1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/MemoryBuiltins.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 // How many times is a select replaced by one of its operands? 35 STATISTIC(NumSel, "Number of select opts"); 36 37 // Initialization Routines 38 39 static ConstantInt *getOne(Constant *C) { 40 return ConstantInt::get(cast<IntegerType>(C->getType()), 1); 41 } 42 43 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { 44 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); 45 } 46 47 static bool HasAddOverflow(ConstantInt *Result, 48 ConstantInt *In1, ConstantInt *In2, 49 bool IsSigned) { 50 if (!IsSigned) 51 return Result->getValue().ult(In1->getValue()); 52 53 if (In2->isNegative()) 54 return Result->getValue().sgt(In1->getValue()); 55 return Result->getValue().slt(In1->getValue()); 56 } 57 58 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result 59 /// overflowed for this type. 60 static bool AddWithOverflow(Constant *&Result, Constant *In1, 61 Constant *In2, bool IsSigned = false) { 62 Result = ConstantExpr::getAdd(In1, In2); 63 64 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 65 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 66 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 67 if (HasAddOverflow(ExtractElement(Result, Idx), 68 ExtractElement(In1, Idx), 69 ExtractElement(In2, Idx), 70 IsSigned)) 71 return true; 72 } 73 return false; 74 } 75 76 return HasAddOverflow(cast<ConstantInt>(Result), 77 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 78 IsSigned); 79 } 80 81 static bool HasSubOverflow(ConstantInt *Result, 82 ConstantInt *In1, ConstantInt *In2, 83 bool IsSigned) { 84 if (!IsSigned) 85 return Result->getValue().ugt(In1->getValue()); 86 87 if (In2->isNegative()) 88 return Result->getValue().slt(In1->getValue()); 89 90 return Result->getValue().sgt(In1->getValue()); 91 } 92 93 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result 94 /// overflowed for this type. 95 static bool SubWithOverflow(Constant *&Result, Constant *In1, 96 Constant *In2, bool IsSigned = false) { 97 Result = ConstantExpr::getSub(In1, In2); 98 99 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 100 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 101 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 102 if (HasSubOverflow(ExtractElement(Result, Idx), 103 ExtractElement(In1, Idx), 104 ExtractElement(In2, Idx), 105 IsSigned)) 106 return true; 107 } 108 return false; 109 } 110 111 return HasSubOverflow(cast<ConstantInt>(Result), 112 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 113 IsSigned); 114 } 115 116 /// isSignBitCheck - Given an exploded icmp instruction, return true if the 117 /// comparison only checks the sign bit. If it only checks the sign bit, set 118 /// TrueIfSigned if the result of the comparison is true when the input value is 119 /// signed. 120 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, 121 bool &TrueIfSigned) { 122 switch (pred) { 123 case ICmpInst::ICMP_SLT: // True if LHS s< 0 124 TrueIfSigned = true; 125 return RHS->isZero(); 126 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 127 TrueIfSigned = true; 128 return RHS->isAllOnesValue(); 129 case ICmpInst::ICMP_SGT: // True if LHS s> -1 130 TrueIfSigned = false; 131 return RHS->isAllOnesValue(); 132 case ICmpInst::ICMP_UGT: 133 // True if LHS u> RHS and RHS == high-bit-mask - 1 134 TrueIfSigned = true; 135 return RHS->isMaxValue(true); 136 case ICmpInst::ICMP_UGE: 137 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 138 TrueIfSigned = true; 139 return RHS->getValue().isSignBit(); 140 default: 141 return false; 142 } 143 } 144 145 /// Returns true if the exploded icmp can be expressed as a signed comparison 146 /// to zero and updates the predicate accordingly. 147 /// The signedness of the comparison is preserved. 148 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) { 149 if (!ICmpInst::isSigned(pred)) 150 return false; 151 152 if (RHS->isZero()) 153 return ICmpInst::isRelational(pred); 154 155 if (RHS->isOne()) { 156 if (pred == ICmpInst::ICMP_SLT) { 157 pred = ICmpInst::ICMP_SLE; 158 return true; 159 } 160 } else if (RHS->isAllOnesValue()) { 161 if (pred == ICmpInst::ICMP_SGT) { 162 pred = ICmpInst::ICMP_SGE; 163 return true; 164 } 165 } 166 167 return false; 168 } 169 170 // isHighOnes - Return true if the constant is of the form 1+0+. 171 // This is the same as lowones(~X). 172 static bool isHighOnes(const ConstantInt *CI) { 173 return (~CI->getValue() + 1).isPowerOf2(); 174 } 175 176 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 177 /// set of known zero and one bits, compute the maximum and minimum values that 178 /// could have the specified known zero and known one bits, returning them in 179 /// min/max. 180 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, 181 const APInt& KnownOne, 182 APInt& Min, APInt& Max) { 183 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 184 KnownZero.getBitWidth() == Min.getBitWidth() && 185 KnownZero.getBitWidth() == Max.getBitWidth() && 186 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 187 APInt UnknownBits = ~(KnownZero|KnownOne); 188 189 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 190 // bit if it is unknown. 191 Min = KnownOne; 192 Max = KnownOne|UnknownBits; 193 194 if (UnknownBits.isNegative()) { // Sign bit is unknown 195 Min.setBit(Min.getBitWidth()-1); 196 Max.clearBit(Max.getBitWidth()-1); 197 } 198 } 199 200 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and 201 // a set of known zero and one bits, compute the maximum and minimum values that 202 // could have the specified known zero and known one bits, returning them in 203 // min/max. 204 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 205 const APInt &KnownOne, 206 APInt &Min, APInt &Max) { 207 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 208 KnownZero.getBitWidth() == Min.getBitWidth() && 209 KnownZero.getBitWidth() == Max.getBitWidth() && 210 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 211 APInt UnknownBits = ~(KnownZero|KnownOne); 212 213 // The minimum value is when the unknown bits are all zeros. 214 Min = KnownOne; 215 // The maximum value is when the unknown bits are all ones. 216 Max = KnownOne|UnknownBits; 217 } 218 219 220 221 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern: 222 /// cmp pred (load (gep GV, ...)), cmpcst 223 /// where GV is a global variable with a constant initializer. Try to simplify 224 /// this into some simple computation that does not need the load. For example 225 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 226 /// 227 /// If AndCst is non-null, then the loaded value is masked with that constant 228 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 229 Instruction *InstCombiner:: 230 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, 231 CmpInst &ICI, ConstantInt *AndCst) { 232 Constant *Init = GV->getInitializer(); 233 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 234 return nullptr; 235 236 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 237 if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays. 238 239 // There are many forms of this optimization we can handle, for now, just do 240 // the simple index into a single-dimensional array. 241 // 242 // Require: GEP GV, 0, i {{, constant indices}} 243 if (GEP->getNumOperands() < 3 || 244 !isa<ConstantInt>(GEP->getOperand(1)) || 245 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 246 isa<Constant>(GEP->getOperand(2))) 247 return nullptr; 248 249 // Check that indices after the variable are constants and in-range for the 250 // type they index. Collect the indices. This is typically for arrays of 251 // structs. 252 SmallVector<unsigned, 4> LaterIndices; 253 254 Type *EltTy = Init->getType()->getArrayElementType(); 255 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 256 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 257 if (!Idx) return nullptr; // Variable index. 258 259 uint64_t IdxVal = Idx->getZExtValue(); 260 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 261 262 if (StructType *STy = dyn_cast<StructType>(EltTy)) 263 EltTy = STy->getElementType(IdxVal); 264 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 265 if (IdxVal >= ATy->getNumElements()) return nullptr; 266 EltTy = ATy->getElementType(); 267 } else { 268 return nullptr; // Unknown type. 269 } 270 271 LaterIndices.push_back(IdxVal); 272 } 273 274 enum { Overdefined = -3, Undefined = -2 }; 275 276 // Variables for our state machines. 277 278 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 279 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 280 // and 87 is the second (and last) index. FirstTrueElement is -2 when 281 // undefined, otherwise set to the first true element. SecondTrueElement is 282 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 283 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 284 285 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 286 // form "i != 47 & i != 87". Same state transitions as for true elements. 287 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 288 289 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 290 /// define a state machine that triggers for ranges of values that the index 291 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 292 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 293 /// index in the range (inclusive). We use -2 for undefined here because we 294 /// use relative comparisons and don't want 0-1 to match -1. 295 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 296 297 // MagicBitvector - This is a magic bitvector where we set a bit if the 298 // comparison is true for element 'i'. If there are 64 elements or less in 299 // the array, this will fully represent all the comparison results. 300 uint64_t MagicBitvector = 0; 301 302 // Scan the array and see if one of our patterns matches. 303 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 304 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 305 Constant *Elt = Init->getAggregateElement(i); 306 if (!Elt) return nullptr; 307 308 // If this is indexing an array of structures, get the structure element. 309 if (!LaterIndices.empty()) 310 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 311 312 // If the element is masked, handle it. 313 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 314 315 // Find out if the comparison would be true or false for the i'th element. 316 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 317 CompareRHS, DL, TLI); 318 // If the result is undef for this element, ignore it. 319 if (isa<UndefValue>(C)) { 320 // Extend range state machines to cover this element in case there is an 321 // undef in the middle of the range. 322 if (TrueRangeEnd == (int)i-1) 323 TrueRangeEnd = i; 324 if (FalseRangeEnd == (int)i-1) 325 FalseRangeEnd = i; 326 continue; 327 } 328 329 // If we can't compute the result for any of the elements, we have to give 330 // up evaluating the entire conditional. 331 if (!isa<ConstantInt>(C)) return nullptr; 332 333 // Otherwise, we know if the comparison is true or false for this element, 334 // update our state machines. 335 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 336 337 // State machine for single/double/range index comparison. 338 if (IsTrueForElt) { 339 // Update the TrueElement state machine. 340 if (FirstTrueElement == Undefined) 341 FirstTrueElement = TrueRangeEnd = i; // First true element. 342 else { 343 // Update double-compare state machine. 344 if (SecondTrueElement == Undefined) 345 SecondTrueElement = i; 346 else 347 SecondTrueElement = Overdefined; 348 349 // Update range state machine. 350 if (TrueRangeEnd == (int)i-1) 351 TrueRangeEnd = i; 352 else 353 TrueRangeEnd = Overdefined; 354 } 355 } else { 356 // Update the FalseElement state machine. 357 if (FirstFalseElement == Undefined) 358 FirstFalseElement = FalseRangeEnd = i; // First false element. 359 else { 360 // Update double-compare state machine. 361 if (SecondFalseElement == Undefined) 362 SecondFalseElement = i; 363 else 364 SecondFalseElement = Overdefined; 365 366 // Update range state machine. 367 if (FalseRangeEnd == (int)i-1) 368 FalseRangeEnd = i; 369 else 370 FalseRangeEnd = Overdefined; 371 } 372 } 373 374 375 // If this element is in range, update our magic bitvector. 376 if (i < 64 && IsTrueForElt) 377 MagicBitvector |= 1ULL << i; 378 379 // If all of our states become overdefined, bail out early. Since the 380 // predicate is expensive, only check it every 8 elements. This is only 381 // really useful for really huge arrays. 382 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 383 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 384 FalseRangeEnd == Overdefined) 385 return nullptr; 386 } 387 388 // Now that we've scanned the entire array, emit our new comparison(s). We 389 // order the state machines in complexity of the generated code. 390 Value *Idx = GEP->getOperand(2); 391 392 // If the index is larger than the pointer size of the target, truncate the 393 // index down like the GEP would do implicitly. We don't have to do this for 394 // an inbounds GEP because the index can't be out of range. 395 if (!GEP->isInBounds()) { 396 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 397 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 398 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 399 Idx = Builder->CreateTrunc(Idx, IntPtrTy); 400 } 401 402 // If the comparison is only true for one or two elements, emit direct 403 // comparisons. 404 if (SecondTrueElement != Overdefined) { 405 // None true -> false. 406 if (FirstTrueElement == Undefined) 407 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 408 409 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 410 411 // True for one element -> 'i == 47'. 412 if (SecondTrueElement == Undefined) 413 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 414 415 // True for two elements -> 'i == 47 | i == 72'. 416 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); 417 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 418 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); 419 return BinaryOperator::CreateOr(C1, C2); 420 } 421 422 // If the comparison is only false for one or two elements, emit direct 423 // comparisons. 424 if (SecondFalseElement != Overdefined) { 425 // None false -> true. 426 if (FirstFalseElement == Undefined) 427 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 428 429 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 430 431 // False for one element -> 'i != 47'. 432 if (SecondFalseElement == Undefined) 433 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 434 435 // False for two elements -> 'i != 47 & i != 72'. 436 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); 437 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 438 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); 439 return BinaryOperator::CreateAnd(C1, C2); 440 } 441 442 // If the comparison can be replaced with a range comparison for the elements 443 // where it is true, emit the range check. 444 if (TrueRangeEnd != Overdefined) { 445 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 446 447 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 448 if (FirstTrueElement) { 449 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 450 Idx = Builder->CreateAdd(Idx, Offs); 451 } 452 453 Value *End = ConstantInt::get(Idx->getType(), 454 TrueRangeEnd-FirstTrueElement+1); 455 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 456 } 457 458 // False range check. 459 if (FalseRangeEnd != Overdefined) { 460 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 461 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 462 if (FirstFalseElement) { 463 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 464 Idx = Builder->CreateAdd(Idx, Offs); 465 } 466 467 Value *End = ConstantInt::get(Idx->getType(), 468 FalseRangeEnd-FirstFalseElement); 469 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 470 } 471 472 473 // If a magic bitvector captures the entire comparison state 474 // of this load, replace it with computation that does: 475 // ((magic_cst >> i) & 1) != 0 476 { 477 Type *Ty = nullptr; 478 479 // Look for an appropriate type: 480 // - The type of Idx if the magic fits 481 // - The smallest fitting legal type if we have a DataLayout 482 // - Default to i32 483 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 484 Ty = Idx->getType(); 485 else 486 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 487 488 if (Ty) { 489 Value *V = Builder->CreateIntCast(Idx, Ty, false); 490 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 491 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); 492 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 493 } 494 } 495 496 return nullptr; 497 } 498 499 500 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare 501 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we 502 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can 503 /// be complex, and scales are involved. The above expression would also be 504 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). 505 /// This later form is less amenable to optimization though, and we are allowed 506 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 507 /// 508 /// If we can't emit an optimized form for this expression, this returns null. 509 /// 510 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 511 const DataLayout &DL) { 512 gep_type_iterator GTI = gep_type_begin(GEP); 513 514 // Check to see if this gep only has a single variable index. If so, and if 515 // any constant indices are a multiple of its scale, then we can compute this 516 // in terms of the scale of the variable index. For example, if the GEP 517 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 518 // because the expression will cross zero at the same point. 519 unsigned i, e = GEP->getNumOperands(); 520 int64_t Offset = 0; 521 for (i = 1; i != e; ++i, ++GTI) { 522 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 523 // Compute the aggregate offset of constant indices. 524 if (CI->isZero()) continue; 525 526 // Handle a struct index, which adds its field offset to the pointer. 527 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 528 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 529 } else { 530 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 531 Offset += Size*CI->getSExtValue(); 532 } 533 } else { 534 // Found our variable index. 535 break; 536 } 537 } 538 539 // If there are no variable indices, we must have a constant offset, just 540 // evaluate it the general way. 541 if (i == e) return nullptr; 542 543 Value *VariableIdx = GEP->getOperand(i); 544 // Determine the scale factor of the variable element. For example, this is 545 // 4 if the variable index is into an array of i32. 546 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 547 548 // Verify that there are no other variable indices. If so, emit the hard way. 549 for (++i, ++GTI; i != e; ++i, ++GTI) { 550 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 551 if (!CI) return nullptr; 552 553 // Compute the aggregate offset of constant indices. 554 if (CI->isZero()) continue; 555 556 // Handle a struct index, which adds its field offset to the pointer. 557 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 558 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 559 } else { 560 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 561 Offset += Size*CI->getSExtValue(); 562 } 563 } 564 565 566 567 // Okay, we know we have a single variable index, which must be a 568 // pointer/array/vector index. If there is no offset, life is simple, return 569 // the index. 