1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Support/Debug.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 // Initialization Routines 39 40 static ConstantInt *getOne(Constant *C) { 41 return ConstantInt::get(cast<IntegerType>(C->getType()), 1); 42 } 43 44 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { 45 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); 46 } 47 48 static bool HasAddOverflow(ConstantInt *Result, 49 ConstantInt *In1, ConstantInt *In2, 50 bool IsSigned) { 51 if (!IsSigned) 52 return Result->getValue().ult(In1->getValue()); 53 54 if (In2->isNegative()) 55 return Result->getValue().sgt(In1->getValue()); 56 return Result->getValue().slt(In1->getValue()); 57 } 58 59 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result 60 /// overflowed for this type. 61 static bool AddWithOverflow(Constant *&Result, Constant *In1, 62 Constant *In2, bool IsSigned = false) { 63 Result = ConstantExpr::getAdd(In1, In2); 64 65 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 66 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 67 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 68 if (HasAddOverflow(ExtractElement(Result, Idx), 69 ExtractElement(In1, Idx), 70 ExtractElement(In2, Idx), 71 IsSigned)) 72 return true; 73 } 74 return false; 75 } 76 77 return HasAddOverflow(cast<ConstantInt>(Result), 78 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 79 IsSigned); 80 } 81 82 static bool HasSubOverflow(ConstantInt *Result, 83 ConstantInt *In1, ConstantInt *In2, 84 bool IsSigned) { 85 if (!IsSigned) 86 return Result->getValue().ugt(In1->getValue()); 87 88 if (In2->isNegative()) 89 return Result->getValue().slt(In1->getValue()); 90 91 return Result->getValue().sgt(In1->getValue()); 92 } 93 94 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result 95 /// overflowed for this type. 96 static bool SubWithOverflow(Constant *&Result, Constant *In1, 97 Constant *In2, bool IsSigned = false) { 98 Result = ConstantExpr::getSub(In1, In2); 99 100 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 101 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 102 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 103 if (HasSubOverflow(ExtractElement(Result, Idx), 104 ExtractElement(In1, Idx), 105 ExtractElement(In2, Idx), 106 IsSigned)) 107 return true; 108 } 109 return false; 110 } 111 112 return HasSubOverflow(cast<ConstantInt>(Result), 113 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 114 IsSigned); 115 } 116 117 /// Given an icmp instruction, return true if any use of this comparison is a 118 /// branch on sign bit comparison. 119 static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) { 120 for (auto *U : I.users()) 121 if (isa<BranchInst>(U)) 122 return isSignBit; 123 return false; 124 } 125 126 /// isSignBitCheck - Given an exploded icmp instruction, return true if the 127 /// comparison only checks the sign bit. If it only checks the sign bit, set 128 /// TrueIfSigned if the result of the comparison is true when the input value is 129 /// signed. 130 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, 131 bool &TrueIfSigned) { 132 switch (pred) { 133 case ICmpInst::ICMP_SLT: // True if LHS s< 0 134 TrueIfSigned = true; 135 return RHS->isZero(); 136 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 137 TrueIfSigned = true; 138 return RHS->isAllOnesValue(); 139 case ICmpInst::ICMP_SGT: // True if LHS s> -1 140 TrueIfSigned = false; 141 return RHS->isAllOnesValue(); 142 case ICmpInst::ICMP_UGT: 143 // True if LHS u> RHS and RHS == high-bit-mask - 1 144 TrueIfSigned = true; 145 return RHS->isMaxValue(true); 146 case ICmpInst::ICMP_UGE: 147 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 148 TrueIfSigned = true; 149 return RHS->getValue().isSignBit(); 150 default: 151 return false; 152 } 153 } 154 155 /// Returns true if the exploded icmp can be expressed as a signed comparison 156 /// to zero and updates the predicate accordingly. 157 /// The signedness of the comparison is preserved. 158 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) { 159 if (!ICmpInst::isSigned(pred)) 160 return false; 161 162 if (RHS->isZero()) 163 return ICmpInst::isRelational(pred); 164 165 if (RHS->isOne()) { 166 if (pred == ICmpInst::ICMP_SLT) { 167 pred = ICmpInst::ICMP_SLE; 168 return true; 169 } 170 } else if (RHS->isAllOnesValue()) { 171 if (pred == ICmpInst::ICMP_SGT) { 172 pred = ICmpInst::ICMP_SGE; 173 return true; 174 } 175 } 176 177 return false; 178 } 179 180 // isHighOnes - Return true if the constant is of the form 1+0+. 181 // This is the same as lowones(~X). 182 static bool isHighOnes(const ConstantInt *CI) { 183 return (~CI->getValue() + 1).isPowerOf2(); 184 } 185 186 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 187 /// set of known zero and one bits, compute the maximum and minimum values that 188 /// could have the specified known zero and known one bits, returning them in 189 /// min/max. 190 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, 191 const APInt& KnownOne, 192 APInt& Min, APInt& Max) { 193 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 194 KnownZero.getBitWidth() == Min.getBitWidth() && 195 KnownZero.getBitWidth() == Max.getBitWidth() && 196 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 197 APInt UnknownBits = ~(KnownZero|KnownOne); 198 199 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 200 // bit if it is unknown. 201 Min = KnownOne; 202 Max = KnownOne|UnknownBits; 203 204 if (UnknownBits.isNegative()) { // Sign bit is unknown 205 Min.setBit(Min.getBitWidth()-1); 206 Max.clearBit(Max.getBitWidth()-1); 207 } 208 } 209 210 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and 211 // a set of known zero and one bits, compute the maximum and minimum values that 212 // could have the specified known zero and known one bits, returning them in 213 // min/max. 214 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 215 const APInt &KnownOne, 216 APInt &Min, APInt &Max) { 217 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 218 KnownZero.getBitWidth() == Min.getBitWidth() && 219 KnownZero.getBitWidth() == Max.getBitWidth() && 220 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 221 APInt UnknownBits = ~(KnownZero|KnownOne); 222 223 // The minimum value is when the unknown bits are all zeros. 224 Min = KnownOne; 225 // The maximum value is when the unknown bits are all ones. 226 Max = KnownOne|UnknownBits; 227 } 228 229 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern: 230 /// cmp pred (load (gep GV, ...)), cmpcst 231 /// where GV is a global variable with a constant initializer. Try to simplify 232 /// this into some simple computation that does not need the load. For example 233 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 234 /// 235 /// If AndCst is non-null, then the loaded value is masked with that constant 236 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 237 Instruction *InstCombiner:: 238 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, 239 CmpInst &ICI, ConstantInt *AndCst) { 240 Constant *Init = GV->getInitializer(); 241 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 242 return nullptr; 243 244 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 245 if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays. 246 247 // There are many forms of this optimization we can handle, for now, just do 248 // the simple index into a single-dimensional array. 249 // 250 // Require: GEP GV, 0, i {{, constant indices}} 251 if (GEP->getNumOperands() < 3 || 252 !isa<ConstantInt>(GEP->getOperand(1)) || 253 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 254 isa<Constant>(GEP->getOperand(2))) 255 return nullptr; 256 257 // Check that indices after the variable are constants and in-range for the 258 // type they index. Collect the indices. This is typically for arrays of 259 // structs. 260 SmallVector<unsigned, 4> LaterIndices; 261 262 Type *EltTy = Init->getType()->getArrayElementType(); 263 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 264 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 265 if (!Idx) return nullptr; // Variable index. 266 267 uint64_t IdxVal = Idx->getZExtValue(); 268 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 269 270 if (StructType *STy = dyn_cast<StructType>(EltTy)) 271 EltTy = STy->getElementType(IdxVal); 272 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 273 if (IdxVal >= ATy->getNumElements()) return nullptr; 274 EltTy = ATy->getElementType(); 275 } else { 276 return nullptr; // Unknown type. 277 } 278 279 LaterIndices.push_back(IdxVal); 280 } 281 282 enum { Overdefined = -3, Undefined = -2 }; 283 284 // Variables for our state machines. 285 286 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 287 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 288 // and 87 is the second (and last) index. FirstTrueElement is -2 when 289 // undefined, otherwise set to the first true element. SecondTrueElement is 290 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 291 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 292 293 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 294 // form "i != 47 & i != 87". Same state transitions as for true elements. 295 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 296 297 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 298 /// define a state machine that triggers for ranges of values that the index 299 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 300 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 301 /// index in the range (inclusive). We use -2 for undefined here because we 302 /// use relative comparisons and don't want 0-1 to match -1. 303 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 304 305 // MagicBitvector - This is a magic bitvector where we set a bit if the 306 // comparison is true for element 'i'. If there are 64 elements or less in 307 // the array, this will fully represent all the comparison results. 308 uint64_t MagicBitvector = 0; 309 310 // Scan the array and see if one of our patterns matches. 