param Icmp Compare instruction 4848 /// \param SIOpd Operand that replaces the select 4849 /// 4850 /// Notes: 4851 /// - The replacement is global and requires dominator information 4852 /// - The caller is responsible for the actual replacement 4853 /// 4854 /// Example: 4855 /// 4856 /// entry: 4857 /// %4 = select i1 %3, %C* %0, %C* null 4858 /// %5 = icmp eq %C* %4, null 4859 /// br i1 %5, label %9, label %7 4860 /// ... 4861 /// ; <label>:7 ; preds = %entry 4862 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4863 /// ... 4864 /// 4865 /// can be transformed to 4866 /// 4867 /// %5 = icmp eq %C* %0, null 4868 /// %6 = select i1 %3, i1 %5, i1 true 4869 /// br i1 %6, label %9, label %7 4870 /// ... 4871 /// ; <label>:7 ; preds = %entry 4872 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4873 /// 4874 /// Similar when the first operand of the select is a constant or/and 4875 /// the compare is for not equal rather than equal. 4876 /// 4877 /// NOTE: The function is only called when the select and compare constants 4878 /// are equal, the optimization can work only for EQ predicates. This is not a 4879 /// major restriction since a NE compare should be 'normalized' to an equal 4880 /// compare, which usually happens in the combiner and test case 4881 /// select-cmp-br.ll checks for it. 4882 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4883 const ICmpInst *Icmp, 4884 const unsigned SIOpd) { 4885 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4886 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4887 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4888 // The check for the single predecessor is not the best that can be 4889 // done. But it protects efficiently against cases like when SI's 4890 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4891 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4892 // replaced can be reached on either path. So the uniqueness check 4893 // guarantees that the path all uses of SI (outside SI's parent) are on 4894 // is disjoint from all other paths out of SI. But that information 4895 // is more expensive to compute, and the trade-off here is in favor 4896 // of compile-time. It should also be noticed that we check for a single 4897 // predecessor and not only uniqueness. This to handle the situation when 4898 // Succ and Succ1 points to the same basic block. 4899 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4900 NumSel++; 4901 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4902 return true; 4903 } 4904 } 4905 return false; 4906 } 4907 4908 /// Try to fold the comparison based on range information we can get by checking 4909 /// whether bits are known to be zero or one in the inputs. 4910 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4911 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4912 Type *Ty = Op0->getType(); 4913 ICmpInst::Predicate Pred = I.getPredicate(); 4914 4915 // Get scalar or pointer size. 4916 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4917 ? Ty->getScalarSizeInBits() 4918 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 4919 4920 if (!BitWidth) 4921 return nullptr; 4922 4923 KnownBits Op0Known(BitWidth); 4924 KnownBits Op1Known(BitWidth); 4925 4926 if (SimplifyDemandedBits(&I, 0, 4927 getDemandedBitsLHSMask(I, BitWidth), 4928 Op0Known, 0)) 4929 return &I; 4930 4931 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4932 Op1Known, 0)) 4933 return &I; 4934 4935 // Given the known and unknown bits, compute a range that the LHS could be 4936 // in. Compute the Min, Max and RHS values based on the known bits. For the 4937 // EQ and NE we use unsigned values. 4938 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4939 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4940 if (I.isSigned()) { 4941 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4942 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4943 } else { 4944 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4945 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4946 } 4947 4948 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4949 // out that the LHS or RHS is a constant. Constant fold this now, so that 4950 // code below can assume that Min != Max. 4951 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4952 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4953 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4954 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4955 4956 // Based on the range information we know about the LHS, see if we can 4957 // simplify this comparison. For example, (x&4) < 8 is always true. 4958 switch (Pred) { 4959 default: 4960 llvm_unreachable("Unknown icmp opcode!"); 4961 case ICmpInst::ICMP_EQ: 4962 case ICmpInst::ICMP_NE: { 4963 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4964 return Pred == CmpInst::ICMP_EQ 4965 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4966 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4967 } 4968 4969 // If all bits are known zero except for one, then we know at most one bit 4970 // is set. If the comparison is against zero, then this is a check to see if 4971 // *that* bit is set. 4972 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 4973 if (Op1Known.isZero()) { 4974 // If the LHS is an AND with the same constant, look through it. 4975 Value *LHS = nullptr; 4976 const APInt *LHSC; 4977 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4978 *LHSC != Op0KnownZeroInverted) 4979 LHS = Op0; 4980 4981 Value *X; 4982 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4983 APInt ValToCheck = Op0KnownZeroInverted; 4984 Type *XTy = X->getType(); 4985 if (ValToCheck.isPowerOf2()) { 4986 // ((1 << X) & 8) == 0 -> X != 3 4987 // ((1 << X) & 8) != 0 -> X == 3 4988 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4989 auto NewPred = ICmpInst::getInversePredicate(Pred); 4990 return new ICmpInst(NewPred, X, CmpC); 4991 } else if ((++ValToCheck).isPowerOf2()) { 4992 // ((1 << X) & 7) == 0 -> X >= 3 4993 // ((1 << X) & 7) != 0 -> X < 3 4994 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4995 auto NewPred = 4996 