570 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 571 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 572 if (Offset == 0) { 573 // Cast to intptrty in case a truncation occurs. If an extension is needed, 574 // we don't need to bother extending: the extension won't affect where the 575 // computation crosses zero. 576 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 577 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); 578 } 579 return VariableIdx; 580 } 581 582 // Otherwise, there is an index. The computation we will do will be modulo 583 // the pointer size, so get it. 584 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 585 586 Offset &= PtrSizeMask; 587 VariableScale &= PtrSizeMask; 588 589 // To do this transformation, any constant index must be a multiple of the 590 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 591 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 592 // multiple of the variable scale. 593 int64_t NewOffs = Offset / (int64_t)VariableScale; 594 if (Offset != NewOffs*(int64_t)VariableScale) 595 return nullptr; 596 597 // Okay, we can do this evaluation. Start by converting the index to intptr. 598 if (VariableIdx->getType() != IntPtrTy) 599 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, 600 true /*Signed*/); 601 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 602 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset"); 603 } 604 605 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something 606 /// else. At this point we know that the GEP is on the LHS of the comparison. 607 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 608 ICmpInst::Predicate Cond, 609 Instruction &I) { 610 // Don't transform signed compares of GEPs into index compares. Even if the 611 // GEP is inbounds, the final add of the base pointer can have signed overflow 612 // and would change the result of the icmp. 613 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 614 // the maximum signed value for the pointer type. 615 if (ICmpInst::isSigned(Cond)) 616 return nullptr; 617 618 // Look through bitcasts and addrspacecasts. We do not however want to remove 619 // 0 GEPs. 620 if (!isa<GetElementPtrInst>(RHS)) 621 RHS = RHS->stripPointerCasts(); 622 623 Value *PtrBase = GEPLHS->getOperand(0); 624 if (PtrBase == RHS && GEPLHS->isInBounds()) { 625 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 626 // This transformation (ignoring the base and scales) is valid because we 627 // know pointers can't overflow since the gep is inbounds. See if we can 628 // output an optimized form. 629 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL); 630 631 // If not, synthesize the offset the hard way. 632 if (!Offset) 633 Offset = EmitGEPOffset(GEPLHS); 634 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 635 Constant::getNullValue(Offset->getType())); 636 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 637 // If the base pointers are different, but the indices are the same, just 638 // compare the base pointer. 639 if (PtrBase != GEPRHS->getOperand(0)) { 640 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 641 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 642 GEPRHS->getOperand(0)->getType(); 643 if (IndicesTheSame) 644 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 645 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 646 IndicesTheSame = false; 647 break; 648 } 649 650 // If all indices are the same, just compare the base pointers. 651 if (IndicesTheSame) 652 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 653 654 // If we're comparing GEPs with two base pointers that only differ in type 655 // and both GEPs have only constant indices or just one use, then fold 656 // the compare with the adjusted indices. 657 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 658 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 659 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 660 PtrBase->stripPointerCasts() == 661 GEPRHS->getOperand(0)->stripPointerCasts()) { 662 Value *LOffset = EmitGEPOffset(GEPLHS); 663 Value *ROffset = EmitGEPOffset(GEPRHS); 664 665 // If we looked through an addrspacecast between different sized address 666 // spaces, the LHS and RHS pointers are different sized 667 // integers. Truncate to the smaller one. 668 Type *LHSIndexTy = LOffset->getType(); 669 Type *RHSIndexTy = ROffset->getType(); 670 if (LHSIndexTy != RHSIndexTy) { 671 if (LHSIndexTy->getPrimitiveSizeInBits() < 672 RHSIndexTy->getPrimitiveSizeInBits()) { 673 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy); 674 } else 675 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy); 676 } 677 678 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond), 679 LOffset, ROffset); 680 return ReplaceInstUsesWith(I, Cmp); 681 } 682 683 // Otherwise, the base pointers are different and the indices are 684 // different, bail out. 685 return nullptr; 686 } 687 688 // If one of the GEPs has all zero indices, recurse. 689 if (GEPLHS->hasAllZeroIndices()) 690 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 691 ICmpInst::getSwappedPredicate(Cond), I); 692 693 // If the other GEP has all zero indices, recurse. 694 if (GEPRHS->hasAllZeroIndices()) 695 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 696 697 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 698 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 699 // If the GEPs only differ by one index, compare it. 700 unsigned NumDifferences = 0; // Keep track of # differences. 701 unsigned DiffOperand = 0; // The operand that differs. 702 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 703 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 704 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 705 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 706 // Irreconcilable differences. 707 NumDifferences = 2; 708 break; 709 } else { 710 if (NumDifferences++) break; 711 DiffOperand = i; 712 } 713 } 714 715 if (NumDifferences == 0) // SAME GEP? 716 return ReplaceInstUsesWith(I, // No comparison is needed here. 717 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond))); 718 719 else if (NumDifferences == 1 && GEPsInBounds) { 720 Value *LHSV = GEPLHS->getOperand(DiffOperand); 721 Value *RHSV = GEPRHS->getOperand(DiffOperand); 722 // Make sure we do a signed comparison here. 723 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 724 } 725 } 726 727 // Only lower this if the icmp is the only user of the GEP or if we expect 728 // the result to fold to a constant! 729 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 730 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 731 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 732 Value *L = EmitGEPOffset(GEPLHS); 733 Value *R = EmitGEPOffset(GEPRHS); 734 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 735 } 736 } 737 return nullptr; 738 } 739 740 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X". 741 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI, 742 Value *X, ConstantInt *CI, 743 ICmpInst::Predicate Pred) { 744 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 745 // so the values can never be equal. Similarly for all other "or equals" 746 // operators. 747 748 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 749 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 750 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 751 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 752 Value *R = 753 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 754 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 755 } 756 757 // (X+1) >u X --> X <u (0-1) --> X != 255 758 // (X+2) >u X --> X <u (0-2) --> X <u 254 759 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 760 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 761 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 762 763 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 764 ConstantInt *SMax = ConstantInt::get(X->getContext(), 765 APInt::getSignedMaxValue(BitWidth)); 766 767 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 768 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 769 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 770 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 771 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 772 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 773 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 774 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 775 776 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 777 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 778 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 779 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 780 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 781 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 782 783 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 784 Constant *C = Builder->getInt(CI->getValue()-1); 785 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 786 } 787 788 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS 789 /// and CmpRHS are both known to be integer constants. 790 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, 791 ConstantInt *DivRHS) { 792 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); 793 const APInt &CmpRHSV = CmpRHS->getValue(); 794 795 // FIXME: If the operand types don't match the type of the divide 796 // then don't attempt this transform. The code below doesn't have the 797 // logic to deal with a signed divide and an unsigned compare (and 798 // vice versa). This is because (x /s C1) <s C2 produces different 799 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even 800 // (x /u C1) <u C2. Simply casting the operands and result won't 801 // work. :( The if statement below tests that condition and bails 802 // if it finds it. 803 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; 804 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) 805 return nullptr; 806 if (DivRHS->isZero()) 807 return nullptr; // The ProdOV computation fails on divide by zero. 808 if (DivIsSigned && DivRHS->isAllOnesValue()) 809 return nullptr; // The overflow computation also screws up here 810 if (DivRHS->isOne()) { 811 // This eliminates some funny cases with INT_MIN. 812 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X. 813 return &ICI; 814 } 815 816 // Compute Prod = CI * DivRHS. We are essentially solving an equation 817 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 818 // C2 (CI). By solving for X we can turn this into a range check 819 // instead of computing a divide. 820 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); 821 822 // Determine if the product overflows by seeing if the product is 823 // not equal to the divide. Make sure we do the same kind of divide 824 // as in the LHS instruction that we're folding. 825 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : 826 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; 827 828 // Get the ICmp opcode 829 ICmpInst::Predicate Pred = ICI.getPredicate(); 830 831 /// If the division is known to be exact, then there is no remainder from the 832 /// divide, so the covered range size is unit, otherwise it is the divisor. 833 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS; 834 835 // Figure out the interval that is being checked. For example, a comparison 836 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 837 // Compute this interval based on the constants involved and the signedness of 838 // the compare/divide. This computes a half-open interval, keeping track of 839 // whether either value in the interval overflows. After analysis each 840 // overflow variable is set to 0 if it's corresponding bound variable is valid 841 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 842 int LoOverflow = 0, HiOverflow = 0; 843 Constant *LoBound = nullptr, *HiBound = nullptr; 844 845 if (!DivIsSigned) { // udiv 846 // e.g. X/5 op 3 --> [15, 20) 847 LoBound = Prod; 848 HiOverflow = LoOverflow = ProdOV; 849 if (!HiOverflow) { 850 // If this is not an exact divide, then many values in the range collapse 851 // to the same result value. 852 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false); 853 } 854 855 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. 856 if (CmpRHSV == 0) { // (X / pos) op 0 857 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 858 LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); 859 HiBound = RangeSize; 860 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos 861 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 862 HiOverflow = LoOverflow = ProdOV; 863 if (!HiOverflow) 864 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true); 865 } else { // (X / pos) op neg 866 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 867 HiBound = AddOne(Prod); 868 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 869 if (!LoOverflow) { 870 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 871 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 872 } 873 } 874 } else if (DivRHS->isNegative()) { // Divisor is < 0. 875 if (DivI->isExact()) 876 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 877 if (CmpRHSV == 0) { // (X / neg) op 0 878 // e.g. X/-5 op 0 --> [-4, 5) 879 LoBound = AddOne(RangeSize); 880 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 881 if (HiBound == DivRHS) { // -INTMIN = INTMIN 882 HiOverflow = 1; // [INTMIN+1, overflow) 883 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN 884 } 885 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos 886 // e.g. X/-5 op 3 --> [-19, -14) 887 HiBound = AddOne(Prod); 888 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 889 if (!LoOverflow) 890 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 891 } else { // (X / neg) op neg 892 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 893 LoOverflow = HiOverflow = ProdOV; 894 if (!HiOverflow) 895 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true); 896 } 897 898 // Dividing by a negative swaps the condition. LT <-> GT 899 Pred = ICmpInst::getSwappedPredicate(Pred); 900 } 901 902 Value *X = DivI->getOperand(0); 903 switch (Pred) { 904 default: llvm_unreachable("Unhandled icmp opcode!"); 905 case ICmpInst::ICMP_EQ: 906 if (LoOverflow && HiOverflow) 907 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 908 if (HiOverflow) 909 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 910 ICmpInst::ICMP_UGE, X, LoBound); 911 if (LoOverflow) 912 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 913 ICmpInst::ICMP_ULT, X, HiBound); 914 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 915 DivIsSigned, true)); 916 case ICmpInst::ICMP_NE: 917 if (LoOverflow && HiOverflow) 918 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 919 if (HiOverflow) 920 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 921 ICmpInst::ICMP_ULT, X, LoBound); 922 if (LoOverflow) 923 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 924 ICmpInst::ICMP_UGE, X, HiBound); 925 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 926 DivIsSigned, false)); 927 case ICmpInst::ICMP_ULT: 928 case ICmpInst::ICMP_SLT: 929 if (LoOverflow == +1) // Low bound is greater than input range. 930 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 931 if (LoOverflow == -1) // Low bound is less than input range. 932 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 933 return new ICmpInst(Pred, X, LoBound); 934 case ICmpInst::ICMP_UGT: 935 case ICmpInst::ICMP_SGT: 936 if (HiOverflow == +1) // High bound greater than input range. 937 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 938 if (HiOverflow == -1) // High bound less than input range. 939 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 940 if (Pred == ICmpInst::ICMP_UGT) 941 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); 942 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); 943 } 944 } 945 946 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)". 947 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, 948 ConstantInt *ShAmt) { 949 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue(); 950 951 // Check that the shift amount is in range. If not, don't perform 952 // undefined shifts. When the shift is visited it will be 953 // simplified. 954 uint32_t TypeBits = CmpRHSV.getBitWidth(); 955 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 956 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 957 return nullptr; 958 959 if (!ICI.isEquality()) { 960 // If we have an unsigned comparison and an ashr, we can't simplify this. 961 // Similarly for signed comparisons with lshr. 962 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr)) 963 return nullptr; 964 965 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv 966 // by a power of 2. Since we already have logic to simplify these, 967 // transform to div and then simplify the resultant comparison. 968 if (Shr->getOpcode() == Instruction::AShr && 969 (!Shr->isExact() || ShAmtVal == TypeBits - 1)) 970 return nullptr; 971 972 // Revisit the shift (to delete it). 973 Worklist.Add(Shr); 974 975 Constant *DivCst = 976 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); 977 978 Value *Tmp = 979 Shr->getOpcode() == Instruction::AShr ? 980 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) : 981 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()); 982 983 ICI.setOperand(0, Tmp); 984 985 // If the builder folded the binop, just return it. 986 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); 987 if (!TheDiv) 988 return &ICI; 989 990 // Otherwise, fold this div/compare. 991 assert(TheDiv->getOpcode() == Instruction::SDiv || 992 TheDiv->getOpcode() == Instruction::UDiv); 993 994 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst)); 995 assert(Res && "This div/cst should have folded!"); 996 return Res; 997 } 998 999 1000 // If we are comparing against bits always shifted out, the 1001 // comparison cannot succeed. 1002 APInt Comp = CmpRHSV << ShAmtVal; 1003 ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp); 1004 if (Shr->getOpcode() == Instruction::LShr) 1005 Comp = Comp.lshr(ShAmtVal); 1006 else 1007 Comp = Comp.ashr(ShAmtVal); 1008 1009 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero. 1010 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1011 Constant *Cst = Builder->getInt1(IsICMP_NE); 1012 return ReplaceInstUsesWith(ICI, Cst); 1013 } 1014 1015 // Otherwise, check to see if the bits shifted out are known to be zero. 1016 // If so, we can compare against the unshifted value: 1017 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 1018 if (Shr->hasOneUse() && Shr->isExact()) 1019 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS); 1020 1021 if (Shr->hasOneUse()) { 1022 // Otherwise strength reduce the shift into an and. 1023 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 1024 Constant *Mask = Builder->getInt(Val); 1025 1026 Value *And = Builder->CreateAnd(Shr->getOperand(0), 1027 Mask, Shr->getName()+".mask"); 1028 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS); 1029 } 1030 return nullptr; 1031 } 1032 1033 /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" -> 1034 /// (icmp eq/ne A, Log2(const2/const1)) -> 1035 /// (icmp eq/ne A, Log2(const2) - Log2(const1)). 1036 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A, 1037 ConstantInt *CI1, 1038 ConstantInt *CI2) { 1039 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1040 1041 auto getConstant = [&I, this](bool IsTrue) { 1042 if (I.getPredicate() == I.ICMP_NE) 1043 IsTrue = !IsTrue; 1044 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue)); 1045 }; 1046 1047 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1048 if (I.getPredicate() == I.ICMP_NE) 1049 Pred = CmpInst::getInversePredicate(Pred); 1050 return new ICmpInst(Pred, LHS, RHS); 1051 }; 1052 1053 APInt AP1 = CI1->getValue(); 1054 APInt AP2 = CI2->getValue(); 1055 1056 // Don't bother doing any work for cases which InstSimplify handles. 