1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 #include "llvm/Transforms/InstCombine/InstCombiner.h" 28 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 // How many times is a select replaced by one of its operands? 35 STATISTIC(NumSel, "Number of select opts"); 36 37 38 /// Compute Result = In1+In2, returning true if the result overflowed for this 39 /// type. 40 static bool addWithOverflow(APInt &Result, const APInt &In1, 41 const APInt &In2, bool IsSigned = false) { 42 bool Overflow; 43 if (IsSigned) 44 Result = In1.sadd_ov(In2, Overflow); 45 else 46 Result = In1.uadd_ov(In2, Overflow); 47 48 return Overflow; 49 } 50 51 /// Compute Result = In1-In2, returning true if the result overflowed for this 52 /// type. 53 static bool subWithOverflow(APInt &Result, const APInt &In1, 54 const APInt &In2, bool IsSigned = false) { 55 bool Overflow; 56 if (IsSigned) 57 Result = In1.ssub_ov(In2, Overflow); 58 else 59 Result = In1.usub_ov(In2, Overflow); 60 61 return Overflow; 62 } 63 64 /// Given an icmp instruction, return true if any use of this comparison is a 65 /// branch on sign bit comparison. 66 static bool hasBranchUse(ICmpInst &I) { 67 for (auto *U : I.users()) 68 if (isa<BranchInst>(U)) 69 return true; 70 return false; 71 } 72 73 /// Returns true if the exploded icmp can be expressed as a signed comparison 74 /// to zero and updates the predicate accordingly. 75 /// The signedness of the comparison is preserved. 76 /// TODO: Refactor with decomposeBitTestICmp()? 77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 78 if (!ICmpInst::isSigned(Pred)) 79 return false; 80 81 if (C.isNullValue()) 82 return ICmpInst::isRelational(Pred); 83 84 if (C.isOneValue()) { 85 if (Pred == ICmpInst::ICMP_SLT) { 86 Pred = ICmpInst::ICMP_SLE; 87 return true; 88 } 89 } else if (C.isAllOnesValue()) { 90 if (Pred == ICmpInst::ICMP_SGT) { 91 Pred = ICmpInst::ICMP_SGE; 92 return true; 93 } 94 } 95 96 return false; 97 } 98 99 /// This is called when we see this pattern: 100 /// cmp pred (load (gep GV, ...)), cmpcst 101 /// where GV is a global variable with a constant initializer. Try to simplify 102 /// this into some simple computation that does not need the load. For example 103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 104 /// 105 /// If AndCst is non-null, then the loaded value is masked with that constant 106 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 107 Instruction * 108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 109 GlobalVariable *GV, CmpInst &ICI, 110 ConstantInt *AndCst) { 111 Constant *Init = GV->getInitializer(); 112 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 113 return nullptr; 114 115 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 116 // Don't blow up on huge arrays. 117 if (ArrayElementCount > MaxArraySizeForCombine) 118 return nullptr; 119 120 // There are many forms of this optimization we can handle, for now, just do 121 // the simple index into a single-dimensional array. 122 // 123 // Require: GEP GV, 0, i {{, constant indices}} 124 if (GEP->getNumOperands() < 3 || 125 !isa<ConstantInt>(GEP->getOperand(1)) || 126 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 127 isa<Constant>(GEP->getOperand(2))) 128 return nullptr; 129 130 // Check that indices after the variable are constants and in-range for the 131 // type they index. Collect the indices. This is typically for arrays of 132 // structs. 133 SmallVector<unsigned, 4> LaterIndices; 134 135 Type *EltTy = Init->getType()->getArrayElementType(); 136 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 137 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 138 if (!Idx) return nullptr; // Variable index. 139 140 uint64_t IdxVal = Idx->getZExtValue(); 141 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 142 143 if (StructType *STy = dyn_cast<StructType>(EltTy)) 144 EltTy = STy->getElementType(IdxVal); 145 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 146 if (IdxVal >= ATy->getNumElements()) return nullptr; 147 EltTy = ATy->getElementType(); 148 } else { 149 return nullptr; // Unknown type. 150 } 151 152 LaterIndices.push_back(IdxVal); 153 } 154 155 enum { Overdefined = -3, Undefined = -2 }; 156 157 // Variables for our state machines. 158 159 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 160 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 161 // and 87 is the second (and last) index. FirstTrueElement is -2 when 162 // undefined, otherwise set to the first true element. SecondTrueElement is 163 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 164 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 165 166 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 167 // form "i != 47 & i != 87". Same state transitions as for true elements. 168 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 169 170 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 171 /// define a state machine that triggers for ranges of values that the index 172 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 173 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 174 /// index in the range (inclusive). We use -2 for undefined here because we 175 /// use relative comparisons and don't want 0-1 to match -1. 176 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 177 178 // MagicBitvector - This is a magic bitvector where we set a bit if the 179 // comparison is true for element 'i'. If there are 64 elements or less in 180 // the array, this will fully represent all the comparison results. 181 uint64_t MagicBitvector = 0; 182 183 // Scan the array and see if one of our patterns matches. 184 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 185 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 186 Constant *Elt = Init->getAggregateElement(i); 187 if (!Elt) return nullptr; 188 189 // If this is indexing an array of structures, get the structure element. 190 if (!LaterIndices.empty()) 191 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 192 193 // If the element is masked, handle it. 194 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 195 196 // Find out if the comparison would be true or false for the i'th element. 197 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 198 CompareRHS, DL, &TLI); 199 // If the result is undef for this element, ignore it. 200 if (isa<UndefValue>(C)) { 201 // Extend range state machines to cover this element in case there is an 202 // undef in the middle of the range. 203 if (TrueRangeEnd == (int)i-1) 204 TrueRangeEnd = i; 205 if (FalseRangeEnd == (int)i-1) 206 FalseRangeEnd = i; 207 continue; 208 } 209 210 // If we can't compute the result for any of the elements, we have to give 211 // up evaluating the entire conditional. 212 if (!isa<ConstantInt>(C)) return nullptr; 213 214 // Otherwise, we know if the comparison is true or false for this element, 215 // update our state machines. 216 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 217 218 // State machine for single/double/range index comparison. 219 if (IsTrueForElt) { 220 // Update the TrueElement state machine. 221 if (FirstTrueElement == Undefined) 222 FirstTrueElement = TrueRangeEnd = i; // First true element. 223 else { 224 // Update double-compare state machine. 225 if (SecondTrueElement == Undefined) 226 SecondTrueElement = i; 227 else 228 SecondTrueElement = Overdefined; 229 230 // Update range state machine. 231 if (TrueRangeEnd == (int)i-1) 232 TrueRangeEnd = i; 233 else 234 TrueRangeEnd = Overdefined; 235 } 236 } else { 237 // Update the FalseElement state machine. 238 if (FirstFalseElement == Undefined) 239 FirstFalseElement = FalseRangeEnd = i; // First false element. 240 else { 241 // Update double-compare state machine. 242 if (SecondFalseElement == Undefined) 243 SecondFalseElement = i; 244 else 245 SecondFalseElement = Overdefined; 246 247 // Update range state machine. 248 if (FalseRangeEnd == (int)i-1) 249 FalseRangeEnd = i; 250 else 251 FalseRangeEnd = Overdefined; 252 } 253 } 254 255 // If this element is in range, update our magic bitvector. 256 if (i < 64 && IsTrueForElt) 257 MagicBitvector |= 1ULL << i; 258 259 // If all of our states become overdefined, bail out early. Since the 260 // predicate is expensive, only check it every 8 elements. This is only 261 // really useful for really huge arrays. 262 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 263 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 264 FalseRangeEnd == Overdefined) 265 return nullptr; 266 } 267 268 // Now that we've scanned the entire array, emit our new comparison(s). We 269 // order the state machines in complexity of the generated code. 270 Value *Idx = GEP->getOperand(2); 271 272 // If the index is larger than the pointer size of the target, truncate the 273 // index down like the GEP would do implicitly. We don't have to do this for 274 // an inbounds GEP because the index can't be out of range. 275 if (!GEP->isInBounds()) { 276 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 277 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 278 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 279 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 280 } 281 282 // If the comparison is only true for one or two elements, emit direct 283 // comparisons. 284 if (SecondTrueElement != Overdefined) { 285 // None true -> false. 286 if (FirstTrueElement == Undefined) 287 return replaceInstUsesWith(ICI, Builder.getFalse()); 288 289 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 290 291 // True for one element -> 'i == 47'. 292 if (SecondTrueElement == Undefined) 293 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 294 295 // True for two elements -> 'i == 47 | i == 72'. 296 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 297 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 298 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 299 return BinaryOperator::CreateOr(C1, C2); 300 } 301 302 // If the comparison is only false for one or two elements, emit direct 303 // comparisons. 304 if (SecondFalseElement != Overdefined) { 305 // None false -> true. 306 if (FirstFalseElement == Undefined) 307 return replaceInstUsesWith(ICI, Builder.getTrue()); 308 309 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 310 311 // False for one element -> 'i != 47'. 312 if (SecondFalseElement == Undefined) 313 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 314 315 // False for two elements -> 'i != 47 & i != 72'. 316 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 317 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 318 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 319 return BinaryOperator::CreateAnd(C1, C2); 320 } 321 322 // If the comparison can be replaced with a range comparison for the elements 323 // where it is true, emit the range check. 324 if (TrueRangeEnd != Overdefined) { 325 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 326 327 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 328 if (FirstTrueElement) { 329 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 330 Idx = Builder.CreateAdd(Idx, Offs); 331 } 332 333 Value *End = ConstantInt::get(Idx->getType(), 334 TrueRangeEnd-FirstTrueElement+1); 335 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 336 } 337 338 // False range check. 339 if (FalseRangeEnd != Overdefined) { 340 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 341 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 342 if (FirstFalseElement) { 343 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 344 Idx = Builder.CreateAdd(Idx, Offs); 345 } 346 347 Value *End = ConstantInt::get(Idx->getType(), 348 FalseRangeEnd-FirstFalseElement); 349 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 350 } 351 352 // If a magic bitvector captures the entire comparison state 353 // of this load, replace it with computation that does: 354 // ((magic_cst >> i) & 1) != 0 355 { 356 Type *Ty = nullptr; 357 358 // Look for an appropriate type: 359 // - The type of Idx if the magic fits 360 // - The smallest fitting legal type 361 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 362 Ty = Idx->getType(); 363 else 364 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 365 366 if (Ty) { 367 Value *V = Builder.CreateIntCast(Idx, Ty, false); 368 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 369 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 370 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 371 } 372 } 373 374 return nullptr; 375 } 376 377 /// Return a value that can be used to compare the *offset* implied by a GEP to 378 /// zero. For example, if we have &A[i], we want to return 'i' for 379 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 380 /// are involved. The above expression would also be legal to codegen as 381 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 382 /// This latter form is less amenable to optimization though, and we are allowed 383 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 384 /// 385 /// If we can't emit an optimized form for this expression, this returns null. 386 /// 387 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 388 const DataLayout &DL) { 389 gep_type_iterator GTI = gep_type_begin(GEP); 390 391 // Check to see if this gep only has a single variable index. If so, and if 392 // any constant indices are a multiple of its scale, then we can compute this 393 // in terms of the scale of the variable index. For example, if the GEP 394 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 395 // because the expression will cross zero at the same point. 396 unsigned i, e = GEP->getNumOperands(); 397 int64_t Offset = 0; 398 for (i = 1; i != e; ++i, ++GTI) { 399 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 400 // Compute the aggregate offset of constant indices. 401 if (CI->isZero()) continue; 402 403 // Handle a struct index, which adds its field offset to the pointer. 404 if (StructType *STy = GTI.getStructTypeOrNull()) { 405 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 406 } else { 407 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 408 Offset += Size*CI->getSExtValue(); 409 } 410 } else { 411 // Found our variable index. 412 break; 413 } 414 } 415 416 // If there are no variable indices, we must have a constant offset, just 417 // evaluate it the general way. 418 if (i == e) return nullptr; 419 420 Value *VariableIdx = GEP->getOperand(i); 421 // Determine the scale factor of the variable element. For example, this is 422 // 4 if the variable index is into an array of i32. 423 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 424 425 // Verify that there are no other variable indices. If so, emit the hard way. 426 for (++i, ++GTI; i != e; ++i, ++GTI) { 427 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 428 if (!CI) return nullptr; 429 430 // Compute the aggregate offset of constant indices. 431 if (CI->isZero()) continue; 432 433 // Handle a struct index, which adds its field offset to the pointer. 434 if (StructType *STy = GTI.getStructTypeOrNull()) { 435 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 436 } else { 437 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 438 Offset += Size*CI->getSExtValue(); 439 } 440 } 441 442 // Okay, we know we have a single variable index, which must be a 443 // pointer/array/vector index. If there is no offset, life is simple, return 444 // the index. 445 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 446 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 447 if (Offset == 0) { 448 // Cast to intptrty in case a truncation occurs. If an extension is needed, 449 // we don't need to bother extending: the extension won't affect where the 450 // computation crosses zero. 451 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 452 IntPtrWidth) { 453 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 454 } 455 return VariableIdx; 456 } 457 458 // Otherwise, there is an index. The computation we will do will be modulo 459 // the pointer size. 460 Offset = SignExtend64(Offset, IntPtrWidth); 461 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 462 463 // To do this transformation, any constant index must be a multiple of the 464 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 465 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 466 // multiple of the variable scale. 467 int64_t NewOffs = Offset / (int64_t)VariableScale; 468 if (Offset != NewOffs*(int64_t)VariableScale) 469 return nullptr; 470 471 // Okay, we can do this evaluation. Start by converting the index to intptr. 472 if (VariableIdx->getType() != IntPtrTy) 473 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 474 true /*Signed*/); 475 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 476 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 477 } 478 479 /// Returns true if we can rewrite Start as a GEP with pointer Base 480 /// and some integer offset. The nodes that need to be re-written 481 /// for this transformation will be added to Explored. 482 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 483 const DataLayout &DL, 484 SetVector<Value *> &Explored) { 485 SmallVector<Value *, 16> WorkList(1, Start); 486 Explored.insert(Base); 487 488 // The following traversal gives us an order which can be used 489 // when doing the final transformation. Since in the final 490 // transformation we create the PHI replacement instructions first, 491 // we don't have to get them in any particular order. 492 // 493 // However, for other instructions we will have to traverse the 494 // operands of an instruction first, which means that we have to 495 // do a post-order traversal. 496 while (!WorkList.empty()) { 497 SetVector<PHINode *> PHIs; 498 499 while (!WorkList.empty()) { 500 if (Explored.size() >= 100) 501 return false; 502 503 Value *V = WorkList.back(); 504 505 if (Explored.count(V) != 0) { 506 WorkList.pop_back(); 507 continue; 508 } 509 510 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 511 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 512 // We've found some value that we can't explore which is different from 513 // the base. Therefore we can't do this transformation. 514 return false; 515 516 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 517 auto *CI = cast<CastInst>(V); 518 if (!CI->isNoopCast(DL)) 519 return false; 520 521 if (Explored.count(CI->getOperand(0)) == 0) 522 WorkList.push_back(CI->getOperand(0)); 523 } 524 525 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 526 // We're limiting the GEP to having one index. This will preserve 527 // the original pointer type. We could handle more cases in the 528 // future. 529 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 530 GEP->getType() != Start->getType()) 531 return false; 532 533 if (Explored.count(GEP->getOperand(0)) == 0) 534 WorkList.push_back(GEP->getOperand(0)); 535 } 536 537 if (WorkList.back() == V) { 538 WorkList.pop_back(); 539 // We've finished visiting this node, mark it as such. 540 Explored.insert(V); 541 } 542 543 if (auto *PN = dyn_cast<PHINode>(V)) { 544 // We cannot transform PHIs on unsplittable basic blocks. 545 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 546 return false; 547 Explored.insert(PN); 548 PHIs.insert(PN); 549 } 550 } 551 552 // Explore the PHI nodes further. 553 for (auto *PN : PHIs) 554 for (Value *Op : PN->incoming_values()) 555 if (Explored.count(Op) == 0) 556 WorkList.push_back(Op); 557 } 558 559 // Make sure that we can do this. Since we can't insert GEPs in a basic 560 // block before a PHI node, we can't easily do this transformation if 561 // we have PHI node users of transformed instructions. 562 for (Value *Val : Explored) { 563 for (Value *Use : Val->uses()) { 564 565 auto *PHI = dyn_cast<PHINode>(Use); 566 auto *Inst = dyn_cast<Instruction>(Val); 567 568 if (Inst == Base || Inst == PHI || !Inst || !PHI || 569 Explored.count(PHI) == 0) 570 continue; 571 572 if (PHI->getParent() == Inst->getParent()) 573 return false; 574 } 575 } 576 return true; 577 } 578 579 // Sets the appropriate insert point on Builder where we can add 580 // a replacement Instruction for V (if that is possible). 581 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 582 bool Before = true) { 583 if (auto *PHI = dyn_cast<PHINode>(V)) { 584 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 585 return; 586 } 587 if (auto *I = dyn_cast<Instruction>(V)) { 588 if (!Before) 589 I = &*std::next(I->getIterator()); 590 Builder.SetInsertPoint(I); 591 return; 592 } 593 if (auto *A = dyn_cast<Argument>(V)) { 594 // Set the insertion point in the entry block. 595 BasicBlock &Entry = A->getParent()->getEntryBlock(); 596 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 597 return; 598 } 599 // Otherwise, this is a constant and we don't need to set a new 600 // insertion point. 601 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 602 } 603 604 /// Returns a re-written value of Start as an indexed GEP using Base as a 605 /// pointer. 606 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 607 const DataLayout &DL, 608 SetVector<Value *> &Explored) { 609 // Perform all the substitutions. This is a bit tricky because we can 610 // have cycles in our use-def chains. 611 // 1. Create the PHI nodes without any incoming values. 612 // 2. Create all the other values. 613 // 3. Add the edges for the PHI nodes. 614 // 4. Emit GEPs to get the original pointers. 615 // 5. Remove the original instructions. 616 Type *IndexType = IntegerType::get( 617 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 618 619 DenseMap<Value *, Value *> NewInsts; 620 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 621 622 // Create the new PHI nodes, without adding any incoming values. 623 for (Value *Val : Explored) { 624 if (Val == Base) 625 continue; 626 // Create empty phi nodes. This avoids cyclic dependencies when creating 627 // the remaining instructions. 628 if (auto *PHI = dyn_cast<PHINode>(Val)) 629 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 630 PHI->getName() + ".idx", PHI); 631 } 632 IRBuilder<> Builder(Base->getContext()); 633 634 // Create all the other instructions. 635 for (Value *Val : Explored) { 636 637 if (NewInsts.find(Val) != NewInsts.end()) 638 continue; 639 640 if (auto *CI = dyn_cast<CastInst>(Val)) { 641 // Don't get rid of the intermediate variable here; the store can grow 642 // the map which will invalidate the reference to the input value. 643 Value *V = NewInsts[CI->getOperand(0)]; 644 NewInsts[CI] = V; 645 continue; 646 } 647 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 648 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 649 : GEP->getOperand(1); 650 setInsertionPoint(Builder, GEP); 651 // Indices might need to be sign extended. GEPs will magically do 652 // this, but we need to do it ourselves here. 653 if (Index->getType()->getScalarSizeInBits() != 654 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 655 Index = Builder.CreateSExtOrTrunc( 656 Index, NewInsts[GEP->getOperand(0)]->getType(), 657 GEP->getOperand(0)->getName() + ".sext"); 658 } 659 660 auto *Op = NewInsts[GEP->getOperand(0)]; 661 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 662 NewInsts[GEP] = Index; 663 else 664 NewInsts[GEP] = Builder.CreateNSWAdd( 665 Op, Index, GEP->getOperand(0)->getName() + ".add"); 666 continue; 667 } 668 if (isa<PHINode>(Val)) 669 continue; 670 671 llvm_unreachable("Unexpected instruction type"); 672 } 673 674 // Add the incoming values to the PHI nodes. 675 for (Value *Val : Explored) { 676 if (Val == Base) 677 continue; 678 // All the instructions have been created, we can now add edges to the 679 // phi nodes. 680 if (auto *PHI = dyn_cast<PHINode>(Val)) { 681 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 682 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 683 Value *NewIncoming = PHI->getIncomingValue(I); 684 685 if (NewInsts.find(NewIncoming) != NewInsts.end()) 686 NewIncoming = NewInsts[NewIncoming]; 687 688 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 689 } 690 } 691 } 692 693 for (Value *Val : Explored) { 694 if (Val == Base) 695 continue; 696 697 // Depending on the type, for external users we have to emit 698 // a GEP or a GEP + ptrtoint. 699 setInsertionPoint(Builder, Val, false); 700 701 // If required, create an inttoptr instruction for Base. 702 Value *NewBase = Base; 703 if (!Base->getType()->isPointerTy()) 704 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 705 Start->getName() + "to.ptr"); 706 707 Value *GEP = Builder.CreateInBoundsGEP( 708 Start->getType()->getPointerElementType(), NewBase, 709 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 710 711 if (!Val->getType()->isPointerTy()) { 712 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 713 Val->getName() + ".conv"); 714 GEP = Cast; 715 } 716 Val->replaceAllUsesWith(GEP); 717 } 718 719 return NewInsts[Start]; 720 } 721 722 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 723 /// the input Value as a constant indexed GEP. Returns a pair containing 724 /// the GEPs Pointer and Index. 725 static std::pair<Value *, Value *> 726 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 727 Type *IndexType = IntegerType::get(V->getContext(), 728 DL.getIndexTypeSizeInBits(V->getType())); 729 730 Constant *Index = ConstantInt::getNullValue(IndexType); 731 while (true) { 732 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 733 // We accept only inbouds GEPs here to exclude the possibility of 734 // overflow. 735 if (!GEP->isInBounds()) 736 break; 737 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 738 GEP->getType() == V->getType()) { 739 V = GEP->getOperand(0); 740 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 741 Index = ConstantExpr::getAdd( 742 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 743 continue; 744 } 745 break; 746 } 747 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 748 if (!CI->isNoopCast(DL)) 749 break; 750 V = CI->getOperand(0); 751 continue; 752 } 753 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 754 if (!CI->isNoopCast(DL)) 755 break; 756 V = CI->getOperand(0); 757 continue; 758 } 759 break; 760 } 761 return {V, Index}; 762 } 763 764 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 765 /// We can look through PHIs, GEPs and casts in order to determine a common base 766 /// between GEPLHS and RHS. 767 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 768 ICmpInst::Predicate Cond, 769 const DataLayout &DL) { 770 // FIXME: Support vector of pointers. 771 if (GEPLHS->getType()->isVectorTy()) 772 return nullptr; 773 774 if (!GEPLHS->hasAllConstantIndices()) 775 return nullptr; 776 777 // Make sure the pointers have the same type. 778 if (GEPLHS->getType() != RHS->getType()) 779 return nullptr; 780 781 Value *PtrBase, *Index; 782 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 783 784 // The set of nodes that will take part in this transformation. 785 SetVector<Value *> Nodes; 786 787 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 788 return nullptr; 789 790 // We know we can re-write this as 791 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 792 // Since we've only looked through inbouds GEPs we know that we 793 // can't have overflow on either side. We can therefore re-write 794 // this as: 795 // OFFSET1 cmp OFFSET2 796 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 797 798 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 799 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 800 // offset. Since Index is the offset of LHS to the base pointer, we will now 801 // compare the offsets instead of comparing the pointers. 802 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 803 } 804 805 /// Fold comparisons between a GEP instruction and something else. At this point 806 /// we know that the GEP is on the LHS of the comparison. 807 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 808 ICmpInst::Predicate Cond, 809 Instruction &I) { 810 // Don't transform signed compares of GEPs into index compares. Even if the 811 // GEP is inbounds, the final add of the base pointer can have signed overflow 812 // and would change the result of the icmp. 813 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 814 // the maximum signed value for the pointer type. 815 if (ICmpInst::isSigned(Cond)) 816 return nullptr; 817 818 // Look through bitcasts and addrspacecasts. We do not however want to remove 819 // 0 GEPs. 820 if (!isa<GetElementPtrInst>(RHS)) 821 RHS = RHS->stripPointerCasts(); 822 823 Value *PtrBase = GEPLHS->getOperand(0); 824 // FIXME: Support vector pointer GEPs. 825 if (PtrBase == RHS && GEPLHS->isInBounds() && 826 !GEPLHS->getType()->isVectorTy()) { 827 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 828 // This transformation (ignoring the base and scales) is valid because we 829 // know pointers can't overflow since the gep is inbounds. See if we can 830 // output an optimized form. 831 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 832 833 // If not, synthesize the offset the hard way. 834 if (!Offset) 835 Offset = EmitGEPOffset(GEPLHS); 836 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 837 Constant::getNullValue(Offset->getType())); 838 } 839 840 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 841 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 842 !NullPointerIsDefined(I.getFunction(), 843 RHS->getType()->getPointerAddressSpace())) { 844 // For most address spaces, an allocation can't be placed at null, but null 845 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 846 // the only valid inbounds address derived from null, is null itself. 