1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isZero()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOne()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnes()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// This is called when we see this pattern: 99 /// cmp pred (load (gep GV, ...)), cmpcst 100 /// where GV is a global variable with a constant initializer. Try to simplify 101 /// this into some simple computation that does not need the load. For example 102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 103 /// 104 /// If AndCst is non-null, then the loaded value is masked with that constant 105 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 107 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 108 ConstantInt *AndCst) { 109 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 110 GV->getValueType() != GEP->getSourceElementType() || 111 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 112 return nullptr; 113 114 Constant *Init = GV->getInitializer(); 115 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 116 return nullptr; 117 118 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 119 // Don't blow up on huge arrays. 120 if (ArrayElementCount > MaxArraySizeForCombine) 121 return nullptr; 122 123 // There are many forms of this optimization we can handle, for now, just do 124 // the simple index into a single-dimensional array. 125 // 126 // Require: GEP GV, 0, i {{, constant indices}} 127 if (GEP->getNumOperands() < 3 || 128 !isa<ConstantInt>(GEP->getOperand(1)) || 129 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 130 isa<Constant>(GEP->getOperand(2))) 131 return nullptr; 132 133 // Check that indices after the variable are constants and in-range for the 134 // type they index. Collect the indices. This is typically for arrays of 135 // structs. 136 SmallVector<unsigned, 4> LaterIndices; 137 138 Type *EltTy = Init->getType()->getArrayElementType(); 139 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 140 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 141 if (!Idx) return nullptr; // Variable index. 142 143 uint64_t IdxVal = Idx->getZExtValue(); 144 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 145 146 if (StructType *STy = dyn_cast<StructType>(EltTy)) 147 EltTy = STy->getElementType(IdxVal); 148 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 149 if (IdxVal >= ATy->getNumElements()) return nullptr; 150 EltTy = ATy->getElementType(); 151 } else { 152 return nullptr; // Unknown type. 153 } 154 155 LaterIndices.push_back(IdxVal); 156 } 157 158 enum { Overdefined = -3, Undefined = -2 }; 159 160 // Variables for our state machines. 161 162 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 163 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 164 // and 87 is the second (and last) index. FirstTrueElement is -2 when 165 // undefined, otherwise set to the first true element. SecondTrueElement is 166 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 167 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 168 169 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 170 // form "i != 47 & i != 87". Same state transitions as for true elements. 171 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 172 173 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 174 /// define a state machine that triggers for ranges of values that the index 175 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 176 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 177 /// index in the range (inclusive). We use -2 for undefined here because we 178 /// use relative comparisons and don't want 0-1 to match -1. 179 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 180 181 // MagicBitvector - This is a magic bitvector where we set a bit if the 182 // comparison is true for element 'i'. If there are 64 elements or less in 183 // the array, this will fully represent all the comparison results. 184 uint64_t MagicBitvector = 0; 185 186 // Scan the array and see if one of our patterns matches. 187 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 188 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 189 Constant *Elt = Init->getAggregateElement(i); 190 if (!Elt) return nullptr; 191 192 // If this is indexing an array of structures, get the structure element. 193 if (!LaterIndices.empty()) 194 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 195 196 // If the element is masked, handle it. 197 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 198 199 // Find out if the comparison would be true or false for the i'th element. 200 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 201 CompareRHS, DL, &TLI); 202 // If the result is undef for this element, ignore it. 203 if (isa<UndefValue>(C)) { 204 // Extend range state machines to cover this element in case there is an 205 // undef in the middle of the range. 206 if (TrueRangeEnd == (int)i-1) 207 TrueRangeEnd = i; 208 if (FalseRangeEnd == (int)i-1) 209 FalseRangeEnd = i; 210 continue; 211 } 212 213 // If we can't compute the result for any of the elements, we have to give 214 // up evaluating the entire conditional. 215 if (!isa<ConstantInt>(C)) return nullptr; 216 217 // Otherwise, we know if the comparison is true or false for this element, 218 // update our state machines. 219 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 220 221 // State machine for single/double/range index comparison. 222 if (IsTrueForElt) { 223 // Update the TrueElement state machine. 224 if (FirstTrueElement == Undefined) 225 FirstTrueElement = TrueRangeEnd = i; // First true element. 226 else { 227 // Update double-compare state machine. 228 if (SecondTrueElement == Undefined) 229 SecondTrueElement = i; 230 else 231 SecondTrueElement = Overdefined; 232 233 // Update range state machine. 234 if (TrueRangeEnd == (int)i-1) 235 TrueRangeEnd = i; 236 else 237 TrueRangeEnd = Overdefined; 238 } 239 } else { 240 // Update the FalseElement state machine. 241 if (FirstFalseElement == Undefined) 242 FirstFalseElement = FalseRangeEnd = i; // First false element. 243 else { 244 // Update double-compare state machine. 245 if (SecondFalseElement == Undefined) 246 SecondFalseElement = i; 247 else 248 SecondFalseElement = Overdefined; 249 250 // Update range state machine. 251 if (FalseRangeEnd == (int)i-1) 252 FalseRangeEnd = i; 253 else 254 FalseRangeEnd = Overdefined; 255 } 256 } 257 258 // If this element is in range, update our magic bitvector. 259 if (i < 64 && IsTrueForElt) 260 MagicBitvector |= 1ULL << i; 261 262 // If all of our states become overdefined, bail out early. Since the 263 // predicate is expensive, only check it every 8 elements. This is only 264 // really useful for really huge arrays. 265 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 266 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 267 FalseRangeEnd == Overdefined) 268 return nullptr; 269 } 270 271 // Now that we've scanned the entire array, emit our new comparison(s). We 272 // order the state machines in complexity of the generated code. 273 Value *Idx = GEP->getOperand(2); 274 275 // If the index is larger than the pointer size of the target, truncate the 276 // index down like the GEP would do implicitly. We don't have to do this for 277 // an inbounds GEP because the index can't be out of range. 278 if (!GEP->isInBounds()) { 279 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 280 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 281 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 282 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 283 } 284 285 // If inbounds keyword is not present, Idx * ElementSize can overflow. 286 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 287 // Then, there are two possible values for Idx to match offset 0: 288 // 0x00..00, 0x80..00. 289 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 290 // comparison is false if Idx was 0x80..00. 291 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 292 unsigned ElementSize = 293 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 294 auto MaskIdx = [&](Value* Idx){ 295 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 296 Value *Mask = ConstantInt::get(Idx->getType(), -1); 297 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 298 Idx = Builder.CreateAnd(Idx, Mask); 299 } 300 return Idx; 301 }; 302 303 // If the comparison is only true for one or two elements, emit direct 304 // comparisons. 305 if (SecondTrueElement != Overdefined) { 306 Idx = MaskIdx(Idx); 307 // None true -> false. 308 if (FirstTrueElement == Undefined) 309 return replaceInstUsesWith(ICI, Builder.getFalse()); 310 311 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 312 313 // True for one element -> 'i == 47'. 314 if (SecondTrueElement == Undefined) 315 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 316 317 // True for two elements -> 'i == 47 | i == 72'. 318 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 319 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 320 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 321 return BinaryOperator::CreateOr(C1, C2); 322 } 323 324 // If the comparison is only false for one or two elements, emit direct 325 // comparisons. 326 if (SecondFalseElement != Overdefined) { 327 Idx = MaskIdx(Idx); 328 // None false -> true. 329 if (FirstFalseElement == Undefined) 330 return replaceInstUsesWith(ICI, Builder.getTrue()); 331 332 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 333 334 // False for one element -> 'i != 47'. 335 if (SecondFalseElement == Undefined) 336 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 337 338 // False for two elements -> 'i != 47 & i != 72'. 339 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 340 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 341 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 342 return BinaryOperator::CreateAnd(C1, C2); 343 } 344 345 // If the comparison can be replaced with a range comparison for the elements 346 // where it is true, emit the range check. 347 if (TrueRangeEnd != Overdefined) { 348 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 349 Idx = MaskIdx(Idx); 350 351 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 352 if (FirstTrueElement) { 353 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 354 Idx = Builder.CreateAdd(Idx, Offs); 355 } 356 357 Value *End = ConstantInt::get(Idx->getType(), 358 TrueRangeEnd-FirstTrueElement+1); 359 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 360 } 361 362 // False range check. 363 if (FalseRangeEnd != Overdefined) { 364 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 365 Idx = MaskIdx(Idx); 366 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 367 if (FirstFalseElement) { 368 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 369 Idx = Builder.CreateAdd(Idx, Offs); 370 } 371 372 Value *End = ConstantInt::get(Idx->getType(), 373 FalseRangeEnd-FirstFalseElement); 374 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 375 } 376 377 // If a magic bitvector captures the entire comparison state 378 // of this load, replace it with computation that does: 379 // ((magic_cst >> i) & 1) != 0 380 { 381 Type *Ty = nullptr; 382 383 // Look for an appropriate type: 384 // - The type of Idx if the magic fits 385 // - The smallest fitting legal type 386 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 387 Ty = Idx->getType(); 388 else 389 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 390 391 if (Ty) { 392 Idx = MaskIdx(Idx); 393 Value *V = Builder.CreateIntCast(Idx, Ty, false); 394 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 395 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 396 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 397 } 398 } 399 400 return nullptr; 401 } 402 403 /// Return a value that can be used to compare the *offset* implied by a GEP to 404 /// zero. For example, if we have &A[i], we want to return 'i' for 405 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 406 /// are involved. The above expression would also be legal to codegen as 407 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 408 /// This latter form is less amenable to optimization though, and we are allowed 409 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 410 /// 411 /// If we can't emit an optimized form for this expression, this returns null. 412 /// 413 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 414 const DataLayout &DL) { 415 gep_type_iterator GTI = gep_type_begin(GEP); 416 417 // Check to see if this gep only has a single variable index. If so, and if 418 // any constant indices are a multiple of its scale, then we can compute this 419 // in terms of the scale of the variable index. For example, if the GEP 420 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 421 // because the expression will cross zero at the same point. 422 unsigned i, e = GEP->getNumOperands(); 423 int64_t Offset = 0; 424 for (i = 1; i != e; ++i, ++GTI) { 425 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 426 // Compute the aggregate offset of constant indices. 427 if (CI->isZero()) continue; 428 429 // Handle a struct index, which adds its field offset to the pointer. 430 if (StructType *STy = GTI.getStructTypeOrNull()) { 431 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 432 } else { 433 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 434 Offset += Size*CI->getSExtValue(); 435 } 436 } else { 437 // Found our variable index. 438 break; 439 } 440 } 441 442 // If there are no variable indices, we must have a constant offset, just 443 // evaluate it the general way. 444 if (i == e) return nullptr; 445 446 Value *VariableIdx = GEP->getOperand(i); 447 // Determine the scale factor of the variable element. For example, this is 448 // 4 if the variable index is into an array of i32. 449 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 450 451 // Verify that there are no other variable indices. If so, emit the hard way. 452 for (++i, ++GTI; i != e; ++i, ++GTI) { 453 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 454 if (!CI) return nullptr; 455 456 // Compute the aggregate offset of constant indices. 457 if (CI->isZero()) continue; 458 459 // Handle a struct index, which adds its field offset to the pointer. 460 if (StructType *STy = GTI.getStructTypeOrNull()) { 461 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 462 } else { 463 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 464 Offset += Size*CI->getSExtValue(); 465 } 466 } 467 468 // Okay, we know we have a single variable index, which must be a 469 // pointer/array/vector index. If there is no offset, life is simple, return 470 // the index. 471 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 472 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 473 if (Offset == 0) { 474 // Cast to intptrty in case a truncation occurs. If an extension is needed, 475 // we don't need to bother extending: the extension won't affect where the 476 // computation crosses zero. 477 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 478 IntPtrWidth) { 479 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 480 } 481 return VariableIdx; 482 } 483 484 // Otherwise, there is an index. The computation we will do will be modulo 485 // the pointer size. 486 Offset = SignExtend64(Offset, IntPtrWidth); 487 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 488 489 // To do this transformation, any constant index must be a multiple of the 490 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 491 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 492 // multiple of the variable scale. 493 int64_t NewOffs = Offset / (int64_t)VariableScale; 494 if (Offset != NewOffs*(int64_t)VariableScale) 495 return nullptr; 496 497 // Okay, we can do this evaluation. Start by converting the index to intptr. 498 if (VariableIdx->getType() != IntPtrTy) 499 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 500 true /*Signed*/); 501 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 502 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 503 } 504 505 /// Returns true if we can rewrite Start as a GEP with pointer Base 506 /// and some integer offset. The nodes that need to be re-written 507 /// for this transformation will be added to Explored. 508 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 509 const DataLayout &DL, 510 SetVector<Value *> &Explored) { 511 SmallVector<Value *, 16> WorkList(1, Start); 512 Explored.insert(Base); 513 514 // The following traversal gives us an order which can be used 515 // when doing the final transformation. Since in the final 516 // transformation we create the PHI replacement instructions first, 517 // we don't have to get them in any particular order. 518 // 519 // However, for other instructions we will have to traverse the 520 // operands of an instruction first, which means that we have to 521 // do a post-order traversal. 522 while (!WorkList.empty()) { 523 SetVector<PHINode *> PHIs; 524 525 while (!WorkList.empty()) { 526 if (Explored.size() >= 100) 527 return false; 528 529 Value *V = WorkList.back(); 530 531 if (Explored.contains(V)) { 532 WorkList.pop_back(); 533 continue; 534 } 535 536 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 537 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 538 // We've found some value that we can't explore which is different from 539 // the base. Therefore we can't do this transformation. 540 return false; 541 542 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 543 auto *CI = cast<CastInst>(V); 544 if (!CI->isNoopCast(DL)) 545 return false; 546 547 if (!Explored.contains(CI->getOperand(0))) 548 WorkList.push_back(CI->getOperand(0)); 549 } 550 551 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 552 // We're limiting the GEP to having one index. This will preserve 553 // the original pointer type. We could handle more cases in the 554 // future. 555 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 556 GEP->getSourceElementType() != ElemTy) 557 return false; 558 559 if (!Explored.contains(GEP->getOperand(0))) 560 WorkList.push_back(GEP->getOperand(0)); 561 } 562 563 if (WorkList.back() == V) { 564 WorkList.pop_back(); 565 // We've finished visiting this node, mark it as such. 566 Explored.insert(V); 567 } 568 569 if (auto *PN = dyn_cast<PHINode>(V)) { 570 // We cannot transform PHIs on unsplittable basic blocks. 571 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 572 return false; 573 Explored.insert(PN); 574 PHIs.insert(PN); 575 } 576 } 577 578 // Explore the PHI nodes further. 579 for (auto *PN : PHIs) 580 for (Value *Op : PN->incoming_values()) 581 if (!Explored.contains(Op)) 582 WorkList.push_back(Op); 583 } 584 585 // Make sure that we can do this. Since we can't insert GEPs in a basic 586 // block before a PHI node, we can't easily do this transformation if 587 // we have PHI node users of transformed instructions. 588 for (Value *Val : Explored) { 589 for (Value *Use : Val->uses()) { 590 591 auto *PHI = dyn_cast<PHINode>(Use); 592 auto *Inst = dyn_cast<Instruction>(Val); 593 594 if (Inst == Base || Inst == PHI || !Inst || !PHI || 595 !Explored.contains(PHI)) 596 continue; 597 598 if (PHI->getParent() == Inst->getParent()) 599 return false; 600 } 601 } 602 return true; 603 } 604 605 // Sets the appropriate insert point on Builder where we can add 606 // a replacement Instruction for V (if that is possible). 607 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 608 bool Before = true) { 609 if (auto *PHI = dyn_cast<PHINode>(V)) { 610 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 611 return; 612 } 613 if (auto *I = dyn_cast<Instruction>(V)) { 614 if (!Before) 615 I = &*std::next(I->getIterator()); 616 Builder.SetInsertPoint(I); 617 return; 618 } 619 if (auto *A = dyn_cast<Argument>(V)) { 620 // Set the insertion point in the entry block. 621 BasicBlock &Entry = A->getParent()->getEntryBlock(); 622 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 623 return; 624 } 625 // Otherwise, this is a constant and we don't need to set a new 626 // insertion point. 627 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 628 } 629 630 /// Returns a re-written value of Start as an indexed GEP using Base as a 631 /// pointer. 632 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 633 const DataLayout &DL, 634 SetVector<Value *> &Explored) { 635 // Perform all the substitutions. This is a bit tricky because we can 636 // have cycles in our use-def chains. 637 // 1. Create the PHI nodes without any incoming values. 638 // 2. Create all the other values. 639 // 3. Add the edges for the PHI nodes. 640 // 4. Emit GEPs to get the original pointers. 641 // 5. Remove the original instructions. 642 Type *IndexType = IntegerType::get( 643 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 644 645 DenseMap<Value *, Value *> NewInsts; 646 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 647 648 // Create the new PHI nodes, without adding any incoming values. 649 for (Value *Val : Explored) { 650 if (Val == Base) 651 continue; 652 // Create empty phi nodes. This avoids cyclic dependencies when creating 653 // the remaining instructions. 654 if (auto *PHI = dyn_cast<PHINode>(Val)) 655 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 656 PHI->getName() + ".idx", PHI); 657 } 658 IRBuilder<> Builder(Base->getContext()); 659 660 // Create all the other instructions. 661 for (Value *Val : Explored) { 662 663 if (NewInsts.find(Val) != NewInsts.end()) 664 continue; 665 666 if (auto *CI = dyn_cast<CastInst>(Val)) { 667 // Don't get rid of the intermediate variable here; the store can grow 668 // the map which will invalidate the reference to the input value. 669 Value *V = NewInsts[CI->getOperand(0)]; 670 NewInsts[CI] = V; 671 continue; 672 } 673 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 674 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 675 : GEP->getOperand(1); 676 setInsertionPoint(Builder, GEP); 677 // Indices might need to be sign extended. GEPs will magically do 678 // this, but we need to do it ourselves here. 679 if (Index->getType()->getScalarSizeInBits() != 680 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 681 Index = Builder.CreateSExtOrTrunc( 682 Index, NewInsts[GEP->getOperand(0)]->getType(), 683 GEP->getOperand(0)->getName() + ".sext"); 684 } 685 686 auto *Op = NewInsts[GEP->getOperand(0)]; 687 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 688 NewInsts[GEP] = Index; 689 else 690 NewInsts[GEP] = Builder.CreateNSWAdd( 691 Op, Index, GEP->getOperand(0)->getName() + ".add"); 692 continue; 693 } 694 if (isa<PHINode>(Val)) 695 continue; 696 697 llvm_unreachable("Unexpected instruction type"); 698 } 699 700 // Add the incoming values to the PHI nodes. 701 for (Value *Val : Explored) { 702 if (Val == Base) 703 continue; 704 // All the instructions have been created, we can now add edges to the 705 // phi nodes. 706 if (auto *PHI = dyn_cast<PHINode>(Val)) { 707 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 708 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 709 Value *NewIncoming = PHI->getIncomingValue(I); 710 711 if (NewInsts.find(NewIncoming) != NewInsts.end()) 712 NewIncoming = NewInsts[NewIncoming]; 713 714 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 715 } 716 } 717 } 718 719 PointerType *PtrTy = 720 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 721 for (Value *Val : Explored) { 722 if (Val == Base) 723 continue; 724 725 // Depending on the type, for external users we have to emit 726 // a GEP or a GEP + ptrtoint. 727 setInsertionPoint(Builder, Val, false); 728 729 // Cast base to the expected type. 730 Value *NewVal = Builder.CreateBitOrPointerCast( 731 Base, PtrTy, Start->getName() + "to.ptr"); 732 NewVal = Builder.CreateInBoundsGEP( 733 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 734 NewVal = Builder.CreateBitOrPointerCast( 735 NewVal, Val->getType(), Val->getName() + ".conv"); 736 Val->replaceAllUsesWith(NewVal); 737 } 738 739 return NewInsts[Start]; 740 } 741 742 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 743 /// the input Value as a constant indexed GEP. Returns a pair containing 744 /// the GEPs Pointer and Index. 745 static std::pair<Value *, Value *> 746 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 747 Type *IndexType = IntegerType::get(V->getContext(), 748 DL.getIndexTypeSizeInBits(V->getType())); 749 750 Constant *Index = ConstantInt::getNullValue(IndexType); 751 while (true) { 752 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 753 // We accept only inbouds GEPs here to exclude the possibility of 754 // overflow. 755 if (!GEP->isInBounds()) 756 break; 757 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 758 GEP->getSourceElementType() == ElemTy) { 759 V = GEP->getOperand(0); 760 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 761 Index = ConstantExpr::getAdd( 762 Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType)); 763 continue; 764 } 765 break; 766 } 767 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 768 if (!CI->isNoopCast(DL)) 769 break; 770 V = CI->getOperand(0); 771 continue; 772 } 773 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 774 if (!CI->isNoopCast(DL)) 775 break; 776 V = CI->getOperand(0); 777 continue; 778 } 779 break; 780 } 781 return {V, Index}; 782 } 783 784 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 785 /// We can look through PHIs, GEPs and casts in order to determine a common base 786 /// between GEPLHS and RHS. 787 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 788 ICmpInst::Predicate Cond, 789 const DataLayout &DL) { 790 // FIXME: Support vector of pointers. 791 if (GEPLHS->getType()->isVectorTy()) 792 return nullptr; 793 794 if (!GEPLHS->hasAllConstantIndices()) 795 return nullptr; 796 797 Type *ElemTy = GEPLHS->getSourceElementType(); 798 Value *PtrBase, *Index; 799 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 800 801 // The set of nodes that will take part in this transformation. 802 SetVector<Value *> Nodes; 803 804 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 805 return nullptr; 806 807 // We know we can re-write this as 808 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 809 // Since we've only looked through inbouds GEPs we know that we 810 // can't have overflow on either side. We can therefore re-write 811 // this as: 812 // OFFSET1 cmp OFFSET2 813 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 814 815 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 816 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 817 // offset. Since Index is the offset of LHS to the base pointer, we will now 818 // compare the offsets instead of comparing the pointers. 819 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 820 } 821 822 /// Fold comparisons between a GEP instruction and something else. At this point 823 /// we know that the GEP is on the LHS of the comparison. 824 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 825 ICmpInst::Predicate Cond, 826 Instruction &I) { 827 // Don't transform signed compares of GEPs into index compares. Even if the 828 // GEP is inbounds, the final add of the base pointer can have signed overflow 829 // and would change the result of the icmp. 830 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 831 // the maximum signed value for the pointer type. 832 if (ICmpInst::isSigned(Cond)) 833 return nullptr; 834 835 // Look through bitcasts and addrspacecasts. We do not however want to remove 836 // 0 GEPs. 837 if (!isa<GetElementPtrInst>(RHS)) 838 RHS = RHS->stripPointerCasts(); 839 840 Value *PtrBase = GEPLHS->getOperand(0); 841 // FIXME: Support vector pointer GEPs. 842 if (PtrBase == RHS && GEPLHS->isInBounds() && 843 !GEPLHS->getType()->isVectorTy()) { 844 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 845 // This transformation (ignoring the base and scales) is valid because we 846 // know pointers can't overflow since the gep is inbounds. See if we can 847 // output an optimized form. 848 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 849 850 // If not, synthesize the offset the hard way. 851 if (!Offset) 852 Offset = EmitGEPOffset(GEPLHS); 853 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 854 Constant::getNullValue(Offset->getType())); 855 } 856 857 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 858 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 859 !NullPointerIsDefined(I.getFunction(), 860 RHS->getType()->getPointerAddressSpace())) { 861 // For most address spaces, an allocation can't be placed at null, but null 862 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 863 // the only valid inbounds address derived from null, is null itself. 864 // Thus, we have four cases to consider: 865 // 1) Base == nullptr, Offset == 0 -> inbounds, null 866 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 867 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 868 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 869 // 870 // (Note if we're indexing a type of size 0, that simply collapses into one 871 // of the buckets above.) 872 // 873 // In general, we're allowed to make values less poison (i.e. remove 874 // sources of full UB), so in this case, we just select between the two 875 // non-poison cases (1 and 4 above). 876 // 877 // For vectors, we apply the same reasoning on a per-lane basis. 878 auto *Base = GEPLHS->getPointerOperand(); 879 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 880 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 881 Base = Builder.CreateVectorSplat(EC, Base); 882 } 883 return new ICmpInst(Cond, Base, 884 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 885 cast<Constant>(RHS), Base->getType())); 886 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 887 // If the base pointers are different, but the indices are the same, just 888 // compare the base pointer. 889 if (PtrBase != GEPRHS->getOperand(0)) { 890 bool IndicesTheSame = 891 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 892 GEPLHS->getPointerOperand()->getType() == 893 GEPRHS->getPointerOperand()->getType() && 894 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 895 if (IndicesTheSame) 896 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 897 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 898 IndicesTheSame = false; 899 break; 900 } 901 902 // If all indices are the same, just compare the base pointers. 903 Type *BaseType = GEPLHS->getOperand(0)->getType(); 904 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 905 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 906 907 // If we're comparing GEPs with two base pointers that only differ in type 908 // and both GEPs have only constant indices or just one use, then fold 909 // the compare with the adjusted indices. 910 // FIXME: Support vector of pointers. 911 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 912 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 913 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 914 PtrBase->stripPointerCasts() == 915 GEPRHS->getOperand(0)->stripPointerCasts() && 916 !GEPLHS->getType()->isVectorTy()) { 917 Value *LOffset = EmitGEPOffset(GEPLHS); 918 Value *ROffset = EmitGEPOffset(GEPRHS); 919 920 // If we looked through an addrspacecast between different sized address 921 // spaces, the LHS and RHS pointers are different sized 922 // integers. Truncate to the smaller one. 923 Type *LHSIndexTy = LOffset->getType(); 924 Type *RHSIndexTy = ROffset->getType(); 925 if (LHSIndexTy != RHSIndexTy) { 926 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 927 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 928 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 929 } else 930 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 931 } 932 933 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 934 LOffset, ROffset); 935 return replaceInstUsesWith(I, Cmp); 936 } 937 938 // Otherwise, the base pointers are different and the indices are 939 // different. Try convert this to an indexed compare by looking through 940 // PHIs/casts. 