1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isZero())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOne()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnes()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// This is called when we see this pattern:
99 ///   cmp pred (load (gep GV, ...)), cmpcst
100 /// where GV is a global variable with a constant initializer. Try to simplify
101 /// this into some simple computation that does not need the load. For example
102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
103 ///
104 /// If AndCst is non-null, then the loaded value is masked with that constant
105 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
107     LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
108     ConstantInt *AndCst) {
109   if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
110       GV->getValueType() != GEP->getSourceElementType() ||
111       !GV->isConstant() || !GV->hasDefinitiveInitializer())
112     return nullptr;
113 
114   Constant *Init = GV->getInitializer();
115   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
116     return nullptr;
117 
118   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
119   // Don't blow up on huge arrays.
120   if (ArrayElementCount > MaxArraySizeForCombine)
121     return nullptr;
122 
123   // There are many forms of this optimization we can handle, for now, just do
124   // the simple index into a single-dimensional array.
125   //
126   // Require: GEP GV, 0, i {{, constant indices}}
127   if (GEP->getNumOperands() < 3 ||
128       !isa<ConstantInt>(GEP->getOperand(1)) ||
129       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
130       isa<Constant>(GEP->getOperand(2)))
131     return nullptr;
132 
133   // Check that indices after the variable are constants and in-range for the
134   // type they index.  Collect the indices.  This is typically for arrays of
135   // structs.
136   SmallVector<unsigned, 4> LaterIndices;
137 
138   Type *EltTy = Init->getType()->getArrayElementType();
139   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
140     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
141     if (!Idx) return nullptr;  // Variable index.
142 
143     uint64_t IdxVal = Idx->getZExtValue();
144     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
145 
146     if (StructType *STy = dyn_cast<StructType>(EltTy))
147       EltTy = STy->getElementType(IdxVal);
148     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
149       if (IdxVal >= ATy->getNumElements()) return nullptr;
150       EltTy = ATy->getElementType();
151     } else {
152       return nullptr; // Unknown type.
153     }
154 
155     LaterIndices.push_back(IdxVal);
156   }
157 
158   enum { Overdefined = -3, Undefined = -2 };
159 
160   // Variables for our state machines.
161 
162   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
163   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
164   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
165   // undefined, otherwise set to the first true element.  SecondTrueElement is
166   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
167   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
168 
169   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
170   // form "i != 47 & i != 87".  Same state transitions as for true elements.
171   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
172 
173   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
174   /// define a state machine that triggers for ranges of values that the index
175   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
176   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
177   /// index in the range (inclusive).  We use -2 for undefined here because we
178   /// use relative comparisons and don't want 0-1 to match -1.
179   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
180 
181   // MagicBitvector - This is a magic bitvector where we set a bit if the
182   // comparison is true for element 'i'.  If there are 64 elements or less in
183   // the array, this will fully represent all the comparison results.
184   uint64_t MagicBitvector = 0;
185 
186   // Scan the array and see if one of our patterns matches.
187   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
188   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
189     Constant *Elt = Init->getAggregateElement(i);
190     if (!Elt) return nullptr;
191 
192     // If this is indexing an array of structures, get the structure element.
193     if (!LaterIndices.empty())
194       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
195 
196     // If the element is masked, handle it.
197     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
198 
199     // Find out if the comparison would be true or false for the i'th element.
200     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
201                                                   CompareRHS, DL, &TLI);
202     // If the result is undef for this element, ignore it.
203     if (isa<UndefValue>(C)) {
204       // Extend range state machines to cover this element in case there is an
205       // undef in the middle of the range.
206       if (TrueRangeEnd == (int)i-1)
207         TrueRangeEnd = i;
208       if (FalseRangeEnd == (int)i-1)
209         FalseRangeEnd = i;
210       continue;
211     }
212 
213     // If we can't compute the result for any of the elements, we have to give
214     // up evaluating the entire conditional.
215     if (!isa<ConstantInt>(C)) return nullptr;
216 
217     // Otherwise, we know if the comparison is true or false for this element,
218     // update our state machines.
219     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
220 
221     // State machine for single/double/range index comparison.
222     if (IsTrueForElt) {
223       // Update the TrueElement state machine.
224       if (FirstTrueElement == Undefined)
225         FirstTrueElement = TrueRangeEnd = i;  // First true element.
226       else {
227         // Update double-compare state machine.
228         if (SecondTrueElement == Undefined)
229           SecondTrueElement = i;
230         else
231           SecondTrueElement = Overdefined;
232 
233         // Update range state machine.
234         if (TrueRangeEnd == (int)i-1)
235           TrueRangeEnd = i;
236         else
237           TrueRangeEnd = Overdefined;
238       }
239     } else {
240       // Update the FalseElement state machine.
241       if (FirstFalseElement == Undefined)
242         FirstFalseElement = FalseRangeEnd = i; // First false element.
243       else {
244         // Update double-compare state machine.
245         if (SecondFalseElement == Undefined)
246           SecondFalseElement = i;
247         else
248           SecondFalseElement = Overdefined;
249 
250         // Update range state machine.
251         if (FalseRangeEnd == (int)i-1)
252           FalseRangeEnd = i;
253         else
254           FalseRangeEnd = Overdefined;
255       }
256     }
257 
258     // If this element is in range, update our magic bitvector.
259     if (i < 64 && IsTrueForElt)
260       MagicBitvector |= 1ULL << i;
261 
262     // If all of our states become overdefined, bail out early.  Since the
263     // predicate is expensive, only check it every 8 elements.  This is only
264     // really useful for really huge arrays.
265     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
266         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
267         FalseRangeEnd == Overdefined)
268       return nullptr;
269   }
270 
271   // Now that we've scanned the entire array, emit our new comparison(s).  We
272   // order the state machines in complexity of the generated code.
273   Value *Idx = GEP->getOperand(2);
274 
275   // If the index is larger than the pointer size of the target, truncate the
276   // index down like the GEP would do implicitly.  We don't have to do this for
277   // an inbounds GEP because the index can't be out of range.
278   if (!GEP->isInBounds()) {
279     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
280     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
281     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
282       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
283   }
284 
285   // If inbounds keyword is not present, Idx * ElementSize can overflow.
286   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
287   // Then, there are two possible values for Idx to match offset 0:
288   // 0x00..00, 0x80..00.
289   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
290   // comparison is false if Idx was 0x80..00.
291   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
292   unsigned ElementSize =
293       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
294   auto MaskIdx = [&](Value* Idx){
295     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
296       Value *Mask = ConstantInt::get(Idx->getType(), -1);
297       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
298       Idx = Builder.CreateAnd(Idx, Mask);
299     }
300     return Idx;
301   };
302 
303   // If the comparison is only true for one or two elements, emit direct
304   // comparisons.
305   if (SecondTrueElement != Overdefined) {
306     Idx = MaskIdx(Idx);
307     // None true -> false.
308     if (FirstTrueElement == Undefined)
309       return replaceInstUsesWith(ICI, Builder.getFalse());
310 
311     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
312 
313     // True for one element -> 'i == 47'.
314     if (SecondTrueElement == Undefined)
315       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
316 
317     // True for two elements -> 'i == 47 | i == 72'.
318     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
319     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
320     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
321     return BinaryOperator::CreateOr(C1, C2);
322   }
323 
324   // If the comparison is only false for one or two elements, emit direct
325   // comparisons.
326   if (SecondFalseElement != Overdefined) {
327     Idx = MaskIdx(Idx);
328     // None false -> true.
329     if (FirstFalseElement == Undefined)
330       return replaceInstUsesWith(ICI, Builder.getTrue());
331 
332     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
333 
334     // False for one element -> 'i != 47'.
335     if (SecondFalseElement == Undefined)
336       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
337 
338     // False for two elements -> 'i != 47 & i != 72'.
339     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
340     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
341     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
342     return BinaryOperator::CreateAnd(C1, C2);
343   }
344 
345   // If the comparison can be replaced with a range comparison for the elements
346   // where it is true, emit the range check.
347   if (TrueRangeEnd != Overdefined) {
348     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
349     Idx = MaskIdx(Idx);
350 
351     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
352     if (FirstTrueElement) {
353       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
354       Idx = Builder.CreateAdd(Idx, Offs);
355     }
356 
357     Value *End = ConstantInt::get(Idx->getType(),
358                                   TrueRangeEnd-FirstTrueElement+1);
359     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
360   }
361 
362   // False range check.
363   if (FalseRangeEnd != Overdefined) {
364     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
365     Idx = MaskIdx(Idx);
366     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
367     if (FirstFalseElement) {
368       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
369       Idx = Builder.CreateAdd(Idx, Offs);
370     }
371 
372     Value *End = ConstantInt::get(Idx->getType(),
373                                   FalseRangeEnd-FirstFalseElement);
374     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
375   }
376 
377   // If a magic bitvector captures the entire comparison state
378   // of this load, replace it with computation that does:
379   //   ((magic_cst >> i) & 1) != 0
380   {
381     Type *Ty = nullptr;
382 
383     // Look for an appropriate type:
384     // - The type of Idx if the magic fits
385     // - The smallest fitting legal type
386     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
387       Ty = Idx->getType();
388     else
389       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
390 
391     if (Ty) {
392       Idx = MaskIdx(Idx);
393       Value *V = Builder.CreateIntCast(Idx, Ty, false);
394       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
395       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
396       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
397     }
398   }
399 
400   return nullptr;
401 }
402 
403 /// Return a value that can be used to compare the *offset* implied by a GEP to
404 /// zero. For example, if we have &A[i], we want to return 'i' for
405 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
406 /// are involved. The above expression would also be legal to codegen as
407 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
408 /// This latter form is less amenable to optimization though, and we are allowed
409 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
410 ///
411 /// If we can't emit an optimized form for this expression, this returns null.
412 ///
413 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
414                                           const DataLayout &DL) {
415   gep_type_iterator GTI = gep_type_begin(GEP);
416 
417   // Check to see if this gep only has a single variable index.  If so, and if
418   // any constant indices are a multiple of its scale, then we can compute this
419   // in terms of the scale of the variable index.  For example, if the GEP
420   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
421   // because the expression will cross zero at the same point.
422   unsigned i, e = GEP->getNumOperands();
423   int64_t Offset = 0;
424   for (i = 1; i != e; ++i, ++GTI) {
425     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
426       // Compute the aggregate offset of constant indices.
427       if (CI->isZero()) continue;
428 
429       // Handle a struct index, which adds its field offset to the pointer.
430       if (StructType *STy = GTI.getStructTypeOrNull()) {
431         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
432       } else {
433         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
434         Offset += Size*CI->getSExtValue();
435       }
436     } else {
437       // Found our variable index.
438       break;
439     }
440   }
441 
442   // If there are no variable indices, we must have a constant offset, just
443   // evaluate it the general way.
444   if (i == e) return nullptr;
445 
446   Value *VariableIdx = GEP->getOperand(i);
447   // Determine the scale factor of the variable element.  For example, this is
448   // 4 if the variable index is into an array of i32.
449   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
450 
451   // Verify that there are no other variable indices.  If so, emit the hard way.
452   for (++i, ++GTI; i != e; ++i, ++GTI) {
453     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
454     if (!CI) return nullptr;
455 
456     // Compute the aggregate offset of constant indices.
457     if (CI->isZero()) continue;
458 
459     // Handle a struct index, which adds its field offset to the pointer.
460     if (StructType *STy = GTI.getStructTypeOrNull()) {
461       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
462     } else {
463       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
464       Offset += Size*CI->getSExtValue();
465     }
466   }
467 
468   // Okay, we know we have a single variable index, which must be a
469   // pointer/array/vector index.  If there is no offset, life is simple, return
470   // the index.
471   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
472   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
473   if (Offset == 0) {
474     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
475     // we don't need to bother extending: the extension won't affect where the
476     // computation crosses zero.
477     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
478         IntPtrWidth) {
479       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
480     }
481     return VariableIdx;
482   }
483 
484   // Otherwise, there is an index.  The computation we will do will be modulo
485   // the pointer size.
486   Offset = SignExtend64(Offset, IntPtrWidth);
487   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
488 
489   // To do this transformation, any constant index must be a multiple of the
490   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
491   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
492   // multiple of the variable scale.
493   int64_t NewOffs = Offset / (int64_t)VariableScale;
494   if (Offset != NewOffs*(int64_t)VariableScale)
495     return nullptr;
496 
497   // Okay, we can do this evaluation.  Start by converting the index to intptr.
498   if (VariableIdx->getType() != IntPtrTy)
499     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
500                                             true /*Signed*/);
501   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
502   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
503 }
504 
505 /// Returns true if we can rewrite Start as a GEP with pointer Base
506 /// and some integer offset. The nodes that need to be re-written
507 /// for this transformation will be added to Explored.
508 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
509                                   const DataLayout &DL,
510                                   SetVector<Value *> &Explored) {
511   SmallVector<Value *, 16> WorkList(1, Start);
512   Explored.insert(Base);
513 
514   // The following traversal gives us an order which can be used
515   // when doing the final transformation. Since in the final
516   // transformation we create the PHI replacement instructions first,
517   // we don't have to get them in any particular order.
518   //
519   // However, for other instructions we will have to traverse the
520   // operands of an instruction first, which means that we have to
521   // do a post-order traversal.
522   while (!WorkList.empty()) {
523     SetVector<PHINode *> PHIs;
524 
525     while (!WorkList.empty()) {
526       if (Explored.size() >= 100)
527         return false;
528 
529       Value *V = WorkList.back();
530 
531       if (Explored.contains(V)) {
532         WorkList.pop_back();
533         continue;
534       }
535 
536       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
537           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
538         // We've found some value that we can't explore which is different from
539         // the base. Therefore we can't do this transformation.
540         return false;
541 
542       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
543         auto *CI = cast<CastInst>(V);
544         if (!CI->isNoopCast(DL))
545           return false;
546 
547         if (!Explored.contains(CI->getOperand(0)))
548           WorkList.push_back(CI->getOperand(0));
549       }
550 
551       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
552         // We're limiting the GEP to having one index. This will preserve
553         // the original pointer type. We could handle more cases in the
554         // future.
555         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
556             GEP->getSourceElementType() != ElemTy)
557           return false;
558 
559         if (!Explored.contains(GEP->getOperand(0)))
560           WorkList.push_back(GEP->getOperand(0));
561       }
562 
563       if (WorkList.back() == V) {
564         WorkList.pop_back();
565         // We've finished visiting this node, mark it as such.
566         Explored.insert(V);
567       }
568 
569       if (auto *PN = dyn_cast<PHINode>(V)) {
570         // We cannot transform PHIs on unsplittable basic blocks.
571         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
572           return false;
573         Explored.insert(PN);
574         PHIs.insert(PN);
575       }
576     }
577 
578     // Explore the PHI nodes further.
579     for (auto *PN : PHIs)
580       for (Value *Op : PN->incoming_values())
581         if (!Explored.contains(Op))
582           WorkList.push_back(Op);
583   }
584 
585   // Make sure that we can do this. Since we can't insert GEPs in a basic
586   // block before a PHI node, we can't easily do this transformation if
587   // we have PHI node users of transformed instructions.
588   for (Value *Val : Explored) {
589     for (Value *Use : Val->uses()) {
590 
591       auto *PHI = dyn_cast<PHINode>(Use);
592       auto *Inst = dyn_cast<Instruction>(Val);
593 
594       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
595           !Explored.contains(PHI))
596         continue;
597 
598       if (PHI->getParent() == Inst->getParent())
599         return false;
600     }
601   }
602   return true;
603 }
604 
605 // Sets the appropriate insert point on Builder where we can add
606 // a replacement Instruction for V (if that is possible).
607 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
608                               bool Before = true) {
609   if (auto *PHI = dyn_cast<PHINode>(V)) {
610     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
611     return;
612   }
613   if (auto *I = dyn_cast<Instruction>(V)) {
614     if (!Before)
615       I = &*std::next(I->getIterator());
616     Builder.SetInsertPoint(I);
617     return;
618   }
619   if (auto *A = dyn_cast<Argument>(V)) {
620     // Set the insertion point in the entry block.
621     BasicBlock &Entry = A->getParent()->getEntryBlock();
622     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
623     return;
624   }
625   // Otherwise, this is a constant and we don't need to set a new
626   // insertion point.
627   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
628 }
629 
630 /// Returns a re-written value of Start as an indexed GEP using Base as a
631 /// pointer.
632 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
633                                  const DataLayout &DL,
634                                  SetVector<Value *> &Explored) {
635   // Perform all the substitutions. This is a bit tricky because we can
636   // have cycles in our use-def chains.
637   // 1. Create the PHI nodes without any incoming values.
638   // 2. Create all the other values.
639   // 3. Add the edges for the PHI nodes.
640   // 4. Emit GEPs to get the original pointers.
641   // 5. Remove the original instructions.
642   Type *IndexType = IntegerType::get(
643       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
644 
645   DenseMap<Value *, Value *> NewInsts;
646   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
647 
648   // Create the new PHI nodes, without adding any incoming values.
649   for (Value *Val : Explored) {
650     if (Val == Base)
651       continue;
652     // Create empty phi nodes. This avoids cyclic dependencies when creating
653     // the remaining instructions.
654     if (auto *PHI = dyn_cast<PHINode>(Val))
655       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
656                                       PHI->getName() + ".idx", PHI);
657   }
658   IRBuilder<> Builder(Base->getContext());
659 
660   // Create all the other instructions.
661   for (Value *Val : Explored) {
662 
663     if (NewInsts.find(Val) != NewInsts.end())
664       continue;
665 
666     if (auto *CI = dyn_cast<CastInst>(Val)) {
667       // Don't get rid of the intermediate variable here; the store can grow
668       // the map which will invalidate the reference to the input value.
669       Value *V = NewInsts[CI->getOperand(0)];
670       NewInsts[CI] = V;
671       continue;
672     }
673     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
674       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
675                                                   : GEP->getOperand(1);
676       setInsertionPoint(Builder, GEP);
677       // Indices might need to be sign extended. GEPs will magically do
678       // this, but we need to do it ourselves here.
679       if (Index->getType()->getScalarSizeInBits() !=
680           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
681         Index = Builder.CreateSExtOrTrunc(
682             Index, NewInsts[GEP->getOperand(0)]->getType(),
683             GEP->getOperand(0)->getName() + ".sext");
684       }
685 
686       auto *Op = NewInsts[GEP->getOperand(0)];
687       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
688         NewInsts[GEP] = Index;
689       else
690         NewInsts[GEP] = Builder.CreateNSWAdd(
691             Op, Index, GEP->getOperand(0)->getName() + ".add");
692       continue;
693     }
694     if (isa<PHINode>(Val))
695       continue;
696 
697     llvm_unreachable("Unexpected instruction type");
698   }
699 
700   // Add the incoming values to the PHI nodes.
701   for (Value *Val : Explored) {
702     if (Val == Base)
703       continue;
704     // All the instructions have been created, we can now add edges to the
705     // phi nodes.
706     if (auto *PHI = dyn_cast<PHINode>(Val)) {
707       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
708       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
709         Value *NewIncoming = PHI->getIncomingValue(I);
710 
711         if (NewInsts.find(NewIncoming) != NewInsts.end())
712           NewIncoming = NewInsts[NewIncoming];
713 
714         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
715       }
716     }
717   }
718 
719   PointerType *PtrTy =
720       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
721   for (Value *Val : Explored) {
722     if (Val == Base)
723       continue;
724 
725     // Depending on the type, for external users we have to emit
726     // a GEP or a GEP + ptrtoint.
727     setInsertionPoint(Builder, Val, false);
728 
729     // Cast base to the expected type.
730     Value *NewVal = Builder.CreateBitOrPointerCast(
731         Base, PtrTy, Start->getName() + "to.ptr");
732     NewVal = Builder.CreateInBoundsGEP(
733         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
734     NewVal = Builder.CreateBitOrPointerCast(
735         NewVal, Val->getType(), Val->getName() + ".conv");
736     Val->replaceAllUsesWith(NewVal);
737   }
738 
739   return NewInsts[Start];
740 }
741 
742 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
743 /// the input Value as a constant indexed GEP. Returns a pair containing
744 /// the GEPs Pointer and Index.
745 static std::pair<Value *, Value *>
746 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
747   Type *IndexType = IntegerType::get(V->getContext(),
748                                      DL.getIndexTypeSizeInBits(V->getType()));
749 
750   Constant *Index = ConstantInt::getNullValue(IndexType);
751   while (true) {
752     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
753       // We accept only inbouds GEPs here to exclude the possibility of
754       // overflow.
755       if (!GEP->isInBounds())
756         break;
757       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
758           GEP->getSourceElementType() == ElemTy) {
759         V = GEP->getOperand(0);
760         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
761         Index = ConstantExpr::getAdd(
762             Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType));
763         continue;
764       }
765       break;
766     }
767     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
768       if (!CI->isNoopCast(DL))
769         break;
770       V = CI->getOperand(0);
771       continue;
772     }
773     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
774       if (!CI->isNoopCast(DL))
775         break;
776       V = CI->getOperand(0);
777       continue;
778     }
779     break;
780   }
781   return {V, Index};
782 }
783 
784 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
785 /// We can look through PHIs, GEPs and casts in order to determine a common base
786 /// between GEPLHS and RHS.
787 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
788                                               ICmpInst::Predicate Cond,
789                                               const DataLayout &DL) {
790   // FIXME: Support vector of pointers.
791   if (GEPLHS->getType()->isVectorTy())
792     return nullptr;
793 
794   if (!GEPLHS->hasAllConstantIndices())
795     return nullptr;
796 
797   Type *ElemTy = GEPLHS->getSourceElementType();
798   Value *PtrBase, *Index;
799   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
800 
801   // The set of nodes that will take part in this transformation.
802   SetVector<Value *> Nodes;
803 
804   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
805     return nullptr;
806 
807   // We know we can re-write this as
808   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
809   // Since we've only looked through inbouds GEPs we know that we
810   // can't have overflow on either side. We can therefore re-write
811   // this as:
812   //   OFFSET1 cmp OFFSET2
813   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
814 
815   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
816   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
817   // offset. Since Index is the offset of LHS to the base pointer, we will now
818   // compare the offsets instead of comparing the pointers.
819   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
820 }
821 
822 /// Fold comparisons between a GEP instruction and something else. At this point
823 /// we know that the GEP is on the LHS of the comparison.
824 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
825                                            ICmpInst::Predicate Cond,
826                                            Instruction &I) {
827   // Don't transform signed compares of GEPs into index compares. Even if the
828   // GEP is inbounds, the final add of the base pointer can have signed overflow
829   // and would change the result of the icmp.
830   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
831   // the maximum signed value for the pointer type.
832   if (ICmpInst::isSigned(Cond))
833     return nullptr;
834 
835   // Look through bitcasts and addrspacecasts. We do not however want to remove
836   // 0 GEPs.
837   if (!isa<GetElementPtrInst>(RHS))
838     RHS = RHS->stripPointerCasts();
839 
840   Value *PtrBase = GEPLHS->getOperand(0);
841   // FIXME: Support vector pointer GEPs.
842   if (PtrBase == RHS && GEPLHS->isInBounds() &&
843       !GEPLHS->getType()->isVectorTy()) {
844     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
845     // This transformation (ignoring the base and scales) is valid because we
846     // know pointers can't overflow since the gep is inbounds.  See if we can
847     // output an optimized form.
848     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
849 
850     // If not, synthesize the offset the hard way.
851     if (!Offset)
852       Offset = EmitGEPOffset(GEPLHS);
853     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
854                         Constant::getNullValue(Offset->getType()));
855   }
856 
857   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
858       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
859       !NullPointerIsDefined(I.getFunction(),
860                             RHS->getType()->getPointerAddressSpace())) {
861     // For most address spaces, an allocation can't be placed at null, but null
862     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
863     // the only valid inbounds address derived from null, is null itself.
864     // Thus, we have four cases to consider:
865     // 1) Base == nullptr, Offset == 0 -> inbounds, null
866     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
867     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
868     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
869     //
870     // (Note if we're indexing a type of size 0, that simply collapses into one
871     //  of the buckets above.)
872     //
873     // In general, we're allowed to make values less poison (i.e. remove
874     //   sources of full UB), so in this case, we just select between the two
875     //   non-poison cases (1 and 4 above).
876     //
877     // For vectors, we apply the same reasoning on a per-lane basis.
878     auto *Base = GEPLHS->getPointerOperand();
879     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
880       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
881       Base = Builder.CreateVectorSplat(EC, Base);
882     }
883     return new ICmpInst(Cond, Base,
884                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
885                             cast<Constant>(RHS), Base->getType()));
886   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
887     // If the base pointers are different, but the indices are the same, just
888     // compare the base pointer.
889     if (PtrBase != GEPRHS->getOperand(0)) {
890       bool IndicesTheSame =
891           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
892           GEPLHS->getPointerOperand()->getType() ==
893               GEPRHS->getPointerOperand()->getType() &&
894           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
895       if (IndicesTheSame)
896         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
897           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
898             IndicesTheSame = false;
899             break;
900           }
901 
902       // If all indices are the same, just compare the base pointers.
903       Type *BaseType = GEPLHS->getOperand(0)->getType();
904       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
905         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
906 
907       // If we're comparing GEPs with two base pointers that only differ in type
908       // and both GEPs have only constant indices or just one use, then fold
909       // the compare with the adjusted indices.
910       // FIXME: Support vector of pointers.
911       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
912           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
913           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
914           PtrBase->stripPointerCasts() ==
915               GEPRHS->getOperand(0)->stripPointerCasts() &&
916           !GEPLHS->getType()->isVectorTy()) {
917         Value *LOffset = EmitGEPOffset(GEPLHS);
918         Value *ROffset = EmitGEPOffset(GEPRHS);
919 
920         // If we looked through an addrspacecast between different sized address
921         // spaces, the LHS and RHS pointers are different sized
922         // integers. Truncate to the smaller one.
