1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Given an exploded icmp instruction, return true if the comparison only 73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 74 /// result of the comparison is true when the input value is signed. 75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 76 bool &TrueIfSigned) { 77 switch (Pred) { 78 case ICmpInst::ICMP_SLT: // True if LHS s< 0 79 TrueIfSigned = true; 80 return RHS.isNullValue(); 81 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 82 TrueIfSigned = true; 83 return RHS.isAllOnesValue(); 84 case ICmpInst::ICMP_SGT: // True if LHS s> -1 85 TrueIfSigned = false; 86 return RHS.isAllOnesValue(); 87 case ICmpInst::ICMP_UGT: 88 // True if LHS u> RHS and RHS == high-bit-mask - 1 89 TrueIfSigned = true; 90 return RHS.isMaxSignedValue(); 91 case ICmpInst::ICMP_UGE: 92 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 93 TrueIfSigned = true; 94 return RHS.isSignMask(); 95 default: 96 return false; 97 } 98 } 99 100 /// Returns true if the exploded icmp can be expressed as a signed comparison 101 /// to zero and updates the predicate accordingly. 102 /// The signedness of the comparison is preserved. 103 /// TODO: Refactor with decomposeBitTestICmp()? 104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 105 if (!ICmpInst::isSigned(Pred)) 106 return false; 107 108 if (C.isNullValue()) 109 return ICmpInst::isRelational(Pred); 110 111 if (C.isOneValue()) { 112 if (Pred == ICmpInst::ICMP_SLT) { 113 Pred = ICmpInst::ICMP_SLE; 114 return true; 115 } 116 } else if (C.isAllOnesValue()) { 117 if (Pred == ICmpInst::ICMP_SGT) { 118 Pred = ICmpInst::ICMP_SGE; 119 return true; 120 } 121 } 122 123 return false; 124 } 125 126 /// Given a signed integer type and a set of known zero and one bits, compute 127 /// the maximum and minimum values that could have the specified known zero and 128 /// known one bits, returning them in Min/Max. 129 /// TODO: Move to method on KnownBits struct? 130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 131 APInt &Min, APInt &Max) { 132 assert(Known.getBitWidth() == Min.getBitWidth() && 133 Known.getBitWidth() == Max.getBitWidth() && 134 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 135 APInt UnknownBits = ~(Known.Zero|Known.One); 136 137 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 138 // bit if it is unknown. 139 Min = Known.One; 140 Max = Known.One|UnknownBits; 141 142 if (UnknownBits.isNegative()) { // Sign bit is unknown 143 Min.setSignBit(); 144 Max.clearSignBit(); 145 } 146 } 147 148 /// Given an unsigned integer type and a set of known zero and one bits, compute 149 /// the maximum and minimum values that could have the specified known zero and 150 /// known one bits, returning them in Min/Max. 151 /// TODO: Move to method on KnownBits struct? 152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 153 APInt &Min, APInt &Max) { 154 assert(Known.getBitWidth() == Min.getBitWidth() && 155 Known.getBitWidth() == Max.getBitWidth() && 156 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 157 APInt UnknownBits = ~(Known.Zero|Known.One); 158 159 // The minimum value is when the unknown bits are all zeros. 160 Min = Known.One; 161 // The maximum value is when the unknown bits are all ones. 162 Max = Known.One|UnknownBits; 163 } 164 165 /// This is called when we see this pattern: 166 /// cmp pred (load (gep GV, ...)), cmpcst 167 /// where GV is a global variable with a constant initializer. Try to simplify 168 /// this into some simple computation that does not need the load. For example 169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 170 /// 171 /// If AndCst is non-null, then the loaded value is masked with that constant 172 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 174 GlobalVariable *GV, 175 CmpInst &ICI, 176 ConstantInt *AndCst) { 177 Constant *Init = GV->getInitializer(); 178 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 179 return nullptr; 180 181 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 182 // Don't blow up on huge arrays. 183 if (ArrayElementCount > MaxArraySizeForCombine) 184 return nullptr; 185 186 // There are many forms of this optimization we can handle, for now, just do 187 // the simple index into a single-dimensional array. 188 // 189 // Require: GEP GV, 0, i {{, constant indices}} 190 if (GEP->getNumOperands() < 3 || 191 !isa<ConstantInt>(GEP->getOperand(1)) || 192 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 193 isa<Constant>(GEP->getOperand(2))) 194 return nullptr; 195 196 // Check that indices after the variable are constants and in-range for the 197 // type they index. Collect the indices. This is typically for arrays of 198 // structs. 199 SmallVector<unsigned, 4> LaterIndices; 200 201 Type *EltTy = Init->getType()->getArrayElementType(); 202 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 203 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 204 if (!Idx) return nullptr; // Variable index. 205 206 uint64_t IdxVal = Idx->getZExtValue(); 207 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 208 209 if (StructType *STy = dyn_cast<StructType>(EltTy)) 210 EltTy = STy->getElementType(IdxVal); 211 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 212 if (IdxVal >= ATy->getNumElements()) return nullptr; 213 EltTy = ATy->getElementType(); 214 } else { 215 return nullptr; // Unknown type. 216 } 217 218 LaterIndices.push_back(IdxVal); 219 } 220 221 enum { Overdefined = -3, Undefined = -2 }; 222 223 // Variables for our state machines. 224 225 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 226 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 227 // and 87 is the second (and last) index. FirstTrueElement is -2 when 228 // undefined, otherwise set to the first true element. SecondTrueElement is 229 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 230 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 231 232 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 233 // form "i != 47 & i != 87". Same state transitions as for true elements. 234 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 235 236 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 237 /// define a state machine that triggers for ranges of values that the index 238 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 239 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 240 /// index in the range (inclusive). We use -2 for undefined here because we 241 /// use relative comparisons and don't want 0-1 to match -1. 242 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 243 244 // MagicBitvector - This is a magic bitvector where we set a bit if the 245 // comparison is true for element 'i'. If there are 64 elements or less in 246 // the array, this will fully represent all the comparison results. 247 uint64_t MagicBitvector = 0; 248 249 // Scan the array and see if one of our patterns matches. 250 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 251 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 252 Constant *Elt = Init->getAggregateElement(i); 253 if (!Elt) return nullptr; 254 255 // If this is indexing an array of structures, get the structure element. 256 if (!LaterIndices.empty()) 257 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 258 259 // If the element is masked, handle it. 260 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 261 262 // Find out if the comparison would be true or false for the i'th element. 263 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 264 CompareRHS, DL, &TLI); 265 // If the result is undef for this element, ignore it. 266 if (isa<UndefValue>(C)) { 267 // Extend range state machines to cover this element in case there is an 268 // undef in the middle of the range. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 if (FalseRangeEnd == (int)i-1) 272 FalseRangeEnd = i; 273 continue; 274 } 275 276 // If we can't compute the result for any of the elements, we have to give 277 // up evaluating the entire conditional. 278 if (!isa<ConstantInt>(C)) return nullptr; 279 280 // Otherwise, we know if the comparison is true or false for this element, 281 // update our state machines. 282 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 283 284 // State machine for single/double/range index comparison. 285 if (IsTrueForElt) { 286 // Update the TrueElement state machine. 287 if (FirstTrueElement == Undefined) 288 FirstTrueElement = TrueRangeEnd = i; // First true element. 289 else { 290 // Update double-compare state machine. 291 if (SecondTrueElement == Undefined) 292 SecondTrueElement = i; 293 else 294 SecondTrueElement = Overdefined; 295 296 // Update range state machine. 297 if (TrueRangeEnd == (int)i-1) 298 TrueRangeEnd = i; 299 else 300 TrueRangeEnd = Overdefined; 301 } 302 } else { 303 // Update the FalseElement state machine. 304 if (FirstFalseElement == Undefined) 305 FirstFalseElement = FalseRangeEnd = i; // First false element. 306 else { 307 // Update double-compare state machine. 308 if (SecondFalseElement == Undefined) 309 SecondFalseElement = i; 310 else 311 SecondFalseElement = Overdefined; 312 313 // Update range state machine. 314 if (FalseRangeEnd == (int)i-1) 315 FalseRangeEnd = i; 316 else 317 FalseRangeEnd = Overdefined; 318 } 319 } 320 321 // If this element is in range, update our magic bitvector. 322 if (i < 64 && IsTrueForElt) 323 MagicBitvector |= 1ULL << i; 324 325 // If all of our states become overdefined, bail out early. Since the 326 // predicate is expensive, only check it every 8 elements. This is only 327 // really useful for really huge arrays. 328 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 329 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 330 FalseRangeEnd == Overdefined) 331 return nullptr; 332 } 333 334 // Now that we've scanned the entire array, emit our new comparison(s). We 335 // order the state machines in complexity of the generated code. 336 Value *Idx = GEP->getOperand(2); 337 338 // If the index is larger than the pointer size of the target, truncate the 339 // index down like the GEP would do implicitly. We don't have to do this for 340 // an inbounds GEP because the index can't be out of range. 341 if (!GEP->isInBounds()) { 342 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 343 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 344 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 345 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 346 } 347 348 // If the comparison is only true for one or two elements, emit direct 349 // comparisons. 350 if (SecondTrueElement != Overdefined) { 351 // None true -> false. 352 if (FirstTrueElement == Undefined) 353 return replaceInstUsesWith(ICI, Builder.getFalse()); 354 355 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 356 357 // True for one element -> 'i == 47'. 358 if (SecondTrueElement == Undefined) 359 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 360 361 // True for two elements -> 'i == 47 | i == 72'. 362 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 363 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 364 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 365 return BinaryOperator::CreateOr(C1, C2); 366 } 367 368 // If the comparison is only false for one or two elements, emit direct 369 // comparisons. 370 if (SecondFalseElement != Overdefined) { 371 // None false -> true. 372 if (FirstFalseElement == Undefined) 373 return replaceInstUsesWith(ICI, Builder.getTrue()); 374 375 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 376 377 // False for one element -> 'i != 47'. 378 if (SecondFalseElement == Undefined) 379 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 380 381 // False for two elements -> 'i != 47 & i != 72'. 382 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 383 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 384 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 385 return BinaryOperator::CreateAnd(C1, C2); 386 } 387 388 // If the comparison can be replaced with a range comparison for the elements 389 // where it is true, emit the range check. 390 if (TrueRangeEnd != Overdefined) { 391 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 392 393 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 394 if (FirstTrueElement) { 395 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 396 Idx = Builder.CreateAdd(Idx, Offs); 397 } 398 399 Value *End = ConstantInt::get(Idx->getType(), 400 TrueRangeEnd-FirstTrueElement+1); 401 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 402 } 403 404 // False range check. 405 if (FalseRangeEnd != Overdefined) { 406 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 407 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 408 if (FirstFalseElement) { 409 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 410 Idx = Builder.CreateAdd(Idx, Offs); 411 } 412 413 Value *End = ConstantInt::get(Idx->getType(), 414 FalseRangeEnd-FirstFalseElement); 415 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 416 } 417 418 // If a magic bitvector captures the entire comparison state 419 // of this load, replace it with computation that does: 420 // ((magic_cst >> i) & 1) != 0 421 { 422 Type *Ty = nullptr; 423 424 // Look for an appropriate type: 425 // - The type of Idx if the magic fits 426 // - The smallest fitting legal type 427 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 428 Ty = Idx->getType(); 429 else 430 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 431 432 if (Ty) { 433 Value *V = Builder.CreateIntCast(Idx, Ty, false); 434 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 435 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 436 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 437 } 438 } 439 440 return nullptr; 441 } 442 443 /// Return a value that can be used to compare the *offset* implied by a GEP to 444 /// zero. For example, if we have &A[i], we want to return 'i' for 445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 446 /// are involved. The above expression would also be legal to codegen as 447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 448 /// This latter form is less amenable to optimization though, and we are allowed 449 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 450 /// 451 /// If we can't emit an optimized form for this expression, this returns null. 452 /// 453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 454 const DataLayout &DL) { 455 gep_type_iterator GTI = gep_type_begin(GEP); 456 457 // Check to see if this gep only has a single variable index. If so, and if 458 // any constant indices are a multiple of its scale, then we can compute this 459 // in terms of the scale of the variable index. For example, if the GEP 460 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 461 // because the expression will cross zero at the same point. 462 unsigned i, e = GEP->getNumOperands(); 463 int64_t Offset = 0; 464 for (i = 1; i != e; ++i, ++GTI) { 465 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 466 // Compute the aggregate offset of constant indices. 467 if (CI->isZero()) continue; 468 469 // Handle a struct index, which adds its field offset to the pointer. 470 if (StructType *STy = GTI.getStructTypeOrNull()) { 471 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 472 } else { 473 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 474 Offset += Size*CI->getSExtValue(); 475 } 476 } else { 477 // Found our variable index. 478 break; 479 } 480 } 481 482 // If there are no variable indices, we must have a constant offset, just 483 // evaluate it the general way. 484 if (i == e) return nullptr; 485 486 Value *VariableIdx = GEP->getOperand(i); 487 // Determine the scale factor of the variable element. For example, this is 488 // 4 if the variable index is into an array of i32. 489 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 490 491 // Verify that there are no other variable indices. If so, emit the hard way. 492 for (++i, ++GTI; i != e; ++i, ++GTI) { 493 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 494 if (!CI) return nullptr; 495 496 // Compute the aggregate offset of constant indices. 497 if (CI->isZero()) continue; 498 499 // Handle a struct index, which adds its field offset to the pointer. 500 if (StructType *STy = GTI.getStructTypeOrNull()) { 501 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 502 } else { 503 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 504 Offset += Size*CI->getSExtValue(); 505 } 506 } 507 508 // Okay, we know we have a single variable index, which must be a 509 // pointer/array/vector index. If there is no offset, life is simple, return 510 // the index. 511 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 512 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 513 if (Offset == 0) { 514 // Cast to intptrty in case a truncation occurs. If an extension is needed, 515 // we don't need to bother extending: the extension won't affect where the 516 // computation crosses zero. 517 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 518 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 519 } 520 return VariableIdx; 521 } 522 523 // Otherwise, there is an index. The computation we will do will be modulo 524 // the pointer size. 525 Offset = SignExtend64(Offset, IntPtrWidth); 526 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 527 528 // To do this transformation, any constant index must be a multiple of the 529 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 530 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 531 // multiple of the variable scale. 532 int64_t NewOffs = Offset / (int64_t)VariableScale; 533 if (Offset != NewOffs*(int64_t)VariableScale) 534 return nullptr; 535 536 // Okay, we can do this evaluation. Start by converting the index to intptr. 537 if (VariableIdx->getType() != IntPtrTy) 538 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 539 true /*Signed*/); 540 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 541 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 542 } 543 544 /// Returns true if we can rewrite Start as a GEP with pointer Base 545 /// and some integer offset. The nodes that need to be re-written 546 /// for this transformation will be added to Explored. 547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 548 const DataLayout &DL, 549 SetVector<Value *> &Explored) { 550 SmallVector<Value *, 16> WorkList(1, Start); 551 Explored.insert(Base); 552 553 // The following traversal gives us an order which can be used 554 // when doing the final transformation. Since in the final 555 // transformation we create the PHI replacement instructions first, 556 // we don't have to get them in any particular order. 557 // 558 // However, for other instructions we will have to traverse the 559 // operands of an instruction first, which means that we have to 560 // do a post-order traversal. 561 while (!WorkList.empty()) { 562 SetVector<PHINode *> PHIs; 563 564 while (!WorkList.empty()) { 565 if (Explored.size() >= 100) 566 return false; 567 568 Value *V = WorkList.back(); 569 570 if (Explored.count(V) != 0) { 571 WorkList.pop_back(); 572 continue; 573 } 574 575 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 576 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 577 // We've found some value that we can't explore which is different from 578 // the base. Therefore we can't do this transformation. 579 return false; 580 581 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 582 auto *CI = dyn_cast<CastInst>(V); 583 if (!CI->isNoopCast(DL)) 584 return false; 585 586 if (Explored.count(CI->getOperand(0)) == 0) 587 WorkList.push_back(CI->getOperand(0)); 588 } 589 590 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 591 // We're limiting the GEP to having one index. This will preserve 592 // the original pointer type. We could handle more cases in the 593 // future. 594 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 595 GEP->getType() != Start->getType()) 596 return false; 597 598 if (Explored.count(GEP->getOperand(0)) == 0) 599 WorkList.push_back(GEP->getOperand(0)); 600 } 601 602 if (WorkList.back() == V) { 603 WorkList.pop_back(); 604 // We've finished visiting this node, mark it as such. 605 Explored.insert(V); 606 } 607 608 if (auto *PN = dyn_cast<PHINode>(V)) { 609 // We cannot transform PHIs on unsplittable basic blocks. 610 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 611 return false; 612 Explored.insert(PN); 613 PHIs.insert(PN); 614 } 615 } 616 617 // Explore the PHI nodes further. 618 for (auto *PN : PHIs) 619 for (Value *Op : PN->incoming_values()) 620 if (Explored.count(Op) == 0) 621 WorkList.push_back(Op); 622 } 623 624 // Make sure that we can do this. Since we can't insert GEPs in a basic 625 // block before a PHI node, we can't easily do this transformation if 626 // we have PHI node users of transformed instructions. 627 for (Value *Val : Explored) { 628 for (Value *Use : Val->uses()) { 629 630 auto *PHI = dyn_cast<PHINode>(Use); 631 auto *Inst = dyn_cast<Instruction>(Val); 632 633 if (Inst == Base || Inst == PHI || !Inst || !PHI || 634 Explored.count(PHI) == 0) 635 continue; 636 637 if (PHI->getParent() == Inst->getParent()) 638 return false; 639 } 640 } 641 return true; 642 } 643 644 // Sets the appropriate insert point on Builder where we can add 645 // a replacement Instruction for V (if that is possible). 646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 647 bool Before = true) { 648 if (auto *PHI = dyn_cast<PHINode>(V)) { 649 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 650 return; 651 } 652 if (auto *I = dyn_cast<Instruction>(V)) { 653 if (!Before) 654 I = &*std::next(I->getIterator()); 655 Builder.SetInsertPoint(I); 656 return; 657 } 658 if (auto *A = dyn_cast<Argument>(V)) { 659 // Set the insertion point in the entry block. 660 BasicBlock &Entry = A->getParent()->getEntryBlock(); 661 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 662 return; 663 } 664 // Otherwise, this is a constant and we don't need to set a new 665 // insertion point. 666 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 667 } 668 669 /// Returns a re-written value of Start as an indexed GEP using Base as a 670 /// pointer. 671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 672 const DataLayout &DL, 673 SetVector<Value *> &Explored) { 674 // Perform all the substitutions. This is a bit tricky because we can 675 // have cycles in our use-def chains. 676 // 1. Create the PHI nodes without any incoming values. 677 // 2. Create all the other values. 678 // 3. Add the edges for the PHI nodes. 679 // 4. Emit GEPs to get the original pointers. 680 // 5. Remove the original instructions. 681 Type *IndexType = IntegerType::get( 682 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 683 684 DenseMap<Value *, Value *> NewInsts; 685 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 686 687 // Create the new PHI nodes, without adding any incoming values. 688 for (Value *Val : Explored) { 689 if (Val == Base) 690 continue; 691 // Create empty phi nodes. This avoids cyclic dependencies when creating 692 // the remaining instructions. 693 if (auto *PHI = dyn_cast<PHINode>(Val)) 694 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 695 PHI->getName() + ".idx", PHI); 696 } 697 IRBuilder<> Builder(Base->getContext()); 698 699 // Create all the other instructions. 700 for (Value *Val : Explored) { 701 702 if (NewInsts.find(Val) != NewInsts.end()) 703 continue; 704 705 if (auto *CI = dyn_cast<CastInst>(Val)) { 706 // Don't get rid of the intermediate variable here; the store can grow 707 // the map which will invalidate the reference to the input value. 708 Value *V = NewInsts[CI->getOperand(0)]; 709 NewInsts[CI] = V; 710 continue; 711 } 712 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 713 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 714 : GEP->getOperand(1); 715 setInsertionPoint(Builder, GEP); 716 // Indices might need to be sign extended. GEPs will magically do 717 // this, but we need to do it ourselves here. 718 if (Index->getType()->getScalarSizeInBits() != 719 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 720 Index = Builder.CreateSExtOrTrunc( 721 Index, NewInsts[GEP->getOperand(0)]->getType(), 722 GEP->getOperand(0)->getName() + ".sext"); 723 } 724 725 auto *Op = NewInsts[GEP->getOperand(0)]; 726 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 727 NewInsts[GEP] = Index; 728 else 729 NewInsts[GEP] = Builder.CreateNSWAdd( 730 Op, Index, GEP->getOperand(0)->getName() + ".add"); 731 continue; 732 } 733 if (isa<PHINode>(Val)) 734 continue; 735 736 llvm_unreachable("Unexpected instruction type"); 737 } 738 739 // Add the incoming values to the PHI nodes. 740 for (Value *Val : Explored) { 741 if (Val == Base) 742 continue; 743 // All the instructions have been created, we can now add edges to the 744 // phi nodes. 745 if (auto *PHI = dyn_cast<PHINode>(Val)) { 746 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 747 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 748 Value *NewIncoming = PHI->getIncomingValue(I); 749 750 if (NewInsts.find(NewIncoming) != NewInsts.end()) 751 NewIncoming = NewInsts[NewIncoming]; 752 753 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 754 } 755 } 756 } 757 758 for (Value *Val : Explored) { 759 if (Val == Base) 760 continue; 761 762 // Depending on the type, for external users we have to emit 763 // a GEP or a GEP + ptrtoint. 764 setInsertionPoint(Builder, Val, false); 765 766 // If required, create an inttoptr instruction for Base. 767 Value *NewBase = Base; 768 if (!Base->getType()->isPointerTy()) 769 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 770 Start->getName() + "to.ptr"); 771 772 Value *GEP = Builder.CreateInBoundsGEP( 773 Start->getType()->getPointerElementType(), NewBase, 774 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 775 776 if (!Val->getType()->isPointerTy()) { 777 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 778 Val->getName() + ".conv"); 779 GEP = Cast; 780 } 781 Val->replaceAllUsesWith(GEP); 782 } 783 784 return NewInsts[Start]; 785 } 786 787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 788 /// the input Value as a constant indexed GEP. Returns a pair containing 789 /// the GEPs Pointer and Index. 790 static std::pair<Value *, Value *> 791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 792 Type *IndexType = IntegerType::get(V->getContext(), 793 DL.getIndexTypeSizeInBits(V->getType())); 794 795 Constant *Index = ConstantInt::getNullValue(IndexType); 796 while (true) { 797 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 798 // We accept only inbouds GEPs here to exclude the possibility of 799 // overflow. 