941 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 942 } 943 944 // If one of the GEPs has all zero indices, recurse. 945 // FIXME: Handle vector of pointers. 946 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 947 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 948 ICmpInst::getSwappedPredicate(Cond), I); 949 950 // If the other GEP has all zero indices, recurse. 951 // FIXME: Handle vector of pointers. 952 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 953 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 954 955 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 956 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 957 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 958 // If the GEPs only differ by one index, compare it. 959 unsigned NumDifferences = 0; // Keep track of # differences. 960 unsigned DiffOperand = 0; // The operand that differs. 961 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 962 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 963 Type *LHSType = GEPLHS->getOperand(i)->getType(); 964 Type *RHSType = GEPRHS->getOperand(i)->getType(); 965 // FIXME: Better support for vector of pointers. 966 if (LHSType->getPrimitiveSizeInBits() != 967 RHSType->getPrimitiveSizeInBits() || 968 (GEPLHS->getType()->isVectorTy() && 969 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 970 // Irreconcilable differences. 971 NumDifferences = 2; 972 break; 973 } 974 975 if (NumDifferences++) break; 976 DiffOperand = i; 977 } 978 979 if (NumDifferences == 0) // SAME GEP? 980 return replaceInstUsesWith(I, // No comparison is needed here. 981 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 982 983 else if (NumDifferences == 1 && GEPsInBounds) { 984 Value *LHSV = GEPLHS->getOperand(DiffOperand); 985 Value *RHSV = GEPRHS->getOperand(DiffOperand); 986 // Make sure we do a signed comparison here. 987 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 988 } 989 } 990 991 // Only lower this if the icmp is the only user of the GEP or if we expect 992 // the result to fold to a constant! 993 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 994 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 995 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 996 Value *L = EmitGEPOffset(GEPLHS); 997 Value *R = EmitGEPOffset(GEPRHS); 998 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 999 } 1000 } 1001 1002 // Try convert this to an indexed compare by looking through PHIs/casts as a 1003 // last resort. 1004 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1005 } 1006 1007 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1008 const AllocaInst *Alloca) { 1009 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1010 1011 // It would be tempting to fold away comparisons between allocas and any 1012 // pointer not based on that alloca (e.g. an argument). However, even 1013 // though such pointers cannot alias, they can still compare equal. 1014 // 1015 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1016 // doesn't escape we can argue that it's impossible to guess its value, and we 1017 // can therefore act as if any such guesses are wrong. 1018 // 1019 // The code below checks that the alloca doesn't escape, and that it's only 1020 // used in a comparison once (the current instruction). The 1021 // single-comparison-use condition ensures that we're trivially folding all 1022 // comparisons against the alloca consistently, and avoids the risk of 1023 // erroneously folding a comparison of the pointer with itself. 1024 1025 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1026 1027 SmallVector<const Use *, 32> Worklist; 1028 for (const Use &U : Alloca->uses()) { 1029 if (Worklist.size() >= MaxIter) 1030 return nullptr; 1031 Worklist.push_back(&U); 1032 } 1033 1034 unsigned NumCmps = 0; 1035 while (!Worklist.empty()) { 1036 assert(Worklist.size() <= MaxIter); 1037 const Use *U = Worklist.pop_back_val(); 1038 const Value *V = U->getUser(); 1039 --MaxIter; 1040 1041 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1042 isa<SelectInst>(V)) { 1043 // Track the uses. 1044 } else if (isa<LoadInst>(V)) { 1045 // Loading from the pointer doesn't escape it. 1046 continue; 1047 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1048 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1049 if (SI->getValueOperand() == U->get()) 1050 return nullptr; 1051 continue; 1052 } else if (isa<ICmpInst>(V)) { 1053 if (NumCmps++) 1054 return nullptr; // Found more than one cmp. 1055 continue; 1056 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1057 switch (Intrin->getIntrinsicID()) { 1058 // These intrinsics don't escape or compare the pointer. Memset is safe 1059 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1060 // we don't allow stores, so src cannot point to V. 1061 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1062 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1063 continue; 1064 default: 1065 return nullptr; 1066 } 1067 } else { 1068 return nullptr; 1069 } 1070 for (const Use &U : V->uses()) { 1071 if (Worklist.size() >= MaxIter) 1072 return nullptr; 1073 Worklist.push_back(&U); 1074 } 1075 } 1076 1077 auto *Res = ConstantInt::get(ICI.getType(), 1078 !CmpInst::isTrueWhenEqual(ICI.getPredicate())); 1079 return replaceInstUsesWith(ICI, Res); 1080 } 1081 1082 /// Fold "icmp pred (X+C), X". 1083 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1084 ICmpInst::Predicate Pred) { 1085 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1086 // so the values can never be equal. Similarly for all other "or equals" 1087 // operators. 1088 assert(!!C && "C should not be zero!"); 1089 1090 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1091 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1092 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1093 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1094 Constant *R = ConstantInt::get(X->getType(), 1095 APInt::getMaxValue(C.getBitWidth()) - C); 1096 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1097 } 1098 1099 // (X+1) >u X --> X <u (0-1) --> X != 255 1100 // (X+2) >u X --> X <u (0-2) --> X <u 254 1101 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1102 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1103 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1104 ConstantInt::get(X->getType(), -C)); 1105 1106 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1107 1108 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1109 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1110 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1111 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1112 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1113 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1114 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1115 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1116 ConstantInt::get(X->getType(), SMax - C)); 1117 1118 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1119 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1120 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1121 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1122 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1123 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1124 1125 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1126 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1127 ConstantInt::get(X->getType(), SMax - (C - 1))); 1128 } 1129 1130 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1131 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1132 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1133 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1134 const APInt &AP1, 1135 const APInt &AP2) { 1136 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1137 1138 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1139 if (I.getPredicate() == I.ICMP_NE) 1140 Pred = CmpInst::getInversePredicate(Pred); 1141 return new ICmpInst(Pred, LHS, RHS); 1142 }; 1143 1144 // Don't bother doing any work for cases which InstSimplify handles. 1145 if (AP2.isZero()) 1146 return nullptr; 1147 1148 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1149 if (IsAShr) { 1150 if (AP2.isAllOnes()) 1151 return nullptr; 1152 if (AP2.isNegative() != AP1.isNegative()) 1153 return nullptr; 1154 if (AP2.sgt(AP1)) 1155 return nullptr; 1156 } 1157 1158 if (!AP1) 1159 // 'A' must be large enough to shift out the highest set bit. 1160 return getICmp(I.ICMP_UGT, A, 1161 ConstantInt::get(A->getType(), AP2.logBase2())); 1162 1163 if (AP1 == AP2) 1164 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1165 1166 int Shift; 1167 if (IsAShr && AP1.isNegative()) 1168 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1169 else 1170 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1171 1172 if (Shift > 0) { 1173 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1174 // There are multiple solutions if we are comparing against -1 and the LHS 1175 // of the ashr is not a power of two. 1176 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1177 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1178 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1179 } else if (AP1 == AP2.lshr(Shift)) { 1180 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1181 } 1182 } 1183 1184 // Shifting const2 will never be equal to const1. 1185 // FIXME: This should always be handled by InstSimplify? 1186 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1187 return replaceInstUsesWith(I, TorF); 1188 } 1189 1190 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1191 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1192 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1193 const APInt &AP1, 1194 const APInt &AP2) { 1195 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1196 1197 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1198 if (I.getPredicate() == I.ICMP_NE) 1199 Pred = CmpInst::getInversePredicate(Pred); 1200 return new ICmpInst(Pred, LHS, RHS); 1201 }; 1202 1203 // Don't bother doing any work for cases which InstSimplify handles. 1204 if (AP2.isZero()) 1205 return nullptr; 1206 1207 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1208 1209 if (!AP1 && AP2TrailingZeros != 0) 1210 return getICmp( 1211 I.ICMP_UGE, A, 1212 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1213 1214 if (AP1 == AP2) 1215 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1216 1217 // Get the distance between the lowest bits that are set. 1218 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1219 1220 if (Shift > 0 && AP2.shl(Shift) == AP1) 1221 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1222 1223 // Shifting const2 will never be equal to const1. 1224 // FIXME: This should always be handled by InstSimplify? 1225 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1226 return replaceInstUsesWith(I, TorF); 1227 } 1228 1229 /// The caller has matched a pattern of the form: 1230 /// I = icmp ugt (add (add A, B), CI2), CI1 1231 /// If this is of the form: 1232 /// sum = a + b 1233 /// if (sum+128 >u 255) 1234 /// Then replace it with llvm.sadd.with.overflow.i8. 1235 /// 1236 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1237 ConstantInt *CI2, ConstantInt *CI1, 1238 InstCombinerImpl &IC) { 1239 // The transformation we're trying to do here is to transform this into an 1240 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1241 // with a narrower add, and discard the add-with-constant that is part of the 1242 // range check (if we can't eliminate it, this isn't profitable). 1243 1244 // In order to eliminate the add-with-constant, the compare can be its only 1245 // use. 1246 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1247 if (!AddWithCst->hasOneUse()) 1248 return nullptr; 1249 1250 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1251 if (!CI2->getValue().isPowerOf2()) 1252 return nullptr; 1253 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1254 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1255 return nullptr; 1256 1257 // The width of the new add formed is 1 more than the bias. 1258 ++NewWidth; 1259 1260 // Check to see that CI1 is an all-ones value with NewWidth bits. 1261 if (CI1->getBitWidth() == NewWidth || 1262 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1263 return nullptr; 1264 1265 // This is only really a signed overflow check if the inputs have been 1266 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1267 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1268 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1269 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1270 return nullptr; 1271 1272 // In order to replace the original add with a narrower 1273 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1274 // and truncates that discard the high bits of the add. Verify that this is 1275 // the case. 1276 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1277 for (User *U : OrigAdd->users()) { 1278 if (U == AddWithCst) 1279 continue; 1280 1281 // Only accept truncates for now. We would really like a nice recursive 1282 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1283 // chain to see which bits of a value are actually demanded. If the 1284 // original add had another add which was then immediately truncated, we 1285 // could still do the transformation. 1286 TruncInst *TI = dyn_cast<TruncInst>(U); 1287 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1288 return nullptr; 1289 } 1290 1291 // If the pattern matches, truncate the inputs to the narrower type and 1292 // use the sadd_with_overflow intrinsic to efficiently compute both the 1293 // result and the overflow bit. 1294 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1295 Function *F = Intrinsic::getDeclaration( 1296 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1297 1298 InstCombiner::BuilderTy &Builder = IC.Builder; 1299 1300 // Put the new code above the original add, in case there are any uses of the 1301 // add between the add and the compare. 1302 Builder.SetInsertPoint(OrigAdd); 1303 1304 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1305 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1306 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1307 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1308 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1309 1310 // The inner add was the result of the narrow add, zero extended to the 1311 // wider type. Replace it with the result computed by the intrinsic. 1312 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1313 IC.eraseInstFromFunction(*OrigAdd); 1314 1315 // The original icmp gets replaced with the overflow value. 1316 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1317 } 1318 1319 /// If we have: 1320 /// icmp eq/ne (urem/srem %x, %y), 0 1321 /// iff %y is a power-of-two, we can replace this with a bit test: 1322 /// icmp eq/ne (and %x, (add %y, -1)), 0 1323 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1324 // This fold is only valid for equality predicates. 1325 if (!I.isEquality()) 1326 return nullptr; 1327 ICmpInst::Predicate Pred; 1328 Value *X, *Y, *Zero; 1329 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1330 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1331 return nullptr; 1332 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1333 return nullptr; 1334 // This may increase instruction count, we don't enforce that Y is a constant. 1335 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1336 Value *Masked = Builder.CreateAnd(X, Mask); 1337 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1338 } 1339 1340 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1341 /// by one-less-than-bitwidth into a sign test on the original value. 1342 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1343 Instruction *Val; 1344 ICmpInst::Predicate Pred; 1345 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1346 return nullptr; 1347 1348 Value *X; 1349 Type *XTy; 1350 1351 Constant *C; 1352 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1353 XTy = X->getType(); 1354 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1355 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1356 APInt(XBitWidth, XBitWidth - 1)))) 1357 return nullptr; 1358 } else if (isa<BinaryOperator>(Val) && 1359 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1360 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1361 /*AnalyzeForSignBitExtraction=*/true))) { 1362 XTy = X->getType(); 1363 } else 1364 return nullptr; 1365 1366 return ICmpInst::Create(Instruction::ICmp, 1367 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1368 : ICmpInst::ICMP_SLT, 1369 X, ConstantInt::getNullValue(XTy)); 1370 } 1371 1372 // Handle icmp pred X, 0 1373 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1374 CmpInst::Predicate Pred = Cmp.getPredicate(); 1375 if (!match(Cmp.getOperand(1), m_Zero())) 1376 return nullptr; 1377 1378 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1379 if (Pred == ICmpInst::ICMP_SGT) { 1380 Value *A, *B; 1381 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1382 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1383 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1384 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1385 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1386 } 1387 } 1388 1389 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1390 return New; 1391 1392 // Given: 1393 // icmp eq/ne (urem %x, %y), 0 1394 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1395 // icmp eq/ne %x, 0 1396 Value *X, *Y; 1397 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1398 ICmpInst::isEquality(Pred)) { 1399 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1400 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1401 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1402 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1403 } 1404 1405 return nullptr; 1406 } 1407 1408 /// Fold icmp Pred X, C. 1409 /// TODO: This code structure does not make sense. The saturating add fold 1410 /// should be moved to some other helper and extended as noted below (it is also 1411 /// possible that code has been made unnecessary - do we canonicalize IR to 1412 /// overflow/saturating intrinsics or not?). 1413 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1414 // Match the following pattern, which is a common idiom when writing 1415 // overflow-safe integer arithmetic functions. The source performs an addition 1416 // in wider type and explicitly checks for overflow using comparisons against 1417 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1418 // 1419 // TODO: This could probably be generalized to handle other overflow-safe 1420 // operations if we worked out the formulas to compute the appropriate magic 1421 // constants. 1422 // 1423 // sum = a + b 1424 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1425 CmpInst::Predicate Pred = Cmp.getPredicate(); 1426 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1427 Value *A, *B; 1428 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1429 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1430 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1431 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1432 return Res; 1433 1434 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1435 Constant *C = dyn_cast<Constant>(Op1); 1436 if (!C || C->canTrap()) 1437 return nullptr; 1438 1439 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1440 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1441 Type *Ty = Cmp.getType(); 1442 Builder.SetInsertPoint(Phi); 1443 PHINode *NewPhi = 1444 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1445 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1446 auto *Input = 1447 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1448 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1449 NewPhi->addIncoming(BoolInput, Predecessor); 1450 } 1451 NewPhi->takeName(&Cmp); 1452 return replaceInstUsesWith(Cmp, NewPhi); 1453 } 1454 1455 return nullptr; 1456 } 1457 1458 /// Canonicalize icmp instructions based on dominating conditions. 1459 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1460 // This is a cheap/incomplete check for dominance - just match a single 1461 // predecessor with a conditional branch. 1462 BasicBlock *CmpBB = Cmp.getParent(); 1463 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1464 if (!DomBB) 1465 return nullptr; 1466 1467 Value *DomCond; 1468 BasicBlock *TrueBB, *FalseBB; 1469 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1470 return nullptr; 1471 1472 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1473 "Predecessor block does not point to successor?"); 1474 1475 // The branch should get simplified. Don't bother simplifying this condition. 1476 if (TrueBB == FalseBB) 1477 return nullptr; 1478 1479 // Try to simplify this compare to T/F based on the dominating condition. 1480 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1481 if (Imp) 1482 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1483 1484 CmpInst::Predicate Pred = Cmp.getPredicate(); 1485 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1486 ICmpInst::Predicate DomPred; 1487 const APInt *C, *DomC; 1488 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1489 match(Y, m_APInt(C))) { 1490 // We have 2 compares of a variable with constants. Calculate the constant 1491 // ranges of those compares to see if we can transform the 2nd compare: 1492 // DomBB: 1493 // DomCond = icmp DomPred X, DomC 1494 // br DomCond, CmpBB, FalseBB 1495 // CmpBB: 1496 // Cmp = icmp Pred X, C 1497 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1498 ConstantRange DominatingCR = 1499 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1500 : ConstantRange::makeExactICmpRegion( 1501 CmpInst::getInversePredicate(DomPred), *DomC); 1502 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1503 ConstantRange Difference = DominatingCR.difference(CR); 1504 if (Intersection.isEmptySet()) 1505 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1506 if (Difference.isEmptySet()) 1507 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1508 1509 // Canonicalizing a sign bit comparison that gets used in a branch, 1510 // pessimizes codegen by generating branch on zero instruction instead 1511 // of a test and branch. So we avoid canonicalizing in such situations 1512 // because test and branch instruction has better branch displacement 1513 // than compare and branch instruction. 1514 bool UnusedBit; 1515 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1516 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1517 return nullptr; 1518 1519 // Avoid an infinite loop with min/max canonicalization. 1520 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1521 if (Cmp.hasOneUse() && 1522 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1523 return nullptr; 1524 1525 if (const APInt *EqC = Intersection.getSingleElement()) 1526 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1527 if (const APInt *NeC = Difference.getSingleElement()) 1528 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1529 } 1530 1531 return nullptr; 1532 } 1533 1534 /// Fold icmp (trunc X, Y), C. 1535 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1536 TruncInst *Trunc, 1537 const APInt &C) { 1538 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1539 Value *X = Trunc->getOperand(0); 1540 if (C.isOne() && C.getBitWidth() > 1) { 1541 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1542 Value *V = nullptr; 1543 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1544 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1545 ConstantInt::get(V->getType(), 1)); 1546 } 1547 1548 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1549 SrcBits = X->getType()->getScalarSizeInBits(); 1550 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1551 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1552 // of the high bits truncated out of x are known. 1553 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1554 1555 // If all the high bits are known, we can do this xform. 1556 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1557 // Pull in the high bits from known-ones set. 1558 APInt NewRHS = C.zext(SrcBits); 1559 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1560 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1561 } 1562 } 1563 1564 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1565 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1566 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1567 Value *ShOp; 1568 const APInt *ShAmtC; 1569 bool TrueIfSigned; 1570 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1571 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1572 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1573 return TrueIfSigned 1574 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1575 ConstantInt::getNullValue(X->getType())) 1576 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1577 ConstantInt::getAllOnesValue(X->getType())); 1578 } 1579 1580 return nullptr; 1581 } 1582 1583 /// Fold icmp (xor X, Y), C. 1584 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1585 BinaryOperator *Xor, 1586 const APInt &C) { 1587 Value *X = Xor->getOperand(0); 1588 Value *Y = Xor->getOperand(1); 1589 const APInt *XorC; 1590 if (!match(Y, m_APInt(XorC))) 1591 return nullptr; 1592 1593 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1594 // fold the xor. 1595 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1596 bool TrueIfSigned = false; 1597 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1598 1599 // If the sign bit of the XorCst is not set, there is no change to 1600 // the operation, just stop using the Xor. 1601 if (!XorC->isNegative()) 1602 return replaceOperand(Cmp, 0, X); 1603 1604 // Emit the opposite comparison. 1605 if (TrueIfSigned) 1606 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1607 ConstantInt::getAllOnesValue(X->getType())); 1608 else 1609 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1610 ConstantInt::getNullValue(X->getType())); 1611 } 1612 1613 if (Xor->hasOneUse()) { 1614 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1615 if (!Cmp.isEquality() && XorC->isSignMask()) { 1616 Pred = Cmp.getFlippedSignednessPredicate(); 1617 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1618 } 1619 1620 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1621 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1622 Pred = Cmp.getFlippedSignednessPredicate(); 1623 Pred = Cmp.getSwappedPredicate(Pred); 1624 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1625 } 1626 } 1627 1628 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1629 if (Pred == ICmpInst::ICMP_UGT) { 1630 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1631 if (*XorC == ~C && (C + 1).isPowerOf2()) 1632 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1633 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1634 if (*XorC == C && (C + 1).isPowerOf2()) 1635 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1636 } 1637 if (Pred == ICmpInst::ICMP_ULT) { 1638 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1639 if (*XorC == -C && C.isPowerOf2()) 1640 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1641 ConstantInt::get(X->getType(), ~C)); 1642 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1643 if (*XorC == C && (-C).isPowerOf2()) 1644 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1645 ConstantInt::get(X->getType(), ~C)); 1646 } 1647 return nullptr; 1648 } 1649 1650 /// Fold icmp (and (sh X, Y), C2), C1. 1651 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1652 BinaryOperator *And, 1653 const APInt &C1, 1654 const APInt &C2) { 1655 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1656 if (!Shift || !Shift->isShift()) 1657 return nullptr; 1658 1659 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1660 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1661 // code produced by the clang front-end, for bitfield access. 1662 // This seemingly simple opportunity to fold away a shift turns out to be 1663 // rather complicated. See PR17827 for details. 1664 unsigned ShiftOpcode = Shift->getOpcode(); 1665 bool IsShl = ShiftOpcode == Instruction::Shl; 1666 const APInt *C3; 1667 if (match(Shift->getOperand(1), m_APInt(C3))) { 1668 APInt NewAndCst, NewCmpCst; 1669 bool AnyCmpCstBitsShiftedOut; 1670 if (ShiftOpcode == Instruction::Shl) { 1671 // For a left shift, we can fold if the comparison is not signed. We can 1672 // also fold a signed comparison if the mask value and comparison value 1673 // are not negative. These constraints may not be obvious, but we can 1674 // prove that they are correct using an SMT solver. 1675 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1676 return nullptr; 1677 1678 NewCmpCst = C1.lshr(*C3); 1679 NewAndCst = C2.lshr(*C3); 1680 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1681 } else if (ShiftOpcode == Instruction::LShr) { 1682 // For a logical right shift, we can fold if the comparison is not signed. 1683 // We can also fold a signed comparison if the shifted mask value and the 1684 // shifted comparison value are not negative. These constraints may not be 1685 // obvious, but we can prove that they are correct using an SMT solver. 1686 NewCmpCst = C1.shl(*C3); 1687 NewAndCst = C2.shl(*C3); 1688 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1689 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1690 return nullptr; 1691 } else { 1692 // For an arithmetic shift, check that both constants don't use (in a 1693 // signed sense) the top bits being shifted out. 1694 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1695 NewCmpCst = C1.shl(*C3); 1696 NewAndCst = C2.shl(*C3); 1697 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1698 if (NewAndCst.ashr(*C3) != C2) 1699 return nullptr; 1700 } 1701 1702 if (AnyCmpCstBitsShiftedOut) { 1703 // If we shifted bits out, the fold is not going to work out. As a 1704 // special case, check to see if this means that the result is always 1705 // true or false now. 1706 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1707 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1708 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1709 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1710 } else { 1711 Value *NewAnd = Builder.CreateAnd( 1712 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1713 return new ICmpInst(Cmp.getPredicate(), 1714 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1715 } 1716 } 1717 1718 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1719 // preferable because it allows the C2 << Y expression to be hoisted out of a 1720 // loop if Y is invariant and X is not. 1721 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1722 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1723 // Compute C2 << Y. 1724 Value *NewShift = 1725 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1726 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1727 1728 // Compute X & (C2 << Y). 1729 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1730 return replaceOperand(Cmp, 0, NewAnd); 1731 } 1732 1733 return nullptr; 1734 } 1735 1736 /// Fold icmp (and X, C2), C1. 1737 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1738 BinaryOperator *And, 1739 const APInt &C1) { 1740 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1741 1742 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1743 // TODO: We canonicalize to the longer form for scalars because we have 1744 // better analysis/folds for icmp, and codegen may be better with icmp. 1745 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1746 match(And->getOperand(1), m_One())) 1747 return new TruncInst(And->getOperand(0), Cmp.getType()); 1748 1749 const APInt *C2; 1750 Value *X; 1751 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1752 return nullptr; 1753 1754 // Don't perform the following transforms if the AND has multiple uses 1755 if (!And->hasOneUse()) 1756 return nullptr; 1757 1758 if (Cmp.isEquality() && C1.isZero()) { 1759 // Restrict this fold to single-use 'and' (PR10267). 