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4997 return new ICmpInst(NewPred, X, CmpC); 4998 } 4999 } 5000 5001 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5002 const APInt *CI; 5003 if (Op0KnownZeroInverted.isOneValue() && 5004 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5005 // ((8 >>u X) & 1) == 0 -> X != 3 5006 // ((8 >>u X) & 1) != 0 -> X == 3 5007 unsigned CmpVal = CI->countTrailingZeros(); 5008 auto NewPred = ICmpInst::getInversePredicate(Pred); 5009 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5010 } 5011 } 5012 break; 5013 } 5014 case ICmpInst::ICMP_ULT: { 5015 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5016 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5017 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5018 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5019 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5020 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5021 5022 const APInt *CmpC; 5023 if (match(Op1, m_APInt(CmpC))) { 5024 // A <u C -> A == C-1 if min(A)+1 == C 5025 if (*CmpC == Op0Min + 1) 5026 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5027 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5028 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5029 // exceeds the log2 of C. 5030 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5031 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5032 Constant::getNullValue(Op1->getType())); 5033 } 5034 break; 5035 } 5036 case ICmpInst::ICMP_UGT: { 5037 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5038 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5039 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5040 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5041 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5042 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5043 5044 const APInt *CmpC; 5045 if (match(Op1, m_APInt(CmpC))) { 5046 // A >u C -> A == C+1 if max(a)-1 == C 5047 if (*CmpC == Op0Max - 1) 5048 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5049 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5050 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5051 // exceeds the log2 of C. 5052 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5053 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5054 Constant::getNullValue(Op1->getType())); 5055 } 5056 break; 5057 } 5058 case ICmpInst::ICMP_SLT: { 5059 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5060 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5061 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5062 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5063 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5064 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5065 const APInt *CmpC; 5066 if (match(Op1, m_APInt(CmpC))) { 5067 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5068 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5069 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5070 } 5071 break; 5072 } 5073 case ICmpInst::ICMP_SGT: { 5074 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5075 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5076 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5077 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5078 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5079 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5080 const APInt *CmpC; 5081 if (match(Op1, m_APInt(CmpC))) { 5082 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5083 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5084 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5085 } 5086 break; 5087 } 5088 case ICmpInst::ICMP_SGE: 5089 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5090 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5091 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5092 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5093 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5094 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5095 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5096 break; 5097 case ICmpInst::ICMP_SLE: 5098 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5099 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5100 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5101 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5102 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5103 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5104 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5105 break; 5106 case ICmpInst::ICMP_UGE: 5107 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5108 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5109 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5110 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5111 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5112 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5113 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5114 break; 5115 case ICmpInst::ICMP_ULE: 5116 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5117 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5118 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5119 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5120 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5121 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5122 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5123 break; 5124 } 5125 5126 // Turn a signed comparison into an unsigned one if both operands are known to 5127 // have the same sign. 5128 if (I.isSigned() && 5129 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5130 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5131 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5132 5133 return nullptr; 5134 } 5135 5136 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5137 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5138 Constant *C) { 5139 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5140 "Only for relational integer predicates."); 5141 5142 Type *Type = C->getType(); 5143 bool IsSigned = ICmpInst::isSigned(Pred); 5144 5145 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5146 bool WillIncrement = 5147 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5148 5149 // Check if the constant operand can be safely incremented/decremented 5150 // without overflowing/underflowing. 