311 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 312 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 313 Constant *Elt = Init->getAggregateElement(i); 314 if (!Elt) return nullptr; 315 316 // If this is indexing an array of structures, get the structure element. 317 if (!LaterIndices.empty()) 318 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 319 320 // If the element is masked, handle it. 321 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 322 323 // Find out if the comparison would be true or false for the i'th element. 324 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 325 CompareRHS, DL, TLI); 326 // If the result is undef for this element, ignore it. 327 if (isa<UndefValue>(C)) { 328 // Extend range state machines to cover this element in case there is an 329 // undef in the middle of the range. 330 if (TrueRangeEnd == (int)i-1) 331 TrueRangeEnd = i; 332 if (FalseRangeEnd == (int)i-1) 333 FalseRangeEnd = i; 334 continue; 335 } 336 337 // If we can't compute the result for any of the elements, we have to give 338 // up evaluating the entire conditional. 339 if (!isa<ConstantInt>(C)) return nullptr; 340 341 // Otherwise, we know if the comparison is true or false for this element, 342 // update our state machines. 343 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 344 345 // State machine for single/double/range index comparison. 346 if (IsTrueForElt) { 347 // Update the TrueElement state machine. 348 if (FirstTrueElement == Undefined) 349 FirstTrueElement = TrueRangeEnd = i; // First true element. 350 else { 351 // Update double-compare state machine. 352 if (SecondTrueElement == Undefined) 353 SecondTrueElement = i; 354 else 355 SecondTrueElement = Overdefined; 356 357 // Update range state machine. 358 if (TrueRangeEnd == (int)i-1) 359 TrueRangeEnd = i; 360 else 361 TrueRangeEnd = Overdefined; 362 } 363 } else { 364 // Update the FalseElement state machine. 365 if (FirstFalseElement == Undefined) 366 FirstFalseElement = FalseRangeEnd = i; // First false element. 367 else { 368 // Update double-compare state machine. 369 if (SecondFalseElement == Undefined) 370 SecondFalseElement = i; 371 else 372 SecondFalseElement = Overdefined; 373 374 // Update range state machine. 375 if (FalseRangeEnd == (int)i-1) 376 FalseRangeEnd = i; 377 else 378 FalseRangeEnd = Overdefined; 379 } 380 } 381 382 // If this element is in range, update our magic bitvector. 383 if (i < 64 && IsTrueForElt) 384 MagicBitvector |= 1ULL << i; 385 386 // If all of our states become overdefined, bail out early. Since the 387 // predicate is expensive, only check it every 8 elements. This is only 388 // really useful for really huge arrays. 389 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 390 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 391 FalseRangeEnd == Overdefined) 392 return nullptr; 393 } 394 395 // Now that we've scanned the entire array, emit our new comparison(s). We 396 // order the state machines in complexity of the generated code. 397 Value *Idx = GEP->getOperand(2); 398 399 // If the index is larger than the pointer size of the target, truncate the 400 // index down like the GEP would do implicitly. We don't have to do this for 401 // an inbounds GEP because the index can't be out of range. 402 if (!GEP->isInBounds()) { 403 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 404 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 405 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 406 Idx = Builder->CreateTrunc(Idx, IntPtrTy); 407 } 408 409 // If the comparison is only true for one or two elements, emit direct 410 // comparisons. 411 if (SecondTrueElement != Overdefined) { 412 // None true -> false. 413 if (FirstTrueElement == Undefined) 414 return replaceInstUsesWith(ICI, Builder->getFalse()); 415 416 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 417 418 // True for one element -> 'i == 47'. 419 if (SecondTrueElement == Undefined) 420 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 421 422 // True for two elements -> 'i == 47 | i == 72'. 423 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); 424 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 425 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); 426 return BinaryOperator::CreateOr(C1, C2); 427 } 428 429 // If the comparison is only false for one or two elements, emit direct 430 // comparisons. 431 if (SecondFalseElement != Overdefined) { 432 // None false -> true. 433 if (FirstFalseElement == Undefined) 434 return replaceInstUsesWith(ICI, Builder->getTrue()); 435 436 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 437 438 // False for one element -> 'i != 47'. 439 if (SecondFalseElement == Undefined) 440 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 441 442 // False for two elements -> 'i != 47 & i != 72'. 443 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); 444 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 445 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); 446 return BinaryOperator::CreateAnd(C1, C2); 447 } 448 449 // If the comparison can be replaced with a range comparison for the elements 450 // where it is true, emit the range check. 451 if (TrueRangeEnd != Overdefined) { 452 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 453 454 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 455 if (FirstTrueElement) { 456 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 457 Idx = Builder->CreateAdd(Idx, Offs); 458 } 459 460 Value *End = ConstantInt::get(Idx->getType(), 461 TrueRangeEnd-FirstTrueElement+1); 462 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 463 } 464 465 // False range check. 466 if (FalseRangeEnd != Overdefined) { 467 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 468 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 469 if (FirstFalseElement) { 470 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 471 Idx = Builder->CreateAdd(Idx, Offs); 472 } 473 474 Value *End = ConstantInt::get(Idx->getType(), 475 FalseRangeEnd-FirstFalseElement); 476 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 477 } 478 479 // If a magic bitvector captures the entire comparison state 480 // of this load, replace it with computation that does: 481 // ((magic_cst >> i) & 1) != 0 482 { 483 Type *Ty = nullptr; 484 485 // Look for an appropriate type: 486 // - The type of Idx if the magic fits 487 // - The smallest fitting legal type if we have a DataLayout 488 // - Default to i32 489 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 490 Ty = Idx->getType(); 491 else 492 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 493 494 if (Ty) { 495 Value *V = Builder->CreateIntCast(Idx, Ty, false); 496 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 497 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); 498 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 499 } 500 } 501 502 return nullptr; 503 } 504 505 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare 506 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we 507 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can 508 /// be complex, and scales are involved. The above expression would also be 509 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). 510 /// This later form is less amenable to optimization though, and we are allowed 511 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 512 /// 513 /// If we can't emit an optimized form for this expression, this returns null. 514 /// 515 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 516 const DataLayout &DL) { 517 gep_type_iterator GTI = gep_type_begin(GEP); 518 519 // Check to see if this gep only has a single variable index. If so, and if 520 // any constant indices are a multiple of its scale, then we can compute this 521 // in terms of the scale of the variable index. For example, if the GEP 522 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 523 // because the expression will cross zero at the same point. 524 unsigned i, e = GEP->getNumOperands(); 525 int64_t Offset = 0; 526 for (i = 1; i != e; ++i, ++GTI) { 527 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 528 // Compute the aggregate offset of constant indices. 529 if (CI->isZero()) continue; 530 531 // Handle a struct index, which adds its field offset to the pointer. 532 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 533 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 534 } else { 535 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 536 Offset += Size*CI->getSExtValue(); 537 } 538 } else { 539 // Found our variable index. 540 break; 541 } 542 } 543 544 // If there are no variable indices, we must have a constant offset, just 545 // evaluate it the general way. 546 if (i == e) return nullptr; 547 548 Value *VariableIdx = GEP->getOperand(i); 549 // Determine the scale factor of the variable element. For example, this is 550 // 4 if the variable index is into an array of i32. 551 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 552 553 // Verify that there are no other variable indices. If so, emit the hard way. 554 for (++i, ++GTI; i != e; ++i, ++GTI) { 555 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 556 if (!CI) return nullptr; 557 558 // Compute the aggregate offset of constant indices. 559 if (CI->isZero()) continue; 560 561 // Handle a struct index, which adds its field offset to the pointer. 562 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 563 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 564 } else { 565 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 566 Offset += Size*CI->getSExtValue(); 567 } 568 } 569 570 // Okay, we know we have a single variable index, which must be a 571 // pointer/array/vector index. If there is no offset, life is simple, return 572 // the index. 