1760 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1761 if (C2->isSignMask()) { 1762 Constant *Zero = Constant::getNullValue(X->getType()); 1763 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1764 return new ICmpInst(NewPred, X, Zero); 1765 } 1766 1767 // Restrict this fold only for single-use 'and' (PR10267). 1768 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1769 if ((~(*C2) + 1).isPowerOf2()) { 1770 Constant *NegBOC = 1771 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1772 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1773 return new ICmpInst(NewPred, X, NegBOC); 1774 } 1775 } 1776 1777 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1778 // the input width without changing the value produced, eliminate the cast: 1779 // 1780 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1781 // 1782 // We can do this transformation if the constants do not have their sign bits 1783 // set or if it is an equality comparison. Extending a relational comparison 1784 // when we're checking the sign bit would not work. 1785 Value *W; 1786 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1787 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1788 // TODO: Is this a good transform for vectors? Wider types may reduce 1789 // throughput. Should this transform be limited (even for scalars) by using 1790 // shouldChangeType()? 1791 if (!Cmp.getType()->isVectorTy()) { 1792 Type *WideType = W->getType(); 1793 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1794 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1795 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1796 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1797 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1798 } 1799 } 1800 1801 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1802 return I; 1803 1804 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1805 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1806 // 1807 // iff pred isn't signed 1808 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1809 match(And->getOperand(1), m_One())) { 1810 Constant *One = cast<Constant>(And->getOperand(1)); 1811 Value *Or = And->getOperand(0); 1812 Value *A, *B, *LShr; 1813 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1814 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1815 unsigned UsesRemoved = 0; 1816 if (And->hasOneUse()) 1817 ++UsesRemoved; 1818 if (Or->hasOneUse()) 1819 ++UsesRemoved; 1820 if (LShr->hasOneUse()) 1821 ++UsesRemoved; 1822 1823 // Compute A & ((1 << B) | 1) 1824 Value *NewOr = nullptr; 1825 if (auto *C = dyn_cast<Constant>(B)) { 1826 if (UsesRemoved >= 1) 1827 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1828 } else { 1829 if (UsesRemoved >= 3) 1830 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1831 /*HasNUW=*/true), 1832 One, Or->getName()); 1833 } 1834 if (NewOr) { 1835 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1836 return replaceOperand(Cmp, 0, NewAnd); 1837 } 1838 } 1839 } 1840 1841 return nullptr; 1842 } 1843 1844 /// Fold icmp (and X, Y), C. 1845 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1846 BinaryOperator *And, 1847 const APInt &C) { 1848 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1849 return I; 1850 1851 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1852 bool TrueIfNeg; 1853 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1854 // ((X - 1) & ~X) < 0 --> X == 0 1855 // ((X - 1) & ~X) >= 0 --> X != 0 1856 Value *X; 1857 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1858 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1859 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1860 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1861 } 1862 } 1863 1864 // TODO: These all require that Y is constant too, so refactor with the above. 1865 1866 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1867 Value *X = And->getOperand(0); 1868 Value *Y = And->getOperand(1); 1869 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1870 if (auto *LI = dyn_cast<LoadInst>(X)) 1871 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1872 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1873 if (Instruction *Res = 1874 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1875 return Res; 1876 1877 if (!Cmp.isEquality()) 1878 return nullptr; 1879 1880 // X & -C == -C -> X > u ~C 1881 // X & -C != -C -> X <= u ~C 1882 // iff C is a power of 2 1883 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1884 auto NewPred = 1885 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1886 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1887 } 1888 1889 return nullptr; 1890 } 1891 1892 /// Fold icmp (or X, Y), C. 1893 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1894 BinaryOperator *Or, 1895 const APInt &C) { 1896 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1897 if (C.isOne()) { 1898 // icmp slt signum(V) 1 --> icmp slt V, 1 1899 Value *V = nullptr; 1900 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1901 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1902 ConstantInt::get(V->getType(), 1)); 1903 } 1904 1905 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1906 const APInt *MaskC; 1907 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1908 if (*MaskC == C && (C + 1).isPowerOf2()) { 1909 // X | C == C --> X <=u C 1910 // X | C != C --> X >u C 1911 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1912 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1913 return new ICmpInst(Pred, OrOp0, OrOp1); 1914 } 1915 1916 // More general: canonicalize 'equality with set bits mask' to 1917 // 'equality with clear bits mask'. 1918 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1919 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1920 if (Or->hasOneUse()) { 1921 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1922 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1923 return new ICmpInst(Pred, And, NewC); 1924 } 1925 } 1926 1927 // (X | (X-1)) s< 0 --> X s< 1 1928 // (X | (X-1)) s> -1 --> X s> 0 1929 Value *X; 1930 bool TrueIfSigned; 1931 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1932 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1933 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1934 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1935 return new ICmpInst(NewPred, X, NewC); 1936 } 1937 1938 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1939 return nullptr; 1940 1941 Value *P, *Q; 1942 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1943 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1944 // -> and (icmp eq P, null), (icmp eq Q, null). 1945 Value *CmpP = 1946 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1947 Value *CmpQ = 1948 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1949 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1950 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1951 } 1952 1953 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1954 // a shorter form that has more potential to be folded even further. 1955 Value *X1, *X2, *X3, *X4; 1956 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1957 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1958 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1959 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1960 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1961 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1962 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1963 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1964 } 1965 1966 return nullptr; 1967 } 1968 1969 /// Fold icmp (mul X, Y), C. 1970 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1971 BinaryOperator *Mul, 1972 const APInt &C) { 1973 const APInt *MulC; 1974 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1975 return nullptr; 1976 1977 // If this is a test of the sign bit and the multiply is sign-preserving with 1978 // a constant operand, use the multiply LHS operand instead. 1979 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1980 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1981 if (MulC->isNegative()) 1982 Pred = ICmpInst::getSwappedPredicate(Pred); 1983 return new ICmpInst(Pred, Mul->getOperand(0), 1984 Constant::getNullValue(Mul->getType())); 1985 } 1986 1987 // If the multiply does not wrap, try to divide the compare constant by the 1988 // multiplication factor. 1989 if (Cmp.isEquality() && !MulC->isZero()) { 1990 // (mul nsw X, MulC) == C --> X == C /s MulC 1991 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 1992 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1993 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1994 } 1995 // (mul nuw X, MulC) == C --> X == C /u MulC 1996 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 1997 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1998 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1999 } 2000 } 2001 2002 return nullptr; 2003 } 2004 2005 /// Fold icmp (shl 1, Y), C. 2006 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2007 const APInt &C) { 2008 Value *Y; 2009 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2010 return nullptr; 2011 2012 Type *ShiftType = Shl->getType(); 2013 unsigned TypeBits = C.getBitWidth(); 2014 bool CIsPowerOf2 = C.isPowerOf2(); 2015 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2016 if (Cmp.isUnsigned()) { 2017 // (1 << Y) pred C -> Y pred Log2(C) 2018 if (!CIsPowerOf2) { 2019 // (1 << Y) < 30 -> Y <= 4 2020 // (1 << Y) <= 30 -> Y <= 4 2021 // (1 << Y) >= 30 -> Y > 4 2022 // (1 << Y) > 30 -> Y > 4 2023 if (Pred == ICmpInst::ICMP_ULT) 2024 Pred = ICmpInst::ICMP_ULE; 2025 else if (Pred == ICmpInst::ICMP_UGE) 2026 Pred = ICmpInst::ICMP_UGT; 2027 } 2028 2029 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2030 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2031 unsigned CLog2 = C.logBase2(); 2032 if (CLog2 == TypeBits - 1) { 2033 if (Pred == ICmpInst::ICMP_UGE) 2034 Pred = ICmpInst::ICMP_EQ; 2035 else if (Pred == ICmpInst::ICMP_ULT) 2036 Pred = ICmpInst::ICMP_NE; 2037 } 2038 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2039 } else if (Cmp.isSigned()) { 2040 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2041 if (C.isAllOnes()) { 2042 // (1 << Y) <= -1 -> Y == 31 2043 if (Pred == ICmpInst::ICMP_SLE) 2044 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2045 2046 // (1 << Y) > -1 -> Y != 31 2047 if (Pred == ICmpInst::ICMP_SGT) 2048 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2049 } else if (!C) { 2050 // (1 << Y) < 0 -> Y == 31 2051 // (1 << Y) <= 0 -> Y == 31 2052 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2053 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2054 2055 // (1 << Y) >= 0 -> Y != 31 2056 // (1 << Y) > 0 -> Y != 31 2057 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2058 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2059 } 2060 } else if (Cmp.isEquality() && CIsPowerOf2) { 2061 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2062 } 2063 2064 return nullptr; 2065 } 2066 2067 /// Fold icmp (shl X, Y), C. 2068 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2069 BinaryOperator *Shl, 2070 const APInt &C) { 2071 const APInt *ShiftVal; 2072 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2073 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2074 2075 const APInt *ShiftAmt; 2076 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2077 return foldICmpShlOne(Cmp, Shl, C); 2078 2079 // Check that the shift amount is in range. If not, don't perform undefined 2080 // shifts. When the shift is visited, it will be simplified. 2081 unsigned TypeBits = C.getBitWidth(); 2082 if (ShiftAmt->uge(TypeBits)) 2083 return nullptr; 2084 2085 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2086 Value *X = Shl->getOperand(0); 2087 Type *ShType = Shl->getType(); 2088 2089 // NSW guarantees that we are only shifting out sign bits from the high bits, 2090 // so we can ASHR the compare constant without needing a mask and eliminate 2091 // the shift. 2092 if (Shl->hasNoSignedWrap()) { 2093 if (Pred == ICmpInst::ICMP_SGT) { 2094 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2095 APInt ShiftedC = C.ashr(*ShiftAmt); 2096 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2097 } 2098 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2099 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2100 APInt ShiftedC = C.ashr(*ShiftAmt); 2101 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2102 } 2103 if (Pred == ICmpInst::ICMP_SLT) { 2104 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2105 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2106 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2107 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2108 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2109 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2110 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2111 } 2112 // If this is a signed comparison to 0 and the shift is sign preserving, 2113 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2114 // do that if we're sure to not continue on in this function. 2115 if (isSignTest(Pred, C)) 2116 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2117 } 2118 2119 // NUW guarantees that we are only shifting out zero bits from the high bits, 2120 // so we can LSHR the compare constant without needing a mask and eliminate 2121 // the shift. 2122 if (Shl->hasNoUnsignedWrap()) { 2123 if (Pred == ICmpInst::ICMP_UGT) { 2124 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2125 APInt ShiftedC = C.lshr(*ShiftAmt); 2126 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2127 } 2128 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2129 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2130 APInt ShiftedC = C.lshr(*ShiftAmt); 2131 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2132 } 2133 if (Pred == ICmpInst::ICMP_ULT) { 2134 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2135 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2136 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2137 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2138 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2139 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2140 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2141 } 2142 } 2143 2144 if (Cmp.isEquality() && Shl->hasOneUse()) { 2145 // Strength-reduce the shift into an 'and'. 2146 Constant *Mask = ConstantInt::get( 2147 ShType, 2148 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2149 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2150 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2151 return new ICmpInst(Pred, And, LShrC); 2152 } 2153 2154 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2155 bool TrueIfSigned = false; 2156 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2157 // (X << 31) <s 0 --> (X & 1) != 0 2158 Constant *Mask = ConstantInt::get( 2159 ShType, 2160 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2161 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2162 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2163 And, Constant::getNullValue(ShType)); 2164 } 2165 2166 // Simplify 'shl' inequality test into 'and' equality test. 2167 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2168 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2169 if ((C + 1).isPowerOf2() && 2170 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2171 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2172 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2173 : ICmpInst::ICMP_NE, 2174 And, Constant::getNullValue(ShType)); 2175 } 2176 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2177 if (C.isPowerOf2() && 2178 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2179 Value *And = 2180 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2181 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2182 : ICmpInst::ICMP_NE, 2183 And, Constant::getNullValue(ShType)); 2184 } 2185 } 2186 2187 // Transform (icmp pred iM (shl iM %v, N), C) 2188 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2189 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2190 // This enables us to get rid of the shift in favor of a trunc that may be 2191 // free on the target. It has the additional benefit of comparing to a 2192 // smaller constant that may be more target-friendly. 2193 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2194 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2195 DL.isLegalInteger(TypeBits - Amt)) { 2196 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2197 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2198 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2199 Constant *NewC = 2200 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2201 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2202 } 2203 2204 return nullptr; 2205 } 2206 2207 /// Fold icmp ({al}shr X, Y), C. 2208 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2209 BinaryOperator *Shr, 2210 const APInt &C) { 2211 // An exact shr only shifts out zero bits, so: 2212 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2213 Value *X = Shr->getOperand(0); 2214 CmpInst::Predicate Pred = Cmp.getPredicate(); 2215 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2216 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2217 2218 const APInt *ShiftVal; 2219 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2220 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2221 2222 const APInt *ShiftAmt; 2223 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2224 return nullptr; 2225 2226 // Check that the shift amount is in range. If not, don't perform undefined 2227 // shifts. When the shift is visited it will be simplified. 2228 unsigned TypeBits = C.getBitWidth(); 2229 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2230 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2231 return nullptr; 2232 2233 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2234 bool IsExact = Shr->isExact(); 2235 Type *ShrTy = Shr->getType(); 2236 // TODO: If we could guarantee that InstSimplify would handle all of the 2237 // constant-value-based preconditions in the folds below, then we could assert 2238 // those conditions rather than checking them. This is difficult because of 2239 // undef/poison (PR34838). 2240 if (IsAShr) { 2241 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2242 // When ShAmtC can be shifted losslessly: 2243 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2244 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2245 APInt ShiftedC = C.shl(ShAmtVal); 2246 if (ShiftedC.ashr(ShAmtVal) == C) 2247 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2248 } 2249 if (Pred == CmpInst::ICMP_SGT) { 2250 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2251 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2252 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2253 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2254 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2255 } 2256 if (Pred == CmpInst::ICMP_UGT) { 2257 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2258 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2259 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2260 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2261 } 2262 2263 // If the compare constant has significant bits above the lowest sign-bit, 2264 // then convert an unsigned cmp to a test of the sign-bit: 2265 // (ashr X, ShiftC) u> C --> X s< 0 2266 // (ashr X, ShiftC) u< C --> X s> -1 2267 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2268 if (Pred == CmpInst::ICMP_UGT) { 2269 return new ICmpInst(CmpInst::ICMP_SLT, X, 2270 ConstantInt::getNullValue(ShrTy)); 2271 } 2272 if (Pred == CmpInst::ICMP_ULT) { 2273 return new ICmpInst(CmpInst::ICMP_SGT, X, 2274 ConstantInt::getAllOnesValue(ShrTy)); 2275 } 2276 } 2277 } else { 2278 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2279 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2280 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2281 APInt ShiftedC = C.shl(ShAmtVal); 2282 if (ShiftedC.lshr(ShAmtVal) == C) 2283 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2284 } 2285 if (Pred == CmpInst::ICMP_UGT) { 2286 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2287 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2288 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2289 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2290 } 2291 } 2292 2293 if (!Cmp.isEquality()) 2294 return nullptr; 2295 2296 // Handle equality comparisons of shift-by-constant. 2297 2298 // If the comparison constant changes with the shift, the comparison cannot 2299 // succeed (bits of the comparison constant cannot match the shifted value). 2300 // This should be known by InstSimplify and already be folded to true/false. 2301 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2302 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2303 "Expected icmp+shr simplify did not occur."); 2304 2305 // If the bits shifted out are known zero, compare the unshifted value: 2306 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2307 if (Shr->isExact()) 2308 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2309 2310 if (C.isZero()) { 2311 // == 0 is u< 1. 2312 if (Pred == CmpInst::ICMP_EQ) 2313 return new ICmpInst(CmpInst::ICMP_ULT, X, 2314 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2315 else 2316 return new ICmpInst(CmpInst::ICMP_UGT, X, 2317 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2318 } 2319 2320 if (Shr->hasOneUse()) { 2321 // Canonicalize the shift into an 'and': 2322 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2323 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2324 Constant *Mask = ConstantInt::get(ShrTy, Val); 2325 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2326 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2327 } 2328 2329 return nullptr; 2330 } 2331 2332 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2333 BinaryOperator *SRem, 2334 const APInt &C) { 2335 // Match an 'is positive' or 'is negative' comparison of remainder by a 2336 // constant power-of-2 value: 2337 // (X % pow2C) sgt/slt 0 2338 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2339 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2340 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2341 return nullptr; 2342 2343 // TODO: The one-use check is standard because we do not typically want to 2344 // create longer instruction sequences, but this might be a special-case 2345 // because srem is not good for analysis or codegen. 2346 if (!SRem->hasOneUse()) 2347 return nullptr; 2348 2349 const APInt *DivisorC; 2350 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2351 return nullptr; 2352 2353 // For cmp_sgt/cmp_slt only zero valued C is handled. 2354 // For cmp_eq/cmp_ne only positive valued C is handled. 2355 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2356 !C.isZero()) || 2357 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2358 !C.isStrictlyPositive())) 2359 return nullptr; 2360 2361 // Mask off the sign bit and the modulo bits (low-bits). 2362 Type *Ty = SRem->getType(); 2363 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2364 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2365 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2366 2367 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2368 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2369 2370 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2371 // bit is set. Example: 2372 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2373 if (Pred == ICmpInst::ICMP_SGT) 2374 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2375 2376 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2377 // bit is set. Example: 2378 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2379 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2380 } 2381 2382 /// Fold icmp (udiv X, Y), C. 2383 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2384 BinaryOperator *UDiv, 2385 const APInt &C) { 2386 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2387 Value *X = UDiv->getOperand(0); 2388 Value *Y = UDiv->getOperand(1); 2389 Type *Ty = UDiv->getType(); 2390 2391 const APInt *C2; 2392 if (!match(X, m_APInt(C2))) 2393 return nullptr; 2394 2395 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2396 2397 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2398 if (Pred == ICmpInst::ICMP_UGT) { 2399 assert(!C.isMaxValue() && 2400 "icmp ugt X, UINT_MAX should have been simplified already."); 2401 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2402 ConstantInt::get(Ty, C2->udiv(C + 1))); 2403 } 2404 2405 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2406 if (Pred == ICmpInst::ICMP_ULT) { 2407 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2408 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2409 ConstantInt::get(Ty, C2->udiv(C))); 2410 } 2411 2412 return nullptr; 2413 } 2414 2415 /// Fold icmp ({su}div X, Y), C. 2416 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2417 BinaryOperator *Div, 2418 const APInt &C) { 2419 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2420 Value *X = Div->getOperand(0); 2421 Value *Y = Div->getOperand(1); 2422 Type *Ty = Div->getType(); 2423 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2424 2425 // If unsigned division and the compare constant is bigger than 2426 // UMAX/2 (negative), there's only one pair of values that satisfies an 2427 // equality check, so eliminate the division: 2428 // (X u/ Y) == C --> (X == C) && (Y == 1) 2429 // (X u/ Y) != C --> (X != C) || (Y != 1) 2430 // Similarly, if signed division and the compare constant is exactly SMIN: 2431 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) 2432 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) 2433 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && 2434 (!DivIsSigned || C.isMinSignedValue())) { 2435 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C)); 2436 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1)); 2437 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2438 return BinaryOperator::Create(Logic, XBig, YOne); 2439 } 2440 2441 // Fold: icmp pred ([us]div X, C2), C -> range test 2442 // Fold this div into the comparison, producing a range check. 2443 // Determine, based on the divide type, what the range is being 2444 // checked. If there is an overflow on the low or high side, remember 2445 // it, otherwise compute the range [low, hi) bounding the new value. 2446 // See: InsertRangeTest above for the kinds of replacements possible. 2447 const APInt *C2; 2448 if (!match(Y, m_APInt(C2))) 2449 return nullptr; 2450 2451 // FIXME: If the operand types don't match the type of the divide 2452 // then don't attempt this transform. The code below doesn't have the 2453 // logic to deal with a signed divide and an unsigned compare (and 2454 // vice versa). This is because (x /s C2) <s C produces different 2455 // results than (x /s C2) <u C or (x /u C2) <s C or even 2456 // (x /u C2) <u C. Simply casting the operands and result won't 2457 // work. :( The if statement below tests that condition and bails 2458 // if it finds it. 2459 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2460 return nullptr; 2461 2462 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2463 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2464 // division-by-constant cases should be present, we can not assert that they 2465 // have happened before we reach this icmp instruction. 2466 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2467 return nullptr; 2468 2469 // Compute Prod = C * C2. We are essentially solving an equation of 2470 // form X / C2 = C. We solve for X by multiplying C2 and C. 2471 // By solving for X, we can turn this into a range check instead of computing 2472 // a divide. 2473 APInt Prod = C * *C2; 2474 2475 // Determine if the product overflows by seeing if the product is not equal to 2476 // the divide. Make sure we do the same kind of divide as in the LHS 2477 // instruction that we're folding. 2478 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2479 2480 // If the division is known to be exact, then there is no remainder from the 2481 // divide, so the covered range size is unit, otherwise it is the divisor. 2482 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2483 2484 // Figure out the interval that is being checked. For example, a comparison 2485 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2486 // Compute this interval based on the constants involved and the signedness of 2487 // the compare/divide. This computes a half-open interval, keeping track of 2488 // whether either value in the interval overflows. After analysis each 2489 // overflow variable is set to 0 if it's corresponding bound variable is valid 2490 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2491 int LoOverflow = 0, HiOverflow = 0; 2492 APInt LoBound, HiBound; 2493 2494 if (!DivIsSigned) { // udiv 2495 // e.g. X/5 op 3 --> [15, 20) 2496 LoBound = Prod; 2497 HiOverflow = LoOverflow = ProdOV; 2498 if (!HiOverflow) { 2499 // If this is not an exact divide, then many values in the range collapse 2500 // to the same result value. 2501 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2502 } 2503 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2504 if (C.isZero()) { // (X / pos) op 0 2505 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2506 LoBound = -(RangeSize - 1); 2507 HiBound = RangeSize; 2508 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2509 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2510 HiOverflow = LoOverflow = ProdOV; 2511 if (!HiOverflow) 2512 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2513 } else { // (X / pos) op neg 2514 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2515 HiBound = Prod + 1; 2516 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2517 if (!LoOverflow) { 2518 APInt DivNeg = -RangeSize; 2519 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2520 } 2521 } 2522 } else if (C2->isNegative()) { // Divisor is < 0. 2523 if (Div->isExact()) 2524 RangeSize.negate(); 2525 if (C.isZero()) { // (X / neg) op 0 2526 // e.g. X/-5 op 0 --> [-4, 5) 2527 LoBound = RangeSize + 1; 2528 HiBound = -RangeSize; 2529 if (HiBound == *C2) { // -INTMIN = INTMIN 2530 HiOverflow = 1; // [INTMIN+1, overflow) 2531 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2532 } 2533 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2534 // e.g. X/-5 op 3 --> [-19, -14) 2535 HiBound = Prod + 1; 2536 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2537 if (!LoOverflow) 2538 LoOverflow = 2539 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0; 2540 } else { // (X / neg) op neg 2541 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2542 LoOverflow = HiOverflow = ProdOV; 2543 if (!HiOverflow) 2544 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2545 } 2546 2547 // Dividing by a negative swaps the condition. LT <-> GT 2548 Pred = ICmpInst::getSwappedPredicate(Pred); 2549 } 2550 2551 switch (Pred) { 2552 default: 2553 llvm_unreachable("Unhandled icmp predicate!"); 2554 case ICmpInst::ICMP_EQ: 2555 if (LoOverflow && HiOverflow) 2556 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2557 if (HiOverflow) 2558 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2559 X, ConstantInt::get(Ty, LoBound)); 2560 if (LoOverflow) 2561 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2562 X, ConstantInt::get(Ty, HiBound)); 2563 return replaceInstUsesWith( 2564 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2565 case ICmpInst::ICMP_NE: 2566 if (LoOverflow && HiOverflow) 2567 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2568 if (HiOverflow) 2569 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2570 X, ConstantInt::get(Ty, LoBound)); 2571 if (LoOverflow) 2572 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2573 X, ConstantInt::get(Ty, HiBound)); 2574 return replaceInstUsesWith( 2575 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); 2576 case ICmpInst::ICMP_ULT: 2577 case ICmpInst::ICMP_SLT: 2578 if (LoOverflow == +1) // Low bound is greater than input range. 