847 // Thus, we have four cases to consider: 848 // 1) Base == nullptr, Offset == 0 -> inbounds, null 849 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 850 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 851 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 852 // 853 // (Note if we're indexing a type of size 0, that simply collapses into one 854 // of the buckets above.) 855 // 856 // In general, we're allowed to make values less poison (i.e. remove 857 // sources of full UB), so in this case, we just select between the two 858 // non-poison cases (1 and 4 above). 859 // 860 // For vectors, we apply the same reasoning on a per-lane basis. 861 auto *Base = GEPLHS->getPointerOperand(); 862 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 863 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 864 Base = Builder.CreateVectorSplat(EC, Base); 865 } 866 return new ICmpInst(Cond, Base, 867 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 868 cast<Constant>(RHS), Base->getType())); 869 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 870 // If the base pointers are different, but the indices are the same, just 871 // compare the base pointer. 872 if (PtrBase != GEPRHS->getOperand(0)) { 873 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 874 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 875 GEPRHS->getOperand(0)->getType(); 876 if (IndicesTheSame) 877 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 878 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 879 IndicesTheSame = false; 880 break; 881 } 882 883 // If all indices are the same, just compare the base pointers. 884 Type *BaseType = GEPLHS->getOperand(0)->getType(); 885 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 886 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 887 888 // If we're comparing GEPs with two base pointers that only differ in type 889 // and both GEPs have only constant indices or just one use, then fold 890 // the compare with the adjusted indices. 891 // FIXME: Support vector of pointers. 892 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 893 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 894 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 895 PtrBase->stripPointerCasts() == 896 GEPRHS->getOperand(0)->stripPointerCasts() && 897 !GEPLHS->getType()->isVectorTy()) { 898 Value *LOffset = EmitGEPOffset(GEPLHS); 899 Value *ROffset = EmitGEPOffset(GEPRHS); 900 901 // If we looked through an addrspacecast between different sized address 902 // spaces, the LHS and RHS pointers are different sized 903 // integers. Truncate to the smaller one. 904 Type *LHSIndexTy = LOffset->getType(); 905 Type *RHSIndexTy = ROffset->getType(); 906 if (LHSIndexTy != RHSIndexTy) { 907 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 908 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 909 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 910 } else 911 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 912 } 913 914 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 915 LOffset, ROffset); 916 return replaceInstUsesWith(I, Cmp); 917 } 918 919 // Otherwise, the base pointers are different and the indices are 920 // different. Try convert this to an indexed compare by looking through 921 // PHIs/casts. 922 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 923 } 924 925 // If one of the GEPs has all zero indices, recurse. 926 // FIXME: Handle vector of pointers. 927 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 928 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 929 ICmpInst::getSwappedPredicate(Cond), I); 930 931 // If the other GEP has all zero indices, recurse. 932 // FIXME: Handle vector of pointers. 933 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 934 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 935 936 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 937 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 938 // If the GEPs only differ by one index, compare it. 939 unsigned NumDifferences = 0; // Keep track of # differences. 940 unsigned DiffOperand = 0; // The operand that differs. 941 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 942 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 943 Type *LHSType = GEPLHS->getOperand(i)->getType(); 944 Type *RHSType = GEPRHS->getOperand(i)->getType(); 945 // FIXME: Better support for vector of pointers. 946 if (LHSType->getPrimitiveSizeInBits() != 947 RHSType->getPrimitiveSizeInBits() || 948 (GEPLHS->getType()->isVectorTy() && 949 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 950 // Irreconcilable differences. 951 NumDifferences = 2; 952 break; 953 } 954 955 if (NumDifferences++) break; 956 DiffOperand = i; 957 } 958 959 if (NumDifferences == 0) // SAME GEP? 960 return replaceInstUsesWith(I, // No comparison is needed here. 961 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 962 963 else if (NumDifferences == 1 && GEPsInBounds) { 964 Value *LHSV = GEPLHS->getOperand(DiffOperand); 965 Value *RHSV = GEPRHS->getOperand(DiffOperand); 966 // Make sure we do a signed comparison here. 967 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 968 } 969 } 970 971 // Only lower this if the icmp is the only user of the GEP or if we expect 972 // the result to fold to a constant! 973 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 974 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 975 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 976 Value *L = EmitGEPOffset(GEPLHS); 977 Value *R = EmitGEPOffset(GEPRHS); 978 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 979 } 980 } 981 982 // Try convert this to an indexed compare by looking through PHIs/casts as a 983 // last resort. 984 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 985 } 986 987 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 988 const AllocaInst *Alloca, 989 const Value *Other) { 990 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 991 992 // It would be tempting to fold away comparisons between allocas and any 993 // pointer not based on that alloca (e.g. an argument). However, even 994 // though such pointers cannot alias, they can still compare equal. 995 // 996 // But LLVM doesn't specify where allocas get their memory, so if the alloca 997 // doesn't escape we can argue that it's impossible to guess its value, and we 998 // can therefore act as if any such guesses are wrong. 999 // 1000 // The code below checks that the alloca doesn't escape, and that it's only 1001 // used in a comparison once (the current instruction). The 1002 // single-comparison-use condition ensures that we're trivially folding all 1003 // comparisons against the alloca consistently, and avoids the risk of 1004 // erroneously folding a comparison of the pointer with itself. 1005 1006 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1007 1008 SmallVector<const Use *, 32> Worklist; 1009 for (const Use &U : Alloca->uses()) { 1010 if (Worklist.size() >= MaxIter) 1011 return nullptr; 1012 Worklist.push_back(&U); 1013 } 1014 1015 unsigned NumCmps = 0; 1016 while (!Worklist.empty()) { 1017 assert(Worklist.size() <= MaxIter); 1018 const Use *U = Worklist.pop_back_val(); 1019 const Value *V = U->getUser(); 1020 --MaxIter; 1021 1022 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1023 isa<SelectInst>(V)) { 1024 // Track the uses. 1025 } else if (isa<LoadInst>(V)) { 1026 // Loading from the pointer doesn't escape it. 1027 continue; 1028 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1029 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1030 if (SI->getValueOperand() == U->get()) 1031 return nullptr; 1032 continue; 1033 } else if (isa<ICmpInst>(V)) { 1034 if (NumCmps++) 1035 return nullptr; // Found more than one cmp. 1036 continue; 1037 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1038 switch (Intrin->getIntrinsicID()) { 1039 // These intrinsics don't escape or compare the pointer. Memset is safe 1040 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1041 // we don't allow stores, so src cannot point to V. 1042 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1043 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1044 continue; 1045 default: 1046 return nullptr; 1047 } 1048 } else { 1049 return nullptr; 1050 } 1051 for (const Use &U : V->uses()) { 1052 if (Worklist.size() >= MaxIter) 1053 return nullptr; 1054 Worklist.push_back(&U); 1055 } 1056 } 1057 1058 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1059 return replaceInstUsesWith( 1060 ICI, 1061 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1062 } 1063 1064 /// Fold "icmp pred (X+C), X". 1065 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1066 ICmpInst::Predicate Pred) { 1067 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1068 // so the values can never be equal. Similarly for all other "or equals" 1069 // operators. 1070 assert(!!C && "C should not be zero!"); 1071 1072 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1073 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1074 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1075 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1076 Constant *R = ConstantInt::get(X->getType(), 1077 APInt::getMaxValue(C.getBitWidth()) - C); 1078 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1079 } 1080 1081 // (X+1) >u X --> X <u (0-1) --> X != 255 1082 // (X+2) >u X --> X <u (0-2) --> X <u 254 1083 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1084 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1085 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1086 ConstantInt::get(X->getType(), -C)); 1087 1088 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1089 1090 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1091 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1092 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1093 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1094 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1095 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1096 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1097 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1098 ConstantInt::get(X->getType(), SMax - C)); 1099 1100 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1101 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1102 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1103 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1104 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1105 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1106 1107 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1108 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1109 ConstantInt::get(X->getType(), SMax - (C - 1))); 1110 } 1111 1112 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1113 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1114 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1115 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1116 const APInt &AP1, 1117 const APInt &AP2) { 1118 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1119 1120 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1121 if (I.getPredicate() == I.ICMP_NE) 1122 Pred = CmpInst::getInversePredicate(Pred); 1123 return new ICmpInst(Pred, LHS, RHS); 1124 }; 1125 1126 // Don't bother doing any work for cases which InstSimplify handles. 1127 if (AP2.isNullValue()) 1128 return nullptr; 1129 1130 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1131 if (IsAShr) { 1132 if (AP2.isAllOnesValue()) 1133 return nullptr; 1134 if (AP2.isNegative() != AP1.isNegative()) 1135 return nullptr; 1136 if (AP2.sgt(AP1)) 1137 return nullptr; 1138 } 1139 1140 if (!AP1) 1141 // 'A' must be large enough to shift out the highest set bit. 1142 return getICmp(I.ICMP_UGT, A, 1143 ConstantInt::get(A->getType(), AP2.logBase2())); 1144 1145 if (AP1 == AP2) 1146 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1147 1148 int Shift; 1149 if (IsAShr && AP1.isNegative()) 1150 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1151 else 1152 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1153 1154 if (Shift > 0) { 1155 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1156 // There are multiple solutions if we are comparing against -1 and the LHS 1157 // of the ashr is not a power of two. 1158 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1159 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1160 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1161 } else if (AP1 == AP2.lshr(Shift)) { 1162 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1163 } 1164 } 1165 1166 // Shifting const2 will never be equal to const1. 1167 // FIXME: This should always be handled by InstSimplify? 1168 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1169 return replaceInstUsesWith(I, TorF); 1170 } 1171 1172 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1173 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1174 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1175 const APInt &AP1, 1176 const APInt &AP2) { 1177 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1178 1179 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1180 if (I.getPredicate() == I.ICMP_NE) 1181 Pred = CmpInst::getInversePredicate(Pred); 1182 return new ICmpInst(Pred, LHS, RHS); 1183 }; 1184 1185 // Don't bother doing any work for cases which InstSimplify handles. 1186 if (AP2.isNullValue()) 1187 return nullptr; 1188 1189 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1190 1191 if (!AP1 && AP2TrailingZeros != 0) 1192 return getICmp( 1193 I.ICMP_UGE, A, 1194 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1195 1196 if (AP1 == AP2) 1197 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1198 1199 // Get the distance between the lowest bits that are set. 1200 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1201 1202 if (Shift > 0 && AP2.shl(Shift) == AP1) 1203 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1204 1205 // Shifting const2 will never be equal to const1. 1206 // FIXME: This should always be handled by InstSimplify? 1207 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1208 return replaceInstUsesWith(I, TorF); 1209 } 1210 1211 /// The caller has matched a pattern of the form: 1212 /// I = icmp ugt (add (add A, B), CI2), CI1 1213 /// If this is of the form: 1214 /// sum = a + b 1215 /// if (sum+128 >u 255) 1216 /// Then replace it with llvm.sadd.with.overflow.i8. 1217 /// 1218 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1219 ConstantInt *CI2, ConstantInt *CI1, 1220 InstCombinerImpl &IC) { 1221 // The transformation we're trying to do here is to transform this into an 1222 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1223 // with a narrower add, and discard the add-with-constant that is part of the 1224 // range check (if we can't eliminate it, this isn't profitable). 1225 1226 // In order to eliminate the add-with-constant, the compare can be its only 1227 // use. 1228 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1229 if (!AddWithCst->hasOneUse()) 1230 return nullptr; 1231 1232 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1233 if (!CI2->getValue().isPowerOf2()) 1234 return nullptr; 1235 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1236 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1237 return nullptr; 1238 1239 // The width of the new add formed is 1 more than the bias. 1240 ++NewWidth; 1241 1242 // Check to see that CI1 is an all-ones value with NewWidth bits. 1243 if (CI1->getBitWidth() == NewWidth || 1244 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1245 return nullptr; 1246 1247 // This is only really a signed overflow check if the inputs have been 1248 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1249 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1250 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1251 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1252 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1253 return nullptr; 1254 1255 // In order to replace the original add with a narrower 1256 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1257 // and truncates that discard the high bits of the add. Verify that this is 1258 // the case. 1259 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1260 for (User *U : OrigAdd->users()) { 1261 if (U == AddWithCst) 1262 continue; 1263 1264 // Only accept truncates for now. We would really like a nice recursive 1265 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1266 // chain to see which bits of a value are actually demanded. If the 1267 // original add had another add which was then immediately truncated, we 1268 // could still do the transformation. 1269 TruncInst *TI = dyn_cast<TruncInst>(U); 1270 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1271 return nullptr; 1272 } 1273 1274 // If the pattern matches, truncate the inputs to the narrower type and 1275 // use the sadd_with_overflow intrinsic to efficiently compute both the 1276 // result and the overflow bit. 1277 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1278 Function *F = Intrinsic::getDeclaration( 1279 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1280 1281 InstCombiner::BuilderTy &Builder = IC.Builder; 1282 1283 // Put the new code above the original add, in case there are any uses of the 1284 // add between the add and the compare. 1285 Builder.SetInsertPoint(OrigAdd); 1286 1287 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1288 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1289 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1290 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1291 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1292 1293 // The inner add was the result of the narrow add, zero extended to the 1294 // wider type. Replace it with the result computed by the intrinsic. 1295 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1296 IC.eraseInstFromFunction(*OrigAdd); 1297 1298 // The original icmp gets replaced with the overflow value. 1299 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1300 } 1301 1302 /// If we have: 1303 /// icmp eq/ne (urem/srem %x, %y), 0 1304 /// iff %y is a power-of-two, we can replace this with a bit test: 1305 /// icmp eq/ne (and %x, (add %y, -1)), 0 1306 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1307 // This fold is only valid for equality predicates. 1308 if (!I.isEquality()) 1309 return nullptr; 1310 ICmpInst::Predicate Pred; 1311 Value *X, *Y, *Zero; 1312 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1313 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1314 return nullptr; 1315 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1316 return nullptr; 1317 // This may increase instruction count, we don't enforce that Y is a constant. 1318 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1319 Value *Masked = Builder.CreateAnd(X, Mask); 1320 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1321 } 1322 1323 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1324 /// by one-less-than-bitwidth into a sign test on the original value. 1325 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1326 Instruction *Val; 1327 ICmpInst::Predicate Pred; 1328 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1329 return nullptr; 1330 1331 Value *X; 1332 Type *XTy; 1333 1334 Constant *C; 1335 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1336 XTy = X->getType(); 1337 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1338 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1339 APInt(XBitWidth, XBitWidth - 1)))) 1340 return nullptr; 1341 } else if (isa<BinaryOperator>(Val) && 1342 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1343 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1344 /*AnalyzeForSignBitExtraction=*/true))) { 1345 XTy = X->getType(); 1346 } else 1347 return nullptr; 1348 1349 return ICmpInst::Create(Instruction::ICmp, 1350 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1351 : ICmpInst::ICMP_SLT, 1352 X, ConstantInt::getNullValue(XTy)); 1353 } 1354 1355 // Handle icmp pred X, 0 1356 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1357 CmpInst::Predicate Pred = Cmp.getPredicate(); 1358 if (!match(Cmp.getOperand(1), m_Zero())) 1359 return nullptr; 1360 1361 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1362 if (Pred == ICmpInst::ICMP_SGT) { 1363 Value *A, *B; 1364 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1365 if (SPR.Flavor == SPF_SMIN) { 1366 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1367 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1368 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1369 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1370 } 1371 } 1372 1373 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1374 return New; 1375 1376 // Given: 1377 // icmp eq/ne (urem %x, %y), 0 1378 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1379 // icmp eq/ne %x, 0 1380 Value *X, *Y; 1381 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1382 ICmpInst::isEquality(Pred)) { 1383 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1384 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1385 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1386 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1387 } 1388 1389 return nullptr; 1390 } 1391 1392 /// Fold icmp Pred X, C. 1393 /// TODO: This code structure does not make sense. The saturating add fold 1394 /// should be moved to some other helper and extended as noted below (it is also 1395 /// possible that code has been made unnecessary - do we canonicalize IR to 1396 /// overflow/saturating intrinsics or not?). 1397 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1398 // Match the following pattern, which is a common idiom when writing 1399 // overflow-safe integer arithmetic functions. The source performs an addition 1400 // in wider type and explicitly checks for overflow using comparisons against 1401 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1402 // 1403 // TODO: This could probably be generalized to handle other overflow-safe 1404 // operations if we worked out the formulas to compute the appropriate magic 1405 // constants. 1406 // 1407 // sum = a + b 1408 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1409 CmpInst::Predicate Pred = Cmp.getPredicate(); 1410 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1411 Value *A, *B; 1412 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1413 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1414 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1415 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1416 return Res; 1417 1418 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1419 Constant *C = dyn_cast<Constant>(Op1); 1420 if (!C) 1421 return nullptr; 1422 1423 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1424 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1425 Type *Ty = Cmp.getType(); 1426 Builder.SetInsertPoint(Phi); 1427 PHINode *NewPhi = 1428 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1429 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1430 auto *Input = 1431 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1432 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1433 NewPhi->addIncoming(BoolInput, Predecessor); 1434 } 1435 NewPhi->takeName(&Cmp); 1436 return replaceInstUsesWith(Cmp, NewPhi); 1437 } 1438 1439 return nullptr; 1440 } 1441 1442 /// Canonicalize icmp instructions based on dominating conditions. 1443 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1444 // This is a cheap/incomplete check for dominance - just match a single 1445 // predecessor with a conditional branch. 1446 BasicBlock *CmpBB = Cmp.getParent(); 1447 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1448 if (!DomBB) 1449 return nullptr; 1450 1451 Value *DomCond; 1452 BasicBlock *TrueBB, *FalseBB; 1453 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1454 return nullptr; 1455 1456 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1457 "Predecessor block does not point to successor?"); 1458 1459 // The branch should get simplified. Don't bother simplifying this condition. 1460 if (TrueBB == FalseBB) 1461 return nullptr; 1462 1463 // Try to simplify this compare to T/F based on the dominating condition. 1464 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1465 if (Imp) 1466 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1467 1468 CmpInst::Predicate Pred = Cmp.getPredicate(); 1469 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1470 ICmpInst::Predicate DomPred; 1471 const APInt *C, *DomC; 1472 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1473 match(Y, m_APInt(C))) { 1474 // We have 2 compares of a variable with constants. Calculate the constant 1475 // ranges of those compares to see if we can transform the 2nd compare: 1476 // DomBB: 1477 // DomCond = icmp DomPred X, DomC 1478 // br DomCond, CmpBB, FalseBB 1479 // CmpBB: 1480 // Cmp = icmp Pred X, C 1481 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1482 ConstantRange DominatingCR = 1483 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1484 : ConstantRange::makeExactICmpRegion( 1485 CmpInst::getInversePredicate(DomPred), *DomC); 1486 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1487 ConstantRange Difference = DominatingCR.difference(CR); 1488 if (Intersection.isEmptySet()) 1489 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1490 if (Difference.isEmptySet()) 1491 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1492 1493 // Canonicalizing a sign bit comparison that gets used in a branch, 1494 // pessimizes codegen by generating branch on zero instruction instead 1495 // of a test and branch. So we avoid canonicalizing in such situations 1496 // because test and branch instruction has better branch displacement 1497 // than compare and branch instruction. 1498 bool UnusedBit; 1499 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1500 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1501 return nullptr; 1502 1503 if (const APInt *EqC = Intersection.getSingleElement()) 1504 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1505 if (const APInt *NeC = Difference.getSingleElement()) 1506 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1507 } 1508 1509 return nullptr; 1510 } 1511 1512 /// Fold icmp (trunc X, Y), C. 1513 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1514 TruncInst *Trunc, 1515 const APInt &C) { 1516 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1517 Value *X = Trunc->getOperand(0); 1518 if (C.isOneValue() && C.getBitWidth() > 1) { 1519 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1520 Value *V = nullptr; 1521 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1522 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1523 ConstantInt::get(V->getType(), 1)); 1524 } 1525 1526 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1527 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1528 // of the high bits truncated out of x are known. 1529 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1530 SrcBits = X->getType()->getScalarSizeInBits(); 1531 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1532 1533 // If all the high bits are known, we can do this xform. 1534 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1535 // Pull in the high bits from known-ones set. 1536 APInt NewRHS = C.zext(SrcBits); 1537 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1538 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1539 } 1540 } 1541 1542 return nullptr; 1543 } 1544 1545 /// Fold icmp (xor X, Y), C. 1546 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1547 BinaryOperator *Xor, 1548 const APInt &C) { 1549 Value *X = Xor->getOperand(0); 1550 Value *Y = Xor->getOperand(1); 1551 const APInt *XorC; 1552 if (!match(Y, m_APInt(XorC))) 1553 return nullptr; 1554 1555 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1556 // fold the xor. 1557 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1558 bool TrueIfSigned = false; 1559 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1560 1561 // If the sign bit of the XorCst is not set, there is no change to 1562 // the operation, just stop using the Xor. 1563 if (!XorC->isNegative()) 1564 return replaceOperand(Cmp, 0, X); 1565 1566 // Emit the opposite comparison. 