5151 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5152 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5153 }; 5154 5155 Constant *SafeReplacementConstant = nullptr; 5156 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5157 // Bail out if the constant can't be safely incremented/decremented. 5158 if (!ConstantIsOk(CI)) 5159 return llvm::None; 5160 } else if (Type->isVectorTy()) { 5161 unsigned NumElts = Type->getVectorNumElements(); 5162 for (unsigned i = 0; i != NumElts; ++i) { 5163 Constant *Elt = C->getAggregateElement(i); 5164 if (!Elt) 5165 return llvm::None; 5166 5167 if (isa<UndefValue>(Elt)) 5168 continue; 5169 5170 // Bail out if we can't determine if this constant is min/max or if we 5171 // know that this constant is min/max. 5172 auto *CI = dyn_cast<ConstantInt>(Elt); 5173 if (!CI || !ConstantIsOk(CI)) 5174 return llvm::None; 5175 5176 if (!SafeReplacementConstant) 5177 SafeReplacementConstant = CI; 5178 } 5179 } else { 5180 // ConstantExpr? 5181 return llvm::None; 5182 } 5183 5184 // It may not be safe to change a compare predicate in the presence of 5185 // undefined elements, so replace those elements with the first safe constant 5186 // that we found. 5187 if (C->containsUndefElement()) { 5188 assert(SafeReplacementConstant && "Replacement constant not set"); 5189 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5190 } 5191 5192 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5193 5194 // Increment or decrement the constant. 5195 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5196 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5197 5198 return std::make_pair(NewPred, NewC); 5199 } 5200 5201 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5202 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5203 /// allows them to be folded in visitICmpInst. 5204 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5205 ICmpInst::Predicate Pred = I.getPredicate(); 5206 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5207 isCanonicalPredicate(Pred)) 5208 return nullptr; 5209 5210 Value *Op0 = I.getOperand(0); 5211 Value *Op1 = I.getOperand(1); 5212 auto *Op1C = dyn_cast<Constant>(Op1); 5213 if (!Op1C) 5214 return nullptr; 5215 5216 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5217 if (!FlippedStrictness) 5218 return nullptr; 5219 5220 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5221 } 5222 5223 /// Integer compare with boolean values can always be turned into bitwise ops. 5224 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5225 InstCombiner::BuilderTy &Builder) { 5226 Value *A = I.getOperand(0), *B = I.getOperand(1); 5227 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5228 5229 // A boolean compared to true/false can be simplified to Op0/true/false in 5230 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5231 // Cases not handled by InstSimplify are always 'not' of Op0. 5232 if (match(B, m_Zero())) { 5233 switch (I.getPredicate()) { 5234 case CmpInst::ICMP_EQ: // A == 0 -> !A 5235 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5236 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5237 return BinaryOperator::CreateNot(A); 5238 default: 5239 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5240 } 5241 } else if (match(B, m_One())) { 5242 switch (I.getPredicate()) { 5243 case CmpInst::ICMP_NE: // A != 1 -> !A 5244 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5245 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5246 return BinaryOperator::CreateNot(A); 5247 default: 5248 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5249 } 5250 } 5251 5252 switch (I.getPredicate()) { 5253 default: 5254 llvm_unreachable("Invalid icmp instruction!"); 5255 case ICmpInst::ICMP_EQ: 5256 // icmp eq i1 A, B -> ~(A ^ B) 5257 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5258 5259 case ICmpInst::ICMP_NE: 5260 // icmp ne i1 A, B -> A ^ B 5261 return BinaryOperator::CreateXor(A, B); 5262 5263 case ICmpInst::ICMP_UGT: 5264 // icmp ugt -> icmp ult 5265 std::swap(A, B); 5266 LLVM_FALLTHROUGH; 5267 case ICmpInst::ICMP_ULT: 5268 // icmp ult i1 A, B -> ~A & B 5269 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5270 5271 case ICmpInst::ICMP_SGT: 5272 // icmp sgt -> icmp slt 5273 std::swap(A, B); 5274 LLVM_FALLTHROUGH; 5275 case ICmpInst::ICMP_SLT: 5276 // icmp slt i1 A, B -> A & ~B 5277 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5278 5279 case ICmpInst::ICMP_UGE: 5280 // icmp uge -> icmp ule 5281 std::swap(A, B); 5282 LLVM_FALLTHROUGH; 5283 case ICmpInst::ICMP_ULE: 5284 // icmp ule i1 A, B -> ~A | B 5285 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5286 5287 case ICmpInst::ICMP_SGE: 5288 // icmp sge -> icmp sle 5289 std::swap(A, B); 5290 LLVM_FALLTHROUGH; 5291 case ICmpInst::ICMP_SLE: 5292 // icmp sle i1 A, B -> A | ~B 5293 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5294 } 5295 } 5296 5297 // Transform pattern like: 5298 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5299 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5300 // Into: 5301 // (X l>> Y) != 0 5302 // (X l>> Y) == 0 5303 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5304 InstCombiner::BuilderTy &Builder) { 5305 ICmpInst::Predicate Pred, NewPred; 5306 Value *X, *Y; 5307 if (match(&Cmp, 5308 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5309 switch (Pred) { 5310 case ICmpInst::ICMP_ULE: 5311 NewPred = ICmpInst::ICMP_NE; 5312 break; 5313 case ICmpInst::ICMP_UGT: 5314 NewPred = ICmpInst::ICMP_EQ; 5315 break; 5316 default: 5317 return nullptr; 5318 } 5319 } else if (match(&Cmp, m_c_ICmp(Pred, 5320 m_OneUse(m_CombineOr( 5321 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5322 m_Add(m_Shl(m_One(), m_Value(Y)), 5323 m_AllOnes()))), 5324 m_Value(X)))) { 5325 // The variant with 'add' is not canonical, (the variant with 'not' is) 5326 // we only get