573 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 574 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 575 if (Offset == 0) { 576 // Cast to intptrty in case a truncation occurs. If an extension is needed, 577 // we don't need to bother extending: the extension won't affect where the 578 // computation crosses zero. 579 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 580 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); 581 } 582 return VariableIdx; 583 } 584 585 // Otherwise, there is an index. The computation we will do will be modulo 586 // the pointer size, so get it. 587 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 588 589 Offset &= PtrSizeMask; 590 VariableScale &= PtrSizeMask; 591 592 // To do this transformation, any constant index must be a multiple of the 593 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 594 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 595 // multiple of the variable scale. 596 int64_t NewOffs = Offset / (int64_t)VariableScale; 597 if (Offset != NewOffs*(int64_t)VariableScale) 598 return nullptr; 599 600 // Okay, we can do this evaluation. Start by converting the index to intptr. 601 if (VariableIdx->getType() != IntPtrTy) 602 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, 603 true /*Signed*/); 604 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 605 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset"); 606 } 607 608 /// Returns true if we can rewrite Start as a GEP with pointer Base 609 /// and some integer offset. The nodes that need to be re-written 610 /// for this transformation will be added to Explored. 611 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 612 const DataLayout &DL, 613 SetVector<Value *> &Explored) { 614 SmallVector<Value *, 16> WorkList(1, Start); 615 Explored.insert(Base); 616 617 // The following traversal gives us an order which can be used 618 // when doing the final transformation. Since in the final 619 // transformation we create the PHI replacement instructions first, 620 // we don't have to get them in any particular order. 621 // 622 // However, for other instructions we will have to traverse the 623 // operands of an instruction first, which means that we have to 624 // do a post-order traversal. 625 while (!WorkList.empty()) { 626 SetVector<PHINode *> PHIs; 627 628 while (!WorkList.empty()) { 629 if (Explored.size() >= 100) 630 return false; 631 632 Value *V = WorkList.back(); 633 634 if (Explored.count(V) != 0) { 635 WorkList.pop_back(); 636 continue; 637 } 638 639 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 640 !isa<GEPOperator>(V) && !isa<PHINode>(V)) 641 // We've found some value that we can't explore which is different from 642 // the base. Therefore we can't do this transformation. 643 return false; 644 645 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 646 auto *CI = dyn_cast<CastInst>(V); 647 if (!CI->isNoopCast(DL)) 648 return false; 649 650 if (Explored.count(CI->getOperand(0)) == 0) 651 WorkList.push_back(CI->getOperand(0)); 652 } 653 654 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 655 // We're limiting the GEP to having one index. This will preserve 656 // the original pointer type. We could handle more cases in the 657 // future. 658 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 659 GEP->getType() != Start->getType()) 660 return false; 661 662 if (Explored.count(GEP->getOperand(0)) == 0) 663 WorkList.push_back(GEP->getOperand(0)); 664 } 665 666 if (WorkList.back() == V) { 667 WorkList.pop_back(); 668 // We've finished visiting this node, mark it as such. 669 Explored.insert(V); 670 } 671 672 if (auto *PN = dyn_cast<PHINode>(V)) { 673 // We cannot transform PHIs on unsplittable basic blocks. 674 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 675 return false; 676 Explored.insert(PN); 677 PHIs.insert(PN); 678 } 679 } 680 681 // Explore the PHI nodes further. 682 for (auto *PN : PHIs) 683 for (Value *Op : PN->incoming_values()) 684 if (Explored.count(Op) == 0) 685 WorkList.push_back(Op); 686 } 687 688 // Make sure that we can do this. Since we can't insert GEPs in a basic 689 // block before a PHI node, we can't easily do this transformation if 690 // we have PHI node users of transformed instructions. 691 for (Value *Val : Explored) { 692 for (Value *Use : Val->uses()) { 693 694 auto *PHI = dyn_cast<PHINode>(Use); 695 auto *Inst = dyn_cast<Instruction>(Val); 696 697 if (Inst == Base || Inst == PHI || !Inst || !PHI || 698 Explored.count(PHI) == 0) 699 continue; 700 701 if (PHI->getParent() == Inst->getParent()) 702 return false; 703 } 704 } 705 return true; 706 } 707 708 // Sets the appropriate insert point on Builder where we can add 709 // a replacement Instruction for V (if that is possible). 710 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 711 bool Before = true) { 712 if (auto *PHI = dyn_cast<PHINode>(V)) { 713 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 714 return; 715 } 716 if (auto *I = dyn_cast<Instruction>(V)) { 717 if (!Before) 718 I = &*std::next(I->getIterator()); 719 Builder.SetInsertPoint(I); 720 return; 721 } 722 if (auto *A = dyn_cast<Argument>(V)) { 723 // Set the insertion point in the entry block. 724 BasicBlock &Entry = A->getParent()->getEntryBlock(); 725 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 726 return; 727 } 728 // Otherwise, this is a constant and we don't need to set a new 729 // insertion point. 730 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 731 } 732 733 /// Returns a re-written value of Start as an indexed GEP using Base as a 734 /// pointer. 735 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 736 const DataLayout &DL, 737 SetVector<Value *> &Explored) { 738 // Perform all the substitutions. This is a bit tricky because we can 739 // have cycles in our use-def chains. 740 // 1. Create the PHI nodes without any incoming values. 741 // 2. Create all the other values. 742 // 3. Add the edges for the PHI nodes. 743 // 4. Emit GEPs to get the original pointers. 744 // 5. Remove the original instructions. 745 Type *IndexType = IntegerType::get( 746 Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType())); 747 748 DenseMap<Value *, Value *> NewInsts; 749 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 750 751 // Create the new PHI nodes, without adding any incoming values. 752 for (Value *Val : Explored) { 753 if (Val == Base) 754 continue; 755 // Create empty phi nodes. This avoids cyclic dependencies when creating 756 // the remaining instructions. 757 if (auto *PHI = dyn_cast<PHINode>(Val)) 758 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 759 PHI->getName() + ".idx", PHI); 760 } 761 IRBuilder<> Builder(Base->getContext()); 762 763 // Create all the other instructions. 764 for (Value *Val : Explored) { 765 766 if (NewInsts.find(Val) != NewInsts.end()) 767 continue; 768 769 if (auto *CI = dyn_cast<CastInst>(Val)) { 770 NewInsts[CI] = NewInsts[CI->getOperand(0)]; 771 continue; 772 } 773 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 774 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 775 : GEP->getOperand(1); 776 setInsertionPoint(Builder, GEP); 777 // Indices might need to be sign extended. GEPs will magically do 778 // this, but we need to do it ourselves here. 779 if (Index->getType()->getScalarSizeInBits() != 780 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 781 Index = Builder.CreateSExtOrTrunc( 782 Index, NewInsts[GEP->getOperand(0)]->getType(), 783 GEP->getOperand(0)->getName() + ".sext"); 784 } 785 786 auto *Op = NewInsts[GEP->getOperand(0)]; 787 if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero()) 788 NewInsts[GEP] = Index; 789 else 790 NewInsts[GEP] = Builder.CreateNSWAdd( 791 Op, Index, GEP->getOperand(0)->getName() + ".add"); 792 continue; 793 } 794 if (isa<PHINode>(Val)) 795 continue; 796 797 llvm_unreachable("Unexpected instruction type"); 798 } 799 800 // Add the incoming values to the PHI nodes. 801 for (Value *Val : Explored) { 802 if (Val == Base) 803 continue; 804 // All the instructions have been created, we can now add edges to the 805 // phi nodes. 806 if (auto *PHI = dyn_cast<PHINode>(Val)) { 807 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 808 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 809 Value *NewIncoming = PHI->getIncomingValue(I); 810 811 if (NewInsts.find(NewIncoming) != NewInsts.end()) 812 NewIncoming = NewInsts[NewIncoming]; 813 814 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 815 } 816 } 817 } 818 819 for (Value *Val : Explored) { 820 if (Val == Base) 821 continue; 822 823 // Depending on the type, for external users we have to emit 824 // a GEP or a GEP + ptrtoint. 825 setInsertionPoint(Builder, Val, false); 826 827 // If required, create an inttoptr instruction for Base. 828 Value *NewBase = Base; 829 if (!Base->getType()->isPointerTy()) 830 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 831 Start->getName() + "to.ptr"); 832 833 Value *GEP = Builder.CreateInBoundsGEP( 834 Start->getType()->getPointerElementType(), NewBase, 835 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 836 837 if (!Val->getType()->isPointerTy()) { 838 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 839 Val->getName() + ".conv"); 840 GEP = Cast; 841 } 842 Val->replaceAllUsesWith(GEP); 843 } 844 845 return NewInsts[Start]; 846 } 847 848 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 849 /// the input Value as a constant indexed GEP. Returns a pair containing 850 /// the GEPs Pointer and Index. 851 static std::pair<Value *, Value *> 852 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 853 Type *IndexType = IntegerType::get(V->getContext(), 854 DL.getPointerTypeSizeInBits(V->getType())); 855 856 Constant *Index = ConstantInt::getNullValue(IndexType); 857 while (true) { 858 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 859 // We accept only inbouds GEPs here to exclude the possibility of 860 // overflow. 