1057 if (AP2 == 0) 1058 return nullptr; 1059 bool IsAShr = isa<AShrOperator>(Op); 1060 if (IsAShr) { 1061 if (AP2.isAllOnesValue()) 1062 return nullptr; 1063 if (AP2.isNegative() != AP1.isNegative()) 1064 return nullptr; 1065 if (AP2.sgt(AP1)) 1066 return nullptr; 1067 } 1068 1069 if (!AP1) 1070 // 'A' must be large enough to shift out the highest set bit. 1071 return getICmp(I.ICMP_UGT, A, 1072 ConstantInt::get(A->getType(), AP2.logBase2())); 1073 1074 if (AP1 == AP2) 1075 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1076 1077 int Shift; 1078 if (IsAShr && AP1.isNegative()) 1079 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1080 else 1081 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1082 1083 if (Shift > 0) { 1084 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1085 // There are multiple solutions if we are comparing against -1 and the LHS 1086 // of the ashr is not a power of two. 1087 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1088 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1089 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1090 } else if (AP1 == AP2.lshr(Shift)) { 1091 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1092 } 1093 } 1094 // Shifting const2 will never be equal to const1. 1095 return getConstant(false); 1096 } 1097 1098 /// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" -> 1099 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)). 1100 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A, 1101 ConstantInt *CI1, 1102 ConstantInt *CI2) { 1103 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1104 1105 auto getConstant = [&I, this](bool IsTrue) { 1106 if (I.getPredicate() == I.ICMP_NE) 1107 IsTrue = !IsTrue; 1108 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue)); 1109 }; 1110 1111 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1112 if (I.getPredicate() == I.ICMP_NE) 1113 Pred = CmpInst::getInversePredicate(Pred); 1114 return new ICmpInst(Pred, LHS, RHS); 1115 }; 1116 1117 APInt AP1 = CI1->getValue(); 1118 APInt AP2 = CI2->getValue(); 1119 1120 // Don't bother doing any work for cases which InstSimplify handles. 1121 if (AP2 == 0) 1122 return nullptr; 1123 1124 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1125 1126 if (!AP1 && AP2TrailingZeros != 0) 1127 return getICmp(I.ICMP_UGE, A, 1128 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1129 1130 if (AP1 == AP2) 1131 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1132 1133 // Get the distance between the lowest bits that are set. 1134 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1135 1136 if (Shift > 0 && AP2.shl(Shift) == AP1) 1137 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1138 1139 // Shifting const2 will never be equal to const1. 1140 return getConstant(false); 1141 } 1142 1143 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". 1144 /// 1145 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, 1146 Instruction *LHSI, 1147 ConstantInt *RHS) { 1148 const APInt &RHSV = RHS->getValue(); 1149 1150 switch (LHSI->getOpcode()) { 1151 case Instruction::Trunc: 1152 if (RHS->isOne() && RHSV.getBitWidth() > 1) { 1153 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1154 Value *V = nullptr; 1155 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && 1156 match(LHSI->getOperand(0), m_Signum(m_Value(V)))) 1157 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1158 ConstantInt::get(V->getType(), 1)); 1159 } 1160 if (ICI.isEquality() && LHSI->hasOneUse()) { 1161 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1162 // of the high bits truncated out of x are known. 1163 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), 1164 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1165 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); 1166 computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI); 1167 1168 // If all the high bits are known, we can do this xform. 1169 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { 1170 // Pull in the high bits from known-ones set. 1171 APInt NewRHS = RHS->getValue().zext(SrcBits); 1172 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits); 1173 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1174 Builder->getInt(NewRHS)); 1175 } 1176 } 1177 break; 1178 1179 case Instruction::Xor: // (icmp pred (xor X, XorCst), CI) 1180 if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1181 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1182 // fold the xor. 1183 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || 1184 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { 1185 Value *CompareVal = LHSI->getOperand(0); 1186 1187 // If the sign bit of the XorCst is not set, there is no change to 1188 // the operation, just stop using the Xor. 1189 if (!XorCst->isNegative()) { 1190 ICI.setOperand(0, CompareVal); 1191 Worklist.Add(LHSI); 1192 return &ICI; 1193 } 1194 1195 // Was the old condition true if the operand is positive? 1196 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; 1197 1198 // If so, the new one isn't. 1199 isTrueIfPositive ^= true; 1200 1201 if (isTrueIfPositive) 1202 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, 1203 SubOne(RHS)); 1204 else 1205 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, 1206 AddOne(RHS)); 1207 } 1208 1209 if (LHSI->hasOneUse()) { 1210 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) 1211 if (!ICI.isEquality() && XorCst->getValue().isSignBit()) { 1212 const APInt &SignBit = XorCst->getValue(); 1213 ICmpInst::Predicate Pred = ICI.isSigned() 1214 ? ICI.getUnsignedPredicate() 1215 : ICI.getSignedPredicate(); 1216 return new ICmpInst(Pred, LHSI->getOperand(0), 1217 Builder->getInt(RHSV ^ SignBit)); 1218 } 1219 1220 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) 1221 if (!ICI.isEquality() && XorCst->isMaxValue(true)) { 1222 const APInt &NotSignBit = XorCst->getValue(); 1223 ICmpInst::Predicate Pred = ICI.isSigned() 1224 ? ICI.getUnsignedPredicate() 1225 : ICI.getSignedPredicate(); 1226 Pred = ICI.getSwappedPredicate(Pred); 1227 return new ICmpInst(Pred, LHSI->getOperand(0), 1228 Builder->getInt(RHSV ^ NotSignBit)); 1229 } 1230 } 1231 1232 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) 1233 // iff -C is a power of 2 1234 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && 1235 XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2()) 1236 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst); 1237 1238 // (icmp ult (xor X, C), -C) -> (icmp uge X, C) 1239 // iff -C is a power of 2 1240 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && 1241 XorCst->getValue() == -RHSV && RHSV.isPowerOf2()) 1242 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst); 1243 } 1244 break; 1245 case Instruction::And: // (icmp pred (and X, AndCst), RHS) 1246 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && 1247 LHSI->getOperand(0)->hasOneUse()) { 1248 ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1)); 1249 1250 // If the LHS is an AND of a truncating cast, we can widen the 1251 // and/compare to be the input width without changing the value 1252 // produced, eliminating a cast. 1253 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { 1254 // We can do this transformation if either the AND constant does not 1255 // have its sign bit set or if it is an equality comparison. 1256 // Extending a relational comparison when we're checking the sign 1257 // bit would not work. 1258 if (ICI.isEquality() || 1259 (!AndCst->isNegative() && RHSV.isNonNegative())) { 1260 Value *NewAnd = 1261 Builder->CreateAnd(Cast->getOperand(0), 1262 ConstantExpr::getZExt(AndCst, Cast->getSrcTy())); 1263 NewAnd->takeName(LHSI); 1264 return new ICmpInst(ICI.getPredicate(), NewAnd, 1265 ConstantExpr::getZExt(RHS, Cast->getSrcTy())); 1266 } 1267 } 1268 1269 // If the LHS is an AND of a zext, and we have an equality compare, we can 1270 // shrink the and/compare to the smaller type, eliminating the cast. 1271 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) { 1272 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy()); 1273 // Make sure we don't compare the upper bits, SimplifyDemandedBits 1274 // should fold the icmp to true/false in that case. 1275 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) { 1276 Value *NewAnd = 1277 Builder->CreateAnd(Cast->getOperand(0), 1278 ConstantExpr::getTrunc(AndCst, Ty)); 1279 NewAnd->takeName(LHSI); 1280 return new ICmpInst(ICI.getPredicate(), NewAnd, 1281 ConstantExpr::getTrunc(RHS, Ty)); 1282 } 1283 } 1284 1285 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare 1286 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This 1287 // happens a LOT in code produced by the C front-end, for bitfield 1288 // access. 1289 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); 1290 if (Shift && !Shift->isShift()) 1291 Shift = nullptr; 1292 1293 ConstantInt *ShAmt; 1294 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr; 1295 1296 // This seemingly simple opportunity to fold away a shift turns out to 1297 // be rather complicated. See PR17827 1298 // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details. 1299 if (ShAmt) { 1300 bool CanFold = false; 1301 unsigned ShiftOpcode = Shift->getOpcode(); 1302 if (ShiftOpcode == Instruction::AShr) { 1303 // There may be some constraints that make this possible, 1304 // but nothing simple has been discovered yet. 1305 CanFold = false; 1306 } else if (ShiftOpcode == Instruction::Shl) { 1307 // For a left shift, we can fold if the comparison is not signed. 1308 // We can also fold a signed comparison if the mask value and 1309 // comparison value are not negative. These constraints may not be 1310 // obvious, but we can prove that they are correct using an SMT 1311 // solver. 1312 if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative())) 1313 CanFold = true; 1314 } else if (ShiftOpcode == Instruction::LShr) { 1315 // For a logical right shift, we can fold if the comparison is not 1316 // signed. We can also fold a signed comparison if the shifted mask 1317 // value and the shifted comparison value are not negative. 1318 // These constraints may not be obvious, but we can prove that they 1319 // are correct using an SMT solver. 1320 if (!ICI.isSigned()) 1321 CanFold = true; 1322 else { 1323 ConstantInt *ShiftedAndCst = 1324 cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt)); 1325 ConstantInt *ShiftedRHSCst = 1326 cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt)); 1327 1328 if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative()) 1329 CanFold = true; 1330 } 1331 } 1332 1333 if (CanFold) { 1334 Constant *NewCst; 1335 if (ShiftOpcode == Instruction::Shl) 1336 NewCst = ConstantExpr::getLShr(RHS, ShAmt); 1337 else 1338 NewCst = ConstantExpr::getShl(RHS, ShAmt); 1339 1340 // Check to see if we are shifting out any of the bits being 1341 // compared. 1342 if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) { 1343 // If we shifted bits out, the fold is not going to work out. 1344 // As a special case, check to see if this means that the 1345 // result is always true or false now. 1346 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1347 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 1348 if (ICI.getPredicate() == ICmpInst::ICMP_NE) 1349 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 1350 } else { 1351 ICI.setOperand(1, NewCst); 1352 Constant *NewAndCst; 1353 if (ShiftOpcode == Instruction::Shl) 1354 NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt); 1355 else 1356 NewAndCst = ConstantExpr::getShl(AndCst, ShAmt); 1357 LHSI->setOperand(1, NewAndCst); 1358 LHSI->setOperand(0, Shift->getOperand(0)); 1359 Worklist.Add(Shift); // Shift is dead. 1360 return &ICI; 1361 } 1362 } 1363 } 1364 1365 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is 1366 // preferable because it allows the C<<Y expression to be hoisted out 1367 // of a loop if Y is invariant and X is not. 1368 if (Shift && Shift->hasOneUse() && RHSV == 0 && 1369 ICI.isEquality() && !Shift->isArithmeticShift() && 1370 !isa<Constant>(Shift->getOperand(0))) { 1371 // Compute C << Y. 1372 Value *NS; 1373 if (Shift->getOpcode() == Instruction::LShr) { 1374 NS = Builder->CreateShl(AndCst, Shift->getOperand(1)); 1375 } else { 1376 // Insert a logical shift. 1377 NS = Builder->CreateLShr(AndCst, Shift->getOperand(1)); 1378 } 1379 1380 // Compute X & (C << Y). 1381 Value *NewAnd = 1382 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); 1383 1384 ICI.setOperand(0, NewAnd); 1385 return &ICI; 1386 } 1387 1388 // (icmp pred (and (or (lshr X, Y), X), 1), 0) --> 1389 // (icmp pred (and X, (or (shl 1, Y), 1), 0)) 1390 // 1391 // iff pred isn't signed 1392 { 1393 Value *X, *Y, *LShr; 1394 if (!ICI.isSigned() && RHSV == 0) { 1395 if (match(LHSI->getOperand(1), m_One())) { 1396 Constant *One = cast<Constant>(LHSI->getOperand(1)); 1397 Value *Or = LHSI->getOperand(0); 1398 if (match(Or, m_Or(m_Value(LShr), m_Value(X))) && 1399 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) { 1400 unsigned UsesRemoved = 0; 1401 if (LHSI->hasOneUse()) 1402 ++UsesRemoved; 1403 if (Or->hasOneUse()) 1404 ++UsesRemoved; 1405 if (LShr->hasOneUse()) 1406 ++UsesRemoved; 1407 Value *NewOr = nullptr; 1408 // Compute X & ((1 << Y) | 1) 1409 if (auto *C = dyn_cast<Constant>(Y)) { 1410 if (UsesRemoved >= 1) 1411 NewOr = 1412 ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1413 } else { 1414 if (UsesRemoved >= 3) 1415 NewOr = Builder->CreateOr(Builder->CreateShl(One, Y, 1416 LShr->getName(), 1417 /*HasNUW=*/true), 1418 One, Or->getName()); 1419 } 1420 if (NewOr) { 1421 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName()); 1422 ICI.setOperand(0, NewAnd); 1423 return &ICI; 1424 } 1425 } 1426 } 1427 } 1428 } 1429 1430 // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any 1431 // bit set in (X & AndCst) will produce a result greater than RHSV. 1432 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) { 1433 unsigned NTZ = AndCst->getValue().countTrailingZeros(); 1434 if ((NTZ < AndCst->getBitWidth()) && 1435 APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV)) 1436 return new ICmpInst(ICmpInst::ICMP_NE, LHSI, 1437 Constant::getNullValue(RHS->getType())); 1438 } 1439 } 1440 1441 // Try to optimize things like "A[i]&42 == 0" to index computations. 1442 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) { 1443 if (GetElementPtrInst *GEP = 1444 dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1445 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1446 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1447 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) { 1448 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1)); 1449 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C)) 1450 return Res; 1451 } 1452 } 1453 1454 // X & -C == -C -> X > u ~C 1455 // X & -C != -C -> X <= u ~C 1456 // iff C is a power of 2 1457 if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2()) 1458 return new ICmpInst( 1459 ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT 1460 : ICmpInst::ICMP_ULE, 1461 LHSI->getOperand(0), SubOne(RHS)); 1462 1463 // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1) 1464 // iff C is a power of 2 1465 if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) { 1466 if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1467 const APInt &AI = CI->getValue(); 1468 int32_t ExactLogBase2 = AI.exactLogBase2(); 1469 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1470 Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1); 1471 Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy); 1472 return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ 1473 ? ICmpInst::ICMP_SGE 1474 : ICmpInst::ICMP_SLT, 1475 Trunc, Constant::getNullValue(NTy)); 1476 } 1477 } 1478 } 1479 break; 1480 1481 case Instruction::Or: { 1482 if (RHS->isOne()) { 1483 // icmp slt signum(V) 1 --> icmp slt V, 1 1484 Value *V = nullptr; 1485 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && 1486 match(LHSI, m_Signum(m_Value(V)))) 1487 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1488 ConstantInt::get(V->getType(), 1)); 1489 } 1490 1491 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse()) 1492 break; 1493 Value *P, *Q; 1494 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1495 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1496 // -> and (icmp eq P, null), (icmp eq Q, null). 1497 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P, 1498 Constant::getNullValue(P->getType())); 1499 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q, 1500 Constant::getNullValue(Q->getType())); 1501 Instruction *Op; 1502 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1503 Op = BinaryOperator::CreateAnd(ICIP, ICIQ); 1504 else 1505 Op = BinaryOperator::CreateOr(ICIP, ICIQ); 1506 return Op; 1507 } 1508 break; 1509 } 1510 1511 case Instruction::Mul: { // (icmp pred (mul X, Val), CI) 1512 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1513 if (!Val) break; 1514 1515 // If this is a signed comparison to 0 and the mul is sign preserving, 1516 // use the mul LHS operand instead. 1517 ICmpInst::Predicate pred = ICI.getPredicate(); 1518 if (isSignTest(pred, RHS) && !Val->isZero() && 1519 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1520 return new ICmpInst(Val->isNegative() ? 1521 ICmpInst::getSwappedPredicate(pred) : pred, 1522 LHSI->getOperand(0), 1523 Constant::getNullValue(RHS->getType())); 1524 1525 break; 1526 } 1527 1528 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) 1529 uint32_t TypeBits = RHSV.getBitWidth(); 1530 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1531 if (!ShAmt) { 1532 Value *X; 1533 // (1 << X) pred P2 -> X pred Log2(P2) 1534 if (match(LHSI, m_Shl(m_One(), m_Value(X)))) { 1535 bool RHSVIsPowerOf2 = RHSV.isPowerOf2(); 1536 ICmpInst::Predicate Pred = ICI.getPredicate(); 1537 if (ICI.isUnsigned()) { 1538 if (!RHSVIsPowerOf2) { 1539 // (1 << X) < 30 -> X <= 4 1540 // (1 << X) <= 30 -> X <= 4 1541 // (1 << X) >= 30 -> X > 4 1542 // (1 << X) > 30 -> X > 4 1543 if (Pred == ICmpInst::ICMP_ULT) 1544 Pred = ICmpInst::ICMP_ULE; 1545 else if (Pred == ICmpInst::ICMP_UGE) 1546 Pred = ICmpInst::ICMP_UGT; 1547 } 1548 unsigned RHSLog2 = RHSV.logBase2(); 1549 1550 // (1 << X) >= 2147483648 -> X >= 31 -> X == 31 1551 // (1 << X) < 2147483648 -> X < 31 -> X != 31 1552 if (RHSLog2 == TypeBits-1) { 1553 if (Pred == ICmpInst::ICMP_UGE) 1554 Pred = ICmpInst::ICMP_EQ; 1555 else if (Pred == ICmpInst::ICMP_ULT) 1556 Pred = ICmpInst::ICMP_NE; 1557 } 1558 1559 return new ICmpInst(Pred, X, 1560 ConstantInt::get(RHS->getType(), RHSLog2)); 1561 } else if (ICI.isSigned()) { 1562 if (RHSV.isAllOnesValue()) { 1563 // (1 << X) <= -1 -> X == 31 1564 if (Pred == ICmpInst::ICMP_SLE) 1565 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1566 ConstantInt::get(RHS->getType(), TypeBits-1)); 1567 1568 // (1 << X) > -1 -> X != 31 1569 if (Pred == ICmpInst::ICMP_SGT) 1570 return new ICmpInst(ICmpInst::ICMP_NE, X, 1571 ConstantInt::get(RHS->getType(), TypeBits-1)); 1572 } else if (!RHSV) { 1573 // (1 << X) < 0 -> X == 31 1574 // (1 << X) <= 0 -> X == 31 1575 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1576 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1577 ConstantInt::get(RHS->getType(), TypeBits-1)); 1578 1579 // (1 << X) >= 0 -> X != 31 1580 // (1 << X) > 0 -> X != 31 1581 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1582 return new ICmpInst(ICmpInst::ICMP_NE, X, 1583 ConstantInt::get(RHS->getType(), TypeBits-1)); 1584 } 1585 } else if (ICI.isEquality()) { 1586 if (RHSVIsPowerOf2) 1587 return new ICmpInst( 1588 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2())); 1589 } 1590 } 1591 break; 1592 } 1593 1594 // Check that the shift amount is in range. If not, don't perform 1595 // undefined shifts. When the shift is visited it will be 1596 // simplified. 