923         Type *LHSIndexTy = LOffset->getType();
924         Type *RHSIndexTy = ROffset->getType();
925         if (LHSIndexTy != RHSIndexTy) {
926           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
927               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
928             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
929           } else
930             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
931         }
932 
933         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
934                                         LOffset, ROffset);
935         return replaceInstUsesWith(I, Cmp);
936       }
937 
938       // Otherwise, the base pointers are different and the indices are
939       // different. Try convert this to an indexed compare by looking through
940       // PHIs/casts.
941       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
942     }
943 
944     // If one of the GEPs has all zero indices, recurse.
945     // FIXME: Handle vector of pointers.
946     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
947       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
948                          ICmpInst::getSwappedPredicate(Cond), I);
949 
950     // If the other GEP has all zero indices, recurse.
951     // FIXME: Handle vector of pointers.
952     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
953       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
954 
955     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
956     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
957         GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
958       // If the GEPs only differ by one index, compare it.
959       unsigned NumDifferences = 0;  // Keep track of # differences.
960       unsigned DiffOperand = 0;     // The operand that differs.
961       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
962         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
963           Type *LHSType = GEPLHS->getOperand(i)->getType();
964           Type *RHSType = GEPRHS->getOperand(i)->getType();
965           // FIXME: Better support for vector of pointers.
966           if (LHSType->getPrimitiveSizeInBits() !=
967                    RHSType->getPrimitiveSizeInBits() ||
968               (GEPLHS->getType()->isVectorTy() &&
969                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
970             // Irreconcilable differences.
971             NumDifferences = 2;
972             break;
973           }
974 
975           if (NumDifferences++) break;
976           DiffOperand = i;
977         }
978 
979       if (NumDifferences == 0)   // SAME GEP?
980         return replaceInstUsesWith(I, // No comparison is needed here.
981           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
982 
983       else if (NumDifferences == 1 && GEPsInBounds) {
984         Value *LHSV = GEPLHS->getOperand(DiffOperand);
985         Value *RHSV = GEPRHS->getOperand(DiffOperand);
986         // Make sure we do a signed comparison here.
987         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
988       }
989     }
990 
991     // Only lower this if the icmp is the only user of the GEP or if we expect
992     // the result to fold to a constant!
993     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
994         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
995       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
996       Value *L = EmitGEPOffset(GEPLHS);
997       Value *R = EmitGEPOffset(GEPRHS);
998       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
999     }
1000   }
1001 
1002   // Try convert this to an indexed compare by looking through PHIs/casts as a
1003   // last resort.
1004   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1005 }
1006 
1007 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1008                                              const AllocaInst *Alloca) {
1009   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1010 
1011   // It would be tempting to fold away comparisons between allocas and any
1012   // pointer not based on that alloca (e.g. an argument). However, even
1013   // though such pointers cannot alias, they can still compare equal.
1014   //
1015   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1016   // doesn't escape we can argue that it's impossible to guess its value, and we
1017   // can therefore act as if any such guesses are wrong.
1018   //
1019   // The code below checks that the alloca doesn't escape, and that it's only
1020   // used in a comparison once (the current instruction). The
1021   // single-comparison-use condition ensures that we're trivially folding all
1022   // comparisons against the alloca consistently, and avoids the risk of
1023   // erroneously folding a comparison of the pointer with itself.
1024 
1025   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1026 
1027   SmallVector<const Use *, 32> Worklist;
1028   for (const Use &U : Alloca->uses()) {
1029     if (Worklist.size() >= MaxIter)
1030       return nullptr;
1031     Worklist.push_back(&U);
1032   }
1033 
1034   unsigned NumCmps = 0;
1035   while (!Worklist.empty()) {
1036     assert(Worklist.size() <= MaxIter);
1037     const Use *U = Worklist.pop_back_val();
1038     const Value *V = U->getUser();
1039     --MaxIter;
1040 
1041     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1042         isa<SelectInst>(V)) {
1043       // Track the uses.
1044     } else if (isa<LoadInst>(V)) {
1045       // Loading from the pointer doesn't escape it.
1046       continue;
1047     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1048       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1049       if (SI->getValueOperand() == U->get())
1050         return nullptr;
1051       continue;
1052     } else if (isa<ICmpInst>(V)) {
1053       if (NumCmps++)
1054         return nullptr; // Found more than one cmp.
1055       continue;
1056     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1057       switch (Intrin->getIntrinsicID()) {
1058         // These intrinsics don't escape or compare the pointer. Memset is safe
1059         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1060         // we don't allow stores, so src cannot point to V.
1061         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1062         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1063           continue;
1064         default:
1065           return nullptr;
1066       }
1067     } else {
1068       return nullptr;
1069     }
1070     for (const Use &U : V->uses()) {
1071       if (Worklist.size() >= MaxIter)
1072         return nullptr;
1073       Worklist.push_back(&U);
1074     }
1075   }
1076 
1077   auto *Res = ConstantInt::get(ICI.getType(),
1078                                !CmpInst::isTrueWhenEqual(ICI.getPredicate()));
1079   return replaceInstUsesWith(ICI, Res);
1080 }
1081 
1082 /// Fold "icmp pred (X+C), X".
1083 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1084                                                   ICmpInst::Predicate Pred) {
1085   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1086   // so the values can never be equal.  Similarly for all other "or equals"
1087   // operators.
1088   assert(!!C && "C should not be zero!");
1089 
1090   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1091   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1092   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1093   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1094     Constant *R = ConstantInt::get(X->getType(),
1095                                    APInt::getMaxValue(C.getBitWidth()) - C);
1096     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1097   }
1098 
1099   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1100   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1101   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1102   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1103     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1104                         ConstantInt::get(X->getType(), -C));
1105 
1106   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1107 
1108   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1109   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1110   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1111   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1112   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1113   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1114   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1115     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1116                         ConstantInt::get(X->getType(), SMax - C));
1117 
1118   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1119   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1120   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1121   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1122   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1123   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1124 
1125   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1126   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1127                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1128 }
1129 
1130 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1131 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1132 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1133 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1134                                                      const APInt &AP1,
1135                                                      const APInt &AP2) {
1136   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1137 
1138   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1139     if (I.getPredicate() == I.ICMP_NE)
1140       Pred = CmpInst::getInversePredicate(Pred);
1141     return new ICmpInst(Pred, LHS, RHS);
1142   };
1143 
1144   // Don't bother doing any work for cases which InstSimplify handles.
1145   if (AP2.isZero())
1146     return nullptr;
1147 
1148   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1149   if (IsAShr) {
1150     if (AP2.isAllOnes())
1151       return nullptr;
1152     if (AP2.isNegative() != AP1.isNegative())
1153       return nullptr;
1154     if (AP2.sgt(AP1))
1155       return nullptr;
1156   }
1157 
1158   if (!AP1)
1159     // 'A' must be large enough to shift out the highest set bit.
1160     return getICmp(I.ICMP_UGT, A,
1161                    ConstantInt::get(A->getType(), AP2.logBase2()));
1162 
1163   if (AP1 == AP2)
1164     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1165 
1166   int Shift;
1167   if (IsAShr && AP1.isNegative())
1168     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1169   else
1170     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1171 
1172   if (Shift > 0) {
1173     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1174       // There are multiple solutions if we are comparing against -1 and the LHS
1175       // of the ashr is not a power of two.
1176       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1177         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1178       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1179     } else if (AP1 == AP2.lshr(Shift)) {
1180       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1181     }
1182   }
1183 
1184   // Shifting const2 will never be equal to const1.
1185   // FIXME: This should always be handled by InstSimplify?
1186   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1187   return replaceInstUsesWith(I, TorF);
1188 }
1189 
1190 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1191 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1192 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1193                                                      const APInt &AP1,
1194                                                      const APInt &AP2) {
1195   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1196 
1197   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1198     if (I.getPredicate() == I.ICMP_NE)
1199       Pred = CmpInst::getInversePredicate(Pred);
1200     return new ICmpInst(Pred, LHS, RHS);
1201   };
1202 
1203   // Don't bother doing any work for cases which InstSimplify handles.
1204   if (AP2.isZero())
1205     return nullptr;
1206 
1207   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1208 
1209   if (!AP1 && AP2TrailingZeros != 0)
1210     return getICmp(
1211         I.ICMP_UGE, A,
1212         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1213 
1214   if (AP1 == AP2)
1215     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1216 
1217   // Get the distance between the lowest bits that are set.
1218   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1219 
1220   if (Shift > 0 && AP2.shl(Shift) == AP1)
1221     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1222 
1223   // Shifting const2 will never be equal to const1.
1224   // FIXME: This should always be handled by InstSimplify?
1225   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1226   return replaceInstUsesWith(I, TorF);
1227 }
1228 
1229 /// The caller has matched a pattern of the form:
1230 ///   I = icmp ugt (add (add A, B), CI2), CI1
1231 /// If this is of the form:
1232 ///   sum = a + b
1233 ///   if (sum+128 >u 255)
1234 /// Then replace it with llvm.sadd.with.overflow.i8.
1235 ///
1236 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1237                                           ConstantInt *CI2, ConstantInt *CI1,
1238                                           InstCombinerImpl &IC) {
1239   // The transformation we're trying to do here is to transform this into an
1240   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1241   // with a narrower add, and discard the add-with-constant that is part of the
1242   // range check (if we can't eliminate it, this isn't profitable).
1243 
1244   // In order to eliminate the add-with-constant, the compare can be its only
1245   // use.
1246   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1247   if (!AddWithCst->hasOneUse())
1248     return nullptr;
1249 
1250   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1251   if (!CI2->getValue().isPowerOf2())
1252     return nullptr;
1253   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1254   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1255     return nullptr;
1256 
1257   // The width of the new add formed is 1 more than the bias.
1258   ++NewWidth;
1259 
1260   // Check to see that CI1 is an all-ones value with NewWidth bits.
1261   if (CI1->getBitWidth() == NewWidth ||
1262       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1263     return nullptr;
1264 
1265   // This is only really a signed overflow check if the inputs have been
1266   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1267   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1268   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1269       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1270     return nullptr;
1271 
1272   // In order to replace the original add with a narrower
1273   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1274   // and truncates that discard the high bits of the add.  Verify that this is
1275   // the case.
1276   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1277   for (User *U : OrigAdd->users()) {
1278     if (U == AddWithCst)
1279       continue;
1280 
1281     // Only accept truncates for now.  We would really like a nice recursive
1282     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1283     // chain to see which bits of a value are actually demanded.  If the
1284     // original add had another add which was then immediately truncated, we
1285     // could still do the transformation.
1286     TruncInst *TI = dyn_cast<TruncInst>(U);
1287     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1288       return nullptr;
1289   }
1290 
1291   // If the pattern matches, truncate the inputs to the narrower type and
1292   // use the sadd_with_overflow intrinsic to efficiently compute both the
1293   // result and the overflow bit.
1294   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1295   Function *F = Intrinsic::getDeclaration(
1296       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1297 
1298   InstCombiner::BuilderTy &Builder = IC.Builder;
1299 
1300   // Put the new code above the original add, in case there are any uses of the
1301   // add between the add and the compare.
1302   Builder.SetInsertPoint(OrigAdd);
1303 
1304   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1305   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1306   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1307   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1308   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1309 
1310   // The inner add was the result of the narrow add, zero extended to the
1311   // wider type.  Replace it with the result computed by the intrinsic.
1312   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1313   IC.eraseInstFromFunction(*OrigAdd);
1314 
1315   // The original icmp gets replaced with the overflow value.
1316   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1317 }
1318 
1319 /// If we have:
1320 ///   icmp eq/ne (urem/srem %x, %y), 0
1321 /// iff %y is a power-of-two, we can replace this with a bit test:
1322 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1323 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1324   // This fold is only valid for equality predicates.
1325   if (!I.isEquality())
1326     return nullptr;
1327   ICmpInst::Predicate Pred;
1328   Value *X, *Y, *Zero;
1329   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1330                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1331     return nullptr;
1332   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1333     return nullptr;
1334   // This may increase instruction count, we don't enforce that Y is a constant.
1335   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1336   Value *Masked = Builder.CreateAnd(X, Mask);
1337   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1338 }
1339 
1340 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1341 /// by one-less-than-bitwidth into a sign test on the original value.
1342 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1343   Instruction *Val;
1344   ICmpInst::Predicate Pred;
1345   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1346     return nullptr;
1347 
1348   Value *X;
1349   Type *XTy;
1350 
1351   Constant *C;
1352   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1353     XTy = X->getType();
1354     unsigned XBitWidth = XTy->getScalarSizeInBits();
1355     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1356                                      APInt(XBitWidth, XBitWidth - 1))))
1357       return nullptr;
1358   } else if (isa<BinaryOperator>(Val) &&
1359              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1360                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1361                   /*AnalyzeForSignBitExtraction=*/true))) {
1362     XTy = X->getType();
1363   } else
1364     return nullptr;
1365 
1366   return ICmpInst::Create(Instruction::ICmp,
1367                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1368                                                     : ICmpInst::ICMP_SLT,
1369                           X, ConstantInt::getNullValue(XTy));
1370 }
1371 
1372 // Handle  icmp pred X, 0
1373 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1374   CmpInst::Predicate Pred = Cmp.getPredicate();
1375   if (!match(Cmp.getOperand(1), m_Zero()))
1376     return nullptr;
1377 
1378   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1379   if (Pred == ICmpInst::ICMP_SGT) {
1380     Value *A, *B;
1381     if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1382       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1383         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1384       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1385         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1386     }
1387   }
1388 
1389   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1390     return New;
1391 
1392   // Given:
1393   //   icmp eq/ne (urem %x, %y), 0
1394   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1395   //   icmp eq/ne %x, 0
1396   Value *X, *Y;
1397   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1398       ICmpInst::isEquality(Pred)) {
1399     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1400     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1401     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1402       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1403   }
1404 
1405   return nullptr;
1406 }
1407 
1408 /// Fold icmp Pred X, C.
1409 /// TODO: This code structure does not make sense. The saturating add fold
1410 /// should be moved to some other helper and extended as noted below (it is also
1411 /// possible that code has been made unnecessary - do we canonicalize IR to
1412 /// overflow/saturating intrinsics or not?).
1413 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1414   // Match the following pattern, which is a common idiom when writing
1415   // overflow-safe integer arithmetic functions. The source performs an addition
1416   // in wider type and explicitly checks for overflow using comparisons against
1417   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1418   //
1419   // TODO: This could probably be generalized to handle other overflow-safe
1420   // operations if we worked out the formulas to compute the appropriate magic
1421   // constants.
1422   //
1423   // sum = a + b
1424   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1425   CmpInst::Predicate Pred = Cmp.getPredicate();
1426   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1427   Value *A, *B;
1428   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1429   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1430       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1431     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1432       return Res;
1433 
1434   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1435   Constant *C = dyn_cast<Constant>(Op1);
1436   if (!C || C->canTrap())
1437     return nullptr;
1438 
1439   if (auto *Phi = dyn_cast<PHINode>(Op0))
1440     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1441       Type *Ty = Cmp.getType();
1442       Builder.SetInsertPoint(Phi);
1443       PHINode *NewPhi =
1444           Builder.CreatePHI(Ty, Phi->getNumOperands());
1445       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1446         auto *Input =
1447             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1448         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1449         NewPhi->addIncoming(BoolInput, Predecessor);
1450       }
1451       NewPhi->takeName(&Cmp);
1452       return replaceInstUsesWith(Cmp, NewPhi);
1453     }
1454 
1455   return nullptr;
1456 }
1457 
1458 /// Canonicalize icmp instructions based on dominating conditions.
1459 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1460   // This is a cheap/incomplete check for dominance - just match a single
1461   // predecessor with a conditional branch.
1462   BasicBlock *CmpBB = Cmp.getParent();
1463   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1464   if (!DomBB)
1465     return nullptr;
1466 
1467   Value *DomCond;
1468   BasicBlock *TrueBB, *FalseBB;
1469   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1470     return nullptr;
1471 
1472   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1473          "Predecessor block does not point to successor?");
1474 
1475   // The branch should get simplified. Don't bother simplifying this condition.
1476   if (TrueBB == FalseBB)
1477     return nullptr;
1478 
1479   // Try to simplify this compare to T/F based on the dominating condition.
1480   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1481   if (Imp)
1482     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1483 
1484   CmpInst::Predicate Pred = Cmp.getPredicate();
1485   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1486   ICmpInst::Predicate DomPred;
1487   const APInt *C, *DomC;
1488   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1489       match(Y, m_APInt(C))) {
1490     // We have 2 compares of a variable with constants. Calculate the constant
1491     // ranges of those compares to see if we can transform the 2nd compare:
1492     // DomBB:
1493     //   DomCond = icmp DomPred X, DomC
1494     //   br DomCond, CmpBB, FalseBB
1495     // CmpBB:
1496     //   Cmp = icmp Pred X, C
1497     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1498     ConstantRange DominatingCR =
1499         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1500                           : ConstantRange::makeExactICmpRegion(
1501                                 CmpInst::getInversePredicate(DomPred), *DomC);
1502     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1503     ConstantRange Difference = DominatingCR.difference(CR);
1504     if (Intersection.isEmptySet())
1505       return replaceInstUsesWith(Cmp, Builder.getFalse());
1506     if (Difference.isEmptySet())
1507       return replaceInstUsesWith(Cmp, Builder.getTrue());
1508 
1509     // Canonicalizing a sign bit comparison that gets used in a branch,
1510     // pessimizes codegen by generating branch on zero instruction instead
1511     // of a test and branch. So we avoid canonicalizing in such situations
1512     // because test and branch instruction has better branch displacement
1513     // than compare and branch instruction.
1514     bool UnusedBit;
1515     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1516     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1517       return nullptr;
1518 
1519     // Avoid an infinite loop with min/max canonicalization.
1520     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1521     if (Cmp.hasOneUse() &&
1522         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1523       return nullptr;
1524 
1525     if (const APInt *EqC = Intersection.getSingleElement())
1526       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1527     if (const APInt *NeC = Difference.getSingleElement())
1528       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1529   }
1530 
1531   return nullptr;
1532 }
1533 
1534 /// Fold icmp (trunc X, Y), C.
1535 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1536                                                      TruncInst *Trunc,
1537                                                      const APInt &C) {
1538   ICmpInst::Predicate Pred = Cmp.getPredicate();
1539   Value *X = Trunc->getOperand(0);
1540   if (C.isOne() && C.getBitWidth() > 1) {
1541     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1542     Value *V = nullptr;
1543     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1544       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1545                           ConstantInt::get(V->getType(), 1));
1546   }
1547 
1548   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1549            SrcBits = X->getType()->getScalarSizeInBits();
1550   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1551     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1552     // of the high bits truncated out of x are known.
1553     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1554 
1555     // If all the high bits are known, we can do this xform.
1556     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1557       // Pull in the high bits from known-ones set.
1558       APInt NewRHS = C.zext(SrcBits);
1559       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1560       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1561     }
1562   }
1563 
1564   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1565   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1566   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1567   Value *ShOp;
1568   const APInt *ShAmtC;
1569   bool TrueIfSigned;
1570   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1571       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1572       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1573     return TrueIfSigned
1574                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1575                               ConstantInt::getNullValue(X->getType()))
1576                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1577                               ConstantInt::getAllOnesValue(X->getType()));
1578   }
1579 
1580   return nullptr;
1581 }
1582 
1583 /// Fold icmp (xor X, Y), C.
1584 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1585                                                    BinaryOperator *Xor,
1586                                                    const APInt &C) {
1587   Value *X = Xor->getOperand(0);
1588   Value *Y = Xor->getOperand(1);
1589   const APInt *XorC;
1590   if (!match(Y, m_APInt(XorC)))
1591     return nullptr;
1592 
1593   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1594   // fold the xor.
1595   ICmpInst::Predicate Pred = Cmp.getPredicate();
1596   bool TrueIfSigned = false;
1597   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1598 
1599     // If the sign bit of the XorCst is not set, there is no change to
1600     // the operation, just stop using the Xor.
1601     if (!XorC->isNegative())
1602       return replaceOperand(Cmp, 0, X);
1603 
1604     // Emit the opposite comparison.
1605     if (TrueIfSigned)
1606       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1607                           ConstantInt::getAllOnesValue(X->getType()));
1608     else
1609       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1610                           ConstantInt::getNullValue(X->getType()));
1611   }
1612 
1613   if (Xor->hasOneUse()) {
1614     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1615     if (!Cmp.isEquality() && XorC->isSignMask()) {
1616       Pred = Cmp.getFlippedSignednessPredicate();
1617       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1618     }
1619 
1620     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1621     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1622       Pred = Cmp.getFlippedSignednessPredicate();
1623       Pred = Cmp.getSwappedPredicate(Pred);
1624       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1625     }
1626   }
1627 
1628   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1629   if (Pred == ICmpInst::ICMP_UGT) {
1630     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1631     if (*XorC == ~C && (C + 1).isPowerOf2())
1632       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1633     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1634     if (*XorC == C && (C + 1).isPowerOf2())
1635       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1636   }
1637   if (Pred == ICmpInst::ICMP_ULT) {
1638     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1639     if (*XorC == -C && C.isPowerOf2())
1640       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1641                           ConstantInt::get(X->getType(), ~C));
1642     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1643     if (*XorC == C && (-C).isPowerOf2())
1644       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1645                           ConstantInt::get(X->getType(), ~C));
1646   }
1647   return nullptr;
1648 }
1649 
1650 /// Fold icmp (and (sh X, Y), C2), C1.
1651 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1652                                                 BinaryOperator *And,
1653                                                 const APInt &C1,
1654                                                 const APInt &C2) {
1655   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1656   if (!Shift || !Shift->isShift())
1657     return nullptr;
1658 
1659   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1660   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1661   // code produced by the clang front-end, for bitfield access.
1662   // This seemingly simple opportunity to fold away a shift turns out to be
1663   // rather complicated. See PR17827 for details.
1664   unsigned ShiftOpcode = Shift->getOpcode();
1665   bool IsShl = ShiftOpcode == Instruction::Shl;
1666   const APInt *C3;
1667   if (match(Shift->getOperand(1), m_APInt(C3))) {
1668     APInt NewAndCst, NewCmpCst;
1669     bool AnyCmpCstBitsShiftedOut;
1670     if (ShiftOpcode == Instruction::Shl) {
1671       // For a left shift, we can fold if the comparison is not signed. We can
1672       // also fold a signed comparison if the mask value and comparison value
1673       // are not negative. These constraints may not be obvious, but we can
1674       // prove that they are correct using an SMT solver.
1675       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1676         return nullptr;
1677 
1678       NewCmpCst = C1.lshr(*C3);
1679       NewAndCst = C2.lshr(*C3);
1680       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1681     } else if (ShiftOpcode == Instruction::LShr) {
1682       // For a logical right shift, we can fold if the comparison is not signed.
1683       // We can also fold a signed comparison if the shifted mask value and the
1684       // shifted comparison value are not negative. These constraints may not be
1685       // obvious, but we can prove that they are correct using an SMT solver.
1686       NewCmpCst = C1.shl(*C3);
1687       NewAndCst = C2.shl(*C3);
1688       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1689       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1690         return nullptr;
1691     } else {
1692       // For an arithmetic shift, check that both constants don't use (in a
1693       // signed sense) the top bits being shifted out.
1694       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1695       NewCmpCst = C1.shl(*C3);
1696       NewAndCst = C2.shl(*C3);
1697       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1698       if (NewAndCst.ashr(*C3) != C2)
1699         return nullptr;
1700     }
1701 
1702     if (AnyCmpCstBitsShiftedOut) {
1703       // If we shifted bits out, the fold is not going to work out. As a
1704       // special case, check to see if this means that the result is always
1705       // true or false now.
1706       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1707         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1708       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1709         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1710     } else {
1711       Value *NewAnd = Builder.CreateAnd(
1712           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1713       return new ICmpInst(Cmp.getPredicate(),
1714           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1715     }
1716   }
1717 
1718   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1719   // preferable because it allows the C2 << Y expression to be hoisted out of a
1720   // loop if Y is invariant and X is not.
1721   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1722       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1723     // Compute C2 << Y.
1724     Value *NewShift =
1725         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1726               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1727 
1728     // Compute X & (C2 << Y).
1729     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1730     return replaceOperand(Cmp, 0, NewAnd);
1731   }
1732 
1733   return nullptr;
1734 }
1735 
1736 /// Fold icmp (and X, C2), C1.
1737 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1738                                                      BinaryOperator *And,
1739                                                      const APInt &C1) {
1740   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1741 
1742   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1743   // TODO: We canonicalize to the longer form for scalars because we have
1744   // better analysis/folds for icmp, and codegen may be better with icmp.
1745   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1746       match(And->getOperand(1), m_One()))
1747     return new TruncInst(And->getOperand(0), Cmp.getType());
1748 
1749   const APInt *C2;
1750   Value *X;
1751   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1752     return nullptr;
1753 
1754   // Don't perform the following transforms if the AND has multiple uses
1755   if (!And->hasOneUse())
1756     return nullptr;
1757 
1758   if (Cmp.isEquality() && C1.isZero()) {
1759     // Restrict this fold to single-use 'and' (PR10267).
1760     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1761     if (C2->isSignMask()) {
1762       Constant *Zero = Constant::getNullValue(X->getType());
1763       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1764       return new ICmpInst(NewPred, X, Zero);
1765     }
1766 
1767     // Restrict this fold only for single-use 'and' (PR10267).
1768     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1769     if ((~(*C2) + 1).isPowerOf2()) {
1770       Constant *NegBOC =
1771           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1772       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1773       return new ICmpInst(NewPred, X, NegBOC);
1774     }
1775   }
1776 
1777   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1778   // the input width without changing the value produced, eliminate the cast:
1779   //
1780   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1781   //
1782   // We can do this transformation if the constants do not have their sign bits
1783   // set or if it is an equality comparison. Extending a relational comparison
1784   // when we're checking the sign bit would not work.
1785   Value *W;
1786   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1787       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1788     // TODO: Is this a good transform for vectors? Wider types may reduce
1789     // throughput. Should this transform be limited (even for scalars) by using
1790     // shouldChangeType()?