1567 if (TrueIfSigned) 1568 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1569 ConstantInt::getAllOnesValue(X->getType())); 1570 else 1571 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1572 ConstantInt::getNullValue(X->getType())); 1573 } 1574 1575 if (Xor->hasOneUse()) { 1576 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1577 if (!Cmp.isEquality() && XorC->isSignMask()) { 1578 Pred = Cmp.getFlippedSignednessPredicate(); 1579 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1580 } 1581 1582 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1583 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1584 Pred = Cmp.getFlippedSignednessPredicate(); 1585 Pred = Cmp.getSwappedPredicate(Pred); 1586 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1587 } 1588 } 1589 1590 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1591 if (Pred == ICmpInst::ICMP_UGT) { 1592 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1593 if (*XorC == ~C && (C + 1).isPowerOf2()) 1594 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1595 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1596 if (*XorC == C && (C + 1).isPowerOf2()) 1597 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1598 } 1599 if (Pred == ICmpInst::ICMP_ULT) { 1600 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1601 if (*XorC == -C && C.isPowerOf2()) 1602 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1603 ConstantInt::get(X->getType(), ~C)); 1604 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1605 if (*XorC == C && (-C).isPowerOf2()) 1606 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1607 ConstantInt::get(X->getType(), ~C)); 1608 } 1609 return nullptr; 1610 } 1611 1612 /// Fold icmp (and (sh X, Y), C2), C1. 1613 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1614 BinaryOperator *And, 1615 const APInt &C1, 1616 const APInt &C2) { 1617 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1618 if (!Shift || !Shift->isShift()) 1619 return nullptr; 1620 1621 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1622 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1623 // code produced by the clang front-end, for bitfield access. 1624 // This seemingly simple opportunity to fold away a shift turns out to be 1625 // rather complicated. See PR17827 for details. 1626 unsigned ShiftOpcode = Shift->getOpcode(); 1627 bool IsShl = ShiftOpcode == Instruction::Shl; 1628 const APInt *C3; 1629 if (match(Shift->getOperand(1), m_APInt(C3))) { 1630 APInt NewAndCst, NewCmpCst; 1631 bool AnyCmpCstBitsShiftedOut; 1632 if (ShiftOpcode == Instruction::Shl) { 1633 // For a left shift, we can fold if the comparison is not signed. We can 1634 // also fold a signed comparison if the mask value and comparison value 1635 // are not negative. These constraints may not be obvious, but we can 1636 // prove that they are correct using an SMT solver. 1637 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1638 return nullptr; 1639 1640 NewCmpCst = C1.lshr(*C3); 1641 NewAndCst = C2.lshr(*C3); 1642 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1643 } else if (ShiftOpcode == Instruction::LShr) { 1644 // For a logical right shift, we can fold if the comparison is not signed. 1645 // We can also fold a signed comparison if the shifted mask value and the 1646 // shifted comparison value are not negative. These constraints may not be 1647 // obvious, but we can prove that they are correct using an SMT solver. 1648 NewCmpCst = C1.shl(*C3); 1649 NewAndCst = C2.shl(*C3); 1650 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1651 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1652 return nullptr; 1653 } else { 1654 // For an arithmetic shift, check that both constants don't use (in a 1655 // signed sense) the top bits being shifted out. 1656 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1657 NewCmpCst = C1.shl(*C3); 1658 NewAndCst = C2.shl(*C3); 1659 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1660 if (NewAndCst.ashr(*C3) != C2) 1661 return nullptr; 1662 } 1663 1664 if (AnyCmpCstBitsShiftedOut) { 1665 // If we shifted bits out, the fold is not going to work out. As a 1666 // special case, check to see if this means that the result is always 1667 // true or false now. 1668 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1669 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1670 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1671 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1672 } else { 1673 Value *NewAnd = Builder.CreateAnd( 1674 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1675 return new ICmpInst(Cmp.getPredicate(), 1676 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1677 } 1678 } 1679 1680 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1681 // preferable because it allows the C2 << Y expression to be hoisted out of a 1682 // loop if Y is invariant and X is not. 1683 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1684 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1685 // Compute C2 << Y. 1686 Value *NewShift = 1687 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1688 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1689 1690 // Compute X & (C2 << Y). 1691 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1692 return replaceOperand(Cmp, 0, NewAnd); 1693 } 1694 1695 return nullptr; 1696 } 1697 1698 /// Fold icmp (and X, C2), C1. 1699 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1700 BinaryOperator *And, 1701 const APInt &C1) { 1702 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1703 1704 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1705 // TODO: We canonicalize to the longer form for scalars because we have 1706 // better analysis/folds for icmp, and codegen may be better with icmp. 1707 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1708 match(And->getOperand(1), m_One())) 1709 return new TruncInst(And->getOperand(0), Cmp.getType()); 1710 1711 const APInt *C2; 1712 Value *X; 1713 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1714 return nullptr; 1715 1716 // Don't perform the following transforms if the AND has multiple uses 1717 if (!And->hasOneUse()) 1718 return nullptr; 1719 1720 if (Cmp.isEquality() && C1.isNullValue()) { 1721 // Restrict this fold to single-use 'and' (PR10267). 1722 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1723 if (C2->isSignMask()) { 1724 Constant *Zero = Constant::getNullValue(X->getType()); 1725 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1726 return new ICmpInst(NewPred, X, Zero); 1727 } 1728 1729 // Restrict this fold only for single-use 'and' (PR10267). 1730 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1731 if ((~(*C2) + 1).isPowerOf2()) { 1732 Constant *NegBOC = 1733 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1734 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1735 return new ICmpInst(NewPred, X, NegBOC); 1736 } 1737 } 1738 1739 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1740 // the input width without changing the value produced, eliminate the cast: 1741 // 1742 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1743 // 1744 // We can do this transformation if the constants do not have their sign bits 1745 // set or if it is an equality comparison. Extending a relational comparison 1746 // when we're checking the sign bit would not work. 1747 Value *W; 1748 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1749 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1750 // TODO: Is this a good transform for vectors? Wider types may reduce 1751 // throughput. Should this transform be limited (even for scalars) by using 1752 // shouldChangeType()? 1753 if (!Cmp.getType()->isVectorTy()) { 1754 Type *WideType = W->getType(); 1755 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1756 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1757 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1758 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1759 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1760 } 1761 } 1762 1763 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1764 return I; 1765 1766 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1767 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1768 // 1769 // iff pred isn't signed 1770 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1771 match(And->getOperand(1), m_One())) { 1772 Constant *One = cast<Constant>(And->getOperand(1)); 1773 Value *Or = And->getOperand(0); 1774 Value *A, *B, *LShr; 1775 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1776 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1777 unsigned UsesRemoved = 0; 1778 if (And->hasOneUse()) 1779 ++UsesRemoved; 1780 if (Or->hasOneUse()) 1781 ++UsesRemoved; 1782 if (LShr->hasOneUse()) 1783 ++UsesRemoved; 1784 1785 // Compute A & ((1 << B) | 1) 1786 Value *NewOr = nullptr; 1787 if (auto *C = dyn_cast<Constant>(B)) { 1788 if (UsesRemoved >= 1) 1789 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1790 } else { 1791 if (UsesRemoved >= 3) 1792 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1793 /*HasNUW=*/true), 1794 One, Or->getName()); 1795 } 1796 if (NewOr) { 1797 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1798 return replaceOperand(Cmp, 0, NewAnd); 1799 } 1800 } 1801 } 1802 1803 return nullptr; 1804 } 1805 1806 /// Fold icmp (and X, Y), C. 1807 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1808 BinaryOperator *And, 1809 const APInt &C) { 1810 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1811 return I; 1812 1813 // TODO: These all require that Y is constant too, so refactor with the above. 1814 1815 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1816 Value *X = And->getOperand(0); 1817 Value *Y = And->getOperand(1); 1818 if (auto *LI = dyn_cast<LoadInst>(X)) 1819 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1820 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1821 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1822 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1823 ConstantInt *C2 = cast<ConstantInt>(Y); 1824 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1825 return Res; 1826 } 1827 1828 if (!Cmp.isEquality()) 1829 return nullptr; 1830 1831 // X & -C == -C -> X > u ~C 1832 // X & -C != -C -> X <= u ~C 1833 // iff C is a power of 2 1834 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1835 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1836 : CmpInst::ICMP_ULE; 1837 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1838 } 1839 1840 // (X & C2) == 0 -> (trunc X) >= 0 1841 // (X & C2) != 0 -> (trunc X) < 0 1842 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1843 const APInt *C2; 1844 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1845 int32_t ExactLogBase2 = C2->exactLogBase2(); 1846 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1847 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1848 if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) 1849 NTy = VectorType::get(NTy, AndVTy->getElementCount()); 1850 Value *Trunc = Builder.CreateTrunc(X, NTy); 1851 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1852 : CmpInst::ICMP_SLT; 1853 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1854 } 1855 } 1856 1857 return nullptr; 1858 } 1859 1860 /// Fold icmp (or X, Y), C. 1861 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1862 BinaryOperator *Or, 1863 const APInt &C) { 1864 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1865 if (C.isOneValue()) { 1866 // icmp slt signum(V) 1 --> icmp slt V, 1 1867 Value *V = nullptr; 1868 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1869 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1870 ConstantInt::get(V->getType(), 1)); 1871 } 1872 1873 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1874 const APInt *MaskC; 1875 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1876 if (*MaskC == C && (C + 1).isPowerOf2()) { 1877 // X | C == C --> X <=u C 1878 // X | C != C --> X >u C 1879 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1880 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1881 return new ICmpInst(Pred, OrOp0, OrOp1); 1882 } 1883 1884 // More general: canonicalize 'equality with set bits mask' to 1885 // 'equality with clear bits mask'. 1886 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1887 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1888 if (Or->hasOneUse()) { 1889 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1890 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1891 return new ICmpInst(Pred, And, NewC); 1892 } 1893 } 1894 1895 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1896 return nullptr; 1897 1898 Value *P, *Q; 1899 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1900 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1901 // -> and (icmp eq P, null), (icmp eq Q, null). 1902 Value *CmpP = 1903 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1904 Value *CmpQ = 1905 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1906 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1907 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1908 } 1909 1910 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1911 // a shorter form that has more potential to be folded even further. 1912 Value *X1, *X2, *X3, *X4; 1913 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1914 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1915 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1916 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1917 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1918 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1919 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1920 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1921 } 1922 1923 return nullptr; 1924 } 1925 1926 /// Fold icmp (mul X, Y), C. 1927 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1928 BinaryOperator *Mul, 1929 const APInt &C) { 1930 const APInt *MulC; 1931 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1932 return nullptr; 1933 1934 // If this is a test of the sign bit and the multiply is sign-preserving with 1935 // a constant operand, use the multiply LHS operand instead. 1936 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1937 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1938 if (MulC->isNegative()) 1939 Pred = ICmpInst::getSwappedPredicate(Pred); 1940 return new ICmpInst(Pred, Mul->getOperand(0), 1941 Constant::getNullValue(Mul->getType())); 1942 } 1943 1944 // If the multiply does not wrap, try to divide the compare constant by the 1945 // multiplication factor. 1946 if (Cmp.isEquality() && !MulC->isNullValue()) { 1947 // (mul nsw X, MulC) == C --> X == C /s MulC 1948 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) { 1949 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1950 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1951 } 1952 // (mul nuw X, MulC) == C --> X == C /u MulC 1953 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) { 1954 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1955 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1956 } 1957 } 1958 1959 return nullptr; 1960 } 1961 1962 /// Fold icmp (shl 1, Y), C. 1963 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1964 const APInt &C) { 1965 Value *Y; 1966 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1967 return nullptr; 1968 1969 Type *ShiftType = Shl->getType(); 1970 unsigned TypeBits = C.getBitWidth(); 1971 bool CIsPowerOf2 = C.isPowerOf2(); 1972 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1973 if (Cmp.isUnsigned()) { 1974 // (1 << Y) pred C -> Y pred Log2(C) 1975 if (!CIsPowerOf2) { 1976 // (1 << Y) < 30 -> Y <= 4 1977 // (1 << Y) <= 30 -> Y <= 4 1978 // (1 << Y) >= 30 -> Y > 4 1979 // (1 << Y) > 30 -> Y > 4 1980 if (Pred == ICmpInst::ICMP_ULT) 1981 Pred = ICmpInst::ICMP_ULE; 1982 else if (Pred == ICmpInst::ICMP_UGE) 1983 Pred = ICmpInst::ICMP_UGT; 1984 } 1985 1986 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1987 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1988 unsigned CLog2 = C.logBase2(); 1989 if (CLog2 == TypeBits - 1) { 1990 if (Pred == ICmpInst::ICMP_UGE) 1991 Pred = ICmpInst::ICMP_EQ; 1992 else if (Pred == ICmpInst::ICMP_ULT) 1993 Pred = ICmpInst::ICMP_NE; 1994 } 1995 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1996 } else if (Cmp.isSigned()) { 1997 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1998 if (C.isAllOnesValue()) { 1999 // (1 << Y) <= -1 -> Y == 31 2000 if (Pred == ICmpInst::ICMP_SLE) 2001 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2002 2003 // (1 << Y) > -1 -> Y != 31 2004 if (Pred == ICmpInst::ICMP_SGT) 2005 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2006 } else if (!C) { 2007 // (1 << Y) < 0 -> Y == 31 2008 // (1 << Y) <= 0 -> Y == 31 2009 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2010 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2011 2012 // (1 << Y) >= 0 -> Y != 31 2013 // (1 << Y) > 0 -> Y != 31 2014 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2015 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2016 } 2017 } else if (Cmp.isEquality() && CIsPowerOf2) { 2018 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2019 } 2020 2021 return nullptr; 2022 } 2023 2024 /// Fold icmp (shl X, Y), C. 2025 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2026 BinaryOperator *Shl, 2027 const APInt &C) { 2028 const APInt *ShiftVal; 2029 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2030 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2031 2032 const APInt *ShiftAmt; 2033 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2034 return foldICmpShlOne(Cmp, Shl, C); 2035 2036 // Check that the shift amount is in range. If not, don't perform undefined 2037 // shifts. When the shift is visited, it will be simplified. 2038 unsigned TypeBits = C.getBitWidth(); 2039 if (ShiftAmt->uge(TypeBits)) 2040 return nullptr; 2041 2042 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2043 Value *X = Shl->getOperand(0); 2044 Type *ShType = Shl->getType(); 2045 2046 // NSW guarantees that we are only shifting out sign bits from the high bits, 2047 // so we can ASHR the compare constant without needing a mask and eliminate 2048 // the shift. 2049 if (Shl->hasNoSignedWrap()) { 2050 if (Pred == ICmpInst::ICMP_SGT) { 2051 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2052 APInt ShiftedC = C.ashr(*ShiftAmt); 2053 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2054 } 2055 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2056 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2057 APInt ShiftedC = C.ashr(*ShiftAmt); 2058 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2059 } 2060 if (Pred == ICmpInst::ICMP_SLT) { 2061 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2062 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2063 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2064 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2065 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2066 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2067 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2068 } 2069 // If this is a signed comparison to 0 and the shift is sign preserving, 2070 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2071 // do that if we're sure to not continue on in this function. 2072 if (isSignTest(Pred, C)) 2073 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2074 } 2075 2076 // NUW guarantees that we are only shifting out zero bits from the high bits, 2077 // so we can LSHR the compare constant without needing a mask and eliminate 2078 // the shift. 2079 if (Shl->hasNoUnsignedWrap()) { 2080 if (Pred == ICmpInst::ICMP_UGT) { 2081 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2082 APInt ShiftedC = C.lshr(*ShiftAmt); 2083 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2084 } 2085 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2086 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2087 APInt ShiftedC = C.lshr(*ShiftAmt); 2088 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2089 } 2090 if (Pred == ICmpInst::ICMP_ULT) { 2091 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2092 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2093 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2094 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2095 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2096 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2097 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2098 } 2099 } 2100 2101 if (Cmp.isEquality() && Shl->hasOneUse()) { 2102 // Strength-reduce the shift into an 'and'. 2103 Constant *Mask = ConstantInt::get( 2104 ShType, 2105 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2106 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2107 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2108 return new ICmpInst(Pred, And, LShrC); 2109 } 2110 2111 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2112 bool TrueIfSigned = false; 2113 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2114 // (X << 31) <s 0 --> (X & 1) != 0 2115 Constant *Mask = ConstantInt::get( 2116 ShType, 2117 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2118 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2119 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2120 And, Constant::getNullValue(ShType)); 2121 } 2122 2123 // Simplify 'shl' inequality test into 'and' equality test. 2124 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2125 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2126 if ((C + 1).isPowerOf2() && 2127 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2128 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2129 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2130 : ICmpInst::ICMP_NE, 2131 And, Constant::getNullValue(ShType)); 2132 } 2133 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2134 if (C.isPowerOf2() && 2135 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2136 Value *And = 2137 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2138 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2139 : ICmpInst::ICMP_NE, 2140 And, Constant::getNullValue(ShType)); 2141 } 2142 } 2143 2144 // Transform (icmp pred iM (shl iM %v, N), C) 2145 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2146 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2147 // This enables us to get rid of the shift in favor of a trunc that may be 2148 // free on the target. It has the additional benefit of comparing to a 2149 // smaller constant that may be more target-friendly. 2150 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2151 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2152 DL.isLegalInteger(TypeBits - Amt)) { 2153 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2154 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2155 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2156 Constant *NewC = 2157 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2158 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2159 } 2160 2161 return nullptr; 2162 } 2163 2164 /// Fold icmp ({al}shr X, Y), C. 2165 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2166 BinaryOperator *Shr, 2167 const APInt &C) { 2168 // An exact shr only shifts out zero bits, so: 2169 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2170 Value *X = Shr->getOperand(0); 2171 CmpInst::Predicate Pred = Cmp.getPredicate(); 2172 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2173 C.isNullValue()) 2174 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2175 2176 const APInt *ShiftVal; 2177 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2178 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2179 2180 const APInt *ShiftAmt; 2181 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2182 return nullptr; 2183 2184 // Check that the shift amount is in range. If not, don't perform undefined 2185 // shifts. When the shift is visited it will be simplified. 2186 unsigned TypeBits = C.getBitWidth(); 2187 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2188 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2189 return nullptr; 2190 2191 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2192 bool IsExact = Shr->isExact(); 2193 Type *ShrTy = Shr->getType(); 2194 // TODO: If we could guarantee that InstSimplify would handle all of the 2195 // constant-value-based preconditions in the folds below, then we could assert 2196 // those conditions rather than checking them. This is difficult because of 2197 // undef/poison (PR34838). 2198 if (IsAShr) { 2199 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2200 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2201 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2202 APInt ShiftedC = C.shl(ShAmtVal); 2203 if (ShiftedC.ashr(ShAmtVal) == C) 2204 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2205 } 2206 if (Pred == CmpInst::ICMP_SGT) { 2207 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2208 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2209 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2210 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2211 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2212 } 2213 } else { 2214 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2215 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2216 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2217 APInt ShiftedC = C.shl(ShAmtVal); 2218 if (ShiftedC.lshr(ShAmtVal) == C) 2219 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2220 } 2221 if (Pred == CmpInst::ICMP_UGT) { 2222 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2223 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2224 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2225 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2226 } 2227 } 2228 2229 if (!Cmp.isEquality()) 2230 return nullptr; 2231 2232 // Handle equality comparisons of shift-by-constant. 2233 2234 // If the comparison constant changes with the shift, the comparison cannot 2235 // succeed (bits of the comparison constant cannot match the shifted value). 2236 // This should be known by InstSimplify and already be folded to true/false. 2237 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2238 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2239 "Expected icmp+shr simplify did not occur."); 2240 2241 // If the bits shifted out are known zero, compare the unshifted value: 2242 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2243 if (Shr->isExact()) 2244 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2245 2246 if (Shr->hasOneUse()) { 2247 // Canonicalize the shift into an 'and': 2248 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2249 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2250 Constant *Mask = ConstantInt::get(ShrTy, Val); 2251 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2252 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2253 } 2254 2255 return nullptr; 2256 } 2257 2258 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2259 BinaryOperator *SRem, 2260 const APInt &C) { 2261 // Match an 'is positive' or 'is negative' comparison of remainder by a 2262 // constant power-of-2 value: 2263 // (X % pow2C) sgt/slt 0 2264 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2265 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2266 return nullptr; 2267 2268 // TODO: The one-use check is standard because we do not typically want to 2269 // create longer instruction sequences, but this might be a special-case 2270 // because srem is not good for analysis or codegen. 2271 if (!SRem->hasOneUse()) 2272 return nullptr; 2273 2274 const APInt *DivisorC; 2275 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2276 return nullptr; 2277 2278 // Mask off the sign bit and the modulo bits (low-bits). 2279 Type *Ty = SRem->getType(); 2280 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2281 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2282 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2283 2284 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2285 // bit is set. Example: 2286 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2287 if (Pred == ICmpInst::ICMP_SGT) 2288 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2289 2290 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2291 // bit is set. Example: 2292 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2293 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2294 } 2295 2296 /// Fold icmp (udiv X, Y), C. 2297 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2298 BinaryOperator *UDiv, 2299 const APInt &C) { 2300 const APInt *C2; 2301 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2302 return nullptr; 2303 2304 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2305 2306 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2307 Value *Y = UDiv->getOperand(1); 2308 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2309 assert(!C.isMaxValue() && 2310 "icmp ugt X, UINT_MAX should have been simplified already."); 2311 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2312 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2313 } 2314 2315 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2316 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2317 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2318 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2319 ConstantInt::get(Y->getType(), C2->udiv(C))); 2320 } 2321 2322 return nullptr; 2323 } 2324 2325 /// Fold icmp ({su}div X, Y), C. 2326 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2327 BinaryOperator *Div, 2328 const APInt &C) { 2329 // Fold: icmp pred ([us]div X, C2), C -> range test 2330 // Fold this div into the comparison, producing a range check. 2331 // Determine, based on the divide type, what the range is being 2332 // checked. If there is an overflow on the low or high side, remember 2333 // it, otherwise compute the range [low, hi) bounding the new value. 2334 // See: InsertRangeTest above for the kinds of replacements possible. 