800 if (!GEP->isInBounds()) 801 break; 802 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 803 GEP->getType() == V->getType()) { 804 V = GEP->getOperand(0); 805 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 806 Index = ConstantExpr::getAdd( 807 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 808 continue; 809 } 810 break; 811 } 812 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 813 if (!CI->isNoopCast(DL)) 814 break; 815 V = CI->getOperand(0); 816 continue; 817 } 818 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 819 if (!CI->isNoopCast(DL)) 820 break; 821 V = CI->getOperand(0); 822 continue; 823 } 824 break; 825 } 826 return {V, Index}; 827 } 828 829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 830 /// We can look through PHIs, GEPs and casts in order to determine a common base 831 /// between GEPLHS and RHS. 832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 833 ICmpInst::Predicate Cond, 834 const DataLayout &DL) { 835 if (!GEPLHS->hasAllConstantIndices()) 836 return nullptr; 837 838 // Make sure the pointers have the same type. 839 if (GEPLHS->getType() != RHS->getType()) 840 return nullptr; 841 842 Value *PtrBase, *Index; 843 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 844 845 // The set of nodes that will take part in this transformation. 846 SetVector<Value *> Nodes; 847 848 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 849 return nullptr; 850 851 // We know we can re-write this as 852 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 853 // Since we've only looked through inbouds GEPs we know that we 854 // can't have overflow on either side. We can therefore re-write 855 // this as: 856 // OFFSET1 cmp OFFSET2 857 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 858 859 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 860 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 861 // offset. Since Index is the offset of LHS to the base pointer, we will now 862 // compare the offsets instead of comparing the pointers. 863 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 864 } 865 866 /// Fold comparisons between a GEP instruction and something else. At this point 867 /// we know that the GEP is on the LHS of the comparison. 868 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 869 ICmpInst::Predicate Cond, 870 Instruction &I) { 871 // Don't transform signed compares of GEPs into index compares. Even if the 872 // GEP is inbounds, the final add of the base pointer can have signed overflow 873 // and would change the result of the icmp. 874 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 875 // the maximum signed value for the pointer type. 876 if (ICmpInst::isSigned(Cond)) 877 return nullptr; 878 879 // Look through bitcasts and addrspacecasts. We do not however want to remove 880 // 0 GEPs. 881 if (!isa<GetElementPtrInst>(RHS)) 882 RHS = RHS->stripPointerCasts(); 883 884 Value *PtrBase = GEPLHS->getOperand(0); 885 if (PtrBase == RHS && GEPLHS->isInBounds()) { 886 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 887 // This transformation (ignoring the base and scales) is valid because we 888 // know pointers can't overflow since the gep is inbounds. See if we can 889 // output an optimized form. 890 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 891 892 // If not, synthesize the offset the hard way. 893 if (!Offset) 894 Offset = EmitGEPOffset(GEPLHS); 895 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 896 Constant::getNullValue(Offset->getType())); 897 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 898 // If the base pointers are different, but the indices are the same, just 899 // compare the base pointer. 900 if (PtrBase != GEPRHS->getOperand(0)) { 901 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 902 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 903 GEPRHS->getOperand(0)->getType(); 904 if (IndicesTheSame) 905 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 906 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 907 IndicesTheSame = false; 908 break; 909 } 910 911 // If all indices are the same, just compare the base pointers. 912 Type *BaseType = GEPLHS->getOperand(0)->getType(); 913 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 914 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 915 916 // If we're comparing GEPs with two base pointers that only differ in type 917 // and both GEPs have only constant indices or just one use, then fold 918 // the compare with the adjusted indices. 919 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 920 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 921 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 922 PtrBase->stripPointerCasts() == 923 GEPRHS->getOperand(0)->stripPointerCasts()) { 924 Value *LOffset = EmitGEPOffset(GEPLHS); 925 Value *ROffset = EmitGEPOffset(GEPRHS); 926 927 // If we looked through an addrspacecast between different sized address 928 // spaces, the LHS and RHS pointers are different sized 929 // integers. Truncate to the smaller one. 930 Type *LHSIndexTy = LOffset->getType(); 931 Type *RHSIndexTy = ROffset->getType(); 932 if (LHSIndexTy != RHSIndexTy) { 933 if (LHSIndexTy->getPrimitiveSizeInBits() < 934 RHSIndexTy->getPrimitiveSizeInBits()) { 935 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 936 } else 937 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 938 } 939 940 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 941 LOffset, ROffset); 942 return replaceInstUsesWith(I, Cmp); 943 } 944 945 // Otherwise, the base pointers are different and the indices are 946 // different. Try convert this to an indexed compare by looking through 947 // PHIs/casts. 948 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 949 } 950 951 // If one of the GEPs has all zero indices, recurse. 952 if (GEPLHS->hasAllZeroIndices()) 953 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 954 ICmpInst::getSwappedPredicate(Cond), I); 955 956 // If the other GEP has all zero indices, recurse. 957 if (GEPRHS->hasAllZeroIndices()) 958 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 959 960 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 961 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 962 // If the GEPs only differ by one index, compare it. 963 unsigned NumDifferences = 0; // Keep track of # differences. 964 unsigned DiffOperand = 0; // The operand that differs. 965 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 966 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 967 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 968 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 969 // Irreconcilable differences. 970 NumDifferences = 2; 971 break; 972 } else { 973 if (NumDifferences++) break; 974 DiffOperand = i; 975 } 976 } 977 978 if (NumDifferences == 0) // SAME GEP? 979 return replaceInstUsesWith(I, // No comparison is needed here. 980 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 981 982 else if (NumDifferences == 1 && GEPsInBounds) { 983 Value *LHSV = GEPLHS->getOperand(DiffOperand); 984 Value *RHSV = GEPRHS->getOperand(DiffOperand); 985 // Make sure we do a signed comparison here. 986 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 987 } 988 } 989 990 // Only lower this if the icmp is the only user of the GEP or if we expect 991 // the result to fold to a constant! 992 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 993 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 994 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 995 Value *L = EmitGEPOffset(GEPLHS); 996 Value *R = EmitGEPOffset(GEPRHS); 997 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 998 } 999 } 1000 1001 // Try convert this to an indexed compare by looking through PHIs/casts as a 1002 // last resort. 1003 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1004 } 1005 1006 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1007 const AllocaInst *Alloca, 1008 const Value *Other) { 1009 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1010 1011 // It would be tempting to fold away comparisons between allocas and any 1012 // pointer not based on that alloca (e.g. an argument). However, even 1013 // though such pointers cannot alias, they can still compare equal. 1014 // 1015 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1016 // doesn't escape we can argue that it's impossible to guess its value, and we 1017 // can therefore act as if any such guesses are wrong. 1018 // 1019 // The code below checks that the alloca doesn't escape, and that it's only 1020 // used in a comparison once (the current instruction). The 1021 // single-comparison-use condition ensures that we're trivially folding all 1022 // comparisons against the alloca consistently, and avoids the risk of 1023 // erroneously folding a comparison of the pointer with itself. 1024 1025 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1026 1027 SmallVector<const Use *, 32> Worklist; 1028 for (const Use &U : Alloca->uses()) { 1029 if (Worklist.size() >= MaxIter) 1030 return nullptr; 1031 Worklist.push_back(&U); 1032 } 1033 1034 unsigned NumCmps = 0; 1035 while (!Worklist.empty()) { 1036 assert(Worklist.size() <= MaxIter); 1037 const Use *U = Worklist.pop_back_val(); 1038 const Value *V = U->getUser(); 1039 --MaxIter; 1040 1041 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1042 isa<SelectInst>(V)) { 1043 // Track the uses. 1044 } else if (isa<LoadInst>(V)) { 1045 // Loading from the pointer doesn't escape it. 1046 continue; 1047 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1048 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1049 if (SI->getValueOperand() == U->get()) 1050 return nullptr; 1051 continue; 1052 } else if (isa<ICmpInst>(V)) { 1053 if (NumCmps++) 1054 return nullptr; // Found more than one cmp. 1055 continue; 1056 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1057 switch (Intrin->getIntrinsicID()) { 1058 // These intrinsics don't escape or compare the pointer. Memset is safe 1059 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1060 // we don't allow stores, so src cannot point to V. 1061 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1062 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1063 continue; 1064 default: 1065 return nullptr; 1066 } 1067 } else { 1068 return nullptr; 1069 } 1070 for (const Use &U : V->uses()) { 1071 if (Worklist.size() >= MaxIter) 1072 return nullptr; 1073 Worklist.push_back(&U); 1074 } 1075 } 1076 1077 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1078 return replaceInstUsesWith( 1079 ICI, 1080 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1081 } 1082 1083 /// Fold "icmp pred (X+C), X". 1084 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1085 ICmpInst::Predicate Pred) { 1086 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1087 // so the values can never be equal. Similarly for all other "or equals" 1088 // operators. 1089 assert(!!C && "C should not be zero!"); 1090 1091 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1092 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1093 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1094 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1095 Constant *R = ConstantInt::get(X->getType(), 1096 APInt::getMaxValue(C.getBitWidth()) - C); 1097 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1098 } 1099 1100 // (X+1) >u X --> X <u (0-1) --> X != 255 1101 // (X+2) >u X --> X <u (0-2) --> X <u 254 1102 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1103 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1104 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1105 ConstantInt::get(X->getType(), -C)); 1106 1107 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1108 1109 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1110 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1111 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1112 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1113 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1114 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1115 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1116 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1117 ConstantInt::get(X->getType(), SMax - C)); 1118 1119 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1120 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1121 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1122 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1123 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1124 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1125 1126 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1127 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1128 ConstantInt::get(X->getType(), SMax - (C - 1))); 1129 } 1130 1131 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1132 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1133 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1134 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1135 const APInt &AP1, 1136 const APInt &AP2) { 1137 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1138 1139 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1140 if (I.getPredicate() == I.ICMP_NE) 1141 Pred = CmpInst::getInversePredicate(Pred); 1142 return new ICmpInst(Pred, LHS, RHS); 1143 }; 1144 1145 // Don't bother doing any work for cases which InstSimplify handles. 1146 if (AP2.isNullValue()) 1147 return nullptr; 1148 1149 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1150 if (IsAShr) { 1151 if (AP2.isAllOnesValue()) 1152 return nullptr; 1153 if (AP2.isNegative() != AP1.isNegative()) 1154 return nullptr; 1155 if (AP2.sgt(AP1)) 1156 return nullptr; 1157 } 1158 1159 if (!AP1) 1160 // 'A' must be large enough to shift out the highest set bit. 1161 return getICmp(I.ICMP_UGT, A, 1162 ConstantInt::get(A->getType(), AP2.logBase2())); 1163 1164 if (AP1 == AP2) 1165 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1166 1167 int Shift; 1168 if (IsAShr && AP1.isNegative()) 1169 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1170 else 1171 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1172 1173 if (Shift > 0) { 1174 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1175 // There are multiple solutions if we are comparing against -1 and the LHS 1176 // of the ashr is not a power of two. 1177 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1178 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1179 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1180 } else if (AP1 == AP2.lshr(Shift)) { 1181 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1182 } 1183 } 1184 1185 // Shifting const2 will never be equal to const1. 1186 // FIXME: This should always be handled by InstSimplify? 1187 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1188 return replaceInstUsesWith(I, TorF); 1189 } 1190 1191 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1192 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1193 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1194 const APInt &AP1, 1195 const APInt &AP2) { 1196 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1197 1198 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1199 if (I.getPredicate() == I.ICMP_NE) 1200 Pred = CmpInst::getInversePredicate(Pred); 1201 return new ICmpInst(Pred, LHS, RHS); 1202 }; 1203 1204 // Don't bother doing any work for cases which InstSimplify handles. 1205 if (AP2.isNullValue()) 1206 return nullptr; 1207 1208 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1209 1210 if (!AP1 && AP2TrailingZeros != 0) 1211 return getICmp( 1212 I.ICMP_UGE, A, 1213 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1214 1215 if (AP1 == AP2) 1216 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1217 1218 // Get the distance between the lowest bits that are set. 1219 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1220 1221 if (Shift > 0 && AP2.shl(Shift) == AP1) 1222 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1223 1224 // Shifting const2 will never be equal to const1. 1225 // FIXME: This should always be handled by InstSimplify? 1226 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1227 return replaceInstUsesWith(I, TorF); 1228 } 1229 1230 /// The caller has matched a pattern of the form: 1231 /// I = icmp ugt (add (add A, B), CI2), CI1 1232 /// If this is of the form: 1233 /// sum = a + b 1234 /// if (sum+128 >u 255) 1235 /// Then replace it with llvm.sadd.with.overflow.i8. 1236 /// 1237 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1238 ConstantInt *CI2, ConstantInt *CI1, 1239 InstCombiner &IC) { 1240 // The transformation we're trying to do here is to transform this into an 1241 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1242 // with a narrower add, and discard the add-with-constant that is part of the 1243 // range check (if we can't eliminate it, this isn't profitable). 1244 1245 // In order to eliminate the add-with-constant, the compare can be its only 1246 // use. 1247 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1248 if (!AddWithCst->hasOneUse()) 1249 return nullptr; 1250 1251 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1252 if (!CI2->getValue().isPowerOf2()) 1253 return nullptr; 1254 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1255 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1256 return nullptr; 1257 1258 // The width of the new add formed is 1 more than the bias. 1259 ++NewWidth; 1260 1261 // Check to see that CI1 is an all-ones value with NewWidth bits. 1262 if (CI1->getBitWidth() == NewWidth || 1263 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1264 return nullptr; 1265 1266 // This is only really a signed overflow check if the inputs have been 1267 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1268 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1269 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1270 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1271 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1272 return nullptr; 1273 1274 // In order to replace the original add with a narrower 1275 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1276 // and truncates that discard the high bits of the add. Verify that this is 1277 // the case. 1278 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1279 for (User *U : OrigAdd->users()) { 1280 if (U == AddWithCst) 1281 continue; 1282 1283 // Only accept truncates for now. We would really like a nice recursive 1284 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1285 // chain to see which bits of a value are actually demanded. If the 1286 // original add had another add which was then immediately truncated, we 1287 // could still do the transformation. 1288 TruncInst *TI = dyn_cast<TruncInst>(U); 1289 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1290 return nullptr; 1291 } 1292 1293 // If the pattern matches, truncate the inputs to the narrower type and 1294 // use the sadd_with_overflow intrinsic to efficiently compute both the 1295 // result and the overflow bit. 1296 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1297 Function *F = Intrinsic::getDeclaration( 1298 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1299 1300 InstCombiner::BuilderTy &Builder = IC.Builder; 1301 1302 // Put the new code above the original add, in case there are any uses of the 1303 // add between the add and the compare. 1304 Builder.SetInsertPoint(OrigAdd); 1305 1306 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1307 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1308 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1309 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1310 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1311 1312 // The inner add was the result of the narrow add, zero extended to the 1313 // wider type. Replace it with the result computed by the intrinsic. 1314 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1315 1316 // The original icmp gets replaced with the overflow value. 1317 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1318 } 1319 1320 /// If we have: 1321 /// icmp eq/ne (urem/srem %x, %y), 0 1322 /// iff %y is a power-of-two, we can replace this with a bit test: 1323 /// icmp eq/ne (and %x, (add %y, -1)), 0 1324 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1325 // This fold is only valid for equality predicates. 1326 if (!I.isEquality()) 1327 return nullptr; 1328 ICmpInst::Predicate Pred; 1329 Value *X, *Y, *Zero; 1330 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1331 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1332 return nullptr; 1333 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1334 return nullptr; 1335 // This may increase instruction count, we don't enforce that Y is a constant. 1336 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1337 Value *Masked = Builder.CreateAnd(X, Mask); 1338 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1339 } 1340 1341 // Handle icmp pred X, 0 1342 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1343 CmpInst::Predicate Pred = Cmp.getPredicate(); 1344 if (!match(Cmp.getOperand(1), m_Zero())) 1345 return nullptr; 1346 1347 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1348 if (Pred == ICmpInst::ICMP_SGT) { 1349 Value *A, *B; 1350 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1351 if (SPR.Flavor == SPF_SMIN) { 1352 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1353 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1354 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1355 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1356 } 1357 } 1358 1359 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1360 return New; 1361 1362 // Given: 1363 // icmp eq/ne (urem %x, %y), 0 1364 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1365 // icmp eq/ne %x, 0 1366 Value *X, *Y; 1367 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1368 ICmpInst::isEquality(Pred)) { 1369 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1370 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1371 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1372 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1373 } 1374 1375 return nullptr; 1376 } 1377 1378 /// Fold icmp Pred X, C. 1379 /// TODO: This code structure does not make sense. The saturating add fold 1380 /// should be moved to some other helper and extended as noted below (it is also 1381 /// possible that code has been made unnecessary - do we canonicalize IR to 1382 /// overflow/saturating intrinsics or not?). 1383 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1384 // Match the following pattern, which is a common idiom when writing 1385 // overflow-safe integer arithmetic functions. The source performs an addition 1386 // in wider type and explicitly checks for overflow using comparisons against 1387 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1388 // 1389 // TODO: This could probably be generalized to handle other overflow-safe 1390 // operations if we worked out the formulas to compute the appropriate magic 1391 // constants. 1392 // 1393 // sum = a + b 1394 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1395 CmpInst::Predicate Pred = Cmp.getPredicate(); 1396 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1397 Value *A, *B; 1398 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1399 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1400 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1401 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1402 return Res; 1403 1404 return nullptr; 1405 } 1406 1407 /// Canonicalize icmp instructions based on dominating conditions. 1408 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1409 // This is a cheap/incomplete check for dominance - just match a single 1410 // predecessor with a conditional branch. 1411 BasicBlock *CmpBB = Cmp.getParent(); 1412 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1413 if (!DomBB) 1414 return nullptr; 1415 1416 Value *DomCond; 1417 BasicBlock *TrueBB, *FalseBB; 1418 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1419 return nullptr; 1420 1421 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1422 "Predecessor block does not point to successor?"); 1423 1424 // The branch should get simplified. Don't bother simplifying this condition. 1425 if (TrueBB == FalseBB) 1426 return nullptr; 1427 1428 // Try to simplify this compare to T/F based on the dominating condition. 1429 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1430 if (Imp) 1431 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1432 1433 CmpInst::Predicate Pred = Cmp.getPredicate(); 1434 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1435 ICmpInst::Predicate DomPred; 1436 const APInt *C, *DomC; 1437 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1438 match(Y, m_APInt(C))) { 1439 // We have 2 compares of a variable with constants. Calculate the constant 1440 // ranges of those compares to see if we can transform the 2nd compare: 1441 // DomBB: 1442 // DomCond = icmp DomPred X, DomC 1443 // br DomCond, CmpBB, FalseBB 1444 // CmpBB: 1445 // Cmp = icmp Pred X, C 1446 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1447 ConstantRange DominatingCR = 1448 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1449 : ConstantRange::makeExactICmpRegion( 1450 CmpInst::getInversePredicate(DomPred), *DomC); 1451 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1452 ConstantRange Difference = DominatingCR.difference(CR); 1453 if (Intersection.isEmptySet()) 1454 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1455 if (Difference.isEmptySet()) 1456 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1457 1458 // Canonicalizing a sign bit comparison that gets used in a branch, 1459 // pessimizes codegen by generating branch on zero instruction instead 1460 // of a test and branch. So we avoid canonicalizing in such situations 1461 // because test and branch instruction has better branch displacement 1462 // than compare and branch instruction. 1463 bool UnusedBit; 1464 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1465 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1466 return nullptr; 1467 1468 if (const APInt *EqC = Intersection.getSingleElement()) 1469 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1470 if (const APInt *NeC = Difference.getSingleElement()) 1471 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1472 } 1473 1474 return nullptr; 1475 } 1476 1477 /// Fold icmp (trunc X, Y), C. 1478 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1479 TruncInst *Trunc, 1480 const APInt &C) { 1481 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1482 Value *X = Trunc->getOperand(0); 1483 if (C.isOneValue() && C.getBitWidth() > 1) { 1484 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1485 Value *V = nullptr; 1486 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1487 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1488 ConstantInt::get(V->getType(), 1)); 1489 } 1490 1491 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1492 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1493 // of the high bits truncated out of x are known. 