1791     if (!Cmp.getType()->isVectorTy()) {
1792       Type *WideType = W->getType();
1793       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1794       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1795       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1796       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1797       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1798     }
1799   }
1800 
1801   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1802     return I;
1803 
1804   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1805   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1806   //
1807   // iff pred isn't signed
1808   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1809       match(And->getOperand(1), m_One())) {
1810     Constant *One = cast<Constant>(And->getOperand(1));
1811     Value *Or = And->getOperand(0);
1812     Value *A, *B, *LShr;
1813     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1814         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1815       unsigned UsesRemoved = 0;
1816       if (And->hasOneUse())
1817         ++UsesRemoved;
1818       if (Or->hasOneUse())
1819         ++UsesRemoved;
1820       if (LShr->hasOneUse())
1821         ++UsesRemoved;
1822 
1823       // Compute A & ((1 << B) | 1)
1824       Value *NewOr = nullptr;
1825       if (auto *C = dyn_cast<Constant>(B)) {
1826         if (UsesRemoved >= 1)
1827           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1828       } else {
1829         if (UsesRemoved >= 3)
1830           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1831                                                      /*HasNUW=*/true),
1832                                    One, Or->getName());
1833       }
1834       if (NewOr) {
1835         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1836         return replaceOperand(Cmp, 0, NewAnd);
1837       }
1838     }
1839   }
1840 
1841   return nullptr;
1842 }
1843 
1844 /// Fold icmp (and X, Y), C.
1845 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1846                                                    BinaryOperator *And,
1847                                                    const APInt &C) {
1848   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1849     return I;
1850 
1851   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1852   bool TrueIfNeg;
1853   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1854     // ((X - 1) & ~X) <  0 --> X == 0
1855     // ((X - 1) & ~X) >= 0 --> X != 0
1856     Value *X;
1857     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1858         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1859       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1860       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1861     }
1862   }
1863 
1864   // TODO: These all require that Y is constant too, so refactor with the above.
1865 
1866   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1867   Value *X = And->getOperand(0);
1868   Value *Y = And->getOperand(1);
1869   if (auto *C2 = dyn_cast<ConstantInt>(Y))
1870     if (auto *LI = dyn_cast<LoadInst>(X))
1871       if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1872         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1873           if (Instruction *Res =
1874                   foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1875             return Res;
1876 
1877   if (!Cmp.isEquality())
1878     return nullptr;
1879 
1880   // X & -C == -C -> X >  u ~C
1881   // X & -C != -C -> X <= u ~C
1882   //   iff C is a power of 2
1883   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1884     auto NewPred =
1885         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1886     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1887   }
1888 
1889   return nullptr;
1890 }
1891 
1892 /// Fold icmp (or X, Y), C.
1893 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1894                                                   BinaryOperator *Or,
1895                                                   const APInt &C) {
1896   ICmpInst::Predicate Pred = Cmp.getPredicate();
1897   if (C.isOne()) {
1898     // icmp slt signum(V) 1 --> icmp slt V, 1
1899     Value *V = nullptr;
1900     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1901       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1902                           ConstantInt::get(V->getType(), 1));
1903   }
1904 
1905   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1906   const APInt *MaskC;
1907   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1908     if (*MaskC == C && (C + 1).isPowerOf2()) {
1909       // X | C == C --> X <=u C
1910       // X | C != C --> X  >u C
1911       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1912       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1913       return new ICmpInst(Pred, OrOp0, OrOp1);
1914     }
1915 
1916     // More general: canonicalize 'equality with set bits mask' to
1917     // 'equality with clear bits mask'.
1918     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1919     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1920     if (Or->hasOneUse()) {
1921       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1922       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1923       return new ICmpInst(Pred, And, NewC);
1924     }
1925   }
1926 
1927   // (X | (X-1)) s<  0 --> X s< 1
1928   // (X | (X-1)) s> -1 --> X s> 0
1929   Value *X;
1930   bool TrueIfSigned;
1931   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1932       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1933     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1934     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1935     return new ICmpInst(NewPred, X, NewC);
1936   }
1937 
1938   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1939     return nullptr;
1940 
1941   Value *P, *Q;
1942   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1943     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1944     // -> and (icmp eq P, null), (icmp eq Q, null).
1945     Value *CmpP =
1946         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1947     Value *CmpQ =
1948         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1949     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1950     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1951   }
1952 
1953   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1954   // a shorter form that has more potential to be folded even further.
1955   Value *X1, *X2, *X3, *X4;
1956   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1957       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1958     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1959     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1960     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1961     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1962     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1963     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1964   }
1965 
1966   return nullptr;
1967 }
1968 
1969 /// Fold icmp (mul X, Y), C.
1970 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1971                                                    BinaryOperator *Mul,
1972                                                    const APInt &C) {
1973   const APInt *MulC;
1974   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1975     return nullptr;
1976 
1977   // If this is a test of the sign bit and the multiply is sign-preserving with
1978   // a constant operand, use the multiply LHS operand instead.
1979   ICmpInst::Predicate Pred = Cmp.getPredicate();
1980   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1981     if (MulC->isNegative())
1982       Pred = ICmpInst::getSwappedPredicate(Pred);
1983     return new ICmpInst(Pred, Mul->getOperand(0),
1984                         Constant::getNullValue(Mul->getType()));
1985   }
1986 
1987   // If the multiply does not wrap, try to divide the compare constant by the
1988   // multiplication factor.
1989   if (Cmp.isEquality() && !MulC->isZero()) {
1990     // (mul nsw X, MulC) == C --> X == C /s MulC
1991     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
1992       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1993       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1994     }
1995     // (mul nuw X, MulC) == C --> X == C /u MulC
1996     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
1997       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1998       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1999     }
2000   }
2001 
2002   return nullptr;
2003 }
2004 
2005 /// Fold icmp (shl 1, Y), C.
2006 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2007                                    const APInt &C) {
2008   Value *Y;
2009   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2010     return nullptr;
2011 
2012   Type *ShiftType = Shl->getType();
2013   unsigned TypeBits = C.getBitWidth();
2014   bool CIsPowerOf2 = C.isPowerOf2();
2015   ICmpInst::Predicate Pred = Cmp.getPredicate();
2016   if (Cmp.isUnsigned()) {
2017     // (1 << Y) pred C -> Y pred Log2(C)
2018     if (!CIsPowerOf2) {
2019       // (1 << Y) <  30 -> Y <= 4
2020       // (1 << Y) <= 30 -> Y <= 4
2021       // (1 << Y) >= 30 -> Y >  4
2022       // (1 << Y) >  30 -> Y >  4
2023       if (Pred == ICmpInst::ICMP_ULT)
2024         Pred = ICmpInst::ICMP_ULE;
2025       else if (Pred == ICmpInst::ICMP_UGE)
2026         Pred = ICmpInst::ICMP_UGT;
2027     }
2028 
2029     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2030     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2031     unsigned CLog2 = C.logBase2();
2032     if (CLog2 == TypeBits - 1) {
2033       if (Pred == ICmpInst::ICMP_UGE)
2034         Pred = ICmpInst::ICMP_EQ;
2035       else if (Pred == ICmpInst::ICMP_ULT)
2036         Pred = ICmpInst::ICMP_NE;
2037     }
2038     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2039   } else if (Cmp.isSigned()) {
2040     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2041     if (C.isAllOnes()) {
2042       // (1 << Y) <= -1 -> Y == 31
2043       if (Pred == ICmpInst::ICMP_SLE)
2044         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2045 
2046       // (1 << Y) >  -1 -> Y != 31
2047       if (Pred == ICmpInst::ICMP_SGT)
2048         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2049     } else if (!C) {
2050       // (1 << Y) <  0 -> Y == 31
2051       // (1 << Y) <= 0 -> Y == 31
2052       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2053         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2054 
2055       // (1 << Y) >= 0 -> Y != 31
2056       // (1 << Y) >  0 -> Y != 31
2057       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2058         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2059     }
2060   } else if (Cmp.isEquality() && CIsPowerOf2) {
2061     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2062   }
2063 
2064   return nullptr;
2065 }
2066 
2067 /// Fold icmp (shl X, Y), C.
2068 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2069                                                    BinaryOperator *Shl,
2070                                                    const APInt &C) {
2071   const APInt *ShiftVal;
2072   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2073     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2074 
2075   const APInt *ShiftAmt;
2076   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2077     return foldICmpShlOne(Cmp, Shl, C);
2078 
2079   // Check that the shift amount is in range. If not, don't perform undefined
2080   // shifts. When the shift is visited, it will be simplified.
2081   unsigned TypeBits = C.getBitWidth();
2082   if (ShiftAmt->uge(TypeBits))
2083     return nullptr;
2084 
2085   ICmpInst::Predicate Pred = Cmp.getPredicate();
2086   Value *X = Shl->getOperand(0);
2087   Type *ShType = Shl->getType();
2088 
2089   // NSW guarantees that we are only shifting out sign bits from the high bits,
2090   // so we can ASHR the compare constant without needing a mask and eliminate
2091   // the shift.
2092   if (Shl->hasNoSignedWrap()) {
2093     if (Pred == ICmpInst::ICMP_SGT) {
2094       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2095       APInt ShiftedC = C.ashr(*ShiftAmt);
2096       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2097     }
2098     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2099         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2100       APInt ShiftedC = C.ashr(*ShiftAmt);
2101       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2102     }
2103     if (Pred == ICmpInst::ICMP_SLT) {
2104       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2105       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2106       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2107       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2108       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2109       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2110       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2111     }
2112     // If this is a signed comparison to 0 and the shift is sign preserving,
2113     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2114     // do that if we're sure to not continue on in this function.
2115     if (isSignTest(Pred, C))
2116       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2117   }
2118 
2119   // NUW guarantees that we are only shifting out zero bits from the high bits,
2120   // so we can LSHR the compare constant without needing a mask and eliminate
2121   // the shift.
2122   if (Shl->hasNoUnsignedWrap()) {
2123     if (Pred == ICmpInst::ICMP_UGT) {
2124       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2125       APInt ShiftedC = C.lshr(*ShiftAmt);
2126       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2127     }
2128     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2129         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2130       APInt ShiftedC = C.lshr(*ShiftAmt);
2131       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2132     }
2133     if (Pred == ICmpInst::ICMP_ULT) {
2134       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2135       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2136       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2137       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2138       assert(C.ugt(0) && "ult 0 should have been eliminated");
2139       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2140       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2141     }
2142   }
2143 
2144   if (Cmp.isEquality() && Shl->hasOneUse()) {
2145     // Strength-reduce the shift into an 'and'.
2146     Constant *Mask = ConstantInt::get(
2147         ShType,
2148         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2149     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2150     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2151     return new ICmpInst(Pred, And, LShrC);
2152   }
2153 
2154   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2155   bool TrueIfSigned = false;
2156   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2157     // (X << 31) <s 0  --> (X & 1) != 0
2158     Constant *Mask = ConstantInt::get(
2159         ShType,
2160         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2161     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2162     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2163                         And, Constant::getNullValue(ShType));
2164   }
2165 
2166   // Simplify 'shl' inequality test into 'and' equality test.
2167   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2168     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2169     if ((C + 1).isPowerOf2() &&
2170         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2171       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2172       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2173                                                      : ICmpInst::ICMP_NE,
2174                           And, Constant::getNullValue(ShType));
2175     }
2176     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2177     if (C.isPowerOf2() &&
2178         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2179       Value *And =
2180           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2181       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2182                                                      : ICmpInst::ICMP_NE,
2183                           And, Constant::getNullValue(ShType));
2184     }
2185   }
2186 
2187   // Transform (icmp pred iM (shl iM %v, N), C)
2188   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2189   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2190   // This enables us to get rid of the shift in favor of a trunc that may be
2191   // free on the target. It has the additional benefit of comparing to a
2192   // smaller constant that may be more target-friendly.
2193   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2194   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2195       DL.isLegalInteger(TypeBits - Amt)) {
2196     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2197     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2198       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2199     Constant *NewC =
2200         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2201     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2202   }
2203 
2204   return nullptr;
2205 }
2206 
2207 /// Fold icmp ({al}shr X, Y), C.
2208 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2209                                                    BinaryOperator *Shr,
2210                                                    const APInt &C) {
2211   // An exact shr only shifts out zero bits, so:
2212   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2213   Value *X = Shr->getOperand(0);
2214   CmpInst::Predicate Pred = Cmp.getPredicate();
2215   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2216     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2217 
2218   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2219   const APInt *ShiftValC;
2220   if (match(Shr->getOperand(0), m_APInt(ShiftValC))) {
2221     if (Cmp.isEquality())
2222       return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC);
2223 
2224     // If the shifted constant is a power-of-2, test the shift amount directly:
2225     // (ShiftValC >> X) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2226     // TODO: Handle ult.
2227     if (!IsAShr && Pred == CmpInst::ICMP_UGT && ShiftValC->isPowerOf2()) {
2228       assert(ShiftValC->ugt(C) && "Expected simplify of compare");
2229       unsigned CmpLZ = C.countLeadingZeros();
2230       unsigned ShiftLZ = ShiftValC->countLeadingZeros();
2231       Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ);
2232       return new ICmpInst(ICmpInst::ICMP_ULT, Shr->User::getOperand(1), NewC);
2233     }
2234   }
2235 
2236   const APInt *ShiftAmtC;
2237   if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC)))
2238     return nullptr;
2239 
2240   // Check that the shift amount is in range. If not, don't perform undefined
2241   // shifts. When the shift is visited it will be simplified.
2242   unsigned TypeBits = C.getBitWidth();
2243   unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits);
2244   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2245     return nullptr;
2246 
2247   bool IsExact = Shr->isExact();
2248   Type *ShrTy = Shr->getType();
2249   // TODO: If we could guarantee that InstSimplify would handle all of the
2250   // constant-value-based preconditions in the folds below, then we could assert
2251   // those conditions rather than checking them. This is difficult because of
2252   // undef/poison (PR34838).
2253   if (IsAShr) {
2254     if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2255       // When ShAmtC can be shifted losslessly:
2256       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2257       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2258       APInt ShiftedC = C.shl(ShAmtVal);
2259       if (ShiftedC.ashr(ShAmtVal) == C)
2260         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2261     }
2262     if (Pred == CmpInst::ICMP_SGT) {
2263       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2264       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2265       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2266           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2267         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2268     }
2269     if (Pred == CmpInst::ICMP_UGT) {
2270       // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2271       // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2272       // clause accounts for that pattern.
2273       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2274       if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) ||
2275           (C + 1).shl(ShAmtVal).isMinSignedValue())
2276         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2277     }
2278 
2279     // If the compare constant has significant bits above the lowest sign-bit,
2280     // then convert an unsigned cmp to a test of the sign-bit:
2281     // (ashr X, ShiftC) u> C --> X s< 0
2282     // (ashr X, ShiftC) u< C --> X s> -1
2283     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2284       if (Pred == CmpInst::ICMP_UGT) {
2285         return new ICmpInst(CmpInst::ICMP_SLT, X,
2286                             ConstantInt::getNullValue(ShrTy));
2287       }
2288       if (Pred == CmpInst::ICMP_ULT) {
2289         return new ICmpInst(CmpInst::ICMP_SGT, X,
2290                             ConstantInt::getAllOnesValue(ShrTy));
2291       }
2292     }
2293   } else {
2294     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2295       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2296       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2297       APInt ShiftedC = C.shl(ShAmtVal);
2298       if (ShiftedC.lshr(ShAmtVal) == C)
2299         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2300     }
2301     if (Pred == CmpInst::ICMP_UGT) {
2302       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2303       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2304       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2305         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2306     }
2307   }
2308 
2309   if (!Cmp.isEquality())
2310     return nullptr;
2311 
2312   // Handle equality comparisons of shift-by-constant.
2313 
2314   // If the comparison constant changes with the shift, the comparison cannot
2315   // succeed (bits of the comparison constant cannot match the shifted value).
2316   // This should be known by InstSimplify and already be folded to true/false.
2317   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2318           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2319          "Expected icmp+shr simplify did not occur.");
2320 
2321   // If the bits shifted out are known zero, compare the unshifted value:
2322   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2323   if (Shr->isExact())
2324     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2325 
2326   if (C.isZero()) {
2327     // == 0 is u< 1.
2328     if (Pred == CmpInst::ICMP_EQ)
2329       return new ICmpInst(CmpInst::ICMP_ULT, X,
2330                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2331     else
2332       return new ICmpInst(CmpInst::ICMP_UGT, X,
2333                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2334   }
2335 
2336   if (Shr->hasOneUse()) {
2337     // Canonicalize the shift into an 'and':
2338     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2339     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2340     Constant *Mask = ConstantInt::get(ShrTy, Val);
2341     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2342     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2343   }
2344 
2345   return nullptr;
2346 }
2347 
2348 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2349                                                     BinaryOperator *SRem,
2350                                                     const APInt &C) {
2351   // Match an 'is positive' or 'is negative' comparison of remainder by a
2352   // constant power-of-2 value:
2353   // (X % pow2C) sgt/slt 0
2354   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2355   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
2356       Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2357     return nullptr;
2358 
2359   // TODO: The one-use check is standard because we do not typically want to
2360   //       create longer instruction sequences, but this might be a special-case
2361   //       because srem is not good for analysis or codegen.
2362   if (!SRem->hasOneUse())
2363     return nullptr;
2364 
2365   const APInt *DivisorC;
2366   if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
2367     return nullptr;
2368 
2369   // For cmp_sgt/cmp_slt only zero valued C is handled.
2370   // For cmp_eq/cmp_ne only positive valued C is handled.
2371   if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
2372        !C.isZero()) ||
2373       ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2374        !C.isStrictlyPositive()))
2375     return nullptr;
2376 
2377   // Mask off the sign bit and the modulo bits (low-bits).
2378   Type *Ty = SRem->getType();
2379   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2380   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2381   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2382 
2383   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
2384     return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
2385 
2386   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2387   // bit is set. Example:
2388   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2389   if (Pred == ICmpInst::ICMP_SGT)
2390     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2391 
2392   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2393   // bit is set. Example:
2394   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2395   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2396 }
2397 
2398 /// Fold icmp (udiv X, Y), C.
2399 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2400                                                     BinaryOperator *UDiv,
2401                                                     const APInt &C) {
2402   ICmpInst::Predicate Pred = Cmp.getPredicate();
2403   Value *X = UDiv->getOperand(0);
2404   Value *Y = UDiv->getOperand(1);
2405   Type *Ty = UDiv->getType();
2406 
2407   const APInt *C2;
2408   if (!match(X, m_APInt(C2)))
2409     return nullptr;
2410 
2411   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2412 
2413   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2414   if (Pred == ICmpInst::ICMP_UGT) {
2415     assert(!C.isMaxValue() &&
2416            "icmp ugt X, UINT_MAX should have been simplified already.");
2417     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2418                         ConstantInt::get(Ty, C2->udiv(C + 1)));
2419   }
2420 
2421   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2422   if (Pred == ICmpInst::ICMP_ULT) {
2423     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2424     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2425                         ConstantInt::get(Ty, C2->udiv(C)));
2426   }
2427 
2428   return nullptr;
2429 }
2430 
2431 /// Fold icmp ({su}div X, Y), C.
2432 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2433                                                    BinaryOperator *Div,
2434                                                    const APInt &C) {
2435   ICmpInst::Predicate Pred = Cmp.getPredicate();
2436   Value *X = Div->getOperand(0);
2437   Value *Y = Div->getOperand(1);
2438   Type *Ty = Div->getType();
2439   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2440 
2441   // If unsigned division and the compare constant is bigger than
2442   // UMAX/2 (negative), there's only one pair of values that satisfies an
2443   // equality check, so eliminate the division:
2444   // (X u/ Y) == C --> (X == C) && (Y == 1)
2445   // (X u/ Y) != C --> (X != C) || (Y != 1)
2446   // Similarly, if signed division and the compare constant is exactly SMIN:
2447   // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2448   // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2449   if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() &&
2450       (!DivIsSigned || C.isMinSignedValue()))   {
2451     Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C));
2452     Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1));
2453     auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2454     return BinaryOperator::Create(Logic, XBig, YOne);
2455   }
2456 
2457   // Fold: icmp pred ([us]div X, C2), C -> range test
2458   // Fold this div into the comparison, producing a range check.
2459   // Determine, based on the divide type, what the range is being
2460   // checked.  If there is an overflow on the low or high side, remember
2461   // it, otherwise compute the range [low, hi) bounding the new value.
2462   // See: InsertRangeTest above for the kinds of replacements possible.
2463   const APInt *C2;
2464   if (!match(Y, m_APInt(C2)))
2465     return nullptr;
2466 
2467   // FIXME: If the operand types don't match the type of the divide
2468   // then don't attempt this transform. The code below doesn't have the
2469   // logic to deal with a signed divide and an unsigned compare (and
2470   // vice versa). This is because (x /s C2) <s C  produces different
2471   // results than (x /s C2) <u C or (x /u C2) <s C or even
2472   // (x /u C2) <u C.  Simply casting the operands and result won't
2473   // work. :(  The if statement below tests that condition and bails
2474   // if it finds it.
2475   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2476     return nullptr;
2477 
2478   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2479   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2480   // division-by-constant cases should be present, we can not assert that they
2481   // have happened before we reach this icmp instruction.
2482   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2483     return nullptr;
2484 
2485   // Compute Prod = C * C2. We are essentially solving an equation of
2486   // form X / C2 = C. We solve for X by multiplying C2 and C.
2487   // By solving for X, we can turn this into a range check instead of computing
2488   // a divide.
2489   APInt Prod = C * *C2;
2490 
2491   // Determine if the product overflows by seeing if the product is not equal to
2492   // the divide. Make sure we do the same kind of divide as in the LHS
2493   // instruction that we're folding.
2494   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2495 
2496   // If the division is known to be exact, then there is no remainder from the
2497   // divide, so the covered range size is unit, otherwise it is the divisor.
2498   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2499 
2500   // Figure out the interval that is being checked.  For example, a comparison
2501   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2502   // Compute this interval based on the constants involved and the signedness of
2503   // the compare/divide.  This computes a half-open interval, keeping track of
2504   // whether either value in the interval overflows.  After analysis each
2505   // overflow variable is set to 0 if it's corresponding bound variable is valid
2506   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2507   int LoOverflow = 0, HiOverflow = 0;
2508   APInt LoBound, HiBound;
2509 
2510   if (!DivIsSigned) { // udiv
2511     // e.g. X/5 op 3  --> [15, 20)
2512     LoBound = Prod;
2513     HiOverflow = LoOverflow = ProdOV;
2514     if (!HiOverflow) {
2515       // If this is not an exact divide, then many values in the range collapse
2516       // to the same result value.
2517       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2518     }
2519   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2520     if (C.isZero()) {                    // (X / pos) op 0
2521       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2522       LoBound = -(RangeSize - 1);
2523       HiBound = RangeSize;
2524     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2525       LoBound = Prod;                    // e.g.   X/5 op 3 --> [15, 20)
2526       HiOverflow = LoOverflow = ProdOV;
2527       if (!HiOverflow)
2528         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2529     } else { // (X / pos) op neg
2530       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2531       HiBound = Prod + 1;
2532       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2533       if (!LoOverflow) {
2534         APInt DivNeg = -RangeSize;
2535         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2536       }
2537     }
2538   } else if (C2->isNegative()) { // Divisor is < 0.
2539     if (Div->isExact())
2540       RangeSize.negate();
2541     if (C.isZero()) { // (X / neg) op 0
2542       // e.g. X/-5 op 0  --> [-4, 5)
2543       LoBound = RangeSize + 1;
2544       HiBound = -RangeSize;
2545       if (HiBound == *C2) { // -INTMIN = INTMIN
2546         HiOverflow = 1;     // [INTMIN+1, overflow)
2547         HiBound = APInt();  // e.g. X/INTMIN = 0 --> X > INTMIN
2548       }
2549     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2550       // e.g. X/-5 op 3  --> [-19, -14)
2551       HiBound = Prod + 1;
2552       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2553       if (!LoOverflow)
2554         LoOverflow =
2555             addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0;
2556     } else {          // (X / neg) op neg
2557       LoBound = Prod; // e.g. X/-5 op -3  --> [15, 20)
2558       LoOverflow = HiOverflow = ProdOV;
2559       if (!HiOverflow)
2560         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2561     }
2562 
2563     // Dividing by a negative swaps the condition.  LT <-> GT
2564     Pred = ICmpInst::getSwappedPredicate(Pred);
2565   }
2566 
2567   switch (Pred) {
2568   default:
2569     llvm_unreachable("Unhandled icmp predicate!");
2570   case ICmpInst::ICMP_EQ:
2571     if (LoOverflow && HiOverflow)
2572       return replaceInstUsesWith(Cmp, Builder.getFalse());
2573     if (HiOverflow)
2574       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2575                           X, ConstantInt::get(Ty, LoBound));
2576     if (LoOverflow)
2577       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2578                           X, ConstantInt::get(Ty, HiBound));
2579     return replaceInstUsesWith(
2580         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2581   case ICmpInst::ICMP_NE:
2582     if (LoOverflow && HiOverflow)
2583       return replaceInstUsesWith(Cmp, Builder.getTrue());
2584     if (HiOverflow)
2585       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2586                           X, ConstantInt::get(Ty, LoBound));
2587     if (LoOverflow)
2588       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2589                           X, ConstantInt::get(Ty, HiBound));
2590     return replaceInstUsesWith(
2591         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false));
2592   case ICmpInst::ICMP_ULT:
2593   case ICmpInst::ICMP_SLT:
2594     if (LoOverflow == +1) // Low bound is greater than input range.
2595       return replaceInstUsesWith(Cmp, Builder.getTrue());
2596     if (LoOverflow == -1) // Low bound is less than input range.
2597       return replaceInstUsesWith(Cmp, Builder.getFalse());
2598     return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound));
2599   case ICmpInst::ICMP_UGT:
2600   case ICmpInst::ICMP_SGT:
2601     if (HiOverflow == +1) // High bound greater than input range.