2579 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2580 if (LoOverflow == -1) // Low bound is less than input range. 2581 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2582 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound)); 2583 case ICmpInst::ICMP_UGT: 2584 case ICmpInst::ICMP_SGT: 2585 if (HiOverflow == +1) // High bound greater than input range. 2586 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2587 if (HiOverflow == -1) // High bound less than input range. 2588 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2589 if (Pred == ICmpInst::ICMP_UGT) 2590 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); 2591 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound)); 2592 } 2593 2594 return nullptr; 2595 } 2596 2597 /// Fold icmp (sub X, Y), C. 2598 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2599 BinaryOperator *Sub, 2600 const APInt &C) { 2601 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2602 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2603 Type *Ty = Sub->getType(); 2604 2605 // (SubC - Y) == C) --> Y == (SubC - C) 2606 // (SubC - Y) != C) --> Y != (SubC - C) 2607 Constant *SubC; 2608 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2609 return new ICmpInst(Pred, Y, 2610 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2611 } 2612 2613 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2614 const APInt *C2; 2615 APInt SubResult; 2616 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2617 bool HasNSW = Sub->hasNoSignedWrap(); 2618 bool HasNUW = Sub->hasNoUnsignedWrap(); 2619 if (match(X, m_APInt(C2)) && 2620 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2621 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2622 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2623 2624 // X - Y == 0 --> X == Y. 2625 // X - Y != 0 --> X != Y. 2626 // TODO: We allow this with multiple uses as long as the other uses are not 2627 // in phis. The phi use check is guarding against a codegen regression 2628 // for a loop test. If the backend could undo this (and possibly 2629 // subsequent transforms), we would not need this hack. 2630 if (Cmp.isEquality() && C.isZero() && 2631 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2632 return new ICmpInst(Pred, X, Y); 2633 2634 // The following transforms are only worth it if the only user of the subtract 2635 // is the icmp. 2636 // TODO: This is an artificial restriction for all of the transforms below 2637 // that only need a single replacement icmp. Can these use the phi test 2638 // like the transform above here? 2639 if (!Sub->hasOneUse()) 2640 return nullptr; 2641 2642 if (Sub->hasNoSignedWrap()) { 2643 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2644 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2645 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2646 2647 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2648 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2649 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2650 2651 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2652 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2653 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2654 2655 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2656 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2657 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2658 } 2659 2660 if (!match(X, m_APInt(C2))) 2661 return nullptr; 2662 2663 // C2 - Y <u C -> (Y | (C - 1)) == C2 2664 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2665 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2666 (*C2 & (C - 1)) == (C - 1)) 2667 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2668 2669 // C2 - Y >u C -> (Y | C) != C2 2670 // iff C2 & C == C and C + 1 is a power of 2 2671 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2672 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2673 2674 // We have handled special cases that reduce. 2675 // Canonicalize any remaining sub to add as: 2676 // (C2 - Y) > C --> (Y + ~C2) < ~C 2677 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2678 HasNUW, HasNSW); 2679 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2680 } 2681 2682 /// Fold icmp (add X, Y), C. 2683 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2684 BinaryOperator *Add, 2685 const APInt &C) { 2686 Value *Y = Add->getOperand(1); 2687 const APInt *C2; 2688 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2689 return nullptr; 2690 2691 // Fold icmp pred (add X, C2), C. 2692 Value *X = Add->getOperand(0); 2693 Type *Ty = Add->getType(); 2694 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2695 2696 // If the add does not wrap, we can always adjust the compare by subtracting 2697 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2698 // are canonicalized to SGT/SLT/UGT/ULT. 2699 if ((Add->hasNoSignedWrap() && 2700 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2701 (Add->hasNoUnsignedWrap() && 2702 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2703 bool Overflow; 2704 APInt NewC = 2705 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2706 // If there is overflow, the result must be true or false. 2707 // TODO: Can we assert there is no overflow because InstSimplify always 2708 // handles those cases? 2709 if (!Overflow) 2710 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2711 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2712 } 2713 2714 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2715 const APInt &Upper = CR.getUpper(); 2716 const APInt &Lower = CR.getLower(); 2717 if (Cmp.isSigned()) { 2718 if (Lower.isSignMask()) 2719 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2720 if (Upper.isSignMask()) 2721 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2722 } else { 2723 if (Lower.isMinValue()) 2724 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2725 if (Upper.isMinValue()) 2726 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2727 } 2728 2729 // This set of folds is intentionally placed after folds that use no-wrapping 2730 // flags because those folds are likely better for later analysis/codegen. 2731 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2732 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2733 2734 // Fold compare with offset to opposite sign compare if it eliminates offset: 2735 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2736 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2737 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2738 2739 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2740 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2741 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2742 2743 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2744 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2745 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2746 2747 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2748 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2749 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2750 2751 if (!Add->hasOneUse()) 2752 return nullptr; 2753 2754 // X+C <u C2 -> (X & -C2) == C 2755 // iff C & (C2-1) == 0 2756 // C2 is a power of 2 2757 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2758 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2759 ConstantExpr::getNeg(cast<Constant>(Y))); 2760 2761 // X+C >u C2 -> (X & ~C2) != C 2762 // iff C & C2 == 0 2763 // C2+1 is a power of 2 2764 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2765 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2766 ConstantExpr::getNeg(cast<Constant>(Y))); 2767 2768 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2769 // to the ult form. 2770 // X+C2 >u C -> X+(C2-C-1) <u ~C 2771 if (Pred == ICmpInst::ICMP_UGT) 2772 return new ICmpInst(ICmpInst::ICMP_ULT, 2773 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2774 ConstantInt::get(Ty, ~C)); 2775 2776 return nullptr; 2777 } 2778 2779 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2780 Value *&RHS, ConstantInt *&Less, 2781 ConstantInt *&Equal, 2782 ConstantInt *&Greater) { 2783 // TODO: Generalize this to work with other comparison idioms or ensure 2784 // they get canonicalized into this form. 2785 2786 // select i1 (a == b), 2787 // i32 Equal, 2788 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2789 // where Equal, Less and Greater are placeholders for any three constants. 2790 ICmpInst::Predicate PredA; 2791 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2792 !ICmpInst::isEquality(PredA)) 2793 return false; 2794 Value *EqualVal = SI->getTrueValue(); 2795 Value *UnequalVal = SI->getFalseValue(); 2796 // We still can get non-canonical predicate here, so canonicalize. 2797 if (PredA == ICmpInst::ICMP_NE) 2798 std::swap(EqualVal, UnequalVal); 2799 if (!match(EqualVal, m_ConstantInt(Equal))) 2800 return false; 2801 ICmpInst::Predicate PredB; 2802 Value *LHS2, *RHS2; 2803 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2804 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2805 return false; 2806 // We can get predicate mismatch here, so canonicalize if possible: 2807 // First, ensure that 'LHS' match. 2808 if (LHS2 != LHS) { 2809 // x sgt y <--> y slt x 2810 std::swap(LHS2, RHS2); 2811 PredB = ICmpInst::getSwappedPredicate(PredB); 2812 } 2813 if (LHS2 != LHS) 2814 return false; 2815 // We also need to canonicalize 'RHS'. 2816 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2817 // x sgt C-1 <--> x sge C <--> not(x slt C) 2818 auto FlippedStrictness = 2819 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2820 PredB, cast<Constant>(RHS2)); 2821 if (!FlippedStrictness) 2822 return false; 2823 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2824 "basic correctness failure"); 2825 RHS2 = FlippedStrictness->second; 2826 // And kind-of perform the result swap. 2827 std::swap(Less, Greater); 2828 PredB = ICmpInst::ICMP_SLT; 2829 } 2830 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2831 } 2832 2833 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2834 SelectInst *Select, 2835 ConstantInt *C) { 2836 2837 assert(C && "Cmp RHS should be a constant int!"); 2838 // If we're testing a constant value against the result of a three way 2839 // comparison, the result can be expressed directly in terms of the 2840 // original values being compared. Note: We could possibly be more 2841 // aggressive here and remove the hasOneUse test. The original select is 2842 // really likely to simplify or sink when we remove a test of the result. 2843 Value *OrigLHS, *OrigRHS; 2844 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2845 if (Cmp.hasOneUse() && 2846 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2847 C3GreaterThan)) { 2848 assert(C1LessThan && C2Equal && C3GreaterThan); 2849 2850 bool TrueWhenLessThan = 2851 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2852 ->isAllOnesValue(); 2853 bool TrueWhenEqual = 2854 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2855 ->isAllOnesValue(); 2856 bool TrueWhenGreaterThan = 2857 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2858 ->isAllOnesValue(); 2859 2860 // This generates the new instruction that will replace the original Cmp 2861 // Instruction. Instead of enumerating the various combinations when 2862 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2863 // false, we rely on chaining of ORs and future passes of InstCombine to 2864 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2865 2866 // When none of the three constants satisfy the predicate for the RHS (C), 2867 // the entire original Cmp can be simplified to a false. 2868 Value *Cond = Builder.getFalse(); 2869 if (TrueWhenLessThan) 2870 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2871 OrigLHS, OrigRHS)); 2872 if (TrueWhenEqual) 2873 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2874 OrigLHS, OrigRHS)); 2875 if (TrueWhenGreaterThan) 2876 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2877 OrigLHS, OrigRHS)); 2878 2879 return replaceInstUsesWith(Cmp, Cond); 2880 } 2881 return nullptr; 2882 } 2883 2884 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2885 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2886 if (!Bitcast) 2887 return nullptr; 2888 2889 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2890 Value *Op1 = Cmp.getOperand(1); 2891 Value *BCSrcOp = Bitcast->getOperand(0); 2892 Type *SrcType = Bitcast->getSrcTy(); 2893 Type *DstType = Bitcast->getType(); 2894 2895 // Make sure the bitcast doesn't change between scalar and vector and 2896 // doesn't change the number of vector elements. 2897 if (SrcType->isVectorTy() == DstType->isVectorTy() && 2898 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { 2899 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2900 Value *X; 2901 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2902 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2903 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2904 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2905 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2906 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2907 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2908 match(Op1, m_Zero())) 2909 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2910 2911 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2912 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2913 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2914 2915 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2916 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2917 return new ICmpInst(Pred, X, 2918 ConstantInt::getAllOnesValue(X->getType())); 2919 } 2920 2921 // Zero-equality checks are preserved through unsigned floating-point casts: 2922 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2923 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2924 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2925 if (Cmp.isEquality() && match(Op1, m_Zero())) 2926 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2927 2928 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2929 // the FP extend/truncate because that cast does not change the sign-bit. 2930 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2931 // The sign-bit is always the most significant bit in those types. 2932 const APInt *C; 2933 bool TrueIfSigned; 2934 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2935 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2936 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2937 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2938 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2939 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2940 Type *XType = X->getType(); 2941 2942 // We can't currently handle Power style floating point operations here. 2943 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { 2944 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2945 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2946 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2947 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2948 if (TrueIfSigned) 2949 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2950 ConstantInt::getNullValue(NewType)); 2951 else 2952 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2953 ConstantInt::getAllOnesValue(NewType)); 2954 } 2955 } 2956 } 2957 } 2958 2959 // Test to see if the operands of the icmp are casted versions of other 2960 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2961 if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2962 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2963 // so eliminate it as well. 2964 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2965 Op1 = BC2->getOperand(0); 2966 2967 Op1 = Builder.CreateBitCast(Op1, SrcType); 2968 return new ICmpInst(Pred, BCSrcOp, Op1); 2969 } 2970 2971 const APInt *C; 2972 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || 2973 !SrcType->isIntOrIntVectorTy()) 2974 return nullptr; 2975 2976 // If this is checking if all elements of a vector compare are set or not, 2977 // invert the casted vector equality compare and test if all compare 2978 // elements are clear or not. Compare against zero is generally easier for 2979 // analysis and codegen. 2980 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2981 // Example: are all elements equal? --> are zero elements not equal? 2982 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2983 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2984 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2985 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType); 2986 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); 2987 } 2988 2989 // If this is checking if all elements of an extended vector are clear or not, 2990 // compare in a narrow type to eliminate the extend: 2991 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2992 Value *X; 2993 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2994 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2995 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2996 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2997 Value *NewCast = Builder.CreateBitCast(X, NewType); 2998 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2999 } 3000 } 3001 3002 // Folding: icmp <pred> iN X, C 3003 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 3004 // and C is a splat of a K-bit pattern 3005 // and SC is a constant vector = <C', C', C', ..., C'> 3006 // Into: 3007 // %E = extractelement <M x iK> %vec, i32 C' 3008 // icmp <pred> iK %E, trunc(C) 3009 Value *Vec; 3010 ArrayRef<int> Mask; 3011 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 3012 // Check whether every element of Mask is the same constant 3013 if (is_splat(Mask)) { 3014 auto *VecTy = cast<VectorType>(SrcType); 3015 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 3016 if (C->isSplat(EltTy->getBitWidth())) { 3017 // Fold the icmp based on the value of C 3018 // If C is M copies of an iK sized bit pattern, 3019 // then: 3020 // => %E = extractelement <N x iK> %vec, i32 Elem 3021 // icmp <pred> iK %SplatVal, <pattern> 3022 Value *Elem = Builder.getInt32(Mask[0]); 3023 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3024 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3025 return new ICmpInst(Pred, Extract, NewC); 3026 } 3027 } 3028 } 3029 return nullptr; 3030 } 3031 3032 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3033 /// where X is some kind of instruction. 3034 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3035 const APInt *C; 3036 3037 if (match(Cmp.getOperand(1), m_APInt(C))) { 3038 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) 3039 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) 3040 return I; 3041 3042 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) 3043 // For now, we only support constant integers while folding the 3044 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3045 // similar to the cases handled by binary ops above. 3046 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3047 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3048 return I; 3049 3050 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) 3051 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3052 return I; 3053 3054 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3055 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3056 return I; 3057 } 3058 3059 if (match(Cmp.getOperand(1), m_APIntAllowUndef(C))) 3060 return foldICmpInstWithConstantAllowUndef(Cmp, *C); 3061 3062 return nullptr; 3063 } 3064 3065 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3066 /// icmp eq/ne BO, C. 3067 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3068 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3069 // TODO: Some of these folds could work with arbitrary constants, but this 3070 // function is limited to scalar and vector splat constants. 3071 if (!Cmp.isEquality()) 3072 return nullptr; 3073 3074 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3075 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3076 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3077 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3078 3079 switch (BO->getOpcode()) { 3080 case Instruction::SRem: 3081 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3082 if (C.isZero() && BO->hasOneUse()) { 3083 const APInt *BOC; 3084 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3085 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3086 return new ICmpInst(Pred, NewRem, 3087 Constant::getNullValue(BO->getType())); 3088 } 3089 } 3090 break; 3091 case Instruction::Add: { 3092 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3093 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3094 if (BO->hasOneUse()) 3095 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3096 } else if (C.isZero()) { 3097 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3098 // efficiently invertible, or if the add has just this one use. 3099 if (Value *NegVal = dyn_castNegVal(BOp1)) 3100 return new ICmpInst(Pred, BOp0, NegVal); 3101 if (Value *NegVal = dyn_castNegVal(BOp0)) 3102 return new ICmpInst(Pred, NegVal, BOp1); 3103 if (BO->hasOneUse()) { 3104 Value *Neg = Builder.CreateNeg(BOp1); 3105 Neg->takeName(BO); 3106 return new ICmpInst(Pred, BOp0, Neg); 3107 } 3108 } 3109 break; 3110 } 3111 case Instruction::Xor: 3112 if (BO->hasOneUse()) { 3113 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3114 // For the xor case, we can xor two constants together, eliminating 3115 // the explicit xor. 3116 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3117 } else if (C.isZero()) { 3118 // Replace ((xor A, B) != 0) with (A != B) 3119 return new ICmpInst(Pred, BOp0, BOp1); 3120 } 3121 } 3122 break; 3123 case Instruction::Or: { 3124 const APInt *BOC; 3125 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3126 // Comparing if all bits outside of a constant mask are set? 3127 // Replace (X | C) == -1 with (X & ~C) == ~C. 3128 // This removes the -1 constant. 3129 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3130 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3131 return new ICmpInst(Pred, And, NotBOC); 3132 } 3133 break; 3134 } 3135 case Instruction::And: { 3136 const APInt *BOC; 3137 if (match(BOp1, m_APInt(BOC))) { 3138 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3139 if (C == *BOC && C.isPowerOf2()) 3140 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3141 BO, Constant::getNullValue(RHS->getType())); 3142 } 3143 break; 3144 } 3145 case Instruction::UDiv: 3146 if (C.isZero()) { 3147 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3148 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3149 return new ICmpInst(NewPred, BOp1, BOp0); 3150 } 3151 break; 3152 default: 3153 break; 3154 } 3155 return nullptr; 3156 } 3157 3158 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3159 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3160 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3161 Type *Ty = II->getType(); 3162 unsigned BitWidth = C.getBitWidth(); 3163 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3164 3165 switch (II->getIntrinsicID()) { 3166 case Intrinsic::abs: 3167 // abs(A) == 0 -> A == 0 3168 // abs(A) == INT_MIN -> A == INT_MIN 3169 if (C.isZero() || C.isMinSignedValue()) 3170 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3171 break; 3172 3173 case Intrinsic::bswap: 3174 // bswap(A) == C -> A == bswap(C) 3175 return new ICmpInst(Pred, II->getArgOperand(0), 3176 ConstantInt::get(Ty, C.byteSwap())); 3177 3178 case Intrinsic::ctlz: 3179 case Intrinsic::cttz: { 3180 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3181 if (C == BitWidth) 3182 return new ICmpInst(Pred, II->getArgOperand(0), 3183 ConstantInt::getNullValue(Ty)); 3184 3185 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3186 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3187 // Limit to one use to ensure we don't increase instruction count. 3188 unsigned Num = C.getLimitedValue(BitWidth); 3189 if (Num != BitWidth && II->hasOneUse()) { 3190 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3191 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3192 : APInt::getHighBitsSet(BitWidth, Num + 1); 3193 APInt Mask2 = IsTrailing 3194 ? APInt::getOneBitSet(BitWidth, Num) 3195 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3196 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3197 ConstantInt::get(Ty, Mask2)); 3198 } 3199 break; 3200 } 3201 3202 case Intrinsic::ctpop: { 3203 // popcount(A) == 0 -> A == 0 and likewise for != 3204 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3205 bool IsZero = C.isZero(); 3206 if (IsZero || C == BitWidth) 3207 return new ICmpInst(Pred, II->getArgOperand(0), 3208 IsZero ? Constant::getNullValue(Ty) 3209 : Constant::getAllOnesValue(Ty)); 3210 3211 break; 3212 } 3213 3214 case Intrinsic::fshl: 3215 case Intrinsic::fshr: 3216 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3217 const APInt *RotAmtC; 3218 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3219 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3220 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3221 return new ICmpInst(Pred, II->getArgOperand(0), 3222 II->getIntrinsicID() == Intrinsic::fshl 3223 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3224 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3225 } 3226 break; 3227 3228 case Intrinsic::uadd_sat: { 3229 // uadd.sat(a, b) == 0 -> (a | b) == 0 3230 if (C.isZero()) { 3231 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3232 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3233 } 3234 break; 3235 } 3236 3237 case Intrinsic::usub_sat: { 3238 // usub.sat(a, b) == 0 -> a <= b 3239 if (C.isZero()) { 3240 ICmpInst::Predicate NewPred = 3241 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3242 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3243 } 3244 break; 3245 } 3246 default: 3247 break; 3248 } 3249 3250 return nullptr; 3251 } 3252 3253 /// Fold an icmp with LLVM intrinsics 3254 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3255 assert(Cmp.isEquality()); 3256 3257 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3258 Value *Op0 = Cmp.getOperand(0); 3259 Value *Op1 = Cmp.getOperand(1); 3260 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3261 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3262 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3263 return nullptr; 3264 3265 switch (IIOp0->getIntrinsicID()) { 3266 case Intrinsic::bswap: 3267 case Intrinsic::bitreverse: 3268 // If both operands are byte-swapped or bit-reversed, just compare the 3269 // original values. 3270 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3271 case Intrinsic::fshl: 3272 case Intrinsic::fshr: 3273 // If both operands are rotated by same amount, just compare the 3274 // original values. 3275 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3276 break; 3277 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3278 break; 3279 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3280 break; 3281 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3282 default: 3283 break; 3284 } 3285 3286 return nullptr; 3287 } 3288 3289 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3290 /// where X is some kind of instruction and C is AllowUndef. 3291 /// TODO: Move more folds which allow undef to this function. 3292 Instruction * 3293 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp, 3294 const APInt &C) { 3295 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3296 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) { 3297 switch (II->getIntrinsicID()) { 3298 default: 3299 break; 3300 case Intrinsic::fshl: 3301 case Intrinsic::fshr: 3302 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { 3303 // (rot X, ?) == 0/-1 --> X == 0/-1 3304 if (C.isZero() || C.isAllOnes()) 3305 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3306 } 3307 break; 3308 } 3309 } 3310 3311 return nullptr; 3312 } 3313 3314 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. 3315 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, 3316 BinaryOperator *BO, 3317 const APInt &C) { 3318 switch (BO->getOpcode()) { 3319 case Instruction::Xor: 3320 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 3321 return I; 3322 break; 3323 case Instruction::And: 3324 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 3325 return I; 3326 break; 3327 case Instruction::Or: 3328 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 3329 return I; 3330 break; 3331 case Instruction::Mul: 3332 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 3333 return I; 3334 break; 3335 case Instruction::Shl: 3336 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 3337 return I; 3338 break; 3339 case Instruction::LShr: 3340 case Instruction::AShr: 3341 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 3342 return I; 3343 break; 3344 case Instruction::SRem: 3345 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) 3346 return I; 3347 break; 3348 case Instruction::UDiv: 3349 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 3350 return I; 3351 LLVM_FALLTHROUGH; 3352 case Instruction::SDiv: 3353 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 3354 return I; 3355 break; 3356 case Instruction::Sub: 3357 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 3358 return I; 3359 break; 3360 case Instruction::Add: 3361 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 3362 return I; 3363 break; 3364 default: 3365 break; 3366 } 3367 3368 // TODO: These folds could be refactored to be part of the above calls. 3369 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); 3370 } 3371 3372 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3373 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3374 IntrinsicInst *II, 3375 const APInt &C) { 3376 if (Cmp.isEquality()) 3377 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3378 3379 Type *Ty = II->getType(); 3380 unsigned BitWidth = C.getBitWidth(); 3381 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3382 switch (II->getIntrinsicID()) { 3383 case Intrinsic::ctpop: { 3384 // (ctpop X > BitWidth - 1) --> X == -1 3385 Value *X = II->getArgOperand(0); 3386 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3387 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3388 ConstantInt::getAllOnesValue(Ty)); 3389 // (ctpop X < BitWidth) --> X != -1 3390 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3391 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3392 ConstantInt::getAllOnesValue(Ty)); 3393 break; 3394 } 3395 case Intrinsic::ctlz: { 3396 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3397 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3398 unsigned Num = C.getLimitedValue(); 3399 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3400 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3401 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3402 } 3403 3404 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3405 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3406 unsigned Num = C.getLimitedValue(); 3407 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3408 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3409 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3410 } 3411 break; 3412 } 3413 case Intrinsic::cttz: { 3414 // Limit to one use to ensure we don't increase instruction count. 