1494 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1495 SrcBits = X->getType()->getScalarSizeInBits(); 1496 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1497 1498 // If all the high bits are known, we can do this xform. 1499 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1500 // Pull in the high bits from known-ones set. 1501 APInt NewRHS = C.zext(SrcBits); 1502 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1503 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1504 } 1505 } 1506 1507 return nullptr; 1508 } 1509 1510 /// Fold icmp (xor X, Y), C. 1511 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1512 BinaryOperator *Xor, 1513 const APInt &C) { 1514 Value *X = Xor->getOperand(0); 1515 Value *Y = Xor->getOperand(1); 1516 const APInt *XorC; 1517 if (!match(Y, m_APInt(XorC))) 1518 return nullptr; 1519 1520 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1521 // fold the xor. 1522 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1523 bool TrueIfSigned = false; 1524 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1525 1526 // If the sign bit of the XorCst is not set, there is no change to 1527 // the operation, just stop using the Xor. 1528 if (!XorC->isNegative()) { 1529 Cmp.setOperand(0, X); 1530 Worklist.Add(Xor); 1531 return &Cmp; 1532 } 1533 1534 // Emit the opposite comparison. 1535 if (TrueIfSigned) 1536 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1537 ConstantInt::getAllOnesValue(X->getType())); 1538 else 1539 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1540 ConstantInt::getNullValue(X->getType())); 1541 } 1542 1543 if (Xor->hasOneUse()) { 1544 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1545 if (!Cmp.isEquality() && XorC->isSignMask()) { 1546 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1547 : Cmp.getSignedPredicate(); 1548 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1549 } 1550 1551 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1552 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1553 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1554 : Cmp.getSignedPredicate(); 1555 Pred = Cmp.getSwappedPredicate(Pred); 1556 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1557 } 1558 } 1559 1560 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1561 if (Pred == ICmpInst::ICMP_UGT) { 1562 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1563 if (*XorC == ~C && (C + 1).isPowerOf2()) 1564 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1565 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1566 if (*XorC == C && (C + 1).isPowerOf2()) 1567 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1568 } 1569 if (Pred == ICmpInst::ICMP_ULT) { 1570 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1571 if (*XorC == -C && C.isPowerOf2()) 1572 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1573 ConstantInt::get(X->getType(), ~C)); 1574 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1575 if (*XorC == C && (-C).isPowerOf2()) 1576 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1577 ConstantInt::get(X->getType(), ~C)); 1578 } 1579 return nullptr; 1580 } 1581 1582 /// Fold icmp (and (sh X, Y), C2), C1. 1583 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1584 const APInt &C1, const APInt &C2) { 1585 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1586 if (!Shift || !Shift->isShift()) 1587 return nullptr; 1588 1589 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1590 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1591 // code produced by the clang front-end, for bitfield access. 1592 // This seemingly simple opportunity to fold away a shift turns out to be 1593 // rather complicated. See PR17827 for details. 1594 unsigned ShiftOpcode = Shift->getOpcode(); 1595 bool IsShl = ShiftOpcode == Instruction::Shl; 1596 const APInt *C3; 1597 if (match(Shift->getOperand(1), m_APInt(C3))) { 1598 bool CanFold = false; 1599 if (ShiftOpcode == Instruction::Shl) { 1600 // For a left shift, we can fold if the comparison is not signed. We can 1601 // also fold a signed comparison if the mask value and comparison value 1602 // are not negative. These constraints may not be obvious, but we can 1603 // prove that they are correct using an SMT solver. 1604 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) 1605 CanFold = true; 1606 } else { 1607 bool IsAshr = ShiftOpcode == Instruction::AShr; 1608 // For a logical right shift, we can fold if the comparison is not signed. 1609 // We can also fold a signed comparison if the shifted mask value and the 1610 // shifted comparison value are not negative. These constraints may not be 1611 // obvious, but we can prove that they are correct using an SMT solver. 1612 // For an arithmetic shift right we can do the same, if we ensure 1613 // the And doesn't use any bits being shifted in. Normally these would 1614 // be turned into lshr by SimplifyDemandedBits, but not if there is an 1615 // additional user. 1616 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { 1617 if (!Cmp.isSigned() || 1618 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) 1619 CanFold = true; 1620 } 1621 } 1622 1623 if (CanFold) { 1624 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); 1625 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1626 // Check to see if we are shifting out any of the bits being compared. 1627 if (SameAsC1 != C1) { 1628 // If we shifted bits out, the fold is not going to work out. As a 1629 // special case, check to see if this means that the result is always 1630 // true or false now. 1631 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1632 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1633 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1634 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1635 } else { 1636 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1637 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); 1638 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1639 And->setOperand(0, Shift->getOperand(0)); 1640 Worklist.Add(Shift); // Shift is dead. 1641 return &Cmp; 1642 } 1643 } 1644 } 1645 1646 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1647 // preferable because it allows the C2 << Y expression to be hoisted out of a 1648 // loop if Y is invariant and X is not. 1649 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1650 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1651 // Compute C2 << Y. 1652 Value *NewShift = 1653 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1654 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1655 1656 // Compute X & (C2 << Y). 1657 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1658 Cmp.setOperand(0, NewAnd); 1659 return &Cmp; 1660 } 1661 1662 return nullptr; 1663 } 1664 1665 /// Fold icmp (and X, C2), C1. 1666 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1667 BinaryOperator *And, 1668 const APInt &C1) { 1669 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1670 1671 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1672 // TODO: We canonicalize to the longer form for scalars because we have 1673 // better analysis/folds for icmp, and codegen may be better with icmp. 1674 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1675 match(And->getOperand(1), m_One())) 1676 return new TruncInst(And->getOperand(0), Cmp.getType()); 1677 1678 const APInt *C2; 1679 Value *X; 1680 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1681 return nullptr; 1682 1683 // Don't perform the following transforms if the AND has multiple uses 1684 if (!And->hasOneUse()) 1685 return nullptr; 1686 1687 if (Cmp.isEquality() && C1.isNullValue()) { 1688 // Restrict this fold to single-use 'and' (PR10267). 1689 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1690 if (C2->isSignMask()) { 1691 Constant *Zero = Constant::getNullValue(X->getType()); 1692 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1693 return new ICmpInst(NewPred, X, Zero); 1694 } 1695 1696 // Restrict this fold only for single-use 'and' (PR10267). 1697 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1698 if ((~(*C2) + 1).isPowerOf2()) { 1699 Constant *NegBOC = 1700 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1701 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1702 return new ICmpInst(NewPred, X, NegBOC); 1703 } 1704 } 1705 1706 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1707 // the input width without changing the value produced, eliminate the cast: 1708 // 1709 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1710 // 1711 // We can do this transformation if the constants do not have their sign bits 1712 // set or if it is an equality comparison. Extending a relational comparison 1713 // when we're checking the sign bit would not work. 1714 Value *W; 1715 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1716 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1717 // TODO: Is this a good transform for vectors? Wider types may reduce 1718 // throughput. Should this transform be limited (even for scalars) by using 1719 // shouldChangeType()? 1720 if (!Cmp.getType()->isVectorTy()) { 1721 Type *WideType = W->getType(); 1722 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1723 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1724 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1725 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1726 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1727 } 1728 } 1729 1730 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1731 return I; 1732 1733 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1734 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1735 // 1736 // iff pred isn't signed 1737 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1738 match(And->getOperand(1), m_One())) { 1739 Constant *One = cast<Constant>(And->getOperand(1)); 1740 Value *Or = And->getOperand(0); 1741 Value *A, *B, *LShr; 1742 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1743 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1744 unsigned UsesRemoved = 0; 1745 if (And->hasOneUse()) 1746 ++UsesRemoved; 1747 if (Or->hasOneUse()) 1748 ++UsesRemoved; 1749 if (LShr->hasOneUse()) 1750 ++UsesRemoved; 1751 1752 // Compute A & ((1 << B) | 1) 1753 Value *NewOr = nullptr; 1754 if (auto *C = dyn_cast<Constant>(B)) { 1755 if (UsesRemoved >= 1) 1756 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1757 } else { 1758 if (UsesRemoved >= 3) 1759 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1760 /*HasNUW=*/true), 1761 One, Or->getName()); 1762 } 1763 if (NewOr) { 1764 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1765 Cmp.setOperand(0, NewAnd); 1766 return &Cmp; 1767 } 1768 } 1769 } 1770 1771 return nullptr; 1772 } 1773 1774 /// Fold icmp (and X, Y), C. 1775 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1776 BinaryOperator *And, 1777 const APInt &C) { 1778 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1779 return I; 1780 1781 // TODO: These all require that Y is constant too, so refactor with the above. 1782 1783 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1784 Value *X = And->getOperand(0); 1785 Value *Y = And->getOperand(1); 1786 if (auto *LI = dyn_cast<LoadInst>(X)) 1787 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1788 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1789 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1790 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1791 ConstantInt *C2 = cast<ConstantInt>(Y); 1792 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1793 return Res; 1794 } 1795 1796 if (!Cmp.isEquality()) 1797 return nullptr; 1798 1799 // X & -C == -C -> X > u ~C 1800 // X & -C != -C -> X <= u ~C 1801 // iff C is a power of 2 1802 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1803 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1804 : CmpInst::ICMP_ULE; 1805 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1806 } 1807 1808 // (X & C2) == 0 -> (trunc X) >= 0 1809 // (X & C2) != 0 -> (trunc X) < 0 1810 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1811 const APInt *C2; 1812 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1813 int32_t ExactLogBase2 = C2->exactLogBase2(); 1814 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1815 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1816 if (And->getType()->isVectorTy()) 1817 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1818 Value *Trunc = Builder.CreateTrunc(X, NTy); 1819 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1820 : CmpInst::ICMP_SLT; 1821 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1822 } 1823 } 1824 1825 return nullptr; 1826 } 1827 1828 /// Fold icmp (or X, Y), C. 1829 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1830 const APInt &C) { 1831 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1832 if (C.isOneValue()) { 1833 // icmp slt signum(V) 1 --> icmp slt V, 1 1834 Value *V = nullptr; 1835 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1836 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1837 ConstantInt::get(V->getType(), 1)); 1838 } 1839 1840 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1841 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) { 1842 // X | C == C --> X <=u C 1843 // X | C != C --> X >u C 1844 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1845 if ((C + 1).isPowerOf2()) { 1846 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1847 return new ICmpInst(Pred, OrOp0, OrOp1); 1848 } 1849 // More general: are all bits outside of a mask constant set or not set? 1850 // X | C == C --> (X & ~C) == 0 1851 // X | C != C --> (X & ~C) != 0 1852 if (Or->hasOneUse()) { 1853 Value *A = Builder.CreateAnd(OrOp0, ~C); 1854 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType())); 1855 } 1856 } 1857 1858 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1859 return nullptr; 1860 1861 Value *P, *Q; 1862 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1863 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1864 // -> and (icmp eq P, null), (icmp eq Q, null). 1865 Value *CmpP = 1866 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1867 Value *CmpQ = 1868 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1869 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1870 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1871 } 1872 1873 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1874 // a shorter form that has more potential to be folded even further. 1875 Value *X1, *X2, *X3, *X4; 1876 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1877 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1878 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1879 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1880 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1881 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1882 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1883 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1884 } 1885 1886 return nullptr; 1887 } 1888 1889 /// Fold icmp (mul X, Y), C. 1890 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1891 BinaryOperator *Mul, 1892 const APInt &C) { 1893 const APInt *MulC; 1894 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1895 return nullptr; 1896 1897 // If this is a test of the sign bit and the multiply is sign-preserving with 1898 // a constant operand, use the multiply LHS operand instead. 1899 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1900 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1901 if (MulC->isNegative()) 1902 Pred = ICmpInst::getSwappedPredicate(Pred); 1903 return new ICmpInst(Pred, Mul->getOperand(0), 1904 Constant::getNullValue(Mul->getType())); 1905 } 1906 1907 return nullptr; 1908 } 1909 1910 /// Fold icmp (shl 1, Y), C. 1911 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1912 const APInt &C) { 1913 Value *Y; 1914 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1915 return nullptr; 1916 1917 Type *ShiftType = Shl->getType(); 1918 unsigned TypeBits = C.getBitWidth(); 1919 bool CIsPowerOf2 = C.isPowerOf2(); 1920 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1921 if (Cmp.isUnsigned()) { 1922 // (1 << Y) pred C -> Y pred Log2(C) 1923 if (!CIsPowerOf2) { 1924 // (1 << Y) < 30 -> Y <= 4 1925 // (1 << Y) <= 30 -> Y <= 4 1926 // (1 << Y) >= 30 -> Y > 4 1927 // (1 << Y) > 30 -> Y > 4 1928 if (Pred == ICmpInst::ICMP_ULT) 1929 Pred = ICmpInst::ICMP_ULE; 1930 else if (Pred == ICmpInst::ICMP_UGE) 1931 Pred = ICmpInst::ICMP_UGT; 1932 } 1933 1934 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1935 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1936 unsigned CLog2 = C.logBase2(); 1937 if (CLog2 == TypeBits - 1) { 1938 if (Pred == ICmpInst::ICMP_UGE) 1939 Pred = ICmpInst::ICMP_EQ; 1940 else if (Pred == ICmpInst::ICMP_ULT) 1941 Pred = ICmpInst::ICMP_NE; 1942 } 1943 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1944 } else if (Cmp.isSigned()) { 1945 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1946 if (C.isAllOnesValue()) { 1947 // (1 << Y) <= -1 -> Y == 31 1948 if (Pred == ICmpInst::ICMP_SLE) 1949 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1950 1951 // (1 << Y) > -1 -> Y != 31 1952 if (Pred == ICmpInst::ICMP_SGT) 1953 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1954 } else if (!C) { 1955 // (1 << Y) < 0 -> Y == 31 1956 // (1 << Y) <= 0 -> Y == 31 1957 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1958 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1959 1960 // (1 << Y) >= 0 -> Y != 31 1961 // (1 << Y) > 0 -> Y != 31 1962 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1963 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1964 } 1965 } else if (Cmp.isEquality() && CIsPowerOf2) { 1966 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 1967 } 1968 1969 return nullptr; 1970 } 1971 1972 /// Fold icmp (shl X, Y), C. 1973 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 1974 BinaryOperator *Shl, 1975 const APInt &C) { 1976 const APInt *ShiftVal; 1977 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 1978 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 1979 1980 const APInt *ShiftAmt; 1981 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 1982 return foldICmpShlOne(Cmp, Shl, C); 1983 1984 // Check that the shift amount is in range. If not, don't perform undefined 1985 // shifts. When the shift is visited, it will be simplified. 1986 unsigned TypeBits = C.getBitWidth(); 1987 if (ShiftAmt->uge(TypeBits)) 1988 return nullptr; 1989 1990 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1991 Value *X = Shl->getOperand(0); 1992 Type *ShType = Shl->getType(); 1993 1994 // NSW guarantees that we are only shifting out sign bits from the high bits, 1995 // so we can ASHR the compare constant without needing a mask and eliminate 1996 // the shift. 1997 if (Shl->hasNoSignedWrap()) { 1998 if (Pred == ICmpInst::ICMP_SGT) { 1999 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2000 APInt ShiftedC = C.ashr(*ShiftAmt); 2001 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2002 } 2003 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2004 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2005 APInt ShiftedC = C.ashr(*ShiftAmt); 2006 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2007 } 2008 if (Pred == ICmpInst::ICMP_SLT) { 2009 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2010 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2011 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2012 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2013 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2014 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2015 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2016 } 2017 // If this is a signed comparison to 0 and the shift is sign preserving, 2018 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2019 // do that if we're sure to not continue on in this function. 2020 if (isSignTest(Pred, C)) 2021 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2022 } 2023 2024 // NUW guarantees that we are only shifting out zero bits from the high bits, 2025 // so we can LSHR the compare constant without needing a mask and eliminate 2026 // the shift. 2027 if (Shl->hasNoUnsignedWrap()) { 2028 if (Pred == ICmpInst::ICMP_UGT) { 2029 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2030 APInt ShiftedC = C.lshr(*ShiftAmt); 2031 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2032 } 2033 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2034 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2035 APInt ShiftedC = C.lshr(*ShiftAmt); 2036 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2037 } 2038 if (Pred == ICmpInst::ICMP_ULT) { 2039 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2040 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2041 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2042 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2043 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2044 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2045 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2046 } 2047 } 2048 2049 if (Cmp.isEquality() && Shl->hasOneUse()) { 2050 // Strength-reduce the shift into an 'and'. 2051 Constant *Mask = ConstantInt::get( 2052 ShType, 2053 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2054 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2055 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2056 return new ICmpInst(Pred, And, LShrC); 2057 } 2058 2059 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2060 bool TrueIfSigned = false; 2061 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2062 // (X << 31) <s 0 --> (X & 1) != 0 2063 Constant *Mask = ConstantInt::get( 2064 ShType, 2065 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2066 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2067 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2068 And, Constant::getNullValue(ShType)); 2069 } 2070 2071 // Simplify 'shl' inequality test into 'and' equality test. 2072 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2073 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2074 if ((C + 1).isPowerOf2() && 2075 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2076 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2077 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2078 : ICmpInst::ICMP_NE, 2079 And, Constant::getNullValue(ShType)); 2080 } 2081 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2082 if (C.isPowerOf2() && 2083 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2084 Value *And = 2085 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2086 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2087 : ICmpInst::ICMP_NE, 2088 And, Constant::getNullValue(ShType)); 2089 } 2090 } 2091 2092 // Transform (icmp pred iM (shl iM %v, N), C) 2093 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2094 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2095 // This enables us to get rid of the shift in favor of a trunc that may be 2096 // free on the target. It has the additional benefit of comparing to a 2097 // smaller constant that may be more target-friendly. 2098 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2099 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2100 DL.isLegalInteger(TypeBits - Amt)) { 2101 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2102 if (ShType->isVectorTy()) 2103 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2104 Constant *NewC = 2105 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2106 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2107 } 2108 2109 return nullptr; 2110 } 2111 2112 /// Fold icmp ({al}shr X, Y), C. 2113 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2114 BinaryOperator *Shr, 2115 const APInt &C) { 2116 // An exact shr only shifts out zero bits, so: 2117 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2118 Value *X = Shr->getOperand(0); 2119 CmpInst::Predicate Pred = Cmp.getPredicate(); 2120 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2121 C.isNullValue()) 2122 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2123 2124 const APInt *ShiftVal; 2125 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2126 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2127 2128 const APInt *ShiftAmt; 2129 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2130 return nullptr; 2131 2132 // Check that the shift amount is in range. If not, don't perform undefined 2133 // shifts. When the shift is visited it will be simplified. 2134 unsigned TypeBits = C.getBitWidth(); 2135 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2136 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2137 return nullptr; 2138 2139 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2140 bool IsExact = Shr->isExact(); 2141 Type *ShrTy = Shr->getType(); 2142 // TODO: If we could guarantee that InstSimplify would handle all of the 2143 // constant-value-based preconditions in the folds below, then we could assert 2144 // those conditions rather than checking them. This is difficult because of 2145 // undef/poison (PR34838). 2146 if (IsAShr) { 2147 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2148 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2149 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2150 APInt ShiftedC = C.shl(ShAmtVal); 2151 if (ShiftedC.ashr(ShAmtVal) == C) 2152 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2153 } 2154 if (Pred == CmpInst::ICMP_SGT) { 2155 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2156 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2157 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2158 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2159 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2160 } 2161 } else { 2162 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2163 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2164 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2165 APInt ShiftedC = C.shl(ShAmtVal); 2166 if (ShiftedC.lshr(ShAmtVal) == C) 2167 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2168 } 2169 if (Pred == CmpInst::ICMP_UGT) { 2170 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2171 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2172 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2173 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2174 } 2175 } 2176 2177 if (!Cmp.isEquality()) 2178 return nullptr; 2179 2180 // Handle equality comparisons of shift-by-constant. 