1597 if (ShAmt->uge(TypeBits)) 1598 break; 1599 1600 if (ICI.isEquality()) { 1601 // If we are comparing against bits always shifted out, the 1602 // comparison cannot succeed. 1603 Constant *Comp = 1604 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), 1605 ShAmt); 1606 if (Comp != RHS) {// Comparing against a bit that we know is zero. 1607 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1608 Constant *Cst = Builder->getInt1(IsICMP_NE); 1609 return ReplaceInstUsesWith(ICI, Cst); 1610 } 1611 1612 // If the shift is NUW, then it is just shifting out zeros, no need for an 1613 // AND. 1614 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap()) 1615 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1616 ConstantExpr::getLShr(RHS, ShAmt)); 1617 1618 // If the shift is NSW and we compare to 0, then it is just shifting out 1619 // sign bits, no need for an AND either. 1620 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0) 1621 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1622 ConstantExpr::getLShr(RHS, ShAmt)); 1623 1624 if (LHSI->hasOneUse()) { 1625 // Otherwise strength reduce the shift into an and. 1626 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 1627 Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits, 1628 TypeBits - ShAmtVal)); 1629 1630 Value *And = 1631 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); 1632 return new ICmpInst(ICI.getPredicate(), And, 1633 ConstantExpr::getLShr(RHS, ShAmt)); 1634 } 1635 } 1636 1637 // If this is a signed comparison to 0 and the shift is sign preserving, 1638 // use the shift LHS operand instead. 1639 ICmpInst::Predicate pred = ICI.getPredicate(); 1640 if (isSignTest(pred, RHS) && 1641 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1642 return new ICmpInst(pred, 1643 LHSI->getOperand(0), 1644 Constant::getNullValue(RHS->getType())); 1645 1646 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1647 bool TrueIfSigned = false; 1648 if (LHSI->hasOneUse() && 1649 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { 1650 // (X << 31) <s 0 --> (X&1) != 0 1651 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(), 1652 APInt::getOneBitSet(TypeBits, 1653 TypeBits-ShAmt->getZExtValue()-1)); 1654 Value *And = 1655 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); 1656 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 1657 And, Constant::getNullValue(And->getType())); 1658 } 1659 1660 // Transform (icmp pred iM (shl iM %v, N), CI) 1661 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N)) 1662 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N. 1663 // This enables to get rid of the shift in favor of a trunc which can be 1664 // free on the target. It has the additional benefit of comparing to a 1665 // smaller constant, which will be target friendly. 1666 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1); 1667 if (LHSI->hasOneUse() && 1668 Amt != 0 && RHSV.countTrailingZeros() >= Amt) { 1669 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt); 1670 Constant *NCI = ConstantExpr::getTrunc( 1671 ConstantExpr::getAShr(RHS, 1672 ConstantInt::get(RHS->getType(), Amt)), 1673 NTy); 1674 return new ICmpInst(ICI.getPredicate(), 1675 Builder->CreateTrunc(LHSI->getOperand(0), NTy), 1676 NCI); 1677 } 1678 1679 break; 1680 } 1681 1682 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) 1683 case Instruction::AShr: { 1684 // Handle equality comparisons of shift-by-constant. 1685 BinaryOperator *BO = cast<BinaryOperator>(LHSI); 1686 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1687 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt)) 1688 return Res; 1689 } 1690 1691 // Handle exact shr's. 1692 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) { 1693 if (RHSV.isMinValue()) 1694 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS); 1695 } 1696 break; 1697 } 1698 1699 case Instruction::SDiv: 1700 case Instruction::UDiv: 1701 // Fold: icmp pred ([us]div X, C1), C2 -> range test 1702 // Fold this div into the comparison, producing a range check. 1703 // Determine, based on the divide type, what the range is being 1704 // checked. If there is an overflow on the low or high side, remember 1705 // it, otherwise compute the range [low, hi) bounding the new value. 1706 // See: InsertRangeTest above for the kinds of replacements possible. 1707 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) 1708 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), 1709 DivRHS)) 1710 return R; 1711 break; 1712 1713 case Instruction::Sub: { 1714 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0)); 1715 if (!LHSC) break; 1716 const APInt &LHSV = LHSC->getValue(); 1717 1718 // C1-X <u C2 -> (X|(C2-1)) == C1 1719 // iff C1 & (C2-1) == C2-1 1720 // C2 is a power of 2 1721 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 1722 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1)) 1723 return new ICmpInst(ICmpInst::ICMP_EQ, 1724 Builder->CreateOr(LHSI->getOperand(1), RHSV - 1), 1725 LHSC); 1726 1727 // C1-X >u C2 -> (X|C2) != C1 1728 // iff C1 & C2 == C2 1729 // C2+1 is a power of 2 1730 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 1731 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV) 1732 return new ICmpInst(ICmpInst::ICMP_NE, 1733 Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC); 1734 break; 1735 } 1736 1737 case Instruction::Add: 1738 // Fold: icmp pred (add X, C1), C2 1739 if (!ICI.isEquality()) { 1740 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1741 if (!LHSC) break; 1742 const APInt &LHSV = LHSC->getValue(); 1743 1744 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) 1745 .subtract(LHSV); 1746 1747 if (ICI.isSigned()) { 1748 if (CR.getLower().isSignBit()) { 1749 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), 1750 Builder->getInt(CR.getUpper())); 1751 } else if (CR.getUpper().isSignBit()) { 1752 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), 1753 Builder->getInt(CR.getLower())); 1754 } 1755 } else { 1756 if (CR.getLower().isMinValue()) { 1757 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), 1758 Builder->getInt(CR.getUpper())); 1759 } else if (CR.getUpper().isMinValue()) { 1760 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), 1761 Builder->getInt(CR.getLower())); 1762 } 1763 } 1764 1765 // X-C1 <u C2 -> (X & -C2) == C1 1766 // iff C1 & (C2-1) == 0 1767 // C2 is a power of 2 1768 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 1769 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0) 1770 return new ICmpInst(ICmpInst::ICMP_EQ, 1771 Builder->CreateAnd(LHSI->getOperand(0), -RHSV), 1772 ConstantExpr::getNeg(LHSC)); 1773 1774 // X-C1 >u C2 -> (X & ~C2) != C1 1775 // iff C1 & C2 == 0 1776 // C2+1 is a power of 2 1777 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 1778 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0) 1779 return new ICmpInst(ICmpInst::ICMP_NE, 1780 Builder->CreateAnd(LHSI->getOperand(0), ~RHSV), 1781 ConstantExpr::getNeg(LHSC)); 1782 } 1783 break; 1784 } 1785 1786 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. 1787 if (ICI.isEquality()) { 1788 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1789 1790 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 1791 // the second operand is a constant, simplify a bit. 1792 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { 1793 switch (BO->getOpcode()) { 1794 case Instruction::SRem: 1795 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 1796 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ 1797 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); 1798 if (V.sgt(1) && V.isPowerOf2()) { 1799 Value *NewRem = 1800 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), 1801 BO->getName()); 1802 return new ICmpInst(ICI.getPredicate(), NewRem, 1803 Constant::getNullValue(BO->getType())); 1804 } 1805 } 1806 break; 1807 case Instruction::Add: 1808 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 1809 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1810 if (BO->hasOneUse()) 1811 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1812 ConstantExpr::getSub(RHS, BOp1C)); 1813 } else if (RHSV == 0) { 1814 // Replace ((add A, B) != 0) with (A != -B) if A or B is 1815 // efficiently invertible, or if the add has just this one use. 1816 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 1817 1818 if (Value *NegVal = dyn_castNegVal(BOp1)) 1819 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); 1820 if (Value *NegVal = dyn_castNegVal(BOp0)) 1821 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); 1822 if (BO->hasOneUse()) { 1823 Value *Neg = Builder->CreateNeg(BOp1); 1824 Neg->takeName(BO); 1825 return new ICmpInst(ICI.getPredicate(), BOp0, Neg); 1826 } 1827 } 1828 break; 1829 case Instruction::Xor: 1830 // For the xor case, we can xor two constants together, eliminating 1831 // the explicit xor. 1832 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { 1833 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1834 ConstantExpr::getXor(RHS, BOC)); 1835 } else if (RHSV == 0) { 1836 // Replace ((xor A, B) != 0) with (A != B) 1837 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1838 BO->getOperand(1)); 1839 } 1840 break; 1841 case Instruction::Sub: 1842 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants. 1843 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) { 1844 if (BO->hasOneUse()) 1845 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1), 1846 ConstantExpr::getSub(BOp0C, RHS)); 1847 } else if (RHSV == 0) { 1848 // Replace ((sub A, B) != 0) with (A != B) 1849 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1850 BO->getOperand(1)); 1851 } 1852 break; 1853 case Instruction::Or: 1854 // If bits are being or'd in that are not present in the constant we 1855 // are comparing against, then the comparison could never succeed! 1856 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1857 Constant *NotCI = ConstantExpr::getNot(RHS); 1858 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) 1859 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 1860 } 1861 break; 1862 1863 case Instruction::And: 1864 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1865 // If bits are being compared against that are and'd out, then the 1866 // comparison can never succeed! 1867 if ((RHSV & ~BOC->getValue()) != 0) 1868 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 1869 1870 // If we have ((X & C) == C), turn it into ((X & C) != 0). 1871 if (RHS == BOC && RHSV.isPowerOf2()) 1872 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : 1873 ICmpInst::ICMP_NE, LHSI, 1874 Constant::getNullValue(RHS->getType())); 1875 1876 // Don't perform the following transforms if the AND has multiple uses 1877 if (!BO->hasOneUse()) 1878 break; 1879 1880 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 1881 if (BOC->getValue().isSignBit()) { 1882 Value *X = BO->getOperand(0); 1883 Constant *Zero = Constant::getNullValue(X->getType()); 1884 ICmpInst::Predicate pred = isICMP_NE ? 1885 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1886 return new ICmpInst(pred, X, Zero); 1887 } 1888 1889 // ((X & ~7) == 0) --> X < 8 1890 if (RHSV == 0 && isHighOnes(BOC)) { 1891 Value *X = BO->getOperand(0); 1892 Constant *NegX = ConstantExpr::getNeg(BOC); 1893 ICmpInst::Predicate pred = isICMP_NE ? 1894 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1895 return new ICmpInst(pred, X, NegX); 1896 } 1897 } 1898 break; 1899 case Instruction::Mul: 1900 if (RHSV == 0 && BO->hasNoSignedWrap()) { 1901 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1902 // The trivial case (mul X, 0) is handled by InstSimplify 1903 // General case : (mul X, C) != 0 iff X != 0 1904 // (mul X, C) == 0 iff X == 0 1905 if (!BOC->isZero()) 1906 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1907 Constant::getNullValue(RHS->getType())); 1908 } 1909 } 1910 break; 1911 default: break; 1912 } 1913 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { 1914 // Handle icmp {eq|ne} <intrinsic>, intcst. 1915 switch (II->getIntrinsicID()) { 1916 case Intrinsic::bswap: 1917 Worklist.Add(II); 1918 ICI.setOperand(0, II->getArgOperand(0)); 1919 ICI.setOperand(1, Builder->getInt(RHSV.byteSwap())); 1920 return &ICI; 1921 case Intrinsic::ctlz: 1922 case Intrinsic::cttz: 1923 // ctz(A) == bitwidth(a) -> A == 0 and likewise for != 1924 if (RHSV == RHS->getType()->getBitWidth()) { 1925 Worklist.Add(II); 1926 ICI.setOperand(0, II->getArgOperand(0)); 1927 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0)); 1928 return &ICI; 1929 } 1930 break; 1931 case Intrinsic::ctpop: 1932 // popcount(A) == 0 -> A == 0 and likewise for != 1933 if (RHS->isZero()) { 1934 Worklist.Add(II); 1935 ICI.setOperand(0, II->getArgOperand(0)); 1936 ICI.setOperand(1, RHS); 1937 return &ICI; 1938 } 1939 break; 1940 default: 1941 break; 1942 } 1943 } 1944 } 1945 return nullptr; 1946 } 1947 1948 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). 1949 /// We only handle extending casts so far. 1950 /// 1951 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { 1952 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); 1953 Value *LHSCIOp = LHSCI->getOperand(0); 1954 Type *SrcTy = LHSCIOp->getType(); 1955 Type *DestTy = LHSCI->getType(); 1956 Value *RHSCIOp; 1957 1958 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 1959 // integer type is the same size as the pointer type. 1960 if (LHSCI->getOpcode() == Instruction::PtrToInt && 1961 DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { 1962 Value *RHSOp = nullptr; 1963 if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) { 1964 Value *RHSCIOp = RHSC->getOperand(0); 1965 if (RHSCIOp->getType()->getPointerAddressSpace() == 1966 LHSCIOp->getType()->getPointerAddressSpace()) { 1967 RHSOp = RHSC->getOperand(0); 1968 // If the pointer types don't match, insert a bitcast. 1969 if (LHSCIOp->getType() != RHSOp->getType()) 1970 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); 1971 } 1972 } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) 1973 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 1974 1975 if (RHSOp) 1976 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); 1977 } 1978 1979 // The code below only handles extension cast instructions, so far. 1980 // Enforce this. 1981 if (LHSCI->getOpcode() != Instruction::ZExt && 1982 LHSCI->getOpcode() != Instruction::SExt) 1983 return nullptr; 1984 1985 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 1986 bool isSignedCmp = ICI.isSigned(); 1987 1988 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { 1989 // Not an extension from the same type? 1990 RHSCIOp = CI->getOperand(0); 1991 if (RHSCIOp->getType() != LHSCIOp->getType()) 1992 return nullptr; 1993 1994 // If the signedness of the two casts doesn't agree (i.e. one is a sext 1995 // and the other is a zext), then we can't handle this. 1996 if (CI->getOpcode() != LHSCI->getOpcode()) 1997 return nullptr; 1998 1999 // Deal with equality cases early. 2000 if (ICI.isEquality()) 2001 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 2002 2003 // A signed comparison of sign extended values simplifies into a 2004 // signed comparison. 2005 if (isSignedCmp && isSignedExt) 2006 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 2007 2008 // The other three cases all fold into an unsigned comparison. 2009 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 2010 } 2011 2012 // If we aren't dealing with a constant on the RHS, exit early 2013 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); 2014 if (!CI) 2015 return nullptr; 2016 2017 // Compute the constant that would happen if we truncated to SrcTy then 2018 // reextended to DestTy. 2019 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); 2020 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), 2021 Res1, DestTy); 2022 2023 // If the re-extended constant didn't change... 2024 if (Res2 == CI) { 2025 // Deal with equality cases early. 2026 if (ICI.isEquality()) 2027 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 2028 2029 // A signed comparison of sign extended values simplifies into a 2030 // signed comparison. 2031 if (isSignedExt && isSignedCmp) 2032 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 2033 2034 // The other three cases all fold into an unsigned comparison. 2035 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1); 2036 } 2037 2038 // The re-extended constant changed so the constant cannot be represented 2039 // in the shorter type. Consequently, we cannot emit a simple comparison. 2040 // All the cases that fold to true or false will have already been handled 2041 // by SimplifyICmpInst, so only deal with the tricky case. 2042 2043 if (isSignedCmp || !isSignedExt) 2044 return nullptr; 2045 2046 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 2047 // should have been folded away previously and not enter in here. 2048 2049 // We're performing an unsigned comp with a sign extended value. 2050 // This is true if the input is >= 0. [aka >s -1] 2051 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 2052 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName()); 2053 2054 // Finally, return the value computed. 2055 if (ICI.getPredicate() == ICmpInst::ICMP_ULT) 2056 return ReplaceInstUsesWith(ICI, Result); 2057 2058 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 2059 return BinaryOperator::CreateNot(Result); 2060 } 2061 2062 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form: 2063 /// I = icmp ugt (add (add A, B), CI2), CI1 2064 /// If this is of the form: 2065 /// sum = a + b 2066 /// if (sum+128 >u 255) 2067 /// Then replace it with llvm.sadd.with.overflow.i8. 2068 /// 2069 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 2070 ConstantInt *CI2, ConstantInt *CI1, 2071 InstCombiner &IC) { 2072 // The transformation we're trying to do here is to transform this into an 2073 // llvm.sadd.with.overflow. To do this, we have to replace the original add 2074 // with a narrower add, and discard the add-with-constant that is part of the 2075 // range check (if we can't eliminate it, this isn't profitable). 2076 2077 // In order to eliminate the add-with-constant, the compare can be its only 2078 // use. 2079 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 2080 if (!AddWithCst->hasOneUse()) return nullptr; 2081 2082 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 2083 if (!CI2->getValue().isPowerOf2()) return nullptr; 2084 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 2085 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr; 2086 2087 // The width of the new add formed is 1 more than the bias. 2088 ++NewWidth; 2089 2090 // Check to see that CI1 is an all-ones value with NewWidth bits. 2091 if (CI1->getBitWidth() == NewWidth || 2092 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 2093 return nullptr; 2094 2095 // This is only really a signed overflow check if the inputs have been 2096 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 2097 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 2098 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 2099 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 2100 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 2101 return nullptr; 2102 2103 // In order to replace the original add with a narrower 2104 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 2105 // and truncates that discard the high bits of the add. Verify that this is 2106 // the case. 2107 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 2108 for (User *U : OrigAdd->users()) { 2109 if (U == AddWithCst) continue; 2110 2111 // Only accept truncates for now. We would really like a nice recursive 2112 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 2113 // chain to see which bits of a value are actually demanded. If the 2114 // original add had another add which was then immediately truncated, we 2115 // could still do the transformation. 