3415 if (!II->hasOneUse()) 3416 return nullptr; 3417 3418 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3419 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3420 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3421 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3422 Builder.CreateAnd(II->getArgOperand(0), Mask), 3423 ConstantInt::getNullValue(Ty)); 3424 } 3425 3426 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3427 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3428 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3429 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3430 Builder.CreateAnd(II->getArgOperand(0), Mask), 3431 ConstantInt::getNullValue(Ty)); 3432 } 3433 break; 3434 } 3435 default: 3436 break; 3437 } 3438 3439 return nullptr; 3440 } 3441 3442 /// Handle icmp with constant (but not simple integer constant) RHS. 3443 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3444 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3445 Constant *RHSC = dyn_cast<Constant>(Op1); 3446 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3447 if (!RHSC || !LHSI) 3448 return nullptr; 3449 3450 switch (LHSI->getOpcode()) { 3451 case Instruction::GetElementPtr: 3452 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3453 if (RHSC->isNullValue() && 3454 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3455 return new ICmpInst( 3456 I.getPredicate(), LHSI->getOperand(0), 3457 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3458 break; 3459 case Instruction::PHI: 3460 // Only fold icmp into the PHI if the phi and icmp are in the same 3461 // block. If in the same block, we're encouraging jump threading. If 3462 // not, we are just pessimizing the code by making an i1 phi. 3463 if (LHSI->getParent() == I.getParent()) 3464 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3465 return NV; 3466 break; 3467 case Instruction::IntToPtr: 3468 // icmp pred inttoptr(X), null -> icmp pred X, 0 3469 if (RHSC->isNullValue() && 3470 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3471 return new ICmpInst( 3472 I.getPredicate(), LHSI->getOperand(0), 3473 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3474 break; 3475 3476 case Instruction::Load: 3477 // Try to optimize things like "A[i] > 4" to index computations. 3478 if (GetElementPtrInst *GEP = 3479 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3480 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3481 if (Instruction *Res = 3482 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3483 return Res; 3484 break; 3485 } 3486 3487 return nullptr; 3488 } 3489 3490 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 3491 SelectInst *SI, Value *RHS, 3492 const ICmpInst &I) { 3493 // Try to fold the comparison into the select arms, which will cause the 3494 // select to be converted into a logical and/or. 3495 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 3496 if (Value *Res = SimplifyICmpInst(Pred, Op, RHS, SQ)) 3497 return Res; 3498 if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op, 3499 RHS, DL, SelectCondIsTrue)) 3500 return ConstantInt::get(I.getType(), *Impl); 3501 return nullptr; 3502 }; 3503 3504 ConstantInt *CI = nullptr; 3505 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 3506 if (Op1) 3507 CI = dyn_cast<ConstantInt>(Op1); 3508 3509 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 3510 if (Op2) 3511 CI = dyn_cast<ConstantInt>(Op2); 3512 3513 // We only want to perform this transformation if it will not lead to 3514 // additional code. This is true if either both sides of the select 3515 // fold to a constant (in which case the icmp is replaced with a select 3516 // which will usually simplify) or this is the only user of the 3517 // select (in which case we are trading a select+icmp for a simpler 3518 // select+icmp) or all uses of the select can be replaced based on 3519 // dominance information ("Global cases"). 3520 bool Transform = false; 3521 if (Op1 && Op2) 3522 Transform = true; 3523 else if (Op1 || Op2) { 3524 // Local case 3525 if (SI->hasOneUse()) 3526 Transform = true; 3527 // Global cases 3528 else if (CI && !CI->isZero()) 3529 // When Op1 is constant try replacing select with second operand. 3530 // Otherwise Op2 is constant and try replacing select with first 3531 // operand. 3532 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 3533 } 3534 if (Transform) { 3535 if (!Op1) 3536 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 3537 if (!Op2) 3538 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 3539 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 3540 } 3541 3542 return nullptr; 3543 } 3544 3545 /// Some comparisons can be simplified. 3546 /// In this case, we are looking for comparisons that look like 3547 /// a check for a lossy truncation. 3548 /// Folds: 3549 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3550 /// Where Mask is some pattern that produces all-ones in low bits: 3551 /// (-1 >> y) 3552 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3553 /// ~(-1 << y) 3554 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3555 /// The Mask can be a constant, too. 3556 /// For some predicates, the operands are commutative. 3557 /// For others, x can only be on a specific side. 3558 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3559 InstCombiner::BuilderTy &Builder) { 3560 ICmpInst::Predicate SrcPred; 3561 Value *X, *M, *Y; 3562 auto m_VariableMask = m_CombineOr( 3563 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3564 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3565 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3566 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3567 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3568 if (!match(&I, m_c_ICmp(SrcPred, 3569 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3570 m_Deferred(X)))) 3571 return nullptr; 3572 3573 ICmpInst::Predicate DstPred; 3574 switch (SrcPred) { 3575 case ICmpInst::Predicate::ICMP_EQ: 3576 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3577 DstPred = ICmpInst::Predicate::ICMP_ULE; 3578 break; 3579 case ICmpInst::Predicate::ICMP_NE: 3580 // x & (-1 >> y) != x -> x u> (-1 >> y) 3581 DstPred = ICmpInst::Predicate::ICMP_UGT; 3582 break; 3583 case ICmpInst::Predicate::ICMP_ULT: 3584 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3585 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3586 DstPred = ICmpInst::Predicate::ICMP_UGT; 3587 break; 3588 case ICmpInst::Predicate::ICMP_UGE: 3589 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3590 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3591 DstPred = ICmpInst::Predicate::ICMP_ULE; 3592 break; 3593 case ICmpInst::Predicate::ICMP_SLT: 3594 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3595 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3596 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3597 return nullptr; 3598 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3599 return nullptr; 3600 DstPred = ICmpInst::Predicate::ICMP_SGT; 3601 break; 3602 case ICmpInst::Predicate::ICMP_SGE: 3603 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3604 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3605 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3606 return nullptr; 3607 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3608 return nullptr; 3609 DstPred = ICmpInst::Predicate::ICMP_SLE; 3610 break; 3611 case ICmpInst::Predicate::ICMP_SGT: 3612 case ICmpInst::Predicate::ICMP_SLE: 3613 return nullptr; 3614 case ICmpInst::Predicate::ICMP_UGT: 3615 case ICmpInst::Predicate::ICMP_ULE: 3616 llvm_unreachable("Instsimplify took care of commut. variant"); 3617 break; 3618 default: 3619 llvm_unreachable("All possible folds are handled."); 3620 } 3621 3622 // The mask value may be a vector constant that has undefined elements. But it 3623 // may not be safe to propagate those undefs into the new compare, so replace 3624 // those elements by copying an existing, defined, and safe scalar constant. 3625 Type *OpTy = M->getType(); 3626 auto *VecC = dyn_cast<Constant>(M); 3627 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3628 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3629 Constant *SafeReplacementConstant = nullptr; 3630 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3631 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3632 SafeReplacementConstant = VecC->getAggregateElement(i); 3633 break; 3634 } 3635 } 3636 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3637 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3638 } 3639 3640 return Builder.CreateICmp(DstPred, X, M); 3641 } 3642 3643 /// Some comparisons can be simplified. 3644 /// In this case, we are looking for comparisons that look like 3645 /// a check for a lossy signed truncation. 3646 /// Folds: (MaskedBits is a constant.) 3647 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3648 /// Into: 3649 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3650 /// Where KeptBits = bitwidth(%x) - MaskedBits 3651 static Value * 3652 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3653 InstCombiner::BuilderTy &Builder) { 3654 ICmpInst::Predicate SrcPred; 3655 Value *X; 3656 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3657 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3658 if (!match(&I, m_c_ICmp(SrcPred, 3659 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3660 m_APInt(C1))), 3661 m_Deferred(X)))) 3662 return nullptr; 3663 3664 // Potential handling of non-splats: for each element: 3665 // * if both are undef, replace with constant 0. 3666 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3667 // * if both are not undef, and are different, bailout. 3668 // * else, only one is undef, then pick the non-undef one. 3669 3670 // The shift amount must be equal. 3671 if (*C0 != *C1) 3672 return nullptr; 3673 const APInt &MaskedBits = *C0; 3674 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3675 3676 ICmpInst::Predicate DstPred; 3677 switch (SrcPred) { 3678 case ICmpInst::Predicate::ICMP_EQ: 3679 // ((%x << MaskedBits) a>> MaskedBits) == %x 3680 // => 3681 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3682 DstPred = ICmpInst::Predicate::ICMP_ULT; 3683 break; 3684 case ICmpInst::Predicate::ICMP_NE: 3685 // ((%x << MaskedBits) a>> MaskedBits) != %x 3686 // => 3687 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3688 DstPred = ICmpInst::Predicate::ICMP_UGE; 3689 break; 3690 // FIXME: are more folds possible? 3691 default: 3692 return nullptr; 3693 } 3694 3695 auto *XType = X->getType(); 3696 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3697 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3698 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3699 3700 // KeptBits = bitwidth(%x) - MaskedBits 3701 const APInt KeptBits = BitWidth - MaskedBits; 3702 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3703 // ICmpCst = (1 << KeptBits) 3704 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3705 assert(ICmpCst.isPowerOf2()); 3706 // AddCst = (1 << (KeptBits-1)) 3707 const APInt AddCst = ICmpCst.lshr(1); 3708 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3709 3710 // T0 = add %x, AddCst 3711 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3712 // T1 = T0 DstPred ICmpCst 3713 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3714 3715 return T1; 3716 } 3717 3718 // Given pattern: 3719 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3720 // we should move shifts to the same hand of 'and', i.e. rewrite as 3721 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3722 // We are only interested in opposite logical shifts here. 3723 // One of the shifts can be truncated. 3724 // If we can, we want to end up creating 'lshr' shift. 3725 static Value * 3726 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3727 InstCombiner::BuilderTy &Builder) { 3728 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3729 !I.getOperand(0)->hasOneUse()) 3730 return nullptr; 3731 3732 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3733 3734 // Look for an 'and' of two logical shifts, one of which may be truncated. 3735 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3736 Instruction *XShift, *MaybeTruncation, *YShift; 3737 if (!match( 3738 I.getOperand(0), 3739 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3740 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3741 m_AnyLogicalShift, m_Instruction(YShift))), 3742 m_Instruction(MaybeTruncation))))) 3743 return nullptr; 3744 3745 // We potentially looked past 'trunc', but only when matching YShift, 3746 // therefore YShift must have the widest type. 3747 Instruction *WidestShift = YShift; 3748 // Therefore XShift must have the shallowest type. 3749 // Or they both have identical types if there was no truncation. 3750 Instruction *NarrowestShift = XShift; 3751 3752 Type *WidestTy = WidestShift->getType(); 3753 Type *NarrowestTy = NarrowestShift->getType(); 3754 assert(NarrowestTy == I.getOperand(0)->getType() && 3755 "We did not look past any shifts while matching XShift though."); 3756 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3757 3758 // If YShift is a 'lshr', swap the shifts around. 3759 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3760 std::swap(XShift, YShift); 3761 3762 // The shifts must be in opposite directions. 3763 auto XShiftOpcode = XShift->getOpcode(); 3764 if (XShiftOpcode == YShift->getOpcode()) 3765 return nullptr; // Do not care about same-direction shifts here. 3766 3767 Value *X, *XShAmt, *Y, *YShAmt; 3768 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3769 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3770 3771 // If one of the values being shifted is a constant, then we will end with 3772 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3773 // however, we will need to ensure that we won't increase instruction count. 3774 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3775 // At least one of the hands of the 'and' should be one-use shift. 3776 if (!match(I.getOperand(0), 3777 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3778 return nullptr; 3779 if (HadTrunc) { 3780 // Due to the 'trunc', we will need to widen X. For that either the old 3781 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3782 if (!MaybeTruncation->hasOneUse() && 3783 !NarrowestShift->getOperand(1)->hasOneUse()) 3784 return nullptr; 3785 } 3786 } 3787 3788 // We have two shift amounts from two different shifts. The types of those 3789 // shift amounts may not match. If that's the case let's bailout now. 3790 if (XShAmt->getType() != YShAmt->getType()) 3791 return nullptr; 3792 3793 // As input, we have the following pattern: 3794 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3795 // We want to rewrite that as: 3796 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3797 // While we know that originally (Q+K) would not overflow 3798 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3799 // shift amounts. so it may now overflow in smaller bitwidth. 3800 // To ensure that does not happen, we need to ensure that the total maximal 3801 // shift amount is still representable in that smaller bit width. 3802 unsigned MaximalPossibleTotalShiftAmount = 3803 (WidestTy->getScalarSizeInBits() - 1) + 3804 (NarrowestTy->getScalarSizeInBits() - 1); 3805 APInt MaximalRepresentableShiftAmount = 3806 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3807 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3808 return nullptr; 3809 3810 // Can we fold (XShAmt+YShAmt) ? 3811 auto *NewShAmt = dyn_cast_or_null<Constant>( 3812 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3813 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3814 if (!NewShAmt) 3815 return nullptr; 3816 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3817 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3818 3819 // Is the new shift amount smaller than the bit width? 3820 // FIXME: could also rely on ConstantRange. 3821 if (!match(NewShAmt, 3822 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3823 APInt(WidestBitWidth, WidestBitWidth)))) 3824 return nullptr; 3825 3826 // An extra legality check is needed if we had trunc-of-lshr. 3827 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3828 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3829 WidestShift]() { 3830 // It isn't obvious whether it's worth it to analyze non-constants here. 3831 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3832 // If *any* of these preconditions matches we can perform the fold. 3833 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3834 ? NewShAmt->getSplatValue() 3835 : NewShAmt; 3836 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3837 if (NewShAmtSplat && 3838 (NewShAmtSplat->isNullValue() || 3839 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3840 return true; 3841 // We consider *min* leading zeros so a single outlier 3842 // blocks the transform as opposed to allowing it. 3843 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3844 KnownBits Known = computeKnownBits(C, SQ.DL); 3845 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3846 // If the value being shifted has at most lowest bit set we can fold. 3847 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3848 if (MaxActiveBits <= 1) 3849 return true; 3850 // Precondition: NewShAmt u<= countLeadingZeros(C) 3851 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3852 return true; 3853 } 3854 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3855 KnownBits Known = computeKnownBits(C, SQ.DL); 3856 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3857 // If the value being shifted has at most lowest bit set we can fold. 3858 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3859 if (MaxActiveBits <= 1) 3860 return true; 3861 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3862 if (NewShAmtSplat) { 3863 APInt AdjNewShAmt = 3864 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3865 if (AdjNewShAmt.ule(MinLeadZero)) 3866 return true; 3867 } 3868 } 3869 return false; // Can't tell if it's ok. 3870 }; 3871 if (!CanFold()) 3872 return nullptr; 3873 } 3874 3875 // All good, we can do this fold. 3876 X = Builder.CreateZExt(X, WidestTy); 3877 Y = Builder.CreateZExt(Y, WidestTy); 3878 // The shift is the same that was for X. 3879 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3880 ? Builder.CreateLShr(X, NewShAmt) 3881 : Builder.CreateShl(X, NewShAmt); 3882 Value *T1 = Builder.CreateAnd(T0, Y); 3883 return Builder.CreateICmp(I.getPredicate(), T1, 3884 Constant::getNullValue(WidestTy)); 3885 } 3886 3887 /// Fold 3888 /// (-1 u/ x) u< y 3889 /// ((x * y) ?/ x) != y 3890 /// to 3891 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3892 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3893 /// will mean that we are looking for the opposite answer. 3894 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3895 ICmpInst::Predicate Pred; 3896 Value *X, *Y; 3897 Instruction *Mul; 3898 Instruction *Div; 3899 bool NeedNegation; 3900 // Look for: (-1 u/ x) u</u>= y 3901 if (!I.isEquality() && 3902 match(&I, m_c_ICmp(Pred, 3903 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3904 m_Instruction(Div)), 3905 m_Value(Y)))) { 3906 Mul = nullptr; 3907 3908 // Are we checking that overflow does not happen, or does happen? 3909 switch (Pred) { 3910 case ICmpInst::Predicate::ICMP_ULT: 3911 NeedNegation = false; 3912 break; // OK 3913 case ICmpInst::Predicate::ICMP_UGE: 3914 NeedNegation = true; 3915 break; // OK 3916 default: 3917 return nullptr; // Wrong predicate. 3918 } 3919 } else // Look for: ((x * y) / x) !=/== y 3920 if (I.isEquality() && 3921 match(&I, 3922 m_c_ICmp(Pred, m_Value(Y), 3923 m_CombineAnd( 3924 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3925 m_Value(X)), 3926 m_Instruction(Mul)), 3927 m_Deferred(X))), 3928 m_Instruction(Div))))) { 3929 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3930 } else 3931 return nullptr; 3932 3933 BuilderTy::InsertPointGuard Guard(Builder); 3934 // If the pattern included (x * y), we'll want to insert new instructions 3935 // right before that original multiplication so that we can replace it. 3936 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3937 if (MulHadOtherUses) 3938 Builder.SetInsertPoint(Mul); 3939 3940 Function *F = Intrinsic::getDeclaration(I.getModule(), 3941 Div->getOpcode() == Instruction::UDiv 3942 ? Intrinsic::umul_with_overflow 3943 : Intrinsic::smul_with_overflow, 3944 X->getType()); 3945 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3946 3947 // If the multiplication was used elsewhere, to ensure that we don't leave 3948 // "duplicate" instructions, replace uses of that original multiplication 3949 // with the multiplication result from the with.overflow intrinsic. 3950 if (MulHadOtherUses) 3951 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3952 3953 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3954 if (NeedNegation) // This technically increases instruction count. 3955 Res = Builder.CreateNot(Res, "mul.not.ov"); 3956 3957 // If we replaced the mul, erase it. Do this after all uses of Builder, 3958 // as the mul is used as insertion point. 3959 if (MulHadOtherUses) 3960 eraseInstFromFunction(*Mul); 3961 3962 return Res; 3963 } 3964 3965 static Instruction *foldICmpXNegX(ICmpInst &I) { 3966 CmpInst::Predicate Pred; 3967 Value *X; 3968 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3969 return nullptr; 3970 3971 if (ICmpInst::isSigned(Pred)) 3972 Pred = ICmpInst::getSwappedPredicate(Pred); 3973 else if (ICmpInst::isUnsigned(Pred)) 3974 Pred = ICmpInst::getSignedPredicate(Pred); 3975 // else for equality-comparisons just keep the predicate. 3976 3977 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3978 Constant::getNullValue(X->getType()), I.getName()); 3979 } 3980 3981 /// Try to fold icmp (binop), X or icmp X, (binop). 3982 /// TODO: A large part of this logic is duplicated in InstSimplify's 3983 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3984 /// duplication. 3985 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3986 const SimplifyQuery &SQ) { 3987 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3988 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3989 3990 // Special logic for binary operators. 3991 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3992 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3993 if (!BO0 && !BO1) 3994 return nullptr; 3995 3996 if (Instruction *NewICmp = foldICmpXNegX(I)) 3997 return NewICmp; 3998 3999 const CmpInst::Predicate Pred = I.getPredicate(); 4000 Value *X; 4001 4002 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 4003 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 4004 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 4005 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4006 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 4007 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 4008 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 4009 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4010 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 4011 4012 { 4013 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 4014 Constant *C; 4015 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 4016 m_ImmConstant(C)))) && 4017 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 4018 Constant *C2 = ConstantExpr::getNot(C); 4019 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 4020 } 4021 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 4022 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 4023 m_ImmConstant(C)))) && 4024 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 4025 Constant *C2 = ConstantExpr::getNot(C); 4026 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 4027 } 4028 } 4029 4030 { 4031 // Similar to above: an unsigned overflow comparison may use offset + mask: 4032 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 4033 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 4034 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 4035 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 4036 BinaryOperator *BO; 4037 const APInt *C; 4038 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 4039 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4040 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 4041 CmpInst::Predicate NewPred = 4042 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4043 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4044 return new ICmpInst(NewPred, Op1, Zero); 4045 } 4046 4047 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4048 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4049 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 4050 CmpInst::Predicate NewPred = 4051 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4052 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4053 return new ICmpInst(NewPred, Op0, Zero); 4054 } 4055 } 4056 4057 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4058 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 4059 NoOp0WrapProblem = 4060 ICmpInst::isEquality(Pred) || 4061 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 4062 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 4063 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 4064 NoOp1WrapProblem = 4065 ICmpInst::isEquality(Pred) || 4066 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 4067 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 4068 4069 // Analyze the case when either Op0 or Op1 is an add instruction. 4070 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4071 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4072 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4073 A = BO0->getOperand(0); 4074 B = BO0->getOperand(1); 4075 } 4076 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4077 C = BO1->getOperand(0); 4078 D = BO1->getOperand(1); 4079 } 4080 4081 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4082 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4083 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4084 return new ICmpInst(Pred, A == Op1 ? B : A, 4085 Constant::getNullValue(Op1->getType())); 4086 4087 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4088 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4089 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4090 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4091 C == Op0 ? D : C); 4092 4093 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4094 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4095 NoOp1WrapProblem) { 4096 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4097 Value *Y, *Z; 4098 if (A == C) { 4099 // C + B == C + D -> B == D 4100 Y = B; 4101 Z = D; 4102 } else if (A == D) { 4103 // D + B == C + D -> B == C 4104 Y = B; 4105 Z = C; 4106 } else if (B == C) { 4107 // A + C == C + D -> A == D 4108 Y = A; 4109 Z = D; 4110 } else { 4111 assert(B == D); 4112 // A + D == C + D -> A == C 4113 Y = A; 4114 Z = C; 4115 } 4116 return new ICmpInst(Pred, Y, Z); 4117 } 4118 4119 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4120 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4121 match(B, m_AllOnes())) 4122 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4123 4124 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4125 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4126 match(B, m_AllOnes())) 4127 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4128 4129 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4130 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4131 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4132 4133 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4134 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4135 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4136 4137 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4138 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4139 match(D, m_AllOnes())) 4140 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4141 4142 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4143 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4144 match(D, m_AllOnes())) 4145 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4146 4147 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4148 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4149 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4150 4151 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4152 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4153 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4154 4155 // TODO: The subtraction-related identities shown below also hold, but 4156 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4157 // wouldn't happen even if they were implemented. 4158 // 4159 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4160 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4161 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4162 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4163 4164 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4165 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4166 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4167 4168 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4169 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4170 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4171 4172 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4173 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4174 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4175 4176 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4177 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4178 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4179 4180 // if C1 has greater magnitude than C2: 4181 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4182 // s.t. C3 = C1 - C2 4183 // 4184 // if C2 has greater magnitude than C1: 4185 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4186 // s.t. C3 = C2 - C1 4187 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4188 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4189 const APInt *AP1, *AP2; 4190 // TODO: Support non-uniform vectors. 4191 // TODO: Allow undef passthrough if B AND D's element is undef. 4192 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4193 AP1->isNegative() == AP2->isNegative()) { 4194 APInt AP1Abs = AP1->abs(); 4195 APInt AP2Abs = AP2->abs(); 4196 if (AP1Abs.uge(AP2Abs)) { 4197 APInt Diff = *AP1 - *AP2; 4198 bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1); 4199 bool HasNSW = BO0->hasNoSignedWrap(); 4200 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4201 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4202 return new ICmpInst(Pred, NewAdd, C); 4203 } else { 4204 APInt Diff = *AP2 - *AP1; 4205 bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2); 4206 bool HasNSW = BO1->hasNoSignedWrap(); 4207 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4208 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4209 return new ICmpInst(Pred, A, NewAdd); 4210 } 4211 } 4212 Constant *Cst1, *Cst2; 4213 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4214 ICmpInst::isEquality(Pred)) { 4215 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4216 Value *NewAdd = Builder.CreateAdd(C, Diff); 4217 return new ICmpInst(Pred, A, NewAdd); 4218 } 4219 } 4220 4221 // Analyze the case when either Op0 or Op1 is a sub instruction. 