2602       return replaceInstUsesWith(Cmp, Builder.getFalse());
2603     if (HiOverflow == -1) // High bound less than input range.
2604       return replaceInstUsesWith(Cmp, Builder.getTrue());
2605     if (Pred == ICmpInst::ICMP_UGT)
2606       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound));
2607     return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound));
2608   }
2609 
2610   return nullptr;
2611 }
2612 
2613 /// Fold icmp (sub X, Y), C.
2614 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2615                                                    BinaryOperator *Sub,
2616                                                    const APInt &C) {
2617   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2618   ICmpInst::Predicate Pred = Cmp.getPredicate();
2619   Type *Ty = Sub->getType();
2620 
2621   // (SubC - Y) == C) --> Y == (SubC - C)
2622   // (SubC - Y) != C) --> Y != (SubC - C)
2623   Constant *SubC;
2624   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2625     return new ICmpInst(Pred, Y,
2626                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2627   }
2628 
2629   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2630   const APInt *C2;
2631   APInt SubResult;
2632   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2633   bool HasNSW = Sub->hasNoSignedWrap();
2634   bool HasNUW = Sub->hasNoUnsignedWrap();
2635   if (match(X, m_APInt(C2)) &&
2636       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2637       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2638     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2639 
2640   // X - Y == 0 --> X == Y.
2641   // X - Y != 0 --> X != Y.
2642   // TODO: We allow this with multiple uses as long as the other uses are not
2643   //       in phis. The phi use check is guarding against a codegen regression
2644   //       for a loop test. If the backend could undo this (and possibly
2645   //       subsequent transforms), we would not need this hack.
2646   if (Cmp.isEquality() && C.isZero() &&
2647       none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
2648     return new ICmpInst(Pred, X, Y);
2649 
2650   // The following transforms are only worth it if the only user of the subtract
2651   // is the icmp.
2652   // TODO: This is an artificial restriction for all of the transforms below
2653   //       that only need a single replacement icmp. Can these use the phi test
2654   //       like the transform above here?
2655   if (!Sub->hasOneUse())
2656     return nullptr;
2657 
2658   if (Sub->hasNoSignedWrap()) {
2659     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2660     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2661       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2662 
2663     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2664     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2665       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2666 
2667     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2668     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2669       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2670 
2671     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2672     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2673       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2674   }
2675 
2676   if (!match(X, m_APInt(C2)))
2677     return nullptr;
2678 
2679   // C2 - Y <u C -> (Y | (C - 1)) == C2
2680   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2681   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2682       (*C2 & (C - 1)) == (C - 1))
2683     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2684 
2685   // C2 - Y >u C -> (Y | C) != C2
2686   //   iff C2 & C == C and C + 1 is a power of 2
2687   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2688     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2689 
2690   // We have handled special cases that reduce.
2691   // Canonicalize any remaining sub to add as:
2692   // (C2 - Y) > C --> (Y + ~C2) < ~C
2693   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2694                                  HasNUW, HasNSW);
2695   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2696 }
2697 
2698 /// Fold icmp (add X, Y), C.
2699 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2700                                                    BinaryOperator *Add,
2701                                                    const APInt &C) {
2702   Value *Y = Add->getOperand(1);
2703   const APInt *C2;
2704   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2705     return nullptr;
2706 
2707   // Fold icmp pred (add X, C2), C.
2708   Value *X = Add->getOperand(0);
2709   Type *Ty = Add->getType();
2710   const CmpInst::Predicate Pred = Cmp.getPredicate();
2711 
2712   // If the add does not wrap, we can always adjust the compare by subtracting
2713   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2714   // are canonicalized to SGT/SLT/UGT/ULT.
2715   if ((Add->hasNoSignedWrap() &&
2716        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2717       (Add->hasNoUnsignedWrap() &&
2718        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2719     bool Overflow;
2720     APInt NewC =
2721         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2722     // If there is overflow, the result must be true or false.
2723     // TODO: Can we assert there is no overflow because InstSimplify always
2724     // handles those cases?
2725     if (!Overflow)
2726       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2727       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2728   }
2729 
2730   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2731   const APInt &Upper = CR.getUpper();
2732   const APInt &Lower = CR.getLower();
2733   if (Cmp.isSigned()) {
2734     if (Lower.isSignMask())
2735       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2736     if (Upper.isSignMask())
2737       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2738   } else {
2739     if (Lower.isMinValue())
2740       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2741     if (Upper.isMinValue())
2742       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2743   }
2744 
2745   // This set of folds is intentionally placed after folds that use no-wrapping
2746   // flags because those folds are likely better for later analysis/codegen.
2747   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2748   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2749 
2750   // Fold compare with offset to opposite sign compare if it eliminates offset:
2751   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2752   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2753     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2754 
2755   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2756   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2757     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2758 
2759   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2760   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2761     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2762 
2763   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2764   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2765     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2766 
2767   if (!Add->hasOneUse())
2768     return nullptr;
2769 
2770   // X+C <u C2 -> (X & -C2) == C
2771   //   iff C & (C2-1) == 0
2772   //       C2 is a power of 2
2773   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2774     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2775                         ConstantExpr::getNeg(cast<Constant>(Y)));
2776 
2777   // X+C >u C2 -> (X & ~C2) != C
2778   //   iff C & C2 == 0
2779   //       C2+1 is a power of 2
2780   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2781     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2782                         ConstantExpr::getNeg(cast<Constant>(Y)));
2783 
2784   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2785   // to the ult form.
2786   // X+C2 >u C -> X+(C2-C-1) <u ~C
2787   if (Pred == ICmpInst::ICMP_UGT)
2788     return new ICmpInst(ICmpInst::ICMP_ULT,
2789                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2790                         ConstantInt::get(Ty, ~C));
2791 
2792   return nullptr;
2793 }
2794 
2795 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2796                                                Value *&RHS, ConstantInt *&Less,
2797                                                ConstantInt *&Equal,
2798                                                ConstantInt *&Greater) {
2799   // TODO: Generalize this to work with other comparison idioms or ensure
2800   // they get canonicalized into this form.
2801 
2802   // select i1 (a == b),
2803   //        i32 Equal,
2804   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2805   // where Equal, Less and Greater are placeholders for any three constants.
2806   ICmpInst::Predicate PredA;
2807   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2808       !ICmpInst::isEquality(PredA))
2809     return false;
2810   Value *EqualVal = SI->getTrueValue();
2811   Value *UnequalVal = SI->getFalseValue();
2812   // We still can get non-canonical predicate here, so canonicalize.
2813   if (PredA == ICmpInst::ICMP_NE)
2814     std::swap(EqualVal, UnequalVal);
2815   if (!match(EqualVal, m_ConstantInt(Equal)))
2816     return false;
2817   ICmpInst::Predicate PredB;
2818   Value *LHS2, *RHS2;
2819   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2820                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2821     return false;
2822   // We can get predicate mismatch here, so canonicalize if possible:
2823   // First, ensure that 'LHS' match.
2824   if (LHS2 != LHS) {
2825     // x sgt y <--> y slt x
2826     std::swap(LHS2, RHS2);
2827     PredB = ICmpInst::getSwappedPredicate(PredB);
2828   }
2829   if (LHS2 != LHS)
2830     return false;
2831   // We also need to canonicalize 'RHS'.
2832   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2833     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2834     auto FlippedStrictness =
2835         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2836             PredB, cast<Constant>(RHS2));
2837     if (!FlippedStrictness)
2838       return false;
2839     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2840            "basic correctness failure");
2841     RHS2 = FlippedStrictness->second;
2842     // And kind-of perform the result swap.
2843     std::swap(Less, Greater);
2844     PredB = ICmpInst::ICMP_SLT;
2845   }
2846   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2847 }
2848 
2849 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2850                                                       SelectInst *Select,
2851                                                       ConstantInt *C) {
2852 
2853   assert(C && "Cmp RHS should be a constant int!");
2854   // If we're testing a constant value against the result of a three way
2855   // comparison, the result can be expressed directly in terms of the
2856   // original values being compared.  Note: We could possibly be more
2857   // aggressive here and remove the hasOneUse test. The original select is
2858   // really likely to simplify or sink when we remove a test of the result.
2859   Value *OrigLHS, *OrigRHS;
2860   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2861   if (Cmp.hasOneUse() &&
2862       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2863                               C3GreaterThan)) {
2864     assert(C1LessThan && C2Equal && C3GreaterThan);
2865 
2866     bool TrueWhenLessThan =
2867         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2868             ->isAllOnesValue();
2869     bool TrueWhenEqual =
2870         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2871             ->isAllOnesValue();
2872     bool TrueWhenGreaterThan =
2873         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2874             ->isAllOnesValue();
2875 
2876     // This generates the new instruction that will replace the original Cmp
2877     // Instruction. Instead of enumerating the various combinations when
2878     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2879     // false, we rely on chaining of ORs and future passes of InstCombine to
2880     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2881 
2882     // When none of the three constants satisfy the predicate for the RHS (C),
2883     // the entire original Cmp can be simplified to a false.
2884     Value *Cond = Builder.getFalse();
2885     if (TrueWhenLessThan)
2886       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2887                                                        OrigLHS, OrigRHS));
2888     if (TrueWhenEqual)
2889       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2890                                                        OrigLHS, OrigRHS));
2891     if (TrueWhenGreaterThan)
2892       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2893                                                        OrigLHS, OrigRHS));
2894 
2895     return replaceInstUsesWith(Cmp, Cond);
2896   }
2897   return nullptr;
2898 }
2899 
2900 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2901   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2902   if (!Bitcast)
2903     return nullptr;
2904 
2905   ICmpInst::Predicate Pred = Cmp.getPredicate();
2906   Value *Op1 = Cmp.getOperand(1);
2907   Value *BCSrcOp = Bitcast->getOperand(0);
2908   Type *SrcType = Bitcast->getSrcTy();
2909   Type *DstType = Bitcast->getType();
2910 
2911   // Make sure the bitcast doesn't change between scalar and vector and
2912   // doesn't change the number of vector elements.
2913   if (SrcType->isVectorTy() == DstType->isVectorTy() &&
2914       SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
2915     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2916     Value *X;
2917     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2918       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2919       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2920       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2921       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2922       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2923            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2924           match(Op1, m_Zero()))
2925         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2926 
2927       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2928       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2929         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2930 
2931       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2932       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2933         return new ICmpInst(Pred, X,
2934                             ConstantInt::getAllOnesValue(X->getType()));
2935     }
2936 
2937     // Zero-equality checks are preserved through unsigned floating-point casts:
2938     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2939     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2940     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2941       if (Cmp.isEquality() && match(Op1, m_Zero()))
2942         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2943 
2944     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2945     // the FP extend/truncate because that cast does not change the sign-bit.
2946     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2947     // The sign-bit is always the most significant bit in those types.
2948     const APInt *C;
2949     bool TrueIfSigned;
2950     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2951         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2952       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2953           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2954         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2955         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2956         Type *XType = X->getType();
2957 
2958         // We can't currently handle Power style floating point operations here.
2959         if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
2960           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2961           if (auto *XVTy = dyn_cast<VectorType>(XType))
2962             NewType = VectorType::get(NewType, XVTy->getElementCount());
2963           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2964           if (TrueIfSigned)
2965             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2966                                 ConstantInt::getNullValue(NewType));
2967           else
2968             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2969                                 ConstantInt::getAllOnesValue(NewType));
2970         }
2971       }
2972     }
2973   }
2974 
2975   // Test to see if the operands of the icmp are casted versions of other
2976   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2977   if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2978     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2979     // so eliminate it as well.
2980     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2981       Op1 = BC2->getOperand(0);
2982 
2983     Op1 = Builder.CreateBitCast(Op1, SrcType);
2984     return new ICmpInst(Pred, BCSrcOp, Op1);
2985   }
2986 
2987   const APInt *C;
2988   if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() ||
2989       !SrcType->isIntOrIntVectorTy())
2990     return nullptr;
2991 
2992   // If this is checking if all elements of a vector compare are set or not,
2993   // invert the casted vector equality compare and test if all compare
2994   // elements are clear or not. Compare against zero is generally easier for
2995   // analysis and codegen.
2996   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2997   // Example: are all elements equal? --> are zero elements not equal?
2998   // TODO: Try harder to reduce compare of 2 freely invertible operands?
2999   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
3000       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
3001     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType);
3002     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType));
3003   }
3004 
3005   // If this is checking if all elements of an extended vector are clear or not,
3006   // compare in a narrow type to eliminate the extend:
3007   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3008   Value *X;
3009   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
3010       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
3011     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
3012       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
3013       Value *NewCast = Builder.CreateBitCast(X, NewType);
3014       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
3015     }
3016   }
3017 
3018   // Folding: icmp <pred> iN X, C
3019   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3020   //    and C is a splat of a K-bit pattern
3021   //    and SC is a constant vector = <C', C', C', ..., C'>
3022   // Into:
3023   //   %E = extractelement <M x iK> %vec, i32 C'
3024   //   icmp <pred> iK %E, trunc(C)
3025   Value *Vec;
3026   ArrayRef<int> Mask;
3027   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
3028     // Check whether every element of Mask is the same constant
3029     if (is_splat(Mask)) {
3030       auto *VecTy = cast<VectorType>(SrcType);
3031       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
3032       if (C->isSplat(EltTy->getBitWidth())) {
3033         // Fold the icmp based on the value of C
3034         // If C is M copies of an iK sized bit pattern,
3035         // then:
3036         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
3037         //       icmp <pred> iK %SplatVal, <pattern>
3038         Value *Elem = Builder.getInt32(Mask[0]);
3039         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3040         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3041         return new ICmpInst(Pred, Extract, NewC);
3042       }
3043     }
3044   }
3045   return nullptr;
3046 }
3047 
3048 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3049 /// where X is some kind of instruction.
3050 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3051   const APInt *C;
3052 
3053   if (match(Cmp.getOperand(1), m_APInt(C))) {
3054     if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0)))
3055       if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C))
3056         return I;
3057 
3058     if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0)))
3059       // For now, we only support constant integers while folding the
3060       // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3061       // similar to the cases handled by binary ops above.
3062       if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3063         if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3064           return I;
3065 
3066     if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0)))
3067       if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3068         return I;
3069 
3070     if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3071       if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3072         return I;
3073   }
3074 
3075   if (match(Cmp.getOperand(1), m_APIntAllowUndef(C)))
3076     return foldICmpInstWithConstantAllowUndef(Cmp, *C);
3077 
3078   return nullptr;
3079 }
3080 
3081 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3082 /// icmp eq/ne BO, C.
3083 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3084     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3085   // TODO: Some of these folds could work with arbitrary constants, but this
3086   // function is limited to scalar and vector splat constants.
3087   if (!Cmp.isEquality())
3088     return nullptr;
3089 
3090   ICmpInst::Predicate Pred = Cmp.getPredicate();
3091   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3092   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3093   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3094 
3095   switch (BO->getOpcode()) {
3096   case Instruction::SRem:
3097     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3098     if (C.isZero() && BO->hasOneUse()) {
3099       const APInt *BOC;
3100       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3101         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3102         return new ICmpInst(Pred, NewRem,
3103                             Constant::getNullValue(BO->getType()));
3104       }
3105     }
3106     break;
3107   case Instruction::Add: {
3108     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3109     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3110       if (BO->hasOneUse())
3111         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3112     } else if (C.isZero()) {
3113       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3114       // efficiently invertible, or if the add has just this one use.
3115       if (Value *NegVal = dyn_castNegVal(BOp1))
3116         return new ICmpInst(Pred, BOp0, NegVal);
3117       if (Value *NegVal = dyn_castNegVal(BOp0))
3118         return new ICmpInst(Pred, NegVal, BOp1);
3119       if (BO->hasOneUse()) {
3120         Value *Neg = Builder.CreateNeg(BOp1);
3121         Neg->takeName(BO);
3122         return new ICmpInst(Pred, BOp0, Neg);
3123       }
3124     }
3125     break;
3126   }
3127   case Instruction::Xor:
3128     if (BO->hasOneUse()) {
3129       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3130         // For the xor case, we can xor two constants together, eliminating
3131         // the explicit xor.
3132         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3133       } else if (C.isZero()) {
3134         // Replace ((xor A, B) != 0) with (A != B)
3135         return new ICmpInst(Pred, BOp0, BOp1);
3136       }
3137     }
3138     break;
3139   case Instruction::Or: {
3140     const APInt *BOC;
3141     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3142       // Comparing if all bits outside of a constant mask are set?
3143       // Replace (X | C) == -1 with (X & ~C) == ~C.
3144       // This removes the -1 constant.
3145       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3146       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3147       return new ICmpInst(Pred, And, NotBOC);
3148     }
3149     break;
3150   }
3151   case Instruction::And: {
3152     const APInt *BOC;
3153     if (match(BOp1, m_APInt(BOC))) {
3154       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3155       if (C == *BOC && C.isPowerOf2())
3156         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3157                             BO, Constant::getNullValue(RHS->getType()));
3158     }
3159     break;
3160   }
3161   case Instruction::UDiv:
3162     if (C.isZero()) {
3163       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3164       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3165       return new ICmpInst(NewPred, BOp1, BOp0);
3166     }
3167     break;
3168   default:
3169     break;
3170   }
3171   return nullptr;
3172 }
3173 
3174 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3175 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3176     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3177   Type *Ty = II->getType();
3178   unsigned BitWidth = C.getBitWidth();
3179   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3180 
3181   switch (II->getIntrinsicID()) {
3182   case Intrinsic::abs:
3183     // abs(A) == 0  ->  A == 0
3184     // abs(A) == INT_MIN  ->  A == INT_MIN
3185     if (C.isZero() || C.isMinSignedValue())
3186       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3187     break;
3188 
3189   case Intrinsic::bswap:
3190     // bswap(A) == C  ->  A == bswap(C)
3191     return new ICmpInst(Pred, II->getArgOperand(0),
3192                         ConstantInt::get(Ty, C.byteSwap()));
3193 
3194   case Intrinsic::ctlz:
3195   case Intrinsic::cttz: {
3196     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3197     if (C == BitWidth)
3198       return new ICmpInst(Pred, II->getArgOperand(0),
3199                           ConstantInt::getNullValue(Ty));
3200 
3201     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3202     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3203     // Limit to one use to ensure we don't increase instruction count.
3204     unsigned Num = C.getLimitedValue(BitWidth);
3205     if (Num != BitWidth && II->hasOneUse()) {
3206       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3207       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3208                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3209       APInt Mask2 = IsTrailing
3210         ? APInt::getOneBitSet(BitWidth, Num)
3211         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3212       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3213                           ConstantInt::get(Ty, Mask2));
3214     }
3215     break;
3216   }
3217 
3218   case Intrinsic::ctpop: {
3219     // popcount(A) == 0  ->  A == 0 and likewise for !=
3220     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3221     bool IsZero = C.isZero();
3222     if (IsZero || C == BitWidth)
3223       return new ICmpInst(Pred, II->getArgOperand(0),
3224                           IsZero ? Constant::getNullValue(Ty)
3225                                  : Constant::getAllOnesValue(Ty));
3226 
3227     break;
3228   }
3229 
3230   case Intrinsic::fshl:
3231   case Intrinsic::fshr:
3232     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3233       const APInt *RotAmtC;
3234       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3235       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3236       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3237         return new ICmpInst(Pred, II->getArgOperand(0),
3238                             II->getIntrinsicID() == Intrinsic::fshl
3239                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3240                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3241     }
3242     break;
3243 
3244   case Intrinsic::uadd_sat: {
3245     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3246     if (C.isZero()) {
3247       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3248       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3249     }
3250     break;
3251   }
3252 
3253   case Intrinsic::usub_sat: {
3254     // usub.sat(a, b) == 0  ->  a <= b
3255     if (C.isZero()) {
3256       ICmpInst::Predicate NewPred =
3257           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3258       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3259     }
3260     break;
3261   }
3262   default:
3263     break;
3264   }
3265 
3266   return nullptr;
3267 }
3268 
3269 /// Fold an icmp with LLVM intrinsics
3270 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3271   assert(Cmp.isEquality());
3272 
3273   ICmpInst::Predicate Pred = Cmp.getPredicate();
3274   Value *Op0 = Cmp.getOperand(0);
3275   Value *Op1 = Cmp.getOperand(1);
3276   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3277   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3278   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3279     return nullptr;
3280 
3281   switch (IIOp0->getIntrinsicID()) {
3282   case Intrinsic::bswap:
3283   case Intrinsic::bitreverse:
3284     // If both operands are byte-swapped or bit-reversed, just compare the
3285     // original values.
3286     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3287   case Intrinsic::fshl:
3288   case Intrinsic::fshr:
3289     // If both operands are rotated by same amount, just compare the
3290     // original values.
3291     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3292       break;
3293     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3294       break;
3295     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3296       break;
3297     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3298   default:
3299     break;
3300   }
3301 
3302   return nullptr;
3303 }
3304 
3305 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3306 /// where X is some kind of instruction and C is AllowUndef.
3307 /// TODO: Move more folds which allow undef to this function.
3308 Instruction *
3309 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
3310                                                      const APInt &C) {
3311   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3312   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) {
3313     switch (II->getIntrinsicID()) {
3314     default:
3315       break;
3316     case Intrinsic::fshl:
3317     case Intrinsic::fshr:
3318       if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) {
3319         // (rot X, ?) == 0/-1 --> X == 0/-1
3320         if (C.isZero() || C.isAllOnes())
3321           return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3322       }
3323       break;
3324     }
3325   }
3326 
3327   return nullptr;
3328 }
3329 
3330 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3331 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp,
3332                                                          BinaryOperator *BO,
3333                                                          const APInt &C) {
3334   switch (BO->getOpcode()) {
3335   case Instruction::Xor:
3336     if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
3337       return I;
3338     break;
3339   case Instruction::And:
3340     if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
3341       return I;
3342     break;
3343   case Instruction::Or:
3344     if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
3345       return I;
3346     break;
3347   case Instruction::Mul:
3348     if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
3349       return I;
3350     break;
3351   case Instruction::Shl:
3352     if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
3353       return I;
3354     break;
3355   case Instruction::LShr:
3356   case Instruction::AShr:
3357     if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
3358       return I;
3359     break;
3360   case Instruction::SRem:
3361     if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C))
3362       return I;
3363     break;
3364   case Instruction::UDiv:
3365     if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
3366       return I;
3367     LLVM_FALLTHROUGH;
3368   case Instruction::SDiv:
3369     if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
3370       return I;
3371     break;
3372   case Instruction::Sub:
3373     if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
3374       return I;
3375     break;
3376   case Instruction::Add:
3377     if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
3378       return I;
3379     break;
3380   default:
3381     break;
3382   }
3383 
3384   // TODO: These folds could be refactored to be part of the above calls.
3385   return foldICmpBinOpEqualityWithConstant(Cmp, BO, C);
3386 }
3387 
3388 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3389 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3390                                                              IntrinsicInst *II,
3391                                                              const APInt &C) {
3392   if (Cmp.isEquality())
3393     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3394 
3395   Type *Ty = II->getType();
3396   unsigned BitWidth = C.getBitWidth();
3397   ICmpInst::Predicate Pred = Cmp.getPredicate();
3398   switch (II->getIntrinsicID()) {
3399   case Intrinsic::ctpop: {
3400     // (ctpop X > BitWidth - 1) --> X == -1
3401     Value *X = II->getArgOperand(0);
3402     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3403       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3404                              ConstantInt::getAllOnesValue(Ty));
3405     // (ctpop X < BitWidth) --> X != -1
3406     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3407       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3408                              ConstantInt::getAllOnesValue(Ty));
3409     break;
3410   }
3411   case Intrinsic::ctlz: {
3412     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3413     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3414       unsigned Num = C.getLimitedValue();
3415       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3416       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3417                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3418     }
3419 
3420     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3421     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3422       unsigned Num = C.getLimitedValue();
3423       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3424       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3425                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3426     }
3427     break;
3428   }
3429   case Intrinsic::cttz: {
3430     // Limit to one use to ensure we don't increase instruction count.
3431     if (!II->hasOneUse())
3432       return nullptr;
3433 
3434     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3435     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3436       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3437       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3438                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3439                              ConstantInt::getNullValue(Ty));
3440     }
3441 
3442     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3443     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3444       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3445       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3446                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3447                              ConstantInt::getNullValue(Ty));
3448     }
3449     break;
3450   }
3451   default:
3452     break;
3453   }
3454 
3455   return nullptr;
3456 }
3457 
3458 /// Handle icmp with constant (but not simple integer constant) RHS.
3459 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3460   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3461   Constant *RHSC = dyn_cast<Constant>(Op1);
3462   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3463   if (!RHSC || !LHSI)
3464     return nullptr;
3465 
3466   switch (LHSI->getOpcode()) {
3467   case Instruction::GetElementPtr:
3468     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3469     if (RHSC->isNullValue() &&
3470         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3471       return new ICmpInst(
3472           I.getPredicate(), LHSI->getOperand(0),
3473           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3474     break;
3475   case Instruction::PHI:
3476     // Only fold icmp into the PHI if the phi and icmp are in the same
3477     // block.  If in the same block, we're encouraging jump threading.  If
3478     // not, we are just pessimizing the code by making an i1 phi.
3479     if (LHSI->getParent() == I.getParent())
3480       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3481         return NV;
3482     break;
3483   case Instruction::IntToPtr:
3484     // icmp pred inttoptr(X), null -> icmp pred X, 0
3485     if (RHSC->isNullValue() &&
3486         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3487       return new ICmpInst(
3488           I.getPredicate(), LHSI->getOperand(0),
3489           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3490     break;
3491 
3492   case Instruction::Load:
3493     // Try to optimize things like "A[i] > 4" to index computations.