861 if (!GEP->isInBounds()) 862 break; 863 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 864 GEP->getType() == V->getType()) { 865 V = GEP->getOperand(0); 866 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 867 Index = ConstantExpr::getAdd( 868 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 869 continue; 870 } 871 break; 872 } 873 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 874 if (!CI->isNoopCast(DL)) 875 break; 876 V = CI->getOperand(0); 877 continue; 878 } 879 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 880 if (!CI->isNoopCast(DL)) 881 break; 882 V = CI->getOperand(0); 883 continue; 884 } 885 break; 886 } 887 return {V, Index}; 888 } 889 890 // Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 891 // We can look through PHIs, GEPs and casts in order to determine a 892 // common base between GEPLHS and RHS. 893 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 894 ICmpInst::Predicate Cond, 895 const DataLayout &DL) { 896 if (!GEPLHS->hasAllConstantIndices()) 897 return nullptr; 898 899 Value *PtrBase, *Index; 900 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 901 902 // The set of nodes that will take part in this transformation. 903 SetVector<Value *> Nodes; 904 905 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 906 return nullptr; 907 908 // We know we can re-write this as 909 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 910 // Since we've only looked through inbouds GEPs we know that we 911 // can't have overflow on either side. We can therefore re-write 912 // this as: 913 // OFFSET1 cmp OFFSET2 914 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 915 916 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 917 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 918 // offset. Since Index is the offset of LHS to the base pointer, we will now 919 // compare the offsets instead of comparing the pointers. 920 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 921 } 922 923 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something 924 /// else. At this point we know that the GEP is on the LHS of the comparison. 925 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 926 ICmpInst::Predicate Cond, 927 Instruction &I) { 928 // Don't transform signed compares of GEPs into index compares. Even if the 929 // GEP is inbounds, the final add of the base pointer can have signed overflow 930 // and would change the result of the icmp. 931 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 932 // the maximum signed value for the pointer type. 933 if (ICmpInst::isSigned(Cond)) 934 return nullptr; 935 936 // Look through bitcasts and addrspacecasts. We do not however want to remove 937 // 0 GEPs. 938 if (!isa<GetElementPtrInst>(RHS)) 939 RHS = RHS->stripPointerCasts(); 940 941 Value *PtrBase = GEPLHS->getOperand(0); 942 if (PtrBase == RHS && GEPLHS->isInBounds()) { 943 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 944 // This transformation (ignoring the base and scales) is valid because we 945 // know pointers can't overflow since the gep is inbounds. See if we can 946 // output an optimized form. 947 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL); 948 949 // If not, synthesize the offset the hard way. 950 if (!Offset) 951 Offset = EmitGEPOffset(GEPLHS); 952 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 953 Constant::getNullValue(Offset->getType())); 954 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 955 // If the base pointers are different, but the indices are the same, just 956 // compare the base pointer. 957 if (PtrBase != GEPRHS->getOperand(0)) { 958 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 959 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 960 GEPRHS->getOperand(0)->getType(); 961 if (IndicesTheSame) 962 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 963 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 964 IndicesTheSame = false; 965 break; 966 } 967 968 // If all indices are the same, just compare the base pointers. 969 if (IndicesTheSame) 970 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 971 972 // If we're comparing GEPs with two base pointers that only differ in type 973 // and both GEPs have only constant indices or just one use, then fold 974 // the compare with the adjusted indices. 975 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 976 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 977 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 978 PtrBase->stripPointerCasts() == 979 GEPRHS->getOperand(0)->stripPointerCasts()) { 980 Value *LOffset = EmitGEPOffset(GEPLHS); 981 Value *ROffset = EmitGEPOffset(GEPRHS); 982 983 // If we looked through an addrspacecast between different sized address 984 // spaces, the LHS and RHS pointers are different sized 985 // integers. Truncate to the smaller one. 986 Type *LHSIndexTy = LOffset->getType(); 987 Type *RHSIndexTy = ROffset->getType(); 988 if (LHSIndexTy != RHSIndexTy) { 989 if (LHSIndexTy->getPrimitiveSizeInBits() < 990 RHSIndexTy->getPrimitiveSizeInBits()) { 991 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy); 992 } else 993 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy); 994 } 995 996 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond), 997 LOffset, ROffset); 998 return replaceInstUsesWith(I, Cmp); 999 } 1000 1001 // Otherwise, the base pointers are different and the indices are 1002 // different. Try convert this to an indexed compare by looking through 1003 // PHIs/casts. 1004 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1005 } 1006 1007 // If one of the GEPs has all zero indices, recurse. 1008 if (GEPLHS->hasAllZeroIndices()) 1009 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 1010 ICmpInst::getSwappedPredicate(Cond), I); 1011 1012 // If the other GEP has all zero indices, recurse. 1013 if (GEPRHS->hasAllZeroIndices()) 1014 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 1015 1016 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 1017 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 1018 // If the GEPs only differ by one index, compare it. 1019 unsigned NumDifferences = 0; // Keep track of # differences. 1020 unsigned DiffOperand = 0; // The operand that differs. 1021 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 1022 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 1023 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 1024 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 1025 // Irreconcilable differences. 1026 NumDifferences = 2; 1027 break; 1028 } else { 1029 if (NumDifferences++) break; 1030 DiffOperand = i; 1031 } 1032 } 1033 1034 if (NumDifferences == 0) // SAME GEP? 1035 return replaceInstUsesWith(I, // No comparison is needed here. 1036 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond))); 1037 1038 else if (NumDifferences == 1 && GEPsInBounds) { 1039 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1040 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1041 // Make sure we do a signed comparison here. 1042 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1043 } 1044 } 1045 1046 // Only lower this if the icmp is the only user of the GEP or if we expect 1047 // the result to fold to a constant! 1048 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1049 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1050 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1051 Value *L = EmitGEPOffset(GEPLHS); 1052 Value *R = EmitGEPOffset(GEPRHS); 1053 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1054 } 1055 } 1056 1057 // Try convert this to an indexed compare by looking through PHIs/casts as a 1058 // last resort. 1059 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1060 } 1061 1062 Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca, 1063 Value *Other) { 1064 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1065 1066 // It would be tempting to fold away comparisons between allocas and any 1067 // pointer not based on that alloca (e.g. an argument). However, even 1068 // though such pointers cannot alias, they can still compare equal. 1069 // 1070 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1071 // doesn't escape we can argue that it's impossible to guess its value, and we 1072 // can therefore act as if any such guesses are wrong. 1073 // 1074 // The code below checks that the alloca doesn't escape, and that it's only 1075 // used in a comparison once (the current instruction). The 1076 // single-comparison-use condition ensures that we're trivially folding all 1077 // comparisons against the alloca consistently, and avoids the risk of 1078 // erroneously folding a comparison of the pointer with itself. 1079 1080 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1081 1082 SmallVector<Use *, 32> Worklist; 1083 for (Use &U : Alloca->uses()) { 1084 if (Worklist.size() >= MaxIter) 1085 return nullptr; 1086 Worklist.push_back(&U); 1087 } 1088 1089 unsigned NumCmps = 0; 1090 while (!Worklist.empty()) { 1091 assert(Worklist.size() <= MaxIter); 1092 Use *U = Worklist.pop_back_val(); 1093 Value *V = U->getUser(); 1094 --MaxIter; 1095 1096 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1097 isa<SelectInst>(V)) { 1098 // Track the uses. 1099 } else if (isa<LoadInst>(V)) { 1100 // Loading from the pointer doesn't escape it. 1101 continue; 1102 } else if (auto *SI = dyn_cast<StoreInst>(V)) { 1103 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1104 if (SI->getValueOperand() == U->get()) 1105 return nullptr; 1106 continue; 1107 } else if (isa<ICmpInst>(V)) { 1108 if (NumCmps++) 1109 return nullptr; // Found more than one cmp. 1110 continue; 1111 } else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1112 switch (Intrin->getIntrinsicID()) { 1113 // These intrinsics don't escape or compare the pointer. Memset is safe 1114 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1115 // we don't allow stores, so src cannot point to V. 1116 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1117 case Intrinsic::dbg_declare: case Intrinsic::dbg_value: 1118 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1119 continue; 1120 default: 1121 return nullptr; 1122 } 1123 } else { 1124 return nullptr; 1125 } 1126 for (Use &U : V->uses()) { 1127 if (Worklist.size() >= MaxIter) 1128 return nullptr; 1129 Worklist.push_back(&U); 1130 } 1131 } 1132 1133 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1134 return replaceInstUsesWith( 1135 ICI, 1136 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1137 } 1138 1139 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X". 