4222 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4223 A = nullptr; 4224 B = nullptr; 4225 C = nullptr; 4226 D = nullptr; 4227 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4228 A = BO0->getOperand(0); 4229 B = BO0->getOperand(1); 4230 } 4231 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4232 C = BO1->getOperand(0); 4233 D = BO1->getOperand(1); 4234 } 4235 4236 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4237 if (A == Op1 && NoOp0WrapProblem) 4238 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4239 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4240 if (C == Op0 && NoOp1WrapProblem) 4241 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4242 4243 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4244 // (A - B) u>/u<= A --> B u>/u<= A 4245 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4246 return new ICmpInst(Pred, B, A); 4247 // C u</u>= (C - D) --> C u</u>= D 4248 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4249 return new ICmpInst(Pred, C, D); 4250 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4251 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4252 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4253 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4254 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4255 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4256 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4257 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4258 4259 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4260 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4261 return new ICmpInst(Pred, A, C); 4262 4263 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4264 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4265 return new ICmpInst(Pred, D, B); 4266 4267 // icmp (0-X) < cst --> x > -cst 4268 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4269 Value *X; 4270 if (match(BO0, m_Neg(m_Value(X)))) 4271 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4272 if (RHSC->isNotMinSignedValue()) 4273 return new ICmpInst(I.getSwappedPredicate(), X, 4274 ConstantExpr::getNeg(RHSC)); 4275 } 4276 4277 { 4278 // Try to remove shared constant multiplier from equality comparison: 4279 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4280 Value *X, *Y; 4281 const APInt *C; 4282 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4283 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4284 if (!C->countTrailingZeros() || 4285 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4286 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4287 return new ICmpInst(Pred, X, Y); 4288 } 4289 4290 BinaryOperator *SRem = nullptr; 4291 // icmp (srem X, Y), Y 4292 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4293 SRem = BO0; 4294 // icmp Y, (srem X, Y) 4295 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4296 Op0 == BO1->getOperand(1)) 4297 SRem = BO1; 4298 if (SRem) { 4299 // We don't check hasOneUse to avoid increasing register pressure because 4300 // the value we use is the same value this instruction was already using. 4301 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4302 default: 4303 break; 4304 case ICmpInst::ICMP_EQ: 4305 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4306 case ICmpInst::ICMP_NE: 4307 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4308 case ICmpInst::ICMP_SGT: 4309 case ICmpInst::ICMP_SGE: 4310 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4311 Constant::getAllOnesValue(SRem->getType())); 4312 case ICmpInst::ICMP_SLT: 4313 case ICmpInst::ICMP_SLE: 4314 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4315 Constant::getNullValue(SRem->getType())); 4316 } 4317 } 4318 4319 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4320 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4321 switch (BO0->getOpcode()) { 4322 default: 4323 break; 4324 case Instruction::Add: 4325 case Instruction::Sub: 4326 case Instruction::Xor: { 4327 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4328 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4329 4330 const APInt *C; 4331 if (match(BO0->getOperand(1), m_APInt(C))) { 4332 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4333 if (C->isSignMask()) { 4334 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4335 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4336 } 4337 4338 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4339 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4340 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4341 NewPred = I.getSwappedPredicate(NewPred); 4342 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4343 } 4344 } 4345 break; 4346 } 4347 case Instruction::Mul: { 4348 if (!I.isEquality()) 4349 break; 4350 4351 const APInt *C; 4352 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4353 !C->isOne()) { 4354 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4355 // Mask = -1 >> count-trailing-zeros(C). 4356 if (unsigned TZs = C->countTrailingZeros()) { 4357 Constant *Mask = ConstantInt::get( 4358 BO0->getType(), 4359 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4360 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4361 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4362 return new ICmpInst(Pred, And1, And2); 4363 } 4364 } 4365 break; 4366 } 4367 case Instruction::UDiv: 4368 case Instruction::LShr: 4369 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4370 break; 4371 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4372 4373 case Instruction::SDiv: 4374 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4375 break; 4376 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4377 4378 case Instruction::AShr: 4379 if (!BO0->isExact() || !BO1->isExact()) 4380 break; 4381 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4382 4383 case Instruction::Shl: { 4384 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4385 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4386 if (!NUW && !NSW) 4387 break; 4388 if (!NSW && I.isSigned()) 4389 break; 4390 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4391 } 4392 } 4393 } 4394 4395 if (BO0) { 4396 // Transform A & (L - 1) `ult` L --> L != 0 4397 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4398 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4399 4400 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4401 auto *Zero = Constant::getNullValue(BO0->getType()); 4402 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4403 } 4404 } 4405 4406 if (Value *V = foldMultiplicationOverflowCheck(I)) 4407 return replaceInstUsesWith(I, V); 4408 4409 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4410 return replaceInstUsesWith(I, V); 4411 4412 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4413 return replaceInstUsesWith(I, V); 4414 4415 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4416 return replaceInstUsesWith(I, V); 4417 4418 return nullptr; 4419 } 4420 4421 /// Fold icmp Pred min|max(X, Y), X. 4422 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4423 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4424 Value *Op0 = Cmp.getOperand(0); 4425 Value *X = Cmp.getOperand(1); 4426 4427 // Canonicalize minimum or maximum operand to LHS of the icmp. 4428 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4429 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4430 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4431 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4432 std::swap(Op0, X); 4433 Pred = Cmp.getSwappedPredicate(); 4434 } 4435 4436 Value *Y; 4437 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4438 // smin(X, Y) == X --> X s<= Y 4439 // smin(X, Y) s>= X --> X s<= Y 4440 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4441 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4442 4443 // smin(X, Y) != X --> X s> Y 4444 // smin(X, Y) s< X --> X s> Y 4445 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4446 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4447 4448 // These cases should be handled in InstSimplify: 4449 // smin(X, Y) s<= X --> true 4450 // smin(X, Y) s> X --> false 4451 return nullptr; 4452 } 4453 4454 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4455 // smax(X, Y) == X --> X s>= Y 4456 // smax(X, Y) s<= X --> X s>= Y 4457 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4458 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4459 4460 // smax(X, Y) != X --> X s< Y 4461 // smax(X, Y) s> X --> X s< Y 4462 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4463 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4464 4465 // These cases should be handled in InstSimplify: 4466 // smax(X, Y) s>= X --> true 4467 // smax(X, Y) s< X --> false 4468 return nullptr; 4469 } 4470 4471 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4472 // umin(X, Y) == X --> X u<= Y 4473 // umin(X, Y) u>= X --> X u<= Y 4474 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4475 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4476 4477 // umin(X, Y) != X --> X u> Y 4478 // umin(X, Y) u< X --> X u> Y 4479 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4480 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4481 4482 // These cases should be handled in InstSimplify: 4483 // umin(X, Y) u<= X --> true 4484 // umin(X, Y) u> X --> false 4485 return nullptr; 4486 } 4487 4488 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4489 // umax(X, Y) == X --> X u>= Y 4490 // umax(X, Y) u<= X --> X u>= Y 4491 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4492 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4493 4494 // umax(X, Y) != X --> X u< Y 4495 // umax(X, Y) u> X --> X u< Y 4496 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4497 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4498 4499 // These cases should be handled in InstSimplify: 4500 // umax(X, Y) u>= X --> true 4501 // umax(X, Y) u< X --> false 4502 return nullptr; 4503 } 4504 4505 return nullptr; 4506 } 4507 4508 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4509 if (!I.isEquality()) 4510 return nullptr; 4511 4512 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4513 const CmpInst::Predicate Pred = I.getPredicate(); 4514 Value *A, *B, *C, *D; 4515 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4516 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4517 Value *OtherVal = A == Op1 ? B : A; 4518 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4519 } 4520 4521 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4522 // A^c1 == C^c2 --> A == C^(c1^c2) 4523 ConstantInt *C1, *C2; 4524 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4525 Op1->hasOneUse()) { 4526 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4527 Value *Xor = Builder.CreateXor(C, NC); 4528 return new ICmpInst(Pred, A, Xor); 4529 } 4530 4531 // A^B == A^D -> B == D 4532 if (A == C) 4533 return new ICmpInst(Pred, B, D); 4534 if (A == D) 4535 return new ICmpInst(Pred, B, C); 4536 if (B == C) 4537 return new ICmpInst(Pred, A, D); 4538 if (B == D) 4539 return new ICmpInst(Pred, A, C); 4540 } 4541 } 4542 4543 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4544 // A == (A^B) -> B == 0 4545 Value *OtherVal = A == Op0 ? B : A; 4546 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4547 } 4548 4549 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4550 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4551 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4552 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4553 4554 if (A == C) { 4555 X = B; 4556 Y = D; 4557 Z = A; 4558 } else if (A == D) { 4559 X = B; 4560 Y = C; 4561 Z = A; 4562 } else if (B == C) { 4563 X = A; 4564 Y = D; 4565 Z = B; 4566 } else if (B == D) { 4567 X = A; 4568 Y = C; 4569 Z = B; 4570 } 4571 4572 if (X) { // Build (X^Y) & Z 4573 Op1 = Builder.CreateXor(X, Y); 4574 Op1 = Builder.CreateAnd(Op1, Z); 4575 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4576 } 4577 } 4578 4579 { 4580 // Similar to above, but specialized for constant because invert is needed: 4581 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4582 Value *X, *Y; 4583 Constant *C; 4584 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4585 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4586 Value *Xor = Builder.CreateXor(X, Y); 4587 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4588 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4589 } 4590 } 4591 4592 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4593 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4594 ConstantInt *Cst1; 4595 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4596 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4597 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4598 match(Op1, m_ZExt(m_Value(A))))) { 4599 APInt Pow2 = Cst1->getValue() + 1; 4600 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4601 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4602 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4603 } 4604 4605 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4606 // For lshr and ashr pairs. 4607 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4608 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4609 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4610 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4611 unsigned TypeBits = Cst1->getBitWidth(); 4612 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4613 if (ShAmt < TypeBits && ShAmt != 0) { 4614 ICmpInst::Predicate NewPred = 4615 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4616 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4617 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4618 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4619 } 4620 } 4621 4622 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4623 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4624 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4625 unsigned TypeBits = Cst1->getBitWidth(); 4626 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4627 if (ShAmt < TypeBits && ShAmt != 0) { 4628 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4629 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4630 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4631 I.getName() + ".mask"); 4632 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4633 } 4634 } 4635 4636 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4637 // "icmp (and X, mask), cst" 4638 uint64_t ShAmt = 0; 4639 if (Op0->hasOneUse() && 4640 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4641 match(Op1, m_ConstantInt(Cst1)) && 4642 // Only do this when A has multiple uses. This is most important to do 4643 // when it exposes other optimizations. 4644 !A->hasOneUse()) { 4645 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4646 4647 if (ShAmt < ASize) { 4648 APInt MaskV = 4649 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4650 MaskV <<= ShAmt; 4651 4652 APInt CmpV = Cst1->getValue().zext(ASize); 4653 CmpV <<= ShAmt; 4654 4655 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4656 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4657 } 4658 } 4659 4660 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4661 return ICmp; 4662 4663 // Canonicalize checking for a power-of-2-or-zero value: 4664 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4665 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4666 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4667 m_Deferred(A)))) || 4668 !match(Op1, m_ZeroInt())) 4669 A = nullptr; 4670 4671 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4672 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4673 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4674 A = Op1; 4675 else if (match(Op1, 4676 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4677 A = Op0; 4678 4679 if (A) { 4680 Type *Ty = A->getType(); 4681 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4682 return Pred == ICmpInst::ICMP_EQ 4683 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4684 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4685 } 4686 4687 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4688 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4689 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4690 // of instcombine. 4691 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4692 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4693 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4694 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4695 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4696 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4697 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4698 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4699 : ICmpInst::ICMP_UGE, 4700 Add, ConstantInt::get(A->getType(), C.shl(1))); 4701 } 4702 4703 return nullptr; 4704 } 4705 4706 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4707 InstCombiner::BuilderTy &Builder) { 4708 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4709 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4710 4711 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4712 // The trunc masks high bits while the compare may effectively mask low bits. 4713 Value *X; 4714 const APInt *C; 4715 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4716 return nullptr; 4717 4718 // This matches patterns corresponding to tests of the signbit as well as: 4719 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4720 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4721 APInt Mask; 4722 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4723 Value *And = Builder.CreateAnd(X, Mask); 4724 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4725 return new ICmpInst(Pred, And, Zero); 4726 } 4727 4728 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4729 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4730 // If C is a negative power-of-2 (high-bit mask): 4731 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4732 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4733 Value *And = Builder.CreateAnd(X, MaskC); 4734 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4735 } 4736 4737 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4738 // If C is not-of-power-of-2 (one clear bit): 4739 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4740 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4741 Value *And = Builder.CreateAnd(X, MaskC); 4742 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4743 } 4744 4745 return nullptr; 4746 } 4747 4748 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 4749 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4750 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4751 Value *X; 4752 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4753 return nullptr; 4754 4755 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4756 bool IsSignedCmp = ICmp.isSigned(); 4757 4758 // icmp Pred (ext X), (ext Y) 4759 Value *Y; 4760 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 4761 bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0)); 4762 bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1)); 4763 4764 // If we have mismatched casts, treat the zext of a non-negative source as 4765 // a sext to simulate matching casts. Otherwise, we are done. 4766 // TODO: Can we handle some predicates (equality) without non-negative? 4767 if (IsZext0 != IsZext1) { 4768 if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) || 4769 (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT))) 4770 IsSignedExt = true; 4771 else 4772 return nullptr; 4773 } 4774 4775 // Not an extension from the same type? 4776 Type *XTy = X->getType(), *YTy = Y->getType(); 4777 if (XTy != YTy) { 4778 // One of the casts must have one use because we are creating a new cast. 4779 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 4780 return nullptr; 4781 // Extend the narrower operand to the type of the wider operand. 4782 CastInst::CastOps CastOpcode = 4783 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 4784 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4785 X = Builder.CreateCast(CastOpcode, X, YTy); 4786 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4787 Y = Builder.CreateCast(CastOpcode, Y, XTy); 4788 else 4789 return nullptr; 4790 } 4791 4792 // (zext X) == (zext Y) --> X == Y 4793 // (sext X) == (sext Y) --> X == Y 4794 if (ICmp.isEquality()) 4795 return new ICmpInst(ICmp.getPredicate(), X, Y); 4796 4797 // A signed comparison of sign extended values simplifies into a 4798 // signed comparison. 4799 if (IsSignedCmp && IsSignedExt) 4800 return new ICmpInst(ICmp.getPredicate(), X, Y); 4801 4802 // The other three cases all fold into an unsigned comparison. 4803 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4804 } 4805 4806 // Below here, we are only folding a compare with constant. 4807 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4808 if (!C) 4809 return nullptr; 4810 4811 // Compute the constant that would happen if we truncated to SrcTy then 4812 // re-extended to DestTy. 4813 Type *SrcTy = CastOp0->getSrcTy(); 4814 Type *DestTy = CastOp0->getDestTy(); 4815 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4816 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4817 4818 // If the re-extended constant didn't change... 4819 if (Res2 == C) { 4820 if (ICmp.isEquality()) 4821 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4822 4823 // A signed comparison of sign extended values simplifies into a 4824 // signed comparison. 4825 if (IsSignedExt && IsSignedCmp) 4826 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4827 4828 // The other three cases all fold into an unsigned comparison. 4829 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4830 } 4831 4832 // The re-extended constant changed, partly changed (in the case of a vector), 4833 // or could not be determined to be equal (in the case of a constant 4834 // expression), so the constant cannot be represented in the shorter type. 4835 // All the cases that fold to true or false will have already been handled 4836 // by SimplifyICmpInst, so only deal with the tricky case. 4837 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4838 return nullptr; 4839 4840 // Is source op positive? 4841 // icmp ult (sext X), C --> icmp sgt X, -1 4842 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4843 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4844 4845 // Is source op negative? 4846 // icmp ugt (sext X), C --> icmp slt X, 0 4847 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4848 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4849 } 4850 4851 /// Handle icmp (cast x), (cast or constant). 4852 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4853 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4854 // icmp compares only pointer's value. 4855 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4856 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4857 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4858 if (SimplifiedOp0 || SimplifiedOp1) 4859 return new ICmpInst(ICmp.getPredicate(), 4860 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4861 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4862 4863 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4864 if (!CastOp0) 4865 return nullptr; 4866 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4867 return nullptr; 4868 4869 Value *Op0Src = CastOp0->getOperand(0); 4870 Type *SrcTy = CastOp0->getSrcTy(); 4871 Type *DestTy = CastOp0->getDestTy(); 4872 4873 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4874 // integer type is the same size as the pointer type. 4875 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4876 if (isa<VectorType>(SrcTy)) { 4877 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4878 DestTy = cast<VectorType>(DestTy)->getElementType(); 4879 } 4880 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4881 }; 4882 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4883 CompatibleSizes(SrcTy, DestTy)) { 4884 Value *NewOp1 = nullptr; 4885 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4886 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4887 if (PtrSrc->getType()->getPointerAddressSpace() == 4888 Op0Src->getType()->getPointerAddressSpace()) { 4889 NewOp1 = PtrToIntOp1->getOperand(0); 4890 // If the pointer types don't match, insert a bitcast. 4891 if (Op0Src->getType() != NewOp1->getType()) 4892 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4893 } 4894 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4895 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4896 } 4897 4898 if (NewOp1) 4899 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4900 } 4901 4902 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4903 return R; 4904 4905 return foldICmpWithZextOrSext(ICmp); 4906 } 4907 4908 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4909 switch (BinaryOp) { 4910 default: 4911 llvm_unreachable("Unsupported binary op"); 4912 case Instruction::Add: 4913 case Instruction::Sub: 4914 return match(RHS, m_Zero()); 4915 case Instruction::Mul: 4916 return match(RHS, m_One()); 4917 } 4918 } 4919 4920 OverflowResult 4921 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4922 bool IsSigned, Value *LHS, Value *RHS, 4923 Instruction *CxtI) const { 4924 switch (BinaryOp) { 4925 default: 4926 llvm_unreachable("Unsupported binary op"); 4927 case Instruction::Add: 4928 if (IsSigned) 4929 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4930 else 4931 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4932 case Instruction::Sub: 4933 if (IsSigned) 4934 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4935 else 4936 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4937 case Instruction::Mul: 4938 if (IsSigned) 4939 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4940 else 4941 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4942 } 4943 } 4944 4945 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4946 bool IsSigned, Value *LHS, 4947 Value *RHS, Instruction &OrigI, 4948 Value *&Result, 4949 Constant *&Overflow) { 4950 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4951 std::swap(LHS, RHS); 4952 4953 // If the overflow check was an add followed by a compare, the insertion point 4954 // may be pointing to the compare. We want to insert the new instructions 4955 // before the add in case there are uses of the add between the add and the 4956 // compare. 4957 Builder.SetInsertPoint(&OrigI); 4958 4959 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4960 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4961 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4962 4963 if (isNeutralValue(BinaryOp, RHS)) { 4964 Result = LHS; 4965 Overflow = ConstantInt::getFalse(OverflowTy); 4966 return true; 4967 } 4968 4969 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4970 case OverflowResult::MayOverflow: 4971 return false; 4972 case OverflowResult::AlwaysOverflowsLow: 4973 case OverflowResult::AlwaysOverflowsHigh: 4974 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4975 Result->takeName(&OrigI); 4976 Overflow = ConstantInt::getTrue(OverflowTy); 4977 return true; 4978 case OverflowResult::NeverOverflows: 4979 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4980 Result->takeName(&OrigI); 4981 Overflow = ConstantInt::getFalse(OverflowTy); 4982 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4983 if (IsSigned) 4984 Inst->setHasNoSignedWrap(); 4985 else 4986 Inst->setHasNoUnsignedWrap(); 4987 } 4988 return true; 4989 } 4990 4991 llvm_unreachable("Unexpected overflow result"); 4992 } 4993 4994 /// Recognize and process idiom involving test for multiplication 4995 /// overflow. 4996 /// 4997 /// The caller has matched a pattern of the form: 4998 /// I = cmp u (mul(zext A, zext B), V 4999 /// The function checks if this is a test for overflow and if so replaces 5000 /// multiplication with call to 'mul.with.overflow' intrinsic. 5001 /// 5002 /// \param I Compare instruction. 5003 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 5004 /// the compare instruction. Must be of integer type. 5005 /// \param OtherVal The other argument of compare instruction. 5006 /// \returns Instruction which must replace the compare instruction, NULL if no 5007 /// replacement required. 5008 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 5009 Value *OtherVal, 5010 InstCombinerImpl &IC) { 5011 // Don't bother doing this transformation for pointers, don't do it for 5012 // vectors. 5013 if (!isa<IntegerType>(MulVal->getType())) 5014 return nullptr; 5015 5016 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 5017 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 5018 auto *MulInstr = dyn_cast<Instruction>(MulVal); 5019 if (!MulInstr) 5020 return nullptr; 5021 assert(MulInstr->getOpcode() == Instruction::Mul); 5022 5023 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 5024 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 5025 assert(LHS->getOpcode() == Instruction::ZExt); 5026 assert(RHS->getOpcode() == Instruction::ZExt); 5027 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 5028 5029 // Calculate type and width of the result produced by mul.with.overflow. 5030 Type *TyA = A->getType(), *TyB = B->getType(); 5031 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 5032 WidthB = TyB->getPrimitiveSizeInBits(); 5033 unsigned MulWidth; 5034 Type *MulType; 5035 if (WidthB > WidthA) { 5036 MulWidth = WidthB; 5037 MulType = TyB; 5038 } else { 5039 MulWidth = WidthA; 5040 MulType = TyA; 5041 } 5042 5043 // In order to replace the original mul with a narrower mul.with.overflow, 5044 // all uses must ignore upper bits of the product. The number of used low 5045 // bits must be not greater than the width of mul.with.overflow. 5046 if (MulVal->hasNUsesOrMore(2)) 5047 for (User *U : MulVal->users()) { 5048 if (U == &I) 5049 continue; 5050 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5051 // Check if truncation ignores bits above MulWidth. 5052 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 5053 if (TruncWidth > MulWidth) 5054 return nullptr; 5055 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5056 // Check if AND ignores bits above MulWidth. 5057 if (BO->getOpcode() != Instruction::And) 5058 return nullptr; 5059 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 5060 const APInt &CVal = CI->getValue(); 5061 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 5062 return nullptr; 5063 } else { 5064 // In this case we could have the operand of the binary operation 5065 // being defined in another block, and performing the replacement 5066 // could break the dominance relation. 5067 return nullptr; 5068 } 5069 } else { 5070 // Other uses prohibit this transformation. 5071 return nullptr; 5072 } 5073 } 5074 5075 // Recognize patterns 5076 switch (I.getPredicate()) { 5077 case ICmpInst::ICMP_EQ: 5078 case ICmpInst::ICMP_NE: 5079 // Recognize pattern: 5080 // mulval = mul(zext A, zext B) 5081 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 5082 ConstantInt *CI; 5083 Value *ValToMask; 5084 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 5085 if (ValToMask != MulVal) 5086 return nullptr; 5087 const APInt &CVal = CI->getValue() + 1; 5088 if (CVal.isPowerOf2()) { 5089 unsigned MaskWidth = CVal.logBase2(); 5090 if (MaskWidth == MulWidth) 5091 break; // Recognized 5092 } 5093 } 5094 return nullptr; 5095 5096 case ICmpInst::ICMP_UGT: 5097 // Recognize pattern: 5098 // mulval = mul(zext A, zext B) 5099 // cmp ugt mulval, max 5100 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5101 APInt MaxVal = APInt::getMaxValue(MulWidth); 5102 MaxVal = MaxVal.zext(CI->getBitWidth()); 5103 if (MaxVal.eq(CI->getValue())) 5104 break; // Recognized 5105 } 5106 return nullptr; 5107 5108 case ICmpInst::ICMP_UGE: 5109 // Recognize pattern: 5110 // mulval = mul(zext A, zext B) 5111 // cmp uge mulval, max+1 5112 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5113 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5114 if (MaxVal.eq(CI->getValue())) 5115 break; // Recognized 5116 } 5117 return nullptr; 5118 5119 case ICmpInst::ICMP_ULE: 5120 // Recognize pattern: 5121 // mulval = mul(zext A, zext B) 5122 // cmp ule mulval, max 5123 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5124 APInt MaxVal = APInt::getMaxValue(MulWidth); 5125 MaxVal = MaxVal.zext(CI->getBitWidth()); 5126 if (MaxVal.eq(CI->getValue())) 5127 break; // Recognized 5128 } 5129 return nullptr; 5130 5131 case ICmpInst::ICMP_ULT: 5132 // Recognize pattern: 5133 // mulval = mul(zext A, zext B) 5134 // cmp ule mulval, max + 1 5135 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5136 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5137 if (MaxVal.eq(CI->getValue())) 5138 break; // Recognized 5139 } 5140 return nullptr; 5141 5142 default: 5143 return nullptr; 5144 } 5145 5146 InstCombiner::BuilderTy &Builder = IC.Builder; 5147 Builder.SetInsertPoint(MulInstr); 5148 5149 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5150 Value *MulA = A, *MulB = B; 5151 if (WidthA < MulWidth) 5152 MulA = Builder.CreateZExt(A, MulType); 5153 if (WidthB < MulWidth) 5154 MulB = Builder.CreateZExt(B, MulType); 5155 Function *F = Intrinsic::getDeclaration( 5156 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5157 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5158 IC.addToWorklist(MulInstr); 5159 5160 // If there are uses of mul result other than the comparison, we know that 5161 // they are truncation or binary AND. Change them to use result of 5162 // mul.with.overflow and adjust properly mask/size. 5163 if (MulVal->hasNUsesOrMore(2)) { 5164 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5165 for (User *U : make_early_inc_range(MulVal->users())) { 5166 if (U == &I || U == OtherVal) 5167 continue; 5168 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5169 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5170 IC.replaceInstUsesWith(*TI, Mul); 5171 else 5172 TI->setOperand(0, Mul); 5173 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5174 assert(BO->getOpcode() == Instruction::And); 5175 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5176 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5177 APInt ShortMask = CI->getValue().trunc(MulWidth); 5178 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5179 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5180 IC.replaceInstUsesWith(*BO, Zext); 5181 } else { 5182 llvm_unreachable("Unexpected Binary operation"); 5183 } 5184 IC.addToWorklist(cast<Instruction>(U)); 5185 } 5186 } 5187 if (isa<Instruction>(OtherVal)) 5188 IC.addToWorklist(cast<Instruction>(OtherVal)); 5189 5190 // The original icmp gets replaced with the overflow value, maybe inverted 5191 // depending on predicate. 