2335 const APInt *C2; 2336 if (!match(Div->getOperand(1), m_APInt(C2))) 2337 return nullptr; 2338 2339 // FIXME: If the operand types don't match the type of the divide 2340 // then don't attempt this transform. The code below doesn't have the 2341 // logic to deal with a signed divide and an unsigned compare (and 2342 // vice versa). This is because (x /s C2) <s C produces different 2343 // results than (x /s C2) <u C or (x /u C2) <s C or even 2344 // (x /u C2) <u C. Simply casting the operands and result won't 2345 // work. :( The if statement below tests that condition and bails 2346 // if it finds it. 2347 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2348 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2349 return nullptr; 2350 2351 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2352 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2353 // division-by-constant cases should be present, we can not assert that they 2354 // have happened before we reach this icmp instruction. 2355 if (C2->isNullValue() || C2->isOneValue() || 2356 (DivIsSigned && C2->isAllOnesValue())) 2357 return nullptr; 2358 2359 // Compute Prod = C * C2. We are essentially solving an equation of 2360 // form X / C2 = C. We solve for X by multiplying C2 and C. 2361 // By solving for X, we can turn this into a range check instead of computing 2362 // a divide. 2363 APInt Prod = C * *C2; 2364 2365 // Determine if the product overflows by seeing if the product is not equal to 2366 // the divide. Make sure we do the same kind of divide as in the LHS 2367 // instruction that we're folding. 2368 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2369 2370 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2371 2372 // If the division is known to be exact, then there is no remainder from the 2373 // divide, so the covered range size is unit, otherwise it is the divisor. 2374 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2375 2376 // Figure out the interval that is being checked. For example, a comparison 2377 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2378 // Compute this interval based on the constants involved and the signedness of 2379 // the compare/divide. This computes a half-open interval, keeping track of 2380 // whether either value in the interval overflows. After analysis each 2381 // overflow variable is set to 0 if it's corresponding bound variable is valid 2382 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2383 int LoOverflow = 0, HiOverflow = 0; 2384 APInt LoBound, HiBound; 2385 2386 if (!DivIsSigned) { // udiv 2387 // e.g. X/5 op 3 --> [15, 20) 2388 LoBound = Prod; 2389 HiOverflow = LoOverflow = ProdOV; 2390 if (!HiOverflow) { 2391 // If this is not an exact divide, then many values in the range collapse 2392 // to the same result value. 2393 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2394 } 2395 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2396 if (C.isNullValue()) { // (X / pos) op 0 2397 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2398 LoBound = -(RangeSize - 1); 2399 HiBound = RangeSize; 2400 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2401 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2402 HiOverflow = LoOverflow = ProdOV; 2403 if (!HiOverflow) 2404 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2405 } else { // (X / pos) op neg 2406 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2407 HiBound = Prod + 1; 2408 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2409 if (!LoOverflow) { 2410 APInt DivNeg = -RangeSize; 2411 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2412 } 2413 } 2414 } else if (C2->isNegative()) { // Divisor is < 0. 2415 if (Div->isExact()) 2416 RangeSize.negate(); 2417 if (C.isNullValue()) { // (X / neg) op 0 2418 // e.g. X/-5 op 0 --> [-4, 5) 2419 LoBound = RangeSize + 1; 2420 HiBound = -RangeSize; 2421 if (HiBound == *C2) { // -INTMIN = INTMIN 2422 HiOverflow = 1; // [INTMIN+1, overflow) 2423 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2424 } 2425 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2426 // e.g. X/-5 op 3 --> [-19, -14) 2427 HiBound = Prod + 1; 2428 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2429 if (!LoOverflow) 2430 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2431 } else { // (X / neg) op neg 2432 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2433 LoOverflow = HiOverflow = ProdOV; 2434 if (!HiOverflow) 2435 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2436 } 2437 2438 // Dividing by a negative swaps the condition. LT <-> GT 2439 Pred = ICmpInst::getSwappedPredicate(Pred); 2440 } 2441 2442 Value *X = Div->getOperand(0); 2443 switch (Pred) { 2444 default: llvm_unreachable("Unhandled icmp opcode!"); 2445 case ICmpInst::ICMP_EQ: 2446 if (LoOverflow && HiOverflow) 2447 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2448 if (HiOverflow) 2449 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2450 ICmpInst::ICMP_UGE, X, 2451 ConstantInt::get(Div->getType(), LoBound)); 2452 if (LoOverflow) 2453 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2454 ICmpInst::ICMP_ULT, X, 2455 ConstantInt::get(Div->getType(), HiBound)); 2456 return replaceInstUsesWith( 2457 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2458 case ICmpInst::ICMP_NE: 2459 if (LoOverflow && HiOverflow) 2460 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2461 if (HiOverflow) 2462 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2463 ICmpInst::ICMP_ULT, X, 2464 ConstantInt::get(Div->getType(), LoBound)); 2465 if (LoOverflow) 2466 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2467 ICmpInst::ICMP_UGE, X, 2468 ConstantInt::get(Div->getType(), HiBound)); 2469 return replaceInstUsesWith(Cmp, 2470 insertRangeTest(X, LoBound, HiBound, 2471 DivIsSigned, false)); 2472 case ICmpInst::ICMP_ULT: 2473 case ICmpInst::ICMP_SLT: 2474 if (LoOverflow == +1) // Low bound is greater than input range. 2475 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2476 if (LoOverflow == -1) // Low bound is less than input range. 2477 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2478 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2479 case ICmpInst::ICMP_UGT: 2480 case ICmpInst::ICMP_SGT: 2481 if (HiOverflow == +1) // High bound greater than input range. 2482 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2483 if (HiOverflow == -1) // High bound less than input range. 2484 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2485 if (Pred == ICmpInst::ICMP_UGT) 2486 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2487 ConstantInt::get(Div->getType(), HiBound)); 2488 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2489 ConstantInt::get(Div->getType(), HiBound)); 2490 } 2491 2492 return nullptr; 2493 } 2494 2495 /// Fold icmp (sub X, Y), C. 2496 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2497 BinaryOperator *Sub, 2498 const APInt &C) { 2499 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2500 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2501 const APInt *C2; 2502 APInt SubResult; 2503 2504 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2505 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2506 return new ICmpInst(Cmp.getPredicate(), Y, 2507 ConstantInt::get(Y->getType(), 0)); 2508 2509 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2510 if (match(X, m_APInt(C2)) && 2511 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2512 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2513 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2514 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2515 ConstantInt::get(Y->getType(), SubResult)); 2516 2517 // The following transforms are only worth it if the only user of the subtract 2518 // is the icmp. 2519 if (!Sub->hasOneUse()) 2520 return nullptr; 2521 2522 if (Sub->hasNoSignedWrap()) { 2523 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2524 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2525 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2526 2527 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2528 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2529 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2530 2531 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2532 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2533 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2534 2535 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2536 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2537 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2538 } 2539 2540 if (!match(X, m_APInt(C2))) 2541 return nullptr; 2542 2543 // C2 - Y <u C -> (Y | (C - 1)) == C2 2544 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2545 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2546 (*C2 & (C - 1)) == (C - 1)) 2547 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2548 2549 // C2 - Y >u C -> (Y | C) != C2 2550 // iff C2 & C == C and C + 1 is a power of 2 2551 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2552 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2553 2554 return nullptr; 2555 } 2556 2557 /// Fold icmp (add X, Y), C. 2558 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2559 BinaryOperator *Add, 2560 const APInt &C) { 2561 Value *Y = Add->getOperand(1); 2562 const APInt *C2; 2563 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2564 return nullptr; 2565 2566 // Fold icmp pred (add X, C2), C. 2567 Value *X = Add->getOperand(0); 2568 Type *Ty = Add->getType(); 2569 CmpInst::Predicate Pred = Cmp.getPredicate(); 2570 2571 // If the add does not wrap, we can always adjust the compare by subtracting 2572 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2573 // are canonicalized to SGT/SLT/UGT/ULT. 2574 if ((Add->hasNoSignedWrap() && 2575 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2576 (Add->hasNoUnsignedWrap() && 2577 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2578 bool Overflow; 2579 APInt NewC = 2580 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2581 // If there is overflow, the result must be true or false. 2582 // TODO: Can we assert there is no overflow because InstSimplify always 2583 // handles those cases? 2584 if (!Overflow) 2585 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2586 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2587 } 2588 2589 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2590 const APInt &Upper = CR.getUpper(); 2591 const APInt &Lower = CR.getLower(); 2592 if (Cmp.isSigned()) { 2593 if (Lower.isSignMask()) 2594 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2595 if (Upper.isSignMask()) 2596 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2597 } else { 2598 if (Lower.isMinValue()) 2599 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2600 if (Upper.isMinValue()) 2601 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2602 } 2603 2604 if (!Add->hasOneUse()) 2605 return nullptr; 2606 2607 // X+C <u C2 -> (X & -C2) == C 2608 // iff C & (C2-1) == 0 2609 // C2 is a power of 2 2610 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2611 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2612 ConstantExpr::getNeg(cast<Constant>(Y))); 2613 2614 // X+C >u C2 -> (X & ~C2) != C 2615 // iff C & C2 == 0 2616 // C2+1 is a power of 2 2617 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2618 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2619 ConstantExpr::getNeg(cast<Constant>(Y))); 2620 2621 return nullptr; 2622 } 2623 2624 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2625 Value *&RHS, ConstantInt *&Less, 2626 ConstantInt *&Equal, 2627 ConstantInt *&Greater) { 2628 // TODO: Generalize this to work with other comparison idioms or ensure 2629 // they get canonicalized into this form. 2630 2631 // select i1 (a == b), 2632 // i32 Equal, 2633 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2634 // where Equal, Less and Greater are placeholders for any three constants. 2635 ICmpInst::Predicate PredA; 2636 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2637 !ICmpInst::isEquality(PredA)) 2638 return false; 2639 Value *EqualVal = SI->getTrueValue(); 2640 Value *UnequalVal = SI->getFalseValue(); 2641 // We still can get non-canonical predicate here, so canonicalize. 2642 if (PredA == ICmpInst::ICMP_NE) 2643 std::swap(EqualVal, UnequalVal); 2644 if (!match(EqualVal, m_ConstantInt(Equal))) 2645 return false; 2646 ICmpInst::Predicate PredB; 2647 Value *LHS2, *RHS2; 2648 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2649 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2650 return false; 2651 // We can get predicate mismatch here, so canonicalize if possible: 2652 // First, ensure that 'LHS' match. 2653 if (LHS2 != LHS) { 2654 // x sgt y <--> y slt x 2655 std::swap(LHS2, RHS2); 2656 PredB = ICmpInst::getSwappedPredicate(PredB); 2657 } 2658 if (LHS2 != LHS) 2659 return false; 2660 // We also need to canonicalize 'RHS'. 2661 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2662 // x sgt C-1 <--> x sge C <--> not(x slt C) 2663 auto FlippedStrictness = 2664 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2665 PredB, cast<Constant>(RHS2)); 2666 if (!FlippedStrictness) 2667 return false; 2668 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2669 RHS2 = FlippedStrictness->second; 2670 // And kind-of perform the result swap. 2671 std::swap(Less, Greater); 2672 PredB = ICmpInst::ICMP_SLT; 2673 } 2674 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2675 } 2676 2677 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2678 SelectInst *Select, 2679 ConstantInt *C) { 2680 2681 assert(C && "Cmp RHS should be a constant int!"); 2682 // If we're testing a constant value against the result of a three way 2683 // comparison, the result can be expressed directly in terms of the 2684 // original values being compared. Note: We could possibly be more 2685 // aggressive here and remove the hasOneUse test. The original select is 2686 // really likely to simplify or sink when we remove a test of the result. 2687 Value *OrigLHS, *OrigRHS; 2688 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2689 if (Cmp.hasOneUse() && 2690 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2691 C3GreaterThan)) { 2692 assert(C1LessThan && C2Equal && C3GreaterThan); 2693 2694 bool TrueWhenLessThan = 2695 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2696 ->isAllOnesValue(); 2697 bool TrueWhenEqual = 2698 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2699 ->isAllOnesValue(); 2700 bool TrueWhenGreaterThan = 2701 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2702 ->isAllOnesValue(); 2703 2704 // This generates the new instruction that will replace the original Cmp 2705 // Instruction. Instead of enumerating the various combinations when 2706 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2707 // false, we rely on chaining of ORs and future passes of InstCombine to 2708 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2709 2710 // When none of the three constants satisfy the predicate for the RHS (C), 2711 // the entire original Cmp can be simplified to a false. 2712 Value *Cond = Builder.getFalse(); 2713 if (TrueWhenLessThan) 2714 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2715 OrigLHS, OrigRHS)); 2716 if (TrueWhenEqual) 2717 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2718 OrigLHS, OrigRHS)); 2719 if (TrueWhenGreaterThan) 2720 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2721 OrigLHS, OrigRHS)); 2722 2723 return replaceInstUsesWith(Cmp, Cond); 2724 } 2725 return nullptr; 2726 } 2727 2728 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2729 InstCombiner::BuilderTy &Builder) { 2730 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2731 if (!Bitcast) 2732 return nullptr; 2733 2734 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2735 Value *Op1 = Cmp.getOperand(1); 2736 Value *BCSrcOp = Bitcast->getOperand(0); 2737 2738 // Make sure the bitcast doesn't change the number of vector elements. 2739 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2740 Bitcast->getDestTy()->getScalarSizeInBits()) { 2741 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2742 Value *X; 2743 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2744 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2745 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2746 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2747 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2748 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2749 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2750 match(Op1, m_Zero())) 2751 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2752 2753 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2754 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2755 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2756 2757 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2758 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2759 return new ICmpInst(Pred, X, 2760 ConstantInt::getAllOnesValue(X->getType())); 2761 } 2762 2763 // Zero-equality checks are preserved through unsigned floating-point casts: 2764 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2765 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2766 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2767 if (Cmp.isEquality() && match(Op1, m_Zero())) 2768 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2769 2770 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2771 // the FP extend/truncate because that cast does not change the sign-bit. 2772 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2773 // The sign-bit is always the most significant bit in those types. 2774 const APInt *C; 2775 bool TrueIfSigned; 2776 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2777 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2778 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2779 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2780 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2781 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2782 Type *XType = X->getType(); 2783 2784 // We can't currently handle Power style floating point operations here. 2785 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2786 2787 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2788 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2789 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2790 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2791 if (TrueIfSigned) 2792 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2793 ConstantInt::getNullValue(NewType)); 2794 else 2795 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2796 ConstantInt::getAllOnesValue(NewType)); 2797 } 2798 } 2799 } 2800 } 2801 2802 // Test to see if the operands of the icmp are casted versions of other 2803 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2804 if (Bitcast->getType()->isPointerTy() && 2805 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2806 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2807 // so eliminate it as well. 2808 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2809 Op1 = BC2->getOperand(0); 2810 2811 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2812 return new ICmpInst(Pred, BCSrcOp, Op1); 2813 } 2814 2815 // Folding: icmp <pred> iN X, C 2816 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2817 // and C is a splat of a K-bit pattern 2818 // and SC is a constant vector = <C', C', C', ..., C'> 2819 // Into: 2820 // %E = extractelement <M x iK> %vec, i32 C' 2821 // icmp <pred> iK %E, trunc(C) 2822 const APInt *C; 2823 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2824 !Bitcast->getType()->isIntegerTy() || 2825 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2826 return nullptr; 2827 2828 Value *Vec; 2829 ArrayRef<int> Mask; 2830 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2831 // Check whether every element of Mask is the same constant 2832 if (is_splat(Mask)) { 2833 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2834 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2835 if (C->isSplat(EltTy->getBitWidth())) { 2836 // Fold the icmp based on the value of C 2837 // If C is M copies of an iK sized bit pattern, 2838 // then: 2839 // => %E = extractelement <N x iK> %vec, i32 Elem 2840 // icmp <pred> iK %SplatVal, <pattern> 2841 Value *Elem = Builder.getInt32(Mask[0]); 2842 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2843 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2844 return new ICmpInst(Pred, Extract, NewC); 2845 } 2846 } 2847 } 2848 return nullptr; 2849 } 2850 2851 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2852 /// where X is some kind of instruction. 2853 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 2854 const APInt *C; 2855 if (!match(Cmp.getOperand(1), m_APInt(C))) 2856 return nullptr; 2857 2858 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2859 switch (BO->getOpcode()) { 2860 case Instruction::Xor: 2861 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2862 return I; 2863 break; 2864 case Instruction::And: 2865 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2866 return I; 2867 break; 2868 case Instruction::Or: 2869 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2870 return I; 2871 break; 2872 case Instruction::Mul: 2873 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2874 return I; 2875 break; 2876 case Instruction::Shl: 2877 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2878 return I; 2879 break; 2880 case Instruction::LShr: 2881 case Instruction::AShr: 2882 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2883 return I; 2884 break; 2885 case Instruction::SRem: 2886 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 2887 return I; 2888 break; 2889 case Instruction::UDiv: 2890 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2891 return I; 2892 LLVM_FALLTHROUGH; 2893 case Instruction::SDiv: 2894 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2895 return I; 2896 break; 2897 case Instruction::Sub: 2898 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2899 return I; 2900 break; 2901 case Instruction::Add: 2902 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2903 return I; 2904 break; 2905 default: 2906 break; 2907 } 2908 // TODO: These folds could be refactored to be part of the above calls. 2909 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2910 return I; 2911 } 2912 2913 // Match against CmpInst LHS being instructions other than binary operators. 2914 2915 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2916 // For now, we only support constant integers while folding the 2917 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2918 // similar to the cases handled by binary ops above. 2919 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2920 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2921 return I; 2922 } 2923 2924 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2925 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2926 return I; 2927 } 2928 2929 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2930 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2931 return I; 2932 2933 return nullptr; 2934 } 2935 2936 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2937 /// icmp eq/ne BO, C. 2938 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 2939 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 2940 // TODO: Some of these folds could work with arbitrary constants, but this 2941 // function is limited to scalar and vector splat constants. 2942 if (!Cmp.isEquality()) 2943 return nullptr; 2944 2945 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2946 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2947 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2948 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2949 2950 switch (BO->getOpcode()) { 2951 case Instruction::SRem: 2952 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2953 if (C.isNullValue() && BO->hasOneUse()) { 2954 const APInt *BOC; 2955 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2956 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2957 return new ICmpInst(Pred, NewRem, 2958 Constant::getNullValue(BO->getType())); 2959 } 2960 } 2961 break; 2962 case Instruction::Add: { 2963 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2964 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2965 if (BO->hasOneUse()) 2966 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 2967 } else if (C.isNullValue()) { 2968 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2969 // efficiently invertible, or if the add has just this one use. 2970 if (Value *NegVal = dyn_castNegVal(BOp1)) 2971 return new ICmpInst(Pred, BOp0, NegVal); 2972 if (Value *NegVal = dyn_castNegVal(BOp0)) 2973 return new ICmpInst(Pred, NegVal, BOp1); 2974 if (BO->hasOneUse()) { 2975 Value *Neg = Builder.CreateNeg(BOp1); 2976 Neg->takeName(BO); 2977 return new ICmpInst(Pred, BOp0, Neg); 2978 } 2979 } 2980 break; 2981 } 2982 case Instruction::Xor: 2983 if (BO->hasOneUse()) { 2984 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2985 // For the xor case, we can xor two constants together, eliminating 2986 // the explicit xor. 2987 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2988 } else if (C.isNullValue()) { 2989 // Replace ((xor A, B) != 0) with (A != B) 2990 return new ICmpInst(Pred, BOp0, BOp1); 2991 } 2992 } 2993 break; 2994 case Instruction::Sub: 2995 if (BO->hasOneUse()) { 2996 // Only check for constant LHS here, as constant RHS will be canonicalized 2997 // to add and use the fold above. 2998 if (Constant *BOC = dyn_cast<Constant>(BOp0)) { 2999 // Replace ((sub BOC, B) != C) with (B != BOC-C). 3000 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); 3001 } else if (C.isNullValue()) { 3002 // Replace ((sub A, B) != 0) with (A != B). 3003 return new ICmpInst(Pred, BOp0, BOp1); 3004 } 3005 } 3006 break; 3007 case Instruction::Or: { 3008 const APInt *BOC; 3009 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3010 // Comparing if all bits outside of a constant mask are set? 3011 // Replace (X | C) == -1 with (X & ~C) == ~C. 3012 // This removes the -1 constant. 3013 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3014 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3015 return new ICmpInst(Pred, And, NotBOC); 3016 } 3017 break; 3018 } 3019 case Instruction::And: { 3020 const APInt *BOC; 3021 if (match(BOp1, m_APInt(BOC))) { 3022 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3023 if (C == *BOC && C.isPowerOf2()) 3024 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3025 BO, Constant::getNullValue(RHS->getType())); 3026 } 3027 break; 3028 } 3029 case Instruction::UDiv: 3030 if (C.isNullValue()) { 3031 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3032 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3033 return new ICmpInst(NewPred, BOp1, BOp0); 3034 } 3035 break; 3036 default: 3037 break; 3038 } 3039 return nullptr; 3040 } 3041 3042 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3043 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3044 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3045 Type *Ty = II->getType(); 3046 unsigned BitWidth = C.getBitWidth(); 3047 switch (II->getIntrinsicID()) { 3048 case Intrinsic::abs: 3049 // abs(A) == 0 -> A == 0 3050 // abs(A) == INT_MIN -> A == INT_MIN 3051 if (C.isNullValue() || C.isMinSignedValue()) 3052 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3053 ConstantInt::get(Ty, C)); 3054 break; 3055 3056 case Intrinsic::bswap: 3057 // bswap(A) == C -> A == bswap(C) 3058 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3059 ConstantInt::get(Ty, C.byteSwap())); 3060 3061 case Intrinsic::ctlz: 3062 case Intrinsic::cttz: { 3063 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3064 if (C == BitWidth) 3065 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3066 ConstantInt::getNullValue(Ty)); 3067 3068 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3069 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3070 // Limit to one use to ensure we don't increase instruction count. 