2116 TruncInst *TI = dyn_cast<TruncInst>(U); 2117 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 2118 return nullptr; 2119 } 2120 2121 // If the pattern matches, truncate the inputs to the narrower type and 2122 // use the sadd_with_overflow intrinsic to efficiently compute both the 2123 // result and the overflow bit. 2124 Module *M = I.getParent()->getParent()->getParent(); 2125 2126 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 2127 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, 2128 NewType); 2129 2130 InstCombiner::BuilderTy *Builder = IC.Builder; 2131 2132 // Put the new code above the original add, in case there are any uses of the 2133 // add between the add and the compare. 2134 Builder->SetInsertPoint(OrigAdd); 2135 2136 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc"); 2137 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc"); 2138 CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd"); 2139 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); 2140 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); 2141 2142 // The inner add was the result of the narrow add, zero extended to the 2143 // wider type. Replace it with the result computed by the intrinsic. 2144 IC.ReplaceInstUsesWith(*OrigAdd, ZExt); 2145 2146 // The original icmp gets replaced with the overflow value. 2147 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 2148 } 2149 2150 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, 2151 Value *RHS, Instruction &OrigI, 2152 Value *&Result, Constant *&Overflow) { 2153 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 2154 std::swap(LHS, RHS); 2155 2156 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { 2157 Result = OpResult; 2158 Overflow = OverflowVal; 2159 if (ReuseName) 2160 Result->takeName(&OrigI); 2161 return true; 2162 }; 2163 2164 // If the overflow check was an add followed by a compare, the insertion point 2165 // may be pointing to the compare. We want to insert the new instructions 2166 // before the add in case there are uses of the add between the add and the 2167 // compare. 2168 Builder->SetInsertPoint(&OrigI); 2169 2170 switch (OCF) { 2171 case OCF_INVALID: 2172 llvm_unreachable("bad overflow check kind!"); 2173 2174 case OCF_UNSIGNED_ADD: { 2175 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); 2176 if (OR == OverflowResult::NeverOverflows) 2177 return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(), 2178 true); 2179 2180 if (OR == OverflowResult::AlwaysOverflows) 2181 return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true); 2182 } 2183 // FALL THROUGH uadd into sadd 2184 case OCF_SIGNED_ADD: { 2185 // X + 0 -> {X, false} 2186 if (match(RHS, m_Zero())) 2187 return SetResult(LHS, Builder->getFalse(), false); 2188 2189 // We can strength reduce this signed add into a regular add if we can prove 2190 // that it will never overflow. 2191 if (OCF == OCF_SIGNED_ADD) 2192 if (WillNotOverflowSignedAdd(LHS, RHS, OrigI)) 2193 return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(), 2194 true); 2195 break; 2196 } 2197 2198 case OCF_UNSIGNED_SUB: 2199 case OCF_SIGNED_SUB: { 2200 // X - 0 -> {X, false} 2201 if (match(RHS, m_Zero())) 2202 return SetResult(LHS, Builder->getFalse(), false); 2203 2204 if (OCF == OCF_SIGNED_SUB) { 2205 if (WillNotOverflowSignedSub(LHS, RHS, OrigI)) 2206 return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(), 2207 true); 2208 } else { 2209 if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI)) 2210 return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(), 2211 true); 2212 } 2213 break; 2214 } 2215 2216 case OCF_UNSIGNED_MUL: { 2217 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); 2218 if (OR == OverflowResult::NeverOverflows) 2219 return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(), 2220 true); 2221 if (OR == OverflowResult::AlwaysOverflows) 2222 return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true); 2223 } // FALL THROUGH 2224 case OCF_SIGNED_MUL: 2225 // X * undef -> undef 2226 if (isa<UndefValue>(RHS)) 2227 return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false); 2228 2229 // X * 0 -> {0, false} 2230 if (match(RHS, m_Zero())) 2231 return SetResult(RHS, Builder->getFalse(), false); 2232 2233 // X * 1 -> {X, false} 2234 if (match(RHS, m_One())) 2235 return SetResult(LHS, Builder->getFalse(), false); 2236 2237 if (OCF == OCF_SIGNED_MUL) 2238 if (WillNotOverflowSignedMul(LHS, RHS, OrigI)) 2239 return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(), 2240 true); 2241 break; 2242 } 2243 2244 return false; 2245 } 2246 2247 /// \brief Recognize and process idiom involving test for multiplication 2248 /// overflow. 2249 /// 2250 /// The caller has matched a pattern of the form: 2251 /// I = cmp u (mul(zext A, zext B), V 2252 /// The function checks if this is a test for overflow and if so replaces 2253 /// multiplication with call to 'mul.with.overflow' intrinsic. 2254 /// 2255 /// \param I Compare instruction. 2256 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 2257 /// the compare instruction. Must be of integer type. 2258 /// \param OtherVal The other argument of compare instruction. 2259 /// \returns Instruction which must replace the compare instruction, NULL if no 2260 /// replacement required. 2261 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal, 2262 Value *OtherVal, InstCombiner &IC) { 2263 // Don't bother doing this transformation for pointers, don't do it for 2264 // vectors. 2265 if (!isa<IntegerType>(MulVal->getType())) 2266 return nullptr; 2267 2268 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 2269 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 2270 auto *MulInstr = dyn_cast<Instruction>(MulVal); 2271 if (!MulInstr) 2272 return nullptr; 2273 assert(MulInstr->getOpcode() == Instruction::Mul); 2274 2275 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 2276 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 2277 assert(LHS->getOpcode() == Instruction::ZExt); 2278 assert(RHS->getOpcode() == Instruction::ZExt); 2279 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 2280 2281 // Calculate type and width of the result produced by mul.with.overflow. 2282 Type *TyA = A->getType(), *TyB = B->getType(); 2283 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 2284 WidthB = TyB->getPrimitiveSizeInBits(); 2285 unsigned MulWidth; 2286 Type *MulType; 2287 if (WidthB > WidthA) { 2288 MulWidth = WidthB; 2289 MulType = TyB; 2290 } else { 2291 MulWidth = WidthA; 2292 MulType = TyA; 2293 } 2294 2295 // In order to replace the original mul with a narrower mul.with.overflow, 2296 // all uses must ignore upper bits of the product. The number of used low 2297 // bits must be not greater than the width of mul.with.overflow. 2298 if (MulVal->hasNUsesOrMore(2)) 2299 for (User *U : MulVal->users()) { 2300 if (U == &I) 2301 continue; 2302 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2303 // Check if truncation ignores bits above MulWidth. 2304 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 2305 if (TruncWidth > MulWidth) 2306 return nullptr; 2307 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2308 // Check if AND ignores bits above MulWidth. 2309 if (BO->getOpcode() != Instruction::And) 2310 return nullptr; 2311 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2312 const APInt &CVal = CI->getValue(); 2313 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 2314 return nullptr; 2315 } 2316 } else { 2317 // Other uses prohibit this transformation. 2318 return nullptr; 2319 } 2320 } 2321 2322 // Recognize patterns 2323 switch (I.getPredicate()) { 2324 case ICmpInst::ICMP_EQ: 2325 case ICmpInst::ICMP_NE: 2326 // Recognize pattern: 2327 // mulval = mul(zext A, zext B) 2328 // cmp eq/neq mulval, zext trunc mulval 2329 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 2330 if (Zext->hasOneUse()) { 2331 Value *ZextArg = Zext->getOperand(0); 2332 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 2333 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 2334 break; //Recognized 2335 } 2336 2337 // Recognize pattern: 2338 // mulval = mul(zext A, zext B) 2339 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 2340 ConstantInt *CI; 2341 Value *ValToMask; 2342 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 2343 if (ValToMask != MulVal) 2344 return nullptr; 2345 const APInt &CVal = CI->getValue() + 1; 2346 if (CVal.isPowerOf2()) { 2347 unsigned MaskWidth = CVal.logBase2(); 2348 if (MaskWidth == MulWidth) 2349 break; // Recognized 2350 } 2351 } 2352 return nullptr; 2353 2354 case ICmpInst::ICMP_UGT: 2355 // Recognize pattern: 2356 // mulval = mul(zext A, zext B) 2357 // cmp ugt mulval, max 2358 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2359 APInt MaxVal = APInt::getMaxValue(MulWidth); 2360 MaxVal = MaxVal.zext(CI->getBitWidth()); 2361 if (MaxVal.eq(CI->getValue())) 2362 break; // Recognized 2363 } 2364 return nullptr; 2365 2366 case ICmpInst::ICMP_UGE: 2367 // Recognize pattern: 2368 // mulval = mul(zext A, zext B) 2369 // cmp uge mulval, max+1 2370 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2371 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2372 if (MaxVal.eq(CI->getValue())) 2373 break; // Recognized 2374 } 2375 return nullptr; 2376 2377 case ICmpInst::ICMP_ULE: 2378 // Recognize pattern: 2379 // mulval = mul(zext A, zext B) 2380 // cmp ule mulval, max 2381 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2382 APInt MaxVal = APInt::getMaxValue(MulWidth); 2383 MaxVal = MaxVal.zext(CI->getBitWidth()); 2384 if (MaxVal.eq(CI->getValue())) 2385 break; // Recognized 2386 } 2387 return nullptr; 2388 2389 case ICmpInst::ICMP_ULT: 2390 // Recognize pattern: 2391 // mulval = mul(zext A, zext B) 2392 // cmp ule mulval, max + 1 2393 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2394 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2395 if (MaxVal.eq(CI->getValue())) 2396 break; // Recognized 2397 } 2398 return nullptr; 2399 2400 default: 2401 return nullptr; 2402 } 2403 2404 InstCombiner::BuilderTy *Builder = IC.Builder; 2405 Builder->SetInsertPoint(MulInstr); 2406 Module *M = I.getParent()->getParent()->getParent(); 2407 2408 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 2409 Value *MulA = A, *MulB = B; 2410 if (WidthA < MulWidth) 2411 MulA = Builder->CreateZExt(A, MulType); 2412 if (WidthB < MulWidth) 2413 MulB = Builder->CreateZExt(B, MulType); 2414 Value *F = 2415 Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType); 2416 CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul"); 2417 IC.Worklist.Add(MulInstr); 2418 2419 // If there are uses of mul result other than the comparison, we know that 2420 // they are truncation or binary AND. Change them to use result of 2421 // mul.with.overflow and adjust properly mask/size. 2422 if (MulVal->hasNUsesOrMore(2)) { 2423 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value"); 2424 for (User *U : MulVal->users()) { 2425 if (U == &I || U == OtherVal) 2426 continue; 2427 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2428 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 2429 IC.ReplaceInstUsesWith(*TI, Mul); 2430 else 2431 TI->setOperand(0, Mul); 2432 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2433 assert(BO->getOpcode() == Instruction::And); 2434 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 2435 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 2436 APInt ShortMask = CI->getValue().trunc(MulWidth); 2437 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask); 2438 Instruction *Zext = 2439 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType())); 2440 IC.Worklist.Add(Zext); 2441 IC.ReplaceInstUsesWith(*BO, Zext); 2442 } else { 2443 llvm_unreachable("Unexpected Binary operation"); 2444 } 2445 IC.Worklist.Add(cast<Instruction>(U)); 2446 } 2447 } 2448 if (isa<Instruction>(OtherVal)) 2449 IC.Worklist.Add(cast<Instruction>(OtherVal)); 2450 2451 // The original icmp gets replaced with the overflow value, maybe inverted 2452 // depending on predicate. 2453 bool Inverse = false; 2454 switch (I.getPredicate()) { 2455 case ICmpInst::ICMP_NE: 2456 break; 2457 case ICmpInst::ICMP_EQ: 2458 Inverse = true; 2459 break; 2460 case ICmpInst::ICMP_UGT: 2461 case ICmpInst::ICMP_UGE: 2462 if (I.getOperand(0) == MulVal) 2463 break; 2464 Inverse = true; 2465 break; 2466 case ICmpInst::ICMP_ULT: 2467 case ICmpInst::ICMP_ULE: 2468 if (I.getOperand(1) == MulVal) 2469 break; 2470 Inverse = true; 2471 break; 2472 default: 2473 llvm_unreachable("Unexpected predicate"); 2474 } 2475 if (Inverse) { 2476 Value *Res = Builder->CreateExtractValue(Call, 1); 2477 return BinaryOperator::CreateNot(Res); 2478 } 2479 2480 return ExtractValueInst::Create(Call, 1); 2481 } 2482 2483 // DemandedBitsLHSMask - When performing a comparison against a constant, 2484 // it is possible that not all the bits in the LHS are demanded. This helper 2485 // method computes the mask that IS demanded. 2486 static APInt DemandedBitsLHSMask(ICmpInst &I, 2487 unsigned BitWidth, bool isSignCheck) { 2488 if (isSignCheck) 2489 return APInt::getSignBit(BitWidth); 2490 2491 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 2492 if (!CI) return APInt::getAllOnesValue(BitWidth); 2493 const APInt &RHS = CI->getValue(); 2494 2495 switch (I.getPredicate()) { 2496 // For a UGT comparison, we don't care about any bits that 2497 // correspond to the trailing ones of the comparand. The value of these 2498 // bits doesn't impact the outcome of the comparison, because any value 2499 // greater than the RHS must differ in a bit higher than these due to carry. 2500 case ICmpInst::ICMP_UGT: { 2501 unsigned trailingOnes = RHS.countTrailingOnes(); 2502 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); 2503 return ~lowBitsSet; 2504 } 2505 2506 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 2507 // Any value less than the RHS must differ in a higher bit because of carries. 2508 case ICmpInst::ICMP_ULT: { 2509 unsigned trailingZeros = RHS.countTrailingZeros(); 2510 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); 2511 return ~lowBitsSet; 2512 } 2513 2514 default: 2515 return APInt::getAllOnesValue(BitWidth); 2516 } 2517 2518 } 2519 2520 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst 2521 /// should be swapped. 2522 /// The decision is based on how many times these two operands are reused 2523 /// as subtract operands and their positions in those instructions. 2524 /// The rational is that several architectures use the same instruction for 2525 /// both subtract and cmp, thus it is better if the order of those operands 2526 /// match. 2527 /// \return true if Op0 and Op1 should be swapped. 2528 static bool swapMayExposeCSEOpportunities(const Value * Op0, 2529 const Value * Op1) { 2530 // Filter out pointer value as those cannot appears directly in subtract. 2531 // FIXME: we may want to go through inttoptrs or bitcasts. 2532 if (Op0->getType()->isPointerTy()) 2533 return false; 2534 // Count every uses of both Op0 and Op1 in a subtract. 2535 // Each time Op0 is the first operand, count -1: swapping is bad, the 2536 // subtract has already the same layout as the compare. 2537 // Each time Op0 is the second operand, count +1: swapping is good, the 2538 // subtract has a different layout as the compare. 2539 // At the end, if the benefit is greater than 0, Op0 should come second to 2540 // expose more CSE opportunities. 2541 int GlobalSwapBenefits = 0; 2542 for (const User *U : Op0->users()) { 2543 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U); 2544 if (!BinOp || BinOp->getOpcode() != Instruction::Sub) 2545 continue; 2546 // If Op0 is the first argument, this is not beneficial to swap the 2547 // arguments. 2548 int LocalSwapBenefits = -1; 2549 unsigned Op1Idx = 1; 2550 if (BinOp->getOperand(Op1Idx) == Op0) { 2551 Op1Idx = 0; 2552 LocalSwapBenefits = 1; 2553 } 2554 if (BinOp->getOperand(Op1Idx) != Op1) 2555 continue; 2556 GlobalSwapBenefits += LocalSwapBenefits; 2557 } 2558 return GlobalSwapBenefits > 0; 2559 } 2560 2561 /// \brief Check that one use is in the same block as the definition and all 2562 /// other uses are in blocks dominated by a given block 2563 /// 2564 /// \param DI Definition 2565 /// \param UI Use 2566 /// \param DB Block that must dominate all uses of \p DI outside 2567 /// the parent block 2568 /// \return true when \p UI is the only use of \p DI in the parent block 2569 /// and all other uses of \p DI are in blocks dominated by \p DB. 2570 /// 2571 bool InstCombiner::dominatesAllUses(const Instruction *DI, 2572 const Instruction *UI, 2573 const BasicBlock *DB) const { 2574 assert(DI && UI && "Instruction not defined\n"); 2575 // ignore incomplete definitions 2576 if (!DI->getParent()) 2577 return false; 2578 // DI and UI must be in the same block 2579 if (DI->getParent() != UI->getParent()) 2580 return false; 2581 // Protect from self-referencing blocks 2582 if (DI->getParent() == DB) 2583 return false; 2584 // DominatorTree available? 2585 if (!DT) 2586 return false; 2587 for (const User *U : DI->users()) { 2588 auto *Usr = cast<Instruction>(U); 2589 if (Usr != UI && !DT->dominates(DB, Usr->getParent())) 2590 return false; 2591 } 2592 return true; 2593 } 2594 2595 /// 2596 /// true when the instruction sequence within a block is select-cmp-br. 2597 /// 2598 static bool isChainSelectCmpBranch(const SelectInst *SI) { 2599 const BasicBlock *BB = SI->getParent(); 2600 if (!BB) 2601 return false; 2602 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 2603 if (!BI || BI->getNumSuccessors() != 2) 2604 return false; 2605 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 2606 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 2607 return false; 2608 return true; 2609 } 2610 2611 /// 2612 /// \brief True when a select result is replaced by one of its operands 2613 /// in select-icmp sequence. This will eventually result in the elimination 2614 /// of the select. 2615 /// 2616 /// \param SI Select instruction 2617 /// \param Icmp Compare instruction 2618 /// \param SIOpd Operand that replaces the select 2619 /// 2620 /// Notes: 2621 /// - The replacement is global and requires dominator information 2622 /// - The caller is responsible for the actual replacement 2623 /// 2624 /// Example: 2625 /// 2626 /// entry: 2627 /// %4 = select i1 %3, %C* %0, %C* null 2628 /// %5 = icmp eq %C* %4, null 2629 /// br i1 %5, label %9, label %7 2630 /// ... 2631 /// ; <label>:7 ; preds = %entry 2632 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 2633 /// ... 2634 /// 2635 /// can be transformed to 2636 /// 2637 /// %5 = icmp eq %C* %0, null 2638 /// %6 = select i1 %3, i1 %5, i1 true 2639 /// br i1 %6, label %9, label %7 2640 /// ... 2641 /// ; <label>:7 ; preds = %entry 2642 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 2643 /// 2644 /// Similar when the first operand of the select is a constant or/and 2645 /// the compare is for not equal rather than equal. 