3494     if (GetElementPtrInst *GEP =
3495             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
3496       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3497         if (Instruction *Res =
3498                 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
3499           return Res;
3500     break;
3501   }
3502 
3503   return nullptr;
3504 }
3505 
3506 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred,
3507                                               SelectInst *SI, Value *RHS,
3508                                               const ICmpInst &I) {
3509   // Try to fold the comparison into the select arms, which will cause the
3510   // select to be converted into a logical and/or.
3511   auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
3512     if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ))
3513       return Res;
3514     if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op,
3515                                                  RHS, DL, SelectCondIsTrue))
3516       return ConstantInt::get(I.getType(), *Impl);
3517     return nullptr;
3518   };
3519 
3520   ConstantInt *CI = nullptr;
3521   Value *Op1 = SimplifyOp(SI->getOperand(1), true);
3522   if (Op1)
3523     CI = dyn_cast<ConstantInt>(Op1);
3524 
3525   Value *Op2 = SimplifyOp(SI->getOperand(2), false);
3526   if (Op2)
3527     CI = dyn_cast<ConstantInt>(Op2);
3528 
3529   // We only want to perform this transformation if it will not lead to
3530   // additional code. This is true if either both sides of the select
3531   // fold to a constant (in which case the icmp is replaced with a select
3532   // which will usually simplify) or this is the only user of the
3533   // select (in which case we are trading a select+icmp for a simpler
3534   // select+icmp) or all uses of the select can be replaced based on
3535   // dominance information ("Global cases").
3536   bool Transform = false;
3537   if (Op1 && Op2)
3538     Transform = true;
3539   else if (Op1 || Op2) {
3540     // Local case
3541     if (SI->hasOneUse())
3542       Transform = true;
3543     // Global cases
3544     else if (CI && !CI->isZero())
3545       // When Op1 is constant try replacing select with second operand.
3546       // Otherwise Op2 is constant and try replacing select with first
3547       // operand.
3548       Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1);
3549   }
3550   if (Transform) {
3551     if (!Op1)
3552       Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName());
3553     if (!Op2)
3554       Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName());
3555     return SelectInst::Create(SI->getOperand(0), Op1, Op2);
3556   }
3557 
3558   return nullptr;
3559 }
3560 
3561 /// Some comparisons can be simplified.
3562 /// In this case, we are looking for comparisons that look like
3563 /// a check for a lossy truncation.
3564 /// Folds:
3565 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3566 /// Where Mask is some pattern that produces all-ones in low bits:
3567 ///    (-1 >> y)
3568 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3569 ///   ~(-1 << y)
3570 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3571 /// The Mask can be a constant, too.
3572 /// For some predicates, the operands are commutative.
3573 /// For others, x can only be on a specific side.
3574 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3575                                           InstCombiner::BuilderTy &Builder) {
3576   ICmpInst::Predicate SrcPred;
3577   Value *X, *M, *Y;
3578   auto m_VariableMask = m_CombineOr(
3579       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3580                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3581       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3582                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3583   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3584   if (!match(&I, m_c_ICmp(SrcPred,
3585                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3586                           m_Deferred(X))))
3587     return nullptr;
3588 
3589   ICmpInst::Predicate DstPred;
3590   switch (SrcPred) {
3591   case ICmpInst::Predicate::ICMP_EQ:
3592     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3593     DstPred = ICmpInst::Predicate::ICMP_ULE;
3594     break;
3595   case ICmpInst::Predicate::ICMP_NE:
3596     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3597     DstPred = ICmpInst::Predicate::ICMP_UGT;
3598     break;
3599   case ICmpInst::Predicate::ICMP_ULT:
3600     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3601     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3602     DstPred = ICmpInst::Predicate::ICMP_UGT;
3603     break;
3604   case ICmpInst::Predicate::ICMP_UGE:
3605     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3606     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3607     DstPred = ICmpInst::Predicate::ICMP_ULE;
3608     break;
3609   case ICmpInst::Predicate::ICMP_SLT:
3610     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3611     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3612     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3613       return nullptr;
3614     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3615       return nullptr;
3616     DstPred = ICmpInst::Predicate::ICMP_SGT;
3617     break;
3618   case ICmpInst::Predicate::ICMP_SGE:
3619     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3620     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3621     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3622       return nullptr;
3623     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3624       return nullptr;
3625     DstPred = ICmpInst::Predicate::ICMP_SLE;
3626     break;
3627   case ICmpInst::Predicate::ICMP_SGT:
3628   case ICmpInst::Predicate::ICMP_SLE:
3629     return nullptr;
3630   case ICmpInst::Predicate::ICMP_UGT:
3631   case ICmpInst::Predicate::ICMP_ULE:
3632     llvm_unreachable("Instsimplify took care of commut. variant");
3633     break;
3634   default:
3635     llvm_unreachable("All possible folds are handled.");
3636   }
3637 
3638   // The mask value may be a vector constant that has undefined elements. But it
3639   // may not be safe to propagate those undefs into the new compare, so replace
3640   // those elements by copying an existing, defined, and safe scalar constant.
3641   Type *OpTy = M->getType();
3642   auto *VecC = dyn_cast<Constant>(M);
3643   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3644   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3645     Constant *SafeReplacementConstant = nullptr;
3646     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3647       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3648         SafeReplacementConstant = VecC->getAggregateElement(i);
3649         break;
3650       }
3651     }
3652     assert(SafeReplacementConstant && "Failed to find undef replacement");
3653     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3654   }
3655 
3656   return Builder.CreateICmp(DstPred, X, M);
3657 }
3658 
3659 /// Some comparisons can be simplified.
3660 /// In this case, we are looking for comparisons that look like
3661 /// a check for a lossy signed truncation.
3662 /// Folds:   (MaskedBits is a constant.)
3663 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3664 /// Into:
3665 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3666 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3667 static Value *
3668 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3669                                  InstCombiner::BuilderTy &Builder) {
3670   ICmpInst::Predicate SrcPred;
3671   Value *X;
3672   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3673   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3674   if (!match(&I, m_c_ICmp(SrcPred,
3675                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3676                                           m_APInt(C1))),
3677                           m_Deferred(X))))
3678     return nullptr;
3679 
3680   // Potential handling of non-splats: for each element:
3681   //  * if both are undef, replace with constant 0.
3682   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3683   //  * if both are not undef, and are different, bailout.
3684   //  * else, only one is undef, then pick the non-undef one.
3685 
3686   // The shift amount must be equal.
3687   if (*C0 != *C1)
3688     return nullptr;
3689   const APInt &MaskedBits = *C0;
3690   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3691 
3692   ICmpInst::Predicate DstPred;
3693   switch (SrcPred) {
3694   case ICmpInst::Predicate::ICMP_EQ:
3695     // ((%x << MaskedBits) a>> MaskedBits) == %x
3696     //   =>
3697     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3698     DstPred = ICmpInst::Predicate::ICMP_ULT;
3699     break;
3700   case ICmpInst::Predicate::ICMP_NE:
3701     // ((%x << MaskedBits) a>> MaskedBits) != %x
3702     //   =>
3703     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3704     DstPred = ICmpInst::Predicate::ICMP_UGE;
3705     break;
3706   // FIXME: are more folds possible?
3707   default:
3708     return nullptr;
3709   }
3710 
3711   auto *XType = X->getType();
3712   const unsigned XBitWidth = XType->getScalarSizeInBits();
3713   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3714   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3715 
3716   // KeptBits = bitwidth(%x) - MaskedBits
3717   const APInt KeptBits = BitWidth - MaskedBits;
3718   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3719   // ICmpCst = (1 << KeptBits)
3720   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3721   assert(ICmpCst.isPowerOf2());
3722   // AddCst = (1 << (KeptBits-1))
3723   const APInt AddCst = ICmpCst.lshr(1);
3724   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3725 
3726   // T0 = add %x, AddCst
3727   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3728   // T1 = T0 DstPred ICmpCst
3729   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3730 
3731   return T1;
3732 }
3733 
3734 // Given pattern:
3735 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3736 // we should move shifts to the same hand of 'and', i.e. rewrite as
3737 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3738 // We are only interested in opposite logical shifts here.
3739 // One of the shifts can be truncated.
3740 // If we can, we want to end up creating 'lshr' shift.
3741 static Value *
3742 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3743                                            InstCombiner::BuilderTy &Builder) {
3744   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3745       !I.getOperand(0)->hasOneUse())
3746     return nullptr;
3747 
3748   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3749 
3750   // Look for an 'and' of two logical shifts, one of which may be truncated.
3751   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3752   Instruction *XShift, *MaybeTruncation, *YShift;
3753   if (!match(
3754           I.getOperand(0),
3755           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3756                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3757                                    m_AnyLogicalShift, m_Instruction(YShift))),
3758                                m_Instruction(MaybeTruncation)))))
3759     return nullptr;
3760 
3761   // We potentially looked past 'trunc', but only when matching YShift,
3762   // therefore YShift must have the widest type.
3763   Instruction *WidestShift = YShift;
3764   // Therefore XShift must have the shallowest type.
3765   // Or they both have identical types if there was no truncation.
3766   Instruction *NarrowestShift = XShift;
3767 
3768   Type *WidestTy = WidestShift->getType();
3769   Type *NarrowestTy = NarrowestShift->getType();
3770   assert(NarrowestTy == I.getOperand(0)->getType() &&
3771          "We did not look past any shifts while matching XShift though.");
3772   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3773 
3774   // If YShift is a 'lshr', swap the shifts around.
3775   if (match(YShift, m_LShr(m_Value(), m_Value())))
3776     std::swap(XShift, YShift);
3777 
3778   // The shifts must be in opposite directions.
3779   auto XShiftOpcode = XShift->getOpcode();
3780   if (XShiftOpcode == YShift->getOpcode())
3781     return nullptr; // Do not care about same-direction shifts here.
3782 
3783   Value *X, *XShAmt, *Y, *YShAmt;
3784   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3785   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3786 
3787   // If one of the values being shifted is a constant, then we will end with
3788   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3789   // however, we will need to ensure that we won't increase instruction count.
3790   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3791     // At least one of the hands of the 'and' should be one-use shift.
3792     if (!match(I.getOperand(0),
3793                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3794       return nullptr;
3795     if (HadTrunc) {
3796       // Due to the 'trunc', we will need to widen X. For that either the old
3797       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3798       if (!MaybeTruncation->hasOneUse() &&
3799           !NarrowestShift->getOperand(1)->hasOneUse())
3800         return nullptr;
3801     }
3802   }
3803 
3804   // We have two shift amounts from two different shifts. The types of those
3805   // shift amounts may not match. If that's the case let's bailout now.
3806   if (XShAmt->getType() != YShAmt->getType())
3807     return nullptr;
3808 
3809   // As input, we have the following pattern:
3810   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3811   // We want to rewrite that as:
3812   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3813   // While we know that originally (Q+K) would not overflow
3814   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3815   // shift amounts. so it may now overflow in smaller bitwidth.
3816   // To ensure that does not happen, we need to ensure that the total maximal
3817   // shift amount is still representable in that smaller bit width.
3818   unsigned MaximalPossibleTotalShiftAmount =
3819       (WidestTy->getScalarSizeInBits() - 1) +
3820       (NarrowestTy->getScalarSizeInBits() - 1);
3821   APInt MaximalRepresentableShiftAmount =
3822       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3823   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3824     return nullptr;
3825 
3826   // Can we fold (XShAmt+YShAmt) ?
3827   auto *NewShAmt = dyn_cast_or_null<Constant>(
3828       simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3829                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3830   if (!NewShAmt)
3831     return nullptr;
3832   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3833   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3834 
3835   // Is the new shift amount smaller than the bit width?
3836   // FIXME: could also rely on ConstantRange.
3837   if (!match(NewShAmt,
3838              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3839                                 APInt(WidestBitWidth, WidestBitWidth))))
3840     return nullptr;
3841 
3842   // An extra legality check is needed if we had trunc-of-lshr.
3843   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3844     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3845                     WidestShift]() {
3846       // It isn't obvious whether it's worth it to analyze non-constants here.
3847       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3848       // If *any* of these preconditions matches we can perform the fold.
3849       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3850                                     ? NewShAmt->getSplatValue()
3851                                     : NewShAmt;
3852       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3853       if (NewShAmtSplat &&
3854           (NewShAmtSplat->isNullValue() ||
3855            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3856         return true;
3857       // We consider *min* leading zeros so a single outlier
3858       // blocks the transform as opposed to allowing it.
3859       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3860         KnownBits Known = computeKnownBits(C, SQ.DL);
3861         unsigned MinLeadZero = Known.countMinLeadingZeros();
3862         // If the value being shifted has at most lowest bit set we can fold.
3863         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3864         if (MaxActiveBits <= 1)
3865           return true;
3866         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3867         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3868           return true;
3869       }
3870       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3871         KnownBits Known = computeKnownBits(C, SQ.DL);
3872         unsigned MinLeadZero = Known.countMinLeadingZeros();
3873         // If the value being shifted has at most lowest bit set we can fold.
3874         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3875         if (MaxActiveBits <= 1)
3876           return true;
3877         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3878         if (NewShAmtSplat) {
3879           APInt AdjNewShAmt =
3880               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3881           if (AdjNewShAmt.ule(MinLeadZero))
3882             return true;
3883         }
3884       }
3885       return false; // Can't tell if it's ok.
3886     };
3887     if (!CanFold())
3888       return nullptr;
3889   }
3890 
3891   // All good, we can do this fold.
3892   X = Builder.CreateZExt(X, WidestTy);
3893   Y = Builder.CreateZExt(Y, WidestTy);
3894   // The shift is the same that was for X.
3895   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3896                   ? Builder.CreateLShr(X, NewShAmt)
3897                   : Builder.CreateShl(X, NewShAmt);
3898   Value *T1 = Builder.CreateAnd(T0, Y);
3899   return Builder.CreateICmp(I.getPredicate(), T1,
3900                             Constant::getNullValue(WidestTy));
3901 }
3902 
3903 /// Fold
3904 ///   (-1 u/ x) u< y
3905 ///   ((x * y) ?/ x) != y
3906 /// to
3907 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3908 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3909 /// will mean that we are looking for the opposite answer.
3910 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3911   ICmpInst::Predicate Pred;
3912   Value *X, *Y;
3913   Instruction *Mul;
3914   Instruction *Div;
3915   bool NeedNegation;
3916   // Look for: (-1 u/ x) u</u>= y
3917   if (!I.isEquality() &&
3918       match(&I, m_c_ICmp(Pred,
3919                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3920                                       m_Instruction(Div)),
3921                          m_Value(Y)))) {
3922     Mul = nullptr;
3923 
3924     // Are we checking that overflow does not happen, or does happen?
3925     switch (Pred) {
3926     case ICmpInst::Predicate::ICMP_ULT:
3927       NeedNegation = false;
3928       break; // OK
3929     case ICmpInst::Predicate::ICMP_UGE:
3930       NeedNegation = true;
3931       break; // OK
3932     default:
3933       return nullptr; // Wrong predicate.
3934     }
3935   } else // Look for: ((x * y) / x) !=/== y
3936       if (I.isEquality() &&
3937           match(&I,
3938                 m_c_ICmp(Pred, m_Value(Y),
3939                          m_CombineAnd(
3940                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3941                                                                   m_Value(X)),
3942                                                           m_Instruction(Mul)),
3943                                              m_Deferred(X))),
3944                              m_Instruction(Div))))) {
3945     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3946   } else
3947     return nullptr;
3948 
3949   BuilderTy::InsertPointGuard Guard(Builder);
3950   // If the pattern included (x * y), we'll want to insert new instructions
3951   // right before that original multiplication so that we can replace it.
3952   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3953   if (MulHadOtherUses)
3954     Builder.SetInsertPoint(Mul);
3955 
3956   Function *F = Intrinsic::getDeclaration(I.getModule(),
3957                                           Div->getOpcode() == Instruction::UDiv
3958                                               ? Intrinsic::umul_with_overflow
3959                                               : Intrinsic::smul_with_overflow,
3960                                           X->getType());
3961   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3962 
3963   // If the multiplication was used elsewhere, to ensure that we don't leave
3964   // "duplicate" instructions, replace uses of that original multiplication
3965   // with the multiplication result from the with.overflow intrinsic.
3966   if (MulHadOtherUses)
3967     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3968 
3969   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3970   if (NeedNegation) // This technically increases instruction count.
3971     Res = Builder.CreateNot(Res, "mul.not.ov");
3972 
3973   // If we replaced the mul, erase it. Do this after all uses of Builder,
3974   // as the mul is used as insertion point.
3975   if (MulHadOtherUses)
3976     eraseInstFromFunction(*Mul);
3977 
3978   return Res;
3979 }
3980 
3981 static Instruction *foldICmpXNegX(ICmpInst &I) {
3982   CmpInst::Predicate Pred;
3983   Value *X;
3984   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3985     return nullptr;
3986 
3987   if (ICmpInst::isSigned(Pred))
3988     Pred = ICmpInst::getSwappedPredicate(Pred);
3989   else if (ICmpInst::isUnsigned(Pred))
3990     Pred = ICmpInst::getSignedPredicate(Pred);
3991   // else for equality-comparisons just keep the predicate.
3992 
3993   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3994                           Constant::getNullValue(X->getType()), I.getName());
3995 }
3996 
3997 /// Try to fold icmp (binop), X or icmp X, (binop).
3998 /// TODO: A large part of this logic is duplicated in InstSimplify's
3999 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
4000 /// duplication.
4001 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
4002                                              const SimplifyQuery &SQ) {
4003   const SimplifyQuery Q = SQ.getWithInstruction(&I);
4004   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4005 
4006   // Special logic for binary operators.
4007   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
4008   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
4009   if (!BO0 && !BO1)
4010     return nullptr;
4011 
4012   if (Instruction *NewICmp = foldICmpXNegX(I))
4013     return NewICmp;
4014 
4015   const CmpInst::Predicate Pred = I.getPredicate();
4016   Value *X;
4017 
4018   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
4019   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
4020   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
4021       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4022     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
4023   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
4024   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
4025       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4026     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
4027 
4028   {
4029     // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
4030     Constant *C;
4031     if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)),
4032                                   m_ImmConstant(C)))) &&
4033         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
4034       Constant *C2 = ConstantExpr::getNot(C);
4035       return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1);
4036     }
4037     // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
4038     if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)),
4039                                   m_ImmConstant(C)))) &&
4040         (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) {
4041       Constant *C2 = ConstantExpr::getNot(C);
4042       return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X));
4043     }
4044   }
4045 
4046   {
4047     // Similar to above: an unsigned overflow comparison may use offset + mask:
4048     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
4049     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
4050     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
4051     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
4052     BinaryOperator *BO;
4053     const APInt *C;
4054     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
4055         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4056         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
4057       CmpInst::Predicate NewPred =
4058           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4059       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4060       return new ICmpInst(NewPred, Op1, Zero);
4061     }
4062 
4063     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
4064         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4065         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
4066       CmpInst::Predicate NewPred =
4067           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4068       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4069       return new ICmpInst(NewPred, Op0, Zero);
4070     }
4071   }
4072 
4073   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
4074   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
4075     NoOp0WrapProblem =
4076         ICmpInst::isEquality(Pred) ||
4077         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
4078         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
4079   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
4080     NoOp1WrapProblem =
4081         ICmpInst::isEquality(Pred) ||
4082         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
4083         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
4084 
4085   // Analyze the case when either Op0 or Op1 is an add instruction.
4086   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4087   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4088   if (BO0 && BO0->getOpcode() == Instruction::Add) {
4089     A = BO0->getOperand(0);
4090     B = BO0->getOperand(1);
4091   }
4092   if (BO1 && BO1->getOpcode() == Instruction::Add) {
4093     C = BO1->getOperand(0);
4094     D = BO1->getOperand(1);
4095   }
4096 
4097   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4098   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4099   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4100     return new ICmpInst(Pred, A == Op1 ? B : A,
4101                         Constant::getNullValue(Op1->getType()));
4102 
4103   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4104   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4105   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4106     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4107                         C == Op0 ? D : C);
4108 
4109   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4110   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4111       NoOp1WrapProblem) {
4112     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4113     Value *Y, *Z;
4114     if (A == C) {
4115       // C + B == C + D  ->  B == D
4116       Y = B;
4117       Z = D;
4118     } else if (A == D) {
4119       // D + B == C + D  ->  B == C
4120       Y = B;
4121       Z = C;
4122     } else if (B == C) {
4123       // A + C == C + D  ->  A == D
4124       Y = A;
4125       Z = D;
4126     } else {
4127       assert(B == D);
4128       // A + D == C + D  ->  A == C
4129       Y = A;
4130       Z = C;
4131     }
4132     return new ICmpInst(Pred, Y, Z);
4133   }
4134 
4135   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4136   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4137       match(B, m_AllOnes()))
4138     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4139 
4140   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4141   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4142       match(B, m_AllOnes()))
4143     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4144 
4145   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4146   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4147     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4148 
4149   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4150   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4151     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4152 
4153   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4154   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4155       match(D, m_AllOnes()))
4156     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4157 
4158   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4159   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4160       match(D, m_AllOnes()))
4161     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4162 
4163   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4164   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4165     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4166 
4167   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4168   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4169     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4170 
4171   // TODO: The subtraction-related identities shown below also hold, but
4172   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4173   // wouldn't happen even if they were implemented.
4174   //
4175   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4176   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4177   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4178   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4179 
4180   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4181   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4182     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4183 
4184   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4185   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4186     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4187 
4188   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4189   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4190     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4191 
4192   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4193   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4194     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4195 
4196   // if C1 has greater magnitude than C2:
4197   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4198   //  s.t. C3 = C1 - C2
4199   //
4200   // if C2 has greater magnitude than C1:
4201   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4202   //  s.t. C3 = C2 - C1
4203   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4204       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) {
4205     const APInt *AP1, *AP2;
4206     // TODO: Support non-uniform vectors.
4207     // TODO: Allow undef passthrough if B AND D's element is undef.
4208     if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) &&
4209         AP1->isNegative() == AP2->isNegative()) {
4210       APInt AP1Abs = AP1->abs();
4211       APInt AP2Abs = AP2->abs();
4212       if (AP1Abs.uge(AP2Abs)) {
4213         APInt Diff = *AP1 - *AP2;
4214         bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1);
4215         bool HasNSW = BO0->hasNoSignedWrap();
4216         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4217         Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4218         return new ICmpInst(Pred, NewAdd, C);
4219       } else {
4220         APInt Diff = *AP2 - *AP1;
4221         bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2);
4222         bool HasNSW = BO1->hasNoSignedWrap();
4223         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4224         Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4225         return new ICmpInst(Pred, A, NewAdd);
4226       }
4227     }
4228     Constant *Cst1, *Cst2;
4229     if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) &&
4230         ICmpInst::isEquality(Pred)) {
4231       Constant *Diff = ConstantExpr::getSub(Cst2, Cst1);
4232       Value *NewAdd = Builder.CreateAdd(C, Diff);
4233       return new ICmpInst(Pred, A, NewAdd);
4234     }
4235   }
4236 
4237   // Analyze the case when either Op0 or Op1 is a sub instruction.
4238   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4239   A = nullptr;
4240   B = nullptr;
4241   C = nullptr;
4242   D = nullptr;
4243   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4244     A = BO0->getOperand(0);
4245     B = BO0->getOperand(1);
4246   }
4247   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4248     C = BO1->getOperand(0);
4249     D = BO1->getOperand(1);
4250   }
4251 
4252   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4253   if (A == Op1 && NoOp0WrapProblem)
4254     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4255   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4256   if (C == Op0 && NoOp1WrapProblem)
4257     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4258 
4259   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4260   // (A - B) u>/u<= A --> B u>/u<= A
4261   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4262     return new ICmpInst(Pred, B, A);
4263   // C u</u>= (C - D) --> C u</u>= D
4264   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4265     return new ICmpInst(Pred, C, D);
4266   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4267   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4268       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4269     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4270   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4271   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4272       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4273     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4274 
4275   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4276   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4277     return new ICmpInst(Pred, A, C);
4278 
4279   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4280   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4281     return new ICmpInst(Pred, D, B);
4282 
4283   // icmp (0-X) < cst --> x > -cst
4284   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4285     Value *X;
4286     if (match(BO0, m_Neg(m_Value(X))))
4287       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4288         if (RHSC->isNotMinSignedValue())
4289           return new ICmpInst(I.getSwappedPredicate(), X,
4290                               ConstantExpr::getNeg(RHSC));
4291   }
4292 
4293   {
4294     // Try to remove shared constant multiplier from equality comparison:
4295     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4296     Value *X, *Y;
4297     const APInt *C;
4298     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4299         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4300       if (!C->countTrailingZeros() ||
4301           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4302           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4303       return new ICmpInst(Pred, X, Y);
4304   }
4305 
4306   BinaryOperator *SRem = nullptr;
4307   // icmp (srem X, Y), Y
4308   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4309     SRem = BO0;
4310   // icmp Y, (srem X, Y)
4311   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4312            Op0 == BO1->getOperand(1))
4313     SRem = BO1;
4314   if (SRem) {
4315     // We don't check hasOneUse to avoid increasing register pressure because
4316     // the value we use is the same value this instruction was already using.
4317     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4318     default:
4319       break;
4320     case ICmpInst::ICMP_EQ:
4321       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4322     case ICmpInst::ICMP_NE:
4323       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4324     case ICmpInst::ICMP_SGT:
4325     case ICmpInst::ICMP_SGE:
4326       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4327                           Constant::getAllOnesValue(SRem->getType()));
4328     case ICmpInst::ICMP_SLT:
4329     case ICmpInst::ICMP_SLE:
4330       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4331                           Constant::getNullValue(SRem->getType()));
4332     }
4333   }
4334 
4335   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4336       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4337     switch (BO0->getOpcode()) {
4338     default:
4339       break;
4340     case Instruction::Add:
4341     case Instruction::Sub:
4342     case Instruction::Xor: {
4343       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4344         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4345 
4346       const APInt *C;
4347       if (match(BO0->getOperand(1), m_APInt(C))) {
4348         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4349         if (C->isSignMask()) {
4350           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4351           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4352         }
4353 
4354         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4355         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4356           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4357           NewPred = I.getSwappedPredicate(NewPred);
4358           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4359         }
4360       }
4361       break;
4362     }
4363     case Instruction::Mul: {
4364       if (!I.isEquality())
4365         break;
4366 
4367       const APInt *C;
4368       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4369           !C->isOne()) {
4370         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4371         // Mask = -1 >> count-trailing-zeros(C).