it because it has extra uses, and can't be canonicalized, 5327 5328 switch (Pred) { 5329 case ICmpInst::ICMP_ULT: 5330 NewPred = ICmpInst::ICMP_NE; 5331 break; 5332 case ICmpInst::ICMP_UGE: 5333 NewPred = ICmpInst::ICMP_EQ; 5334 break; 5335 default: 5336 return nullptr; 5337 } 5338 } else 5339 return nullptr; 5340 5341 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5342 Constant *Zero = Constant::getNullValue(NewX->getType()); 5343 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5344 } 5345 5346 static Instruction *foldVectorCmp(CmpInst &Cmp, 5347 InstCombiner::BuilderTy &Builder) { 5348 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5349 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5350 bool IsFP = isa<FCmpInst>(Cmp); 5351 5352 Value *V1, *V2; 5353 Constant *M; 5354 if (!match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M)))) 5355 return nullptr; 5356 5357 // If both arguments of the cmp are shuffles that use the same mask and 5358 // shuffle within a single vector, move the shuffle after the cmp: 5359 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5360 Type *V1Ty = V1->getType(); 5361 if (match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && 5362 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5363 Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, V2) 5364 : Builder.CreateICmp(Pred, V1, V2); 5365 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5366 } 5367 5368 // Try to canonicalize compare with splatted operand and splat constant. 5369 // TODO: We could generalize this for more than splats. See/use the code in 5370 // InstCombiner::foldVectorBinop(). 5371 Constant *C; 5372 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5373 return nullptr; 5374 5375 // Length-changing splats are ok, so adjust the constants as needed: 5376 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5377 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5378 Constant *ScalarM = M->getSplatValue(/* AllowUndefs */ true); 5379 if (ScalarC && ScalarM) { 5380 // We allow undefs in matching, but this transform removes those for safety. 5381 // Demanded elements analysis should be able to recover some/all of that. 5382 C = ConstantVector::getSplat(V1Ty->getVectorElementCount(), ScalarC); 5383 M = ConstantVector::getSplat(M->getType()->getVectorElementCount(), 5384 ScalarM); 5385 Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, C) 5386 : Builder.CreateICmp(Pred, V1, C); 5387 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5388 } 5389 5390 return nullptr; 5391 } 5392 5393 // extract(uadd.with.overflow(A, B), 0) ult A 5394 // -> extract(uadd.with.overflow(A, B), 1) 5395 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5396 CmpInst::Predicate Pred = I.getPredicate(); 5397 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5398 5399 Value *UAddOv; 5400 Value *A, *B; 5401 auto UAddOvResultPat = m_ExtractValue<0>( 5402 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5403 if (match(Op0, UAddOvResultPat) && 5404 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5405 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5406 (match(A, m_One()) || match(B, m_One()))) || 5407 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5408 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5409 // extract(uadd.with.overflow(A, B), 0) < A 5410 // extract(uadd.with.overflow(A, 1), 0) == 0 5411 // extract(uadd.with.overflow(A, -1), 0) != -1 5412 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5413 else if (match(Op1, UAddOvResultPat) && 5414 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5415 // A > extract(uadd.with.overflow(A, B), 0) 5416 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5417 else 5418 return nullptr; 5419 5420 return ExtractValueInst::Create(UAddOv, 1); 5421 } 5422 5423 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 5424 bool Changed = false; 5425 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5426 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5427 unsigned Op0Cplxity = getComplexity(Op0); 5428 unsigned Op1Cplxity = getComplexity(Op1); 5429 5430 /// Orders the operands of the compare so that they are listed from most 5431 /// complex to least complex. This puts constants before unary operators, 5432 /// before binary operators. 5433 if (Op0Cplxity < Op1Cplxity || 5434 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5435 I.swapOperands(); 5436 std::swap(Op0, Op1); 5437 Changed = true; 5438 } 5439 5440 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5441 return replaceInstUsesWith(I, V); 5442 5443 // Comparing -val or val with non-zero is the same as just comparing val 5444 // ie, abs(val) != 0 -> val != 0 5445 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5446 Value *Cond, *SelectTrue, *SelectFalse; 5447 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5448 m_Value(SelectFalse)))) { 5449 if (Value *V = dyn_castNegVal(SelectTrue)) { 5450 if (V == SelectFalse) 5451 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5452 } 5453 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5454 if (V == SelectTrue) 5455 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5456 } 5457 } 5458 } 5459 5460 if (Op0->getType()->isIntOrIntVectorTy(1)) 5461 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5462 return Res; 5463 5464 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 5465 return NewICmp; 5466 5467 if (Instruction *Res = foldICmpWithConstant(I)) 5468 return Res; 5469 5470 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5471 return Res; 5472 5473 if (Instruction *Res = foldICmpBinOp(I, Q)) 5474 return Res; 5475 5476 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5477 return Res; 5478 5479 // Test if the ICmpInst instruction is used exclusively by a select as 5480 // part of a minimum or maximum operation. If so, refrain from doing 5481 // any other folding. This helps out other analyses which understand 5482 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5483 // and CodeGen. And in this case, at least one of the comparison 5484 // operands has at least one user besides the compare (the select), 5485 // which would often largely negate the benefit of folding anyway. 