3071 unsigned Num = C.getLimitedValue(BitWidth); 3072 if (Num != BitWidth && II->hasOneUse()) { 3073 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3074 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3075 : APInt::getHighBitsSet(BitWidth, Num + 1); 3076 APInt Mask2 = IsTrailing 3077 ? APInt::getOneBitSet(BitWidth, Num) 3078 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3079 return new ICmpInst(Cmp.getPredicate(), 3080 Builder.CreateAnd(II->getArgOperand(0), Mask1), 3081 ConstantInt::get(Ty, Mask2)); 3082 } 3083 break; 3084 } 3085 3086 case Intrinsic::ctpop: { 3087 // popcount(A) == 0 -> A == 0 and likewise for != 3088 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3089 bool IsZero = C.isNullValue(); 3090 if (IsZero || C == BitWidth) 3091 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3092 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); 3093 3094 break; 3095 } 3096 3097 case Intrinsic::uadd_sat: { 3098 // uadd.sat(a, b) == 0 -> (a | b) == 0 3099 if (C.isNullValue()) { 3100 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3101 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); 3102 } 3103 break; 3104 } 3105 3106 case Intrinsic::usub_sat: { 3107 // usub.sat(a, b) == 0 -> a <= b 3108 if (C.isNullValue()) { 3109 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ 3110 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3111 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3112 } 3113 break; 3114 } 3115 default: 3116 break; 3117 } 3118 3119 return nullptr; 3120 } 3121 3122 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3123 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3124 IntrinsicInst *II, 3125 const APInt &C) { 3126 if (Cmp.isEquality()) 3127 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3128 3129 Type *Ty = II->getType(); 3130 unsigned BitWidth = C.getBitWidth(); 3131 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3132 switch (II->getIntrinsicID()) { 3133 case Intrinsic::ctpop: { 3134 // (ctpop X > BitWidth - 1) --> X == -1 3135 Value *X = II->getArgOperand(0); 3136 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3137 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3138 ConstantInt::getAllOnesValue(Ty)); 3139 // (ctpop X < BitWidth) --> X != -1 3140 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3141 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3142 ConstantInt::getAllOnesValue(Ty)); 3143 break; 3144 } 3145 case Intrinsic::ctlz: { 3146 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3147 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3148 unsigned Num = C.getLimitedValue(); 3149 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3150 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3151 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3152 } 3153 3154 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3155 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3156 unsigned Num = C.getLimitedValue(); 3157 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3158 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3159 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3160 } 3161 break; 3162 } 3163 case Intrinsic::cttz: { 3164 // Limit to one use to ensure we don't increase instruction count. 3165 if (!II->hasOneUse()) 3166 return nullptr; 3167 3168 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3169 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3170 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3171 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3172 Builder.CreateAnd(II->getArgOperand(0), Mask), 3173 ConstantInt::getNullValue(Ty)); 3174 } 3175 3176 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3177 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3178 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3179 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3180 Builder.CreateAnd(II->getArgOperand(0), Mask), 3181 ConstantInt::getNullValue(Ty)); 3182 } 3183 break; 3184 } 3185 default: 3186 break; 3187 } 3188 3189 return nullptr; 3190 } 3191 3192 /// Handle icmp with constant (but not simple integer constant) RHS. 3193 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3194 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3195 Constant *RHSC = dyn_cast<Constant>(Op1); 3196 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3197 if (!RHSC || !LHSI) 3198 return nullptr; 3199 3200 switch (LHSI->getOpcode()) { 3201 case Instruction::GetElementPtr: 3202 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3203 if (RHSC->isNullValue() && 3204 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3205 return new ICmpInst( 3206 I.getPredicate(), LHSI->getOperand(0), 3207 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3208 break; 3209 case Instruction::PHI: 3210 // Only fold icmp into the PHI if the phi and icmp are in the same 3211 // block. If in the same block, we're encouraging jump threading. If 3212 // not, we are just pessimizing the code by making an i1 phi. 3213 if (LHSI->getParent() == I.getParent()) 3214 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3215 return NV; 3216 break; 3217 case Instruction::Select: { 3218 // If either operand of the select is a constant, we can fold the 3219 // comparison into the select arms, which will cause one to be 3220 // constant folded and the select turned into a bitwise or. 3221 Value *Op1 = nullptr, *Op2 = nullptr; 3222 ConstantInt *CI = nullptr; 3223 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3224 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3225 CI = dyn_cast<ConstantInt>(Op1); 3226 } 3227 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3228 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3229 CI = dyn_cast<ConstantInt>(Op2); 3230 } 3231 3232 // We only want to perform this transformation if it will not lead to 3233 // additional code. This is true if either both sides of the select 3234 // fold to a constant (in which case the icmp is replaced with a select 3235 // which will usually simplify) or this is the only user of the 3236 // select (in which case we are trading a select+icmp for a simpler 3237 // select+icmp) or all uses of the select can be replaced based on 3238 // dominance information ("Global cases"). 3239 bool Transform = false; 3240 if (Op1 && Op2) 3241 Transform = true; 3242 else if (Op1 || Op2) { 3243 // Local case 3244 if (LHSI->hasOneUse()) 3245 Transform = true; 3246 // Global cases 3247 else if (CI && !CI->isZero()) 3248 // When Op1 is constant try replacing select with second operand. 3249 // Otherwise Op2 is constant and try replacing select with first 3250 // operand. 3251 Transform = 3252 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3253 } 3254 if (Transform) { 3255 if (!Op1) 3256 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3257 I.getName()); 3258 if (!Op2) 3259 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3260 I.getName()); 3261 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3262 } 3263 break; 3264 } 3265 case Instruction::IntToPtr: 3266 // icmp pred inttoptr(X), null -> icmp pred X, 0 3267 if (RHSC->isNullValue() && 3268 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3269 return new ICmpInst( 3270 I.getPredicate(), LHSI->getOperand(0), 3271 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3272 break; 3273 3274 case Instruction::Load: 3275 // Try to optimize things like "A[i] > 4" to index computations. 3276 if (GetElementPtrInst *GEP = 3277 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3278 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3279 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3280 !cast<LoadInst>(LHSI)->isVolatile()) 3281 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3282 return Res; 3283 } 3284 break; 3285 } 3286 3287 return nullptr; 3288 } 3289 3290 /// Some comparisons can be simplified. 3291 /// In this case, we are looking for comparisons that look like 3292 /// a check for a lossy truncation. 3293 /// Folds: 3294 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3295 /// Where Mask is some pattern that produces all-ones in low bits: 3296 /// (-1 >> y) 3297 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3298 /// ~(-1 << y) 3299 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3300 /// The Mask can be a constant, too. 3301 /// For some predicates, the operands are commutative. 3302 /// For others, x can only be on a specific side. 3303 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3304 InstCombiner::BuilderTy &Builder) { 3305 ICmpInst::Predicate SrcPred; 3306 Value *X, *M, *Y; 3307 auto m_VariableMask = m_CombineOr( 3308 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3309 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3310 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3311 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3312 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3313 if (!match(&I, m_c_ICmp(SrcPred, 3314 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3315 m_Deferred(X)))) 3316 return nullptr; 3317 3318 ICmpInst::Predicate DstPred; 3319 switch (SrcPred) { 3320 case ICmpInst::Predicate::ICMP_EQ: 3321 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3322 DstPred = ICmpInst::Predicate::ICMP_ULE; 3323 break; 3324 case ICmpInst::Predicate::ICMP_NE: 3325 // x & (-1 >> y) != x -> x u> (-1 >> y) 3326 DstPred = ICmpInst::Predicate::ICMP_UGT; 3327 break; 3328 case ICmpInst::Predicate::ICMP_ULT: 3329 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3330 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3331 DstPred = ICmpInst::Predicate::ICMP_UGT; 3332 break; 3333 case ICmpInst::Predicate::ICMP_UGE: 3334 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3335 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3336 DstPred = ICmpInst::Predicate::ICMP_ULE; 3337 break; 3338 case ICmpInst::Predicate::ICMP_SLT: 3339 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3340 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3341 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3342 return nullptr; 3343 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3344 return nullptr; 3345 DstPred = ICmpInst::Predicate::ICMP_SGT; 3346 break; 3347 case ICmpInst::Predicate::ICMP_SGE: 3348 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3349 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3350 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3351 return nullptr; 3352 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3353 return nullptr; 3354 DstPred = ICmpInst::Predicate::ICMP_SLE; 3355 break; 3356 case ICmpInst::Predicate::ICMP_SGT: 3357 case ICmpInst::Predicate::ICMP_SLE: 3358 return nullptr; 3359 case ICmpInst::Predicate::ICMP_UGT: 3360 case ICmpInst::Predicate::ICMP_ULE: 3361 llvm_unreachable("Instsimplify took care of commut. variant"); 3362 break; 3363 default: 3364 llvm_unreachable("All possible folds are handled."); 3365 } 3366 3367 // The mask value may be a vector constant that has undefined elements. But it 3368 // may not be safe to propagate those undefs into the new compare, so replace 3369 // those elements by copying an existing, defined, and safe scalar constant. 3370 Type *OpTy = M->getType(); 3371 auto *VecC = dyn_cast<Constant>(M); 3372 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3373 if (OpVTy && VecC && VecC->containsUndefElement()) { 3374 Constant *SafeReplacementConstant = nullptr; 3375 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3376 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3377 SafeReplacementConstant = VecC->getAggregateElement(i); 3378 break; 3379 } 3380 } 3381 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3382 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3383 } 3384 3385 return Builder.CreateICmp(DstPred, X, M); 3386 } 3387 3388 /// Some comparisons can be simplified. 3389 /// In this case, we are looking for comparisons that look like 3390 /// a check for a lossy signed truncation. 3391 /// Folds: (MaskedBits is a constant.) 3392 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3393 /// Into: 3394 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3395 /// Where KeptBits = bitwidth(%x) - MaskedBits 3396 static Value * 3397 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3398 InstCombiner::BuilderTy &Builder) { 3399 ICmpInst::Predicate SrcPred; 3400 Value *X; 3401 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3402 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3403 if (!match(&I, m_c_ICmp(SrcPred, 3404 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3405 m_APInt(C1))), 3406 m_Deferred(X)))) 3407 return nullptr; 3408 3409 // Potential handling of non-splats: for each element: 3410 // * if both are undef, replace with constant 0. 3411 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3412 // * if both are not undef, and are different, bailout. 3413 // * else, only one is undef, then pick the non-undef one. 3414 3415 // The shift amount must be equal. 3416 if (*C0 != *C1) 3417 return nullptr; 3418 const APInt &MaskedBits = *C0; 3419 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3420 3421 ICmpInst::Predicate DstPred; 3422 switch (SrcPred) { 3423 case ICmpInst::Predicate::ICMP_EQ: 3424 // ((%x << MaskedBits) a>> MaskedBits) == %x 3425 // => 3426 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3427 DstPred = ICmpInst::Predicate::ICMP_ULT; 3428 break; 3429 case ICmpInst::Predicate::ICMP_NE: 3430 // ((%x << MaskedBits) a>> MaskedBits) != %x 3431 // => 3432 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3433 DstPred = ICmpInst::Predicate::ICMP_UGE; 3434 break; 3435 // FIXME: are more folds possible? 3436 default: 3437 return nullptr; 3438 } 3439 3440 auto *XType = X->getType(); 3441 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3442 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3443 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3444 3445 // KeptBits = bitwidth(%x) - MaskedBits 3446 const APInt KeptBits = BitWidth - MaskedBits; 3447 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3448 // ICmpCst = (1 << KeptBits) 3449 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3450 assert(ICmpCst.isPowerOf2()); 3451 // AddCst = (1 << (KeptBits-1)) 3452 const APInt AddCst = ICmpCst.lshr(1); 3453 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3454 3455 // T0 = add %x, AddCst 3456 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3457 // T1 = T0 DstPred ICmpCst 3458 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3459 3460 return T1; 3461 } 3462 3463 // Given pattern: 3464 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3465 // we should move shifts to the same hand of 'and', i.e. rewrite as 3466 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3467 // We are only interested in opposite logical shifts here. 3468 // One of the shifts can be truncated. 3469 // If we can, we want to end up creating 'lshr' shift. 3470 static Value * 3471 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3472 InstCombiner::BuilderTy &Builder) { 3473 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3474 !I.getOperand(0)->hasOneUse()) 3475 return nullptr; 3476 3477 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3478 3479 // Look for an 'and' of two logical shifts, one of which may be truncated. 3480 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3481 Instruction *XShift, *MaybeTruncation, *YShift; 3482 if (!match( 3483 I.getOperand(0), 3484 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3485 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3486 m_AnyLogicalShift, m_Instruction(YShift))), 3487 m_Instruction(MaybeTruncation))))) 3488 return nullptr; 3489 3490 // We potentially looked past 'trunc', but only when matching YShift, 3491 // therefore YShift must have the widest type. 3492 Instruction *WidestShift = YShift; 3493 // Therefore XShift must have the shallowest type. 3494 // Or they both have identical types if there was no truncation. 3495 Instruction *NarrowestShift = XShift; 3496 3497 Type *WidestTy = WidestShift->getType(); 3498 Type *NarrowestTy = NarrowestShift->getType(); 3499 assert(NarrowestTy == I.getOperand(0)->getType() && 3500 "We did not look past any shifts while matching XShift though."); 3501 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3502 3503 // If YShift is a 'lshr', swap the shifts around. 3504 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3505 std::swap(XShift, YShift); 3506 3507 // The shifts must be in opposite directions. 3508 auto XShiftOpcode = XShift->getOpcode(); 3509 if (XShiftOpcode == YShift->getOpcode()) 3510 return nullptr; // Do not care about same-direction shifts here. 3511 3512 Value *X, *XShAmt, *Y, *YShAmt; 3513 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3514 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3515 3516 // If one of the values being shifted is a constant, then we will end with 3517 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3518 // however, we will need to ensure that we won't increase instruction count. 3519 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3520 // At least one of the hands of the 'and' should be one-use shift. 3521 if (!match(I.getOperand(0), 3522 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3523 return nullptr; 3524 if (HadTrunc) { 3525 // Due to the 'trunc', we will need to widen X. For that either the old 3526 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3527 if (!MaybeTruncation->hasOneUse() && 3528 !NarrowestShift->getOperand(1)->hasOneUse()) 3529 return nullptr; 3530 } 3531 } 3532 3533 // We have two shift amounts from two different shifts. The types of those 3534 // shift amounts may not match. If that's the case let's bailout now. 3535 if (XShAmt->getType() != YShAmt->getType()) 3536 return nullptr; 3537 3538 // As input, we have the following pattern: 3539 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3540 // We want to rewrite that as: 3541 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3542 // While we know that originally (Q+K) would not overflow 3543 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3544 // shift amounts. so it may now overflow in smaller bitwidth. 3545 // To ensure that does not happen, we need to ensure that the total maximal 3546 // shift amount is still representable in that smaller bit width. 3547 unsigned MaximalPossibleTotalShiftAmount = 3548 (WidestTy->getScalarSizeInBits() - 1) + 3549 (NarrowestTy->getScalarSizeInBits() - 1); 3550 APInt MaximalRepresentableShiftAmount = 3551 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); 3552 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3553 return nullptr; 3554 3555 // Can we fold (XShAmt+YShAmt) ? 3556 auto *NewShAmt = dyn_cast_or_null<Constant>( 3557 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3558 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3559 if (!NewShAmt) 3560 return nullptr; 3561 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3562 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3563 3564 // Is the new shift amount smaller than the bit width? 3565 // FIXME: could also rely on ConstantRange. 3566 if (!match(NewShAmt, 3567 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3568 APInt(WidestBitWidth, WidestBitWidth)))) 3569 return nullptr; 3570 3571 // An extra legality check is needed if we had trunc-of-lshr. 3572 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3573 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3574 WidestShift]() { 3575 // It isn't obvious whether it's worth it to analyze non-constants here. 3576 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3577 // If *any* of these preconditions matches we can perform the fold. 3578 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3579 ? NewShAmt->getSplatValue() 3580 : NewShAmt; 3581 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3582 if (NewShAmtSplat && 3583 (NewShAmtSplat->isNullValue() || 3584 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3585 return true; 3586 // We consider *min* leading zeros so a single outlier 3587 // blocks the transform as opposed to allowing it. 3588 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3589 KnownBits Known = computeKnownBits(C, SQ.DL); 3590 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3591 // If the value being shifted has at most lowest bit set we can fold. 3592 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3593 if (MaxActiveBits <= 1) 3594 return true; 3595 // Precondition: NewShAmt u<= countLeadingZeros(C) 3596 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3597 return true; 3598 } 3599 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3600 KnownBits Known = computeKnownBits(C, SQ.DL); 3601 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3602 // If the value being shifted has at most lowest bit set we can fold. 3603 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3604 if (MaxActiveBits <= 1) 3605 return true; 3606 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3607 if (NewShAmtSplat) { 3608 APInt AdjNewShAmt = 3609 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3610 if (AdjNewShAmt.ule(MinLeadZero)) 3611 return true; 3612 } 3613 } 3614 return false; // Can't tell if it's ok. 3615 }; 3616 if (!CanFold()) 3617 return nullptr; 3618 } 3619 3620 // All good, we can do this fold. 3621 X = Builder.CreateZExt(X, WidestTy); 3622 Y = Builder.CreateZExt(Y, WidestTy); 3623 // The shift is the same that was for X. 3624 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3625 ? Builder.CreateLShr(X, NewShAmt) 3626 : Builder.CreateShl(X, NewShAmt); 3627 Value *T1 = Builder.CreateAnd(T0, Y); 3628 return Builder.CreateICmp(I.getPredicate(), T1, 3629 Constant::getNullValue(WidestTy)); 3630 } 3631 3632 /// Fold 3633 /// (-1 u/ x) u< y 3634 /// ((x * y) u/ x) != y 3635 /// to 3636 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit 3637 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3638 /// will mean that we are looking for the opposite answer. 3639 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { 3640 ICmpInst::Predicate Pred; 3641 Value *X, *Y; 3642 Instruction *Mul; 3643 bool NeedNegation; 3644 // Look for: (-1 u/ x) u</u>= y 3645 if (!I.isEquality() && 3646 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3647 m_Value(Y)))) { 3648 Mul = nullptr; 3649 3650 // Are we checking that overflow does not happen, or does happen? 3651 switch (Pred) { 3652 case ICmpInst::Predicate::ICMP_ULT: 3653 NeedNegation = false; 3654 break; // OK 3655 case ICmpInst::Predicate::ICMP_UGE: 3656 NeedNegation = true; 3657 break; // OK 3658 default: 3659 return nullptr; // Wrong predicate. 3660 } 3661 } else // Look for: ((x * y) u/ x) !=/== y 3662 if (I.isEquality() && 3663 match(&I, m_c_ICmp(Pred, m_Value(Y), 3664 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3665 m_Value(X)), 3666 m_Instruction(Mul)), 3667 m_Deferred(X)))))) { 3668 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3669 } else 3670 return nullptr; 3671 3672 BuilderTy::InsertPointGuard Guard(Builder); 3673 // If the pattern included (x * y), we'll want to insert new instructions 3674 // right before that original multiplication so that we can replace it. 3675 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3676 if (MulHadOtherUses) 3677 Builder.SetInsertPoint(Mul); 3678 3679 Function *F = Intrinsic::getDeclaration( 3680 I.getModule(), Intrinsic::umul_with_overflow, X->getType()); 3681 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); 3682 3683 // If the multiplication was used elsewhere, to ensure that we don't leave 3684 // "duplicate" instructions, replace uses of that original multiplication 3685 // with the multiplication result from the with.overflow intrinsic. 3686 if (MulHadOtherUses) 3687 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); 3688 3689 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); 3690 if (NeedNegation) // This technically increases instruction count. 3691 Res = Builder.CreateNot(Res, "umul.not.ov"); 3692 3693 // If we replaced the mul, erase it. Do this after all uses of Builder, 3694 // as the mul is used as insertion point. 3695 if (MulHadOtherUses) 3696 eraseInstFromFunction(*Mul); 3697 3698 return Res; 3699 } 3700 3701 static Instruction *foldICmpXNegX(ICmpInst &I) { 3702 CmpInst::Predicate Pred; 3703 Value *X; 3704 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3705 return nullptr; 3706 3707 if (ICmpInst::isSigned(Pred)) 3708 Pred = ICmpInst::getSwappedPredicate(Pred); 3709 else if (ICmpInst::isUnsigned(Pred)) 3710 Pred = ICmpInst::getSignedPredicate(Pred); 3711 // else for equality-comparisons just keep the predicate. 3712 3713 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3714 Constant::getNullValue(X->getType()), I.getName()); 3715 } 3716 3717 /// Try to fold icmp (binop), X or icmp X, (binop). 3718 /// TODO: A large part of this logic is duplicated in InstSimplify's 3719 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3720 /// duplication. 3721 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3722 const SimplifyQuery &SQ) { 3723 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3724 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3725 3726 // Special logic for binary operators. 3727 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3728 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3729 if (!BO0 && !BO1) 3730 return nullptr; 3731 3732 if (Instruction *NewICmp = foldICmpXNegX(I)) 3733 return NewICmp; 3734 3735 const CmpInst::Predicate Pred = I.getPredicate(); 3736 Value *X; 3737 3738 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3739 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3740 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3741 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3742 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3743 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3744 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3745 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3746 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3747 3748 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3749 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3750 NoOp0WrapProblem = 3751 ICmpInst::isEquality(Pred) || 3752 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3753 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3754 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3755 NoOp1WrapProblem = 3756 ICmpInst::isEquality(Pred) || 3757 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3758 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3759 3760 // Analyze the case when either Op0 or Op1 is an add instruction. 3761 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3762 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3763 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3764 A = BO0->getOperand(0); 3765 B = BO0->getOperand(1); 3766 } 3767 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3768 C = BO1->getOperand(0); 3769 D = BO1->getOperand(1); 3770 } 3771 3772 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3773 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3774 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3775 return new ICmpInst(Pred, A == Op1 ? B : A, 3776 Constant::getNullValue(Op1->getType())); 3777 3778 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3779 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3780 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3781 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3782 C == Op0 ? D : C); 3783 3784 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3785 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3786 NoOp1WrapProblem) { 3787 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3788 Value *Y, *Z; 3789 if (A == C) { 3790 // C + B == C + D -> B == D 3791 Y = B; 3792 Z = D; 3793 } else if (A == D) { 3794 // D + B == C + D -> B == C 3795 Y = B; 3796 Z = C; 3797 } else if (B == C) { 3798 // A + C == C + D -> A == D 3799 Y = A; 3800 Z = D; 3801 } else { 3802 assert(B == D); 3803 // A + D == C + D -> A == C 3804 Y = A; 3805 Z = C; 3806 } 3807 return new ICmpInst(Pred, Y, Z); 3808 } 3809 3810 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 3811 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3812 match(B, m_AllOnes())) 3813 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3814 3815 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 3816 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3817 match(B, m_AllOnes())) 3818 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3819 3820 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 3821 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3822 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3823 3824 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 3825 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3826 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3827 3828 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 3829 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3830 match(D, m_AllOnes())) 3831 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3832 3833 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 3834 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3835 match(D, m_AllOnes())) 3836 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3837 3838 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 3839 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3840 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3841 3842 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 3843 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3844 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3845 3846 // TODO: The subtraction-related identities shown below also hold, but 3847 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3848 // wouldn't happen even if they were implemented. 