4372         if (unsigned TZs = C->countTrailingZeros()) {
4373           Constant *Mask = ConstantInt::get(
4374               BO0->getType(),
4375               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4376           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4377           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4378           return new ICmpInst(Pred, And1, And2);
4379         }
4380       }
4381       break;
4382     }
4383     case Instruction::UDiv:
4384     case Instruction::LShr:
4385       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4386         break;
4387       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4388 
4389     case Instruction::SDiv:
4390       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4391         break;
4392       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4393 
4394     case Instruction::AShr:
4395       if (!BO0->isExact() || !BO1->isExact())
4396         break;
4397       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4398 
4399     case Instruction::Shl: {
4400       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4401       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4402       if (!NUW && !NSW)
4403         break;
4404       if (!NSW && I.isSigned())
4405         break;
4406       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4407     }
4408     }
4409   }
4410 
4411   if (BO0) {
4412     // Transform  A & (L - 1) `ult` L --> L != 0
4413     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4414     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4415 
4416     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4417       auto *Zero = Constant::getNullValue(BO0->getType());
4418       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4419     }
4420   }
4421 
4422   if (Value *V = foldMultiplicationOverflowCheck(I))
4423     return replaceInstUsesWith(I, V);
4424 
4425   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4426     return replaceInstUsesWith(I, V);
4427 
4428   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4429     return replaceInstUsesWith(I, V);
4430 
4431   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4432     return replaceInstUsesWith(I, V);
4433 
4434   return nullptr;
4435 }
4436 
4437 /// Fold icmp Pred min|max(X, Y), X.
4438 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4439   ICmpInst::Predicate Pred = Cmp.getPredicate();
4440   Value *Op0 = Cmp.getOperand(0);
4441   Value *X = Cmp.getOperand(1);
4442 
4443   // Canonicalize minimum or maximum operand to LHS of the icmp.
4444   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4445       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4446       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4447       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4448     std::swap(Op0, X);
4449     Pred = Cmp.getSwappedPredicate();
4450   }
4451 
4452   Value *Y;
4453   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4454     // smin(X, Y)  == X --> X s<= Y
4455     // smin(X, Y) s>= X --> X s<= Y
4456     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4457       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4458 
4459     // smin(X, Y) != X --> X s> Y
4460     // smin(X, Y) s< X --> X s> Y
4461     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4462       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4463 
4464     // These cases should be handled in InstSimplify:
4465     // smin(X, Y) s<= X --> true
4466     // smin(X, Y) s> X --> false
4467     return nullptr;
4468   }
4469 
4470   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4471     // smax(X, Y)  == X --> X s>= Y
4472     // smax(X, Y) s<= X --> X s>= Y
4473     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4474       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4475 
4476     // smax(X, Y) != X --> X s< Y
4477     // smax(X, Y) s> X --> X s< Y
4478     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4479       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4480 
4481     // These cases should be handled in InstSimplify:
4482     // smax(X, Y) s>= X --> true
4483     // smax(X, Y) s< X --> false
4484     return nullptr;
4485   }
4486 
4487   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4488     // umin(X, Y)  == X --> X u<= Y
4489     // umin(X, Y) u>= X --> X u<= Y
4490     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4491       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4492 
4493     // umin(X, Y) != X --> X u> Y
4494     // umin(X, Y) u< X --> X u> Y
4495     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4496       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4497 
4498     // These cases should be handled in InstSimplify:
4499     // umin(X, Y) u<= X --> true
4500     // umin(X, Y) u> X --> false
4501     return nullptr;
4502   }
4503 
4504   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4505     // umax(X, Y)  == X --> X u>= Y
4506     // umax(X, Y) u<= X --> X u>= Y
4507     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4508       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4509 
4510     // umax(X, Y) != X --> X u< Y
4511     // umax(X, Y) u> X --> X u< Y
4512     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4513       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4514 
4515     // These cases should be handled in InstSimplify:
4516     // umax(X, Y) u>= X --> true
4517     // umax(X, Y) u< X --> false
4518     return nullptr;
4519   }
4520 
4521   return nullptr;
4522 }
4523 
4524 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4525   if (!I.isEquality())
4526     return nullptr;
4527 
4528   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4529   const CmpInst::Predicate Pred = I.getPredicate();
4530   Value *A, *B, *C, *D;
4531   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4532     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4533       Value *OtherVal = A == Op1 ? B : A;
4534       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4535     }
4536 
4537     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4538       // A^c1 == C^c2 --> A == C^(c1^c2)
4539       ConstantInt *C1, *C2;
4540       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4541           Op1->hasOneUse()) {
4542         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4543         Value *Xor = Builder.CreateXor(C, NC);
4544         return new ICmpInst(Pred, A, Xor);
4545       }
4546 
4547       // A^B == A^D -> B == D
4548       if (A == C)
4549         return new ICmpInst(Pred, B, D);
4550       if (A == D)
4551         return new ICmpInst(Pred, B, C);
4552       if (B == C)
4553         return new ICmpInst(Pred, A, D);
4554       if (B == D)
4555         return new ICmpInst(Pred, A, C);
4556     }
4557   }
4558 
4559   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4560     // A == (A^B)  ->  B == 0
4561     Value *OtherVal = A == Op0 ? B : A;
4562     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4563   }
4564 
4565   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4566   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4567       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4568     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4569 
4570     if (A == C) {
4571       X = B;
4572       Y = D;
4573       Z = A;
4574     } else if (A == D) {
4575       X = B;
4576       Y = C;
4577       Z = A;
4578     } else if (B == C) {
4579       X = A;
4580       Y = D;
4581       Z = B;
4582     } else if (B == D) {
4583       X = A;
4584       Y = C;
4585       Z = B;
4586     }
4587 
4588     if (X) { // Build (X^Y) & Z
4589       Op1 = Builder.CreateXor(X, Y);
4590       Op1 = Builder.CreateAnd(Op1, Z);
4591       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4592     }
4593   }
4594 
4595   {
4596     // Similar to above, but specialized for constant because invert is needed:
4597     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4598     Value *X, *Y;
4599     Constant *C;
4600     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4601         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4602       Value *Xor = Builder.CreateXor(X, Y);
4603       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4604       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4605     }
4606   }
4607 
4608   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4609   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4610   ConstantInt *Cst1;
4611   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4612        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4613       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4614        match(Op1, m_ZExt(m_Value(A))))) {
4615     APInt Pow2 = Cst1->getValue() + 1;
4616     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4617         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4618       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4619   }
4620 
4621   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4622   // For lshr and ashr pairs.
4623   const APInt *AP1, *AP2;
4624   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
4625        match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) ||
4626       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
4627        match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) {
4628     if (AP1 != AP2)
4629       return nullptr;
4630     unsigned TypeBits = AP1->getBitWidth();
4631     unsigned ShAmt = AP1->getLimitedValue(TypeBits);
4632     if (ShAmt < TypeBits && ShAmt != 0) {
4633       ICmpInst::Predicate NewPred =
4634           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4635       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4636       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4637       return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal));
4638     }
4639   }
4640 
4641   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4642   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4643       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4644     unsigned TypeBits = Cst1->getBitWidth();
4645     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4646     if (ShAmt < TypeBits && ShAmt != 0) {
4647       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4648       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4649       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4650                                       I.getName() + ".mask");
4651       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4652     }
4653   }
4654 
4655   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4656   // "icmp (and X, mask), cst"
4657   uint64_t ShAmt = 0;
4658   if (Op0->hasOneUse() &&
4659       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4660       match(Op1, m_ConstantInt(Cst1)) &&
4661       // Only do this when A has multiple uses.  This is most important to do
4662       // when it exposes other optimizations.
4663       !A->hasOneUse()) {
4664     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4665 
4666     if (ShAmt < ASize) {
4667       APInt MaskV =
4668           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4669       MaskV <<= ShAmt;
4670 
4671       APInt CmpV = Cst1->getValue().zext(ASize);
4672       CmpV <<= ShAmt;
4673 
4674       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4675       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4676     }
4677   }
4678 
4679   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4680     return ICmp;
4681 
4682   // Canonicalize checking for a power-of-2-or-zero value:
4683   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4684   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4685   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4686                                    m_Deferred(A)))) ||
4687       !match(Op1, m_ZeroInt()))
4688     A = nullptr;
4689 
4690   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4691   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4692   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4693     A = Op1;
4694   else if (match(Op1,
4695                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4696     A = Op0;
4697 
4698   if (A) {
4699     Type *Ty = A->getType();
4700     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4701     return Pred == ICmpInst::ICMP_EQ
4702         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4703         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4704   }
4705 
4706   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4707   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4708   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4709   // of instcombine.
4710   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4711   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4712       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4713       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4714       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4715     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4716     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4717     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4718                                                   : ICmpInst::ICMP_UGE,
4719                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4720   }
4721 
4722   return nullptr;
4723 }
4724 
4725 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4726                                       InstCombiner::BuilderTy &Builder) {
4727   ICmpInst::Predicate Pred = ICmp.getPredicate();
4728   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4729 
4730   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4731   // The trunc masks high bits while the compare may effectively mask low bits.
4732   Value *X;
4733   const APInt *C;
4734   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4735     return nullptr;
4736 
4737   // This matches patterns corresponding to tests of the signbit as well as:
4738   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4739   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4740   APInt Mask;
4741   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4742     Value *And = Builder.CreateAnd(X, Mask);
4743     Constant *Zero = ConstantInt::getNullValue(X->getType());
4744     return new ICmpInst(Pred, And, Zero);
4745   }
4746 
4747   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4748   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4749     // If C is a negative power-of-2 (high-bit mask):
4750     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4751     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4752     Value *And = Builder.CreateAnd(X, MaskC);
4753     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4754   }
4755 
4756   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4757     // If C is not-of-power-of-2 (one clear bit):
4758     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4759     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4760     Value *And = Builder.CreateAnd(X, MaskC);
4761     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4762   }
4763 
4764   return nullptr;
4765 }
4766 
4767 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) {
4768   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4769   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4770   Value *X;
4771   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4772     return nullptr;
4773 
4774   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4775   bool IsSignedCmp = ICmp.isSigned();
4776 
4777   // icmp Pred (ext X), (ext Y)
4778   Value *Y;
4779   if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) {
4780     bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0));
4781     bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1));
4782 
4783     // If we have mismatched casts, treat the zext of a non-negative source as
4784     // a sext to simulate matching casts. Otherwise, we are done.
4785     // TODO: Can we handle some predicates (equality) without non-negative?
4786     if (IsZext0 != IsZext1) {
4787       if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) ||
4788           (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT)))
4789         IsSignedExt = true;
4790       else
4791         return nullptr;
4792     }
4793 
4794     // Not an extension from the same type?
4795     Type *XTy = X->getType(), *YTy = Y->getType();
4796     if (XTy != YTy) {
4797       // One of the casts must have one use because we are creating a new cast.
4798       if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse())
4799         return nullptr;
4800       // Extend the narrower operand to the type of the wider operand.
4801       CastInst::CastOps CastOpcode =
4802           IsSignedExt ? Instruction::SExt : Instruction::ZExt;
4803       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4804         X = Builder.CreateCast(CastOpcode, X, YTy);
4805       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4806         Y = Builder.CreateCast(CastOpcode, Y, XTy);
4807       else
4808         return nullptr;
4809     }
4810 
4811     // (zext X) == (zext Y) --> X == Y
4812     // (sext X) == (sext Y) --> X == Y
4813     if (ICmp.isEquality())
4814       return new ICmpInst(ICmp.getPredicate(), X, Y);
4815 
4816     // A signed comparison of sign extended values simplifies into a
4817     // signed comparison.
4818     if (IsSignedCmp && IsSignedExt)
4819       return new ICmpInst(ICmp.getPredicate(), X, Y);
4820 
4821     // The other three cases all fold into an unsigned comparison.
4822     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4823   }
4824 
4825   // Below here, we are only folding a compare with constant.
4826   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4827   if (!C)
4828     return nullptr;
4829 
4830   // Compute the constant that would happen if we truncated to SrcTy then
4831   // re-extended to DestTy.
4832   Type *SrcTy = CastOp0->getSrcTy();
4833   Type *DestTy = CastOp0->getDestTy();
4834   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4835   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4836 
4837   // If the re-extended constant didn't change...
4838   if (Res2 == C) {
4839     if (ICmp.isEquality())
4840       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4841 
4842     // A signed comparison of sign extended values simplifies into a
4843     // signed comparison.
4844     if (IsSignedExt && IsSignedCmp)
4845       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4846 
4847     // The other three cases all fold into an unsigned comparison.
4848     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4849   }
4850 
4851   // The re-extended constant changed, partly changed (in the case of a vector),
4852   // or could not be determined to be equal (in the case of a constant
4853   // expression), so the constant cannot be represented in the shorter type.
4854   // All the cases that fold to true or false will have already been handled
4855   // by simplifyICmpInst, so only deal with the tricky case.
4856   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4857     return nullptr;
4858 
4859   // Is source op positive?
4860   // icmp ult (sext X), C --> icmp sgt X, -1
4861   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4862     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4863 
4864   // Is source op negative?
4865   // icmp ugt (sext X), C --> icmp slt X, 0
4866   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4867   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4868 }
4869 
4870 /// Handle icmp (cast x), (cast or constant).
4871 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4872   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4873   // icmp compares only pointer's value.
4874   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4875   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4876   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4877   if (SimplifiedOp0 || SimplifiedOp1)
4878     return new ICmpInst(ICmp.getPredicate(),
4879                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4880                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4881 
4882   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4883   if (!CastOp0)
4884     return nullptr;
4885   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4886     return nullptr;
4887 
4888   Value *Op0Src = CastOp0->getOperand(0);
4889   Type *SrcTy = CastOp0->getSrcTy();
4890   Type *DestTy = CastOp0->getDestTy();
4891 
4892   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4893   // integer type is the same size as the pointer type.
4894   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4895     if (isa<VectorType>(SrcTy)) {
4896       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4897       DestTy = cast<VectorType>(DestTy)->getElementType();
4898     }
4899     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4900   };
4901   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4902       CompatibleSizes(SrcTy, DestTy)) {
4903     Value *NewOp1 = nullptr;
4904     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4905       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4906       if (PtrSrc->getType()->getPointerAddressSpace() ==
4907           Op0Src->getType()->getPointerAddressSpace()) {
4908         NewOp1 = PtrToIntOp1->getOperand(0);
4909         // If the pointer types don't match, insert a bitcast.
4910         if (Op0Src->getType() != NewOp1->getType())
4911           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4912       }
4913     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4914       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4915     }
4916 
4917     if (NewOp1)
4918       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4919   }
4920 
4921   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4922     return R;
4923 
4924   return foldICmpWithZextOrSext(ICmp);
4925 }
4926 
4927 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4928   switch (BinaryOp) {
4929     default:
4930       llvm_unreachable("Unsupported binary op");
4931     case Instruction::Add:
4932     case Instruction::Sub:
4933       return match(RHS, m_Zero());
4934     case Instruction::Mul:
4935       return match(RHS, m_One());
4936   }
4937 }
4938 
4939 OverflowResult
4940 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4941                                   bool IsSigned, Value *LHS, Value *RHS,
4942                                   Instruction *CxtI) const {
4943   switch (BinaryOp) {
4944     default:
4945       llvm_unreachable("Unsupported binary op");
4946     case Instruction::Add:
4947       if (IsSigned)
4948         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4949       else
4950         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4951     case Instruction::Sub:
4952       if (IsSigned)
4953         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4954       else
4955         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4956     case Instruction::Mul:
4957       if (IsSigned)
4958         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4959       else
4960         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4961   }
4962 }
4963 
4964 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4965                                              bool IsSigned, Value *LHS,
4966                                              Value *RHS, Instruction &OrigI,
4967                                              Value *&Result,
4968                                              Constant *&Overflow) {
4969   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4970     std::swap(LHS, RHS);
4971 
4972   // If the overflow check was an add followed by a compare, the insertion point
4973   // may be pointing to the compare.  We want to insert the new instructions
4974   // before the add in case there are uses of the add between the add and the
4975   // compare.
4976   Builder.SetInsertPoint(&OrigI);
4977 
4978   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4979   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4980     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4981 
4982   if (isNeutralValue(BinaryOp, RHS)) {
4983     Result = LHS;
4984     Overflow = ConstantInt::getFalse(OverflowTy);
4985     return true;
4986   }
4987 
4988   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4989     case OverflowResult::MayOverflow:
4990       return false;
4991     case OverflowResult::AlwaysOverflowsLow:
4992     case OverflowResult::AlwaysOverflowsHigh:
4993       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4994       Result->takeName(&OrigI);
4995       Overflow = ConstantInt::getTrue(OverflowTy);
4996       return true;
4997     case OverflowResult::NeverOverflows:
4998       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4999       Result->takeName(&OrigI);
5000       Overflow = ConstantInt::getFalse(OverflowTy);
5001       if (auto *Inst = dyn_cast<Instruction>(Result)) {
5002         if (IsSigned)
5003           Inst->setHasNoSignedWrap();
5004         else
5005           Inst->setHasNoUnsignedWrap();
5006       }
5007       return true;
5008   }
5009 
5010   llvm_unreachable("Unexpected overflow result");
5011 }
5012 
5013 /// Recognize and process idiom involving test for multiplication
5014 /// overflow.
5015 ///
5016 /// The caller has matched a pattern of the form:
5017 ///   I = cmp u (mul(zext A, zext B), V
5018 /// The function checks if this is a test for overflow and if so replaces
5019 /// multiplication with call to 'mul.with.overflow' intrinsic.
5020 ///
5021 /// \param I Compare instruction.
5022 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
5023 ///               the compare instruction.  Must be of integer type.
5024 /// \param OtherVal The other argument of compare instruction.
5025 /// \returns Instruction which must replace the compare instruction, NULL if no
5026 ///          replacement required.
5027 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
5028                                          Value *OtherVal,
5029                                          InstCombinerImpl &IC) {
5030   // Don't bother doing this transformation for pointers, don't do it for
5031   // vectors.
5032   if (!isa<IntegerType>(MulVal->getType()))
5033     return nullptr;
5034 
5035   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
5036   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
5037   auto *MulInstr = dyn_cast<Instruction>(MulVal);
5038   if (!MulInstr)
5039     return nullptr;
5040   assert(MulInstr->getOpcode() == Instruction::Mul);
5041 
5042   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
5043        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
5044   assert(LHS->getOpcode() == Instruction::ZExt);
5045   assert(RHS->getOpcode() == Instruction::ZExt);
5046   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
5047 
5048   // Calculate type and width of the result produced by mul.with.overflow.
5049   Type *TyA = A->getType(), *TyB = B->getType();
5050   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
5051            WidthB = TyB->getPrimitiveSizeInBits();
5052   unsigned MulWidth;
5053   Type *MulType;
5054   if (WidthB > WidthA) {
5055     MulWidth = WidthB;
5056     MulType = TyB;
5057   } else {
5058     MulWidth = WidthA;
5059     MulType = TyA;
5060   }
5061 
5062   // In order to replace the original mul with a narrower mul.with.overflow,
5063   // all uses must ignore upper bits of the product.  The number of used low
5064   // bits must be not greater than the width of mul.with.overflow.
5065   if (MulVal->hasNUsesOrMore(2))
5066     for (User *U : MulVal->users()) {
5067       if (U == &I)
5068         continue;
5069       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5070         // Check if truncation ignores bits above MulWidth.
5071         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
5072         if (TruncWidth > MulWidth)
5073           return nullptr;
5074       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5075         // Check if AND ignores bits above MulWidth.
5076         if (BO->getOpcode() != Instruction::And)
5077           return nullptr;
5078         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5079           const APInt &CVal = CI->getValue();
5080           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
5081             return nullptr;
5082         } else {
5083           // In this case we could have the operand of the binary operation
5084           // being defined in another block, and performing the replacement
5085           // could break the dominance relation.
5086           return nullptr;
5087         }
5088       } else {
5089         // Other uses prohibit this transformation.
5090         return nullptr;
5091       }
5092     }
5093 
5094   // Recognize patterns
5095   switch (I.getPredicate()) {
5096   case ICmpInst::ICMP_EQ:
5097   case ICmpInst::ICMP_NE:
5098     // Recognize pattern:
5099     //   mulval = mul(zext A, zext B)
5100     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
5101     ConstantInt *CI;
5102     Value *ValToMask;
5103     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
5104       if (ValToMask != MulVal)
5105         return nullptr;
5106       const APInt &CVal = CI->getValue() + 1;
5107       if (CVal.isPowerOf2()) {
5108         unsigned MaskWidth = CVal.logBase2();
5109         if (MaskWidth == MulWidth)
5110           break; // Recognized
5111       }
5112     }
5113     return nullptr;
5114 
5115   case ICmpInst::ICMP_UGT:
5116     // Recognize pattern:
5117     //   mulval = mul(zext A, zext B)
5118     //   cmp ugt mulval, max
5119     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5120       APInt MaxVal = APInt::getMaxValue(MulWidth);
5121       MaxVal = MaxVal.zext(CI->getBitWidth());
5122       if (MaxVal.eq(CI->getValue()))
5123         break; // Recognized
5124     }
5125     return nullptr;
5126 
5127   case ICmpInst::ICMP_UGE:
5128     // Recognize pattern:
5129     //   mulval = mul(zext A, zext B)
5130     //   cmp uge mulval, max+1
5131     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5132       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5133       if (MaxVal.eq(CI->getValue()))
5134         break; // Recognized
5135     }
5136     return nullptr;
5137 
5138   case ICmpInst::ICMP_ULE:
5139     // Recognize pattern:
5140     //   mulval = mul(zext A, zext B)
5141     //   cmp ule mulval, max
5142     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5143       APInt MaxVal = APInt::getMaxValue(MulWidth);
5144       MaxVal = MaxVal.zext(CI->getBitWidth());
5145       if (MaxVal.eq(CI->getValue()))
5146         break; // Recognized
5147     }
5148     return nullptr;
5149 
5150   case ICmpInst::ICMP_ULT:
5151     // Recognize pattern:
5152     //   mulval = mul(zext A, zext B)
5153     //   cmp ule mulval, max + 1
5154     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5155       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5156       if (MaxVal.eq(CI->getValue()))
5157         break; // Recognized
5158     }
5159     return nullptr;
5160 
5161   default:
5162     return nullptr;
5163   }
5164 
5165   InstCombiner::BuilderTy &Builder = IC.Builder;
5166   Builder.SetInsertPoint(MulInstr);
5167 
5168   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5169   Value *MulA = A, *MulB = B;
5170   if (WidthA < MulWidth)
5171     MulA = Builder.CreateZExt(A, MulType);
5172   if (WidthB < MulWidth)
5173     MulB = Builder.CreateZExt(B, MulType);
5174   Function *F = Intrinsic::getDeclaration(
5175       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5176   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5177   IC.addToWorklist(MulInstr);
5178 
5179   // If there are uses of mul result other than the comparison, we know that
5180   // they are truncation or binary AND. Change them to use result of
5181   // mul.with.overflow and adjust properly mask/size.
5182   if (MulVal->hasNUsesOrMore(2)) {
5183     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5184     for (User *U : make_early_inc_range(MulVal->users())) {
5185       if (U == &I || U == OtherVal)
5186         continue;
5187       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5188         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5189           IC.replaceInstUsesWith(*TI, Mul);
5190         else
5191           TI->setOperand(0, Mul);
5192       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5193         assert(BO->getOpcode() == Instruction::And);
5194         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5195         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5196         APInt ShortMask = CI->getValue().trunc(MulWidth);
5197         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5198         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5199         IC.replaceInstUsesWith(*BO, Zext);
5200       } else {
5201         llvm_unreachable("Unexpected Binary operation");
5202       }
5203       IC.addToWorklist(cast<Instruction>(U));
5204     }
5205   }
5206   if (isa<Instruction>(OtherVal))
5207     IC.addToWorklist(cast<Instruction>(OtherVal));
5208 
5209   // The original icmp gets replaced with the overflow value, maybe inverted
5210   // depending on predicate.
5211   bool Inverse = false;
5212   switch (I.getPredicate()) {
5213   case ICmpInst::ICMP_NE:
5214     break;
5215   case ICmpInst::ICMP_EQ:
5216     Inverse = true;
5217     break;
5218   case ICmpInst::ICMP_UGT:
5219   case ICmpInst::ICMP_UGE:
5220     if (I.getOperand(0) == MulVal)
5221       break;
5222     Inverse = true;
5223     break;
5224   case ICmpInst::ICMP_ULT:
5225   case ICmpInst::ICMP_ULE:
5226     if (I.getOperand(1) == MulVal)
5227       break;
5228     Inverse = true;
5229     break;
5230   default:
5231     llvm_unreachable("Unexpected predicate");
5232   }
5233   if (Inverse) {
5234     Value *Res = Builder.CreateExtractValue(Call, 1);
5235     return BinaryOperator::CreateNot(Res);
5236   }
5237 
5238   return ExtractValueInst::Create(Call, 1);
5239 }
5240 
5241 /// When performing a comparison against a constant, it is possible that not all
5242 /// the bits in the LHS are demanded. This helper method computes the mask that
5243 /// IS demanded.
5244 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5245   const APInt *RHS;
5246   if (!match(I.getOperand(1), m_APInt(RHS)))
5247     return APInt::getAllOnes(BitWidth);
5248 
5249   // If this is a normal comparison, it demands all bits. If it is a sign bit
5250   // comparison, it only demands the sign bit.