5486 // 5487 // Do the same for the other patterns recognized by matchSelectPattern. 5488 if (I.hasOneUse()) 5489 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5490 Value *A, *B; 5491 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5492 if (SPR.Flavor != SPF_UNKNOWN) 5493 return nullptr; 5494 } 5495 5496 // Do this after checking for min/max to prevent infinite looping. 5497 if (Instruction *Res = foldICmpWithZero(I)) 5498 return Res; 5499 5500 // FIXME: We only do this after checking for min/max to prevent infinite 5501 // looping caused by a reverse canonicalization of these patterns for min/max. 5502 // FIXME: The organization of folds is a mess. These would naturally go into 5503 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5504 // down here after the min/max restriction. 5505 ICmpInst::Predicate Pred = I.getPredicate(); 5506 const APInt *C; 5507 if (match(Op1, m_APInt(C))) { 5508 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5509 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5510 Constant *Zero = Constant::getNullValue(Op0->getType()); 5511 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5512 } 5513 5514 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5515 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5516 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5517 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5518 } 5519 } 5520 5521 if (Instruction *Res = foldICmpInstWithConstant(I)) 5522 return Res; 5523 5524 // Try to match comparison as a sign bit test. Intentionally do this after 5525 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5526 if (Instruction *New = foldSignBitTest(I)) 5527 return New; 5528 5529 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5530 return Res; 5531 5532 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5533 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5534 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5535 return NI; 5536 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5537 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5538 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5539 return NI; 5540 5541 // Try to optimize equality comparisons against alloca-based pointers. 5542 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5543 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5544 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 5545 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5546 return New; 5547 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 5548 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5549 return New; 5550 } 5551 5552 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5553 return Res; 5554 5555 if (Instruction *R = foldICmpWithCastOp(I)) 5556 return R; 5557 5558 if (Instruction *Res = foldICmpWithMinMax(I)) 5559 return Res; 5560 5561 { 5562 Value *A, *B; 5563 // Transform (A & ~B) == 0 --> (A & B) != 0 5564 // and (A & ~B) != 0 --> (A & B) == 0 5565 // if A is a power of 2. 5566 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5567 match(Op1, m_Zero()) && 5568 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5569 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5570 Op1); 5571 5572 // ~X < ~Y --> Y < X 5573 // ~X < C --> X > ~C 5574 if (match(Op0, m_Not(m_Value(A)))) { 5575 if (match(Op1, m_Not(m_Value(B)))) 5576 return new ICmpInst(I.getPredicate(), B, A); 5577 5578 const APInt *C; 5579 if (match(Op1, m_APInt(C))) 5580 return new ICmpInst(I.getSwappedPredicate(), A, 5581 ConstantInt::get(Op1->getType(), ~(*C))); 5582 } 5583 5584 Instruction *AddI = nullptr; 5585 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5586 m_Instruction(AddI))) && 5587 isa<IntegerType>(A->getType())) { 5588 Value *Result; 5589 Constant *Overflow; 5590 // m_UAddWithOverflow can match patterns that do not include an explicit 5591 // "add" instruction, so check the opcode of the matched op. 5592 if (AddI->getOpcode() == Instruction::Add && 5593 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 5594 Result, Overflow)) { 5595 replaceInstUsesWith(*AddI, Result); 5596 return replaceInstUsesWith(I, Overflow); 5597 } 5598 } 5599 5600 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5601 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5602 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5603 return R; 5604 } 5605 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5606 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5607 return R; 5608 } 5609 } 5610 5611 if (Instruction *Res = foldICmpEquality(I)) 5612 return Res; 5613 5614 if (Instruction *Res = foldICmpOfUAddOv(I)) 5615 return Res; 5616 5617 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5618 // an i1 which indicates whether or not we successfully did the swap. 5619 // 5620 // Replace comparisons between the old value and the expected value with the 5621 // indicator that 'cmpxchg' returns. 5622 // 5623 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5624 // spuriously fail. In those cases, the old value may equal the expected 5625 // value but it is possible for the swap to not occur. 5626 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5627 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5628 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5629 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5630 !ACXI->isWeak()) 5631 return ExtractValueInst::Create(ACXI, 1); 5632 5633 { 5634 Value *X; 5635 const APInt *C; 5636 // icmp X+Cst, X 5637 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5638 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5639 5640 // icmp X, X+Cst 5641 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5642 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5643 } 5644 5645 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5646 return Res; 5647 5648 if (I.getType()->isVectorTy()) 5649 if (Instruction *Res = foldVectorCmp(I, Builder)) 5650 return Res; 5651 5652 return Changed ? &I : nullptr; 5653 } 5654 5655 /// Fold fcmp ([us]itofp x, cst) if possible. 