3849 // 3850 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 3851 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 3852 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 3853 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 3854 3855 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 3856 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3857 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3858 3859 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 3860 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3861 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3862 3863 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 3864 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3865 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3866 3867 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 3868 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3869 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3870 3871 // if C1 has greater magnitude than C2: 3872 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 3873 // s.t. C3 = C1 - C2 3874 // 3875 // if C2 has greater magnitude than C1: 3876 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 3877 // s.t. C3 = C2 - C1 3878 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3879 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3880 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3881 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3882 const APInt &AP1 = C1->getValue(); 3883 const APInt &AP2 = C2->getValue(); 3884 if (AP1.isNegative() == AP2.isNegative()) { 3885 APInt AP1Abs = C1->getValue().abs(); 3886 APInt AP2Abs = C2->getValue().abs(); 3887 if (AP1Abs.uge(AP2Abs)) { 3888 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3889 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3890 return new ICmpInst(Pred, NewAdd, C); 3891 } else { 3892 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3893 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3894 return new ICmpInst(Pred, A, NewAdd); 3895 } 3896 } 3897 } 3898 3899 // Analyze the case when either Op0 or Op1 is a sub instruction. 3900 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3901 A = nullptr; 3902 B = nullptr; 3903 C = nullptr; 3904 D = nullptr; 3905 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3906 A = BO0->getOperand(0); 3907 B = BO0->getOperand(1); 3908 } 3909 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3910 C = BO1->getOperand(0); 3911 D = BO1->getOperand(1); 3912 } 3913 3914 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 3915 if (A == Op1 && NoOp0WrapProblem) 3916 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3917 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 3918 if (C == Op0 && NoOp1WrapProblem) 3919 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3920 3921 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 3922 // (A - B) u>/u<= A --> B u>/u<= A 3923 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3924 return new ICmpInst(Pred, B, A); 3925 // C u</u>= (C - D) --> C u</u>= D 3926 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3927 return new ICmpInst(Pred, C, D); 3928 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 3929 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 3930 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3931 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 3932 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 3933 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 3934 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3935 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 3936 3937 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 3938 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 3939 return new ICmpInst(Pred, A, C); 3940 3941 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 3942 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 3943 return new ICmpInst(Pred, D, B); 3944 3945 // icmp (0-X) < cst --> x > -cst 3946 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3947 Value *X; 3948 if (match(BO0, m_Neg(m_Value(X)))) 3949 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3950 if (RHSC->isNotMinSignedValue()) 3951 return new ICmpInst(I.getSwappedPredicate(), X, 3952 ConstantExpr::getNeg(RHSC)); 3953 } 3954 3955 { 3956 // Try to remove shared constant multiplier from equality comparison: 3957 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 3958 Value *X, *Y; 3959 const APInt *C; 3960 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 3961 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 3962 if (!C->countTrailingZeros() || 3963 (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 3964 (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 3965 return new ICmpInst(Pred, X, Y); 3966 } 3967 3968 BinaryOperator *SRem = nullptr; 3969 // icmp (srem X, Y), Y 3970 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3971 SRem = BO0; 3972 // icmp Y, (srem X, Y) 3973 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3974 Op0 == BO1->getOperand(1)) 3975 SRem = BO1; 3976 if (SRem) { 3977 // We don't check hasOneUse to avoid increasing register pressure because 3978 // the value we use is the same value this instruction was already using. 3979 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3980 default: 3981 break; 3982 case ICmpInst::ICMP_EQ: 3983 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3984 case ICmpInst::ICMP_NE: 3985 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3986 case ICmpInst::ICMP_SGT: 3987 case ICmpInst::ICMP_SGE: 3988 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3989 Constant::getAllOnesValue(SRem->getType())); 3990 case ICmpInst::ICMP_SLT: 3991 case ICmpInst::ICMP_SLE: 3992 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3993 Constant::getNullValue(SRem->getType())); 3994 } 3995 } 3996 3997 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3998 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3999 switch (BO0->getOpcode()) { 4000 default: 4001 break; 4002 case Instruction::Add: 4003 case Instruction::Sub: 4004 case Instruction::Xor: { 4005 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4006 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4007 4008 const APInt *C; 4009 if (match(BO0->getOperand(1), m_APInt(C))) { 4010 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4011 if (C->isSignMask()) { 4012 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4013 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4014 } 4015 4016 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4017 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4018 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4019 NewPred = I.getSwappedPredicate(NewPred); 4020 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4021 } 4022 } 4023 break; 4024 } 4025 case Instruction::Mul: { 4026 if (!I.isEquality()) 4027 break; 4028 4029 const APInt *C; 4030 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 4031 !C->isOneValue()) { 4032 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4033 // Mask = -1 >> count-trailing-zeros(C). 4034 if (unsigned TZs = C->countTrailingZeros()) { 4035 Constant *Mask = ConstantInt::get( 4036 BO0->getType(), 4037 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4038 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4039 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4040 return new ICmpInst(Pred, And1, And2); 4041 } 4042 } 4043 break; 4044 } 4045 case Instruction::UDiv: 4046 case Instruction::LShr: 4047 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4048 break; 4049 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4050 4051 case Instruction::SDiv: 4052 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4053 break; 4054 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4055 4056 case Instruction::AShr: 4057 if (!BO0->isExact() || !BO1->isExact()) 4058 break; 4059 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4060 4061 case Instruction::Shl: { 4062 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4063 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4064 if (!NUW && !NSW) 4065 break; 4066 if (!NSW && I.isSigned()) 4067 break; 4068 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4069 } 4070 } 4071 } 4072 4073 if (BO0) { 4074 // Transform A & (L - 1) `ult` L --> L != 0 4075 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4076 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4077 4078 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4079 auto *Zero = Constant::getNullValue(BO0->getType()); 4080 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4081 } 4082 } 4083 4084 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) 4085 return replaceInstUsesWith(I, V); 4086 4087 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4088 return replaceInstUsesWith(I, V); 4089 4090 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4091 return replaceInstUsesWith(I, V); 4092 4093 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4094 return replaceInstUsesWith(I, V); 4095 4096 return nullptr; 4097 } 4098 4099 /// Fold icmp Pred min|max(X, Y), X. 4100 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4101 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4102 Value *Op0 = Cmp.getOperand(0); 4103 Value *X = Cmp.getOperand(1); 4104 4105 // Canonicalize minimum or maximum operand to LHS of the icmp. 4106 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4107 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4108 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4109 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4110 std::swap(Op0, X); 4111 Pred = Cmp.getSwappedPredicate(); 4112 } 4113 4114 Value *Y; 4115 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4116 // smin(X, Y) == X --> X s<= Y 4117 // smin(X, Y) s>= X --> X s<= Y 4118 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4119 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4120 4121 // smin(X, Y) != X --> X s> Y 4122 // smin(X, Y) s< X --> X s> Y 4123 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4124 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4125 4126 // These cases should be handled in InstSimplify: 4127 // smin(X, Y) s<= X --> true 4128 // smin(X, Y) s> X --> false 4129 return nullptr; 4130 } 4131 4132 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4133 // smax(X, Y) == X --> X s>= Y 4134 // smax(X, Y) s<= X --> X s>= Y 4135 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4136 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4137 4138 // smax(X, Y) != X --> X s< Y 4139 // smax(X, Y) s> X --> X s< Y 4140 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4141 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4142 4143 // These cases should be handled in InstSimplify: 4144 // smax(X, Y) s>= X --> true 4145 // smax(X, Y) s< X --> false 4146 return nullptr; 4147 } 4148 4149 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4150 // umin(X, Y) == X --> X u<= Y 4151 // umin(X, Y) u>= X --> X u<= Y 4152 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4153 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4154 4155 // umin(X, Y) != X --> X u> Y 4156 // umin(X, Y) u< X --> X u> Y 4157 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4158 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4159 4160 // These cases should be handled in InstSimplify: 4161 // umin(X, Y) u<= X --> true 4162 // umin(X, Y) u> X --> false 4163 return nullptr; 4164 } 4165 4166 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4167 // umax(X, Y) == X --> X u>= Y 4168 // umax(X, Y) u<= X --> X u>= Y 4169 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4170 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4171 4172 // umax(X, Y) != X --> X u< Y 4173 // umax(X, Y) u> X --> X u< Y 4174 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4175 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4176 4177 // These cases should be handled in InstSimplify: 4178 // umax(X, Y) u>= X --> true 4179 // umax(X, Y) u< X --> false 4180 return nullptr; 4181 } 4182 4183 return nullptr; 4184 } 4185 4186 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4187 if (!I.isEquality()) 4188 return nullptr; 4189 4190 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4191 const CmpInst::Predicate Pred = I.getPredicate(); 4192 Value *A, *B, *C, *D; 4193 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4194 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4195 Value *OtherVal = A == Op1 ? B : A; 4196 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4197 } 4198 4199 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4200 // A^c1 == C^c2 --> A == C^(c1^c2) 4201 ConstantInt *C1, *C2; 4202 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4203 Op1->hasOneUse()) { 4204 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4205 Value *Xor = Builder.CreateXor(C, NC); 4206 return new ICmpInst(Pred, A, Xor); 4207 } 4208 4209 // A^B == A^D -> B == D 4210 if (A == C) 4211 return new ICmpInst(Pred, B, D); 4212 if (A == D) 4213 return new ICmpInst(Pred, B, C); 4214 if (B == C) 4215 return new ICmpInst(Pred, A, D); 4216 if (B == D) 4217 return new ICmpInst(Pred, A, C); 4218 } 4219 } 4220 4221 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4222 // A == (A^B) -> B == 0 4223 Value *OtherVal = A == Op0 ? B : A; 4224 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4225 } 4226 4227 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4228 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4229 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4230 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4231 4232 if (A == C) { 4233 X = B; 4234 Y = D; 4235 Z = A; 4236 } else if (A == D) { 4237 X = B; 4238 Y = C; 4239 Z = A; 4240 } else if (B == C) { 4241 X = A; 4242 Y = D; 4243 Z = B; 4244 } else if (B == D) { 4245 X = A; 4246 Y = C; 4247 Z = B; 4248 } 4249 4250 if (X) { // Build (X^Y) & Z 4251 Op1 = Builder.CreateXor(X, Y); 4252 Op1 = Builder.CreateAnd(Op1, Z); 4253 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4254 } 4255 } 4256 4257 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4258 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4259 ConstantInt *Cst1; 4260 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4261 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4262 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4263 match(Op1, m_ZExt(m_Value(A))))) { 4264 APInt Pow2 = Cst1->getValue() + 1; 4265 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4266 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4267 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4268 } 4269 4270 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4271 // For lshr and ashr pairs. 4272 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4273 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4274 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4275 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4276 unsigned TypeBits = Cst1->getBitWidth(); 4277 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4278 if (ShAmt < TypeBits && ShAmt != 0) { 4279 ICmpInst::Predicate NewPred = 4280 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4281 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4282 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4283 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4284 } 4285 } 4286 4287 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4288 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4289 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4290 unsigned TypeBits = Cst1->getBitWidth(); 4291 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4292 if (ShAmt < TypeBits && ShAmt != 0) { 4293 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4294 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4295 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4296 I.getName() + ".mask"); 4297 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4298 } 4299 } 4300 4301 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4302 // "icmp (and X, mask), cst" 4303 uint64_t ShAmt = 0; 4304 if (Op0->hasOneUse() && 4305 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4306 match(Op1, m_ConstantInt(Cst1)) && 4307 // Only do this when A has multiple uses. This is most important to do 4308 // when it exposes other optimizations. 4309 !A->hasOneUse()) { 4310 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4311 4312 if (ShAmt < ASize) { 4313 APInt MaskV = 4314 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4315 MaskV <<= ShAmt; 4316 4317 APInt CmpV = Cst1->getValue().zext(ASize); 4318 CmpV <<= ShAmt; 4319 4320 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4321 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4322 } 4323 } 4324 4325 // If both operands are byte-swapped or bit-reversed, just compare the 4326 // original values. 4327 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 4328 // and handle more intrinsics. 4329 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 4330 (match(Op0, m_BitReverse(m_Value(A))) && 4331 match(Op1, m_BitReverse(m_Value(B))))) 4332 return new ICmpInst(Pred, A, B); 4333 4334 // Canonicalize checking for a power-of-2-or-zero value: 4335 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4336 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4337 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4338 m_Deferred(A)))) || 4339 !match(Op1, m_ZeroInt())) 4340 A = nullptr; 4341 4342 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4343 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4344 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4345 A = Op1; 4346 else if (match(Op1, 4347 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4348 A = Op0; 4349 4350 if (A) { 4351 Type *Ty = A->getType(); 4352 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4353 return Pred == ICmpInst::ICMP_EQ 4354 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4355 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4356 } 4357 4358 return nullptr; 4359 } 4360 4361 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4362 InstCombiner::BuilderTy &Builder) { 4363 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4364 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4365 Value *X; 4366 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4367 return nullptr; 4368 4369 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4370 bool IsSignedCmp = ICmp.isSigned(); 4371 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4372 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4373 // and the other is a zext), then we can't handle this. 4374 // TODO: This is too strict. We can handle some predicates (equality?). 4375 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4376 return nullptr; 4377 4378 // Not an extension from the same type? 4379 Value *Y = CastOp1->getOperand(0); 4380 Type *XTy = X->getType(), *YTy = Y->getType(); 4381 if (XTy != YTy) { 4382 // One of the casts must have one use because we are creating a new cast. 4383 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4384 return nullptr; 4385 // Extend the narrower operand to the type of the wider operand. 4386 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4387 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4388 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4389 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4390 else 4391 return nullptr; 4392 } 4393 4394 // (zext X) == (zext Y) --> X == Y 4395 // (sext X) == (sext Y) --> X == Y 4396 if (ICmp.isEquality()) 4397 return new ICmpInst(ICmp.getPredicate(), X, Y); 4398 4399 // A signed comparison of sign extended values simplifies into a 4400 // signed comparison. 4401 if (IsSignedCmp && IsSignedExt) 4402 return new ICmpInst(ICmp.getPredicate(), X, Y); 4403 4404 // The other three cases all fold into an unsigned comparison. 4405 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4406 } 4407 4408 // Below here, we are only folding a compare with constant. 4409 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4410 if (!C) 4411 return nullptr; 4412 4413 // Compute the constant that would happen if we truncated to SrcTy then 4414 // re-extended to DestTy. 4415 Type *SrcTy = CastOp0->getSrcTy(); 4416 Type *DestTy = CastOp0->getDestTy(); 4417 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4418 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4419 4420 // If the re-extended constant didn't change... 4421 if (Res2 == C) { 4422 if (ICmp.isEquality()) 4423 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4424 4425 // A signed comparison of sign extended values simplifies into a 4426 // signed comparison. 4427 if (IsSignedExt && IsSignedCmp) 4428 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4429 4430 // The other three cases all fold into an unsigned comparison. 4431 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4432 } 4433 4434 // The re-extended constant changed, partly changed (in the case of a vector), 4435 // or could not be determined to be equal (in the case of a constant 4436 // expression), so the constant cannot be represented in the shorter type. 4437 // All the cases that fold to true or false will have already been handled 4438 // by SimplifyICmpInst, so only deal with the tricky case. 4439 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4440 return nullptr; 4441 4442 // Is source op positive? 4443 // icmp ult (sext X), C --> icmp sgt X, -1 4444 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4445 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4446 4447 // Is source op negative? 4448 // icmp ugt (sext X), C --> icmp slt X, 0 4449 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4450 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4451 } 4452 4453 /// Handle icmp (cast x), (cast or constant). 4454 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4455 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4456 if (!CastOp0) 4457 return nullptr; 4458 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4459 return nullptr; 4460 4461 Value *Op0Src = CastOp0->getOperand(0); 4462 Type *SrcTy = CastOp0->getSrcTy(); 4463 Type *DestTy = CastOp0->getDestTy(); 4464 4465 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4466 // integer type is the same size as the pointer type. 4467 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4468 if (isa<VectorType>(SrcTy)) { 4469 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4470 DestTy = cast<VectorType>(DestTy)->getElementType(); 4471 } 4472 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4473 }; 4474 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4475 CompatibleSizes(SrcTy, DestTy)) { 4476 Value *NewOp1 = nullptr; 4477 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4478 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4479 if (PtrSrc->getType()->getPointerAddressSpace() == 4480 Op0Src->getType()->getPointerAddressSpace()) { 4481 NewOp1 = PtrToIntOp1->getOperand(0); 4482 // If the pointer types don't match, insert a bitcast. 4483 if (Op0Src->getType() != NewOp1->getType()) 4484 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4485 } 4486 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4487 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4488 } 4489 4490 if (NewOp1) 4491 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4492 } 4493 4494 return foldICmpWithZextOrSext(ICmp, Builder); 4495 } 4496 4497 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4498 switch (BinaryOp) { 4499 default: 4500 llvm_unreachable("Unsupported binary op"); 4501 case Instruction::Add: 4502 case Instruction::Sub: 4503 return match(RHS, m_Zero()); 4504 case Instruction::Mul: 4505 return match(RHS, m_One()); 4506 } 4507 } 4508 4509 OverflowResult 4510 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4511 bool IsSigned, Value *LHS, Value *RHS, 4512 Instruction *CxtI) const { 4513 switch (BinaryOp) { 4514 default: 4515 llvm_unreachable("Unsupported binary op"); 4516 case Instruction::Add: 4517 if (IsSigned) 4518 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4519 else 4520 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4521 case Instruction::Sub: 4522 if (IsSigned) 4523 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4524 else 4525 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4526 case Instruction::Mul: 4527 if (IsSigned) 4528 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4529 else 4530 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4531 } 4532 } 4533 4534 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4535 bool IsSigned, Value *LHS, 4536 Value *RHS, Instruction &OrigI, 4537 Value *&Result, 4538 Constant *&Overflow) { 4539 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4540 std::swap(LHS, RHS); 4541 4542 // If the overflow check was an add followed by a compare, the insertion point 4543 // may be pointing to the compare. We want to insert the new instructions 4544 // before the add in case there are uses of the add between the add and the 4545 // compare. 4546 Builder.SetInsertPoint(&OrigI); 4547 4548 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4549 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4550 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4551 4552 if (isNeutralValue(BinaryOp, RHS)) { 4553 Result = LHS; 4554 Overflow = ConstantInt::getFalse(OverflowTy); 4555 return true; 4556 } 4557 4558 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4559 case OverflowResult::MayOverflow: 4560 return false; 4561 case OverflowResult::AlwaysOverflowsLow: 4562 case OverflowResult::AlwaysOverflowsHigh: 4563 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4564 Result->takeName(&OrigI); 4565 Overflow = ConstantInt::getTrue(OverflowTy); 4566 return true; 4567 case OverflowResult::NeverOverflows: 4568 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4569 Result->takeName(&OrigI); 4570 Overflow = ConstantInt::getFalse(OverflowTy); 4571 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4572 if (IsSigned) 4573 Inst->setHasNoSignedWrap(); 4574 else 4575 Inst->setHasNoUnsignedWrap(); 4576 } 4577 return true; 4578 } 4579 4580 llvm_unreachable("Unexpected overflow result"); 4581 } 4582 4583 /// Recognize and process idiom involving test for multiplication 4584 /// overflow. 4585 /// 4586 /// The caller has matched a pattern of the form: 4587 /// I = cmp u (mul(zext A, zext B), V 4588 /// The function checks if this is a test for overflow and if so replaces 4589 /// multiplication with call to 'mul.with.overflow' intrinsic. 4590 /// 4591 /// \param I Compare instruction. 4592 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4593 /// the compare instruction. Must be of integer type. 4594 /// \param OtherVal The other argument of compare instruction. 4595 /// \returns Instruction which must replace the compare instruction, NULL if no 4596 /// replacement required. 4597 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4598 Value *OtherVal, 4599 InstCombinerImpl &IC) { 4600 // Don't bother doing this transformation for pointers, don't do it for 4601 // vectors. 4602 if (!isa<IntegerType>(MulVal->getType())) 4603 return nullptr; 4604 4605 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4606 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4607 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4608 if (!MulInstr) 4609 return nullptr; 4610 assert(MulInstr->getOpcode() == Instruction::Mul); 4611 4612 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4613 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4614 assert(LHS->getOpcode() == Instruction::ZExt); 4615 assert(RHS->getOpcode() == Instruction::ZExt); 4616 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4617 4618 // Calculate type and width of the result produced by mul.with.overflow. 4619 Type *TyA = A->getType(), *TyB = B->getType(); 4620 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4621 WidthB = TyB->getPrimitiveSizeInBits(); 4622 unsigned MulWidth; 4623 Type *MulType; 4624 if (WidthB > WidthA) { 4625 MulWidth = WidthB; 4626 MulType = TyB; 4627 } else { 4628 MulWidth = WidthA; 4629 MulType = TyA; 4630 } 4631 4632 // In order to replace the original mul with a narrower mul.with.overflow, 4633 // all uses must ignore upper bits of the product. The number of used low 4634 // bits must be not greater than the width of mul.with.overflow. 4635 if (MulVal->hasNUsesOrMore(2)) 4636 for (User *U : MulVal->users()) { 4637 if (U == &I) 4638 continue; 4639 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4640 // Check if truncation ignores bits above MulWidth. 4641 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4642 if (TruncWidth > MulWidth) 4643 return nullptr; 4644 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4645 // Check if AND ignores bits above MulWidth. 4646 if (BO->getOpcode() != Instruction::And) 4647 return nullptr; 4648 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4649 const APInt &CVal = CI->getValue(); 4650 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4651 return nullptr; 4652 } else { 4653 // In this case we could have the operand of the binary operation 4654 // being defined in another block, and performing the replacement 4655 // could break the dominance relation. 4656 return nullptr; 4657 } 4658 } else { 4659 // Other uses prohibit this transformation. 