1140 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI, 1141 Value *X, ConstantInt *CI, 1142 ICmpInst::Predicate Pred) { 1143 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1144 // so the values can never be equal. Similarly for all other "or equals" 1145 // operators. 1146 1147 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1148 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1149 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1150 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1151 Value *R = 1152 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 1153 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1154 } 1155 1156 // (X+1) >u X --> X <u (0-1) --> X != 255 1157 // (X+2) >u X --> X <u (0-2) --> X <u 254 1158 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1159 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1160 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 1161 1162 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 1163 ConstantInt *SMax = ConstantInt::get(X->getContext(), 1164 APInt::getSignedMaxValue(BitWidth)); 1165 1166 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1167 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1168 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1169 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1170 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1171 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1172 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1173 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 1174 1175 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1176 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1177 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1178 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1179 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1180 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1181 1182 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1183 Constant *C = Builder->getInt(CI->getValue()-1); 1184 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 1185 } 1186 1187 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS 1188 /// and CmpRHS are both known to be integer constants. 1189 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, 1190 ConstantInt *DivRHS) { 1191 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); 1192 const APInt &CmpRHSV = CmpRHS->getValue(); 1193 1194 // FIXME: If the operand types don't match the type of the divide 1195 // then don't attempt this transform. The code below doesn't have the 1196 // logic to deal with a signed divide and an unsigned compare (and 1197 // vice versa). This is because (x /s C1) <s C2 produces different 1198 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even 1199 // (x /u C1) <u C2. Simply casting the operands and result won't 1200 // work. :( The if statement below tests that condition and bails 1201 // if it finds it. 1202 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; 1203 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) 1204 return nullptr; 1205 if (DivRHS->isZero()) 1206 return nullptr; // The ProdOV computation fails on divide by zero. 1207 if (DivIsSigned && DivRHS->isAllOnesValue()) 1208 return nullptr; // The overflow computation also screws up here 1209 if (DivRHS->isOne()) { 1210 // This eliminates some funny cases with INT_MIN. 1211 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X. 1212 return &ICI; 1213 } 1214 1215 // Compute Prod = CI * DivRHS. We are essentially solving an equation 1216 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 1217 // C2 (CI). By solving for X we can turn this into a range check 1218 // instead of computing a divide. 1219 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); 1220 1221 // Determine if the product overflows by seeing if the product is 1222 // not equal to the divide. Make sure we do the same kind of divide 1223 // as in the LHS instruction that we're folding. 1224 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : 1225 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; 1226 1227 // Get the ICmp opcode 1228 ICmpInst::Predicate Pred = ICI.getPredicate(); 1229 1230 /// If the division is known to be exact, then there is no remainder from the 1231 /// divide, so the covered range size is unit, otherwise it is the divisor. 1232 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS; 1233 1234 // Figure out the interval that is being checked. For example, a comparison 1235 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 1236 // Compute this interval based on the constants involved and the signedness of 1237 // the compare/divide. This computes a half-open interval, keeping track of 1238 // whether either value in the interval overflows. After analysis each 1239 // overflow variable is set to 0 if it's corresponding bound variable is valid 1240 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 1241 int LoOverflow = 0, HiOverflow = 0; 1242 Constant *LoBound = nullptr, *HiBound = nullptr; 1243 1244 if (!DivIsSigned) { // udiv 1245 // e.g. X/5 op 3 --> [15, 20) 1246 LoBound = Prod; 1247 HiOverflow = LoOverflow = ProdOV; 1248 if (!HiOverflow) { 1249 // If this is not an exact divide, then many values in the range collapse 1250 // to the same result value. 1251 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false); 1252 } 1253 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. 1254 if (CmpRHSV == 0) { // (X / pos) op 0 1255 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 1256 LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); 1257 HiBound = RangeSize; 1258 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos 1259 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 1260 HiOverflow = LoOverflow = ProdOV; 1261 if (!HiOverflow) 1262 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true); 1263 } else { // (X / pos) op neg 1264 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 1265 HiBound = AddOne(Prod); 1266 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 1267 if (!LoOverflow) { 1268 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 1269 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 1270 } 1271 } 1272 } else if (DivRHS->isNegative()) { // Divisor is < 0. 1273 if (DivI->isExact()) 1274 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 1275 if (CmpRHSV == 0) { // (X / neg) op 0 1276 // e.g. X/-5 op 0 --> [-4, 5) 1277 LoBound = AddOne(RangeSize); 1278 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 1279 if (HiBound == DivRHS) { // -INTMIN = INTMIN 1280 HiOverflow = 1; // [INTMIN+1, overflow) 1281 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN 1282 } 1283 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos 1284 // e.g. X/-5 op 3 --> [-19, -14) 1285 HiBound = AddOne(Prod); 1286 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 1287 if (!LoOverflow) 1288 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 1289 } else { // (X / neg) op neg 1290 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 1291 LoOverflow = HiOverflow = ProdOV; 1292 if (!HiOverflow) 1293 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true); 1294 } 1295 1296 // Dividing by a negative swaps the condition. LT <-> GT 1297 Pred = ICmpInst::getSwappedPredicate(Pred); 1298 } 1299 1300 Value *X = DivI->getOperand(0); 1301 switch (Pred) { 1302 default: llvm_unreachable("Unhandled icmp opcode!"); 1303 case ICmpInst::ICMP_EQ: 1304 if (LoOverflow && HiOverflow) 1305 return replaceInstUsesWith(ICI, Builder->getFalse()); 1306 if (HiOverflow) 1307 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 1308 ICmpInst::ICMP_UGE, X, LoBound); 1309 if (LoOverflow) 1310 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 1311 ICmpInst::ICMP_ULT, X, HiBound); 1312 return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 1313 DivIsSigned, true)); 1314 case ICmpInst::ICMP_NE: 1315 if (LoOverflow && HiOverflow) 1316 return replaceInstUsesWith(ICI, Builder->getTrue()); 1317 if (HiOverflow) 1318 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 1319 ICmpInst::ICMP_ULT, X, LoBound); 1320 if (LoOverflow) 1321 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 1322 ICmpInst::ICMP_UGE, X, HiBound); 1323 return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 1324 DivIsSigned, false)); 1325 case ICmpInst::ICMP_ULT: 1326 case ICmpInst::ICMP_SLT: 1327 if (LoOverflow == +1) // Low bound is greater than input range. 1328 return replaceInstUsesWith(ICI, Builder->getTrue()); 1329 if (LoOverflow == -1) // Low bound is less than input range. 1330 return replaceInstUsesWith(ICI, Builder->getFalse()); 1331 return new ICmpInst(Pred, X, LoBound); 1332 case ICmpInst::ICMP_UGT: 1333 case ICmpInst::ICMP_SGT: 1334 if (HiOverflow == +1) // High bound greater than input range. 1335 return replaceInstUsesWith(ICI, Builder->getFalse()); 1336 if (HiOverflow == -1) // High bound less than input range. 1337 return replaceInstUsesWith(ICI, Builder->getTrue()); 1338 if (Pred == ICmpInst::ICMP_UGT) 1339 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); 1340 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); 1341 } 1342 } 1343 1344 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)". 1345 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, 1346 ConstantInt *ShAmt) { 1347 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue(); 1348 1349 // Check that the shift amount is in range. If not, don't perform 1350 // undefined shifts. When the shift is visited it will be 1351 // simplified. 1352 uint32_t TypeBits = CmpRHSV.getBitWidth(); 1353 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 1354 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 1355 return nullptr; 1356 1357 if (!ICI.isEquality()) { 1358 // If we have an unsigned comparison and an ashr, we can't simplify this. 1359 // Similarly for signed comparisons with lshr. 1360 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr)) 1361 return nullptr; 1362 1363 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv 1364 // by a power of 2. Since we already have logic to simplify these, 1365 // transform to div and then simplify the resultant comparison. 