2181 2182 // If the comparison constant changes with the shift, the comparison cannot 2183 // succeed (bits of the comparison constant cannot match the shifted value). 2184 // This should be known by InstSimplify and already be folded to true/false. 2185 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2186 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2187 "Expected icmp+shr simplify did not occur."); 2188 2189 // If the bits shifted out are known zero, compare the unshifted value: 2190 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2191 if (Shr->isExact()) 2192 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2193 2194 if (Shr->hasOneUse()) { 2195 // Canonicalize the shift into an 'and': 2196 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2197 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2198 Constant *Mask = ConstantInt::get(ShrTy, Val); 2199 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2200 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2201 } 2202 2203 return nullptr; 2204 } 2205 2206 /// Fold icmp (udiv X, Y), C. 2207 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2208 BinaryOperator *UDiv, 2209 const APInt &C) { 2210 const APInt *C2; 2211 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2212 return nullptr; 2213 2214 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2215 2216 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2217 Value *Y = UDiv->getOperand(1); 2218 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2219 assert(!C.isMaxValue() && 2220 "icmp ugt X, UINT_MAX should have been simplified already."); 2221 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2222 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2223 } 2224 2225 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2226 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2227 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2228 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2229 ConstantInt::get(Y->getType(), C2->udiv(C))); 2230 } 2231 2232 return nullptr; 2233 } 2234 2235 /// Fold icmp ({su}div X, Y), C. 2236 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2237 BinaryOperator *Div, 2238 const APInt &C) { 2239 // Fold: icmp pred ([us]div X, C2), C -> range test 2240 // Fold this div into the comparison, producing a range check. 2241 // Determine, based on the divide type, what the range is being 2242 // checked. If there is an overflow on the low or high side, remember 2243 // it, otherwise compute the range [low, hi) bounding the new value. 2244 // See: InsertRangeTest above for the kinds of replacements possible. 2245 const APInt *C2; 2246 if (!match(Div->getOperand(1), m_APInt(C2))) 2247 return nullptr; 2248 2249 // FIXME: If the operand types don't match the type of the divide 2250 // then don't attempt this transform. The code below doesn't have the 2251 // logic to deal with a signed divide and an unsigned compare (and 2252 // vice versa). This is because (x /s C2) <s C produces different 2253 // results than (x /s C2) <u C or (x /u C2) <s C or even 2254 // (x /u C2) <u C. Simply casting the operands and result won't 2255 // work. :( The if statement below tests that condition and bails 2256 // if it finds it. 2257 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2258 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2259 return nullptr; 2260 2261 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2262 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2263 // division-by-constant cases should be present, we can not assert that they 2264 // have happened before we reach this icmp instruction. 2265 if (C2->isNullValue() || C2->isOneValue() || 2266 (DivIsSigned && C2->isAllOnesValue())) 2267 return nullptr; 2268 2269 // Compute Prod = C * C2. We are essentially solving an equation of 2270 // form X / C2 = C. We solve for X by multiplying C2 and C. 2271 // By solving for X, we can turn this into a range check instead of computing 2272 // a divide. 2273 APInt Prod = C * *C2; 2274 2275 // Determine if the product overflows by seeing if the product is not equal to 2276 // the divide. Make sure we do the same kind of divide as in the LHS 2277 // instruction that we're folding. 2278 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2279 2280 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2281 2282 // If the division is known to be exact, then there is no remainder from the 2283 // divide, so the covered range size is unit, otherwise it is the divisor. 2284 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2285 2286 // Figure out the interval that is being checked. For example, a comparison 2287 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2288 // Compute this interval based on the constants involved and the signedness of 2289 // the compare/divide. This computes a half-open interval, keeping track of 2290 // whether either value in the interval overflows. After analysis each 2291 // overflow variable is set to 0 if it's corresponding bound variable is valid 2292 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2293 int LoOverflow = 0, HiOverflow = 0; 2294 APInt LoBound, HiBound; 2295 2296 if (!DivIsSigned) { // udiv 2297 // e.g. X/5 op 3 --> [15, 20) 2298 LoBound = Prod; 2299 HiOverflow = LoOverflow = ProdOV; 2300 if (!HiOverflow) { 2301 // If this is not an exact divide, then many values in the range collapse 2302 // to the same result value. 2303 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2304 } 2305 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2306 if (C.isNullValue()) { // (X / pos) op 0 2307 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2308 LoBound = -(RangeSize - 1); 2309 HiBound = RangeSize; 2310 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2311 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2312 HiOverflow = LoOverflow = ProdOV; 2313 if (!HiOverflow) 2314 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2315 } else { // (X / pos) op neg 2316 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2317 HiBound = Prod + 1; 2318 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2319 if (!LoOverflow) { 2320 APInt DivNeg = -RangeSize; 2321 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2322 } 2323 } 2324 } else if (C2->isNegative()) { // Divisor is < 0. 2325 if (Div->isExact()) 2326 RangeSize.negate(); 2327 if (C.isNullValue()) { // (X / neg) op 0 2328 // e.g. X/-5 op 0 --> [-4, 5) 2329 LoBound = RangeSize + 1; 2330 HiBound = -RangeSize; 2331 if (HiBound == *C2) { // -INTMIN = INTMIN 2332 HiOverflow = 1; // [INTMIN+1, overflow) 2333 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2334 } 2335 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2336 // e.g. X/-5 op 3 --> [-19, -14) 2337 HiBound = Prod + 1; 2338 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2339 if (!LoOverflow) 2340 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2341 } else { // (X / neg) op neg 2342 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2343 LoOverflow = HiOverflow = ProdOV; 2344 if (!HiOverflow) 2345 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2346 } 2347 2348 // Dividing by a negative swaps the condition. LT <-> GT 2349 Pred = ICmpInst::getSwappedPredicate(Pred); 2350 } 2351 2352 Value *X = Div->getOperand(0); 2353 switch (Pred) { 2354 default: llvm_unreachable("Unhandled icmp opcode!"); 2355 case ICmpInst::ICMP_EQ: 2356 if (LoOverflow && HiOverflow) 2357 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2358 if (HiOverflow) 2359 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2360 ICmpInst::ICMP_UGE, X, 2361 ConstantInt::get(Div->getType(), LoBound)); 2362 if (LoOverflow) 2363 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2364 ICmpInst::ICMP_ULT, X, 2365 ConstantInt::get(Div->getType(), HiBound)); 2366 return replaceInstUsesWith( 2367 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2368 case ICmpInst::ICMP_NE: 2369 if (LoOverflow && HiOverflow) 2370 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2371 if (HiOverflow) 2372 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2373 ICmpInst::ICMP_ULT, X, 2374 ConstantInt::get(Div->getType(), LoBound)); 2375 if (LoOverflow) 2376 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2377 ICmpInst::ICMP_UGE, X, 2378 ConstantInt::get(Div->getType(), HiBound)); 2379 return replaceInstUsesWith(Cmp, 2380 insertRangeTest(X, LoBound, HiBound, 2381 DivIsSigned, false)); 2382 case ICmpInst::ICMP_ULT: 2383 case ICmpInst::ICMP_SLT: 2384 if (LoOverflow == +1) // Low bound is greater than input range. 2385 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2386 if (LoOverflow == -1) // Low bound is less than input range. 2387 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2388 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2389 case ICmpInst::ICMP_UGT: 2390 case ICmpInst::ICMP_SGT: 2391 if (HiOverflow == +1) // High bound greater than input range. 2392 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2393 if (HiOverflow == -1) // High bound less than input range. 2394 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2395 if (Pred == ICmpInst::ICMP_UGT) 2396 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2397 ConstantInt::get(Div->getType(), HiBound)); 2398 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2399 ConstantInt::get(Div->getType(), HiBound)); 2400 } 2401 2402 return nullptr; 2403 } 2404 2405 /// Fold icmp (sub X, Y), C. 2406 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2407 BinaryOperator *Sub, 2408 const APInt &C) { 2409 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2410 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2411 const APInt *C2; 2412 APInt SubResult; 2413 2414 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2415 if (match(X, m_APInt(C2)) && 2416 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2417 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2418 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2419 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2420 ConstantInt::get(Y->getType(), SubResult)); 2421 2422 // The following transforms are only worth it if the only user of the subtract 2423 // is the icmp. 2424 if (!Sub->hasOneUse()) 2425 return nullptr; 2426 2427 if (Sub->hasNoSignedWrap()) { 2428 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2429 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2430 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2431 2432 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2433 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2434 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2435 2436 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2437 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2438 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2439 2440 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2441 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2442 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2443 } 2444 2445 if (!match(X, m_APInt(C2))) 2446 return nullptr; 2447 2448 // C2 - Y <u C -> (Y | (C - 1)) == C2 2449 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2450 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2451 (*C2 & (C - 1)) == (C - 1)) 2452 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2453 2454 // C2 - Y >u C -> (Y | C) != C2 2455 // iff C2 & C == C and C + 1 is a power of 2 2456 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2457 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2458 2459 return nullptr; 2460 } 2461 2462 /// Fold icmp (add X, Y), C. 2463 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2464 BinaryOperator *Add, 2465 const APInt &C) { 2466 Value *Y = Add->getOperand(1); 2467 const APInt *C2; 2468 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2469 return nullptr; 2470 2471 // Fold icmp pred (add X, C2), C. 2472 Value *X = Add->getOperand(0); 2473 Type *Ty = Add->getType(); 2474 CmpInst::Predicate Pred = Cmp.getPredicate(); 2475 2476 if (!Add->hasOneUse()) 2477 return nullptr; 2478 2479 // If the add does not wrap, we can always adjust the compare by subtracting 2480 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2481 // are canonicalized to SGT/SLT/UGT/ULT. 2482 if ((Add->hasNoSignedWrap() && 2483 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2484 (Add->hasNoUnsignedWrap() && 2485 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2486 bool Overflow; 2487 APInt NewC = 2488 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2489 // If there is overflow, the result must be true or false. 2490 // TODO: Can we assert there is no overflow because InstSimplify always 2491 // handles those cases? 2492 if (!Overflow) 2493 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2494 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2495 } 2496 2497 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2498 const APInt &Upper = CR.getUpper(); 2499 const APInt &Lower = CR.getLower(); 2500 if (Cmp.isSigned()) { 2501 if (Lower.isSignMask()) 2502 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2503 if (Upper.isSignMask()) 2504 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2505 } else { 2506 if (Lower.isMinValue()) 2507 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2508 if (Upper.isMinValue()) 2509 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2510 } 2511 2512 // X+C <u C2 -> (X & -C2) == C 2513 // iff C & (C2-1) == 0 2514 // C2 is a power of 2 2515 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2516 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2517 ConstantExpr::getNeg(cast<Constant>(Y))); 2518 2519 // X+C >u C2 -> (X & ~C2) != C 2520 // iff C & C2 == 0 2521 // C2+1 is a power of 2 2522 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2523 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2524 ConstantExpr::getNeg(cast<Constant>(Y))); 2525 2526 return nullptr; 2527 } 2528 2529 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2530 Value *&RHS, ConstantInt *&Less, 2531 ConstantInt *&Equal, 2532 ConstantInt *&Greater) { 2533 // TODO: Generalize this to work with other comparison idioms or ensure 2534 // they get canonicalized into this form. 2535 2536 // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32 2537 // Greater), where Equal, Less and Greater are placeholders for any three 2538 // constants. 2539 ICmpInst::Predicate PredA, PredB; 2540 if (match(SI->getTrueValue(), m_ConstantInt(Equal)) && 2541 match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) && 2542 PredA == ICmpInst::ICMP_EQ && 2543 match(SI->getFalseValue(), 2544 m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)), 2545 m_ConstantInt(Less), m_ConstantInt(Greater))) && 2546 PredB == ICmpInst::ICMP_SLT) { 2547 return true; 2548 } 2549 return false; 2550 } 2551 2552 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2553 SelectInst *Select, 2554 ConstantInt *C) { 2555 2556 assert(C && "Cmp RHS should be a constant int!"); 2557 // If we're testing a constant value against the result of a three way 2558 // comparison, the result can be expressed directly in terms of the 2559 // original values being compared. Note: We could possibly be more 2560 // aggressive here and remove the hasOneUse test. The original select is 2561 // really likely to simplify or sink when we remove a test of the result. 2562 Value *OrigLHS, *OrigRHS; 2563 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2564 if (Cmp.hasOneUse() && 2565 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2566 C3GreaterThan)) { 2567 assert(C1LessThan && C2Equal && C3GreaterThan); 2568 2569 bool TrueWhenLessThan = 2570 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2571 ->isAllOnesValue(); 2572 bool TrueWhenEqual = 2573 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2574 ->isAllOnesValue(); 2575 bool TrueWhenGreaterThan = 2576 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2577 ->isAllOnesValue(); 2578 2579 // This generates the new instruction that will replace the original Cmp 2580 // Instruction. Instead of enumerating the various combinations when 2581 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2582 // false, we rely on chaining of ORs and future passes of InstCombine to 2583 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2584 2585 // When none of the three constants satisfy the predicate for the RHS (C), 2586 // the entire original Cmp can be simplified to a false. 2587 Value *Cond = Builder.getFalse(); 2588 if (TrueWhenLessThan) 2589 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2590 OrigLHS, OrigRHS)); 2591 if (TrueWhenEqual) 2592 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2593 OrigLHS, OrigRHS)); 2594 if (TrueWhenGreaterThan) 2595 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2596 OrigLHS, OrigRHS)); 2597 2598 return replaceInstUsesWith(Cmp, Cond); 2599 } 2600 return nullptr; 2601 } 2602 2603 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2604 InstCombiner::BuilderTy &Builder) { 2605 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2606 if (!Bitcast) 2607 return nullptr; 2608 2609 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2610 Value *Op1 = Cmp.getOperand(1); 2611 Value *BCSrcOp = Bitcast->getOperand(0); 2612 2613 // Make sure the bitcast doesn't change the number of vector elements. 2614 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2615 Bitcast->getDestTy()->getScalarSizeInBits()) { 2616 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2617 Value *X; 2618 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2619 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2620 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2621 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2622 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2623 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2624 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2625 match(Op1, m_Zero())) 2626 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2627 2628 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2629 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2630 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2631 2632 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2633 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2634 return new ICmpInst(Pred, X, 2635 ConstantInt::getAllOnesValue(X->getType())); 2636 } 2637 2638 // Zero-equality checks are preserved through unsigned floating-point casts: 2639 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2640 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2641 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2642 if (Cmp.isEquality() && match(Op1, m_Zero())) 2643 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2644 } 2645 2646 // Test to see if the operands of the icmp are casted versions of other 2647 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2648 if (Bitcast->getType()->isPointerTy() && 2649 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2650 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2651 // so eliminate it as well. 2652 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2653 Op1 = BC2->getOperand(0); 2654 2655 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2656 return new ICmpInst(Pred, BCSrcOp, Op1); 2657 } 2658 2659 // Folding: icmp <pred> iN X, C 2660 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2661 // and C is a splat of a K-bit pattern 2662 // and SC is a constant vector = <C', C', C', ..., C'> 2663 // Into: 2664 // %E = extractelement <M x iK> %vec, i32 C' 2665 // icmp <pred> iK %E, trunc(C) 2666 const APInt *C; 2667 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2668 !Bitcast->getType()->isIntegerTy() || 2669 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2670 return nullptr; 2671 2672 Value *Vec; 2673 Constant *Mask; 2674 if (match(BCSrcOp, 2675 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { 2676 // Check whether every element of Mask is the same constant 2677 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { 2678 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2679 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2680 if (C->isSplat(EltTy->getBitWidth())) { 2681 // Fold the icmp based on the value of C 2682 // If C is M copies of an iK sized bit pattern, 2683 // then: 2684 // => %E = extractelement <N x iK> %vec, i32 Elem 2685 // icmp <pred> iK %SplatVal, <pattern> 2686 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2687 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2688 return new ICmpInst(Pred, Extract, NewC); 2689 } 2690 } 2691 } 2692 return nullptr; 2693 } 2694 2695 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2696 /// where X is some kind of instruction. 2697 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2698 const APInt *C; 2699 if (!match(Cmp.getOperand(1), m_APInt(C))) 2700 return nullptr; 2701 2702 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2703 switch (BO->getOpcode()) { 2704 case Instruction::Xor: 2705 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2706 return I; 2707 break; 2708 case Instruction::And: 2709 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2710 return I; 2711 break; 2712 case Instruction::Or: 2713 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2714 return I; 2715 break; 2716 case Instruction::Mul: 2717 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2718 return I; 2719 break; 2720 case Instruction::Shl: 2721 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2722 return I; 2723 break; 2724 case Instruction::LShr: 2725 case Instruction::AShr: 2726 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2727 return I; 2728 break; 2729 case Instruction::UDiv: 2730 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2731 return I; 2732 LLVM_FALLTHROUGH; 2733 case Instruction::SDiv: 2734 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2735 return I; 2736 break; 2737 case Instruction::Sub: 2738 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2739 return I; 2740 break; 2741 case Instruction::Add: 2742 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2743 return I; 2744 break; 2745 default: 2746 break; 2747 } 2748 // TODO: These folds could be refactored to be part of the above calls. 2749 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2750 return I; 2751 } 2752 2753 // Match against CmpInst LHS being instructions other than binary operators. 2754 2755 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2756 // For now, we only support constant integers while folding the 2757 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2758 // similar to the cases handled by binary ops above. 2759 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2760 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2761 return I; 2762 } 2763 2764 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2765 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2766 return I; 2767 } 2768 2769 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2770 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2771 return I; 2772 2773 return nullptr; 2774 } 2775 2776 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2777 /// icmp eq/ne BO, C. 2778 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2779 BinaryOperator *BO, 2780 const APInt &C) { 2781 // TODO: Some of these folds could work with arbitrary constants, but this 2782 // function is limited to scalar and vector splat constants. 2783 if (!Cmp.isEquality()) 2784 return nullptr; 2785 2786 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2787 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2788 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2789 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2790 2791 switch (BO->getOpcode()) { 2792 case Instruction::SRem: 2793 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2794 if (C.isNullValue() && BO->hasOneUse()) { 2795 const APInt *BOC; 2796 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2797 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2798 return new ICmpInst(Pred, NewRem, 2799 Constant::getNullValue(BO->getType())); 2800 } 2801 } 2802 break; 2803 case Instruction::Add: { 2804 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2805 const APInt *BOC; 2806 if (match(BOp1, m_APInt(BOC))) { 2807 if (BO->hasOneUse()) { 2808 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2809 return new ICmpInst(Pred, BOp0, SubC); 2810 } 2811 } else if (C.isNullValue()) { 2812 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2813 // efficiently invertible, or if the add has just this one use. 2814 if (Value *NegVal = dyn_castNegVal(BOp1)) 2815 return new ICmpInst(Pred, BOp0, NegVal); 2816 if (Value *NegVal = dyn_castNegVal(BOp0)) 2817 return new ICmpInst(Pred, NegVal, BOp1); 2818 if (BO->hasOneUse()) { 2819 Value *Neg = Builder.CreateNeg(BOp1); 2820 Neg->takeName(BO); 2821 return new ICmpInst(Pred, BOp0, Neg); 2822 } 2823 } 2824 break; 2825 } 2826 case Instruction::Xor: 2827 if (BO->hasOneUse()) { 2828 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2829 // For the xor case, we can xor two constants together, eliminating 2830 // the explicit xor. 2831 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2832 } else if (C.isNullValue()) { 2833 // Replace ((xor A, B) != 0) with (A != B) 2834 return new ICmpInst(Pred, BOp0, BOp1); 2835 } 2836 } 2837 break; 2838 case Instruction::Sub: 2839 if (BO->hasOneUse()) { 2840 const APInt *BOC; 2841 if (match(BOp0, m_APInt(BOC))) { 2842 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2843 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2844 return new ICmpInst(Pred, BOp1, SubC); 2845 } else if (C.isNullValue()) { 2846 // Replace ((sub A, B) != 0) with (A != B). 2847 return new ICmpInst(Pred, BOp0, BOp1); 2848 } 2849 } 2850 break; 2851 case Instruction::Or: { 2852 const APInt *BOC; 2853 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2854 // Comparing if all bits outside of a constant mask are set? 2855 // Replace (X | C) == -1 with (X & ~C) == ~C. 2856 // This removes the -1 constant. 