4660 return nullptr; 4661 } 4662 } 4663 4664 // Recognize patterns 4665 switch (I.getPredicate()) { 4666 case ICmpInst::ICMP_EQ: 4667 case ICmpInst::ICMP_NE: 4668 // Recognize pattern: 4669 // mulval = mul(zext A, zext B) 4670 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4671 ConstantInt *CI; 4672 Value *ValToMask; 4673 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4674 if (ValToMask != MulVal) 4675 return nullptr; 4676 const APInt &CVal = CI->getValue() + 1; 4677 if (CVal.isPowerOf2()) { 4678 unsigned MaskWidth = CVal.logBase2(); 4679 if (MaskWidth == MulWidth) 4680 break; // Recognized 4681 } 4682 } 4683 return nullptr; 4684 4685 case ICmpInst::ICMP_UGT: 4686 // Recognize pattern: 4687 // mulval = mul(zext A, zext B) 4688 // cmp ugt mulval, max 4689 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4690 APInt MaxVal = APInt::getMaxValue(MulWidth); 4691 MaxVal = MaxVal.zext(CI->getBitWidth()); 4692 if (MaxVal.eq(CI->getValue())) 4693 break; // Recognized 4694 } 4695 return nullptr; 4696 4697 case ICmpInst::ICMP_UGE: 4698 // Recognize pattern: 4699 // mulval = mul(zext A, zext B) 4700 // cmp uge mulval, max+1 4701 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4702 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4703 if (MaxVal.eq(CI->getValue())) 4704 break; // Recognized 4705 } 4706 return nullptr; 4707 4708 case ICmpInst::ICMP_ULE: 4709 // Recognize pattern: 4710 // mulval = mul(zext A, zext B) 4711 // cmp ule mulval, max 4712 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4713 APInt MaxVal = APInt::getMaxValue(MulWidth); 4714 MaxVal = MaxVal.zext(CI->getBitWidth()); 4715 if (MaxVal.eq(CI->getValue())) 4716 break; // Recognized 4717 } 4718 return nullptr; 4719 4720 case ICmpInst::ICMP_ULT: 4721 // Recognize pattern: 4722 // mulval = mul(zext A, zext B) 4723 // cmp ule mulval, max + 1 4724 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4725 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4726 if (MaxVal.eq(CI->getValue())) 4727 break; // Recognized 4728 } 4729 return nullptr; 4730 4731 default: 4732 return nullptr; 4733 } 4734 4735 InstCombiner::BuilderTy &Builder = IC.Builder; 4736 Builder.SetInsertPoint(MulInstr); 4737 4738 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4739 Value *MulA = A, *MulB = B; 4740 if (WidthA < MulWidth) 4741 MulA = Builder.CreateZExt(A, MulType); 4742 if (WidthB < MulWidth) 4743 MulB = Builder.CreateZExt(B, MulType); 4744 Function *F = Intrinsic::getDeclaration( 4745 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4746 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4747 IC.addToWorklist(MulInstr); 4748 4749 // If there are uses of mul result other than the comparison, we know that 4750 // they are truncation or binary AND. Change them to use result of 4751 // mul.with.overflow and adjust properly mask/size. 4752 if (MulVal->hasNUsesOrMore(2)) { 4753 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4754 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4755 User *U = *UI++; 4756 if (U == &I || U == OtherVal) 4757 continue; 4758 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4759 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4760 IC.replaceInstUsesWith(*TI, Mul); 4761 else 4762 TI->setOperand(0, Mul); 4763 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4764 assert(BO->getOpcode() == Instruction::And); 4765 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4766 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4767 APInt ShortMask = CI->getValue().trunc(MulWidth); 4768 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4769 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 4770 IC.replaceInstUsesWith(*BO, Zext); 4771 } else { 4772 llvm_unreachable("Unexpected Binary operation"); 4773 } 4774 IC.addToWorklist(cast<Instruction>(U)); 4775 } 4776 } 4777 if (isa<Instruction>(OtherVal)) 4778 IC.addToWorklist(cast<Instruction>(OtherVal)); 4779 4780 // The original icmp gets replaced with the overflow value, maybe inverted 4781 // depending on predicate. 4782 bool Inverse = false; 4783 switch (I.getPredicate()) { 4784 case ICmpInst::ICMP_NE: 4785 break; 4786 case ICmpInst::ICMP_EQ: 4787 Inverse = true; 4788 break; 4789 case ICmpInst::ICMP_UGT: 4790 case ICmpInst::ICMP_UGE: 4791 if (I.getOperand(0) == MulVal) 4792 break; 4793 Inverse = true; 4794 break; 4795 case ICmpInst::ICMP_ULT: 4796 case ICmpInst::ICMP_ULE: 4797 if (I.getOperand(1) == MulVal) 4798 break; 4799 Inverse = true; 4800 break; 4801 default: 4802 llvm_unreachable("Unexpected predicate"); 4803 } 4804 if (Inverse) { 4805 Value *Res = Builder.CreateExtractValue(Call, 1); 4806 return BinaryOperator::CreateNot(Res); 4807 } 4808 4809 return ExtractValueInst::Create(Call, 1); 4810 } 4811 4812 /// When performing a comparison against a constant, it is possible that not all 4813 /// the bits in the LHS are demanded. This helper method computes the mask that 4814 /// IS demanded. 4815 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4816 const APInt *RHS; 4817 if (!match(I.getOperand(1), m_APInt(RHS))) 4818 return APInt::getAllOnesValue(BitWidth); 4819 4820 // If this is a normal comparison, it demands all bits. If it is a sign bit 4821 // comparison, it only demands the sign bit. 4822 bool UnusedBit; 4823 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4824 return APInt::getSignMask(BitWidth); 4825 4826 switch (I.getPredicate()) { 4827 // For a UGT comparison, we don't care about any bits that 4828 // correspond to the trailing ones of the comparand. The value of these 4829 // bits doesn't impact the outcome of the comparison, because any value 4830 // greater than the RHS must differ in a bit higher than these due to carry. 4831 case ICmpInst::ICMP_UGT: 4832 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4833 4834 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4835 // Any value less than the RHS must differ in a higher bit because of carries. 4836 case ICmpInst::ICMP_ULT: 4837 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4838 4839 default: 4840 return APInt::getAllOnesValue(BitWidth); 4841 } 4842 } 4843 4844 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4845 /// should be swapped. 4846 /// The decision is based on how many times these two operands are reused 4847 /// as subtract operands and their positions in those instructions. 4848 /// The rationale is that several architectures use the same instruction for 4849 /// both subtract and cmp. Thus, it is better if the order of those operands 4850 /// match. 4851 /// \return true if Op0 and Op1 should be swapped. 4852 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4853 // Filter out pointer values as those cannot appear directly in subtract. 4854 // FIXME: we may want to go through inttoptrs or bitcasts. 4855 if (Op0->getType()->isPointerTy()) 4856 return false; 4857 // If a subtract already has the same operands as a compare, swapping would be 4858 // bad. If a subtract has the same operands as a compare but in reverse order, 4859 // then swapping is good. 4860 int GoodToSwap = 0; 4861 for (const User *U : Op0->users()) { 4862 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4863 GoodToSwap++; 4864 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4865 GoodToSwap--; 4866 } 4867 return GoodToSwap > 0; 4868 } 4869 4870 /// Check that one use is in the same block as the definition and all 4871 /// other uses are in blocks dominated by a given block. 4872 /// 4873 /// \param DI Definition 4874 /// \param UI Use 4875 /// \param DB Block that must dominate all uses of \p DI outside 4876 /// the parent block 4877 /// \return true when \p UI is the only use of \p DI in the parent block 4878 /// and all other uses of \p DI are in blocks dominated by \p DB. 4879 /// 4880 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 4881 const Instruction *UI, 4882 const BasicBlock *DB) const { 4883 assert(DI && UI && "Instruction not defined\n"); 4884 // Ignore incomplete definitions. 4885 if (!DI->getParent()) 4886 return false; 4887 // DI and UI must be in the same block. 4888 if (DI->getParent() != UI->getParent()) 4889 return false; 4890 // Protect from self-referencing blocks. 4891 if (DI->getParent() == DB) 4892 return false; 4893 for (const User *U : DI->users()) { 4894 auto *Usr = cast<Instruction>(U); 4895 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4896 return false; 4897 } 4898 return true; 4899 } 4900 4901 /// Return true when the instruction sequence within a block is select-cmp-br. 4902 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4903 const BasicBlock *BB = SI->getParent(); 4904 if (!BB) 4905 return false; 4906 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4907 if (!BI || BI->getNumSuccessors() != 2) 4908 return false; 4909 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4910 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4911 return false; 4912 return true; 4913 } 4914 4915 /// True when a select result is replaced by one of its operands 4916 /// in select-icmp sequence. This will eventually result in the elimination 4917 /// of the select. 4918 /// 4919 /// \param SI Select instruction 4920 /// \param Icmp Compare instruction 4921 /// \param SIOpd Operand that replaces the select 4922 /// 4923 /// Notes: 4924 /// - The replacement is global and requires dominator information 4925 /// - The caller is responsible for the actual replacement 4926 /// 4927 /// Example: 4928 /// 4929 /// entry: 4930 /// %4 = select i1 %3, %C* %0, %C* null 4931 /// %5 = icmp eq %C* %4, null 4932 /// br i1 %5, label %9, label %7 4933 /// ... 4934 /// ; <label>:7 ; preds = %entry 4935 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4936 /// ... 4937 /// 4938 /// can be transformed to 4939 /// 4940 /// %5 = icmp eq %C* %0, null 4941 /// %6 = select i1 %3, i1 %5, i1 true 4942 /// br i1 %6, label %9, label %7 4943 /// ... 4944 /// ; <label>:7 ; preds = %entry 4945 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4946 /// 4947 /// Similar when the first operand of the select is a constant or/and 4948 /// the compare is for not equal rather than equal. 4949 /// 4950 /// NOTE: The function is only called when the select and compare constants 4951 /// are equal, the optimization can work only for EQ predicates. This is not a 4952 /// major restriction since a NE compare should be 'normalized' to an equal 4953 /// compare, which usually happens in the combiner and test case 4954 /// select-cmp-br.ll checks for it. 4955 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 4956 const ICmpInst *Icmp, 4957 const unsigned SIOpd) { 4958 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4959 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4960 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4961 // The check for the single predecessor is not the best that can be 4962 // done. But it protects efficiently against cases like when SI's 4963 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4964 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4965 // replaced can be reached on either path. So the uniqueness check 4966 // guarantees that the path all uses of SI (outside SI's parent) are on 4967 // is disjoint from all other paths out of SI. But that information 4968 // is more expensive to compute, and the trade-off here is in favor 4969 // of compile-time. It should also be noticed that we check for a single 4970 // predecessor and not only uniqueness. This to handle the situation when 4971 // Succ and Succ1 points to the same basic block. 4972 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4973 NumSel++; 4974 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4975 return true; 4976 } 4977 } 4978 return false; 4979 } 4980 4981 /// Try to fold the comparison based on range information we can get by checking 4982 /// whether bits are known to be zero or one in the inputs. 4983 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 4984 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4985 Type *Ty = Op0->getType(); 4986 ICmpInst::Predicate Pred = I.getPredicate(); 4987 4988 // Get scalar or pointer size. 4989 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4990 ? Ty->getScalarSizeInBits() 4991 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 4992 4993 if (!BitWidth) 4994 return nullptr; 4995 4996 KnownBits Op0Known(BitWidth); 4997 KnownBits Op1Known(BitWidth); 4998 4999 if (SimplifyDemandedBits(&I, 0, 5000 getDemandedBitsLHSMask(I, BitWidth), 5001 Op0Known, 0)) 5002 return &I; 5003 5004 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 5005 Op1Known, 0)) 5006 return &I; 5007 5008 // Given the known and unknown bits, compute a range that the LHS could be 5009 // in. Compute the Min, Max and RHS values based on the known bits. For the 5010 // EQ and NE we use unsigned values. 5011 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5012 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5013 if (I.isSigned()) { 5014 Op0Min = Op0Known.getSignedMinValue(); 5015 Op0Max = Op0Known.getSignedMaxValue(); 5016 Op1Min = Op1Known.getSignedMinValue(); 5017 Op1Max = Op1Known.getSignedMaxValue(); 5018 } else { 5019 Op0Min = Op0Known.getMinValue(); 5020 Op0Max = Op0Known.getMaxValue(); 5021 Op1Min = Op1Known.getMinValue(); 5022 Op1Max = Op1Known.getMaxValue(); 5023 } 5024 5025 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5026 // out that the LHS or RHS is a constant. Constant fold this now, so that 5027 // code below can assume that Min != Max. 5028 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5029 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5030 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5031 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5032 5033 // Based on the range information we know about the LHS, see if we can 5034 // simplify this comparison. For example, (x&4) < 8 is always true. 5035 switch (Pred) { 5036 default: 5037 llvm_unreachable("Unknown icmp opcode!"); 5038 case ICmpInst::ICMP_EQ: 5039 case ICmpInst::ICMP_NE: { 5040 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 5041 return Pred == CmpInst::ICMP_EQ 5042 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 5043 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5044 } 5045 5046 // If all bits are known zero except for one, then we know at most one bit 5047 // is set. If the comparison is against zero, then this is a check to see if 5048 // *that* bit is set. 5049 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5050 if (Op1Known.isZero()) { 5051 // If the LHS is an AND with the same constant, look through it. 5052 Value *LHS = nullptr; 5053 const APInt *LHSC; 5054 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5055 *LHSC != Op0KnownZeroInverted) 5056 LHS = Op0; 5057 5058 Value *X; 5059 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5060 APInt ValToCheck = Op0KnownZeroInverted; 5061 Type *XTy = X->getType(); 5062 if (ValToCheck.isPowerOf2()) { 5063 // ((1 << X) & 8) == 0 -> X != 3 5064 // ((1 << X) & 8) != 0 -> X == 3 5065 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5066 auto NewPred = ICmpInst::getInversePredicate(Pred); 5067 return new ICmpInst(NewPred, X, CmpC); 5068 } else if ((++ValToCheck).isPowerOf2()) { 5069 // ((1 << X) & 7) == 0 -> X >= 3 5070 // ((1 << X) & 7) != 0 -> X < 3 5071 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5072 auto NewPred = 5073 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5074 return new ICmpInst(NewPred, X, CmpC); 5075 } 5076 } 5077 5078 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5079 const APInt *CI; 5080 if (Op0KnownZeroInverted.isOneValue() && 5081 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5082 // ((8 >>u X) & 1) == 0 -> X != 3 5083 // ((8 >>u X) & 1) != 0 -> X == 3 5084 unsigned CmpVal = CI->countTrailingZeros(); 5085 auto NewPred = ICmpInst::getInversePredicate(Pred); 5086 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5087 } 5088 } 5089 break; 5090 } 5091 case ICmpInst::ICMP_ULT: { 5092 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5093 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5094 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5095 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5096 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5097 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5098 5099 const APInt *CmpC; 5100 if (match(Op1, m_APInt(CmpC))) { 5101 // A <u C -> A == C-1 if min(A)+1 == C 5102 if (*CmpC == Op0Min + 1) 5103 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5104 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5105 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5106 // exceeds the log2 of C. 5107 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5108 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5109 Constant::getNullValue(Op1->getType())); 5110 } 5111 break; 5112 } 5113 case ICmpInst::ICMP_UGT: { 5114 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5115 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5116 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5117 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5118 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5119 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5120 5121 const APInt *CmpC; 5122 if (match(Op1, m_APInt(CmpC))) { 5123 // A >u C -> A == C+1 if max(a)-1 == C 5124 if (*CmpC == Op0Max - 1) 5125 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5126 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5127 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5128 // exceeds the log2 of C. 5129 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5130 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5131 Constant::getNullValue(Op1->getType())); 5132 } 5133 break; 5134 } 5135 case ICmpInst::ICMP_SLT: { 5136 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5137 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5138 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5139 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5140 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5141 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5142 const APInt *CmpC; 5143 if (match(Op1, m_APInt(CmpC))) { 5144 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5145 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5146 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5147 } 5148 break; 5149 } 5150 case ICmpInst::ICMP_SGT: { 5151 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5152 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5153 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5154 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5155 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5156 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5157 const APInt *CmpC; 5158 if (match(Op1, m_APInt(CmpC))) { 5159 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5160 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5161 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5162 } 5163 break; 5164 } 5165 case ICmpInst::ICMP_SGE: 5166 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5167 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5168 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5169 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5170 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5171 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5172 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5173 break; 5174 case ICmpInst::ICMP_SLE: 5175 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5176 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5177 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5178 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5179 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5180 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5181 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5182 break; 5183 case ICmpInst::ICMP_UGE: 5184 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5185 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5186 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5187 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5188 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5189 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5190 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5191 break; 5192 case ICmpInst::ICMP_ULE: 5193 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5194 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5195 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5196 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5197 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5198 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5199 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5200 break; 5201 } 5202 5203 // Turn a signed comparison into an unsigned one if both operands are known to 5204 // have the same sign. 5205 if (I.isSigned() && 5206 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5207 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5208 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5209 5210 return nullptr; 5211 } 5212 5213 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5214 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5215 Constant *C) { 5216 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5217 "Only for relational integer predicates."); 5218 5219 Type *Type = C->getType(); 5220 bool IsSigned = ICmpInst::isSigned(Pred); 5221 5222 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5223 bool WillIncrement = 5224 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5225 5226 // Check if the constant operand can be safely incremented/decremented 5227 // without overflowing/underflowing. 5228 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5229 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5230 }; 5231 5232 Constant *SafeReplacementConstant = nullptr; 5233 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5234 // Bail out if the constant can't be safely incremented/decremented. 5235 if (!ConstantIsOk(CI)) 5236 return llvm::None; 5237 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5238 unsigned NumElts = FVTy->getNumElements(); 5239 for (unsigned i = 0; i != NumElts; ++i) { 5240 Constant *Elt = C->getAggregateElement(i); 5241 if (!Elt) 5242 return llvm::None; 5243 5244 if (isa<UndefValue>(Elt)) 5245 continue; 5246 5247 // Bail out if we can't determine if this constant is min/max or if we 5248 // know that this constant is min/max. 5249 auto *CI = dyn_cast<ConstantInt>(Elt); 5250 if (!CI || !ConstantIsOk(CI)) 5251 return llvm::None; 5252 5253 if (!SafeReplacementConstant) 5254 SafeReplacementConstant = CI; 5255 } 5256 } else { 5257 // ConstantExpr? 5258 return llvm::None; 5259 } 5260 5261 // It may not be safe to change a compare predicate in the presence of 5262 // undefined elements, so replace those elements with the first safe constant 5263 // that we found. 5264 if (C->containsUndefElement()) { 5265 assert(SafeReplacementConstant && "Replacement constant not set"); 5266 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5267 } 5268 5269 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5270 5271 // Increment or decrement the constant. 5272 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5273 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5274 5275 return std::make_pair(NewPred, NewC); 5276 } 5277 5278 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5279 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5280 /// allows them to be folded in visitICmpInst. 5281 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5282 ICmpInst::Predicate Pred = I.getPredicate(); 5283 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5284 InstCombiner::isCanonicalPredicate(Pred)) 5285 return nullptr; 5286 5287 Value *Op0 = I.getOperand(0); 5288 Value *Op1 = I.getOperand(1); 5289 auto *Op1C = dyn_cast<Constant>(Op1); 5290 if (!Op1C) 5291 return nullptr; 5292 5293 auto FlippedStrictness = 5294 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5295 if (!FlippedStrictness) 5296 return nullptr; 5297 5298 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5299 } 5300 5301 /// If we have a comparison with a non-canonical predicate, if we can update 5302 /// all the users, invert the predicate and adjust all the users. 5303 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5304 // Is the predicate already canonical? 5305 CmpInst::Predicate Pred = I.getPredicate(); 5306 if (InstCombiner::isCanonicalPredicate(Pred)) 5307 return nullptr; 5308 5309 // Can all users be adjusted to predicate inversion? 5310 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5311 return nullptr; 5312 5313 // Ok, we can canonicalize comparison! 5314 // Let's first invert the comparison's predicate. 5315 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5316 I.setName(I.getName() + ".not"); 5317 5318 // And now let's adjust every user. 5319 for (User *U : I.users()) { 5320 switch (cast<Instruction>(U)->getOpcode()) { 5321 case Instruction::Select: { 5322 auto *SI = cast<SelectInst>(U); 5323 SI->swapValues(); 5324 SI->swapProfMetadata(); 5325 break; 5326 } 5327 case Instruction::Br: 5328 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 5329 break; 5330 case Instruction::Xor: 5331 replaceInstUsesWith(cast<Instruction>(*U), &I); 5332 break; 5333 default: 5334 llvm_unreachable("Got unexpected user - out of sync with " 5335 "canFreelyInvertAllUsersOf() ?"); 5336 } 5337 } 5338 5339 return &I; 5340 } 5341 5342 /// Integer compare with boolean values can always be turned into bitwise ops. 5343 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5344 InstCombiner::BuilderTy &Builder) { 5345 Value *A = I.getOperand(0), *B = I.getOperand(1); 5346 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5347 5348 // A boolean compared to true/false can be simplified to Op0/true/false in 5349 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5350 // Cases not handled by InstSimplify are always 'not' of Op0. 5351 if (match(B, m_Zero())) { 5352 switch (I.getPredicate()) { 5353 case CmpInst::ICMP_EQ: // A == 0 -> !A 5354 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5355 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5356 return BinaryOperator::CreateNot(A); 5357 default: 5358 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5359 } 5360 } else if (match(B, m_One())) { 5361 switch (I.getPredicate()) { 5362 case CmpInst::ICMP_NE: // A != 1 -> !A 5363 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5364 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5365 return BinaryOperator::CreateNot(A); 5366 default: 5367 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5368 } 5369 } 5370 5371 switch (I.getPredicate()) { 5372 default: 5373 llvm_unreachable("Invalid icmp instruction!"); 5374 case ICmpInst::ICMP_EQ: 5375 // icmp eq i1 A, B -> ~(A ^ B) 5376 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5377 5378 case ICmpInst::ICMP_NE: 5379 // icmp ne i1 A, B -> A ^ B 5380 return BinaryOperator::CreateXor(A, B); 5381 5382 case ICmpInst::ICMP_UGT: 5383 // icmp ugt -> icmp ult 5384 std::swap(A, B); 5385 LLVM_FALLTHROUGH; 5386 case ICmpInst::ICMP_ULT: 5387 // icmp ult i1 A, B -> ~A & B 5388 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5389 5390 case ICmpInst::ICMP_SGT: 5391 // icmp sgt -> icmp slt 5392 std::swap(A, B); 5393 LLVM_FALLTHROUGH; 5394 case ICmpInst::ICMP_SLT: 5395 // icmp slt i1 A, B -> A & ~B 5396 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5397 5398 case ICmpInst::ICMP_UGE: 5399 // icmp uge -> icmp ule 5400 std::swap(A, B); 5401 LLVM_FALLTHROUGH; 5402 case ICmpInst::ICMP_ULE: 5403 // icmp ule i1 A, B -> ~A | B 5404 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5405 5406 case ICmpInst::ICMP_SGE: 5407 // icmp sge -> icmp sle 5408 std::swap(A, B); 5409 LLVM_FALLTHROUGH; 5410 case ICmpInst::ICMP_SLE: 5411 // icmp sle i1 A, B -> A | ~B 5412 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5413 } 5414 } 5415 5416 // Transform pattern like: 5417 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5418 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5419 // Into: 5420 // (X l>> Y) != 0 5421 // (X l>> Y) == 0 5422 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5423 InstCombiner::BuilderTy &Builder) { 5424 ICmpInst::Predicate Pred, NewPred; 5425 Value *X, *Y; 5426 if (match(&Cmp, 5427 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5428 switch (Pred) { 5429 case ICmpInst::ICMP_ULE: 5430 NewPred = ICmpInst::ICMP_NE; 5431 break; 5432 case ICmpInst::ICMP_UGT: 5433 NewPred = ICmpInst::ICMP_EQ; 5434 break; 5435 default: 5436 return nullptr; 5437 } 5438 } else if (match(&Cmp, m_c_ICmp(Pred, 5439 m_OneUse(m_CombineOr( 5440 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5441 m_Add(m_Shl(m_One(), m_Value(Y)), 5442 m_AllOnes()))), 5443 m_Value(X)))) { 5444 // The variant with 'add' is not canonical, (the variant with 'not' is) 5445 // we only get it because it has extra uses, and can't be canonicalized, 5446 5447 switch (Pred) { 5448 case ICmpInst::ICMP_ULT: 5449 NewPred = ICmpInst::ICMP_NE; 5450 break; 5451 case ICmpInst::ICMP_UGE: 5452 NewPred = ICmpInst::ICMP_EQ; 5453 break; 5454 default: 5455 return nullptr; 5456 } 5457 } else 5458 return nullptr; 5459 5460 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5461 Constant *Zero = Constant::getNullValue(NewX->getType()); 5462 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5463 } 5464 5465 static Instruction *foldVectorCmp(CmpInst &Cmp, 5466 InstCombiner::BuilderTy &Builder) { 5467 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5468 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5469 Value *V1, *V2; 5470 ArrayRef<int> M; 5471 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5472 return nullptr; 5473 5474 // If both arguments of the cmp are shuffles that use the same mask and 5475 // shuffle within a single vector, move the shuffle after the cmp: 5476 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5477 Type *V1Ty = V1->getType(); 5478 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5479 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5480 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5481 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5482 } 5483 5484 // Try to canonicalize compare with splatted operand and splat constant. 