5251   bool UnusedBit;
5252   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5253     return APInt::getSignMask(BitWidth);
5254 
5255   switch (I.getPredicate()) {
5256   // For a UGT comparison, we don't care about any bits that
5257   // correspond to the trailing ones of the comparand.  The value of these
5258   // bits doesn't impact the outcome of the comparison, because any value
5259   // greater than the RHS must differ in a bit higher than these due to carry.
5260   case ICmpInst::ICMP_UGT:
5261     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5262 
5263   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5264   // Any value less than the RHS must differ in a higher bit because of carries.
5265   case ICmpInst::ICMP_ULT:
5266     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5267 
5268   default:
5269     return APInt::getAllOnes(BitWidth);
5270   }
5271 }
5272 
5273 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5274 /// should be swapped.
5275 /// The decision is based on how many times these two operands are reused
5276 /// as subtract operands and their positions in those instructions.
5277 /// The rationale is that several architectures use the same instruction for
5278 /// both subtract and cmp. Thus, it is better if the order of those operands
5279 /// match.
5280 /// \return true if Op0 and Op1 should be swapped.
5281 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5282   // Filter out pointer values as those cannot appear directly in subtract.
5283   // FIXME: we may want to go through inttoptrs or bitcasts.
5284   if (Op0->getType()->isPointerTy())
5285     return false;
5286   // If a subtract already has the same operands as a compare, swapping would be
5287   // bad. If a subtract has the same operands as a compare but in reverse order,
5288   // then swapping is good.
5289   int GoodToSwap = 0;
5290   for (const User *U : Op0->users()) {
5291     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5292       GoodToSwap++;
5293     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5294       GoodToSwap--;
5295   }
5296   return GoodToSwap > 0;
5297 }
5298 
5299 /// Check that one use is in the same block as the definition and all
5300 /// other uses are in blocks dominated by a given block.
5301 ///
5302 /// \param DI Definition
5303 /// \param UI Use
5304 /// \param DB Block that must dominate all uses of \p DI outside
5305 ///           the parent block
5306 /// \return true when \p UI is the only use of \p DI in the parent block
5307 /// and all other uses of \p DI are in blocks dominated by \p DB.
5308 ///
5309 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5310                                         const Instruction *UI,
5311                                         const BasicBlock *DB) const {
5312   assert(DI && UI && "Instruction not defined\n");
5313   // Ignore incomplete definitions.
5314   if (!DI->getParent())
5315     return false;
5316   // DI and UI must be in the same block.
5317   if (DI->getParent() != UI->getParent())
5318     return false;
5319   // Protect from self-referencing blocks.
5320   if (DI->getParent() == DB)
5321     return false;
5322   for (const User *U : DI->users()) {
5323     auto *Usr = cast<Instruction>(U);
5324     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5325       return false;
5326   }
5327   return true;
5328 }
5329 
5330 /// Return true when the instruction sequence within a block is select-cmp-br.
5331 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5332   const BasicBlock *BB = SI->getParent();
5333   if (!BB)
5334     return false;
5335   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5336   if (!BI || BI->getNumSuccessors() != 2)
5337     return false;
5338   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5339   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5340     return false;
5341   return true;
5342 }
5343 
5344 /// True when a select result is replaced by one of its operands
5345 /// in select-icmp sequence. This will eventually result in the elimination
5346 /// of the select.
5347 ///
5348 /// \param SI    Select instruction
5349 /// \param Icmp  Compare instruction
5350 /// \param SIOpd Operand that replaces the select
5351 ///
5352 /// Notes:
5353 /// - The replacement is global and requires dominator information
5354 /// - The caller is responsible for the actual replacement
5355 ///
5356 /// Example:
5357 ///
5358 /// entry:
5359 ///  %4 = select i1 %3, %C* %0, %C* null
5360 ///  %5 = icmp eq %C* %4, null
5361 ///  br i1 %5, label %9, label %7
5362 ///  ...
5363 ///  ; <label>:7                                       ; preds = %entry
5364 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5365 ///  ...
5366 ///
5367 /// can be transformed to
5368 ///
5369 ///  %5 = icmp eq %C* %0, null
5370 ///  %6 = select i1 %3, i1 %5, i1 true
5371 ///  br i1 %6, label %9, label %7
5372 ///  ...
5373 ///  ; <label>:7                                       ; preds = %entry
5374 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5375 ///
5376 /// Similar when the first operand of the select is a constant or/and
5377 /// the compare is for not equal rather than equal.
5378 ///
5379 /// NOTE: The function is only called when the select and compare constants
5380 /// are equal, the optimization can work only for EQ predicates. This is not a
5381 /// major restriction since a NE compare should be 'normalized' to an equal
5382 /// compare, which usually happens in the combiner and test case
5383 /// select-cmp-br.ll checks for it.
5384 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5385                                                  const ICmpInst *Icmp,
5386                                                  const unsigned SIOpd) {
5387   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5388   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5389     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5390     // The check for the single predecessor is not the best that can be
5391     // done. But it protects efficiently against cases like when SI's
5392     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5393     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5394     // replaced can be reached on either path. So the uniqueness check
5395     // guarantees that the path all uses of SI (outside SI's parent) are on
5396     // is disjoint from all other paths out of SI. But that information
5397     // is more expensive to compute, and the trade-off here is in favor
5398     // of compile-time. It should also be noticed that we check for a single
5399     // predecessor and not only uniqueness. This to handle the situation when
5400     // Succ and Succ1 points to the same basic block.
5401     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5402       NumSel++;
5403       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5404       return true;
5405     }
5406   }
5407   return false;
5408 }
5409 
5410 /// Try to fold the comparison based on range information we can get by checking
5411 /// whether bits are known to be zero or one in the inputs.
5412 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5413   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5414   Type *Ty = Op0->getType();
5415   ICmpInst::Predicate Pred = I.getPredicate();
5416 
5417   // Get scalar or pointer size.
5418   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5419                           ? Ty->getScalarSizeInBits()
5420                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5421 
5422   if (!BitWidth)
5423     return nullptr;
5424 
5425   KnownBits Op0Known(BitWidth);
5426   KnownBits Op1Known(BitWidth);
5427 
5428   if (SimplifyDemandedBits(&I, 0,
5429                            getDemandedBitsLHSMask(I, BitWidth),
5430                            Op0Known, 0))
5431     return &I;
5432 
5433   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5434     return &I;
5435 
5436   // Given the known and unknown bits, compute a range that the LHS could be
5437   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5438   // EQ and NE we use unsigned values.
5439   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5440   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5441   if (I.isSigned()) {
5442     Op0Min = Op0Known.getSignedMinValue();
5443     Op0Max = Op0Known.getSignedMaxValue();
5444     Op1Min = Op1Known.getSignedMinValue();
5445     Op1Max = Op1Known.getSignedMaxValue();
5446   } else {
5447     Op0Min = Op0Known.getMinValue();
5448     Op0Max = Op0Known.getMaxValue();
5449     Op1Min = Op1Known.getMinValue();
5450     Op1Max = Op1Known.getMaxValue();
5451   }
5452 
5453   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5454   // out that the LHS or RHS is a constant. Constant fold this now, so that
5455   // code below can assume that Min != Max.
5456   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5457     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5458   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5459     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5460 
5461   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5462   // min/max canonical compare with some other compare. That could lead to
5463   // conflict with select canonicalization and infinite looping.
5464   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5465   auto isMinMaxCmp = [&](Instruction &Cmp) {
5466     if (!Cmp.hasOneUse())
5467       return false;
5468     Value *A, *B;
5469     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5470     if (!SelectPatternResult::isMinOrMax(SPF))
5471       return false;
5472     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5473            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5474   };
5475   if (!isMinMaxCmp(I)) {
5476     switch (Pred) {
5477     default:
5478       break;
5479     case ICmpInst::ICMP_ULT: {
5480       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5481         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5482       const APInt *CmpC;
5483       if (match(Op1, m_APInt(CmpC))) {
5484         // A <u C -> A == C-1 if min(A)+1 == C
5485         if (*CmpC == Op0Min + 1)
5486           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5487                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5488         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5489         // exceeds the log2 of C.
5490         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5491           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5492                               Constant::getNullValue(Op1->getType()));
5493       }
5494       break;
5495     }
5496     case ICmpInst::ICMP_UGT: {
5497       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5498         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5499       const APInt *CmpC;
5500       if (match(Op1, m_APInt(CmpC))) {
5501         // A >u C -> A == C+1 if max(a)-1 == C
5502         if (*CmpC == Op0Max - 1)
5503           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5504                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5505         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5506         // exceeds the log2 of C.
5507         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5508           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5509                               Constant::getNullValue(Op1->getType()));
5510       }
5511       break;
5512     }
5513     case ICmpInst::ICMP_SLT: {
5514       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5515         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5516       const APInt *CmpC;
5517       if (match(Op1, m_APInt(CmpC))) {
5518         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5519           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5520                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5521       }
5522       break;
5523     }
5524     case ICmpInst::ICMP_SGT: {
5525       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5526         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5527       const APInt *CmpC;
5528       if (match(Op1, m_APInt(CmpC))) {
5529         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5530           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5531                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5532       }
5533       break;
5534     }
5535     }
5536   }
5537 
5538   // Based on the range information we know about the LHS, see if we can
5539   // simplify this comparison.  For example, (x&4) < 8 is always true.
5540   switch (Pred) {
5541   default:
5542     llvm_unreachable("Unknown icmp opcode!");
5543   case ICmpInst::ICMP_EQ:
5544   case ICmpInst::ICMP_NE: {
5545     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5546       return replaceInstUsesWith(
5547           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5548 
5549     // If all bits are known zero except for one, then we know at most one bit
5550     // is set. If the comparison is against zero, then this is a check to see if
5551     // *that* bit is set.
5552     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5553     if (Op1Known.isZero()) {
5554       // If the LHS is an AND with the same constant, look through it.
5555       Value *LHS = nullptr;
5556       const APInt *LHSC;
5557       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5558           *LHSC != Op0KnownZeroInverted)
5559         LHS = Op0;
5560 
5561       Value *X;
5562       const APInt *C1;
5563       if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) {
5564         Type *XTy = X->getType();
5565         unsigned Log2C1 = C1->countTrailingZeros();
5566         APInt C2 = Op0KnownZeroInverted;
5567         APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1;
5568         if (C2Pow2.isPowerOf2()) {
5569           // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
5570           // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
5571           // ((C1 << X) & C2) != 0 -> X  < (Log2(C2+C1) - Log2(C1))
5572           unsigned Log2C2 = C2Pow2.countTrailingZeros();
5573           auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1);
5574           auto NewPred =
5575               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5576           return new ICmpInst(NewPred, X, CmpC);
5577         }
5578       }
5579     }
5580     break;
5581   }
5582   case ICmpInst::ICMP_ULT: {
5583     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5584       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5585     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5586       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5587     break;
5588   }
5589   case ICmpInst::ICMP_UGT: {
5590     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5591       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5592     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5593       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5594     break;
5595   }
5596   case ICmpInst::ICMP_SLT: {
5597     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5598       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5599     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5600       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5601     break;
5602   }
5603   case ICmpInst::ICMP_SGT: {
5604     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5605       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5606     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5607       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5608     break;
5609   }
5610   case ICmpInst::ICMP_SGE:
5611     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5612     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5613       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5614     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5615       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5616     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5617       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5618     break;
5619   case ICmpInst::ICMP_SLE:
5620     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5621     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5622       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5623     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5624       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5625     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5626       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5627     break;
5628   case ICmpInst::ICMP_UGE:
5629     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5630     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5631       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5632     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5633       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5634     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5635       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5636     break;
5637   case ICmpInst::ICMP_ULE:
5638     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5639     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5640       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5641     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5642       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5643     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5644       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5645     break;
5646   }
5647 
5648   // Turn a signed comparison into an unsigned one if both operands are known to
5649   // have the same sign.
5650   if (I.isSigned() &&
5651       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5652        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5653     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5654 
5655   return nullptr;
5656 }
5657 
5658 /// If one operand of an icmp is effectively a bool (value range of {0,1}),
5659 /// then try to reduce patterns based on that limit.
5660 static Instruction *foldICmpUsingBoolRange(ICmpInst &I,
5661                                            InstCombiner::BuilderTy &Builder) {
5662   Value *X, *Y;
5663   ICmpInst::Predicate Pred;
5664 
5665   // X must be 0 and bool must be true for "ULT":
5666   // X <u (zext i1 Y) --> (X == 0) & Y
5667   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) &&
5668       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT)
5669     return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y);
5670 
5671   // X must be 0 or bool must be true for "ULE":
5672   // X <=u (sext i1 Y) --> (X == 0) | Y
5673   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) &&
5674       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE)
5675     return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y);
5676 
5677   return nullptr;
5678 }
5679 
5680 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5681 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5682                                                        Constant *C) {
5683   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5684          "Only for relational integer predicates.");
5685 
5686   Type *Type = C->getType();
5687   bool IsSigned = ICmpInst::isSigned(Pred);
5688 
5689   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5690   bool WillIncrement =
5691       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5692 
5693   // Check if the constant operand can be safely incremented/decremented
5694   // without overflowing/underflowing.
5695   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5696     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5697   };
5698 
5699   Constant *SafeReplacementConstant = nullptr;
5700   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5701     // Bail out if the constant can't be safely incremented/decremented.
5702     if (!ConstantIsOk(CI))
5703       return llvm::None;
5704   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5705     unsigned NumElts = FVTy->getNumElements();
5706     for (unsigned i = 0; i != NumElts; ++i) {
5707       Constant *Elt = C->getAggregateElement(i);
5708       if (!Elt)
5709         return llvm::None;
5710 
5711       if (isa<UndefValue>(Elt))
5712         continue;
5713 
5714       // Bail out if we can't determine if this constant is min/max or if we
5715       // know that this constant is min/max.
5716       auto *CI = dyn_cast<ConstantInt>(Elt);
5717       if (!CI || !ConstantIsOk(CI))
5718         return llvm::None;
5719 
5720       if (!SafeReplacementConstant)
5721         SafeReplacementConstant = CI;
5722     }
5723   } else {
5724     // ConstantExpr?
5725     return llvm::None;
5726   }
5727 
5728   // It may not be safe to change a compare predicate in the presence of
5729   // undefined elements, so replace those elements with the first safe constant
5730   // that we found.
5731   // TODO: in case of poison, it is safe; let's replace undefs only.
5732   if (C->containsUndefOrPoisonElement()) {
5733     assert(SafeReplacementConstant && "Replacement constant not set");
5734     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5735   }
5736 
5737   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5738 
5739   // Increment or decrement the constant.
5740   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5741   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5742 
5743   return std::make_pair(NewPred, NewC);
5744 }
5745 
5746 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5747 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5748 /// allows them to be folded in visitICmpInst.
5749 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5750   ICmpInst::Predicate Pred = I.getPredicate();
5751   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5752       InstCombiner::isCanonicalPredicate(Pred))
5753     return nullptr;
5754 
5755   Value *Op0 = I.getOperand(0);
5756   Value *Op1 = I.getOperand(1);
5757   auto *Op1C = dyn_cast<Constant>(Op1);
5758   if (!Op1C)
5759     return nullptr;
5760 
5761   auto FlippedStrictness =
5762       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5763   if (!FlippedStrictness)
5764     return nullptr;
5765 
5766   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5767 }
5768 
5769 /// If we have a comparison with a non-canonical predicate, if we can update
5770 /// all the users, invert the predicate and adjust all the users.
5771 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5772   // Is the predicate already canonical?
5773   CmpInst::Predicate Pred = I.getPredicate();
5774   if (InstCombiner::isCanonicalPredicate(Pred))
5775     return nullptr;
5776 
5777   // Can all users be adjusted to predicate inversion?
5778   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5779     return nullptr;
5780 
5781   // Ok, we can canonicalize comparison!
5782   // Let's first invert the comparison's predicate.
5783   I.setPredicate(CmpInst::getInversePredicate(Pred));
5784   I.setName(I.getName() + ".not");
5785 
5786   // And, adapt users.
5787   freelyInvertAllUsersOf(&I);
5788 
5789   return &I;
5790 }
5791 
5792 /// Integer compare with boolean values can always be turned into bitwise ops.
5793 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5794                                          InstCombiner::BuilderTy &Builder) {
5795   Value *A = I.getOperand(0), *B = I.getOperand(1);
5796   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5797 
5798   // A boolean compared to true/false can be simplified to Op0/true/false in
5799   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5800   // Cases not handled by InstSimplify are always 'not' of Op0.
5801   if (match(B, m_Zero())) {
5802     switch (I.getPredicate()) {
5803       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5804       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5805       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5806         return BinaryOperator::CreateNot(A);
5807       default:
5808         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5809     }
5810   } else if (match(B, m_One())) {
5811     switch (I.getPredicate()) {
5812       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5813       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5814       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5815         return BinaryOperator::CreateNot(A);
5816       default:
5817         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5818     }
5819   }
5820 
5821   switch (I.getPredicate()) {
5822   default:
5823     llvm_unreachable("Invalid icmp instruction!");
5824   case ICmpInst::ICMP_EQ:
5825     // icmp eq i1 A, B -> ~(A ^ B)
5826     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5827 
5828   case ICmpInst::ICMP_NE:
5829     // icmp ne i1 A, B -> A ^ B
5830     return BinaryOperator::CreateXor(A, B);
5831 
5832   case ICmpInst::ICMP_UGT:
5833     // icmp ugt -> icmp ult
5834     std::swap(A, B);
5835     LLVM_FALLTHROUGH;
5836   case ICmpInst::ICMP_ULT:
5837     // icmp ult i1 A, B -> ~A & B
5838     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5839 
5840   case ICmpInst::ICMP_SGT:
5841     // icmp sgt -> icmp slt
5842     std::swap(A, B);
5843     LLVM_FALLTHROUGH;
5844   case ICmpInst::ICMP_SLT:
5845     // icmp slt i1 A, B -> A & ~B
5846     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5847 
5848   case ICmpInst::ICMP_UGE:
5849     // icmp uge -> icmp ule
5850     std::swap(A, B);
5851     LLVM_FALLTHROUGH;
5852   case ICmpInst::ICMP_ULE:
5853     // icmp ule i1 A, B -> ~A | B
5854     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5855 
5856   case ICmpInst::ICMP_SGE:
5857     // icmp sge -> icmp sle
5858     std::swap(A, B);
5859     LLVM_FALLTHROUGH;
5860   case ICmpInst::ICMP_SLE:
5861     // icmp sle i1 A, B -> A | ~B
5862     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5863   }
5864 }
5865 
5866 // Transform pattern like:
5867 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5868 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5869 // Into:
5870 //   (X l>> Y) != 0
5871 //   (X l>> Y) == 0
5872 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5873                                             InstCombiner::BuilderTy &Builder) {
5874   ICmpInst::Predicate Pred, NewPred;
5875   Value *X, *Y;
5876   if (match(&Cmp,
5877             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5878     switch (Pred) {
5879     case ICmpInst::ICMP_ULE:
5880       NewPred = ICmpInst::ICMP_NE;
5881       break;
5882     case ICmpInst::ICMP_UGT:
5883       NewPred = ICmpInst::ICMP_EQ;
5884       break;
5885     default:
5886       return nullptr;
5887     }
5888   } else if (match(&Cmp, m_c_ICmp(Pred,
5889                                   m_OneUse(m_CombineOr(
5890                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5891                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5892                                             m_AllOnes()))),
5893                                   m_Value(X)))) {
5894     // The variant with 'add' is not canonical, (the variant with 'not' is)
5895     // we only get it because it has extra uses, and can't be canonicalized,
5896 
5897     switch (Pred) {
5898     case ICmpInst::ICMP_ULT:
5899       NewPred = ICmpInst::ICMP_NE;
5900       break;
5901     case ICmpInst::ICMP_UGE:
5902       NewPred = ICmpInst::ICMP_EQ;
5903       break;
5904     default:
5905       return nullptr;
5906     }
5907   } else
5908     return nullptr;
5909 
5910   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5911   Constant *Zero = Constant::getNullValue(NewX->getType());
5912   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5913 }
5914 
5915 static Instruction *foldVectorCmp(CmpInst &Cmp,
5916                                   InstCombiner::BuilderTy &Builder) {
5917   const CmpInst::Predicate Pred = Cmp.getPredicate();
5918   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5919   Value *V1, *V2;
5920   ArrayRef<int> M;
5921   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5922     return nullptr;
5923 
5924   // If both arguments of the cmp are shuffles that use the same mask and
5925   // shuffle within a single vector, move the shuffle after the cmp:
5926   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5927   Type *V1Ty = V1->getType();
5928   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5929       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5930     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5931     return new ShuffleVectorInst(NewCmp, M);
5932   }
5933 
5934   // Try to canonicalize compare with splatted operand and splat constant.
5935   // TODO: We could generalize this for more than splats. See/use the code in
5936   //       InstCombiner::foldVectorBinop().
5937   Constant *C;
5938   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5939     return nullptr;
5940 
5941   // Length-changing splats are ok, so adjust the constants as needed:
5942   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5943   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5944   int MaskSplatIndex;
5945   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5946     // We allow undefs in matching, but this transform removes those for safety.
5947     // Demanded elements analysis should be able to recover some/all of that.
5948     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5949                                  ScalarC);
5950     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5951     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5952     return new ShuffleVectorInst(NewCmp, NewM);
5953   }
5954 
5955   return nullptr;
5956 }
5957 
5958 // extract(uadd.with.overflow(A, B), 0) ult A
5959 //  -> extract(uadd.with.overflow(A, B), 1)
5960 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5961   CmpInst::Predicate Pred = I.getPredicate();
5962   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5963 
5964   Value *UAddOv;
5965   Value *A, *B;
5966   auto UAddOvResultPat = m_ExtractValue<0>(
5967       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5968   if (match(Op0, UAddOvResultPat) &&
5969       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5970        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5971         (match(A, m_One()) || match(B, m_One()))) ||
5972        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5973         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5974     // extract(uadd.with.overflow(A, B), 0) < A
5975     // extract(uadd.with.overflow(A, 1), 0) == 0
5976     // extract(uadd.with.overflow(A, -1), 0) != -1
5977     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5978   else if (match(Op1, UAddOvResultPat) &&
5979            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5980     // A > extract(uadd.with.overflow(A, B), 0)
5981     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5982   else
5983     return nullptr;
5984 
5985   return ExtractValueInst::Create(UAddOv, 1);
5986 }
5987 
5988 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5989   if (!I.getOperand(0)->getType()->isPointerTy() ||
5990       NullPointerIsDefined(
5991           I.getParent()->getParent(),
5992           I.getOperand(0)->getType()->getPointerAddressSpace())) {
5993     return nullptr;
5994   }
5995   Instruction *Op;
5996   if (match(I.getOperand(0), m_Instruction(Op)) &&
5997       match(I.getOperand(1), m_Zero()) &&
5998       Op->isLaunderOrStripInvariantGroup()) {
5999     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
6000                             Op->getOperand(0), I.getOperand(1));
6001   }
6002   return nullptr;
6003 }
6004 
6005 /// This function folds patterns produced by lowering of reduce idioms, such as
6006 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
6007 /// attempts to generate fewer number of scalar comparisons instead of vector
6008 /// comparisons when possible.
6009 static Instruction *foldReductionIdiom(ICmpInst &I,
6010                                        InstCombiner::BuilderTy &Builder,
6011                                        const DataLayout &DL) {
6012   if (I.getType()->isVectorTy())
6013     return nullptr;
6014   ICmpInst::Predicate OuterPred, InnerPred;
6015   Value *LHS, *RHS;
6016 
6017   // Match lowering of @llvm.vector.reduce.and. Turn
6018   ///   %vec_ne = icmp ne <8 x i8> %lhs, %rhs
6019   ///   %scalar_ne = bitcast <8 x i1> %vec_ne to i8
6020   ///   %res = icmp <pred> i8 %scalar_ne, 0
6021   ///
6022   /// into
6023   ///
6024   ///   %lhs.scalar = bitcast <8 x i8> %lhs to i64
6025   ///   %rhs.scalar = bitcast <8 x i8> %rhs to i64
6026   ///   %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
6027   ///
6028   /// for <pred> in {ne, eq}.
6029   if (!match(&I, m_ICmp(OuterPred,
6030                         m_OneUse(m_BitCast(m_OneUse(
6031                             m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
6032                         m_Zero())))
6033     return nullptr;
6034   auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
6035   if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
6036     return nullptr;
6037   unsigned NumBits =
6038       LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
6039   // TODO: Relax this to "not wider than max legal integer type"?
6040   if (!DL.isLegalInteger(NumBits))
6041     return nullptr;
6042 
6043   if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
6044     auto *ScalarTy = Builder.getIntNTy(NumBits);
6045     LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
6046     RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
6047     return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
6048                             I.getName());
6049   }
6050 
6051   return nullptr;
6052 }
6053 
6054 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
6055   bool Changed = false;
6056   const SimplifyQuery Q = SQ.getWithInstruction(&I);
6057   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6058   unsigned Op0Cplxity = getComplexity(Op0);
6059   unsigned Op1Cplxity = getComplexity(Op1);
6060 
6061   /// Orders the operands of the compare so that they are listed from most
6062   /// complex to least complex.  This puts constants before unary operators,
6063   /// before binary operators.