2646 /// 2647 /// NOTE: The function is only called when the select and compare constants 2648 /// are equal, the optimization can work only for EQ predicates. This is not a 2649 /// major restriction since a NE compare should be 'normalized' to an equal 2650 /// compare, which usually happens in the combiner and test case 2651 /// select-cmp-br.ll 2652 /// checks for it. 2653 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 2654 const ICmpInst *Icmp, 2655 const unsigned SIOpd) { 2656 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 2657 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 2658 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 2659 // The check for the unique predecessor is not the best that can be 2660 // done. But it protects efficiently against cases like when SI's 2661 // home block has two successors, Succ and Succ1, and Succ1 predecessor 2662 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 2663 // replaced can be reached on either path. So the uniqueness check 2664 // guarantees that the path all uses of SI (outside SI's parent) are on 2665 // is disjoint from all other paths out of SI. But that information 2666 // is more expensive to compute, and the trade-off here is in favor 2667 // of compile-time. 2668 if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 2669 NumSel++; 2670 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 2671 return true; 2672 } 2673 } 2674 return false; 2675 } 2676 2677 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 2678 bool Changed = false; 2679 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2680 unsigned Op0Cplxity = getComplexity(Op0); 2681 unsigned Op1Cplxity = getComplexity(Op1); 2682 2683 /// Orders the operands of the compare so that they are listed from most 2684 /// complex to least complex. This puts constants before unary operators, 2685 /// before binary operators. 2686 if (Op0Cplxity < Op1Cplxity || 2687 (Op0Cplxity == Op1Cplxity && 2688 swapMayExposeCSEOpportunities(Op0, Op1))) { 2689 I.swapOperands(); 2690 std::swap(Op0, Op1); 2691 Changed = true; 2692 } 2693 2694 if (Value *V = 2695 SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I)) 2696 return ReplaceInstUsesWith(I, V); 2697 2698 // comparing -val or val with non-zero is the same as just comparing val 2699 // ie, abs(val) != 0 -> val != 0 2700 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) 2701 { 2702 Value *Cond, *SelectTrue, *SelectFalse; 2703 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 2704 m_Value(SelectFalse)))) { 2705 if (Value *V = dyn_castNegVal(SelectTrue)) { 2706 if (V == SelectFalse) 2707 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 2708 } 2709 else if (Value *V = dyn_castNegVal(SelectFalse)) { 2710 if (V == SelectTrue) 2711 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 2712 } 2713 } 2714 } 2715 2716 Type *Ty = Op0->getType(); 2717 2718 // icmp's with boolean values can always be turned into bitwise operations 2719 if (Ty->isIntegerTy(1)) { 2720 switch (I.getPredicate()) { 2721 default: llvm_unreachable("Invalid icmp instruction!"); 2722 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) 2723 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp"); 2724 return BinaryOperator::CreateNot(Xor); 2725 } 2726 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B 2727 return BinaryOperator::CreateXor(Op0, Op1); 2728 2729 case ICmpInst::ICMP_UGT: 2730 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult 2731 // FALL THROUGH 2732 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B 2733 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 2734 return BinaryOperator::CreateAnd(Not, Op1); 2735 } 2736 case ICmpInst::ICMP_SGT: 2737 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt 2738 // FALL THROUGH 2739 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B 2740 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 2741 return BinaryOperator::CreateAnd(Not, Op0); 2742 } 2743 case ICmpInst::ICMP_UGE: 2744 std::swap(Op0, Op1); // Change icmp uge -> icmp ule 2745 // FALL THROUGH 2746 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B 2747 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 2748 return BinaryOperator::CreateOr(Not, Op1); 2749 } 2750 case ICmpInst::ICMP_SGE: 2751 std::swap(Op0, Op1); // Change icmp sge -> icmp sle 2752 // FALL THROUGH 2753 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B 2754 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 2755 return BinaryOperator::CreateOr(Not, Op0); 2756 } 2757 } 2758 } 2759 2760 unsigned BitWidth = 0; 2761 if (Ty->isIntOrIntVectorTy()) 2762 BitWidth = Ty->getScalarSizeInBits(); 2763 else // Get pointer size. 2764 BitWidth = DL.getTypeSizeInBits(Ty->getScalarType()); 2765 2766 bool isSignBit = false; 2767 2768 // See if we are doing a comparison with a constant. 2769 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2770 Value *A = nullptr, *B = nullptr; 2771 2772 // Match the following pattern, which is a common idiom when writing 2773 // overflow-safe integer arithmetic function. The source performs an 2774 // addition in wider type, and explicitly checks for overflow using 2775 // comparisons against INT_MIN and INT_MAX. Simplify this by using the 2776 // sadd_with_overflow intrinsic. 2777 // 2778 // TODO: This could probably be generalized to handle other overflow-safe 2779 // operations if we worked out the formulas to compute the appropriate 2780 // magic constants. 2781 // 2782 // sum = a + b 2783 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 2784 { 2785 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 2786 if (I.getPredicate() == ICmpInst::ICMP_UGT && 2787 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 2788 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this)) 2789 return Res; 2790 } 2791 2792 // The following transforms are only 'worth it' if the only user of the 2793 // subtraction is the icmp. 2794 if (Op0->hasOneUse()) { 2795 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) 2796 if (I.isEquality() && CI->isZero() && 2797 match(Op0, m_Sub(m_Value(A), m_Value(B)))) 2798 return new ICmpInst(I.getPredicate(), A, B); 2799 2800 // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B) 2801 if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() && 2802 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 2803 return new ICmpInst(ICmpInst::ICMP_SGE, A, B); 2804 2805 // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B) 2806 if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() && 2807 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 2808 return new ICmpInst(ICmpInst::ICMP_SGT, A, B); 2809 2810 // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B) 2811 if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() && 2812 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 2813 return new ICmpInst(ICmpInst::ICMP_SLT, A, B); 2814 2815 // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B) 2816 if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() && 2817 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 2818 return new ICmpInst(ICmpInst::ICMP_SLE, A, B); 2819 } 2820 2821 // If we have an icmp le or icmp ge instruction, turn it into the 2822 // appropriate icmp lt or icmp gt instruction. This allows us to rely on 2823 // them being folded in the code below. The SimplifyICmpInst code has 2824 // already handled the edge cases for us, so we just assert on them. 2825 switch (I.getPredicate()) { 2826 default: break; 2827 case ICmpInst::ICMP_ULE: 2828 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE 2829 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, 2830 Builder->getInt(CI->getValue()+1)); 2831 case ICmpInst::ICMP_SLE: 2832 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE 2833 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 2834 Builder->getInt(CI->getValue()+1)); 2835 case ICmpInst::ICMP_UGE: 2836 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE 2837 return new ICmpInst(ICmpInst::ICMP_UGT, Op0, 2838 Builder->getInt(CI->getValue()-1)); 2839 case ICmpInst::ICMP_SGE: 2840 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE 2841 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 2842 Builder->getInt(CI->getValue()-1)); 2843 } 2844 2845 if (I.isEquality()) { 2846 ConstantInt *CI2; 2847 if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) || 2848 match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) { 2849 // (icmp eq/ne (ashr/lshr const2, A), const1) 2850 if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2)) 2851 return Inst; 2852 } 2853 if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) { 2854 // (icmp eq/ne (shl const2, A), const1) 2855 if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2)) 2856 return Inst; 2857 } 2858 } 2859 2860 // If this comparison is a normal comparison, it demands all 2861 // bits, if it is a sign bit comparison, it only demands the sign bit. 2862 bool UnusedBit; 2863 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); 2864 } 2865 2866 // See if we can fold the comparison based on range information we can get 2867 // by checking whether bits are known to be zero or one in the input. 2868 if (BitWidth != 0) { 2869 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); 2870 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); 2871 2872 if (SimplifyDemandedBits(I.getOperandUse(0), 2873 DemandedBitsLHSMask(I, BitWidth, isSignBit), 2874 Op0KnownZero, Op0KnownOne, 0)) 2875 return &I; 2876 if (SimplifyDemandedBits(I.getOperandUse(1), 2877 APInt::getAllOnesValue(BitWidth), Op1KnownZero, 2878 Op1KnownOne, 0)) 2879 return &I; 2880 2881 // Given the known and unknown bits, compute a range that the LHS could be 2882 // in. Compute the Min, Max and RHS values based on the known bits. For the 2883 // EQ and NE we use unsigned values. 2884 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 2885 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 2886 if (I.isSigned()) { 2887 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 2888 Op0Min, Op0Max); 2889 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 2890 Op1Min, Op1Max); 2891 } else { 2892 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 2893 Op0Min, Op0Max); 2894 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 2895 Op1Min, Op1Max); 2896 } 2897 2898 // If Min and Max are known to be the same, then SimplifyDemandedBits 2899 // figured out that the LHS is a constant. Just constant fold this now so 2900 // that code below can assume that Min != Max. 2901 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 2902 return new ICmpInst(I.getPredicate(), 2903 ConstantInt::get(Op0->getType(), Op0Min), Op1); 2904 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 2905 return new ICmpInst(I.getPredicate(), Op0, 2906 ConstantInt::get(Op1->getType(), Op1Min)); 2907 2908 // Based on the range information we know about the LHS, see if we can 2909 // simplify this comparison. For example, (x&4) < 8 is always true. 2910 switch (I.getPredicate()) { 2911 default: llvm_unreachable("Unknown icmp opcode!"); 2912 case ICmpInst::ICMP_EQ: { 2913 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 2914 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2915 2916 // If all bits are known zero except for one, then we know at most one 2917 // bit is set. If the comparison is against zero, then this is a check 2918 // to see if *that* bit is set. 2919 APInt Op0KnownZeroInverted = ~Op0KnownZero; 2920 if (~Op1KnownZero == 0) { 2921 // If the LHS is an AND with the same constant, look through it. 2922 Value *LHS = nullptr; 2923 ConstantInt *LHSC = nullptr; 2924 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 2925 LHSC->getValue() != Op0KnownZeroInverted) 2926 LHS = Op0; 2927 2928 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 2929 // then turn "((1 << x)&8) == 0" into "x != 3". 2930 // or turn "((1 << x)&7) == 0" into "x > 2". 2931 Value *X = nullptr; 2932 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 2933 APInt ValToCheck = Op0KnownZeroInverted; 2934 if (ValToCheck.isPowerOf2()) { 2935 unsigned CmpVal = ValToCheck.countTrailingZeros(); 2936 return new ICmpInst(ICmpInst::ICMP_NE, X, 2937 ConstantInt::get(X->getType(), CmpVal)); 2938 } else if ((++ValToCheck).isPowerOf2()) { 2939 unsigned CmpVal = ValToCheck.countTrailingZeros() - 1; 2940 return new ICmpInst(ICmpInst::ICMP_UGT, X, 2941 ConstantInt::get(X->getType(), CmpVal)); 2942 } 2943 } 2944 2945 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 2946 // then turn "((8 >>u x)&1) == 0" into "x != 3". 2947 const APInt *CI; 2948 if (Op0KnownZeroInverted == 1 && 2949 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 2950 return new ICmpInst(ICmpInst::ICMP_NE, X, 2951 ConstantInt::get(X->getType(), 2952 CI->countTrailingZeros())); 2953 } 2954 2955 break; 2956 } 2957 case ICmpInst::ICMP_NE: { 2958 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 2959 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2960 2961 // If all bits are known zero except for one, then we know at most one 2962 // bit is set. If the comparison is against zero, then this is a check 2963 // to see if *that* bit is set. 2964 APInt Op0KnownZeroInverted = ~Op0KnownZero; 2965 if (~Op1KnownZero == 0) { 2966 // If the LHS is an AND with the same constant, look through it. 2967 Value *LHS = nullptr; 2968 ConstantInt *LHSC = nullptr; 2969 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 2970 LHSC->getValue() != Op0KnownZeroInverted) 2971 LHS = Op0; 2972 2973 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 2974 // then turn "((1 << x)&8) != 0" into "x == 3". 2975 // or turn "((1 << x)&7) != 0" into "x < 3". 2976 Value *X = nullptr; 2977 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 2978 APInt ValToCheck = Op0KnownZeroInverted; 2979 if (ValToCheck.isPowerOf2()) { 2980 unsigned CmpVal = ValToCheck.countTrailingZeros(); 2981 return new ICmpInst(ICmpInst::ICMP_EQ, X, 2982 ConstantInt::get(X->getType(), CmpVal)); 2983 } else if ((++ValToCheck).isPowerOf2()) { 2984 unsigned CmpVal = ValToCheck.countTrailingZeros(); 2985 return new ICmpInst(ICmpInst::ICMP_ULT, X, 2986 ConstantInt::get(X->getType(), CmpVal)); 2987 } 2988 } 2989 2990 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 2991 // then turn "((8 >>u x)&1) != 0" into "x == 3". 2992 const APInt *CI; 2993 if (Op0KnownZeroInverted == 1 && 2994 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 2995 return new ICmpInst(ICmpInst::ICMP_EQ, X, 2996 ConstantInt::get(X->getType(), 2997 CI->countTrailingZeros())); 2998 } 2999 3000 break; 3001 } 3002 case ICmpInst::ICMP_ULT: 3003 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 3004 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3005 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 3006 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3007 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 3008 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3009 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3010 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C 3011 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3012 Builder->getInt(CI->getValue()-1)); 3013 3014 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear 3015 if (CI->isMinValue(true)) 3016 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 3017 Constant::getAllOnesValue(Op0->getType())); 3018 } 3019 break; 3020 case ICmpInst::ICMP_UGT: 3021 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 3022 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3023 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 3024 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3025 3026 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 3027 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3028 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3029 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C 3030 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3031 Builder->getInt(CI->getValue()+1)); 3032 3033 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set 3034 if (CI->isMaxValue(true)) 3035 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 3036 Constant::getNullValue(Op0->getType())); 3037 } 3038 break; 3039 case ICmpInst::ICMP_SLT: 3040 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 3041 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3042 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 3043 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3044 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 3045 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3046 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3047 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C 3048 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3049 Builder->getInt(CI->getValue()-1)); 3050 } 3051 break; 3052 case ICmpInst::ICMP_SGT: 3053 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 3054 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3055 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 3056 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3057 3058 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 3059 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3060 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3061 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C 3062 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3063 Builder->getInt(CI->getValue()+1)); 3064 } 3065 break; 3066 case ICmpInst::ICMP_SGE: 3067 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 3068 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 3069 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3070 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 3071 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3072 break; 3073 case ICmpInst::ICMP_SLE: 3074 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 3075 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 3076 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3077 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 3078 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3079 break; 3080 case ICmpInst::ICMP_UGE: 3081 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 3082 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 3083 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3084 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 3085 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3086 break; 3087 case ICmpInst::ICMP_ULE: 3088 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 3089 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 3090 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3091 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 3092 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3093 break; 3094 } 3095 3096 // Turn a signed comparison into an unsigned one if both operands 3097 // are known to have the same sign. 3098 if (I.isSigned() && 3099 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || 3100 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) 3101 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 3102 } 3103 3104 // Test if the ICmpInst instruction is used exclusively by a select as 3105 // part of a minimum or maximum operation. If so, refrain from doing 3106 // any other folding. This helps out other analyses which understand 3107 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 3108 // and CodeGen. And in this case, at least one of the comparison 3109 // operands has at least one user besides the compare (the select), 3110 // which would often largely negate the benefit of folding anyway. 3111 if (I.hasOneUse()) 3112 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 3113 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 3114 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 3115 return nullptr; 3116 3117 // See if we are doing a comparison between a constant and an instruction that 3118 // can be folded into the comparison. 