5192 bool Inverse = false; 5193 switch (I.getPredicate()) { 5194 case ICmpInst::ICMP_NE: 5195 break; 5196 case ICmpInst::ICMP_EQ: 5197 Inverse = true; 5198 break; 5199 case ICmpInst::ICMP_UGT: 5200 case ICmpInst::ICMP_UGE: 5201 if (I.getOperand(0) == MulVal) 5202 break; 5203 Inverse = true; 5204 break; 5205 case ICmpInst::ICMP_ULT: 5206 case ICmpInst::ICMP_ULE: 5207 if (I.getOperand(1) == MulVal) 5208 break; 5209 Inverse = true; 5210 break; 5211 default: 5212 llvm_unreachable("Unexpected predicate"); 5213 } 5214 if (Inverse) { 5215 Value *Res = Builder.CreateExtractValue(Call, 1); 5216 return BinaryOperator::CreateNot(Res); 5217 } 5218 5219 return ExtractValueInst::Create(Call, 1); 5220 } 5221 5222 /// When performing a comparison against a constant, it is possible that not all 5223 /// the bits in the LHS are demanded. This helper method computes the mask that 5224 /// IS demanded. 5225 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5226 const APInt *RHS; 5227 if (!match(I.getOperand(1), m_APInt(RHS))) 5228 return APInt::getAllOnes(BitWidth); 5229 5230 // If this is a normal comparison, it demands all bits. If it is a sign bit 5231 // comparison, it only demands the sign bit. 5232 bool UnusedBit; 5233 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5234 return APInt::getSignMask(BitWidth); 5235 5236 switch (I.getPredicate()) { 5237 // For a UGT comparison, we don't care about any bits that 5238 // correspond to the trailing ones of the comparand. The value of these 5239 // bits doesn't impact the outcome of the comparison, because any value 5240 // greater than the RHS must differ in a bit higher than these due to carry. 5241 case ICmpInst::ICMP_UGT: 5242 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5243 5244 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5245 // Any value less than the RHS must differ in a higher bit because of carries. 5246 case ICmpInst::ICMP_ULT: 5247 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5248 5249 default: 5250 return APInt::getAllOnes(BitWidth); 5251 } 5252 } 5253 5254 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5255 /// should be swapped. 5256 /// The decision is based on how many times these two operands are reused 5257 /// as subtract operands and their positions in those instructions. 5258 /// The rationale is that several architectures use the same instruction for 5259 /// both subtract and cmp. Thus, it is better if the order of those operands 5260 /// match. 5261 /// \return true if Op0 and Op1 should be swapped. 5262 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5263 // Filter out pointer values as those cannot appear directly in subtract. 5264 // FIXME: we may want to go through inttoptrs or bitcasts. 5265 if (Op0->getType()->isPointerTy()) 5266 return false; 5267 // If a subtract already has the same operands as a compare, swapping would be 5268 // bad. If a subtract has the same operands as a compare but in reverse order, 5269 // then swapping is good. 5270 int GoodToSwap = 0; 5271 for (const User *U : Op0->users()) { 5272 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5273 GoodToSwap++; 5274 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5275 GoodToSwap--; 5276 } 5277 return GoodToSwap > 0; 5278 } 5279 5280 /// Check that one use is in the same block as the definition and all 5281 /// other uses are in blocks dominated by a given block. 5282 /// 5283 /// \param DI Definition 5284 /// \param UI Use 5285 /// \param DB Block that must dominate all uses of \p DI outside 5286 /// the parent block 5287 /// \return true when \p UI is the only use of \p DI in the parent block 5288 /// and all other uses of \p DI are in blocks dominated by \p DB. 5289 /// 5290 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5291 const Instruction *UI, 5292 const BasicBlock *DB) const { 5293 assert(DI && UI && "Instruction not defined\n"); 5294 // Ignore incomplete definitions. 5295 if (!DI->getParent()) 5296 return false; 5297 // DI and UI must be in the same block. 5298 if (DI->getParent() != UI->getParent()) 5299 return false; 5300 // Protect from self-referencing blocks. 5301 if (DI->getParent() == DB) 5302 return false; 5303 for (const User *U : DI->users()) { 5304 auto *Usr = cast<Instruction>(U); 5305 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5306 return false; 5307 } 5308 return true; 5309 } 5310 5311 /// Return true when the instruction sequence within a block is select-cmp-br. 5312 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5313 const BasicBlock *BB = SI->getParent(); 5314 if (!BB) 5315 return false; 5316 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5317 if (!BI || BI->getNumSuccessors() != 2) 5318 return false; 5319 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5320 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5321 return false; 5322 return true; 5323 } 5324 5325 /// True when a select result is replaced by one of its operands 5326 /// in select-icmp sequence. This will eventually result in the elimination 5327 /// of the select. 5328 /// 5329 /// \param SI Select instruction 5330 /// \param Icmp Compare instruction 5331 /// \param SIOpd Operand that replaces the select 5332 /// 5333 /// Notes: 5334 /// - The replacement is global and requires dominator information 5335 /// - The caller is responsible for the actual replacement 5336 /// 5337 /// Example: 5338 /// 5339 /// entry: 5340 /// %4 = select i1 %3, %C* %0, %C* null 5341 /// %5 = icmp eq %C* %4, null 5342 /// br i1 %5, label %9, label %7 5343 /// ... 5344 /// ; <label>:7 ; preds = %entry 5345 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5346 /// ... 5347 /// 5348 /// can be transformed to 5349 /// 5350 /// %5 = icmp eq %C* %0, null 5351 /// %6 = select i1 %3, i1 %5, i1 true 5352 /// br i1 %6, label %9, label %7 5353 /// ... 5354 /// ; <label>:7 ; preds = %entry 5355 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5356 /// 5357 /// Similar when the first operand of the select is a constant or/and 5358 /// the compare is for not equal rather than equal. 5359 /// 5360 /// NOTE: The function is only called when the select and compare constants 5361 /// are equal, the optimization can work only for EQ predicates. This is not a 5362 /// major restriction since a NE compare should be 'normalized' to an equal 5363 /// compare, which usually happens in the combiner and test case 5364 /// select-cmp-br.ll checks for it. 5365 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5366 const ICmpInst *Icmp, 5367 const unsigned SIOpd) { 5368 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5369 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5370 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5371 // The check for the single predecessor is not the best that can be 5372 // done. But it protects efficiently against cases like when SI's 5373 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5374 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5375 // replaced can be reached on either path. So the uniqueness check 5376 // guarantees that the path all uses of SI (outside SI's parent) are on 5377 // is disjoint from all other paths out of SI. But that information 5378 // is more expensive to compute, and the trade-off here is in favor 5379 // of compile-time. It should also be noticed that we check for a single 5380 // predecessor and not only uniqueness. This to handle the situation when 5381 // Succ and Succ1 points to the same basic block. 5382 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5383 NumSel++; 5384 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5385 return true; 5386 } 5387 } 5388 return false; 5389 } 5390 5391 /// Try to fold the comparison based on range information we can get by checking 5392 /// whether bits are known to be zero or one in the inputs. 5393 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5394 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5395 Type *Ty = Op0->getType(); 5396 ICmpInst::Predicate Pred = I.getPredicate(); 5397 5398 // Get scalar or pointer size. 5399 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5400 ? Ty->getScalarSizeInBits() 5401 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5402 5403 if (!BitWidth) 5404 return nullptr; 5405 5406 KnownBits Op0Known(BitWidth); 5407 KnownBits Op1Known(BitWidth); 5408 5409 if (SimplifyDemandedBits(&I, 0, 5410 getDemandedBitsLHSMask(I, BitWidth), 5411 Op0Known, 0)) 5412 return &I; 5413 5414 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5415 return &I; 5416 5417 // Given the known and unknown bits, compute a range that the LHS could be 5418 // in. Compute the Min, Max and RHS values based on the known bits. For the 5419 // EQ and NE we use unsigned values. 5420 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5421 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5422 if (I.isSigned()) { 5423 Op0Min = Op0Known.getSignedMinValue(); 5424 Op0Max = Op0Known.getSignedMaxValue(); 5425 Op1Min = Op1Known.getSignedMinValue(); 5426 Op1Max = Op1Known.getSignedMaxValue(); 5427 } else { 5428 Op0Min = Op0Known.getMinValue(); 5429 Op0Max = Op0Known.getMaxValue(); 5430 Op1Min = Op1Known.getMinValue(); 5431 Op1Max = Op1Known.getMaxValue(); 5432 } 5433 5434 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5435 // out that the LHS or RHS is a constant. Constant fold this now, so that 5436 // code below can assume that Min != Max. 5437 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5438 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5439 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5440 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5441 5442 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5443 // min/max canonical compare with some other compare. That could lead to 5444 // conflict with select canonicalization and infinite looping. 5445 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5446 auto isMinMaxCmp = [&](Instruction &Cmp) { 5447 if (!Cmp.hasOneUse()) 5448 return false; 5449 Value *A, *B; 5450 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5451 if (!SelectPatternResult::isMinOrMax(SPF)) 5452 return false; 5453 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5454 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5455 }; 5456 if (!isMinMaxCmp(I)) { 5457 switch (Pred) { 5458 default: 5459 break; 5460 case ICmpInst::ICMP_ULT: { 5461 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5462 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5463 const APInt *CmpC; 5464 if (match(Op1, m_APInt(CmpC))) { 5465 // A <u C -> A == C-1 if min(A)+1 == C 5466 if (*CmpC == Op0Min + 1) 5467 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5468 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5469 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5470 // exceeds the log2 of C. 5471 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5472 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5473 Constant::getNullValue(Op1->getType())); 5474 } 5475 break; 5476 } 5477 case ICmpInst::ICMP_UGT: { 5478 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5479 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5480 const APInt *CmpC; 5481 if (match(Op1, m_APInt(CmpC))) { 5482 // A >u C -> A == C+1 if max(a)-1 == C 5483 if (*CmpC == Op0Max - 1) 5484 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5485 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5486 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5487 // exceeds the log2 of C. 5488 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5489 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5490 Constant::getNullValue(Op1->getType())); 5491 } 5492 break; 5493 } 5494 case ICmpInst::ICMP_SLT: { 5495 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5496 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5497 const APInt *CmpC; 5498 if (match(Op1, m_APInt(CmpC))) { 5499 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5500 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5501 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5502 } 5503 break; 5504 } 5505 case ICmpInst::ICMP_SGT: { 5506 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5507 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5508 const APInt *CmpC; 5509 if (match(Op1, m_APInt(CmpC))) { 5510 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5511 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5512 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5513 } 5514 break; 5515 } 5516 } 5517 } 5518 5519 // Based on the range information we know about the LHS, see if we can 5520 // simplify this comparison. For example, (x&4) < 8 is always true. 5521 switch (Pred) { 5522 default: 5523 llvm_unreachable("Unknown icmp opcode!"); 5524 case ICmpInst::ICMP_EQ: 5525 case ICmpInst::ICMP_NE: { 5526 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5527 return replaceInstUsesWith( 5528 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5529 5530 // If all bits are known zero except for one, then we know at most one bit 5531 // is set. If the comparison is against zero, then this is a check to see if 5532 // *that* bit is set. 5533 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5534 if (Op1Known.isZero()) { 5535 // If the LHS is an AND with the same constant, look through it. 5536 Value *LHS = nullptr; 5537 const APInt *LHSC; 5538 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5539 *LHSC != Op0KnownZeroInverted) 5540 LHS = Op0; 5541 5542 Value *X; 5543 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5544 APInt ValToCheck = Op0KnownZeroInverted; 5545 Type *XTy = X->getType(); 5546 if (ValToCheck.isPowerOf2()) { 5547 // ((1 << X) & 8) == 0 -> X != 3 5548 // ((1 << X) & 8) != 0 -> X == 3 5549 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5550 auto NewPred = ICmpInst::getInversePredicate(Pred); 5551 return new ICmpInst(NewPred, X, CmpC); 5552 } else if ((++ValToCheck).isPowerOf2()) { 5553 // ((1 << X) & 7) == 0 -> X >= 3 5554 // ((1 << X) & 7) != 0 -> X < 3 5555 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5556 auto NewPred = 5557 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5558 return new ICmpInst(NewPred, X, CmpC); 5559 } 5560 } 5561 5562 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5563 const APInt *CI; 5564 if (Op0KnownZeroInverted.isOne() && 5565 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5566 // ((8 >>u X) & 1) == 0 -> X != 3 5567 // ((8 >>u X) & 1) != 0 -> X == 3 5568 unsigned CmpVal = CI->countTrailingZeros(); 5569 auto NewPred = ICmpInst::getInversePredicate(Pred); 5570 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5571 } 5572 } 5573 break; 5574 } 5575 case ICmpInst::ICMP_ULT: { 5576 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5577 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5578 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5579 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5580 break; 5581 } 5582 case ICmpInst::ICMP_UGT: { 5583 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5584 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5585 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5586 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5587 break; 5588 } 5589 case ICmpInst::ICMP_SLT: { 5590 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5591 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5592 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5593 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5594 break; 5595 } 5596 case ICmpInst::ICMP_SGT: { 5597 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5598 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5599 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5600 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5601 break; 5602 } 5603 case ICmpInst::ICMP_SGE: 5604 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5605 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5606 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5607 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5608 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5609 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5610 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5611 break; 5612 case ICmpInst::ICMP_SLE: 5613 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5614 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5615 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5616 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5617 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5618 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5619 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5620 break; 5621 case ICmpInst::ICMP_UGE: 5622 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5623 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5624 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5625 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5626 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5627 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5628 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5629 break; 5630 case ICmpInst::ICMP_ULE: 5631 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5632 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5633 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5634 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5635 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5636 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5637 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5638 break; 5639 } 5640 5641 // Turn a signed comparison into an unsigned one if both operands are known to 5642 // have the same sign. 5643 if (I.isSigned() && 5644 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5645 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5646 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5647 5648 return nullptr; 5649 } 5650 5651 /// If one operand of an icmp is effectively a bool (value range of {0,1}), 5652 /// then try to reduce patterns based on that limit. 5653 static Instruction *foldICmpUsingBoolRange(ICmpInst &I, 5654 InstCombiner::BuilderTy &Builder) { 5655 Value *X, *Y; 5656 ICmpInst::Predicate Pred; 5657 5658 // X must be 0 and bool must be true for "ULT": 5659 // X <u (zext i1 Y) --> (X == 0) & Y 5660 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) && 5661 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT) 5662 return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y); 5663 5664 // X must be 0 or bool must be true for "ULE": 5665 // X <=u (sext i1 Y) --> (X == 0) | Y 5666 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) && 5667 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE) 5668 return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y); 5669 5670 return nullptr; 5671 } 5672 5673 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5674 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5675 Constant *C) { 5676 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5677 "Only for relational integer predicates."); 5678 5679 Type *Type = C->getType(); 5680 bool IsSigned = ICmpInst::isSigned(Pred); 5681 5682 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5683 bool WillIncrement = 5684 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5685 5686 // Check if the constant operand can be safely incremented/decremented 5687 // without overflowing/underflowing. 5688 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5689 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5690 }; 5691 5692 Constant *SafeReplacementConstant = nullptr; 5693 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5694 // Bail out if the constant can't be safely incremented/decremented. 5695 if (!ConstantIsOk(CI)) 5696 return llvm::None; 5697 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5698 unsigned NumElts = FVTy->getNumElements(); 5699 for (unsigned i = 0; i != NumElts; ++i) { 5700 Constant *Elt = C->getAggregateElement(i); 5701 if (!Elt) 5702 return llvm::None; 5703 5704 if (isa<UndefValue>(Elt)) 5705 continue; 5706 5707 // Bail out if we can't determine if this constant is min/max or if we 5708 // know that this constant is min/max. 5709 auto *CI = dyn_cast<ConstantInt>(Elt); 5710 if (!CI || !ConstantIsOk(CI)) 5711 return llvm::None; 5712 5713 if (!SafeReplacementConstant) 5714 SafeReplacementConstant = CI; 5715 } 5716 } else { 5717 // ConstantExpr? 5718 return llvm::None; 5719 } 5720 5721 // It may not be safe to change a compare predicate in the presence of 5722 // undefined elements, so replace those elements with the first safe constant 5723 // that we found. 5724 // TODO: in case of poison, it is safe; let's replace undefs only. 5725 if (C->containsUndefOrPoisonElement()) { 5726 assert(SafeReplacementConstant && "Replacement constant not set"); 5727 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5728 } 5729 5730 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5731 5732 // Increment or decrement the constant. 5733 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5734 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5735 5736 return std::make_pair(NewPred, NewC); 5737 } 5738 5739 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5740 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5741 /// allows them to be folded in visitICmpInst. 5742 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5743 ICmpInst::Predicate Pred = I.getPredicate(); 5744 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5745 InstCombiner::isCanonicalPredicate(Pred)) 5746 return nullptr; 5747 5748 Value *Op0 = I.getOperand(0); 5749 Value *Op1 = I.getOperand(1); 5750 auto *Op1C = dyn_cast<Constant>(Op1); 5751 if (!Op1C) 5752 return nullptr; 5753 5754 auto FlippedStrictness = 5755 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5756 if (!FlippedStrictness) 5757 return nullptr; 5758 5759 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5760 } 5761 5762 /// If we have a comparison with a non-canonical predicate, if we can update 5763 /// all the users, invert the predicate and adjust all the users. 5764 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5765 // Is the predicate already canonical? 5766 CmpInst::Predicate Pred = I.getPredicate(); 5767 if (InstCombiner::isCanonicalPredicate(Pred)) 5768 return nullptr; 5769 5770 // Can all users be adjusted to predicate inversion? 5771 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5772 return nullptr; 5773 5774 // Ok, we can canonicalize comparison! 5775 // Let's first invert the comparison's predicate. 5776 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5777 I.setName(I.getName() + ".not"); 5778 5779 // And, adapt users. 5780 freelyInvertAllUsersOf(&I); 5781 5782 return &I; 5783 } 5784 5785 /// Integer compare with boolean values can always be turned into bitwise ops. 5786 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5787 InstCombiner::BuilderTy &Builder) { 5788 Value *A = I.getOperand(0), *B = I.getOperand(1); 5789 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5790 5791 // A boolean compared to true/false can be simplified to Op0/true/false in 5792 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5793 // Cases not handled by InstSimplify are always 'not' of Op0. 5794 if (match(B, m_Zero())) { 5795 switch (I.getPredicate()) { 5796 case CmpInst::ICMP_EQ: // A == 0 -> !A 5797 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5798 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5799 return BinaryOperator::CreateNot(A); 5800 default: 5801 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5802 } 5803 } else if (match(B, m_One())) { 5804 switch (I.getPredicate()) { 5805 case CmpInst::ICMP_NE: // A != 1 -> !A 5806 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5807 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5808 return BinaryOperator::CreateNot(A); 5809 default: 5810 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5811 } 5812 } 5813 5814 switch (I.getPredicate()) { 5815 default: 5816 llvm_unreachable("Invalid icmp instruction!"); 5817 case ICmpInst::ICMP_EQ: 5818 // icmp eq i1 A, B -> ~(A ^ B) 5819 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5820 5821 case ICmpInst::ICMP_NE: 5822 // icmp ne i1 A, B -> A ^ B 5823 return BinaryOperator::CreateXor(A, B); 5824 5825 case ICmpInst::ICMP_UGT: 5826 // icmp ugt -> icmp ult 5827 std::swap(A, B); 5828 LLVM_FALLTHROUGH; 5829 case ICmpInst::ICMP_ULT: 5830 // icmp ult i1 A, B -> ~A & B 5831 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5832 5833 case ICmpInst::ICMP_SGT: 5834 // icmp sgt -> icmp slt 5835 std::swap(A, B); 5836 LLVM_FALLTHROUGH; 5837 case ICmpInst::ICMP_SLT: 5838 // icmp slt i1 A, B -> A & ~B 5839 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5840 5841 case ICmpInst::ICMP_UGE: 5842 // icmp uge -> icmp ule 5843 std::swap(A, B); 5844 LLVM_FALLTHROUGH; 5845 case ICmpInst::ICMP_ULE: 5846 // icmp ule i1 A, B -> ~A | B 5847 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5848 5849 case ICmpInst::ICMP_SGE: 5850 // icmp sge -> icmp sle 5851 std::swap(A, B); 5852 LLVM_FALLTHROUGH; 5853 case ICmpInst::ICMP_SLE: 5854 // icmp sle i1 A, B -> A | ~B 5855 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5856 } 5857 } 5858 5859 // Transform pattern like: 5860 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5861 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5862 // Into: 5863 // (X l>> Y) != 0 5864 // (X l>> Y) == 0 5865 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5866 InstCombiner::BuilderTy &Builder) { 5867 ICmpInst::Predicate Pred, NewPred; 5868 Value *X, *Y; 5869 if (match(&Cmp, 5870 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5871 switch (Pred) { 5872 case ICmpInst::ICMP_ULE: 5873 NewPred = ICmpInst::ICMP_NE; 5874 break; 5875 case ICmpInst::ICMP_UGT: 5876 NewPred = ICmpInst::ICMP_EQ; 5877 break; 5878 default: 5879 return nullptr; 5880 } 5881 } else if (match(&Cmp, m_c_ICmp(Pred, 5882 m_OneUse(m_CombineOr( 5883 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5884 m_Add(m_Shl(m_One(), m_Value(Y)), 5885 m_AllOnes()))), 5886 m_Value(X)))) { 5887 // The variant with 'add' is not canonical, (the variant with 'not' is) 5888 // we only get it because it has extra uses, and can't be canonicalized, 5889 5890 switch (Pred) { 5891 case ICmpInst::ICMP_ULT: 5892 NewPred = ICmpInst::ICMP_NE; 5893 break; 5894 case ICmpInst::ICMP_UGE: 5895 NewPred = ICmpInst::ICMP_EQ; 5896 break; 5897 default: 5898 return nullptr; 5899 } 5900 } else 5901 return nullptr; 5902 5903 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5904 Constant *Zero = Constant::getNullValue(NewX->getType()); 5905 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5906 } 5907 5908 static Instruction *foldVectorCmp(CmpInst &Cmp, 5909 InstCombiner::BuilderTy &Builder) { 5910 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5911 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5912 Value *V1, *V2; 5913 ArrayRef<int> M; 5914 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5915 return nullptr; 5916 5917 // If both arguments of the cmp are shuffles that use the same mask and 5918 // shuffle within a single vector, move the shuffle after the cmp: 5919 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5920 Type *V1Ty = V1->getType(); 5921 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5922 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5923 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5924 return new ShuffleVectorInst(NewCmp, M); 5925 } 5926 5927 // Try to canonicalize compare with splatted operand and splat constant. 5928 // TODO: We could generalize this for more than splats. See/use the code in 5929 // InstCombiner::foldVectorBinop(). 5930 Constant *C; 5931 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5932 return nullptr; 5933 5934 // Length-changing splats are ok, so adjust the constants as needed: 5935 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5936 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5937 int MaskSplatIndex; 5938 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5939 // We allow undefs in matching, but this transform removes those for safety. 5940 // Demanded elements analysis should be able to recover some/all of that. 5941 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5942 ScalarC); 5943 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5944 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5945 return new ShuffleVectorInst(NewCmp, NewM); 5946 } 5947 5948 return nullptr; 5949 } 5950 5951 // extract(uadd.with.overflow(A, B), 0) ult A 5952 // -> extract(uadd.with.overflow(A, B), 1) 5953 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5954 CmpInst::Predicate Pred = I.getPredicate(); 5955 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5956 5957 Value *UAddOv; 5958 Value *A, *B; 5959 auto UAddOvResultPat = m_ExtractValue<0>( 5960 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5961 if (match(Op0, UAddOvResultPat) && 5962 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5963 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5964 (match(A, m_One()) || match(B, m_One()))) || 5965 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5966 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5967 // extract(uadd.with.overflow(A, B), 0) < A 5968 // extract(uadd.with.overflow(A, 1), 0) == 0 5969 // extract(uadd.with.overflow(A, -1), 0) != -1 5970 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5971 else if (match(Op1, UAddOvResultPat) && 5972 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5973 // A > extract(uadd.with.overflow(A, B), 0) 5974 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5975 else 5976 return nullptr; 5977 5978 return ExtractValueInst::Create(UAddOv, 1); 5979 } 5980 5981 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5982 if (!I.getOperand(0)->getType()->isPointerTy() || 5983 NullPointerIsDefined( 5984 I.getParent()->getParent(), 5985 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5986 return nullptr; 5987 } 5988 Instruction *Op; 5989 if (match(I.getOperand(0), m_Instruction(Op)) && 5990 match(I.getOperand(1), m_Zero()) && 5991 Op->isLaunderOrStripInvariantGroup()) { 5992 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5993 Op->getOperand(0), I.getOperand(1)); 5994 } 5995 return nullptr; 5996 } 5997 5998 /// This function folds patterns produced by lowering of reduce idioms, such as 5999 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 6000 /// attempts to generate fewer number of scalar comparisons instead of vector 6001 /// comparisons when possible. 