5656 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5657 Constant *RHSC) { 5658 if (!isa<ConstantFP>(RHSC)) return nullptr; 5659 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5660 5661 // Get the width of the mantissa. We don't want to hack on conversions that 5662 // might lose information from the integer, e.g. "i64 -> float" 5663 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5664 if (MantissaWidth == -1) return nullptr; // Unknown. 5665 5666 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5667 5668 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5669 5670 if (I.isEquality()) { 5671 FCmpInst::Predicate P = I.getPredicate(); 5672 bool IsExact = false; 5673 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5674 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5675 5676 // If the floating point constant isn't an integer value, we know if we will 5677 // ever compare equal / not equal to it. 5678 if (!IsExact) { 5679 // TODO: Can never be -0.0 and other non-representable values 5680 APFloat RHSRoundInt(RHS); 5681 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5682 if (RHS != RHSRoundInt) { 5683 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5684 return replaceInstUsesWith(I, Builder.getFalse()); 5685 5686 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5687 return replaceInstUsesWith(I, Builder.getTrue()); 5688 } 5689 } 5690 5691 // TODO: If the constant is exactly representable, is it always OK to do 5692 // equality compares as integer? 5693 } 5694 5695 // Check to see that the input is converted from an integer type that is small 5696 // enough that preserves all bits. TODO: check here for "known" sign bits. 5697 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5698 unsigned InputSize = IntTy->getScalarSizeInBits(); 5699 5700 // Following test does NOT adjust InputSize downwards for signed inputs, 5701 // because the most negative value still requires all the mantissa bits 5702 // to distinguish it from one less than that value. 5703 if ((int)InputSize > MantissaWidth) { 5704 // Conversion would lose accuracy. Check if loss can impact comparison. 5705 int Exp = ilogb(RHS); 5706 if (Exp == APFloat::IEK_Inf) { 5707 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5708 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5709 // Conversion could create infinity. 5710 return nullptr; 5711 } else { 5712 // Note that if RHS is zero or NaN, then Exp is negative 5713 // and first condition is trivially false. 5714 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5715 // Conversion could affect comparison. 5716 return nullptr; 5717 } 5718 } 5719 5720 // Otherwise, we can potentially simplify the comparison. We know that it 5721 // will always come through as an integer value and we know the constant is 5722 // not a NAN (it would have been previously simplified). 5723 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5724 5725 ICmpInst::Predicate Pred; 5726 switch (I.getPredicate()) { 5727 default: llvm_unreachable("Unexpected predicate!"); 5728 case FCmpInst::FCMP_UEQ: 5729 case FCmpInst::FCMP_OEQ: 5730 Pred = ICmpInst::ICMP_EQ; 5731 break; 5732 case FCmpInst::FCMP_UGT: 5733 case FCmpInst::FCMP_OGT: 5734 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5735 break; 5736 case FCmpInst::FCMP_UGE: 5737 case FCmpInst::FCMP_OGE: 5738 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5739 break; 5740 case FCmpInst::FCMP_ULT: 5741 case FCmpInst::FCMP_OLT: 5742 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5743 break; 5744 case FCmpInst::FCMP_ULE: 5745 case FCmpInst::FCMP_OLE: 5746 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5747 break; 5748 case FCmpInst::FCMP_UNE: 5749 case FCmpInst::FCMP_ONE: 5750 Pred = ICmpInst::ICMP_NE; 5751 break; 5752 case FCmpInst::FCMP_ORD: 5753 return replaceInstUsesWith(I, Builder.getTrue()); 5754 case FCmpInst::FCMP_UNO: 5755 return replaceInstUsesWith(I, Builder.getFalse()); 5756 } 5757 5758 // Now we know that the APFloat is a normal number, zero or inf. 5759 5760 // See if the FP constant is too large for the integer. For example, 5761 // comparing an i8 to 300.0. 5762 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5763 5764 if (!LHSUnsigned) { 5765 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5766 // and large values. 5767 APFloat SMax(RHS.getSemantics()); 5768 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5769 APFloat::rmNearestTiesToEven); 5770 if (SMax < RHS) { // smax < 13123.0 5771 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5772 Pred == ICmpInst::ICMP_SLE) 5773 return replaceInstUsesWith(I, Builder.getTrue()); 5774 return replaceInstUsesWith(I, Builder.getFalse()); 5775 } 5776 } else { 5777 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5778 // +INF and large values. 5779 APFloat UMax(RHS.getSemantics()); 5780 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5781 APFloat::rmNearestTiesToEven); 5782 if (UMax < RHS) { // umax < 13123.0 5783 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5784 Pred == ICmpInst::ICMP_ULE) 5785 return replaceInstUsesWith(I, Builder.getTrue()); 5786 return replaceInstUsesWith(I, Builder.getFalse()); 5787 } 5788 } 5789 5790 if (!LHSUnsigned) { 5791 // See if the RHS value is < SignedMin. 5792 APFloat SMin(RHS.getSemantics()); 5793 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5794 APFloat::rmNearestTiesToEven); 5795 if (SMin > RHS) { // smin > 12312.0 5796 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5797 Pred == ICmpInst::ICMP_SGE) 5798 return replaceInstUsesWith(I, Builder.getTrue()); 5799 return replaceInstUsesWith(I, Builder.getFalse()); 5800 } 5801 } else { 5802 // See if the RHS value is < UnsignedMin. 5803 APFloat UMin(RHS.getSemantics()); 5804 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 5805 APFloat::rmNearestTiesToEven); 5806 if (UMin > RHS) { // umin > 12312.0 5807 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5808 Pred == ICmpInst::ICMP_UGE) 5809 return replaceInstUsesWith(I, Builder.getTrue()); 5810 return replaceInstUsesWith(I, Builder.getFalse()); 5811 } 5812 } 5813 5814 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5815 // [0, UMAX], but it may still be fractional. See if it is fractional by 5816 // casting the FP value to the integer value and back, checking for equality. 