3119 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3120 // Since the RHS is a ConstantInt (CI), if the left hand side is an 3121 // instruction, see if that instruction also has constants so that the 3122 // instruction can be folded into the icmp 3123 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3124 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) 3125 return Res; 3126 } 3127 3128 // Handle icmp with constant (but not simple integer constant) RHS 3129 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 3130 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3131 switch (LHSI->getOpcode()) { 3132 case Instruction::GetElementPtr: 3133 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3134 if (RHSC->isNullValue() && 3135 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3136 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 3137 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3138 break; 3139 case Instruction::PHI: 3140 // Only fold icmp into the PHI if the phi and icmp are in the same 3141 // block. If in the same block, we're encouraging jump threading. If 3142 // not, we are just pessimizing the code by making an i1 phi. 3143 if (LHSI->getParent() == I.getParent()) 3144 if (Instruction *NV = FoldOpIntoPhi(I)) 3145 return NV; 3146 break; 3147 case Instruction::Select: { 3148 // If either operand of the select is a constant, we can fold the 3149 // comparison into the select arms, which will cause one to be 3150 // constant folded and the select turned into a bitwise or. 3151 Value *Op1 = nullptr, *Op2 = nullptr; 3152 ConstantInt *CI = 0; 3153 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3154 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3155 CI = dyn_cast<ConstantInt>(Op1); 3156 } 3157 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3158 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3159 CI = dyn_cast<ConstantInt>(Op2); 3160 } 3161 3162 // We only want to perform this transformation if it will not lead to 3163 // additional code. This is true if either both sides of the select 3164 // fold to a constant (in which case the icmp is replaced with a select 3165 // which will usually simplify) or this is the only user of the 3166 // select (in which case we are trading a select+icmp for a simpler 3167 // select+icmp) or all uses of the select can be replaced based on 3168 // dominance information ("Global cases"). 3169 bool Transform = false; 3170 if (Op1 && Op2) 3171 Transform = true; 3172 else if (Op1 || Op2) { 3173 // Local case 3174 if (LHSI->hasOneUse()) 3175 Transform = true; 3176 // Global cases 3177 else if (CI && !CI->isZero()) 3178 // When Op1 is constant try replacing select with second operand. 3179 // Otherwise Op2 is constant and try replacing select with first 3180 // operand. 3181 Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, 3182 Op1 ? 2 : 1); 3183 } 3184 if (Transform) { 3185 if (!Op1) 3186 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), 3187 RHSC, I.getName()); 3188 if (!Op2) 3189 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), 3190 RHSC, I.getName()); 3191 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3192 } 3193 break; 3194 } 3195 case Instruction::IntToPtr: 3196 // icmp pred inttoptr(X), null -> icmp pred X, 0 3197 if (RHSC->isNullValue() && 3198 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3199 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 3200 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3201 break; 3202 3203 case Instruction::Load: 3204 // Try to optimize things like "A[i] > 4" to index computations. 3205 if (GetElementPtrInst *GEP = 3206 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3207 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3208 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3209 !cast<LoadInst>(LHSI)->isVolatile()) 3210 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3211 return Res; 3212 } 3213 break; 3214 } 3215 } 3216 3217 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 3218 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 3219 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) 3220 return NI; 3221 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 3222 if (Instruction *NI = FoldGEPICmp(GEP, Op0, 3223 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 3224 return NI; 3225 3226 // Test to see if the operands of the icmp are casted versions of other 3227 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 3228 // now. 3229 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 3230 if (Op0->getType()->isPointerTy() && 3231 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 3232 // We keep moving the cast from the left operand over to the right 3233 // operand, where it can often be eliminated completely. 3234 Op0 = CI->getOperand(0); 3235 3236 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 3237 // so eliminate it as well. 3238 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 3239 Op1 = CI2->getOperand(0); 3240 3241 // If Op1 is a constant, we can fold the cast into the constant. 3242 if (Op0->getType() != Op1->getType()) { 3243 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 3244 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 3245 } else { 3246 // Otherwise, cast the RHS right before the icmp 3247 Op1 = Builder->CreateBitCast(Op1, Op0->getType()); 3248 } 3249 } 3250 return new ICmpInst(I.getPredicate(), Op0, Op1); 3251 } 3252 } 3253 3254 if (isa<CastInst>(Op0)) { 3255 // Handle the special case of: icmp (cast bool to X), <cst> 3256 // This comes up when you have code like 3257 // int X = A < B; 3258 // if (X) ... 3259 // For generality, we handle any zero-extension of any operand comparison 3260 // with a constant or another cast from the same type. 3261 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 3262 if (Instruction *R = visitICmpInstWithCastAndCast(I)) 3263 return R; 3264 } 3265 3266 // Special logic for binary operators. 3267 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3268 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3269 if (BO0 || BO1) { 3270 CmpInst::Predicate Pred = I.getPredicate(); 3271 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3272 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3273 NoOp0WrapProblem = ICmpInst::isEquality(Pred) || 3274 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3275 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3276 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3277 NoOp1WrapProblem = ICmpInst::isEquality(Pred) || 3278 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3279 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3280 3281 // Analyze the case when either Op0 or Op1 is an add instruction. 3282 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3283 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3284 if (BO0 && BO0->getOpcode() == Instruction::Add) 3285 A = BO0->getOperand(0), B = BO0->getOperand(1); 3286 if (BO1 && BO1->getOpcode() == Instruction::Add) 3287 C = BO1->getOperand(0), D = BO1->getOperand(1); 3288 3289 // icmp (X+cst) < 0 --> X < -cst 3290 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero())) 3291 if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B)) 3292 if (!RHSC->isMinValue(/*isSigned=*/true)) 3293 return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC)); 3294 3295 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3296 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3297 return new ICmpInst(Pred, A == Op1 ? B : A, 3298 Constant::getNullValue(Op1->getType())); 3299 3300 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3301 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3302 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3303 C == Op0 ? D : C); 3304 3305 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3306 if (A && C && (A == C || A == D || B == C || B == D) && 3307 NoOp0WrapProblem && NoOp1WrapProblem && 3308 // Try not to increase register pressure. 3309 BO0->hasOneUse() && BO1->hasOneUse()) { 3310 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3311 Value *Y, *Z; 3312 if (A == C) { 3313 // C + B == C + D -> B == D 3314 Y = B; 3315 Z = D; 3316 } else if (A == D) { 3317 // D + B == C + D -> B == C 3318 Y = B; 3319 Z = C; 3320 } else if (B == C) { 3321 // A + C == C + D -> A == D 3322 Y = A; 3323 Z = D; 3324 } else { 3325 assert(B == D); 3326 // A + D == C + D -> A == C 3327 Y = A; 3328 Z = C; 3329 } 3330 return new ICmpInst(Pred, Y, Z); 3331 } 3332 3333 // icmp slt (X + -1), Y -> icmp sle X, Y 3334 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3335 match(B, m_AllOnes())) 3336 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3337 3338 // icmp sge (X + -1), Y -> icmp sgt X, Y 3339 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3340 match(B, m_AllOnes())) 3341 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3342 3343 // icmp sle (X + 1), Y -> icmp slt X, Y 3344 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && 3345 match(B, m_One())) 3346 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3347 3348 // icmp sgt (X + 1), Y -> icmp sge X, Y 3349 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && 3350 match(B, m_One())) 3351 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3352 3353 // if C1 has greater magnitude than C2: 3354 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3355 // s.t. C3 = C1 - C2 3356 // 3357 // if C2 has greater magnitude than C1: 3358 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3359 // s.t. C3 = C2 - C1 3360 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3361 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3362 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3363 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3364 const APInt &AP1 = C1->getValue(); 3365 const APInt &AP2 = C2->getValue(); 3366 if (AP1.isNegative() == AP2.isNegative()) { 3367 APInt AP1Abs = C1->getValue().abs(); 3368 APInt AP2Abs = C2->getValue().abs(); 3369 if (AP1Abs.uge(AP2Abs)) { 3370 ConstantInt *C3 = Builder->getInt(AP1 - AP2); 3371 Value *NewAdd = Builder->CreateNSWAdd(A, C3); 3372 return new ICmpInst(Pred, NewAdd, C); 3373 } else { 3374 ConstantInt *C3 = Builder->getInt(AP2 - AP1); 3375 Value *NewAdd = Builder->CreateNSWAdd(C, C3); 3376 return new ICmpInst(Pred, A, NewAdd); 3377 } 3378 } 3379 } 3380 3381 3382 // Analyze the case when either Op0 or Op1 is a sub instruction. 3383 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3384 A = nullptr; B = nullptr; C = nullptr; D = nullptr; 3385 if (BO0 && BO0->getOpcode() == Instruction::Sub) 3386 A = BO0->getOperand(0), B = BO0->getOperand(1); 3387 if (BO1 && BO1->getOpcode() == Instruction::Sub) 3388 C = BO1->getOperand(0), D = BO1->getOperand(1); 3389 3390 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3391 if (A == Op1 && NoOp0WrapProblem) 3392 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3393 3394 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3395 if (C == Op0 && NoOp1WrapProblem) 3396 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3397 3398 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3399 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3400 // Try not to increase register pressure. 3401 BO0->hasOneUse() && BO1->hasOneUse()) 3402 return new ICmpInst(Pred, A, C); 3403 3404 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3405 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3406 // Try not to increase register pressure. 3407 BO0->hasOneUse() && BO1->hasOneUse()) 3408 return new ICmpInst(Pred, D, B); 3409 3410 // icmp (0-X) < cst --> x > -cst 3411 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3412 Value *X; 3413 if (match(BO0, m_Neg(m_Value(X)))) 3414 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 3415 if (!RHSC->isMinValue(/*isSigned=*/true)) 3416 return new ICmpInst(I.getSwappedPredicate(), X, 3417 ConstantExpr::getNeg(RHSC)); 3418 } 3419 3420 BinaryOperator *SRem = nullptr; 3421 // icmp (srem X, Y), Y 3422 if (BO0 && BO0->getOpcode() == Instruction::SRem && 3423 Op1 == BO0->getOperand(1)) 3424 SRem = BO0; 3425 // icmp Y, (srem X, Y) 3426 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3427 Op0 == BO1->getOperand(1)) 3428 SRem = BO1; 3429 if (SRem) { 3430 // We don't check hasOneUse to avoid increasing register pressure because 3431 // the value we use is the same value this instruction was already using. 3432 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3433 default: break; 3434 case ICmpInst::ICMP_EQ: 3435 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3436 case ICmpInst::ICMP_NE: 3437 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3438 case ICmpInst::ICMP_SGT: 3439 case ICmpInst::ICMP_SGE: 3440 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3441 Constant::getAllOnesValue(SRem->getType())); 3442 case ICmpInst::ICMP_SLT: 3443 case ICmpInst::ICMP_SLE: 3444 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3445 Constant::getNullValue(SRem->getType())); 3446 } 3447 } 3448 3449 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && 3450 BO0->hasOneUse() && BO1->hasOneUse() && 3451 BO0->getOperand(1) == BO1->getOperand(1)) { 3452 switch (BO0->getOpcode()) { 3453 default: break; 3454 case Instruction::Add: 3455 case Instruction::Sub: 3456 case Instruction::Xor: 3457 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3458 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3459 BO1->getOperand(0)); 3460 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b 3461 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 3462 if (CI->getValue().isSignBit()) { 3463 ICmpInst::Predicate Pred = I.isSigned() 3464 ? I.getUnsignedPredicate() 3465 : I.getSignedPredicate(); 3466 return new ICmpInst(Pred, BO0->getOperand(0), 3467 BO1->getOperand(0)); 3468 } 3469 3470 if (CI->isMaxValue(true)) { 3471 ICmpInst::Predicate Pred = I.isSigned() 3472 ? I.getUnsignedPredicate() 3473 : I.getSignedPredicate(); 3474 Pred = I.getSwappedPredicate(Pred); 3475 return new ICmpInst(Pred, BO0->getOperand(0), 3476 BO1->getOperand(0)); 3477 } 3478 } 3479 break; 3480 case Instruction::Mul: 3481 if (!I.isEquality()) 3482 break; 3483 3484 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 3485 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask 3486 // Mask = -1 >> count-trailing-zeros(Cst). 3487 if (!CI->isZero() && !CI->isOne()) { 3488 const APInt &AP = CI->getValue(); 3489 ConstantInt *Mask = ConstantInt::get(I.getContext(), 3490 APInt::getLowBitsSet(AP.getBitWidth(), 3491 AP.getBitWidth() - 3492 AP.countTrailingZeros())); 3493 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask); 3494 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask); 3495 return new ICmpInst(I.getPredicate(), And1, And2); 3496 } 3497 } 3498 break; 3499 case Instruction::UDiv: 3500 case Instruction::LShr: 3501 if (I.isSigned()) 3502 break; 3503 // fall-through 3504 case Instruction::SDiv: 3505 case Instruction::AShr: 3506 if (!BO0->isExact() || !BO1->isExact()) 3507 break; 3508 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3509 BO1->getOperand(0)); 3510 case Instruction::Shl: { 3511 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3512 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3513 if (!NUW && !NSW) 3514 break; 3515 if (!NSW && I.isSigned()) 3516 break; 3517 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3518 BO1->getOperand(0)); 3519 } 3520 } 3521 } 3522 3523 if (BO0) { 3524 // Transform A & (L - 1) `ult` L --> L != 0 3525 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3526 auto BitwiseAnd = 3527 m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value())); 3528 3529 if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) { 3530 auto *Zero = Constant::getNullValue(BO0->getType()); 3531 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3532 } 3533 } 3534 } 3535 3536 { Value *A, *B; 3537 // Transform (A & ~B) == 0 --> (A & B) != 0 3538 // and (A & ~B) != 0 --> (A & B) == 0 3539 // if A is a power of 2. 3540 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 3541 match(Op1, m_Zero()) && 3542 isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality()) 3543 return new ICmpInst(I.getInversePredicate(), 3544 Builder->CreateAnd(A, B), 3545 Op1); 3546 3547 // ~x < ~y --> y < x 3548 // ~x < cst --> ~cst < x 3549 if (match(Op0, m_Not(m_Value(A)))) { 3550 if (match(Op1, m_Not(m_Value(B)))) 3551 return new ICmpInst(I.getPredicate(), B, A); 3552 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 3553 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A); 3554 } 3555 3556 Instruction *AddI = nullptr; 3557 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 3558 m_Instruction(AddI))) && 3559 isa<IntegerType>(A->getType())) { 3560 Value *Result; 3561 Constant *Overflow; 3562 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, 3563 Overflow)) { 3564 ReplaceInstUsesWith(*AddI, Result); 3565 return ReplaceInstUsesWith(I, Overflow); 3566 } 3567 } 3568 3569 // (zext a) * (zext b) --> llvm.umul.with.overflow. 3570 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 3571 if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this)) 3572 return R; 3573 } 3574 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 3575 if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this)) 3576 return R; 3577 } 3578 } 3579 3580 if (I.isEquality()) { 3581 Value *A, *B, *C, *D; 3582 3583 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3584 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3585 Value *OtherVal = A == Op1 ? B : A; 3586 return new ICmpInst(I.getPredicate(), OtherVal, 3587 Constant::getNullValue(A->getType())); 3588 } 3589 3590 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3591 // A^c1 == C^c2 --> A == C^(c1^c2) 3592 ConstantInt *C1, *C2; 3593 if (match(B, m_ConstantInt(C1)) && 3594 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { 3595 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue()); 3596 Value *Xor = Builder->CreateXor(C, NC); 3597 return new ICmpInst(I.getPredicate(), A, Xor); 3598 } 3599 3600 // A^B == A^D -> B == D 3601 if (A == C) return new ICmpInst(I.getPredicate(), B, D); 3602 if (A == D) return new ICmpInst(I.getPredicate(), B, C); 3603 if (B == C) return new ICmpInst(I.getPredicate(), A, D); 3604 if (B == D) return new ICmpInst(I.getPredicate(), A, C); 3605 } 3606 } 3607 3608 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 3609 (A == Op0 || B == Op0)) { 3610 // A == (A^B) -> B == 0 3611 Value *OtherVal = A == Op0 ? B : A; 3612 return new ICmpInst(I.getPredicate(), OtherVal, 3613 Constant::getNullValue(A->getType())); 3614 } 3615 3616 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3617 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3618 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3619 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3620 3621 if (A == C) { 3622 X = B; Y = D; Z = A; 3623 } else if (A == D) { 3624 X = B; Y = C; Z = A; 3625 } else if (B == C) { 3626 X = A; Y = D; Z = B; 3627 } else if (B == D) { 3628 X = A; Y = C; Z = B; 3629 } 3630 3631 if (X) { // Build (X^Y) & Z 3632 Op1 = Builder->CreateXor(X, Y); 3633 Op1 = Builder->CreateAnd(Op1, Z); 3634 I.setOperand(0, Op1); 3635 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3636 return &I; 3637 } 3638 } 3639 3640 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3641 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3642 ConstantInt *Cst1; 3643 if ((Op0->hasOneUse() && 3644 match(Op0, m_ZExt(m_Value(A))) && 3645 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3646 (Op1->hasOneUse() && 3647 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3648 match(Op1, m_ZExt(m_Value(A))))) { 3649 APInt Pow2 = Cst1->getValue() + 1; 3650 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3651 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3652 return new ICmpInst(I.getPredicate(), A, 3653 Builder->CreateTrunc(B, A->getType())); 3654 } 3655 3656 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3657 // For lshr and ashr pairs. 