2857 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2858 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2859 return new ICmpInst(Pred, And, NotBOC); 2860 } 2861 break; 2862 } 2863 case Instruction::And: { 2864 const APInt *BOC; 2865 if (match(BOp1, m_APInt(BOC))) { 2866 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2867 if (C == *BOC && C.isPowerOf2()) 2868 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2869 BO, Constant::getNullValue(RHS->getType())); 2870 } 2871 break; 2872 } 2873 case Instruction::Mul: 2874 if (C.isNullValue() && BO->hasNoSignedWrap()) { 2875 const APInt *BOC; 2876 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 2877 // The trivial case (mul X, 0) is handled by InstSimplify. 2878 // General case : (mul X, C) != 0 iff X != 0 2879 // (mul X, C) == 0 iff X == 0 2880 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 2881 } 2882 } 2883 break; 2884 case Instruction::UDiv: 2885 if (C.isNullValue()) { 2886 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 2887 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 2888 return new ICmpInst(NewPred, BOp1, BOp0); 2889 } 2890 break; 2891 default: 2892 break; 2893 } 2894 return nullptr; 2895 } 2896 2897 /// Fold an equality icmp with LLVM intrinsic and constant operand. 2898 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 2899 IntrinsicInst *II, 2900 const APInt &C) { 2901 Type *Ty = II->getType(); 2902 unsigned BitWidth = C.getBitWidth(); 2903 switch (II->getIntrinsicID()) { 2904 case Intrinsic::bswap: 2905 Worklist.Add(II); 2906 Cmp.setOperand(0, II->getArgOperand(0)); 2907 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); 2908 return &Cmp; 2909 2910 case Intrinsic::ctlz: 2911 case Intrinsic::cttz: { 2912 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 2913 if (C == BitWidth) { 2914 Worklist.Add(II); 2915 Cmp.setOperand(0, II->getArgOperand(0)); 2916 Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); 2917 return &Cmp; 2918 } 2919 2920 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 2921 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 2922 // Limit to one use to ensure we don't increase instruction count. 2923 unsigned Num = C.getLimitedValue(BitWidth); 2924 if (Num != BitWidth && II->hasOneUse()) { 2925 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 2926 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 2927 : APInt::getHighBitsSet(BitWidth, Num + 1); 2928 APInt Mask2 = IsTrailing 2929 ? APInt::getOneBitSet(BitWidth, Num) 2930 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2931 Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); 2932 Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); 2933 Worklist.Add(II); 2934 return &Cmp; 2935 } 2936 break; 2937 } 2938 2939 case Intrinsic::ctpop: { 2940 // popcount(A) == 0 -> A == 0 and likewise for != 2941 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 2942 bool IsZero = C.isNullValue(); 2943 if (IsZero || C == BitWidth) { 2944 Worklist.Add(II); 2945 Cmp.setOperand(0, II->getArgOperand(0)); 2946 auto *NewOp = 2947 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); 2948 Cmp.setOperand(1, NewOp); 2949 return &Cmp; 2950 } 2951 break; 2952 } 2953 default: 2954 break; 2955 } 2956 2957 return nullptr; 2958 } 2959 2960 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 2961 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 2962 IntrinsicInst *II, 2963 const APInt &C) { 2964 if (Cmp.isEquality()) 2965 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 2966 2967 Type *Ty = II->getType(); 2968 unsigned BitWidth = C.getBitWidth(); 2969 switch (II->getIntrinsicID()) { 2970 case Intrinsic::ctlz: { 2971 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 2972 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2973 unsigned Num = C.getLimitedValue(); 2974 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2975 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 2976 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2977 } 2978 2979 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 2980 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2981 C.uge(1) && C.ule(BitWidth)) { 2982 unsigned Num = C.getLimitedValue(); 2983 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 2984 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 2985 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2986 } 2987 break; 2988 } 2989 case Intrinsic::cttz: { 2990 // Limit to one use to ensure we don't increase instruction count. 2991 if (!II->hasOneUse()) 2992 return nullptr; 2993 2994 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 2995 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2996 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 2997 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 2998 Builder.CreateAnd(II->getArgOperand(0), Mask), 2999 ConstantInt::getNullValue(Ty)); 3000 } 3001 3002 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3003 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3004 C.uge(1) && C.ule(BitWidth)) { 3005 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3006 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3007 Builder.CreateAnd(II->getArgOperand(0), Mask), 3008 ConstantInt::getNullValue(Ty)); 3009 } 3010 break; 3011 } 3012 default: 3013 break; 3014 } 3015 3016 return nullptr; 3017 } 3018 3019 /// Handle icmp with constant (but not simple integer constant) RHS. 3020 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3021 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3022 Constant *RHSC = dyn_cast<Constant>(Op1); 3023 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3024 if (!RHSC || !LHSI) 3025 return nullptr; 3026 3027 switch (LHSI->getOpcode()) { 3028 case Instruction::GetElementPtr: 3029 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3030 if (RHSC->isNullValue() && 3031 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3032 return new ICmpInst( 3033 I.getPredicate(), LHSI->getOperand(0), 3034 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3035 break; 3036 case Instruction::PHI: 3037 // Only fold icmp into the PHI if the phi and icmp are in the same 3038 // block. If in the same block, we're encouraging jump threading. If 3039 // not, we are just pessimizing the code by making an i1 phi. 3040 if (LHSI->getParent() == I.getParent()) 3041 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3042 return NV; 3043 break; 3044 case Instruction::Select: { 3045 // If either operand of the select is a constant, we can fold the 3046 // comparison into the select arms, which will cause one to be 3047 // constant folded and the select turned into a bitwise or. 3048 Value *Op1 = nullptr, *Op2 = nullptr; 3049 ConstantInt *CI = nullptr; 3050 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3051 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3052 CI = dyn_cast<ConstantInt>(Op1); 3053 } 3054 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3055 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3056 CI = dyn_cast<ConstantInt>(Op2); 3057 } 3058 3059 // We only want to perform this transformation if it will not lead to 3060 // additional code. This is true if either both sides of the select 3061 // fold to a constant (in which case the icmp is replaced with a select 3062 // which will usually simplify) or this is the only user of the 3063 // select (in which case we are trading a select+icmp for a simpler 3064 // select+icmp) or all uses of the select can be replaced based on 3065 // dominance information ("Global cases"). 3066 bool Transform = false; 3067 if (Op1 && Op2) 3068 Transform = true; 3069 else if (Op1 || Op2) { 3070 // Local case 3071 if (LHSI->hasOneUse()) 3072 Transform = true; 3073 // Global cases 3074 else if (CI && !CI->isZero()) 3075 // When Op1 is constant try replacing select with second operand. 3076 // Otherwise Op2 is constant and try replacing select with first 3077 // operand. 3078 Transform = 3079 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3080 } 3081 if (Transform) { 3082 if (!Op1) 3083 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3084 I.getName()); 3085 if (!Op2) 3086 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3087 I.getName()); 3088 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3089 } 3090 break; 3091 } 3092 case Instruction::IntToPtr: 3093 // icmp pred inttoptr(X), null -> icmp pred X, 0 3094 if (RHSC->isNullValue() && 3095 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3096 return new ICmpInst( 3097 I.getPredicate(), LHSI->getOperand(0), 3098 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3099 break; 3100 3101 case Instruction::Load: 3102 // Try to optimize things like "A[i] > 4" to index computations. 3103 if (GetElementPtrInst *GEP = 3104 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3105 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3106 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3107 !cast<LoadInst>(LHSI)->isVolatile()) 3108 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3109 return Res; 3110 } 3111 break; 3112 } 3113 3114 return nullptr; 3115 } 3116 3117 /// Some comparisons can be simplified. 3118 /// In this case, we are looking for comparisons that look like 3119 /// a check for a lossy truncation. 3120 /// Folds: 3121 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3122 /// Where Mask is some pattern that produces all-ones in low bits: 3123 /// (-1 >> y) 3124 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3125 /// ~(-1 << y) 3126 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3127 /// The Mask can be a constant, too. 3128 /// For some predicates, the operands are commutative. 3129 /// For others, x can only be on a specific side. 3130 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3131 InstCombiner::BuilderTy &Builder) { 3132 ICmpInst::Predicate SrcPred; 3133 Value *X, *M, *Y; 3134 auto m_VariableMask = m_CombineOr( 3135 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3136 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3137 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3138 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3139 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3140 if (!match(&I, m_c_ICmp(SrcPred, 3141 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3142 m_Deferred(X)))) 3143 return nullptr; 3144 3145 ICmpInst::Predicate DstPred; 3146 switch (SrcPred) { 3147 case ICmpInst::Predicate::ICMP_EQ: 3148 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3149 DstPred = ICmpInst::Predicate::ICMP_ULE; 3150 break; 3151 case ICmpInst::Predicate::ICMP_NE: 3152 // x & (-1 >> y) != x -> x u> (-1 >> y) 3153 DstPred = ICmpInst::Predicate::ICMP_UGT; 3154 break; 3155 case ICmpInst::Predicate::ICMP_UGT: 3156 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3157 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3158 DstPred = ICmpInst::Predicate::ICMP_UGT; 3159 break; 3160 case ICmpInst::Predicate::ICMP_UGE: 3161 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3162 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3163 DstPred = ICmpInst::Predicate::ICMP_ULE; 3164 break; 3165 case ICmpInst::Predicate::ICMP_ULT: 3166 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3167 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3168 DstPred = ICmpInst::Predicate::ICMP_UGT; 3169 break; 3170 case ICmpInst::Predicate::ICMP_ULE: 3171 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3172 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3173 DstPred = ICmpInst::Predicate::ICMP_ULE; 3174 break; 3175 case ICmpInst::Predicate::ICMP_SGT: 3176 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3177 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3178 return nullptr; // Ignore the other case. 3179 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3180 return nullptr; 3181 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3182 return nullptr; 3183 DstPred = ICmpInst::Predicate::ICMP_SGT; 3184 break; 3185 case ICmpInst::Predicate::ICMP_SGE: 3186 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3187 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3188 return nullptr; // Ignore the other case. 3189 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3190 return nullptr; 3191 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3192 return nullptr; 3193 DstPred = ICmpInst::Predicate::ICMP_SLE; 3194 break; 3195 case ICmpInst::Predicate::ICMP_SLT: 3196 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3197 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3198 return nullptr; // Ignore the other case. 3199 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3200 return nullptr; 3201 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3202 return nullptr; 3203 DstPred = ICmpInst::Predicate::ICMP_SGT; 3204 break; 3205 case ICmpInst::Predicate::ICMP_SLE: 3206 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3207 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3208 return nullptr; // Ignore the other case. 3209 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3210 return nullptr; 3211 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3212 return nullptr; 3213 DstPred = ICmpInst::Predicate::ICMP_SLE; 3214 break; 3215 default: 3216 llvm_unreachable("All possible folds are handled."); 3217 } 3218 3219 return Builder.CreateICmp(DstPred, X, M); 3220 } 3221 3222 /// Some comparisons can be simplified. 3223 /// In this case, we are looking for comparisons that look like 3224 /// a check for a lossy signed truncation. 3225 /// Folds: (MaskedBits is a constant.) 3226 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3227 /// Into: 3228 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3229 /// Where KeptBits = bitwidth(%x) - MaskedBits 3230 static Value * 3231 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3232 InstCombiner::BuilderTy &Builder) { 3233 ICmpInst::Predicate SrcPred; 3234 Value *X; 3235 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3236 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3237 if (!match(&I, m_c_ICmp(SrcPred, 3238 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3239 m_APInt(C1))), 3240 m_Deferred(X)))) 3241 return nullptr; 3242 3243 // Potential handling of non-splats: for each element: 3244 // * if both are undef, replace with constant 0. 3245 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3246 // * if both are not undef, and are different, bailout. 3247 // * else, only one is undef, then pick the non-undef one. 3248 3249 // The shift amount must be equal. 3250 if (*C0 != *C1) 3251 return nullptr; 3252 const APInt &MaskedBits = *C0; 3253 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3254 3255 ICmpInst::Predicate DstPred; 3256 switch (SrcPred) { 3257 case ICmpInst::Predicate::ICMP_EQ: 3258 // ((%x << MaskedBits) a>> MaskedBits) == %x 3259 // => 3260 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3261 DstPred = ICmpInst::Predicate::ICMP_ULT; 3262 break; 3263 case ICmpInst::Predicate::ICMP_NE: 3264 // ((%x << MaskedBits) a>> MaskedBits) != %x 3265 // => 3266 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3267 DstPred = ICmpInst::Predicate::ICMP_UGE; 3268 break; 3269 // FIXME: are more folds possible? 3270 default: 3271 return nullptr; 3272 } 3273 3274 auto *XType = X->getType(); 3275 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3276 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3277 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3278 3279 // KeptBits = bitwidth(%x) - MaskedBits 3280 const APInt KeptBits = BitWidth - MaskedBits; 3281 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3282 // ICmpCst = (1 << KeptBits) 3283 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3284 assert(ICmpCst.isPowerOf2()); 3285 // AddCst = (1 << (KeptBits-1)) 3286 const APInt AddCst = ICmpCst.lshr(1); 3287 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3288 3289 // T0 = add %x, AddCst 3290 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3291 // T1 = T0 DstPred ICmpCst 3292 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3293 3294 return T1; 3295 } 3296 3297 // Given pattern: 3298 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3299 // we should move shifts to the same hand of 'and', i.e. rewrite as 3300 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3301 // We are only interested in opposite logical shifts here. 3302 // If we can, we want to end up creating 'lshr' shift. 3303 static Value * 3304 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3305 InstCombiner::BuilderTy &Builder) { 3306 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3307 !I.getOperand(0)->hasOneUse()) 3308 return nullptr; 3309 3310 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3311 auto m_AnyLShr = m_LShr(m_Value(), m_Value()); 3312 3313 // Look for an 'and' of two (opposite) logical shifts. 3314 // Pick the single-use shift as XShift. 3315 Value *XShift, *YShift; 3316 if (!match(I.getOperand(0), 3317 m_c_And(m_OneUse(m_CombineAnd(m_AnyLogicalShift, m_Value(XShift))), 3318 m_CombineAnd(m_AnyLogicalShift, m_Value(YShift))))) 3319 return nullptr; 3320 3321 // If YShift is a single-use 'lshr', swap the shifts around. 3322 if (match(YShift, m_OneUse(m_AnyLShr))) 3323 std::swap(XShift, YShift); 3324 3325 // The shifts must be in opposite directions. 3326 Instruction::BinaryOps XShiftOpcode = 3327 cast<BinaryOperator>(XShift)->getOpcode(); 3328 if (XShiftOpcode == cast<BinaryOperator>(YShift)->getOpcode()) 3329 return nullptr; // Do not care about same-direction shifts here. 3330 3331 Value *X, *XShAmt, *Y, *YShAmt; 3332 match(XShift, m_BinOp(m_Value(X), m_Value(XShAmt))); 3333 match(YShift, m_BinOp(m_Value(Y), m_Value(YShAmt))); 3334 3335 // Can we fold (XShAmt+YShAmt) ? 3336 Value *NewShAmt = SimplifyBinOp(Instruction::BinaryOps::Add, XShAmt, YShAmt, 3337 SQ.getWithInstruction(&I)); 3338 if (!NewShAmt) 3339 return nullptr; 3340 // Is the new shift amount smaller than the bit width? 3341 // FIXME: could also rely on ConstantRange. 3342 unsigned BitWidth = X->getType()->getScalarSizeInBits(); 3343 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3344 APInt(BitWidth, BitWidth)))) 3345 return nullptr; 3346 // All good, we can do this fold. The shift is the same that was for X. 3347 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3348 ? Builder.CreateLShr(X, NewShAmt) 3349 : Builder.CreateShl(X, NewShAmt); 3350 Value *T1 = Builder.CreateAnd(T0, Y); 3351 return Builder.CreateICmp(I.getPredicate(), T1, 3352 Constant::getNullValue(X->getType())); 3353 } 3354 3355 /// Try to fold icmp (binop), X or icmp X, (binop). 3356 /// TODO: A large part of this logic is duplicated in InstSimplify's 3357 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3358 /// duplication. 3359 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 3360 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3361 3362 // Special logic for binary operators. 3363 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3364 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3365 if (!BO0 && !BO1) 3366 return nullptr; 3367 3368 const CmpInst::Predicate Pred = I.getPredicate(); 3369 Value *X; 3370 3371 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3372 // (Op1 + X) <u Op1 --> ~Op1 <u X 3373 // Op0 >u (Op0 + X) --> X >u ~Op0 3374 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3375 Pred == ICmpInst::ICMP_ULT) 3376 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3377 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3378 Pred == ICmpInst::ICMP_UGT) 3379 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3380 3381 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3382 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3383 NoOp0WrapProblem = 3384 ICmpInst::isEquality(Pred) || 3385 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3386 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3387 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3388 NoOp1WrapProblem = 3389 ICmpInst::isEquality(Pred) || 3390 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3391 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3392 3393 // Analyze the case when either Op0 or Op1 is an add instruction. 3394 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3395 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3396 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3397 A = BO0->getOperand(0); 3398 B = BO0->getOperand(1); 3399 } 3400 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3401 C = BO1->getOperand(0); 3402 D = BO1->getOperand(1); 3403 } 3404 3405 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3406 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3407 return new ICmpInst(Pred, A == Op1 ? B : A, 3408 Constant::getNullValue(Op1->getType())); 3409 3410 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3411 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3412 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3413 C == Op0 ? D : C); 3414 3415 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3416 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3417 NoOp1WrapProblem && 3418 // Try not to increase register pressure. 3419 BO0->hasOneUse() && BO1->hasOneUse()) { 3420 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3421 Value *Y, *Z; 3422 if (A == C) { 3423 // C + B == C + D -> B == D 3424 Y = B; 3425 Z = D; 3426 } else if (A == D) { 3427 // D + B == C + D -> B == C 3428 Y = B; 3429 Z = C; 3430 } else if (B == C) { 3431 // A + C == C + D -> A == D 3432 Y = A; 3433 Z = D; 3434 } else { 3435 assert(B == D); 3436 // A + D == C + D -> A == C 3437 Y = A; 3438 Z = C; 3439 } 3440 return new ICmpInst(Pred, Y, Z); 3441 } 3442 3443 // icmp slt (X + -1), Y -> icmp sle X, Y 3444 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3445 match(B, m_AllOnes())) 3446 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3447 3448 // icmp sge (X + -1), Y -> icmp sgt X, Y 3449 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3450 match(B, m_AllOnes())) 3451 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3452 3453 // icmp sle (X + 1), Y -> icmp slt X, Y 3454 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3455 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3456 3457 // icmp sgt (X + 1), Y -> icmp sge X, Y 3458 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3459 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3460 3461 // icmp sgt X, (Y + -1) -> icmp sge X, Y 3462 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3463 match(D, m_AllOnes())) 3464 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3465 3466 // icmp sle X, (Y + -1) -> icmp slt X, Y 3467 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3468 match(D, m_AllOnes())) 3469 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3470 3471 // icmp sge X, (Y + 1) -> icmp sgt X, Y 3472 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3473 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3474 3475 // icmp slt X, (Y + 1) -> icmp sle X, Y 3476 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3477 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3478 3479 // TODO: The subtraction-related identities shown below also hold, but 3480 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3481 // wouldn't happen even if they were implemented. 3482 // 3483 // icmp ult (X - 1), Y -> icmp ule X, Y 3484 // icmp uge (X - 1), Y -> icmp ugt X, Y 3485 // icmp ugt X, (Y - 1) -> icmp uge X, Y 3486 // icmp ule X, (Y - 1) -> icmp ult X, Y 3487 3488 // icmp ule (X + 1), Y -> icmp ult X, Y 3489 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3490 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3491 3492 // icmp ugt (X + 1), Y -> icmp uge X, Y 3493 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3494 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3495 3496 // icmp uge X, (Y + 1) -> icmp ugt X, Y 3497 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3498 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3499 3500 // icmp ult X, (Y + 1) -> icmp ule X, Y 3501 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3502 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3503 3504 // if C1 has greater magnitude than C2: 3505 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3506 // s.t. C3 = C1 - C2 3507 // 3508 // if C2 has greater magnitude than C1: 3509 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3510 // s.t. C3 = C2 - C1 3511 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3512 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3513 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3514 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3515 const APInt &AP1 = C1->getValue(); 3516 const APInt &AP2 = C2->getValue(); 3517 if (AP1.isNegative() == AP2.isNegative()) { 3518 APInt AP1Abs = C1->getValue().abs(); 3519 APInt AP2Abs = C2->getValue().abs(); 3520 if (AP1Abs.uge(AP2Abs)) { 3521 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3522 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3523 return new ICmpInst(Pred, NewAdd, C); 3524 } else { 3525 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3526 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3527 return new ICmpInst(Pred, A, NewAdd); 3528 } 3529 } 3530 } 3531 3532 // Analyze the case when either Op0 or Op1 is a sub instruction. 3533 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3534 A = nullptr; 3535 B = nullptr; 3536 C = nullptr; 3537 D = nullptr; 3538 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3539 A = BO0->getOperand(0); 3540 B = BO0->getOperand(1); 3541 } 3542 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3543 C = BO1->getOperand(0); 3544 D = BO1->getOperand(1); 3545 } 3546 3547 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3548 if (A == Op1 && NoOp0WrapProblem) 3549 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3550 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3551 if (C == Op0 && NoOp1WrapProblem) 3552 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3553 3554 // (A - B) >u A --> A <u B 3555 if (A == Op1 && Pred == ICmpInst::ICMP_UGT) 3556 return new ICmpInst(ICmpInst::ICMP_ULT, A, B); 3557 // C <u (C - D) --> C <u D 3558 if (C == Op0 && Pred == ICmpInst::ICMP_ULT) 3559 return new ICmpInst(ICmpInst::ICMP_ULT, C, D); 3560 3561 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3562 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3563 // Try not to increase register pressure. 3564 BO0->hasOneUse() && BO1->hasOneUse()) 3565 return new ICmpInst(Pred, A, C); 3566 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3567 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3568 // Try not to increase register pressure. 