6064   if (Op0Cplxity < Op1Cplxity ||
6065       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
6066     I.swapOperands();
6067     std::swap(Op0, Op1);
6068     Changed = true;
6069   }
6070 
6071   if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
6072     return replaceInstUsesWith(I, V);
6073 
6074   // Comparing -val or val with non-zero is the same as just comparing val
6075   // ie, abs(val) != 0 -> val != 0
6076   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
6077     Value *Cond, *SelectTrue, *SelectFalse;
6078     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
6079                             m_Value(SelectFalse)))) {
6080       if (Value *V = dyn_castNegVal(SelectTrue)) {
6081         if (V == SelectFalse)
6082           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6083       }
6084       else if (Value *V = dyn_castNegVal(SelectFalse)) {
6085         if (V == SelectTrue)
6086           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6087       }
6088     }
6089   }
6090 
6091   if (Op0->getType()->isIntOrIntVectorTy(1))
6092     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
6093       return Res;
6094 
6095   if (Instruction *Res = canonicalizeCmpWithConstant(I))
6096     return Res;
6097 
6098   if (Instruction *Res = canonicalizeICmpPredicate(I))
6099     return Res;
6100 
6101   if (Instruction *Res = foldICmpWithConstant(I))
6102     return Res;
6103 
6104   if (Instruction *Res = foldICmpWithDominatingICmp(I))
6105     return Res;
6106 
6107   if (Instruction *Res = foldICmpUsingBoolRange(I, Builder))
6108     return Res;
6109 
6110   if (Instruction *Res = foldICmpUsingKnownBits(I))
6111     return Res;
6112 
6113   // Test if the ICmpInst instruction is used exclusively by a select as
6114   // part of a minimum or maximum operation. If so, refrain from doing
6115   // any other folding. This helps out other analyses which understand
6116   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6117   // and CodeGen. And in this case, at least one of the comparison
6118   // operands has at least one user besides the compare (the select),
6119   // which would often largely negate the benefit of folding anyway.
6120   //
6121   // Do the same for the other patterns recognized by matchSelectPattern.
6122   if (I.hasOneUse())
6123     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6124       Value *A, *B;
6125       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6126       if (SPR.Flavor != SPF_UNKNOWN)
6127         return nullptr;
6128     }
6129 
6130   // Do this after checking for min/max to prevent infinite looping.
6131   if (Instruction *Res = foldICmpWithZero(I))
6132     return Res;
6133 
6134   // FIXME: We only do this after checking for min/max to prevent infinite
6135   // looping caused by a reverse canonicalization of these patterns for min/max.
6136   // FIXME: The organization of folds is a mess. These would naturally go into
6137   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
6138   // down here after the min/max restriction.
6139   ICmpInst::Predicate Pred = I.getPredicate();
6140   const APInt *C;
6141   if (match(Op1, m_APInt(C))) {
6142     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
6143     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
6144       Constant *Zero = Constant::getNullValue(Op0->getType());
6145       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
6146     }
6147 
6148     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
6149     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
6150       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
6151       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
6152     }
6153   }
6154 
6155   // The folds in here may rely on wrapping flags and special constants, so
6156   // they can break up min/max idioms in some cases but not seemingly similar
6157   // patterns.
6158   // FIXME: It may be possible to enhance select folding to make this
6159   //        unnecessary. It may also be moot if we canonicalize to min/max
6160   //        intrinsics.
6161   if (Instruction *Res = foldICmpBinOp(I, Q))
6162     return Res;
6163 
6164   if (Instruction *Res = foldICmpInstWithConstant(I))
6165     return Res;
6166 
6167   // Try to match comparison as a sign bit test. Intentionally do this after
6168   // foldICmpInstWithConstant() to potentially let other folds to happen first.
6169   if (Instruction *New = foldSignBitTest(I))
6170     return New;
6171 
6172   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
6173     return Res;
6174 
6175   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6176   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6177     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6178       return NI;
6179   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6180     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6181       return NI;
6182 
6183   if (auto *SI = dyn_cast<SelectInst>(Op0))
6184     if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I))
6185       return NI;
6186   if (auto *SI = dyn_cast<SelectInst>(Op1))
6187     if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I))
6188       return NI;
6189 
6190   // Try to optimize equality comparisons against alloca-based pointers.
6191   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6192     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6193     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6194       if (Instruction *New = foldAllocaCmp(I, Alloca))
6195         return New;
6196     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6197       if (Instruction *New = foldAllocaCmp(I, Alloca))
6198         return New;
6199   }
6200 
6201   if (Instruction *Res = foldICmpBitCast(I))
6202     return Res;
6203 
6204   // TODO: Hoist this above the min/max bailout.
6205   if (Instruction *R = foldICmpWithCastOp(I))
6206     return R;
6207 
6208   if (Instruction *Res = foldICmpWithMinMax(I))
6209     return Res;
6210 
6211   {
6212     Value *A, *B;
6213     // Transform (A & ~B) == 0 --> (A & B) != 0
6214     // and       (A & ~B) != 0 --> (A & B) == 0
6215     // if A is a power of 2.
6216     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6217         match(Op1, m_Zero()) &&
6218         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6219       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6220                           Op1);
6221 
6222     // ~X < ~Y --> Y < X
6223     // ~X < C -->  X > ~C
6224     if (match(Op0, m_Not(m_Value(A)))) {
6225       if (match(Op1, m_Not(m_Value(B))))
6226         return new ICmpInst(I.getPredicate(), B, A);
6227 
6228       const APInt *C;
6229       if (match(Op1, m_APInt(C)))
6230         return new ICmpInst(I.getSwappedPredicate(), A,
6231                             ConstantInt::get(Op1->getType(), ~(*C)));
6232     }
6233 
6234     Instruction *AddI = nullptr;
6235     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6236                                      m_Instruction(AddI))) &&
6237         isa<IntegerType>(A->getType())) {
6238       Value *Result;
6239       Constant *Overflow;
6240       // m_UAddWithOverflow can match patterns that do not include  an explicit
6241       // "add" instruction, so check the opcode of the matched op.
6242       if (AddI->getOpcode() == Instruction::Add &&
6243           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6244                                 Result, Overflow)) {
6245         replaceInstUsesWith(*AddI, Result);
6246         eraseInstFromFunction(*AddI);
6247         return replaceInstUsesWith(I, Overflow);
6248       }
6249     }
6250 
6251     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6252     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6253       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6254         return R;
6255     }
6256     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6257       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6258         return R;
6259     }
6260   }
6261 
6262   if (Instruction *Res = foldICmpEquality(I))
6263     return Res;
6264 
6265   if (Instruction *Res = foldICmpOfUAddOv(I))
6266     return Res;
6267 
6268   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6269   // an i1 which indicates whether or not we successfully did the swap.
6270   //
6271   // Replace comparisons between the old value and the expected value with the
6272   // indicator that 'cmpxchg' returns.
6273   //
6274   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6275   // spuriously fail.  In those cases, the old value may equal the expected
6276   // value but it is possible for the swap to not occur.
6277   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6278     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6279       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6280         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6281             !ACXI->isWeak())
6282           return ExtractValueInst::Create(ACXI, 1);
6283 
6284   {
6285     Value *X;
6286     const APInt *C;
6287     // icmp X+Cst, X
6288     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6289       return foldICmpAddOpConst(X, *C, I.getPredicate());
6290 
6291     // icmp X, X+Cst
6292     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6293       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6294   }
6295 
6296   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6297     return Res;
6298 
6299   if (I.getType()->isVectorTy())
6300     if (Instruction *Res = foldVectorCmp(I, Builder))
6301       return Res;
6302 
6303   if (Instruction *Res = foldICmpInvariantGroup(I))
6304     return Res;
6305 
6306   if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
6307     return Res;
6308 
6309   return Changed ? &I : nullptr;
6310 }
6311 
6312 /// Fold fcmp ([us]itofp x, cst) if possible.
6313 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6314                                                     Instruction *LHSI,
6315                                                     Constant *RHSC) {
6316   if (!isa<ConstantFP>(RHSC)) return nullptr;
6317   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6318 
6319   // Get the width of the mantissa.  We don't want to hack on conversions that
6320   // might lose information from the integer, e.g. "i64 -> float"
6321   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6322   if (MantissaWidth == -1) return nullptr;  // Unknown.
6323 
6324   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6325 
6326   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6327 
6328   if (I.isEquality()) {
6329     FCmpInst::Predicate P = I.getPredicate();
6330     bool IsExact = false;
6331     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6332     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6333 
6334     // If the floating point constant isn't an integer value, we know if we will
6335     // ever compare equal / not equal to it.
6336     if (!IsExact) {
6337       // TODO: Can never be -0.0 and other non-representable values
6338       APFloat RHSRoundInt(RHS);
6339       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6340       if (RHS != RHSRoundInt) {
6341         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6342           return replaceInstUsesWith(I, Builder.getFalse());
6343 
6344         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6345         return replaceInstUsesWith(I, Builder.getTrue());
6346       }
6347     }
6348 
6349     // TODO: If the constant is exactly representable, is it always OK to do
6350     // equality compares as integer?
6351   }
6352 
6353   // Check to see that the input is converted from an integer type that is small
6354   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6355   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6356   unsigned InputSize = IntTy->getScalarSizeInBits();
6357 
6358   // Following test does NOT adjust InputSize downwards for signed inputs,
6359   // because the most negative value still requires all the mantissa bits
6360   // to distinguish it from one less than that value.
6361   if ((int)InputSize > MantissaWidth) {
6362     // Conversion would lose accuracy. Check if loss can impact comparison.
6363     int Exp = ilogb(RHS);
6364     if (Exp == APFloat::IEK_Inf) {
6365       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6366       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6367         // Conversion could create infinity.
6368         return nullptr;
6369     } else {
6370       // Note that if RHS is zero or NaN, then Exp is negative
6371       // and first condition is trivially false.
6372       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6373         // Conversion could affect comparison.
6374         return nullptr;
6375     }
6376   }
6377 
6378   // Otherwise, we can potentially simplify the comparison.  We know that it
6379   // will always come through as an integer value and we know the constant is
6380   // not a NAN (it would have been previously simplified).
6381   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6382 
6383   ICmpInst::Predicate Pred;
6384   switch (I.getPredicate()) {
6385   default: llvm_unreachable("Unexpected predicate!");
6386   case FCmpInst::FCMP_UEQ:
6387   case FCmpInst::FCMP_OEQ:
6388     Pred = ICmpInst::ICMP_EQ;
6389     break;
6390   case FCmpInst::FCMP_UGT:
6391   case FCmpInst::FCMP_OGT:
6392     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6393     break;
6394   case FCmpInst::FCMP_UGE:
6395   case FCmpInst::FCMP_OGE:
6396     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6397     break;
6398   case FCmpInst::FCMP_ULT:
6399   case FCmpInst::FCMP_OLT:
6400     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6401     break;
6402   case FCmpInst::FCMP_ULE:
6403   case FCmpInst::FCMP_OLE:
6404     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6405     break;
6406   case FCmpInst::FCMP_UNE:
6407   case FCmpInst::FCMP_ONE:
6408     Pred = ICmpInst::ICMP_NE;
6409     break;
6410   case FCmpInst::FCMP_ORD:
6411     return replaceInstUsesWith(I, Builder.getTrue());
6412   case FCmpInst::FCMP_UNO:
6413     return replaceInstUsesWith(I, Builder.getFalse());
6414   }
6415 
6416   // Now we know that the APFloat is a normal number, zero or inf.
6417 
6418   // See if the FP constant is too large for the integer.  For example,
6419   // comparing an i8 to 300.0.
6420   unsigned IntWidth = IntTy->getScalarSizeInBits();
6421 
6422   if (!LHSUnsigned) {
6423     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6424     // and large values.
6425     APFloat SMax(RHS.getSemantics());
6426     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6427                           APFloat::rmNearestTiesToEven);
6428     if (SMax < RHS) { // smax < 13123.0
6429       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6430           Pred == ICmpInst::ICMP_SLE)
6431         return replaceInstUsesWith(I, Builder.getTrue());
6432       return replaceInstUsesWith(I, Builder.getFalse());
6433     }
6434   } else {
6435     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6436     // +INF and large values.
6437     APFloat UMax(RHS.getSemantics());
6438     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6439                           APFloat::rmNearestTiesToEven);
6440     if (UMax < RHS) { // umax < 13123.0
6441       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6442           Pred == ICmpInst::ICMP_ULE)
6443         return replaceInstUsesWith(I, Builder.getTrue());
6444       return replaceInstUsesWith(I, Builder.getFalse());
6445     }
6446   }
6447 
6448   if (!LHSUnsigned) {
6449     // See if the RHS value is < SignedMin.
6450     APFloat SMin(RHS.getSemantics());
6451     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6452                           APFloat::rmNearestTiesToEven);
6453     if (SMin > RHS) { // smin > 12312.0
6454       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6455           Pred == ICmpInst::ICMP_SGE)
6456         return replaceInstUsesWith(I, Builder.getTrue());
6457       return replaceInstUsesWith(I, Builder.getFalse());
6458     }
6459   } else {
6460     // See if the RHS value is < UnsignedMin.
6461     APFloat UMin(RHS.getSemantics());
6462     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6463                           APFloat::rmNearestTiesToEven);
6464     if (UMin > RHS) { // umin > 12312.0
6465       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6466           Pred == ICmpInst::ICMP_UGE)
6467         return replaceInstUsesWith(I, Builder.getTrue());
6468       return replaceInstUsesWith(I, Builder.getFalse());
6469     }
6470   }
6471 
6472   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6473   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6474   // casting the FP value to the integer value and back, checking for equality.
6475   // Don't do this for zero, because -0.0 is not fractional.
6476   Constant *RHSInt = LHSUnsigned
6477     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6478     : ConstantExpr::getFPToSI(RHSC, IntTy);
6479   if (!RHS.isZero()) {
6480     bool Equal = LHSUnsigned
6481       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6482       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6483     if (!Equal) {
6484       // If we had a comparison against a fractional value, we have to adjust
6485       // the compare predicate and sometimes the value.  RHSC is rounded towards
6486       // zero at this point.
6487       switch (Pred) {
6488       default: llvm_unreachable("Unexpected integer comparison!");
6489       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6490         return replaceInstUsesWith(I, Builder.getTrue());
6491       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6492         return replaceInstUsesWith(I, Builder.getFalse());
6493       case ICmpInst::ICMP_ULE:
6494         // (float)int <= 4.4   --> int <= 4
6495         // (float)int <= -4.4  --> false
6496         if (RHS.isNegative())
6497           return replaceInstUsesWith(I, Builder.getFalse());
6498         break;
6499       case ICmpInst::ICMP_SLE:
6500         // (float)int <= 4.4   --> int <= 4
6501         // (float)int <= -4.4  --> int < -4
6502         if (RHS.isNegative())
6503           Pred = ICmpInst::ICMP_SLT;
6504         break;
6505       case ICmpInst::ICMP_ULT:
6506         // (float)int < -4.4   --> false
6507         // (float)int < 4.4    --> int <= 4
6508         if (RHS.isNegative())
6509           return replaceInstUsesWith(I, Builder.getFalse());
6510         Pred = ICmpInst::ICMP_ULE;
6511         break;
6512       case ICmpInst::ICMP_SLT:
6513         // (float)int < -4.4   --> int < -4
6514         // (float)int < 4.4    --> int <= 4
6515         if (!RHS.isNegative())
6516           Pred = ICmpInst::ICMP_SLE;
6517         break;
6518       case ICmpInst::ICMP_UGT:
6519         // (float)int > 4.4    --> int > 4
6520         // (float)int > -4.4   --> true
6521         if (RHS.isNegative())
6522           return replaceInstUsesWith(I, Builder.getTrue());
6523         break;
6524       case ICmpInst::ICMP_SGT:
6525         // (float)int > 4.4    --> int > 4
6526         // (float)int > -4.4   --> int >= -4
6527         if (RHS.isNegative())
6528           Pred = ICmpInst::ICMP_SGE;
6529         break;
6530       case ICmpInst::ICMP_UGE:
6531         // (float)int >= -4.4   --> true
6532         // (float)int >= 4.4    --> int > 4
6533         if (RHS.isNegative())
6534           return replaceInstUsesWith(I, Builder.getTrue());
6535         Pred = ICmpInst::ICMP_UGT;
6536         break;
6537       case ICmpInst::ICMP_SGE:
6538         // (float)int >= -4.4   --> int >= -4
6539         // (float)int >= 4.4    --> int > 4
6540         if (!RHS.isNegative())
6541           Pred = ICmpInst::ICMP_SGT;
6542         break;
6543       }
6544     }
6545   }
6546 
6547   // Lower this FP comparison into an appropriate integer version of the
6548   // comparison.
6549   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6550 }
6551 
6552 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6553 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6554                                               Constant *RHSC) {
6555   // When C is not 0.0 and infinities are not allowed:
6556   // (C / X) < 0.0 is a sign-bit test of X
6557   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6558   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6559   //
6560   // Proof:
6561   // Multiply (C / X) < 0.0 by X * X / C.
6562   // - X is non zero, if it is the flag 'ninf' is violated.
6563   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6564   //   the predicate. C is also non zero by definition.
6565   //
6566   // Thus X * X / C is non zero and the transformation is valid. [qed]
6567 
6568   FCmpInst::Predicate Pred = I.getPredicate();
6569 
6570   // Check that predicates are valid.
6571   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6572       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6573     return nullptr;
6574 
6575   // Check that RHS operand is zero.
6576   if (!match(RHSC, m_AnyZeroFP()))
6577     return nullptr;
6578 
6579   // Check fastmath flags ('ninf').
6580   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6581     return nullptr;
6582 
6583   // Check the properties of the dividend. It must not be zero to avoid a
6584   // division by zero (see Proof).
6585   const APFloat *C;
6586   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6587     return nullptr;
6588 
6589   if (C->isZero())
6590     return nullptr;
6591 
6592   // Get swapped predicate if necessary.
6593   if (C->isNegative())
6594     Pred = I.getSwappedPredicate();
6595 
6596   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6597 }
6598 
6599 /// Optimize fabs(X) compared with zero.
6600 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6601   Value *X;
6602   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6603       !match(I.getOperand(1), m_PosZeroFP()))
6604     return nullptr;
6605 
6606   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6607     I->setPredicate(P);
6608     return IC.replaceOperand(*I, 0, X);
6609   };
6610 
6611   switch (I.getPredicate()) {
6612   case FCmpInst::FCMP_UGE:
6613   case FCmpInst::FCMP_OLT:
6614     // fabs(X) >= 0.0 --> true
6615     // fabs(X) <  0.0 --> false
6616     llvm_unreachable("fcmp should have simplified");
6617 
6618   case FCmpInst::FCMP_OGT:
6619     // fabs(X) > 0.0 --> X != 0.0
6620     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6621 
6622   case FCmpInst::FCMP_UGT:
6623     // fabs(X) u> 0.0 --> X u!= 0.0
6624     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6625 
6626   case FCmpInst::FCMP_OLE:
6627     // fabs(X) <= 0.0 --> X == 0.0
6628     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6629 
6630   case FCmpInst::FCMP_ULE:
6631     // fabs(X) u<= 0.0 --> X u== 0.0
6632     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6633 
6634   case FCmpInst::FCMP_OGE:
6635     // fabs(X) >= 0.0 --> !isnan(X)
6636     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6637     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6638 
6639   case FCmpInst::FCMP_ULT:
6640     // fabs(X) u< 0.0 --> isnan(X)
6641     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6642     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6643 
6644   case FCmpInst::FCMP_OEQ:
6645   case FCmpInst::FCMP_UEQ:
6646   case FCmpInst::FCMP_ONE:
6647   case FCmpInst::FCMP_UNE:
6648   case FCmpInst::FCMP_ORD:
6649   case FCmpInst::FCMP_UNO:
6650     // Look through the fabs() because it doesn't change anything but the sign.
6651     // fabs(X) == 0.0 --> X == 0.0,
6652     // fabs(X) != 0.0 --> X != 0.0
6653     // isnan(fabs(X)) --> isnan(X)
6654     // !isnan(fabs(X) --> !isnan(X)
6655     return replacePredAndOp0(&I, I.getPredicate(), X);
6656 
6657   default:
6658     return nullptr;
6659   }
6660 }
6661 
6662 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) {
6663   CmpInst::Predicate Pred = I.getPredicate();
6664   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6665 
6666   // Canonicalize fneg as Op1.
6667   if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) {
6668     std::swap(Op0, Op1);
6669     Pred = I.getSwappedPredicate();
6670   }
6671 
6672   if (!match(Op1, m_FNeg(m_Specific(Op0))))
6673     return nullptr;
6674 
6675   // Replace the negated operand with 0.0:
6676   // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
6677   Constant *Zero = ConstantFP::getNullValue(Op0->getType());
6678   return new FCmpInst(Pred, Op0, Zero, "", &I);
6679 }
6680 
6681 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6682   bool Changed = false;
6683 
6684   /// Orders the operands of the compare so that they are listed from most
6685   /// complex to least complex.  This puts constants before unary operators,
6686   /// before binary operators.
6687   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6688     I.swapOperands();
6689     Changed = true;
6690   }
6691 
6692   const CmpInst::Predicate Pred = I.getPredicate();
6693   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6694   if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6695                                   SQ.getWithInstruction(&I)))
6696     return replaceInstUsesWith(I, V);
6697 
6698   // Simplify 'fcmp pred X, X'
6699   Type *OpType = Op0->getType();
6700   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6701   if (Op0 == Op1) {
6702     switch (Pred) {
6703       default: break;
6704     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6705     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6706     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6707     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6708       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6709       I.setPredicate(FCmpInst::FCMP_UNO);
6710       I.setOperand(1, Constant::getNullValue(OpType));
6711       return &I;
6712 
6713     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6714     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6715     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6716     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6717       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6718       I.setPredicate(FCmpInst::FCMP_ORD);
6719       I.setOperand(1, Constant::getNullValue(OpType));
6720       return &I;
6721     }
6722   }
6723 
6724   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6725   // then canonicalize the operand to 0.0.
6726   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6727     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6728       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6729 
6730     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6731       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6732   }
6733 
6734   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6735   Value *X, *Y;
6736   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6737     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6738 
6739   if (Instruction *R = foldFCmpFNegCommonOp(I))
6740     return R;
6741 
6742   // Test if the FCmpInst instruction is used exclusively by a select as
6743   // part of a minimum or maximum operation. If so, refrain from doing
6744   // any other folding. This helps out other analyses which understand
6745   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6746   // and CodeGen. And in this case, at least one of the comparison
6747   // operands has at least one user besides the compare (the select),
6748   // which would often largely negate the benefit of folding anyway.
6749   if (I.hasOneUse())
6750     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6751       Value *A, *B;
6752       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6753       if (SPR.Flavor != SPF_UNKNOWN)
6754         return nullptr;
6755     }
6756 
6757   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6758   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6759   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6760     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6761 
6762   // Handle fcmp with instruction LHS and constant RHS.
6763   Instruction *LHSI;
6764   Constant *RHSC;
6765   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6766     switch (LHSI->getOpcode()) {
6767     case Instruction::PHI:
6768       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6769       // block.  If in the same block, we're encouraging jump threading.  If
6770       // not, we are just pessimizing the code by making an i1 phi.
6771       if (LHSI->getParent() == I.getParent())
6772         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6773           return NV;
6774       break;
6775     case Instruction::SIToFP:
6776     case Instruction::UIToFP:
6777       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6778         return NV;
6779       break;
6780     case Instruction::FDiv:
6781       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6782         return NV;
6783       break;
6784     case Instruction::Load:
6785       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6786         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6787           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
6788                   cast<LoadInst>(LHSI), GEP, GV, I))
6789             return Res;
6790       break;
6791   }
6792   }
6793 
6794   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6795     return R;
6796 
6797   if (match(Op0, m_FNeg(m_Value(X)))) {
6798     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6799     Constant *C;
6800     if (match(Op1, m_Constant(C))) {
6801       Constant *NegC = ConstantExpr::getFNeg(C);
6802       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6803     }
6804   }
6805 
6806   if (match(Op0, m_FPExt(m_Value(X)))) {
6807     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6808     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6809       return new FCmpInst(Pred, X, Y, "", &I);
6810 
6811     const APFloat *C;
6812     if (match(Op1, m_APFloat(C))) {
6813       const fltSemantics &FPSem =
6814           X->getType()->getScalarType()->getFltSemantics();
6815       bool Lossy;
6816       APFloat TruncC = *C;
6817       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6818 
6819       if (Lossy) {
6820         // X can't possibly equal the higher-precision constant, so reduce any
6821         // equality comparison.
6822         // TODO: Other predicates can be handled via getFCmpCode().
6823         switch (Pred) {
6824         case FCmpInst::FCMP_OEQ:
6825           // X is ordered and equal to an impossible constant --> false
6826           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6827         case FCmpInst::FCMP_ONE:
6828           // X is ordered and not equal to an impossible constant --> ordered
6829           return new FCmpInst(FCmpInst::FCMP_ORD, X,
6830                               ConstantFP::getNullValue(X->getType()));
6831         case FCmpInst::FCMP_UEQ:
6832           // X is unordered or equal to an impossible constant --> unordered
6833           return new FCmpInst(FCmpInst::FCMP_UNO, X,
6834                               ConstantFP::getNullValue(X->getType()));
6835         case FCmpInst::FCMP_UNE:
6836           // X is unordered or not equal to an impossible constant --> true
6837           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6838         default:
6839           break;
6840         }
6841       }
6842 
6843       // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6844       // Avoid lossy conversions and denormals.
6845       // Zero is a special case that's OK to convert.
6846       APFloat Fabs = TruncC;
6847       Fabs.clearSign();
6848       if (!Lossy &&
6849           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6850         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6851         return new FCmpInst(Pred, X, NewC, "", &I);
6852       }
6853     }
6854   }
6855 
6856   // Convert a sign-bit test of an FP value into a cast and integer compare.
6857   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6858   // TODO: Handle non-zero compare constants.
6859   // TODO: Handle other predicates.
6860   const APFloat *C;
6861   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6862                                                            m_Value(X)))) &&
6863       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6864     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6865     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6866       IntType = VectorType::get(IntType, VecTy->getElementCount());
6867 
6868     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6869     if (Pred == FCmpInst::FCMP_OLT) {
6870       Value *IntX = Builder.CreateBitCast(X, IntType);
6871       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6872                           ConstantInt::getNullValue(IntType));
6873     }
6874   }
6875 
6876   if (I.getType()->isVectorTy())
6877     if (Instruction *Res = foldVectorCmp(I, Builder))
6878       return Res;
6879 
6880   return Changed ? &I : nullptr;
6881 }
6882