5817 // Don't do this for zero, because -0.0 is not fractional. 5818 Constant *RHSInt = LHSUnsigned 5819 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5820 : ConstantExpr::getFPToSI(RHSC, IntTy); 5821 if (!RHS.isZero()) { 5822 bool Equal = LHSUnsigned 5823 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5824 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5825 if (!Equal) { 5826 // If we had a comparison against a fractional value, we have to adjust 5827 // the compare predicate and sometimes the value. RHSC is rounded towards 5828 // zero at this point. 5829 switch (Pred) { 5830 default: llvm_unreachable("Unexpected integer comparison!"); 5831 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5832 return replaceInstUsesWith(I, Builder.getTrue()); 5833 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5834 return replaceInstUsesWith(I, Builder.getFalse()); 5835 case ICmpInst::ICMP_ULE: 5836 // (float)int <= 4.4 --> int <= 4 5837 // (float)int <= -4.4 --> false 5838 if (RHS.isNegative()) 5839 return replaceInstUsesWith(I, Builder.getFalse()); 5840 break; 5841 case ICmpInst::ICMP_SLE: 5842 // (float)int <= 4.4 --> int <= 4 5843 // (float)int <= -4.4 --> int < -4 5844 if (RHS.isNegative()) 5845 Pred = ICmpInst::ICMP_SLT; 5846 break; 5847 case ICmpInst::ICMP_ULT: 5848 // (float)int < -4.4 --> false 5849 // (float)int < 4.4 --> int <= 4 5850 if (RHS.isNegative()) 5851 return replaceInstUsesWith(I, Builder.getFalse()); 5852 Pred = ICmpInst::ICMP_ULE; 5853 break; 5854 case ICmpInst::ICMP_SLT: 5855 // (float)int < -4.4 --> int < -4 5856 // (float)int < 4.4 --> int <= 4 5857 if (!RHS.isNegative()) 5858 Pred = ICmpInst::ICMP_SLE; 5859 break; 5860 case ICmpInst::ICMP_UGT: 5861 // (float)int > 4.4 --> int > 4 5862 // (float)int > -4.4 --> true 5863 if (RHS.isNegative()) 5864 return replaceInstUsesWith(I, Builder.getTrue()); 5865 break; 5866 case ICmpInst::ICMP_SGT: 5867 // (float)int > 4.4 --> int > 4 5868 // (float)int > -4.4 --> int >= -4 5869 if (RHS.isNegative()) 5870 Pred = ICmpInst::ICMP_SGE; 5871 break; 5872 case ICmpInst::ICMP_UGE: 5873 // (float)int >= -4.4 --> true 5874 // (float)int >= 4.4 --> int > 4 5875 if (RHS.isNegative()) 5876 return replaceInstUsesWith(I, Builder.getTrue()); 5877 Pred = ICmpInst::ICMP_UGT; 5878 break; 5879 case ICmpInst::ICMP_SGE: 5880 // (float)int >= -4.4 --> int >= -4 5881 // (float)int >= 4.4 --> int > 4 5882 if (!RHS.isNegative()) 5883 Pred = ICmpInst::ICMP_SGT; 5884 break; 5885 } 5886 } 5887 } 5888 5889 // Lower this FP comparison into an appropriate integer version of the 5890 // comparison. 5891 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5892 } 5893 5894 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5895 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5896 Constant *RHSC) { 5897 // When C is not 0.0 and infinities are not allowed: 5898 // (C / X) < 0.0 is a sign-bit test of X 5899 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5900 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5901 // 5902 // Proof: 5903 // Multiply (C / X) < 0.0 by X * X / C. 5904 // - X is non zero, if it is the flag 'ninf' is violated. 5905 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5906 // the predicate. C is also non zero by definition. 5907 // 5908 // Thus X * X / C is non zero and the transformation is valid. [qed] 5909 5910 FCmpInst::Predicate Pred = I.getPredicate(); 5911 5912 // Check that predicates are valid. 5913 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5914 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5915 return nullptr; 5916 5917 // Check that RHS operand is zero. 5918 if (!match(RHSC, m_AnyZeroFP())) 5919 return nullptr; 5920 5921 // Check fastmath flags ('ninf'). 5922 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5923 return nullptr; 5924 5925 // Check the properties of the dividend. It must not be zero to avoid a 5926 // division by zero (see Proof). 5927 const APFloat *C; 5928 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5929 return nullptr; 5930 5931 if (C->isZero()) 5932 return nullptr; 5933 5934 // Get swapped predicate if necessary. 5935 if (C->isNegative()) 5936 Pred = I.getSwappedPredicate(); 5937 5938 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5939 } 5940 5941 /// Optimize fabs(X) compared with zero. 5942 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { 5943 Value *X; 5944 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5945 !match(I.getOperand(1), m_PosZeroFP())) 5946 return nullptr; 5947 5948 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5949 I->setPredicate(P); 5950 I->setOperand(0, X); 5951 return I; 5952 }; 5953 5954 switch (I.getPredicate()) { 5955 case FCmpInst::FCMP_UGE: 5956 case FCmpInst::FCMP_OLT: 5957 // fabs(X) >= 0.0 --> true 5958 // fabs(X) < 0.0 --> false 5959 llvm_unreachable("fcmp should have simplified"); 5960 5961 case FCmpInst::FCMP_OGT: 5962 // fabs(X) > 0.0 --> X != 0.0 5963 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 5964 5965 case FCmpInst::FCMP_UGT: 5966 // fabs(X) u> 0.0 --> X u!= 0.0 5967 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 5968 5969 case FCmpInst::FCMP_OLE: 5970 // fabs(X) <= 0.0 --> X == 0.0 5971 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 5972 5973 case FCmpInst::FCMP_ULE: 5974 // fabs(X) u<= 0.0 --> X u== 0.0 5975 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 5976 5977 case FCmpInst::FCMP_OGE: 5978 // fabs(X) >= 0.0 --> !isnan(X) 5979 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5980 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 5981 5982 case FCmpInst::FCMP_ULT: 5983 // fabs(X) u< 0.0 --> isnan(X) 5984 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5985 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 5986 5987 case FCmpInst::FCMP_OEQ: 5988 case FCmpInst::FCMP_UEQ: 5989 case FCmpInst::FCMP_ONE: 5990 case FCmpInst::FCMP_UNE: 5991 case FCmpInst::FCMP_ORD: 5992 case FCmpInst::FCMP_UNO: 5993 // Look through the fabs() because it doesn't change anything but the sign. 5994 // fabs(X) == 0.0 --> X == 0.0, 5995 // fabs(X) != 0.0 --> X != 0.0 5996 // isnan(fabs(X)) --> isnan(X) 5997 // !isnan(fabs(X) --> !isnan(X) 5998 return replacePredAndOp0(&I, I.getPredicate(), X); 5999 6000 default: 6001 return nullptr; 6002 } 6003 } 6004 6005 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 6006 bool Changed = false; 6007 6008 /// Orders the operands of the compare so that they are listed from most 6009 /// complex to least complex. This puts constants before unary operators, 6010 /// before binary operators. 