3569 BO0->hasOneUse() && BO1->hasOneUse()) 3570 return new ICmpInst(Pred, D, B); 3571 3572 // icmp (0-X) < cst --> x > -cst 3573 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3574 Value *X; 3575 if (match(BO0, m_Neg(m_Value(X)))) 3576 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3577 if (RHSC->isNotMinSignedValue()) 3578 return new ICmpInst(I.getSwappedPredicate(), X, 3579 ConstantExpr::getNeg(RHSC)); 3580 } 3581 3582 BinaryOperator *SRem = nullptr; 3583 // icmp (srem X, Y), Y 3584 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3585 SRem = BO0; 3586 // icmp Y, (srem X, Y) 3587 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3588 Op0 == BO1->getOperand(1)) 3589 SRem = BO1; 3590 if (SRem) { 3591 // We don't check hasOneUse to avoid increasing register pressure because 3592 // the value we use is the same value this instruction was already using. 3593 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3594 default: 3595 break; 3596 case ICmpInst::ICMP_EQ: 3597 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3598 case ICmpInst::ICMP_NE: 3599 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3600 case ICmpInst::ICMP_SGT: 3601 case ICmpInst::ICMP_SGE: 3602 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3603 Constant::getAllOnesValue(SRem->getType())); 3604 case ICmpInst::ICMP_SLT: 3605 case ICmpInst::ICMP_SLE: 3606 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3607 Constant::getNullValue(SRem->getType())); 3608 } 3609 } 3610 3611 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3612 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3613 switch (BO0->getOpcode()) { 3614 default: 3615 break; 3616 case Instruction::Add: 3617 case Instruction::Sub: 3618 case Instruction::Xor: { 3619 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3620 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3621 3622 const APInt *C; 3623 if (match(BO0->getOperand(1), m_APInt(C))) { 3624 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3625 if (C->isSignMask()) { 3626 ICmpInst::Predicate NewPred = 3627 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3628 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3629 } 3630 3631 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3632 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3633 ICmpInst::Predicate NewPred = 3634 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3635 NewPred = I.getSwappedPredicate(NewPred); 3636 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3637 } 3638 } 3639 break; 3640 } 3641 case Instruction::Mul: { 3642 if (!I.isEquality()) 3643 break; 3644 3645 const APInt *C; 3646 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3647 !C->isOneValue()) { 3648 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3649 // Mask = -1 >> count-trailing-zeros(C). 3650 if (unsigned TZs = C->countTrailingZeros()) { 3651 Constant *Mask = ConstantInt::get( 3652 BO0->getType(), 3653 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 3654 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 3655 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 3656 return new ICmpInst(Pred, And1, And2); 3657 } 3658 // If there are no trailing zeros in the multiplier, just eliminate 3659 // the multiplies (no masking is needed): 3660 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 3661 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3662 } 3663 break; 3664 } 3665 case Instruction::UDiv: 3666 case Instruction::LShr: 3667 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 3668 break; 3669 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3670 3671 case Instruction::SDiv: 3672 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 3673 break; 3674 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3675 3676 case Instruction::AShr: 3677 if (!BO0->isExact() || !BO1->isExact()) 3678 break; 3679 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3680 3681 case Instruction::Shl: { 3682 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3683 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3684 if (!NUW && !NSW) 3685 break; 3686 if (!NSW && I.isSigned()) 3687 break; 3688 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3689 } 3690 } 3691 } 3692 3693 if (BO0) { 3694 // Transform A & (L - 1) `ult` L --> L != 0 3695 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3696 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 3697 3698 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 3699 auto *Zero = Constant::getNullValue(BO0->getType()); 3700 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3701 } 3702 } 3703 3704 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 3705 return replaceInstUsesWith(I, V); 3706 3707 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 3708 return replaceInstUsesWith(I, V); 3709 3710 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 3711 return replaceInstUsesWith(I, V); 3712 3713 return nullptr; 3714 } 3715 3716 /// Fold icmp Pred min|max(X, Y), X. 3717 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 3718 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3719 Value *Op0 = Cmp.getOperand(0); 3720 Value *X = Cmp.getOperand(1); 3721 3722 // Canonicalize minimum or maximum operand to LHS of the icmp. 3723 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 3724 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 3725 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 3726 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 3727 std::swap(Op0, X); 3728 Pred = Cmp.getSwappedPredicate(); 3729 } 3730 3731 Value *Y; 3732 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 3733 // smin(X, Y) == X --> X s<= Y 3734 // smin(X, Y) s>= X --> X s<= Y 3735 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 3736 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 3737 3738 // smin(X, Y) != X --> X s> Y 3739 // smin(X, Y) s< X --> X s> Y 3740 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 3741 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 3742 3743 // These cases should be handled in InstSimplify: 3744 // smin(X, Y) s<= X --> true 3745 // smin(X, Y) s> X --> false 3746 return nullptr; 3747 } 3748 3749 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 3750 // smax(X, Y) == X --> X s>= Y 3751 // smax(X, Y) s<= X --> X s>= Y 3752 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 3753 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 3754 3755 // smax(X, Y) != X --> X s< Y 3756 // smax(X, Y) s> X --> X s< Y 3757 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 3758 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 3759 3760 // These cases should be handled in InstSimplify: 3761 // smax(X, Y) s>= X --> true 3762 // smax(X, Y) s< X --> false 3763 return nullptr; 3764 } 3765 3766 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 3767 // umin(X, Y) == X --> X u<= Y 3768 // umin(X, Y) u>= X --> X u<= Y 3769 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 3770 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 3771 3772 // umin(X, Y) != X --> X u> Y 3773 // umin(X, Y) u< X --> X u> Y 3774 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 3775 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 3776 3777 // These cases should be handled in InstSimplify: 3778 // umin(X, Y) u<= X --> true 3779 // umin(X, Y) u> X --> false 3780 return nullptr; 3781 } 3782 3783 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 3784 // umax(X, Y) == X --> X u>= Y 3785 // umax(X, Y) u<= X --> X u>= Y 3786 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 3787 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 3788 3789 // umax(X, Y) != X --> X u< Y 3790 // umax(X, Y) u> X --> X u< Y 3791 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 3792 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 3793 3794 // These cases should be handled in InstSimplify: 3795 // umax(X, Y) u>= X --> true 3796 // umax(X, Y) u< X --> false 3797 return nullptr; 3798 } 3799 3800 return nullptr; 3801 } 3802 3803 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 3804 if (!I.isEquality()) 3805 return nullptr; 3806 3807 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3808 const CmpInst::Predicate Pred = I.getPredicate(); 3809 Value *A, *B, *C, *D; 3810 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3811 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3812 Value *OtherVal = A == Op1 ? B : A; 3813 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3814 } 3815 3816 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3817 // A^c1 == C^c2 --> A == C^(c1^c2) 3818 ConstantInt *C1, *C2; 3819 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 3820 Op1->hasOneUse()) { 3821 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 3822 Value *Xor = Builder.CreateXor(C, NC); 3823 return new ICmpInst(Pred, A, Xor); 3824 } 3825 3826 // A^B == A^D -> B == D 3827 if (A == C) 3828 return new ICmpInst(Pred, B, D); 3829 if (A == D) 3830 return new ICmpInst(Pred, B, C); 3831 if (B == C) 3832 return new ICmpInst(Pred, A, D); 3833 if (B == D) 3834 return new ICmpInst(Pred, A, C); 3835 } 3836 } 3837 3838 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 3839 // A == (A^B) -> B == 0 3840 Value *OtherVal = A == Op0 ? B : A; 3841 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3842 } 3843 3844 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3845 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3846 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3847 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3848 3849 if (A == C) { 3850 X = B; 3851 Y = D; 3852 Z = A; 3853 } else if (A == D) { 3854 X = B; 3855 Y = C; 3856 Z = A; 3857 } else if (B == C) { 3858 X = A; 3859 Y = D; 3860 Z = B; 3861 } else if (B == D) { 3862 X = A; 3863 Y = C; 3864 Z = B; 3865 } 3866 3867 if (X) { // Build (X^Y) & Z 3868 Op1 = Builder.CreateXor(X, Y); 3869 Op1 = Builder.CreateAnd(Op1, Z); 3870 I.setOperand(0, Op1); 3871 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3872 return &I; 3873 } 3874 } 3875 3876 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3877 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3878 ConstantInt *Cst1; 3879 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 3880 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3881 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3882 match(Op1, m_ZExt(m_Value(A))))) { 3883 APInt Pow2 = Cst1->getValue() + 1; 3884 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3885 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3886 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 3887 } 3888 3889 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3890 // For lshr and ashr pairs. 3891 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3892 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3893 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3894 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3895 unsigned TypeBits = Cst1->getBitWidth(); 3896 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3897 if (ShAmt < TypeBits && ShAmt != 0) { 3898 ICmpInst::Predicate NewPred = 3899 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 3900 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3901 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3902 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 3903 } 3904 } 3905 3906 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3907 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3908 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3909 unsigned TypeBits = Cst1->getBitWidth(); 3910 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3911 if (ShAmt < TypeBits && ShAmt != 0) { 3912 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3913 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3914 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 3915 I.getName() + ".mask"); 3916 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 3917 } 3918 } 3919 3920 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3921 // "icmp (and X, mask), cst" 3922 uint64_t ShAmt = 0; 3923 if (Op0->hasOneUse() && 3924 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 3925 match(Op1, m_ConstantInt(Cst1)) && 3926 // Only do this when A has multiple uses. This is most important to do 3927 // when it exposes other optimizations. 3928 !A->hasOneUse()) { 3929 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3930 3931 if (ShAmt < ASize) { 3932 APInt MaskV = 3933 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3934 MaskV <<= ShAmt; 3935 3936 APInt CmpV = Cst1->getValue().zext(ASize); 3937 CmpV <<= ShAmt; 3938 3939 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 3940 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 3941 } 3942 } 3943 3944 // If both operands are byte-swapped or bit-reversed, just compare the 3945 // original values. 3946 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 3947 // and handle more intrinsics. 3948 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 3949 (match(Op0, m_BitReverse(m_Value(A))) && 3950 match(Op1, m_BitReverse(m_Value(B))))) 3951 return new ICmpInst(Pred, A, B); 3952 3953 // Canonicalize checking for a power-of-2-or-zero value: 3954 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 3955 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 3956 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 3957 m_Deferred(A)))) || 3958 !match(Op1, m_ZeroInt())) 3959 A = nullptr; 3960 3961 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 3962 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 3963 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 3964 A = Op1; 3965 else if (match(Op1, 3966 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 3967 A = Op0; 3968 3969 if (A) { 3970 Type *Ty = A->getType(); 3971 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 3972 return Pred == ICmpInst::ICMP_EQ 3973 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 3974 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 3975 } 3976 3977 return nullptr; 3978 } 3979 3980 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 3981 /// far. 3982 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { 3983 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 3984 Value *LHSCIOp = LHSCI->getOperand(0); 3985 Type *SrcTy = LHSCIOp->getType(); 3986 Type *DestTy = LHSCI->getType(); 3987 3988 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 3989 // integer type is the same size as the pointer type. 3990 const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool { 3991 if (isa<VectorType>(SrcTy)) { 3992 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 3993 DestTy = cast<VectorType>(DestTy)->getElementType(); 3994 } 3995 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 3996 }; 3997 if (LHSCI->getOpcode() == Instruction::PtrToInt && 3998 CompatibleSizes(SrcTy, DestTy)) { 3999 Value *RHSOp = nullptr; 4000 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4001 Value *RHSCIOp = RHSC->getOperand(0); 4002 if (RHSCIOp->getType()->getPointerAddressSpace() == 4003 LHSCIOp->getType()->getPointerAddressSpace()) { 4004 RHSOp = RHSC->getOperand(0); 4005 // If the pointer types don't match, insert a bitcast. 4006 if (LHSCIOp->getType() != RHSOp->getType()) 4007 RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType()); 4008 } 4009 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4010 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4011 } 4012 4013 if (RHSOp) 4014 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 4015 } 4016 4017 // The code below only handles extension cast instructions, so far. 4018 // Enforce this. 4019 if (LHSCI->getOpcode() != Instruction::ZExt && 4020 LHSCI->getOpcode() != Instruction::SExt) 4021 return nullptr; 4022 4023 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 4024 bool isSignedCmp = ICmp.isSigned(); 4025 4026 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4027 // Not an extension from the same type? 4028 Value *RHSCIOp = CI->getOperand(0); 4029 if (RHSCIOp->getType() != LHSCIOp->getType()) 4030 return nullptr; 4031 4032 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4033 // and the other is a zext), then we can't handle this. 4034 if (CI->getOpcode() != LHSCI->getOpcode()) 4035 return nullptr; 4036 4037 // Deal with equality cases early. 4038 if (ICmp.isEquality()) 4039 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 4040 4041 // A signed comparison of sign extended values simplifies into a 4042 // signed comparison. 4043 if (isSignedCmp && isSignedExt) 4044 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 4045 4046 // The other three cases all fold into an unsigned comparison. 4047 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 4048 } 4049 4050 // If we aren't dealing with a constant on the RHS, exit early. 4051 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4052 if (!C) 4053 return nullptr; 4054 4055 // Compute the constant that would happen if we truncated to SrcTy then 4056 // re-extended to DestTy. 4057 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4058 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 4059 4060 // If the re-extended constant didn't change... 4061 if (Res2 == C) { 4062 // Deal with equality cases early. 4063 if (ICmp.isEquality()) 4064 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 4065 4066 // A signed comparison of sign extended values simplifies into a 4067 // signed comparison. 4068 if (isSignedExt && isSignedCmp) 4069 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 4070 4071 // The other three cases all fold into an unsigned comparison. 4072 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 4073 } 4074 4075 // The re-extended constant changed, partly changed (in the case of a vector), 4076 // or could not be determined to be equal (in the case of a constant 4077 // expression), so the constant cannot be represented in the shorter type. 4078 // Consequently, we cannot emit a simple comparison. 4079 // All the cases that fold to true or false will have already been handled 4080 // by SimplifyICmpInst, so only deal with the tricky case. 4081 4082 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 4083 return nullptr; 4084 4085 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 4086 // should have been folded away previously and not enter in here. 4087 4088 // We're performing an unsigned comp with a sign extended value. 4089 // This is true if the input is >= 0. [aka >s -1] 4090 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 4091 Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 4092 4093 // Finally, return the value computed. 4094 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4095 return replaceInstUsesWith(ICmp, Result); 4096 4097 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4098 return BinaryOperator::CreateNot(Result); 4099 } 4100 4101 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4102 switch (BinaryOp) { 4103 default: 4104 llvm_unreachable("Unsupported binary op"); 4105 case Instruction::Add: 4106 case Instruction::Sub: 4107 return match(RHS, m_Zero()); 4108 case Instruction::Mul: 4109 return match(RHS, m_One()); 4110 } 4111 } 4112 4113 OverflowResult InstCombiner::computeOverflow( 4114 Instruction::BinaryOps BinaryOp, bool IsSigned, 4115 Value *LHS, Value *RHS, Instruction *CxtI) const { 4116 switch (BinaryOp) { 4117 default: 4118 llvm_unreachable("Unsupported binary op"); 4119 case Instruction::Add: 4120 if (IsSigned) 4121 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4122 else 4123 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4124 case Instruction::Sub: 4125 if (IsSigned) 4126 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4127 else 4128 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4129 case Instruction::Mul: 4130 if (IsSigned) 4131 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4132 else 4133 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4134 } 4135 } 4136 4137 bool InstCombiner::OptimizeOverflowCheck( 4138 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, 4139 Instruction &OrigI, Value *&Result, Constant *&Overflow) { 4140 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4141 std::swap(LHS, RHS); 4142 4143 // If the overflow check was an add followed by a compare, the insertion point 4144 // may be pointing to the compare. We want to insert the new instructions 4145 // before the add in case there are uses of the add between the add and the 4146 // compare. 4147 Builder.SetInsertPoint(&OrigI); 4148 4149 if (isNeutralValue(BinaryOp, RHS)) { 4150 Result = LHS; 4151 Overflow = Builder.getFalse(); 4152 return true; 4153 } 4154 4155 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4156 case OverflowResult::MayOverflow: 4157 return false; 4158 case OverflowResult::AlwaysOverflowsLow: 4159 case OverflowResult::AlwaysOverflowsHigh: 4160 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4161 Result->takeName(&OrigI); 4162 Overflow = Builder.getTrue(); 4163 return true; 4164 case OverflowResult::NeverOverflows: 4165 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4166 Result->takeName(&OrigI); 4167 Overflow = Builder.getFalse(); 4168 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4169 if (IsSigned) 4170 Inst->setHasNoSignedWrap(); 4171 else 4172 Inst->setHasNoUnsignedWrap(); 4173 } 4174 return true; 4175 } 4176 4177 llvm_unreachable("Unexpected overflow result"); 4178 } 4179 4180 /// Recognize and process idiom involving test for multiplication 4181 /// overflow. 4182 /// 4183 /// The caller has matched a pattern of the form: 4184 /// I = cmp u (mul(zext A, zext B), V 4185 /// The function checks if this is a test for overflow and if so replaces 4186 /// multiplication with call to 'mul.with.overflow' intrinsic. 4187 /// 4188 /// \param I Compare instruction. 4189 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4190 /// the compare instruction. Must be of integer type. 4191 /// \param OtherVal The other argument of compare instruction. 4192 /// \returns Instruction which must replace the compare instruction, NULL if no 4193 /// replacement required. 4194 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4195 Value *OtherVal, InstCombiner &IC) { 4196 // Don't bother doing this transformation for pointers, don't do it for 4197 // vectors. 4198 if (!isa<IntegerType>(MulVal->getType())) 4199 return nullptr; 4200 4201 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4202 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4203 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4204 if (!MulInstr) 4205 return nullptr; 4206 assert(MulInstr->getOpcode() == Instruction::Mul); 4207 4208 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4209 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4210 assert(LHS->getOpcode() == Instruction::ZExt); 4211 assert(RHS->getOpcode() == Instruction::ZExt); 4212 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4213 4214 // Calculate type and width of the result produced by mul.with.overflow. 4215 Type *TyA = A->getType(), *TyB = B->getType(); 4216 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4217 WidthB = TyB->getPrimitiveSizeInBits(); 4218 unsigned MulWidth; 4219 Type *MulType; 4220 if (WidthB > WidthA) { 4221 MulWidth = WidthB; 4222 MulType = TyB; 4223 } else { 4224 MulWidth = WidthA; 4225 MulType = TyA; 4226 } 4227 4228 // In order to replace the original mul with a narrower mul.with.overflow, 4229 // all uses must ignore upper bits of the product. The number of used low 4230 // bits must be not greater than the width of mul.with.overflow. 4231 if (MulVal->hasNUsesOrMore(2)) 4232 for (User *U : MulVal->users()) { 4233 if (U == &I) 4234 continue; 4235 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4236 // Check if truncation ignores bits above MulWidth. 4237 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4238 if (TruncWidth > MulWidth) 4239 return nullptr; 4240 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4241 // Check if AND ignores bits above MulWidth. 4242 if (BO->getOpcode() != Instruction::And) 4243 return nullptr; 4244 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4245 const APInt &CVal = CI->getValue(); 4246 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4247 return nullptr; 4248 } else { 4249 // In this case we could have the operand of the binary operation 4250 // being defined in another block, and performing the replacement 4251 // could break the dominance relation. 4252 return nullptr; 4253 } 4254 } else { 4255 // Other uses prohibit this transformation. 4256 return nullptr; 4257 } 4258 } 4259 4260 // Recognize patterns 4261 switch (I.getPredicate()) { 4262 case ICmpInst::ICMP_EQ: 4263 case ICmpInst::ICMP_NE: 4264 // Recognize pattern: 4265 // mulval = mul(zext A, zext B) 4266 // cmp eq/neq mulval, zext trunc mulval 4267 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4268 if (Zext->hasOneUse()) { 4269 Value *ZextArg = Zext->getOperand(0); 4270 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4271 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4272 break; //Recognized 4273 } 4274 4275 // Recognize pattern: 4276 // mulval = mul(zext A, zext B) 4277 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4278 ConstantInt *CI; 4279 Value *ValToMask; 4280 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4281 if (ValToMask != MulVal) 4282 return nullptr; 4283 const APInt &CVal = CI->getValue() + 1; 4284 if (CVal.isPowerOf2()) { 4285 unsigned MaskWidth = CVal.logBase2(); 4286 if (MaskWidth == MulWidth) 4287 break; // Recognized 4288 } 4289 } 4290 return nullptr; 4291 4292 case ICmpInst::ICMP_UGT: 4293 // Recognize pattern: 4294 // mulval = mul(zext A, zext B) 4295 // cmp ugt mulval, max 4296 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4297 APInt MaxVal = APInt::getMaxValue(MulWidth); 4298 MaxVal = MaxVal.zext(CI->getBitWidth()); 4299 if (MaxVal.eq(CI->getValue())) 4300 break; // Recognized 4301 } 4302 return nullptr; 4303 4304 case ICmpInst::ICMP_UGE: 4305 // Recognize pattern: 4306 // mulval = mul(zext A, zext B) 4307 // cmp uge mulval, max+1 4308 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4309 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4310 if (MaxVal.eq(CI->getValue())) 4311 break; // Recognized 4312 } 4313 return nullptr; 4314 4315 case ICmpInst::ICMP_ULE: 4316 // Recognize pattern: 4317 // mulval = mul(zext A, zext B) 4318 // cmp ule mulval, max 4319 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4320 APInt MaxVal = APInt::getMaxValue(MulWidth); 4321 MaxVal = MaxVal.zext(CI->getBitWidth()); 4322 if (MaxVal.eq(CI->getValue())) 4323 break; // Recognized 4324 } 4325 return nullptr; 4326 4327 case ICmpInst::ICMP_ULT: 4328 // Recognize pattern: 4329 // mulval = mul(zext A, zext B) 4330 // cmp ule mulval, max + 1 4331 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4332 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4333 if (MaxVal.eq(CI->getValue())) 4334 break; // Recognized 4335 } 4336 return nullptr; 4337 4338 default: 4339 return nullptr; 4340 } 4341 4342 InstCombiner::BuilderTy &Builder = IC.Builder; 4343 Builder.SetInsertPoint(MulInstr); 4344 4345 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4346 Value *MulA = A, *MulB = B; 4347 if (WidthA < MulWidth) 4348 MulA = Builder.CreateZExt(A, MulType); 4349 if (WidthB < MulWidth) 4350 MulB = Builder.CreateZExt(B, MulType); 4351 Function *F = Intrinsic::getDeclaration( 4352 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4353 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4354 IC.Worklist.Add(MulInstr); 4355 4356 // If there are uses of mul result other than the comparison, we know that 4357 // they are truncation or binary AND. Change them to use result of 4358 // mul.with.overflow and adjust properly mask/size. 4359 if (MulVal->hasNUsesOrMore(2)) { 4360 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4361 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4362 User *U = *UI++; 4363 if (U == &I || U == OtherVal) 4364 continue; 4365 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4366 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4367 IC.replaceInstUsesWith(*TI, Mul); 4368 else 4369 TI->setOperand(0, Mul); 4370 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4371 assert(BO->getOpcode() == Instruction::And); 4372 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4373 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4374 APInt ShortMask = CI->getValue().trunc(MulWidth); 4375 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4376 Instruction *Zext = 4377 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); 4378 IC.Worklist.Add(Zext); 4379 IC.replaceInstUsesWith(*BO, Zext); 4380 } else { 4381 llvm_unreachable("Unexpected Binary operation"); 4382 } 4383 IC.Worklist.Add(cast<Instruction>(U)); 4384 } 4385 } 4386 if (isa<Instruction>(OtherVal)) 4387 IC.Worklist.Add(cast<Instruction>(OtherVal)); 4388 4389 // The original icmp gets replaced with the overflow value, maybe inverted 4390 // depending on predicate. 