5485 // TODO: We could generalize this for more than splats. See/use the code in 5486 // InstCombiner::foldVectorBinop(). 5487 Constant *C; 5488 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5489 return nullptr; 5490 5491 // Length-changing splats are ok, so adjust the constants as needed: 5492 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5493 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5494 int MaskSplatIndex; 5495 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5496 // We allow undefs in matching, but this transform removes those for safety. 5497 // Demanded elements analysis should be able to recover some/all of that. 5498 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5499 ScalarC); 5500 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5501 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5502 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), 5503 NewM); 5504 } 5505 5506 return nullptr; 5507 } 5508 5509 // extract(uadd.with.overflow(A, B), 0) ult A 5510 // -> extract(uadd.with.overflow(A, B), 1) 5511 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5512 CmpInst::Predicate Pred = I.getPredicate(); 5513 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5514 5515 Value *UAddOv; 5516 Value *A, *B; 5517 auto UAddOvResultPat = m_ExtractValue<0>( 5518 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5519 if (match(Op0, UAddOvResultPat) && 5520 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5521 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5522 (match(A, m_One()) || match(B, m_One()))) || 5523 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5524 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5525 // extract(uadd.with.overflow(A, B), 0) < A 5526 // extract(uadd.with.overflow(A, 1), 0) == 0 5527 // extract(uadd.with.overflow(A, -1), 0) != -1 5528 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5529 else if (match(Op1, UAddOvResultPat) && 5530 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5531 // A > extract(uadd.with.overflow(A, B), 0) 5532 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5533 else 5534 return nullptr; 5535 5536 return ExtractValueInst::Create(UAddOv, 1); 5537 } 5538 5539 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5540 bool Changed = false; 5541 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5542 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5543 unsigned Op0Cplxity = getComplexity(Op0); 5544 unsigned Op1Cplxity = getComplexity(Op1); 5545 5546 /// Orders the operands of the compare so that they are listed from most 5547 /// complex to least complex. This puts constants before unary operators, 5548 /// before binary operators. 5549 if (Op0Cplxity < Op1Cplxity || 5550 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5551 I.swapOperands(); 5552 std::swap(Op0, Op1); 5553 Changed = true; 5554 } 5555 5556 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5557 return replaceInstUsesWith(I, V); 5558 5559 // Comparing -val or val with non-zero is the same as just comparing val 5560 // ie, abs(val) != 0 -> val != 0 5561 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5562 Value *Cond, *SelectTrue, *SelectFalse; 5563 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5564 m_Value(SelectFalse)))) { 5565 if (Value *V = dyn_castNegVal(SelectTrue)) { 5566 if (V == SelectFalse) 5567 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5568 } 5569 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5570 if (V == SelectTrue) 5571 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5572 } 5573 } 5574 } 5575 5576 if (Op0->getType()->isIntOrIntVectorTy(1)) 5577 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5578 return Res; 5579 5580 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5581 return Res; 5582 5583 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5584 return Res; 5585 5586 if (Instruction *Res = foldICmpWithConstant(I)) 5587 return Res; 5588 5589 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5590 return Res; 5591 5592 if (Instruction *Res = foldICmpBinOp(I, Q)) 5593 return Res; 5594 5595 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5596 return Res; 5597 5598 // Test if the ICmpInst instruction is used exclusively by a select as 5599 // part of a minimum or maximum operation. If so, refrain from doing 5600 // any other folding. This helps out other analyses which understand 5601 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5602 // and CodeGen. And in this case, at least one of the comparison 5603 // operands has at least one user besides the compare (the select), 5604 // which would often largely negate the benefit of folding anyway. 5605 // 5606 // Do the same for the other patterns recognized by matchSelectPattern. 5607 if (I.hasOneUse()) 5608 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5609 Value *A, *B; 5610 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5611 if (SPR.Flavor != SPF_UNKNOWN) 5612 return nullptr; 5613 } 5614 5615 // Do this after checking for min/max to prevent infinite looping. 5616 if (Instruction *Res = foldICmpWithZero(I)) 5617 return Res; 5618 5619 // FIXME: We only do this after checking for min/max to prevent infinite 5620 // looping caused by a reverse canonicalization of these patterns for min/max. 5621 // FIXME: The organization of folds is a mess. These would naturally go into 5622 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5623 // down here after the min/max restriction. 5624 ICmpInst::Predicate Pred = I.getPredicate(); 5625 const APInt *C; 5626 if (match(Op1, m_APInt(C))) { 5627 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5628 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5629 Constant *Zero = Constant::getNullValue(Op0->getType()); 5630 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5631 } 5632 5633 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5634 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5635 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5636 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5637 } 5638 } 5639 5640 if (Instruction *Res = foldICmpInstWithConstant(I)) 5641 return Res; 5642 5643 // Try to match comparison as a sign bit test. Intentionally do this after 5644 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5645 if (Instruction *New = foldSignBitTest(I)) 5646 return New; 5647 5648 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5649 return Res; 5650 5651 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5652 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5653 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5654 return NI; 5655 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5656 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5657 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5658 return NI; 5659 5660 // Try to optimize equality comparisons against alloca-based pointers. 5661 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5662 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5663 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 5664 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5665 return New; 5666 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 5667 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5668 return New; 5669 } 5670 5671 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5672 return Res; 5673 5674 // TODO: Hoist this above the min/max bailout. 5675 if (Instruction *R = foldICmpWithCastOp(I)) 5676 return R; 5677 5678 if (Instruction *Res = foldICmpWithMinMax(I)) 5679 return Res; 5680 5681 { 5682 Value *A, *B; 5683 // Transform (A & ~B) == 0 --> (A & B) != 0 5684 // and (A & ~B) != 0 --> (A & B) == 0 5685 // if A is a power of 2. 5686 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5687 match(Op1, m_Zero()) && 5688 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5689 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5690 Op1); 5691 5692 // ~X < ~Y --> Y < X 5693 // ~X < C --> X > ~C 5694 if (match(Op0, m_Not(m_Value(A)))) { 5695 if (match(Op1, m_Not(m_Value(B)))) 5696 return new ICmpInst(I.getPredicate(), B, A); 5697 5698 const APInt *C; 5699 if (match(Op1, m_APInt(C))) 5700 return new ICmpInst(I.getSwappedPredicate(), A, 5701 ConstantInt::get(Op1->getType(), ~(*C))); 5702 } 5703 5704 Instruction *AddI = nullptr; 5705 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5706 m_Instruction(AddI))) && 5707 isa<IntegerType>(A->getType())) { 5708 Value *Result; 5709 Constant *Overflow; 5710 // m_UAddWithOverflow can match patterns that do not include an explicit 5711 // "add" instruction, so check the opcode of the matched op. 5712 if (AddI->getOpcode() == Instruction::Add && 5713 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 5714 Result, Overflow)) { 5715 replaceInstUsesWith(*AddI, Result); 5716 eraseInstFromFunction(*AddI); 5717 return replaceInstUsesWith(I, Overflow); 5718 } 5719 } 5720 5721 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5722 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5723 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5724 return R; 5725 } 5726 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5727 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5728 return R; 5729 } 5730 } 5731 5732 if (Instruction *Res = foldICmpEquality(I)) 5733 return Res; 5734 5735 if (Instruction *Res = foldICmpOfUAddOv(I)) 5736 return Res; 5737 5738 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5739 // an i1 which indicates whether or not we successfully did the swap. 5740 // 5741 // Replace comparisons between the old value and the expected value with the 5742 // indicator that 'cmpxchg' returns. 5743 // 5744 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5745 // spuriously fail. In those cases, the old value may equal the expected 5746 // value but it is possible for the swap to not occur. 5747 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5748 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5749 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5750 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5751 !ACXI->isWeak()) 5752 return ExtractValueInst::Create(ACXI, 1); 5753 5754 { 5755 Value *X; 5756 const APInt *C; 5757 // icmp X+Cst, X 5758 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5759 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5760 5761 // icmp X, X+Cst 5762 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5763 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5764 } 5765 5766 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5767 return Res; 5768 5769 if (I.getType()->isVectorTy()) 5770 if (Instruction *Res = foldVectorCmp(I, Builder)) 5771 return Res; 5772 5773 return Changed ? &I : nullptr; 5774 } 5775 5776 /// Fold fcmp ([us]itofp x, cst) if possible. 5777 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 5778 Instruction *LHSI, 5779 Constant *RHSC) { 5780 if (!isa<ConstantFP>(RHSC)) return nullptr; 5781 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5782 5783 // Get the width of the mantissa. We don't want to hack on conversions that 5784 // might lose information from the integer, e.g. "i64 -> float" 5785 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5786 if (MantissaWidth == -1) return nullptr; // Unknown. 5787 5788 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5789 5790 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5791 5792 if (I.isEquality()) { 5793 FCmpInst::Predicate P = I.getPredicate(); 5794 bool IsExact = false; 5795 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5796 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5797 5798 // If the floating point constant isn't an integer value, we know if we will 5799 // ever compare equal / not equal to it. 5800 if (!IsExact) { 5801 // TODO: Can never be -0.0 and other non-representable values 5802 APFloat RHSRoundInt(RHS); 5803 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5804 if (RHS != RHSRoundInt) { 5805 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5806 return replaceInstUsesWith(I, Builder.getFalse()); 5807 5808 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5809 return replaceInstUsesWith(I, Builder.getTrue()); 5810 } 5811 } 5812 5813 // TODO: If the constant is exactly representable, is it always OK to do 5814 // equality compares as integer? 5815 } 5816 5817 // Check to see that the input is converted from an integer type that is small 5818 // enough that preserves all bits. TODO: check here for "known" sign bits. 5819 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5820 unsigned InputSize = IntTy->getScalarSizeInBits(); 5821 5822 // Following test does NOT adjust InputSize downwards for signed inputs, 5823 // because the most negative value still requires all the mantissa bits 5824 // to distinguish it from one less than that value. 5825 if ((int)InputSize > MantissaWidth) { 5826 // Conversion would lose accuracy. Check if loss can impact comparison. 5827 int Exp = ilogb(RHS); 5828 if (Exp == APFloat::IEK_Inf) { 5829 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5830 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5831 // Conversion could create infinity. 5832 return nullptr; 5833 } else { 5834 // Note that if RHS is zero or NaN, then Exp is negative 5835 // and first condition is trivially false. 5836 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5837 // Conversion could affect comparison. 5838 return nullptr; 5839 } 5840 } 5841 5842 // Otherwise, we can potentially simplify the comparison. We know that it 5843 // will always come through as an integer value and we know the constant is 5844 // not a NAN (it would have been previously simplified). 5845 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5846 5847 ICmpInst::Predicate Pred; 5848 switch (I.getPredicate()) { 5849 default: llvm_unreachable("Unexpected predicate!"); 5850 case FCmpInst::FCMP_UEQ: 5851 case FCmpInst::FCMP_OEQ: 5852 Pred = ICmpInst::ICMP_EQ; 5853 break; 5854 case FCmpInst::FCMP_UGT: 5855 case FCmpInst::FCMP_OGT: 5856 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5857 break; 5858 case FCmpInst::FCMP_UGE: 5859 case FCmpInst::FCMP_OGE: 5860 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5861 break; 5862 case FCmpInst::FCMP_ULT: 5863 case FCmpInst::FCMP_OLT: 5864 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5865 break; 5866 case FCmpInst::FCMP_ULE: 5867 case FCmpInst::FCMP_OLE: 5868 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5869 break; 5870 case FCmpInst::FCMP_UNE: 5871 case FCmpInst::FCMP_ONE: 5872 Pred = ICmpInst::ICMP_NE; 5873 break; 5874 case FCmpInst::FCMP_ORD: 5875 return replaceInstUsesWith(I, Builder.getTrue()); 5876 case FCmpInst::FCMP_UNO: 5877 return replaceInstUsesWith(I, Builder.getFalse()); 5878 } 5879 5880 // Now we know that the APFloat is a normal number, zero or inf. 5881 5882 // See if the FP constant is too large for the integer. For example, 5883 // comparing an i8 to 300.0. 5884 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5885 5886 if (!LHSUnsigned) { 5887 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5888 // and large values. 5889 APFloat SMax(RHS.getSemantics()); 5890 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5891 APFloat::rmNearestTiesToEven); 5892 if (SMax < RHS) { // smax < 13123.0 5893 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5894 Pred == ICmpInst::ICMP_SLE) 5895 return replaceInstUsesWith(I, Builder.getTrue()); 5896 return replaceInstUsesWith(I, Builder.getFalse()); 5897 } 5898 } else { 5899 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5900 // +INF and large values. 5901 APFloat UMax(RHS.getSemantics()); 5902 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5903 APFloat::rmNearestTiesToEven); 5904 if (UMax < RHS) { // umax < 13123.0 5905 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5906 Pred == ICmpInst::ICMP_ULE) 5907 return replaceInstUsesWith(I, Builder.getTrue()); 5908 return replaceInstUsesWith(I, Builder.getFalse()); 5909 } 5910 } 5911 5912 if (!LHSUnsigned) { 5913 // See if the RHS value is < SignedMin. 5914 APFloat SMin(RHS.getSemantics()); 5915 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5916 APFloat::rmNearestTiesToEven); 5917 if (SMin > RHS) { // smin > 12312.0 5918 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5919 Pred == ICmpInst::ICMP_SGE) 5920 return replaceInstUsesWith(I, Builder.getTrue()); 5921 return replaceInstUsesWith(I, Builder.getFalse()); 5922 } 5923 } else { 5924 // See if the RHS value is < UnsignedMin. 5925 APFloat UMin(RHS.getSemantics()); 5926 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 5927 APFloat::rmNearestTiesToEven); 5928 if (UMin > RHS) { // umin > 12312.0 5929 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5930 Pred == ICmpInst::ICMP_UGE) 5931 return replaceInstUsesWith(I, Builder.getTrue()); 5932 return replaceInstUsesWith(I, Builder.getFalse()); 5933 } 5934 } 5935 5936 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5937 // [0, UMAX], but it may still be fractional. See if it is fractional by 5938 // casting the FP value to the integer value and back, checking for equality. 5939 // Don't do this for zero, because -0.0 is not fractional. 5940 Constant *RHSInt = LHSUnsigned 5941 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5942 : ConstantExpr::getFPToSI(RHSC, IntTy); 5943 if (!RHS.isZero()) { 5944 bool Equal = LHSUnsigned 5945 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5946 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5947 if (!Equal) { 5948 // If we had a comparison against a fractional value, we have to adjust 5949 // the compare predicate and sometimes the value. RHSC is rounded towards 5950 // zero at this point. 5951 switch (Pred) { 5952 default: llvm_unreachable("Unexpected integer comparison!"); 5953 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5954 return replaceInstUsesWith(I, Builder.getTrue()); 5955 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5956 return replaceInstUsesWith(I, Builder.getFalse()); 5957 case ICmpInst::ICMP_ULE: 5958 // (float)int <= 4.4 --> int <= 4 5959 // (float)int <= -4.4 --> false 5960 if (RHS.isNegative()) 5961 return replaceInstUsesWith(I, Builder.getFalse()); 5962 break; 5963 case ICmpInst::ICMP_SLE: 5964 // (float)int <= 4.4 --> int <= 4 5965 // (float)int <= -4.4 --> int < -4 5966 if (RHS.isNegative()) 5967 Pred = ICmpInst::ICMP_SLT; 5968 break; 5969 case ICmpInst::ICMP_ULT: 5970 // (float)int < -4.4 --> false 5971 // (float)int < 4.4 --> int <= 4 5972 if (RHS.isNegative()) 5973 return replaceInstUsesWith(I, Builder.getFalse()); 5974 Pred = ICmpInst::ICMP_ULE; 5975 break; 5976 case ICmpInst::ICMP_SLT: 5977 // (float)int < -4.4 --> int < -4 5978 // (float)int < 4.4 --> int <= 4 5979 if (!RHS.isNegative()) 5980 Pred = ICmpInst::ICMP_SLE; 5981 break; 5982 case ICmpInst::ICMP_UGT: 5983 // (float)int > 4.4 --> int > 4 5984 // (float)int > -4.4 --> true 5985 if (RHS.isNegative()) 5986 return replaceInstUsesWith(I, Builder.getTrue()); 5987 break; 5988 case ICmpInst::ICMP_SGT: 5989 // (float)int > 4.4 --> int > 4 5990 // (float)int > -4.4 --> int >= -4 5991 if (RHS.isNegative()) 5992 Pred = ICmpInst::ICMP_SGE; 5993 break; 5994 case ICmpInst::ICMP_UGE: 5995 // (float)int >= -4.4 --> true 5996 // (float)int >= 4.4 --> int > 4 5997 if (RHS.isNegative()) 5998 return replaceInstUsesWith(I, Builder.getTrue()); 5999 Pred = ICmpInst::ICMP_UGT; 6000 break; 6001 case ICmpInst::ICMP_SGE: 6002 // (float)int >= -4.4 --> int >= -4 6003 // (float)int >= 4.4 --> int > 4 6004 if (!RHS.isNegative()) 6005 Pred = ICmpInst::ICMP_SGT; 6006 break; 6007 } 6008 } 6009 } 6010 6011 // Lower this FP comparison into an appropriate integer version of the 6012 // comparison. 6013 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6014 } 6015 6016 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6017 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6018 Constant *RHSC) { 6019 // When C is not 0.0 and infinities are not allowed: 6020 // (C / X) < 0.0 is a sign-bit test of X 6021 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6022 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6023 // 6024 // Proof: 6025 // Multiply (C / X) < 0.0 by X * X / C. 6026 // - X is non zero, if it is the flag 'ninf' is violated. 6027 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6028 // the predicate. C is also non zero by definition. 6029 // 6030 // Thus X * X / C is non zero and the transformation is valid. [qed] 6031 6032 FCmpInst::Predicate Pred = I.getPredicate(); 6033 6034 // Check that predicates are valid. 6035 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6036 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6037 return nullptr; 6038 6039 // Check that RHS operand is zero. 6040 if (!match(RHSC, m_AnyZeroFP())) 6041 return nullptr; 6042 6043 // Check fastmath flags ('ninf'). 6044 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6045 return nullptr; 6046 6047 // Check the properties of the dividend. It must not be zero to avoid a 6048 // division by zero (see Proof). 6049 const APFloat *C; 6050 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6051 return nullptr; 6052 6053 if (C->isZero()) 6054 return nullptr; 6055 6056 // Get swapped predicate if necessary. 6057 if (C->isNegative()) 6058 Pred = I.getSwappedPredicate(); 6059 6060 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6061 } 6062 6063 /// Optimize fabs(X) compared with zero. 6064 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6065 Value *X; 6066 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6067 !match(I.getOperand(1), m_PosZeroFP())) 6068 return nullptr; 6069 6070 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6071 I->setPredicate(P); 6072 return IC.replaceOperand(*I, 0, X); 6073 }; 6074 6075 switch (I.getPredicate()) { 6076 case FCmpInst::FCMP_UGE: 6077 case FCmpInst::FCMP_OLT: 6078 // fabs(X) >= 0.0 --> true 6079 // fabs(X) < 0.0 --> false 6080 llvm_unreachable("fcmp should have simplified"); 6081 6082 case FCmpInst::FCMP_OGT: 6083 // fabs(X) > 0.0 --> X != 0.0 6084 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6085 6086 case FCmpInst::FCMP_UGT: 6087 // fabs(X) u> 0.0 --> X u!= 0.0 6088 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6089 6090 case FCmpInst::FCMP_OLE: 6091 // fabs(X) <= 0.0 --> X == 0.0 6092 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6093 6094 case FCmpInst::FCMP_ULE: 6095 // fabs(X) u<= 0.0 --> X u== 0.0 6096 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6097 6098 case FCmpInst::FCMP_OGE: 6099 // fabs(X) >= 0.0 --> !isnan(X) 6100 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6101 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6102 6103 case FCmpInst::FCMP_ULT: 6104 // fabs(X) u< 0.0 --> isnan(X) 6105 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6106 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6107 6108 case FCmpInst::FCMP_OEQ: 6109 case FCmpInst::FCMP_UEQ: 6110 case FCmpInst::FCMP_ONE: 6111 case FCmpInst::FCMP_UNE: 6112 case FCmpInst::FCMP_ORD: 6113 case FCmpInst::FCMP_UNO: 6114 // Look through the fabs() because it doesn't change anything but the sign. 6115 // fabs(X) == 0.0 --> X == 0.0, 6116 // fabs(X) != 0.0 --> X != 0.0 6117 // isnan(fabs(X)) --> isnan(X) 6118 // !isnan(fabs(X) --> !isnan(X) 6119 return replacePredAndOp0(&I, I.getPredicate(), X); 6120 6121 default: 6122 return nullptr; 6123 } 6124 } 6125 6126 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6127 bool Changed = false; 6128 6129 /// Orders the operands of the compare so that they are listed from most 6130 /// complex to least complex. This puts constants before unary operators, 6131 /// before binary operators. 6132 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6133 I.swapOperands(); 6134 Changed = true; 6135 } 6136 6137 const CmpInst::Predicate Pred = I.getPredicate(); 6138 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6139 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6140 SQ.getWithInstruction(&I))) 6141 return replaceInstUsesWith(I, V); 6142 6143 // Simplify 'fcmp pred X, X' 6144 Type *OpType = Op0->getType(); 6145 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6146 if (Op0 == Op1) { 6147 switch (Pred) { 6148 default: break; 6149 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6150 case FCmpInst::FCMP_ULT: // True if unordered or less than 6151 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6152 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6153 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6154 I.setPredicate(FCmpInst::FCMP_UNO); 6155 I.setOperand(1, Constant::getNullValue(OpType)); 6156 return &I; 6157 6158 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6159 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6160 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6161 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6162 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6163 I.setPredicate(FCmpInst::FCMP_ORD); 6164 I.setOperand(1, Constant::getNullValue(OpType)); 6165 return &I; 6166 } 6167 } 6168 6169 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6170 // then canonicalize the operand to 0.0. 6171 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6172 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6173 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6174 6175 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6176 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6177 } 6178 6179 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6180 Value *X, *Y; 6181 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6182 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6183 6184 // Test if the FCmpInst instruction is used exclusively by a select as 6185 // part of a minimum or maximum operation. If so, refrain from doing 6186 // any other folding. This helps out other analyses which understand 6187 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6188 // and CodeGen. And in this case, at least one of the comparison 6189 // operands has at least one user besides the compare (the select), 6190 // which would often largely negate the benefit of folding anyway. 6191 if (I.hasOneUse()) 6192 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6193 Value *A, *B; 6194 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6195 if (SPR.Flavor != SPF_UNKNOWN) 6196 return nullptr; 6197 } 6198 6199 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6200 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6201 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6202 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6203 6204 // Handle fcmp with instruction LHS and constant RHS. 6205 Instruction *LHSI; 6206 Constant *RHSC; 6207 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6208 switch (LHSI->getOpcode()) { 6209 case Instruction::PHI: 6210 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6211 // block. If in the same block, we're encouraging jump threading. If 6212 // not, we are just pessimizing the code by making an i1 phi. 6213 if (LHSI->getParent() == I.getParent()) 6214 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6215 return NV; 6216 break; 6217 case Instruction::SIToFP: 6218 case Instruction::UIToFP: 6219 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6220 return NV; 6221 break; 6222 case Instruction::FDiv: 6223 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6224 return NV; 6225 break; 6226 case Instruction::Load: 6227 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6228 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6229 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6230 !cast<LoadInst>(LHSI)->isVolatile()) 6231 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6232 return Res; 6233 break; 6234 } 6235 } 6236 6237 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6238 return R; 6239 6240 if (match(Op0, m_FNeg(m_Value(X)))) { 6241 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6242 Constant *C; 6243 if (match(Op1, m_Constant(C))) { 6244 Constant *NegC = ConstantExpr::getFNeg(C); 6245 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6246 } 6247 } 6248 6249 if (match(Op0, m_FPExt(m_Value(X)))) { 6250 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6251 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6252 return new FCmpInst(Pred, X, Y, "", &I); 6253 6254 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6255 const APFloat *C; 6256 if (match(Op1, m_APFloat(C))) { 6257 const fltSemantics &FPSem = 6258 X->getType()->getScalarType()->getFltSemantics(); 6259 bool Lossy; 6260 APFloat TruncC = *C; 6261 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6262 6263 // Avoid lossy conversions and denormals. 6264 // Zero is a special case that's OK to convert. 6265 APFloat Fabs = TruncC; 6266 Fabs.clearSign(); 6267 if (!Lossy && 6268 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6269 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6270 return new FCmpInst(Pred, X, NewC, "", &I); 6271 } 6272 } 6273 } 6274 6275 if (I.getType()->isVectorTy()) 6276 if (Instruction *Res = foldVectorCmp(I, Builder)) 6277 return Res; 6278 6279 return Changed ? &I : nullptr; 6280 } 6281