6002 static Instruction *foldReductionIdiom(ICmpInst &I, 6003 InstCombiner::BuilderTy &Builder, 6004 const DataLayout &DL) { 6005 if (I.getType()->isVectorTy()) 6006 return nullptr; 6007 ICmpInst::Predicate OuterPred, InnerPred; 6008 Value *LHS, *RHS; 6009 6010 // Match lowering of @llvm.vector.reduce.and. Turn 6011 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 6012 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 6013 /// %res = icmp <pred> i8 %scalar_ne, 0 6014 /// 6015 /// into 6016 /// 6017 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 6018 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 6019 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 6020 /// 6021 /// for <pred> in {ne, eq}. 6022 if (!match(&I, m_ICmp(OuterPred, 6023 m_OneUse(m_BitCast(m_OneUse( 6024 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 6025 m_Zero()))) 6026 return nullptr; 6027 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 6028 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 6029 return nullptr; 6030 unsigned NumBits = 6031 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 6032 // TODO: Relax this to "not wider than max legal integer type"? 6033 if (!DL.isLegalInteger(NumBits)) 6034 return nullptr; 6035 6036 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 6037 auto *ScalarTy = Builder.getIntNTy(NumBits); 6038 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 6039 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 6040 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 6041 I.getName()); 6042 } 6043 6044 return nullptr; 6045 } 6046 6047 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 6048 bool Changed = false; 6049 const SimplifyQuery Q = SQ.getWithInstruction(&I); 6050 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6051 unsigned Op0Cplxity = getComplexity(Op0); 6052 unsigned Op1Cplxity = getComplexity(Op1); 6053 6054 /// Orders the operands of the compare so that they are listed from most 6055 /// complex to least complex. This puts constants before unary operators, 6056 /// before binary operators. 6057 if (Op0Cplxity < Op1Cplxity || 6058 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 6059 I.swapOperands(); 6060 std::swap(Op0, Op1); 6061 Changed = true; 6062 } 6063 6064 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 6065 return replaceInstUsesWith(I, V); 6066 6067 // Comparing -val or val with non-zero is the same as just comparing val 6068 // ie, abs(val) != 0 -> val != 0 6069 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 6070 Value *Cond, *SelectTrue, *SelectFalse; 6071 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 6072 m_Value(SelectFalse)))) { 6073 if (Value *V = dyn_castNegVal(SelectTrue)) { 6074 if (V == SelectFalse) 6075 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6076 } 6077 else if (Value *V = dyn_castNegVal(SelectFalse)) { 6078 if (V == SelectTrue) 6079 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6080 } 6081 } 6082 } 6083 6084 if (Op0->getType()->isIntOrIntVectorTy(1)) 6085 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 6086 return Res; 6087 6088 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 6089 return Res; 6090 6091 if (Instruction *Res = canonicalizeICmpPredicate(I)) 6092 return Res; 6093 6094 if (Instruction *Res = foldICmpWithConstant(I)) 6095 return Res; 6096 6097 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 6098 return Res; 6099 6100 if (Instruction *Res = foldICmpUsingBoolRange(I, Builder)) 6101 return Res; 6102 6103 if (Instruction *Res = foldICmpUsingKnownBits(I)) 6104 return Res; 6105 6106 // Test if the ICmpInst instruction is used exclusively by a select as 6107 // part of a minimum or maximum operation. If so, refrain from doing 6108 // any other folding. This helps out other analyses which understand 6109 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6110 // and CodeGen. And in this case, at least one of the comparison 6111 // operands has at least one user besides the compare (the select), 6112 // which would often largely negate the benefit of folding anyway. 6113 // 6114 // Do the same for the other patterns recognized by matchSelectPattern. 6115 if (I.hasOneUse()) 6116 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6117 Value *A, *B; 6118 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6119 if (SPR.Flavor != SPF_UNKNOWN) 6120 return nullptr; 6121 } 6122 6123 // Do this after checking for min/max to prevent infinite looping. 6124 if (Instruction *Res = foldICmpWithZero(I)) 6125 return Res; 6126 6127 // FIXME: We only do this after checking for min/max to prevent infinite 6128 // looping caused by a reverse canonicalization of these patterns for min/max. 6129 // FIXME: The organization of folds is a mess. These would naturally go into 6130 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6131 // down here after the min/max restriction. 6132 ICmpInst::Predicate Pred = I.getPredicate(); 6133 const APInt *C; 6134 if (match(Op1, m_APInt(C))) { 6135 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6136 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6137 Constant *Zero = Constant::getNullValue(Op0->getType()); 6138 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6139 } 6140 6141 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6142 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6143 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6144 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6145 } 6146 } 6147 6148 // The folds in here may rely on wrapping flags and special constants, so 6149 // they can break up min/max idioms in some cases but not seemingly similar 6150 // patterns. 6151 // FIXME: It may be possible to enhance select folding to make this 6152 // unnecessary. It may also be moot if we canonicalize to min/max 6153 // intrinsics. 6154 if (Instruction *Res = foldICmpBinOp(I, Q)) 6155 return Res; 6156 6157 if (Instruction *Res = foldICmpInstWithConstant(I)) 6158 return Res; 6159 6160 // Try to match comparison as a sign bit test. Intentionally do this after 6161 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6162 if (Instruction *New = foldSignBitTest(I)) 6163 return New; 6164 6165 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6166 return Res; 6167 6168 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6169 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6170 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6171 return NI; 6172 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6173 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6174 return NI; 6175 6176 if (auto *SI = dyn_cast<SelectInst>(Op0)) 6177 if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I)) 6178 return NI; 6179 if (auto *SI = dyn_cast<SelectInst>(Op1)) 6180 if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I)) 6181 return NI; 6182 6183 // Try to optimize equality comparisons against alloca-based pointers. 6184 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6185 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6186 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6187 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6188 return New; 6189 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6190 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6191 return New; 6192 } 6193 6194 if (Instruction *Res = foldICmpBitCast(I)) 6195 return Res; 6196 6197 // TODO: Hoist this above the min/max bailout. 6198 if (Instruction *R = foldICmpWithCastOp(I)) 6199 return R; 6200 6201 if (Instruction *Res = foldICmpWithMinMax(I)) 6202 return Res; 6203 6204 { 6205 Value *A, *B; 6206 // Transform (A & ~B) == 0 --> (A & B) != 0 6207 // and (A & ~B) != 0 --> (A & B) == 0 6208 // if A is a power of 2. 6209 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6210 match(Op1, m_Zero()) && 6211 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6212 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6213 Op1); 6214 6215 // ~X < ~Y --> Y < X 6216 // ~X < C --> X > ~C 6217 if (match(Op0, m_Not(m_Value(A)))) { 6218 if (match(Op1, m_Not(m_Value(B)))) 6219 return new ICmpInst(I.getPredicate(), B, A); 6220 6221 const APInt *C; 6222 if (match(Op1, m_APInt(C))) 6223 return new ICmpInst(I.getSwappedPredicate(), A, 6224 ConstantInt::get(Op1->getType(), ~(*C))); 6225 } 6226 6227 Instruction *AddI = nullptr; 6228 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6229 m_Instruction(AddI))) && 6230 isa<IntegerType>(A->getType())) { 6231 Value *Result; 6232 Constant *Overflow; 6233 // m_UAddWithOverflow can match patterns that do not include an explicit 6234 // "add" instruction, so check the opcode of the matched op. 6235 if (AddI->getOpcode() == Instruction::Add && 6236 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6237 Result, Overflow)) { 6238 replaceInstUsesWith(*AddI, Result); 6239 eraseInstFromFunction(*AddI); 6240 return replaceInstUsesWith(I, Overflow); 6241 } 6242 } 6243 6244 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6245 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6246 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6247 return R; 6248 } 6249 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6250 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6251 return R; 6252 } 6253 } 6254 6255 if (Instruction *Res = foldICmpEquality(I)) 6256 return Res; 6257 6258 if (Instruction *Res = foldICmpOfUAddOv(I)) 6259 return Res; 6260 6261 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6262 // an i1 which indicates whether or not we successfully did the swap. 6263 // 6264 // Replace comparisons between the old value and the expected value with the 6265 // indicator that 'cmpxchg' returns. 6266 // 6267 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6268 // spuriously fail. In those cases, the old value may equal the expected 6269 // value but it is possible for the swap to not occur. 6270 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6271 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6272 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6273 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6274 !ACXI->isWeak()) 6275 return ExtractValueInst::Create(ACXI, 1); 6276 6277 { 6278 Value *X; 6279 const APInt *C; 6280 // icmp X+Cst, X 6281 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6282 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6283 6284 // icmp X, X+Cst 6285 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6286 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6287 } 6288 6289 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6290 return Res; 6291 6292 if (I.getType()->isVectorTy()) 6293 if (Instruction *Res = foldVectorCmp(I, Builder)) 6294 return Res; 6295 6296 if (Instruction *Res = foldICmpInvariantGroup(I)) 6297 return Res; 6298 6299 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 6300 return Res; 6301 6302 return Changed ? &I : nullptr; 6303 } 6304 6305 /// Fold fcmp ([us]itofp x, cst) if possible. 6306 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6307 Instruction *LHSI, 6308 Constant *RHSC) { 6309 if (!isa<ConstantFP>(RHSC)) return nullptr; 6310 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6311 6312 // Get the width of the mantissa. We don't want to hack on conversions that 6313 // might lose information from the integer, e.g. "i64 -> float" 6314 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6315 if (MantissaWidth == -1) return nullptr; // Unknown. 6316 6317 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6318 6319 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6320 6321 if (I.isEquality()) { 6322 FCmpInst::Predicate P = I.getPredicate(); 6323 bool IsExact = false; 6324 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6325 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6326 6327 // If the floating point constant isn't an integer value, we know if we will 6328 // ever compare equal / not equal to it. 6329 if (!IsExact) { 6330 // TODO: Can never be -0.0 and other non-representable values 6331 APFloat RHSRoundInt(RHS); 6332 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6333 if (RHS != RHSRoundInt) { 6334 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6335 return replaceInstUsesWith(I, Builder.getFalse()); 6336 6337 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6338 return replaceInstUsesWith(I, Builder.getTrue()); 6339 } 6340 } 6341 6342 // TODO: If the constant is exactly representable, is it always OK to do 6343 // equality compares as integer? 6344 } 6345 6346 // Check to see that the input is converted from an integer type that is small 6347 // enough that preserves all bits. TODO: check here for "known" sign bits. 6348 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6349 unsigned InputSize = IntTy->getScalarSizeInBits(); 6350 6351 // Following test does NOT adjust InputSize downwards for signed inputs, 6352 // because the most negative value still requires all the mantissa bits 6353 // to distinguish it from one less than that value. 6354 if ((int)InputSize > MantissaWidth) { 6355 // Conversion would lose accuracy. Check if loss can impact comparison. 6356 int Exp = ilogb(RHS); 6357 if (Exp == APFloat::IEK_Inf) { 6358 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6359 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6360 // Conversion could create infinity. 6361 return nullptr; 6362 } else { 6363 // Note that if RHS is zero or NaN, then Exp is negative 6364 // and first condition is trivially false. 6365 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6366 // Conversion could affect comparison. 6367 return nullptr; 6368 } 6369 } 6370 6371 // Otherwise, we can potentially simplify the comparison. We know that it 6372 // will always come through as an integer value and we know the constant is 6373 // not a NAN (it would have been previously simplified). 6374 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6375 6376 ICmpInst::Predicate Pred; 6377 switch (I.getPredicate()) { 6378 default: llvm_unreachable("Unexpected predicate!"); 6379 case FCmpInst::FCMP_UEQ: 6380 case FCmpInst::FCMP_OEQ: 6381 Pred = ICmpInst::ICMP_EQ; 6382 break; 6383 case FCmpInst::FCMP_UGT: 6384 case FCmpInst::FCMP_OGT: 6385 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6386 break; 6387 case FCmpInst::FCMP_UGE: 6388 case FCmpInst::FCMP_OGE: 6389 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6390 break; 6391 case FCmpInst::FCMP_ULT: 6392 case FCmpInst::FCMP_OLT: 6393 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6394 break; 6395 case FCmpInst::FCMP_ULE: 6396 case FCmpInst::FCMP_OLE: 6397 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6398 break; 6399 case FCmpInst::FCMP_UNE: 6400 case FCmpInst::FCMP_ONE: 6401 Pred = ICmpInst::ICMP_NE; 6402 break; 6403 case FCmpInst::FCMP_ORD: 6404 return replaceInstUsesWith(I, Builder.getTrue()); 6405 case FCmpInst::FCMP_UNO: 6406 return replaceInstUsesWith(I, Builder.getFalse()); 6407 } 6408 6409 // Now we know that the APFloat is a normal number, zero or inf. 6410 6411 // See if the FP constant is too large for the integer. For example, 6412 // comparing an i8 to 300.0. 6413 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6414 6415 if (!LHSUnsigned) { 6416 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6417 // and large values. 6418 APFloat SMax(RHS.getSemantics()); 6419 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6420 APFloat::rmNearestTiesToEven); 6421 if (SMax < RHS) { // smax < 13123.0 6422 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6423 Pred == ICmpInst::ICMP_SLE) 6424 return replaceInstUsesWith(I, Builder.getTrue()); 6425 return replaceInstUsesWith(I, Builder.getFalse()); 6426 } 6427 } else { 6428 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6429 // +INF and large values. 6430 APFloat UMax(RHS.getSemantics()); 6431 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6432 APFloat::rmNearestTiesToEven); 6433 if (UMax < RHS) { // umax < 13123.0 6434 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6435 Pred == ICmpInst::ICMP_ULE) 6436 return replaceInstUsesWith(I, Builder.getTrue()); 6437 return replaceInstUsesWith(I, Builder.getFalse()); 6438 } 6439 } 6440 6441 if (!LHSUnsigned) { 6442 // See if the RHS value is < SignedMin. 6443 APFloat SMin(RHS.getSemantics()); 6444 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6445 APFloat::rmNearestTiesToEven); 6446 if (SMin > RHS) { // smin > 12312.0 6447 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6448 Pred == ICmpInst::ICMP_SGE) 6449 return replaceInstUsesWith(I, Builder.getTrue()); 6450 return replaceInstUsesWith(I, Builder.getFalse()); 6451 } 6452 } else { 6453 // See if the RHS value is < UnsignedMin. 6454 APFloat UMin(RHS.getSemantics()); 6455 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6456 APFloat::rmNearestTiesToEven); 6457 if (UMin > RHS) { // umin > 12312.0 6458 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6459 Pred == ICmpInst::ICMP_UGE) 6460 return replaceInstUsesWith(I, Builder.getTrue()); 6461 return replaceInstUsesWith(I, Builder.getFalse()); 6462 } 6463 } 6464 6465 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6466 // [0, UMAX], but it may still be fractional. See if it is fractional by 6467 // casting the FP value to the integer value and back, checking for equality. 6468 // Don't do this for zero, because -0.0 is not fractional. 6469 Constant *RHSInt = LHSUnsigned 6470 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6471 : ConstantExpr::getFPToSI(RHSC, IntTy); 6472 if (!RHS.isZero()) { 6473 bool Equal = LHSUnsigned 6474 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6475 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6476 if (!Equal) { 6477 // If we had a comparison against a fractional value, we have to adjust 6478 // the compare predicate and sometimes the value. RHSC is rounded towards 6479 // zero at this point. 6480 switch (Pred) { 6481 default: llvm_unreachable("Unexpected integer comparison!"); 6482 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6483 return replaceInstUsesWith(I, Builder.getTrue()); 6484 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6485 return replaceInstUsesWith(I, Builder.getFalse()); 6486 case ICmpInst::ICMP_ULE: 6487 // (float)int <= 4.4 --> int <= 4 6488 // (float)int <= -4.4 --> false 6489 if (RHS.isNegative()) 6490 return replaceInstUsesWith(I, Builder.getFalse()); 6491 break; 6492 case ICmpInst::ICMP_SLE: 6493 // (float)int <= 4.4 --> int <= 4 6494 // (float)int <= -4.4 --> int < -4 6495 if (RHS.isNegative()) 6496 Pred = ICmpInst::ICMP_SLT; 6497 break; 6498 case ICmpInst::ICMP_ULT: 6499 // (float)int < -4.4 --> false 6500 // (float)int < 4.4 --> int <= 4 6501 if (RHS.isNegative()) 6502 return replaceInstUsesWith(I, Builder.getFalse()); 6503 Pred = ICmpInst::ICMP_ULE; 6504 break; 6505 case ICmpInst::ICMP_SLT: 6506 // (float)int < -4.4 --> int < -4 6507 // (float)int < 4.4 --> int <= 4 6508 if (!RHS.isNegative()) 6509 Pred = ICmpInst::ICMP_SLE; 6510 break; 6511 case ICmpInst::ICMP_UGT: 6512 // (float)int > 4.4 --> int > 4 6513 // (float)int > -4.4 --> true 6514 if (RHS.isNegative()) 6515 return replaceInstUsesWith(I, Builder.getTrue()); 6516 break; 6517 case ICmpInst::ICMP_SGT: 6518 // (float)int > 4.4 --> int > 4 6519 // (float)int > -4.4 --> int >= -4 6520 if (RHS.isNegative()) 6521 Pred = ICmpInst::ICMP_SGE; 6522 break; 6523 case ICmpInst::ICMP_UGE: 6524 // (float)int >= -4.4 --> true 6525 // (float)int >= 4.4 --> int > 4 6526 if (RHS.isNegative()) 6527 return replaceInstUsesWith(I, Builder.getTrue()); 6528 Pred = ICmpInst::ICMP_UGT; 6529 break; 6530 case ICmpInst::ICMP_SGE: 6531 // (float)int >= -4.4 --> int >= -4 6532 // (float)int >= 4.4 --> int > 4 6533 if (!RHS.isNegative()) 6534 Pred = ICmpInst::ICMP_SGT; 6535 break; 6536 } 6537 } 6538 } 6539 6540 // Lower this FP comparison into an appropriate integer version of the 6541 // comparison. 6542 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6543 } 6544 6545 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6546 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6547 Constant *RHSC) { 6548 // When C is not 0.0 and infinities are not allowed: 6549 // (C / X) < 0.0 is a sign-bit test of X 6550 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6551 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6552 // 6553 // Proof: 6554 // Multiply (C / X) < 0.0 by X * X / C. 6555 // - X is non zero, if it is the flag 'ninf' is violated. 6556 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6557 // the predicate. C is also non zero by definition. 6558 // 6559 // Thus X * X / C is non zero and the transformation is valid. [qed] 6560 6561 FCmpInst::Predicate Pred = I.getPredicate(); 6562 6563 // Check that predicates are valid. 6564 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6565 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6566 return nullptr; 6567 6568 // Check that RHS operand is zero. 6569 if (!match(RHSC, m_AnyZeroFP())) 6570 return nullptr; 6571 6572 // Check fastmath flags ('ninf'). 6573 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6574 return nullptr; 6575 6576 // Check the properties of the dividend. It must not be zero to avoid a 6577 // division by zero (see Proof). 6578 const APFloat *C; 6579 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6580 return nullptr; 6581 6582 if (C->isZero()) 6583 return nullptr; 6584 6585 // Get swapped predicate if necessary. 6586 if (C->isNegative()) 6587 Pred = I.getSwappedPredicate(); 6588 6589 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6590 } 6591 6592 /// Optimize fabs(X) compared with zero. 6593 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6594 Value *X; 6595 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6596 !match(I.getOperand(1), m_PosZeroFP())) 6597 return nullptr; 6598 6599 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6600 I->setPredicate(P); 6601 return IC.replaceOperand(*I, 0, X); 6602 }; 6603 6604 switch (I.getPredicate()) { 6605 case FCmpInst::FCMP_UGE: 6606 case FCmpInst::FCMP_OLT: 6607 // fabs(X) >= 0.0 --> true 6608 // fabs(X) < 0.0 --> false 6609 llvm_unreachable("fcmp should have simplified"); 6610 6611 case FCmpInst::FCMP_OGT: 6612 // fabs(X) > 0.0 --> X != 0.0 6613 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6614 6615 case FCmpInst::FCMP_UGT: 6616 // fabs(X) u> 0.0 --> X u!= 0.0 6617 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6618 6619 case FCmpInst::FCMP_OLE: 6620 // fabs(X) <= 0.0 --> X == 0.0 6621 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6622 6623 case FCmpInst::FCMP_ULE: 6624 // fabs(X) u<= 0.0 --> X u== 0.0 6625 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6626 6627 case FCmpInst::FCMP_OGE: 6628 // fabs(X) >= 0.0 --> !isnan(X) 6629 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6630 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6631 6632 case FCmpInst::FCMP_ULT: 6633 // fabs(X) u< 0.0 --> isnan(X) 6634 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6635 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6636 6637 case FCmpInst::FCMP_OEQ: 6638 case FCmpInst::FCMP_UEQ: 6639 case FCmpInst::FCMP_ONE: 6640 case FCmpInst::FCMP_UNE: 6641 case FCmpInst::FCMP_ORD: 6642 case FCmpInst::FCMP_UNO: 6643 // Look through the fabs() because it doesn't change anything but the sign. 6644 // fabs(X) == 0.0 --> X == 0.0, 6645 // fabs(X) != 0.0 --> X != 0.0 6646 // isnan(fabs(X)) --> isnan(X) 6647 // !isnan(fabs(X) --> !isnan(X) 6648 return replacePredAndOp0(&I, I.getPredicate(), X); 6649 6650 default: 6651 return nullptr; 6652 } 6653 } 6654 6655 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 6656 CmpInst::Predicate Pred = I.getPredicate(); 6657 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6658 6659 // Canonicalize fneg as Op1. 6660 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 6661 std::swap(Op0, Op1); 6662 Pred = I.getSwappedPredicate(); 6663 } 6664 6665 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 6666 return nullptr; 6667 6668 // Replace the negated operand with 0.0: 6669 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 6670 Constant *Zero = ConstantFP::getNullValue(Op0->getType()); 6671 return new FCmpInst(Pred, Op0, Zero, "", &I); 6672 } 6673 6674 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6675 bool Changed = false; 6676 6677 /// Orders the operands of the compare so that they are listed from most 6678 /// complex to least complex. This puts constants before unary operators, 6679 /// before binary operators. 6680 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6681 I.swapOperands(); 6682 Changed = true; 6683 } 6684 6685 const CmpInst::Predicate Pred = I.getPredicate(); 6686 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6687 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6688 SQ.getWithInstruction(&I))) 6689 return replaceInstUsesWith(I, V); 6690 6691 // Simplify 'fcmp pred X, X' 6692 Type *OpType = Op0->getType(); 6693 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6694 if (Op0 == Op1) { 6695 switch (Pred) { 6696 default: break; 6697 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6698 case FCmpInst::FCMP_ULT: // True if unordered or less than 6699 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6700 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6701 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6702 I.setPredicate(FCmpInst::FCMP_UNO); 6703 I.setOperand(1, Constant::getNullValue(OpType)); 6704 return &I; 6705 6706 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6707 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6708 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6709 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6710 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6711 I.setPredicate(FCmpInst::FCMP_ORD); 6712 I.setOperand(1, Constant::getNullValue(OpType)); 6713 return &I; 6714 } 6715 } 6716 6717 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6718 // then canonicalize the operand to 0.0. 6719 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6720 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6721 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6722 6723 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6724 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6725 } 6726 6727 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6728 Value *X, *Y; 6729 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6730 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6731 6732 if (Instruction *R = foldFCmpFNegCommonOp(I)) 6733 return R; 6734 6735 // Test if the FCmpInst instruction is used exclusively by a select as 6736 // part of a minimum or maximum operation. If so, refrain from doing 6737 // any other folding. This helps out other analyses which understand 6738 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6739 // and CodeGen. And in this case, at least one of the comparison 6740 // operands has at least one user besides the compare (the select), 6741 // which would often largely negate the benefit of folding anyway. 6742 if (I.hasOneUse()) 6743 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6744 Value *A, *B; 6745 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6746 if (SPR.Flavor != SPF_UNKNOWN) 6747 return nullptr; 6748 } 6749 6750 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6751 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6752 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6753 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6754 6755 // Handle fcmp with instruction LHS and constant RHS. 6756 Instruction *LHSI; 6757 Constant *RHSC; 6758 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6759 switch (LHSI->getOpcode()) { 6760 case Instruction::PHI: 6761 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6762 // block. If in the same block, we're encouraging jump threading. If 6763 // not, we are just pessimizing the code by making an i1 phi. 6764 if (LHSI->getParent() == I.getParent()) 6765 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6766 return NV; 6767 break; 6768 case Instruction::SIToFP: 6769 case Instruction::UIToFP: 6770 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6771 return NV; 6772 break; 6773 case Instruction::FDiv: 6774 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6775 return NV; 6776 break; 6777 case Instruction::Load: 6778 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6779 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6780 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 6781 cast<LoadInst>(LHSI), GEP, GV, I)) 6782 return Res; 6783 break; 6784 } 6785 } 6786 6787 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6788 return R; 6789 6790 if (match(Op0, m_FNeg(m_Value(X)))) { 6791 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6792 Constant *C; 6793 if (match(Op1, m_Constant(C))) { 6794 Constant *NegC = ConstantExpr::getFNeg(C); 6795 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6796 } 6797 } 6798 6799 if (match(Op0, m_FPExt(m_Value(X)))) { 6800 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6801 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6802 return new FCmpInst(Pred, X, Y, "", &I); 6803 6804 const APFloat *C; 6805 if (match(Op1, m_APFloat(C))) { 6806 const fltSemantics &FPSem = 6807 X->getType()->getScalarType()->getFltSemantics(); 6808 bool Lossy; 6809 APFloat TruncC = *C; 6810 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6811 6812 if (Lossy) { 6813 // X can't possibly equal the higher-precision constant, so reduce any 6814 // equality comparison. 6815 // TODO: Other predicates can be handled via getFCmpCode(). 6816 switch (Pred) { 6817 case FCmpInst::FCMP_OEQ: 6818 // X is ordered and equal to an impossible constant --> false 6819 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6820 case FCmpInst::FCMP_ONE: 6821 // X is ordered and not equal to an impossible constant --> ordered 6822 return new FCmpInst(FCmpInst::FCMP_ORD, X, 6823 ConstantFP::getNullValue(X->getType())); 6824 case FCmpInst::FCMP_UEQ: 6825 // X is unordered or equal to an impossible constant --> unordered 6826 return new FCmpInst(FCmpInst::FCMP_UNO, X, 6827 ConstantFP::getNullValue(X->getType())); 6828 case FCmpInst::FCMP_UNE: 6829 // X is unordered or not equal to an impossible constant --> true 6830 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6831 default: 6832 break; 6833 } 6834 } 6835 6836 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6837 // Avoid lossy conversions and denormals. 6838 // Zero is a special case that's OK to convert. 6839 APFloat Fabs = TruncC; 6840 Fabs.clearSign(); 6841 if (!Lossy && 6842 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6843 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6844 return new FCmpInst(Pred, X, NewC, "", &I); 6845 } 6846 } 6847 } 6848 6849 // Convert a sign-bit test of an FP value into a cast and integer compare. 6850 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6851 // TODO: Handle non-zero compare constants. 6852 // TODO: Handle other predicates. 6853 const APFloat *C; 6854 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6855 m_Value(X)))) && 6856 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6857 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6858 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6859 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6860 6861 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6862 if (Pred == FCmpInst::FCMP_OLT) { 6863 Value *IntX = Builder.CreateBitCast(X, IntType); 6864 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6865 ConstantInt::getNullValue(IntType)); 6866 } 6867 } 6868 6869 if (I.getType()->isVectorTy()) 6870 if (Instruction *Res = foldVectorCmp(I, Builder)) 6871 return Res; 6872 6873 return Changed ? &I : nullptr; 6874 } 6875