4391 bool Inverse = false; 4392 switch (I.getPredicate()) { 4393 case ICmpInst::ICMP_NE: 4394 break; 4395 case ICmpInst::ICMP_EQ: 4396 Inverse = true; 4397 break; 4398 case ICmpInst::ICMP_UGT: 4399 case ICmpInst::ICMP_UGE: 4400 if (I.getOperand(0) == MulVal) 4401 break; 4402 Inverse = true; 4403 break; 4404 case ICmpInst::ICMP_ULT: 4405 case ICmpInst::ICMP_ULE: 4406 if (I.getOperand(1) == MulVal) 4407 break; 4408 Inverse = true; 4409 break; 4410 default: 4411 llvm_unreachable("Unexpected predicate"); 4412 } 4413 if (Inverse) { 4414 Value *Res = Builder.CreateExtractValue(Call, 1); 4415 return BinaryOperator::CreateNot(Res); 4416 } 4417 4418 return ExtractValueInst::Create(Call, 1); 4419 } 4420 4421 /// When performing a comparison against a constant, it is possible that not all 4422 /// the bits in the LHS are demanded. This helper method computes the mask that 4423 /// IS demanded. 4424 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4425 const APInt *RHS; 4426 if (!match(I.getOperand(1), m_APInt(RHS))) 4427 return APInt::getAllOnesValue(BitWidth); 4428 4429 // If this is a normal comparison, it demands all bits. If it is a sign bit 4430 // comparison, it only demands the sign bit. 4431 bool UnusedBit; 4432 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4433 return APInt::getSignMask(BitWidth); 4434 4435 switch (I.getPredicate()) { 4436 // For a UGT comparison, we don't care about any bits that 4437 // correspond to the trailing ones of the comparand. The value of these 4438 // bits doesn't impact the outcome of the comparison, because any value 4439 // greater than the RHS must differ in a bit higher than these due to carry. 4440 case ICmpInst::ICMP_UGT: 4441 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4442 4443 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4444 // Any value less than the RHS must differ in a higher bit because of carries. 4445 case ICmpInst::ICMP_ULT: 4446 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4447 4448 default: 4449 return APInt::getAllOnesValue(BitWidth); 4450 } 4451 } 4452 4453 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4454 /// should be swapped. 4455 /// The decision is based on how many times these two operands are reused 4456 /// as subtract operands and their positions in those instructions. 4457 /// The rationale is that several architectures use the same instruction for 4458 /// both subtract and cmp. Thus, it is better if the order of those operands 4459 /// match. 4460 /// \return true if Op0 and Op1 should be swapped. 4461 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4462 // Filter out pointer values as those cannot appear directly in subtract. 4463 // FIXME: we may want to go through inttoptrs or bitcasts. 4464 if (Op0->getType()->isPointerTy()) 4465 return false; 4466 // If a subtract already has the same operands as a compare, swapping would be 4467 // bad. If a subtract has the same operands as a compare but in reverse order, 4468 // then swapping is good. 4469 int GoodToSwap = 0; 4470 for (const User *U : Op0->users()) { 4471 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4472 GoodToSwap++; 4473 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4474 GoodToSwap--; 4475 } 4476 return GoodToSwap > 0; 4477 } 4478 4479 /// Check that one use is in the same block as the definition and all 4480 /// other uses are in blocks dominated by a given block. 4481 /// 4482 /// \param DI Definition 4483 /// \param UI Use 4484 /// \param DB Block that must dominate all uses of \p DI outside 4485 /// the parent block 4486 /// \return true when \p UI is the only use of \p DI in the parent block 4487 /// and all other uses of \p DI are in blocks dominated by \p DB. 4488 /// 4489 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4490 const Instruction *UI, 4491 const BasicBlock *DB) const { 4492 assert(DI && UI && "Instruction not defined\n"); 4493 // Ignore incomplete definitions. 4494 if (!DI->getParent()) 4495 return false; 4496 // DI and UI must be in the same block. 4497 if (DI->getParent() != UI->getParent()) 4498 return false; 4499 // Protect from self-referencing blocks. 4500 if (DI->getParent() == DB) 4501 return false; 4502 for (const User *U : DI->users()) { 4503 auto *Usr = cast<Instruction>(U); 4504 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4505 return false; 4506 } 4507 return true; 4508 } 4509 4510 /// Return true when the instruction sequence within a block is select-cmp-br. 4511 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4512 const BasicBlock *BB = SI->getParent(); 4513 if (!BB) 4514 return false; 4515 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4516 if (!BI || BI->getNumSuccessors() != 2) 4517 return false; 4518 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4519 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4520 return false; 4521 return true; 4522 } 4523 4524 /// True when a select result is replaced by one of its operands 4525 /// in select-icmp sequence. This will eventually result in the elimination 4526 /// of the select. 4527 /// 4528 /// \param SI Select instruction 4529 /// \param Icmp Compare instruction 4530 /// \param SIOpd Operand that replaces the select 4531 /// 4532 /// Notes: 4533 /// - The replacement is global and requires dominator information 4534 /// - The caller is responsible for the actual replacement 4535 /// 4536 /// Example: 4537 /// 4538 /// entry: 4539 /// %4 = select i1 %3, %C* %0, %C* null 4540 /// %5 = icmp eq %C* %4, null 4541 /// br i1 %5, label %9, label %7 4542 /// ... 4543 /// ; <label>:7 ; preds = %entry 4544 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4545 /// ... 4546 /// 4547 /// can be transformed to 4548 /// 4549 /// %5 = icmp eq %C* %0, null 4550 /// %6 = select i1 %3, i1 %5, i1 true 4551 /// br i1 %6, label %9, label %7 4552 /// ... 4553 /// ; <label>:7 ; preds = %entry 4554 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4555 /// 4556 /// Similar when the first operand of the select is a constant or/and 4557 /// the compare is for not equal rather than equal. 4558 /// 4559 /// NOTE: The function is only called when the select and compare constants 4560 /// are equal, the optimization can work only for EQ predicates. This is not a 4561 /// major restriction since a NE compare should be 'normalized' to an equal 4562 /// compare, which usually happens in the combiner and test case 4563 /// select-cmp-br.ll checks for it. 4564 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4565 const ICmpInst *Icmp, 4566 const unsigned SIOpd) { 4567 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4568 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4569 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4570 // The check for the single predecessor is not the best that can be 4571 // done. But it protects efficiently against cases like when SI's 4572 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4573 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4574 // replaced can be reached on either path. So the uniqueness check 4575 // guarantees that the path all uses of SI (outside SI's parent) are on 4576 // is disjoint from all other paths out of SI. But that information 4577 // is more expensive to compute, and the trade-off here is in favor 4578 // of compile-time. It should also be noticed that we check for a single 4579 // predecessor and not only uniqueness. This to handle the situation when 4580 // Succ and Succ1 points to the same basic block. 4581 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4582 NumSel++; 4583 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4584 return true; 4585 } 4586 } 4587 return false; 4588 } 4589 4590 /// Try to fold the comparison based on range information we can get by checking 4591 /// whether bits are known to be zero or one in the inputs. 4592 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4593 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4594 Type *Ty = Op0->getType(); 4595 ICmpInst::Predicate Pred = I.getPredicate(); 4596 4597 // Get scalar or pointer size. 4598 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4599 ? Ty->getScalarSizeInBits() 4600 : DL.getIndexTypeSizeInBits(Ty->getScalarType()); 4601 4602 if (!BitWidth) 4603 return nullptr; 4604 4605 KnownBits Op0Known(BitWidth); 4606 KnownBits Op1Known(BitWidth); 4607 4608 if (SimplifyDemandedBits(&I, 0, 4609 getDemandedBitsLHSMask(I, BitWidth), 4610 Op0Known, 0)) 4611 return &I; 4612 4613 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4614 Op1Known, 0)) 4615 return &I; 4616 4617 // Given the known and unknown bits, compute a range that the LHS could be 4618 // in. Compute the Min, Max and RHS values based on the known bits. For the 4619 // EQ and NE we use unsigned values. 4620 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4621 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4622 if (I.isSigned()) { 4623 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4624 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4625 } else { 4626 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4627 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4628 } 4629 4630 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4631 // out that the LHS or RHS is a constant. Constant fold this now, so that 4632 // code below can assume that Min != Max. 4633 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4634 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4635 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4636 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4637 4638 // Based on the range information we know about the LHS, see if we can 4639 // simplify this comparison. For example, (x&4) < 8 is always true. 4640 switch (Pred) { 4641 default: 4642 llvm_unreachable("Unknown icmp opcode!"); 4643 case ICmpInst::ICMP_EQ: 4644 case ICmpInst::ICMP_NE: { 4645 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4646 return Pred == CmpInst::ICMP_EQ 4647 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4648 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4649 } 4650 4651 // If all bits are known zero except for one, then we know at most one bit 4652 // is set. If the comparison is against zero, then this is a check to see if 4653 // *that* bit is set. 4654 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 4655 if (Op1Known.isZero()) { 4656 // If the LHS is an AND with the same constant, look through it. 4657 Value *LHS = nullptr; 4658 const APInt *LHSC; 4659 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4660 *LHSC != Op0KnownZeroInverted) 4661 LHS = Op0; 4662 4663 Value *X; 4664 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4665 APInt ValToCheck = Op0KnownZeroInverted; 4666 Type *XTy = X->getType(); 4667 if (ValToCheck.isPowerOf2()) { 4668 // ((1 << X) & 8) == 0 -> X != 3 4669 // ((1 << X) & 8) != 0 -> X == 3 4670 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4671 auto NewPred = ICmpInst::getInversePredicate(Pred); 4672 return new ICmpInst(NewPred, X, CmpC); 4673 } else if ((++ValToCheck).isPowerOf2()) { 4674 // ((1 << X) & 7) == 0 -> X >= 3 4675 // ((1 << X) & 7) != 0 -> X < 3 4676 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4677 auto NewPred = 4678 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4679 return new ICmpInst(NewPred, X, CmpC); 4680 } 4681 } 4682 4683 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 4684 const APInt *CI; 4685 if (Op0KnownZeroInverted.isOneValue() && 4686 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 4687 // ((8 >>u X) & 1) == 0 -> X != 3 4688 // ((8 >>u X) & 1) != 0 -> X == 3 4689 unsigned CmpVal = CI->countTrailingZeros(); 4690 auto NewPred = ICmpInst::getInversePredicate(Pred); 4691 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 4692 } 4693 } 4694 break; 4695 } 4696 case ICmpInst::ICMP_ULT: { 4697 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 4698 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4699 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 4700 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4701 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 4702 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4703 4704 const APInt *CmpC; 4705 if (match(Op1, m_APInt(CmpC))) { 4706 // A <u C -> A == C-1 if min(A)+1 == C 4707 if (*CmpC == Op0Min + 1) 4708 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4709 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4710 // X <u C --> X == 0, if the number of zero bits in the bottom of X 4711 // exceeds the log2 of C. 4712 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 4713 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4714 Constant::getNullValue(Op1->getType())); 4715 } 4716 break; 4717 } 4718 case ICmpInst::ICMP_UGT: { 4719 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 4720 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4721 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 4722 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4723 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 4724 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4725 4726 const APInt *CmpC; 4727 if (match(Op1, m_APInt(CmpC))) { 4728 // A >u C -> A == C+1 if max(a)-1 == C 4729 if (*CmpC == Op0Max - 1) 4730 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4731 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4732 // X >u C --> X != 0, if the number of zero bits in the bottom of X 4733 // exceeds the log2 of C. 4734 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 4735 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 4736 Constant::getNullValue(Op1->getType())); 4737 } 4738 break; 4739 } 4740 case ICmpInst::ICMP_SLT: { 4741 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 4742 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4743 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 4744 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4745 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 4746 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4747 const APInt *CmpC; 4748 if (match(Op1, m_APInt(CmpC))) { 4749 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 4750 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4751 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4752 } 4753 break; 4754 } 4755 case ICmpInst::ICMP_SGT: { 4756 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 4757 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4758 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 4759 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4760 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 4761 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4762 const APInt *CmpC; 4763 if (match(Op1, m_APInt(CmpC))) { 4764 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 4765 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4766 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4767 } 4768 break; 4769 } 4770 case ICmpInst::ICMP_SGE: 4771 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 4772 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 4773 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4774 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 4775 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4776 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 4777 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4778 break; 4779 case ICmpInst::ICMP_SLE: 4780 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 4781 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 4782 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4783 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 4784 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4785 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 4786 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4787 break; 4788 case ICmpInst::ICMP_UGE: 4789 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 4790 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 4791 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4792 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 4793 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4794 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 4795 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4796 break; 4797 case ICmpInst::ICMP_ULE: 4798 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 4799 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 4800 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4801 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 4802 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4803 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 4804 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4805 break; 4806 } 4807 4808 // Turn a signed comparison into an unsigned one if both operands are known to 4809 // have the same sign. 4810 if (I.isSigned() && 4811 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 4812 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 4813 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 4814 4815 return nullptr; 4816 } 4817 4818 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 4819 /// it into the appropriate icmp lt or icmp gt instruction. This transform 4820 /// allows them to be folded in visitICmpInst. 4821 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 4822 ICmpInst::Predicate Pred = I.getPredicate(); 4823 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 4824 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 4825 return nullptr; 4826 4827 Value *Op0 = I.getOperand(0); 4828 Value *Op1 = I.getOperand(1); 4829 auto *Op1C = dyn_cast<Constant>(Op1); 4830 if (!Op1C) 4831 return nullptr; 4832 4833 // Check if the constant operand can be safely incremented/decremented without 4834 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 4835 // the edge cases for us, so we just assert on them. For vectors, we must 4836 // handle the edge cases. 4837 Type *Op1Type = Op1->getType(); 4838 bool IsSigned = I.isSigned(); 4839 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 4840 auto *CI = dyn_cast<ConstantInt>(Op1C); 4841 if (CI) { 4842 // A <= MAX -> TRUE ; A >= MIN -> TRUE 4843 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 4844 } else if (Op1Type->isVectorTy()) { 4845 // TODO? If the edge cases for vectors were guaranteed to be handled as they 4846 // are for scalar, we could remove the min/max checks. However, to do that, 4847 // we would have to use insertelement/shufflevector to replace edge values. 4848 unsigned NumElts = Op1Type->getVectorNumElements(); 4849 for (unsigned i = 0; i != NumElts; ++i) { 4850 Constant *Elt = Op1C->getAggregateElement(i); 4851 if (!Elt) 4852 return nullptr; 4853 4854 if (isa<UndefValue>(Elt)) 4855 continue; 4856 4857 // Bail out if we can't determine if this constant is min/max or if we 4858 // know that this constant is min/max. 4859 auto *CI = dyn_cast<ConstantInt>(Elt); 4860 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 4861 return nullptr; 4862 } 4863 } else { 4864 // ConstantExpr? 4865 return nullptr; 4866 } 4867 4868 // Increment or decrement the constant and set the new comparison predicate: 4869 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 4870 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 4871 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 4872 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 4873 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 4874 } 4875 4876 /// Integer compare with boolean values can always be turned into bitwise ops. 4877 static Instruction *canonicalizeICmpBool(ICmpInst &I, 4878 InstCombiner::BuilderTy &Builder) { 4879 Value *A = I.getOperand(0), *B = I.getOperand(1); 4880 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 4881 4882 // A boolean compared to true/false can be simplified to Op0/true/false in 4883 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 4884 // Cases not handled by InstSimplify are always 'not' of Op0. 4885 if (match(B, m_Zero())) { 4886 switch (I.getPredicate()) { 4887 case CmpInst::ICMP_EQ: // A == 0 -> !A 4888 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 4889 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 4890 return BinaryOperator::CreateNot(A); 4891 default: 4892 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4893 } 4894 } else if (match(B, m_One())) { 4895 switch (I.getPredicate()) { 4896 case CmpInst::ICMP_NE: // A != 1 -> !A 4897 case CmpInst::ICMP_ULT: // A <u 1 -> !A 4898 case CmpInst::ICMP_SGT: // A >s -1 -> !A 4899 return BinaryOperator::CreateNot(A); 4900 default: 4901 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4902 } 4903 } 4904 4905 switch (I.getPredicate()) { 4906 default: 4907 llvm_unreachable("Invalid icmp instruction!"); 4908 case ICmpInst::ICMP_EQ: 4909 // icmp eq i1 A, B -> ~(A ^ B) 4910 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 4911 4912 case ICmpInst::ICMP_NE: 4913 // icmp ne i1 A, B -> A ^ B 4914 return BinaryOperator::CreateXor(A, B); 4915 4916 case ICmpInst::ICMP_UGT: 4917 // icmp ugt -> icmp ult 4918 std::swap(A, B); 4919 LLVM_FALLTHROUGH; 4920 case ICmpInst::ICMP_ULT: 4921 // icmp ult i1 A, B -> ~A & B 4922 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 4923 4924 case ICmpInst::ICMP_SGT: 4925 // icmp sgt -> icmp slt 4926 std::swap(A, B); 4927 LLVM_FALLTHROUGH; 4928 case ICmpInst::ICMP_SLT: 4929 // icmp slt i1 A, B -> A & ~B 4930 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 4931 4932 case ICmpInst::ICMP_UGE: 4933 // icmp uge -> icmp ule 4934 std::swap(A, B); 4935 LLVM_FALLTHROUGH; 4936 case ICmpInst::ICMP_ULE: 4937 // icmp ule i1 A, B -> ~A | B 4938 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 4939 4940 case ICmpInst::ICMP_SGE: 4941 // icmp sge -> icmp sle 4942 std::swap(A, B); 4943 LLVM_FALLTHROUGH; 4944 case ICmpInst::ICMP_SLE: 4945 // icmp sle i1 A, B -> A | ~B 4946 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 4947 } 4948 } 4949 4950 // Transform pattern like: 4951 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 4952 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 4953 // Into: 4954 // (X l>> Y) != 0 4955 // (X l>> Y) == 0 4956 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 4957 InstCombiner::BuilderTy &Builder) { 4958 ICmpInst::Predicate Pred, NewPred; 4959 Value *X, *Y; 4960 if (match(&Cmp, 4961 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 4962 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4963 if (Cmp.getOperand(0) == X) 4964 Pred = Cmp.getSwappedPredicate(); 4965 4966 switch (Pred) { 4967 case ICmpInst::ICMP_ULE: 4968 NewPred = ICmpInst::ICMP_NE; 4969 break; 4970 case ICmpInst::ICMP_UGT: 4971 NewPred = ICmpInst::ICMP_EQ; 4972 break; 4973 default: 4974 return nullptr; 4975 } 4976 } else if (match(&Cmp, m_c_ICmp(Pred, 4977 m_OneUse(m_CombineOr( 4978 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 4979 m_Add(m_Shl(m_One(), m_Value(Y)), 4980 m_AllOnes()))), 4981 m_Value(X)))) { 4982 // The variant with 'add' is not canonical, (the variant with 'not' is) 4983 // we only get it because it has extra uses, and can't be canonicalized, 4984 4985 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4986 if (Cmp.getOperand(0) == X) 4987 Pred = Cmp.getSwappedPredicate(); 4988 4989 switch (Pred) { 4990 case ICmpInst::ICMP_ULT: 4991 NewPred = ICmpInst::ICMP_NE; 4992 break; 4993 case ICmpInst::ICMP_UGE: 4994 NewPred = ICmpInst::ICMP_EQ; 4995 break; 4996 default: 4997 return nullptr; 4998 } 4999 } else 5000 return nullptr; 5001 5002 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5003 Constant *Zero = Constant::getNullValue(NewX->getType()); 5004 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5005 } 5006 5007 static Instruction *foldVectorCmp(CmpInst &Cmp, 5008 InstCombiner::BuilderTy &Builder) { 5009 // If both arguments of the cmp are shuffles that use the same mask and 5010 // shuffle within a single vector, move the shuffle after the cmp. 5011 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5012 Value *V1, *V2; 5013 Constant *M; 5014 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && 5015 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && 5016 V1->getType() == V2->getType() && 5017 (LHS->hasOneUse() || RHS->hasOneUse())) { 5018 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5019 CmpInst::Predicate P = Cmp.getPredicate(); 5020 Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) 5021 : Builder.CreateFCmp(P, V1, V2); 5022 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5023 } 5024 return nullptr; 5025 } 5026 5027 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 5028 bool Changed = false; 5029 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5030 unsigned Op0Cplxity = getComplexity(Op0); 5031 unsigned Op1Cplxity = getComplexity(Op1); 5032 5033 /// Orders the operands of the compare so that they are listed from most 5034 /// complex to least complex. This puts constants before unary operators, 5035 /// before binary operators. 