1366 if (Shr->getOpcode() == Instruction::AShr && 1367 (!Shr->isExact() || ShAmtVal == TypeBits - 1)) 1368 return nullptr; 1369 1370 // Revisit the shift (to delete it). 1371 Worklist.Add(Shr); 1372 1373 Constant *DivCst = 1374 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); 1375 1376 Value *Tmp = 1377 Shr->getOpcode() == Instruction::AShr ? 1378 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) : 1379 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()); 1380 1381 ICI.setOperand(0, Tmp); 1382 1383 // If the builder folded the binop, just return it. 1384 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); 1385 if (!TheDiv) 1386 return &ICI; 1387 1388 // Otherwise, fold this div/compare. 1389 assert(TheDiv->getOpcode() == Instruction::SDiv || 1390 TheDiv->getOpcode() == Instruction::UDiv); 1391 1392 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst)); 1393 assert(Res && "This div/cst should have folded!"); 1394 return Res; 1395 } 1396 1397 // If we are comparing against bits always shifted out, the 1398 // comparison cannot succeed. 1399 APInt Comp = CmpRHSV << ShAmtVal; 1400 ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp); 1401 if (Shr->getOpcode() == Instruction::LShr) 1402 Comp = Comp.lshr(ShAmtVal); 1403 else 1404 Comp = Comp.ashr(ShAmtVal); 1405 1406 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero. 1407 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1408 Constant *Cst = Builder->getInt1(IsICMP_NE); 1409 return replaceInstUsesWith(ICI, Cst); 1410 } 1411 1412 // Otherwise, check to see if the bits shifted out are known to be zero. 1413 // If so, we can compare against the unshifted value: 1414 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 1415 if (Shr->hasOneUse() && Shr->isExact()) 1416 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS); 1417 1418 if (Shr->hasOneUse()) { 1419 // Otherwise strength reduce the shift into an and. 1420 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 1421 Constant *Mask = Builder->getInt(Val); 1422 1423 Value *And = Builder->CreateAnd(Shr->getOperand(0), 1424 Mask, Shr->getName()+".mask"); 1425 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS); 1426 } 1427 return nullptr; 1428 } 1429 1430 /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" -> 1431 /// (icmp eq/ne A, Log2(const2/const1)) -> 1432 /// (icmp eq/ne A, Log2(const2) - Log2(const1)). 1433 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A, 1434 ConstantInt *CI1, 1435 ConstantInt *CI2) { 1436 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1437 1438 auto getConstant = [&I, this](bool IsTrue) { 1439 if (I.getPredicate() == I.ICMP_NE) 1440 IsTrue = !IsTrue; 1441 return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue)); 1442 }; 1443 1444 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1445 if (I.getPredicate() == I.ICMP_NE) 1446 Pred = CmpInst::getInversePredicate(Pred); 1447 return new ICmpInst(Pred, LHS, RHS); 1448 }; 1449 1450 APInt AP1 = CI1->getValue(); 1451 APInt AP2 = CI2->getValue(); 1452 1453 // Don't bother doing any work for cases which InstSimplify handles. 1454 if (AP2 == 0) 1455 return nullptr; 1456 bool IsAShr = isa<AShrOperator>(Op); 1457 if (IsAShr) { 1458 if (AP2.isAllOnesValue()) 1459 return nullptr; 1460 if (AP2.isNegative() != AP1.isNegative()) 1461 return nullptr; 1462 if (AP2.sgt(AP1)) 1463 return nullptr; 1464 } 1465 1466 if (!AP1) 1467 // 'A' must be large enough to shift out the highest set bit. 1468 return getICmp(I.ICMP_UGT, A, 1469 ConstantInt::get(A->getType(), AP2.logBase2())); 1470 1471 if (AP1 == AP2) 1472 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1473 1474 int Shift; 1475 if (IsAShr && AP1.isNegative()) 1476 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1477 else 1478 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1479 1480 if (Shift > 0) { 1481 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1482 // There are multiple solutions if we are comparing against -1 and the LHS 1483 // of the ashr is not a power of two. 1484 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1485 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1486 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1487 } else if (AP1 == AP2.lshr(Shift)) { 1488 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1489 } 1490 } 1491 // Shifting const2 will never be equal to const1. 1492 return getConstant(false); 1493 } 1494 1495 /// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" -> 1496 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)). 1497 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A, 1498 ConstantInt *CI1, 1499 ConstantInt *CI2) { 1500 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1501 1502 auto getConstant = [&I, this](bool IsTrue) { 1503 if (I.getPredicate() == I.ICMP_NE) 1504 IsTrue = !IsTrue; 1505 return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue)); 1506 }; 1507 1508 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1509 if (I.getPredicate() == I.ICMP_NE) 1510 Pred = CmpInst::getInversePredicate(Pred); 1511 return new ICmpInst(Pred, LHS, RHS); 1512 }; 1513 1514 APInt AP1 = CI1->getValue(); 1515 APInt AP2 = CI2->getValue(); 1516 1517 // Don't bother doing any work for cases which InstSimplify handles. 1518 if (AP2 == 0) 1519 return nullptr; 1520 1521 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1522 1523 if (!AP1 && AP2TrailingZeros != 0) 1524 return getICmp(I.ICMP_UGE, A, 1525 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1526 1527 if (AP1 == AP2) 1528 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1529 1530 // Get the distance between the lowest bits that are set. 1531 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1532 1533 if (Shift > 0 && AP2.shl(Shift) == AP1) 1534 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1535 1536 // Shifting const2 will never be equal to const1. 1537 return getConstant(false); 1538 } 1539 1540 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". 1541 /// 1542 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, 1543 Instruction *LHSI, 1544 ConstantInt *RHS) { 1545 const APInt &RHSV = RHS->getValue(); 1546 1547 switch (LHSI->getOpcode()) { 1548 case Instruction::Trunc: 1549 if (RHS->isOne() && RHSV.getBitWidth() > 1) { 1550 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1551 Value *V = nullptr; 1552 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && 1553 match(LHSI->getOperand(0), m_Signum(m_Value(V)))) 1554 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1555 ConstantInt::get(V->getType(), 1)); 1556 } 1557 if (ICI.isEquality() && LHSI->hasOneUse()) { 1558 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1559 // of the high bits truncated out of x are known. 1560 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), 1561 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1562 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); 1563 computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI); 1564 1565 // If all the high bits are known, we can do this xform. 1566 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { 1567 // Pull in the high bits from known-ones set. 1568 APInt NewRHS = RHS->getValue().zext(SrcBits); 1569 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits); 1570 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1571 Builder->getInt(NewRHS)); 1572 } 1573 } 1574 break; 1575 1576 case Instruction::Xor: // (icmp pred (xor X, XorCst), CI) 1577 if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1578 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1579 // fold the xor. 1580 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || 1581 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { 1582 Value *CompareVal = LHSI->getOperand(0); 1583 1584 // If the sign bit of the XorCst is not set, there is no change to 1585 // the operation, just stop using the Xor. 1586 if (!XorCst->isNegative()) { 1587 ICI.setOperand(0, CompareVal); 1588 Worklist.Add(LHSI); 1589 return &ICI; 1590 } 1591 1592 // Was the old condition true if the operand is positive? 1593 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; 1594 1595 // If so, the new one isn't. 1596 isTrueIfPositive ^= true; 1597 1598 if (isTrueIfPositive) 1599 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, 1600 SubOne(RHS)); 1601 else 1602 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, 1603 AddOne(RHS)); 1604 } 1605 1606 if (LHSI->hasOneUse()) { 1607 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) 1608 if (!ICI.isEquality() && XorCst->getValue().isSignBit()) { 1609 const APInt &SignBit = XorCst->getValue(); 1610 ICmpInst::Predicate Pred = ICI.isSigned() 1611 ? ICI.getUnsignedPredicate() 1612 : ICI.getSignedPredicate(); 1613 return new ICmpInst(Pred, LHSI->getOperand(0), 1614 Builder->getInt(RHSV ^ SignBit)); 1615 } 1616 1617 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) 1618 if (!ICI.isEquality() && XorCst->isMaxValue(true)) { 1619 const APInt &NotSignBit = XorCst->getValue(); 1620 ICmpInst::Predicate Pred = ICI.isSigned() 1621 ? ICI.getUnsignedPredicate() 1622 : ICI.getSignedPredicate(); 1623 Pred = ICI.getSwappedPredicate(Pred); 1624 return new ICmpInst(Pred, LHSI->getOperand(0), 1625 Builder->getInt(RHSV ^ NotSignBit)); 1626 } 1627 } 1628 1629 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) 1630 // iff -C is a power of 2 1631 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && 1632 XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2()) 1633 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst); 1634 1635 // (icmp ult (xor X, C), -C) -> (icmp uge X, C) 1636 // iff -C is a power of 2 1637 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && 1638 XorCst->getValue() == -RHSV && RHSV.isPowerOf2()) 1639 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst); 1640 } 1641 break; 1642 case Instruction::And: // (icmp pred (and X, AndCst), RHS) 1643 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && 1644 LHSI->getOperand(0)->hasOneUse()) { 1645 ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1)); 1646 1647 // If the LHS is an AND of a truncating cast, we can widen the 1648 // and/compare to be the input width without changing the value 1649 // produced, eliminating a cast. 1650 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { 1651 // We can do this transformation if either the AND constant does not 1652 // have its sign bit set or if it is an equality comparison. 