3658 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3659 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3660 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3661 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3662 unsigned TypeBits = Cst1->getBitWidth(); 3663 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3664 if (ShAmt < TypeBits && ShAmt != 0) { 3665 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE 3666 ? ICmpInst::ICMP_UGE 3667 : ICmpInst::ICMP_ULT; 3668 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 3669 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3670 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal)); 3671 } 3672 } 3673 3674 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3675 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3676 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3677 unsigned TypeBits = Cst1->getBitWidth(); 3678 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3679 if (ShAmt < TypeBits && ShAmt != 0) { 3680 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 3681 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3682 Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal), 3683 I.getName() + ".mask"); 3684 return new ICmpInst(I.getPredicate(), And, 3685 Constant::getNullValue(Cst1->getType())); 3686 } 3687 } 3688 3689 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3690 // "icmp (and X, mask), cst" 3691 uint64_t ShAmt = 0; 3692 if (Op0->hasOneUse() && 3693 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), 3694 m_ConstantInt(ShAmt))))) && 3695 match(Op1, m_ConstantInt(Cst1)) && 3696 // Only do this when A has multiple uses. This is most important to do 3697 // when it exposes other optimizations. 3698 !A->hasOneUse()) { 3699 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3700 3701 if (ShAmt < ASize) { 3702 APInt MaskV = 3703 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3704 MaskV <<= ShAmt; 3705 3706 APInt CmpV = Cst1->getValue().zext(ASize); 3707 CmpV <<= ShAmt; 3708 3709 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); 3710 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); 3711 } 3712 } 3713 } 3714 3715 // The 'cmpxchg' instruction returns an aggregate containing the old value and 3716 // an i1 which indicates whether or not we successfully did the swap. 3717 // 3718 // Replace comparisons between the old value and the expected value with the 3719 // indicator that 'cmpxchg' returns. 3720 // 3721 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 3722 // spuriously fail. In those cases, the old value may equal the expected 3723 // value but it is possible for the swap to not occur. 3724 if (I.getPredicate() == ICmpInst::ICMP_EQ) 3725 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 3726 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 3727 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 3728 !ACXI->isWeak()) 3729 return ExtractValueInst::Create(ACXI, 1); 3730 3731 { 3732 Value *X; ConstantInt *Cst; 3733 // icmp X+Cst, X 3734 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 3735 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate()); 3736 3737 // icmp X, X+Cst 3738 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 3739 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate()); 3740 } 3741 return Changed ? &I : nullptr; 3742 } 3743 3744 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. 3745 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, 3746 Instruction *LHSI, 3747 Constant *RHSC) { 3748 if (!isa<ConstantFP>(RHSC)) return nullptr; 3749 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 3750 3751 // Get the width of the mantissa. We don't want to hack on conversions that 3752 // might lose information from the integer, e.g. "i64 -> float" 3753 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 3754 if (MantissaWidth == -1) return nullptr; // Unknown. 3755 3756 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 3757 3758 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 3759 3760 if (I.isEquality()) { 3761 FCmpInst::Predicate P = I.getPredicate(); 3762 bool IsExact = false; 3763 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 3764 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 3765 3766 // If the floating point constant isn't an integer value, we know if we will 3767 // ever compare equal / not equal to it. 3768 if (!IsExact) { 3769 // TODO: Can never be -0.0 and other non-representable values 3770 APFloat RHSRoundInt(RHS); 3771 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 3772 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 3773 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 3774 return ReplaceInstUsesWith(I, Builder->getFalse()); 3775 3776 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 3777 return ReplaceInstUsesWith(I, Builder->getTrue()); 3778 } 3779 } 3780 3781 // TODO: If the constant is exactly representable, is it always OK to do 3782 // equality compares as integer? 3783 } 3784 3785 // Check to see that the input is converted from an integer type that is small 3786 // enough that preserves all bits. TODO: check here for "known" sign bits. 3787 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 3788 unsigned InputSize = IntTy->getScalarSizeInBits(); 3789 3790 // Following test does NOT adjust InputSize downwards for signed inputs, 3791 // because the most negative value still requires all the mantissa bits 3792 // to distinguish it from one less than that value. 3793 if ((int)InputSize > MantissaWidth) { 3794 // Conversion would lose accuracy. Check if loss can impact comparison. 3795 int Exp = ilogb(RHS); 3796 if (Exp == APFloat::IEK_Inf) { 3797 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 3798 if (MaxExponent < (int)InputSize - !LHSUnsigned) 3799 // Conversion could create infinity. 3800 return nullptr; 3801 } else { 3802 // Note that if RHS is zero or NaN, then Exp is negative 3803 // and first condition is trivially false. 3804 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 3805 // Conversion could affect comparison. 3806 return nullptr; 3807 } 3808 } 3809 3810 // Otherwise, we can potentially simplify the comparison. We know that it 3811 // will always come through as an integer value and we know the constant is 3812 // not a NAN (it would have been previously simplified). 3813 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 3814 3815 ICmpInst::Predicate Pred; 3816 switch (I.getPredicate()) { 3817 default: llvm_unreachable("Unexpected predicate!"); 3818 case FCmpInst::FCMP_UEQ: 3819 case FCmpInst::FCMP_OEQ: 3820 Pred = ICmpInst::ICMP_EQ; 3821 break; 3822 case FCmpInst::FCMP_UGT: 3823 case FCmpInst::FCMP_OGT: 3824 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 3825 break; 3826 case FCmpInst::FCMP_UGE: 3827 case FCmpInst::FCMP_OGE: 3828 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 3829 break; 3830 case FCmpInst::FCMP_ULT: 3831 case FCmpInst::FCMP_OLT: 3832 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 3833 break; 3834 case FCmpInst::FCMP_ULE: 3835 case FCmpInst::FCMP_OLE: 3836 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 3837 break; 3838 case FCmpInst::FCMP_UNE: 3839 case FCmpInst::FCMP_ONE: 3840 Pred = ICmpInst::ICMP_NE; 3841 break; 3842 case FCmpInst::FCMP_ORD: 3843 return ReplaceInstUsesWith(I, Builder->getTrue()); 3844 case FCmpInst::FCMP_UNO: 3845 return ReplaceInstUsesWith(I, Builder->getFalse()); 3846 } 3847 3848 // Now we know that the APFloat is a normal number, zero or inf. 3849 3850 // See if the FP constant is too large for the integer. For example, 3851 // comparing an i8 to 300.0. 3852 unsigned IntWidth = IntTy->getScalarSizeInBits(); 3853 3854 if (!LHSUnsigned) { 3855 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 3856 // and large values. 3857 APFloat SMax(RHS.getSemantics()); 3858 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 3859 APFloat::rmNearestTiesToEven); 3860 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 3861 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 3862 Pred == ICmpInst::ICMP_SLE) 3863 return ReplaceInstUsesWith(I, Builder->getTrue()); 3864 return ReplaceInstUsesWith(I, Builder->getFalse()); 3865 } 3866 } else { 3867 // If the RHS value is > UnsignedMax, fold the comparison. This handles 3868 // +INF and large values. 3869 APFloat UMax(RHS.getSemantics()); 3870 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 3871 APFloat::rmNearestTiesToEven); 3872 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 3873 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 3874 Pred == ICmpInst::ICMP_ULE) 3875 return ReplaceInstUsesWith(I, Builder->getTrue()); 3876 return ReplaceInstUsesWith(I, Builder->getFalse()); 3877 } 3878 } 3879 3880 if (!LHSUnsigned) { 3881 // See if the RHS value is < SignedMin. 3882 APFloat SMin(RHS.getSemantics()); 3883 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 3884 APFloat::rmNearestTiesToEven); 3885 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 3886 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 3887 Pred == ICmpInst::ICMP_SGE) 3888 return ReplaceInstUsesWith(I, Builder->getTrue()); 3889 return ReplaceInstUsesWith(I, Builder->getFalse()); 3890 } 3891 } else { 3892 // See if the RHS value is < UnsignedMin. 3893 APFloat SMin(RHS.getSemantics()); 3894 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 3895 APFloat::rmNearestTiesToEven); 3896 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 3897 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 3898 Pred == ICmpInst::ICMP_UGE) 3899 return ReplaceInstUsesWith(I, Builder->getTrue()); 3900 return ReplaceInstUsesWith(I, Builder->getFalse()); 3901 } 3902 } 3903 3904 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 3905 // [0, UMAX], but it may still be fractional. See if it is fractional by 3906 // casting the FP value to the integer value and back, checking for equality. 3907 // Don't do this for zero, because -0.0 is not fractional. 3908 Constant *RHSInt = LHSUnsigned 3909 ? ConstantExpr::getFPToUI(RHSC, IntTy) 3910 : ConstantExpr::getFPToSI(RHSC, IntTy); 3911 if (!RHS.isZero()) { 3912 bool Equal = LHSUnsigned 3913 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 3914 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 3915 if (!Equal) { 3916 // If we had a comparison against a fractional value, we have to adjust 3917 // the compare predicate and sometimes the value. RHSC is rounded towards 3918 // zero at this point. 3919 switch (Pred) { 3920 default: llvm_unreachable("Unexpected integer comparison!"); 3921 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 3922 return ReplaceInstUsesWith(I, Builder->getTrue()); 3923 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 3924 return ReplaceInstUsesWith(I, Builder->getFalse()); 3925 case ICmpInst::ICMP_ULE: 3926 // (float)int <= 4.4 --> int <= 4 3927 // (float)int <= -4.4 --> false 3928 if (RHS.isNegative()) 3929 return ReplaceInstUsesWith(I, Builder->getFalse()); 3930 break; 3931 case ICmpInst::ICMP_SLE: 3932 // (float)int <= 4.4 --> int <= 4 3933 // (float)int <= -4.4 --> int < -4 3934 if (RHS.isNegative()) 3935 Pred = ICmpInst::ICMP_SLT; 3936 break; 3937 case ICmpInst::ICMP_ULT: 3938 // (float)int < -4.4 --> false 3939 // (float)int < 4.4 --> int <= 4 3940 if (RHS.isNegative()) 3941 return ReplaceInstUsesWith(I, Builder->getFalse()); 3942 Pred = ICmpInst::ICMP_ULE; 3943 break; 3944 case ICmpInst::ICMP_SLT: 3945 // (float)int < -4.4 --> int < -4 3946 // (float)int < 4.4 --> int <= 4 3947 if (!RHS.isNegative()) 3948 Pred = ICmpInst::ICMP_SLE; 3949 break; 3950 case ICmpInst::ICMP_UGT: 3951 // (float)int > 4.4 --> int > 4 3952 // (float)int > -4.4 --> true 3953 if (RHS.isNegative()) 3954 return ReplaceInstUsesWith(I, Builder->getTrue()); 3955 break; 3956 case ICmpInst::ICMP_SGT: 3957 // (float)int > 4.4 --> int > 4 3958 // (float)int > -4.4 --> int >= -4 3959 if (RHS.isNegative()) 3960 Pred = ICmpInst::ICMP_SGE; 3961 break; 3962 case ICmpInst::ICMP_UGE: 3963 // (float)int >= -4.4 --> true 3964 // (float)int >= 4.4 --> int > 4 3965 if (RHS.isNegative()) 3966 return ReplaceInstUsesWith(I, Builder->getTrue()); 3967 Pred = ICmpInst::ICMP_UGT; 3968 break; 3969 case ICmpInst::ICMP_SGE: 3970 // (float)int >= -4.4 --> int >= -4 3971 // (float)int >= 4.4 --> int > 4 3972 if (!RHS.isNegative()) 3973 Pred = ICmpInst::ICMP_SGT; 3974 break; 3975 } 3976 } 3977 } 3978 3979 // Lower this FP comparison into an appropriate integer version of the 3980 // comparison. 3981 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 3982 } 3983 3984 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 3985 bool Changed = false; 3986 3987 /// Orders the operands of the compare so that they are listed from most 3988 /// complex to least complex. This puts constants before unary operators, 3989 /// before binary operators. 3990 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 3991 I.swapOperands(); 3992 Changed = true; 3993 } 3994 3995 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3996 3997 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, 3998 I.getFastMathFlags(), DL, TLI, DT, AC, &I)) 3999 return ReplaceInstUsesWith(I, V); 4000 4001 // Simplify 'fcmp pred X, X' 4002 if (Op0 == Op1) { 4003 switch (I.getPredicate()) { 4004 default: llvm_unreachable("Unknown predicate!"); 4005 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 4006 case FCmpInst::FCMP_ULT: // True if unordered or less than 4007 case FCmpInst::FCMP_UGT: // True if unordered or greater than 4008 case FCmpInst::FCMP_UNE: // True if unordered or not equal 4009 // Canonicalize these to be 'fcmp uno %X, 0.0'. 4010 I.setPredicate(FCmpInst::FCMP_UNO); 4011 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4012 return &I; 4013 4014 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 4015 case FCmpInst::FCMP_OEQ: // True if ordered and equal 4016 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 4017 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 4018 // Canonicalize these to be 'fcmp ord %X, 0.0'. 4019 I.setPredicate(FCmpInst::FCMP_ORD); 4020 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4021 return &I; 4022 } 4023 } 4024 4025 // Test if the FCmpInst instruction is used exclusively by a select as 4026 // part of a minimum or maximum operation. If so, refrain from doing 4027 // any other folding. This helps out other analyses which understand 4028 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4029 // and CodeGen. And in this case, at least one of the comparison 4030 // operands has at least one user besides the compare (the select), 4031 // which would often largely negate the benefit of folding anyway. 4032 if (I.hasOneUse()) 4033 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 4034 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 4035 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 4036 return nullptr; 4037 4038 // Handle fcmp with constant RHS 4039 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 4040 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 4041 switch (LHSI->getOpcode()) { 4042 case Instruction::FPExt: { 4043 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 4044 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 4045 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 4046 if (!RHSF) 4047 break; 4048 4049 const fltSemantics *Sem; 4050 // FIXME: This shouldn't be here. 4051 if (LHSExt->getSrcTy()->isHalfTy()) 4052 Sem = &APFloat::IEEEhalf; 4053 else if (LHSExt->getSrcTy()->isFloatTy()) 4054 Sem = &APFloat::IEEEsingle; 4055 else if (LHSExt->getSrcTy()->isDoubleTy()) 4056 Sem = &APFloat::IEEEdouble; 4057 else if (LHSExt->getSrcTy()->isFP128Ty()) 4058 Sem = &APFloat::IEEEquad; 4059 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 4060 Sem = &APFloat::x87DoubleExtended; 4061 else if (LHSExt->getSrcTy()->isPPC_FP128Ty()) 4062 Sem = &APFloat::PPCDoubleDouble; 4063 else 4064 break; 4065 4066 bool Lossy; 4067 APFloat F = RHSF->getValueAPF(); 4068 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 4069 4070 // Avoid lossy conversions and denormals. Zero is a special case 4071 // that's OK to convert. 4072 APFloat Fabs = F; 4073 Fabs.clearSign(); 4074 if (!Lossy && 4075 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 4076 APFloat::cmpLessThan) || Fabs.isZero())) 4077 4078 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4079 ConstantFP::get(RHSC->getContext(), F)); 4080 break; 4081 } 4082 case Instruction::PHI: 4083 // Only fold fcmp into the PHI if the phi and fcmp are in the same 4084 // block. If in the same block, we're encouraging jump threading. If 4085 // not, we are just pessimizing the code by making an i1 phi. 4086 if (LHSI->getParent() == I.getParent()) 4087 if (Instruction *NV = FoldOpIntoPhi(I)) 4088 return NV; 4089 break; 4090 case Instruction::SIToFP: 4091 case Instruction::UIToFP: 4092 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) 4093 return NV; 4094 break; 4095 case Instruction::FSub: { 4096 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 4097 Value *Op; 4098 if (match(LHSI, m_FNeg(m_Value(Op)))) 4099 return new FCmpInst(I.getSwappedPredicate(), Op, 4100 ConstantExpr::getFNeg(RHSC)); 4101 break; 4102 } 4103 case Instruction::Load: 4104 if (GetElementPtrInst *GEP = 4105 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 4106 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 4107 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 4108 !cast<LoadInst>(LHSI)->isVolatile()) 4109 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 4110 return Res; 4111 } 4112 break; 4113 case Instruction::Call: { 4114 if (!RHSC->isNullValue()) 4115 break; 4116 4117 CallInst *CI = cast<CallInst>(LHSI); 4118 const Function *F = CI->getCalledFunction(); 4119 if (!F) 4120 break; 4121 4122 // Various optimization for fabs compared with zero. 4123 LibFunc::Func Func; 4124 if (F->getIntrinsicID() == Intrinsic::fabs || 4125 (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 4126 (Func == LibFunc::fabs || Func == LibFunc::fabsf || 4127 Func == LibFunc::fabsl))) { 4128 switch (I.getPredicate()) { 4129 default: 4130 break; 4131 // fabs(x) < 0 --> false 4132 case FCmpInst::FCMP_OLT: 4133 return ReplaceInstUsesWith(I, Builder->getFalse()); 4134 // fabs(x) > 0 --> x != 0 4135 case FCmpInst::FCMP_OGT: 4136 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC); 4137 // fabs(x) <= 0 --> x == 0 4138 case FCmpInst::FCMP_OLE: 4139 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC); 4140 // fabs(x) >= 0 --> !isnan(x) 4141 case FCmpInst::FCMP_OGE: 4142 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC); 4143 // fabs(x) == 0 --> x == 0 4144 // fabs(x) != 0 --> x != 0 4145 case FCmpInst::FCMP_OEQ: 4146 case FCmpInst::FCMP_UEQ: 4147 case FCmpInst::FCMP_ONE: 4148 case FCmpInst::FCMP_UNE: 4149 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC); 4150 } 4151 } 4152 } 4153 } 4154 } 4155 4156 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 4157 Value *X, *Y; 4158 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 4159 return new FCmpInst(I.getSwappedPredicate(), X, Y); 4160 4161 // fcmp (fpext x), (fpext y) -> fcmp x, y 4162 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 4163 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 4164 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 4165 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4166 RHSExt->getOperand(0)); 4167 4168 return Changed ? &I : nullptr; 4169 } 4170