5036 if (Op0Cplxity < Op1Cplxity || 5037 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5038 I.swapOperands(); 5039 std::swap(Op0, Op1); 5040 Changed = true; 5041 } 5042 5043 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, 5044 SQ.getWithInstruction(&I))) 5045 return replaceInstUsesWith(I, V); 5046 5047 // Comparing -val or val with non-zero is the same as just comparing val 5048 // ie, abs(val) != 0 -> val != 0 5049 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5050 Value *Cond, *SelectTrue, *SelectFalse; 5051 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5052 m_Value(SelectFalse)))) { 5053 if (Value *V = dyn_castNegVal(SelectTrue)) { 5054 if (V == SelectFalse) 5055 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5056 } 5057 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5058 if (V == SelectTrue) 5059 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5060 } 5061 } 5062 } 5063 5064 if (Op0->getType()->isIntOrIntVectorTy(1)) 5065 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5066 return Res; 5067 5068 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 5069 return NewICmp; 5070 5071 if (Instruction *Res = foldICmpWithConstant(I)) 5072 return Res; 5073 5074 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5075 return Res; 5076 5077 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5078 return Res; 5079 5080 // Test if the ICmpInst instruction is used exclusively by a select as 5081 // part of a minimum or maximum operation. If so, refrain from doing 5082 // any other folding. This helps out other analyses which understand 5083 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5084 // and CodeGen. And in this case, at least one of the comparison 5085 // operands has at least one user besides the compare (the select), 5086 // which would often largely negate the benefit of folding anyway. 5087 // 5088 // Do the same for the other patterns recognized by matchSelectPattern. 5089 if (I.hasOneUse()) 5090 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5091 Value *A, *B; 5092 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5093 if (SPR.Flavor != SPF_UNKNOWN) 5094 return nullptr; 5095 } 5096 5097 // Do this after checking for min/max to prevent infinite looping. 5098 if (Instruction *Res = foldICmpWithZero(I)) 5099 return Res; 5100 5101 // FIXME: We only do this after checking for min/max to prevent infinite 5102 // looping caused by a reverse canonicalization of these patterns for min/max. 5103 // FIXME: The organization of folds is a mess. These would naturally go into 5104 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5105 // down here after the min/max restriction. 5106 ICmpInst::Predicate Pred = I.getPredicate(); 5107 const APInt *C; 5108 if (match(Op1, m_APInt(C))) { 5109 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5110 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5111 Constant *Zero = Constant::getNullValue(Op0->getType()); 5112 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5113 } 5114 5115 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5116 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5117 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5118 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5119 } 5120 } 5121 5122 if (Instruction *Res = foldICmpInstWithConstant(I)) 5123 return Res; 5124 5125 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5126 return Res; 5127 5128 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5129 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5130 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5131 return NI; 5132 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5133 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5134 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5135 return NI; 5136 5137 // Try to optimize equality comparisons against alloca-based pointers. 5138 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5139 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5140 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 5141 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5142 return New; 5143 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 5144 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5145 return New; 5146 } 5147 5148 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5149 return Res; 5150 5151 if (isa<CastInst>(Op0)) { 5152 // Handle the special case of: icmp (cast bool to X), <cst> 5153 // This comes up when you have code like 5154 // int X = A < B; 5155 // if (X) ... 5156 // For generality, we handle any zero-extension of any operand comparison 5157 // with a constant or another cast from the same type. 5158 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 5159 if (Instruction *R = foldICmpWithCastAndCast(I)) 5160 return R; 5161 } 5162 5163 if (Instruction *Res = foldICmpBinOp(I)) 5164 return Res; 5165 5166 if (Instruction *Res = foldICmpWithMinMax(I)) 5167 return Res; 5168 5169 { 5170 Value *A, *B; 5171 // Transform (A & ~B) == 0 --> (A & B) != 0 5172 // and (A & ~B) != 0 --> (A & B) == 0 5173 // if A is a power of 2. 5174 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5175 match(Op1, m_Zero()) && 5176 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5177 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5178 Op1); 5179 5180 // ~X < ~Y --> Y < X 5181 // ~X < C --> X > ~C 5182 if (match(Op0, m_Not(m_Value(A)))) { 5183 if (match(Op1, m_Not(m_Value(B)))) 5184 return new ICmpInst(I.getPredicate(), B, A); 5185 5186 const APInt *C; 5187 if (match(Op1, m_APInt(C))) 5188 return new ICmpInst(I.getSwappedPredicate(), A, 5189 ConstantInt::get(Op1->getType(), ~(*C))); 5190 } 5191 5192 Instruction *AddI = nullptr; 5193 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5194 m_Instruction(AddI))) && 5195 isa<IntegerType>(A->getType())) { 5196 Value *Result; 5197 Constant *Overflow; 5198 if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B, 5199 *AddI, Result, Overflow)) { 5200 replaceInstUsesWith(*AddI, Result); 5201 return replaceInstUsesWith(I, Overflow); 5202 } 5203 } 5204 5205 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5206 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5207 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5208 return R; 5209 } 5210 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5211 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5212 return R; 5213 } 5214 } 5215 5216 if (Instruction *Res = foldICmpEquality(I)) 5217 return Res; 5218 5219 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5220 // an i1 which indicates whether or not we successfully did the swap. 5221 // 5222 // Replace comparisons between the old value and the expected value with the 5223 // indicator that 'cmpxchg' returns. 5224 // 5225 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5226 // spuriously fail. In those cases, the old value may equal the expected 5227 // value but it is possible for the swap to not occur. 5228 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5229 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5230 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5231 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5232 !ACXI->isWeak()) 5233 return ExtractValueInst::Create(ACXI, 1); 5234 5235 { 5236 Value *X; 5237 const APInt *C; 5238 // icmp X+Cst, X 5239 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5240 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5241 5242 // icmp X, X+Cst 5243 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5244 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5245 } 5246 5247 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5248 return Res; 5249 5250 if (I.getType()->isVectorTy()) 5251 if (Instruction *Res = foldVectorCmp(I, Builder)) 5252 return Res; 5253 5254 return Changed ? &I : nullptr; 5255 } 5256 5257 /// Fold fcmp ([us]itofp x, cst) if possible. 5258 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5259 Constant *RHSC) { 5260 if (!isa<ConstantFP>(RHSC)) return nullptr; 5261 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5262 5263 // Get the width of the mantissa. We don't want to hack on conversions that 5264 // might lose information from the integer, e.g. "i64 -> float" 5265 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5266 if (MantissaWidth == -1) return nullptr; // Unknown. 5267 5268 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5269 5270 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5271 5272 if (I.isEquality()) { 5273 FCmpInst::Predicate P = I.getPredicate(); 5274 bool IsExact = false; 5275 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5276 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5277 5278 // If the floating point constant isn't an integer value, we know if we will 5279 // ever compare equal / not equal to it. 5280 if (!IsExact) { 5281 // TODO: Can never be -0.0 and other non-representable values 5282 APFloat RHSRoundInt(RHS); 5283 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5284 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 5285 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5286 return replaceInstUsesWith(I, Builder.getFalse()); 5287 5288 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5289 return replaceInstUsesWith(I, Builder.getTrue()); 5290 } 5291 } 5292 5293 // TODO: If the constant is exactly representable, is it always OK to do 5294 // equality compares as integer? 5295 } 5296 5297 // Check to see that the input is converted from an integer type that is small 5298 // enough that preserves all bits. TODO: check here for "known" sign bits. 5299 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5300 unsigned InputSize = IntTy->getScalarSizeInBits(); 5301 5302 // Following test does NOT adjust InputSize downwards for signed inputs, 5303 // because the most negative value still requires all the mantissa bits 5304 // to distinguish it from one less than that value. 5305 if ((int)InputSize > MantissaWidth) { 5306 // Conversion would lose accuracy. Check if loss can impact comparison. 5307 int Exp = ilogb(RHS); 5308 if (Exp == APFloat::IEK_Inf) { 5309 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5310 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5311 // Conversion could create infinity. 5312 return nullptr; 5313 } else { 5314 // Note that if RHS is zero or NaN, then Exp is negative 5315 // and first condition is trivially false. 5316 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5317 // Conversion could affect comparison. 5318 return nullptr; 5319 } 5320 } 5321 5322 // Otherwise, we can potentially simplify the comparison. We know that it 5323 // will always come through as an integer value and we know the constant is 5324 // not a NAN (it would have been previously simplified). 5325 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5326 5327 ICmpInst::Predicate Pred; 5328 switch (I.getPredicate()) { 5329 default: llvm_unreachable("Unexpected predicate!"); 5330 case FCmpInst::FCMP_UEQ: 5331 case FCmpInst::FCMP_OEQ: 5332 Pred = ICmpInst::ICMP_EQ; 5333 break; 5334 case FCmpInst::FCMP_UGT: 5335 case FCmpInst::FCMP_OGT: 5336 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5337 break; 5338 case FCmpInst::FCMP_UGE: 5339 case FCmpInst::FCMP_OGE: 5340 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5341 break; 5342 case FCmpInst::FCMP_ULT: 5343 case FCmpInst::FCMP_OLT: 5344 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5345 break; 5346 case FCmpInst::FCMP_ULE: 5347 case FCmpInst::FCMP_OLE: 5348 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5349 break; 5350 case FCmpInst::FCMP_UNE: 5351 case FCmpInst::FCMP_ONE: 5352 Pred = ICmpInst::ICMP_NE; 5353 break; 5354 case FCmpInst::FCMP_ORD: 5355 return replaceInstUsesWith(I, Builder.getTrue()); 5356 case FCmpInst::FCMP_UNO: 5357 return replaceInstUsesWith(I, Builder.getFalse()); 5358 } 5359 5360 // Now we know that the APFloat is a normal number, zero or inf. 5361 5362 // See if the FP constant is too large for the integer. For example, 5363 // comparing an i8 to 300.0. 5364 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5365 5366 if (!LHSUnsigned) { 5367 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5368 // and large values. 5369 APFloat SMax(RHS.getSemantics()); 5370 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5371 APFloat::rmNearestTiesToEven); 5372 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 5373 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5374 Pred == ICmpInst::ICMP_SLE) 5375 return replaceInstUsesWith(I, Builder.getTrue()); 5376 return replaceInstUsesWith(I, Builder.getFalse()); 5377 } 5378 } else { 5379 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5380 // +INF and large values. 5381 APFloat UMax(RHS.getSemantics()); 5382 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5383 APFloat::rmNearestTiesToEven); 5384 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 5385 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5386 Pred == ICmpInst::ICMP_ULE) 5387 return replaceInstUsesWith(I, Builder.getTrue()); 5388 return replaceInstUsesWith(I, Builder.getFalse()); 5389 } 5390 } 5391 5392 if (!LHSUnsigned) { 5393 // See if the RHS value is < SignedMin. 5394 APFloat SMin(RHS.getSemantics()); 5395 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5396 APFloat::rmNearestTiesToEven); 5397 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 5398 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5399 Pred == ICmpInst::ICMP_SGE) 5400 return replaceInstUsesWith(I, Builder.getTrue()); 5401 return replaceInstUsesWith(I, Builder.getFalse()); 5402 } 5403 } else { 5404 // See if the RHS value is < UnsignedMin. 5405 APFloat SMin(RHS.getSemantics()); 5406 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 5407 APFloat::rmNearestTiesToEven); 5408 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 5409 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5410 Pred == ICmpInst::ICMP_UGE) 5411 return replaceInstUsesWith(I, Builder.getTrue()); 5412 return replaceInstUsesWith(I, Builder.getFalse()); 5413 } 5414 } 5415 5416 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5417 // [0, UMAX], but it may still be fractional. See if it is fractional by 5418 // casting the FP value to the integer value and back, checking for equality. 5419 // Don't do this for zero, because -0.0 is not fractional. 5420 Constant *RHSInt = LHSUnsigned 5421 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5422 : ConstantExpr::getFPToSI(RHSC, IntTy); 5423 if (!RHS.isZero()) { 5424 bool Equal = LHSUnsigned 5425 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5426 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5427 if (!Equal) { 5428 // If we had a comparison against a fractional value, we have to adjust 5429 // the compare predicate and sometimes the value. RHSC is rounded towards 5430 // zero at this point. 5431 switch (Pred) { 5432 default: llvm_unreachable("Unexpected integer comparison!"); 5433 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5434 return replaceInstUsesWith(I, Builder.getTrue()); 5435 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5436 return replaceInstUsesWith(I, Builder.getFalse()); 5437 case ICmpInst::ICMP_ULE: 5438 // (float)int <= 4.4 --> int <= 4 5439 // (float)int <= -4.4 --> false 5440 if (RHS.isNegative()) 5441 return replaceInstUsesWith(I, Builder.getFalse()); 5442 break; 5443 case ICmpInst::ICMP_SLE: 5444 // (float)int <= 4.4 --> int <= 4 5445 // (float)int <= -4.4 --> int < -4 5446 if (RHS.isNegative()) 5447 Pred = ICmpInst::ICMP_SLT; 5448 break; 5449 case ICmpInst::ICMP_ULT: 5450 // (float)int < -4.4 --> false 5451 // (float)int < 4.4 --> int <= 4 5452 if (RHS.isNegative()) 5453 return replaceInstUsesWith(I, Builder.getFalse()); 5454 Pred = ICmpInst::ICMP_ULE; 5455 break; 5456 case ICmpInst::ICMP_SLT: 5457 // (float)int < -4.4 --> int < -4 5458 // (float)int < 4.4 --> int <= 4 5459 if (!RHS.isNegative()) 5460 Pred = ICmpInst::ICMP_SLE; 5461 break; 5462 case ICmpInst::ICMP_UGT: 5463 // (float)int > 4.4 --> int > 4 5464 // (float)int > -4.4 --> true 5465 if (RHS.isNegative()) 5466 return replaceInstUsesWith(I, Builder.getTrue()); 5467 break; 5468 case ICmpInst::ICMP_SGT: 5469 // (float)int > 4.4 --> int > 4 5470 // (float)int > -4.4 --> int >= -4 5471 if (RHS.isNegative()) 5472 Pred = ICmpInst::ICMP_SGE; 5473 break; 5474 case ICmpInst::ICMP_UGE: 5475 // (float)int >= -4.4 --> true 5476 // (float)int >= 4.4 --> int > 4 5477 if (RHS.isNegative()) 5478 return replaceInstUsesWith(I, Builder.getTrue()); 5479 Pred = ICmpInst::ICMP_UGT; 5480 break; 5481 case ICmpInst::ICMP_SGE: 5482 // (float)int >= -4.4 --> int >= -4 5483 // (float)int >= 4.4 --> int > 4 5484 if (!RHS.isNegative()) 5485 Pred = ICmpInst::ICMP_SGT; 5486 break; 5487 } 5488 } 5489 } 5490 5491 // Lower this FP comparison into an appropriate integer version of the 5492 // comparison. 5493 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5494 } 5495 5496 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5497 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5498 Constant *RHSC) { 5499 // When C is not 0.0 and infinities are not allowed: 5500 // (C / X) < 0.0 is a sign-bit test of X 5501 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5502 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5503 // 5504 // Proof: 5505 // Multiply (C / X) < 0.0 by X * X / C. 5506 // - X is non zero, if it is the flag 'ninf' is violated. 5507 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5508 // the predicate. C is also non zero by definition. 5509 // 5510 // Thus X * X / C is non zero and the transformation is valid. [qed] 5511 5512 FCmpInst::Predicate Pred = I.getPredicate(); 5513 5514 // Check that predicates are valid. 5515 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5516 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5517 return nullptr; 5518 5519 // Check that RHS operand is zero. 5520 if (!match(RHSC, m_AnyZeroFP())) 5521 return nullptr; 5522 5523 // Check fastmath flags ('ninf'). 5524 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5525 return nullptr; 5526 5527 // Check the properties of the dividend. It must not be zero to avoid a 5528 // division by zero (see Proof). 5529 const APFloat *C; 5530 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5531 return nullptr; 5532 5533 if (C->isZero()) 5534 return nullptr; 5535 5536 // Get swapped predicate if necessary. 5537 if (C->isNegative()) 5538 Pred = I.getSwappedPredicate(); 5539 5540 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5541 } 5542 5543 /// Optimize fabs(X) compared with zero. 5544 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { 5545 Value *X; 5546 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5547 !match(I.getOperand(1), m_PosZeroFP())) 5548 return nullptr; 5549 5550 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5551 I->setPredicate(P); 5552 I->setOperand(0, X); 5553 return I; 5554 }; 5555 5556 switch (I.getPredicate()) { 5557 case FCmpInst::FCMP_UGE: 5558 case FCmpInst::FCMP_OLT: 5559 // fabs(X) >= 0.0 --> true 5560 // fabs(X) < 0.0 --> false 5561 llvm_unreachable("fcmp should have simplified"); 5562 5563 case FCmpInst::FCMP_OGT: 5564 // fabs(X) > 0.0 --> X != 0.0 5565 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 5566 5567 case FCmpInst::FCMP_UGT: 5568 // fabs(X) u> 0.0 --> X u!= 0.0 5569 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 5570 5571 case FCmpInst::FCMP_OLE: 5572 // fabs(X) <= 0.0 --> X == 0.0 5573 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 5574 5575 case FCmpInst::FCMP_ULE: 5576 // fabs(X) u<= 0.0 --> X u== 0.0 5577 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 5578 5579 case FCmpInst::FCMP_OGE: 5580 // fabs(X) >= 0.0 --> !isnan(X) 5581 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5582 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 5583 5584 case FCmpInst::FCMP_ULT: 5585 // fabs(X) u< 0.0 --> isnan(X) 5586 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5587 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 5588 5589 case FCmpInst::FCMP_OEQ: 5590 case FCmpInst::FCMP_UEQ: 5591 case FCmpInst::FCMP_ONE: 5592 case FCmpInst::FCMP_UNE: 5593 case FCmpInst::FCMP_ORD: 5594 case FCmpInst::FCMP_UNO: 5595 // Look through the fabs() because it doesn't change anything but the sign. 5596 // fabs(X) == 0.0 --> X == 0.0, 5597 // fabs(X) != 0.0 --> X != 0.0 5598 // isnan(fabs(X)) --> isnan(X) 5599 // !isnan(fabs(X) --> !isnan(X) 5600 return replacePredAndOp0(&I, I.getPredicate(), X); 5601 5602 default: 5603 return nullptr; 5604 } 5605 } 5606 5607 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 5608 bool Changed = false; 5609 5610 /// Orders the operands of the compare so that they are listed from most 5611 /// complex to least complex. This puts constants before unary operators, 5612 /// before binary operators. 5613 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 5614 I.swapOperands(); 5615 Changed = true; 5616 } 5617 5618 const CmpInst::Predicate Pred = I.getPredicate(); 5619 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5620 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 5621 SQ.getWithInstruction(&I))) 5622 return replaceInstUsesWith(I, V); 5623 5624 // Simplify 'fcmp pred X, X' 5625 Type *OpType = Op0->getType(); 5626 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 5627 if (Op0 == Op1) { 5628 switch (Pred) { 5629 default: break; 5630 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 5631 case FCmpInst::FCMP_ULT: // True if unordered or less than 5632 case FCmpInst::FCMP_UGT: // True if unordered or greater than 5633 case FCmpInst::FCMP_UNE: // True if unordered or not equal 5634 // Canonicalize these to be 'fcmp uno %X, 0.0'. 5635 I.setPredicate(FCmpInst::FCMP_UNO); 5636 I.setOperand(1, Constant::getNullValue(OpType)); 5637 return &I; 5638 5639 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 5640 case FCmpInst::FCMP_OEQ: // True if ordered and equal 5641 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 5642 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 5643 // Canonicalize these to be 'fcmp ord %X, 0.0'. 5644 I.setPredicate(FCmpInst::FCMP_ORD); 5645 I.setOperand(1, Constant::getNullValue(OpType)); 5646 return &I; 5647 } 5648 } 5649 5650 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 5651 // then canonicalize the operand to 0.0. 5652 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 5653 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { 5654 I.setOperand(0, ConstantFP::getNullValue(OpType)); 5655 return &I; 5656 } 5657 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { 5658 I.setOperand(1, ConstantFP::getNullValue(OpType)); 5659 return &I; 5660 } 5661 } 5662 5663 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 5664 Value *X, *Y; 5665 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 5666 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 5667 5668 // Test if the FCmpInst instruction is used exclusively by a select as 5669 // part of a minimum or maximum operation. If so, refrain from doing 5670 // any other folding. This helps out other analyses which understand 5671 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5672 // and CodeGen. And in this case, at least one of the comparison 5673 // operands has at least one user besides the compare (the select), 5674 // which would often largely negate the benefit of folding anyway. 5675 if (I.hasOneUse()) 5676 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5677 Value *A, *B; 5678 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5679 if (SPR.Flavor != SPF_UNKNOWN) 5680 return nullptr; 5681 } 5682 5683 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 5684 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 5685 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { 5686 I.setOperand(1, ConstantFP::getNullValue(OpType)); 5687 return &I; 5688 } 5689 5690 // Handle fcmp with instruction LHS and constant RHS. 5691 Instruction *LHSI; 5692 Constant *RHSC; 5693 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 5694 switch (LHSI->getOpcode()) { 5695 case Instruction::PHI: 5696 // Only fold fcmp into the PHI if the phi and fcmp are in the same 5697 // block. If in the same block, we're encouraging jump threading. If 5698 // not, we are just pessimizing the code by making an i1 phi. 5699 if (LHSI->getParent() == I.getParent()) 5700 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 5701 return NV; 5702 break; 5703 case Instruction::SIToFP: 5704 case Instruction::UIToFP: 5705 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 5706 return NV; 5707 break; 5708 case Instruction::FDiv: 5709 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 5710 return NV; 5711 break; 5712 case Instruction::Load: 5713 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 5714 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 5715 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 5716 !cast<LoadInst>(LHSI)->isVolatile()) 5717 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 5718 return Res; 5719 break; 5720 } 5721 } 5722 5723 if (Instruction *R = foldFabsWithFcmpZero(I)) 5724 return R; 5725 5726 if (match(Op0, m_FNeg(m_Value(X)))) { 5727 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 5728 Constant *C; 5729 if (match(Op1, m_Constant(C))) { 5730 Constant *NegC = ConstantExpr::getFNeg(C); 5731 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 5732 } 5733 } 5734 5735 if (match(Op0, m_FPExt(m_Value(X)))) { 5736 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 5737 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 5738 return new FCmpInst(Pred, X, Y, "", &I); 5739 5740 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 5741 const APFloat *C; 5742 if (match(Op1, m_APFloat(C))) { 5743 const fltSemantics &FPSem = 5744 X->getType()->getScalarType()->getFltSemantics(); 5745 bool Lossy; 5746 APFloat TruncC = *C; 5747 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 5748 5749 // Avoid lossy conversions and denormals. 5750 // Zero is a special case that's OK to convert. 5751 APFloat Fabs = TruncC; 5752 Fabs.clearSign(); 5753 if (!Lossy && 5754 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != 5755 APFloat::cmpLessThan) || Fabs.isZero())) { 5756 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 5757 return new FCmpInst(Pred, X, NewC, "", &I); 5758 } 5759 } 5760 } 5761 5762 if (I.getType()->isVectorTy()) 5763 if (Instruction *Res = foldVectorCmp(I, Builder)) 5764 return Res; 5765 5766 return Changed ? &I : nullptr; 5767 } 5768