1653 // Extending a relational comparison when we're checking the sign 1654 // bit would not work. 1655 if (ICI.isEquality() || 1656 (!AndCst->isNegative() && RHSV.isNonNegative())) { 1657 Value *NewAnd = 1658 Builder->CreateAnd(Cast->getOperand(0), 1659 ConstantExpr::getZExt(AndCst, Cast->getSrcTy())); 1660 NewAnd->takeName(LHSI); 1661 return new ICmpInst(ICI.getPredicate(), NewAnd, 1662 ConstantExpr::getZExt(RHS, Cast->getSrcTy())); 1663 } 1664 } 1665 1666 // If the LHS is an AND of a zext, and we have an equality compare, we can 1667 // shrink the and/compare to the smaller type, eliminating the cast. 1668 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) { 1669 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy()); 1670 // Make sure we don't compare the upper bits, SimplifyDemandedBits 1671 // should fold the icmp to true/false in that case. 1672 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) { 1673 Value *NewAnd = 1674 Builder->CreateAnd(Cast->getOperand(0), 1675 ConstantExpr::getTrunc(AndCst, Ty)); 1676 NewAnd->takeName(LHSI); 1677 return new ICmpInst(ICI.getPredicate(), NewAnd, 1678 ConstantExpr::getTrunc(RHS, Ty)); 1679 } 1680 } 1681 1682 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare 1683 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This 1684 // happens a LOT in code produced by the C front-end, for bitfield 1685 // access. 1686 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); 1687 if (Shift && !Shift->isShift()) 1688 Shift = nullptr; 1689 1690 ConstantInt *ShAmt; 1691 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr; 1692 1693 // This seemingly simple opportunity to fold away a shift turns out to 1694 // be rather complicated. See PR17827 1695 // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details. 1696 if (ShAmt) { 1697 bool CanFold = false; 1698 unsigned ShiftOpcode = Shift->getOpcode(); 1699 if (ShiftOpcode == Instruction::AShr) { 1700 // There may be some constraints that make this possible, 1701 // but nothing simple has been discovered yet. 1702 CanFold = false; 1703 } else if (ShiftOpcode == Instruction::Shl) { 1704 // For a left shift, we can fold if the comparison is not signed. 1705 // We can also fold a signed comparison if the mask value and 1706 // comparison value are not negative. These constraints may not be 1707 // obvious, but we can prove that they are correct using an SMT 1708 // solver. 1709 if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative())) 1710 CanFold = true; 1711 } else if (ShiftOpcode == Instruction::LShr) { 1712 // For a logical right shift, we can fold if the comparison is not 1713 // signed. We can also fold a signed comparison if the shifted mask 1714 // value and the shifted comparison value are not negative. 1715 // These constraints may not be obvious, but we can prove that they 1716 // are correct using an SMT solver. 1717 if (!ICI.isSigned()) 1718 CanFold = true; 1719 else { 1720 ConstantInt *ShiftedAndCst = 1721 cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt)); 1722 ConstantInt *ShiftedRHSCst = 1723 cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt)); 1724 1725 if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative()) 1726 CanFold = true; 1727 } 1728 } 1729 1730 if (CanFold) { 1731 Constant *NewCst; 1732 if (ShiftOpcode == Instruction::Shl) 1733 NewCst = ConstantExpr::getLShr(RHS, ShAmt); 1734 else 1735 NewCst = ConstantExpr::getShl(RHS, ShAmt); 1736 1737 // Check to see if we are shifting out any of the bits being 1738 // compared. 1739 if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) { 1740 // If we shifted bits out, the fold is not going to work out. 1741 // As a special case, check to see if this means that the 1742 // result is always true or false now. 1743 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1744 return replaceInstUsesWith(ICI, Builder->getFalse()); 1745 if (ICI.getPredicate() == ICmpInst::ICMP_NE) 1746 return replaceInstUsesWith(ICI, Builder->getTrue()); 1747 } else { 1748 ICI.setOperand(1, NewCst); 1749 Constant *NewAndCst; 1750 if (ShiftOpcode == Instruction::Shl) 1751 NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt); 1752 else 1753 NewAndCst = ConstantExpr::getShl(AndCst, ShAmt); 1754 LHSI->setOperand(1, NewAndCst); 1755 LHSI->setOperand(0, Shift->getOperand(0)); 1756 Worklist.Add(Shift); // Shift is dead. 1757 return &ICI; 1758 } 1759 } 1760 } 1761 1762 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is 1763 // preferable because it allows the C<<Y expression to be hoisted out 1764 // of a loop if Y is invariant and X is not. 1765 if (Shift && Shift->hasOneUse() && RHSV == 0 && 1766 ICI.isEquality() && !Shift->isArithmeticShift() && 1767 !isa<Constant>(Shift->getOperand(0))) { 1768 // Compute C << Y. 1769 Value *NS; 1770 if (Shift->getOpcode() == Instruction::LShr) { 1771 NS = Builder->CreateShl(AndCst, Shift->getOperand(1)); 1772 } else { 1773 // Insert a logical shift. 1774 NS = Builder->CreateLShr(AndCst, Shift->getOperand(1)); 1775 } 1776 1777 // Compute X & (C << Y). 1778 Value *NewAnd = 1779 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); 1780 1781 ICI.setOperand(0, NewAnd); 1782 return &ICI; 1783 } 1784 1785 // (icmp pred (and (or (lshr X, Y), X), 1), 0) --> 1786 // (icmp pred (and X, (or (shl 1, Y), 1), 0)) 1787 // 1788 // iff pred isn't signed 1789 { 1790 Value *X, *Y, *LShr; 1791 if (!ICI.isSigned() && RHSV == 0) { 1792 if (match(LHSI->getOperand(1), m_One())) { 1793 Constant *One = cast<Constant>(LHSI->getOperand(1)); 1794 Value *Or = LHSI->getOperand(0); 1795 if (match(Or, m_Or(m_Value(LShr), m_Value(X))) && 1796 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) { 1797 unsigned UsesRemoved = 0; 1798 if (LHSI->hasOneUse()) 1799 ++UsesRemoved; 1800 if (Or->hasOneUse()) 1801 ++UsesRemoved; 1802 if (LShr->hasOneUse()) 1803 ++UsesRemoved; 1804 Value *NewOr = nullptr; 1805 // Compute X & ((1 << Y) | 1) 1806 if (auto *C = dyn_cast<Constant>(Y)) { 1807 if (UsesRemoved >= 1) 1808 NewOr = 1809 ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1810 } else { 1811 if (UsesRemoved >= 3) 1812 NewOr = Builder->CreateOr(Builder->CreateShl(One, Y, 1813 LShr->getName(), 1814 /*HasNUW=*/true), 1815 One, Or->getName()); 1816 } 1817 if (NewOr) { 1818 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName()); 1819 ICI.setOperand(0, NewAnd); 1820 return &ICI; 1821 } 1822 } 1823 } 1824 } 1825 } 1826 1827 // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any 1828 // bit set in (X & AndCst) will produce a result greater than RHSV. 1829 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) { 1830 unsigned NTZ = AndCst->getValue().countTrailingZeros(); 1831 if ((NTZ < AndCst->getBitWidth()) && 1832 APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV)) 1833 return new ICmpInst(ICmpInst::ICMP_NE, LHSI, 1834 Constant::getNullValue(RHS->getType())); 1835 } 1836 } 1837 1838 // Try to optimize things like "A[i]&42 == 0" to index computations. 1839 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) { 1840 if (GetElementPtrInst *GEP = 1841 dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1842 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1843 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1844 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) { 1845 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1)); 1846 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C)) 1847 return Res; 1848 } 1849 } 1850 1851 // X & -C == -C -> X > u ~C 1852 // X & -C != -C -> X <= u ~C 1853 // iff C is a power of 2 1854 if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2()) 1855 return new ICmpInst( 1856 ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT 1857 : ICmpInst::ICMP_ULE, 1858 LHSI->getOperand(0), SubOne(RHS)); 1859 1860 // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1) 1861 // iff C is a power of 2 1862 if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) { 1863 if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1864 const APInt &AI = CI->getValue(); 1865 int32_t ExactLogBase2 = AI.exactLogBase2(); 1866 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1867 Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1); 1868 Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy); 1869 return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ 1870 ? ICmpInst::ICMP_SGE 1871 : ICmpInst::ICMP_SLT, 1872 Trunc, Constant::getNullValue(NTy)); 1873 } 1874 } 1875 } 1876 break; 1877 1878 case Instruction::Or: { 1879 if (RHS->isOne()) { 1880 // icmp slt signum(V) 1 --> icmp slt V, 1 1881 Value *V = nullptr; 1882 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && 1883 match(LHSI, m_Signum(m_Value(V)))) 1884 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1885 ConstantInt::get(V->getType(), 1)); 1886 } 1887 1888 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse()) 1889 break; 1890 Value *P, *Q; 1891 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1892 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1893 // -> and (icmp eq P, null), (icmp eq Q, null). 1894 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P, 1895 Constant::getNullValue(P->getType())); 1896 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q, 1897 Constant::getNullValue(Q->getType())); 1898 Instruction *Op; 1899 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1900 Op = BinaryOperator::CreateAnd(ICIP, ICIQ); 1901 else 1902 Op = BinaryOperator::CreateOr(ICIP, ICIQ); 1903 return Op; 1904 } 1905 break; 1906 } 1907 1908 case Instruction::Mul: { // (icmp pred (mul X, Val), CI) 1909 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1910 if (!Val) break; 1911 1912 // If this is a signed comparison to 0 and the mul is sign preserving, 1913 // use the mul LHS operand instead. 