6011 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6012 I.swapOperands(); 6013 Changed = true; 6014 } 6015 6016 const CmpInst::Predicate Pred = I.getPredicate(); 6017 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6018 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6019 SQ.getWithInstruction(&I))) 6020 return replaceInstUsesWith(I, V); 6021 6022 // Simplify 'fcmp pred X, X' 6023 Type *OpType = Op0->getType(); 6024 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6025 if (Op0 == Op1) { 6026 switch (Pred) { 6027 default: break; 6028 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6029 case FCmpInst::FCMP_ULT: // True if unordered or less than 6030 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6031 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6032 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6033 I.setPredicate(FCmpInst::FCMP_UNO); 6034 I.setOperand(1, Constant::getNullValue(OpType)); 6035 return &I; 6036 6037 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6038 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6039 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6040 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6041 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6042 I.setPredicate(FCmpInst::FCMP_ORD); 6043 I.setOperand(1, Constant::getNullValue(OpType)); 6044 return &I; 6045 } 6046 } 6047 6048 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6049 // then canonicalize the operand to 0.0. 6050 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6051 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6052 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6053 6054 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6055 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6056 } 6057 6058 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6059 Value *X, *Y; 6060 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6061 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6062 6063 // Test if the FCmpInst instruction is used exclusively by a select as 6064 // part of a minimum or maximum operation. If so, refrain from doing 6065 // any other folding. This helps out other analyses which understand 6066 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6067 // and CodeGen. And in this case, at least one of the comparison 6068 // operands has at least one user besides the compare (the select), 6069 // which would often largely negate the benefit of folding anyway. 6070 if (I.hasOneUse()) 6071 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6072 Value *A, *B; 6073 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6074 if (SPR.Flavor != SPF_UNKNOWN) 6075 return nullptr; 6076 } 6077 6078 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6079 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6080 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6081 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6082 6083 // Handle fcmp with instruction LHS and constant RHS. 6084 Instruction *LHSI; 6085 Constant *RHSC; 6086 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6087 switch (LHSI->getOpcode()) { 6088 case Instruction::PHI: 6089 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6090 // block. If in the same block, we're encouraging jump threading. If 6091 // not, we are just pessimizing the code by making an i1 phi. 6092 if (LHSI->getParent() == I.getParent()) 6093 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6094 return NV; 6095 break; 6096 case Instruction::SIToFP: 6097 case Instruction::UIToFP: 6098 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6099 return NV; 6100 break; 6101 case Instruction::FDiv: 6102 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6103 return NV; 6104 break; 6105 case Instruction::Load: 6106 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6107 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6108 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6109 !cast<LoadInst>(LHSI)->isVolatile()) 6110 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6111 return Res; 6112 break; 6113 } 6114 } 6115 6116 if (Instruction *R = foldFabsWithFcmpZero(I)) 6117 return R; 6118 6119 if (match(Op0, m_FNeg(m_Value(X)))) { 6120 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6121 Constant *C; 6122 if (match(Op1, m_Constant(C))) { 6123 Constant *NegC = ConstantExpr::getFNeg(C); 6124 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6125 } 6126 } 6127 6128 if (match(Op0, m_FPExt(m_Value(X)))) { 6129 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6130 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6131 return new FCmpInst(Pred, X, Y, "", &I); 6132 6133 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6134 const APFloat *C; 6135 if (match(Op1, m_APFloat(C))) { 6136 const fltSemantics &FPSem = 6137 X->getType()->getScalarType()->getFltSemantics(); 6138 bool Lossy; 6139 APFloat TruncC = *C; 6140 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6141 6142 // Avoid lossy conversions and denormals. 6143 // Zero is a special case that's OK to convert. 6144 APFloat Fabs = TruncC; 6145 Fabs.clearSign(); 6146 if (!Lossy && 6147 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6148 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6149 return new FCmpInst(Pred, X, NewC, "", &I); 6150 } 6151 } 6152 } 6153 6154 if (I.getType()->isVectorTy()) 6155 if (Instruction *Res = foldVectorCmp(I, Builder)) 6156 return Res; 6157 6158 return Changed ? &I : nullptr; 6159 } 6160