1914 ICmpInst::Predicate pred = ICI.getPredicate(); 1915 if (isSignTest(pred, RHS) && !Val->isZero() && 1916 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1917 return new ICmpInst(Val->isNegative() ? 1918 ICmpInst::getSwappedPredicate(pred) : pred, 1919 LHSI->getOperand(0), 1920 Constant::getNullValue(RHS->getType())); 1921 1922 break; 1923 } 1924 1925 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) 1926 uint32_t TypeBits = RHSV.getBitWidth(); 1927 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1928 if (!ShAmt) { 1929 Value *X; 1930 // (1 << X) pred P2 -> X pred Log2(P2) 1931 if (match(LHSI, m_Shl(m_One(), m_Value(X)))) { 1932 bool RHSVIsPowerOf2 = RHSV.isPowerOf2(); 1933 ICmpInst::Predicate Pred = ICI.getPredicate(); 1934 if (ICI.isUnsigned()) { 1935 if (!RHSVIsPowerOf2) { 1936 // (1 << X) < 30 -> X <= 4 1937 // (1 << X) <= 30 -> X <= 4 1938 // (1 << X) >= 30 -> X > 4 1939 // (1 << X) > 30 -> X > 4 1940 if (Pred == ICmpInst::ICMP_ULT) 1941 Pred = ICmpInst::ICMP_ULE; 1942 else if (Pred == ICmpInst::ICMP_UGE) 1943 Pred = ICmpInst::ICMP_UGT; 1944 } 1945 unsigned RHSLog2 = RHSV.logBase2(); 1946 1947 // (1 << X) >= 2147483648 -> X >= 31 -> X == 31 1948 // (1 << X) < 2147483648 -> X < 31 -> X != 31 1949 if (RHSLog2 == TypeBits-1) { 1950 if (Pred == ICmpInst::ICMP_UGE) 1951 Pred = ICmpInst::ICMP_EQ; 1952 else if (Pred == ICmpInst::ICMP_ULT) 1953 Pred = ICmpInst::ICMP_NE; 1954 } 1955 1956 return new ICmpInst(Pred, X, 1957 ConstantInt::get(RHS->getType(), RHSLog2)); 1958 } else if (ICI.isSigned()) { 1959 if (RHSV.isAllOnesValue()) { 1960 // (1 << X) <= -1 -> X == 31 1961 if (Pred == ICmpInst::ICMP_SLE) 1962 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1963 ConstantInt::get(RHS->getType(), TypeBits-1)); 1964 1965 // (1 << X) > -1 -> X != 31 1966 if (Pred == ICmpInst::ICMP_SGT) 1967 return new ICmpInst(ICmpInst::ICMP_NE, X, 1968 ConstantInt::get(RHS->getType(), TypeBits-1)); 1969 } else if (!RHSV) { 1970 // (1 << X) < 0 -> X == 31 1971 // (1 << X) <= 0 -> X == 31 1972 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1973 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1974 ConstantInt::get(RHS->getType(), TypeBits-1)); 1975 1976 // (1 << X) >= 0 -> X != 31 1977 // (1 << X) > 0 -> X != 31 1978 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1979 return new ICmpInst(ICmpInst::ICMP_NE, X, 1980 ConstantInt::get(RHS->getType(), TypeBits-1)); 1981 } 1982 } else if (ICI.isEquality()) { 1983 if (RHSVIsPowerOf2) 1984 return new ICmpInst( 1985 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2())); 1986 } 1987 } 1988 break; 1989 } 1990 1991 // Check that the shift amount is in range. If not, don't perform 1992 // undefined shifts. When the shift is visited it will be 1993 // simplified. 1994 if (ShAmt->uge(TypeBits)) 1995 break; 1996 1997 if (ICI.isEquality()) { 1998 // If we are comparing against bits always shifted out, the 1999 // comparison cannot succeed. 2000 Constant *Comp = 2001 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), 2002 ShAmt); 2003 if (Comp != RHS) {// Comparing against a bit that we know is zero. 2004 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 2005 Constant *Cst = Builder->getInt1(IsICMP_NE); 2006 return replaceInstUsesWith(ICI, Cst); 2007 } 2008 2009 // If the shift is NUW, then it is just shifting out zeros, no need for an 2010 // AND. 2011 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap()) 2012 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 2013 ConstantExpr::getLShr(RHS, ShAmt)); 2014 2015 // If the shift is NSW and we compare to 0, then it is just shifting out 2016 // sign bits, no need for an AND either. 2017 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0) 2018 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 2019 ConstantExpr::getLShr(RHS, ShAmt)); 2020 2021 if (LHSI->hasOneUse()) { 2022 // Otherwise strength reduce the shift into an and. 2023 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 2024 Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits, 2025 TypeBits - ShAmtVal)); 2026 2027 Value *And = 2028 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); 2029 return new ICmpInst(ICI.getPredicate(), And, 2030 ConstantExpr::getLShr(RHS, ShAmt)); 2031 } 2032 } 2033 2034 // If this is a signed comparison to 0 and the shift is sign preserving, 2035 // use the shift LHS operand instead. 2036 ICmpInst::Predicate pred = ICI.getPredicate(); 2037 if (isSignTest(pred, RHS) && 2038 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 2039 return new ICmpInst(pred, 2040 LHSI->getOperand(0), 2041 Constant::getNullValue(RHS->getType())); 2042 2043 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2044 bool TrueIfSigned = false; 2045 if (LHSI->hasOneUse() && 2046 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { 2047 // (X << 31) <s 0 --> (X&1) != 0 2048 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(), 2049 APInt::getOneBitSet(TypeBits, 2050 TypeBits-ShAmt->getZExtValue()-1)); 2051 Value *And = 2052 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); 2053 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2054 And, Constant::getNullValue(And->getType())); 2055 } 2056 2057 // Transform (icmp pred iM (shl iM %v, N), CI) 2058 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N)) 2059 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N. 2060 // This enables to get rid of the shift in favor of a trunc which can be 2061 // free on the target. It has the additional benefit of comparing to a 2062 // smaller constant, which will be target friendly. 2063 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1); 2064 if (LHSI->hasOneUse() && 2065 Amt != 0 && RHSV.countTrailingZeros() >= Amt) { 2066 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt); 2067 Constant *NCI = ConstantExpr::getTrunc( 2068 ConstantExpr::getAShr(RHS, 2069 ConstantInt::get(RHS->getType(), Amt)), 2070 NTy); 2071 return new ICmpInst(ICI.getPredicate(), 2072 Builder->CreateTrunc(LHSI->getOperand(0), NTy), 2073 NCI); 2074 } 2075 2076 break; 2077 } 2078 2079 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) 2080 case Instruction::AShr: { 2081 // Handle equality comparisons of shift-by-constant. 2082 BinaryOperator *BO = cast<BinaryOperator>(LHSI); 2083 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 2084 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt)) 2085 return Res; 2086 } 2087 2088 // Handle exact shr's. 2089 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) { 2090 if (RHSV.isMinValue()) 2091 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS); 2092 } 2093 break; 2094 } 2095 2096 case Instruction::UDiv: 2097 if (ConstantInt *DivLHS = dyn_cast<ConstantInt>(LHSI->getOperand(0))) { 2098 Value *X = LHSI->getOperand(1); 2099 APInt C1 = RHS->getValue(); 2100 APInt C2 = DivLHS->getValue(); 2101 assert(C2 != 0 && "udiv 0, X should have been simplified already."); 2102 // (icmp ugt (udiv C2, X), C1) -> (icmp ule X, C2/(C1+1)) 2103 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) { 2104 assert(!C1.isMaxValue() && 2105 "icmp ugt X, UINT_MAX should have been simplified already."); 2106 return new ICmpInst(ICmpInst::ICMP_ULE, X, 2107 ConstantInt::get(X->getType(), C2.udiv(C1 + 1))); 2108 } 2109 // (icmp ult (udiv C2, X), C1) -> (icmp ugt X, C2/C1) 2110 if (ICI.getPredicate() == ICmpInst::ICMP_ULT) { 2111 assert(C1 != 0 && "icmp ult X, 0 should have been simplified already."); 2112 return new ICmpInst(ICmpInst::ICMP_UGT, X, 2113 ConstantInt::get(X->getType(), C2.udiv(C1))); 2114 } 2115 } 2116 // fall-through 2117 case Instruction::SDiv: 2118 // Fold: icmp pred ([us]div X, C1), C2 -> range test 2119 // Fold this div into the comparison, producing a range check. 2120 // Determine, based on the divide type, what the range is being 2121 // checked. If there is an overflow on the low or high side, remember 2122 // it, otherwise compute the range [low, hi) bounding the new value. 2123 // See: InsertRangeTest above for the kinds of replacements possible. 2124 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) 2125 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), 2126 DivRHS)) 2127 return R; 2128 break; 2129 2130 case Instruction::Sub: { 2131 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0)); 2132 if (!LHSC) break; 2133 const APInt &LHSV = LHSC->getValue(); 2134 2135 // C1-X <u C2 -> (X|(C2-1)) == C1 2136 // iff C1 & (C2-1) == C2-1 2137 // C2 is a power of 2 2138 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 2139 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1)) 2140 return new ICmpInst(ICmpInst::ICMP_EQ, 2141 Builder->CreateOr(LHSI->getOperand(1), RHSV - 1), 2142 LHSC); 2143 2144 // C1-X >u C2 -> (X|C2) != C1 2145 // iff C1 & C2 == C2 2146 // C2+1 is a power of 2 2147 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 2148 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV) 2149 return new ICmpInst(ICmpInst::ICMP_NE, 2150 Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC); 2151 break; 2152 } 2153 2154 case Instruction::Add: 2155 // Fold: icmp pred (add X, C1), C2 2156 if (!ICI.isEquality()) { 2157 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 2158 if (!LHSC) break; 2159 const APInt &LHSV = LHSC->getValue(); 2160 2161 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) 2162 .subtract(LHSV); 2163 2164 if (ICI.isSigned()) { 2165 if (CR.getLower().isSignBit()) { 2166 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), 2167 Builder->getInt(CR.getUpper())); 2168 } else if (CR.getUpper().isSignBit()) { 2169 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), 2170 Builder->getInt(CR.getLower())); 2171 } 2172 } else { 2173 if (CR.getLower().isMinValue()) { 2174 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), 2175 Builder->getInt(CR.getUpper())); 2176 } else if (CR.getUpper().isMinValue()) { 2177 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), 2178 Builder->getInt(CR.getLower())); 2179 } 2180 } 2181 2182 // X-C1 <u C2 -> (X & -C2) == C1 2183 // iff C1 & (C2-1) == 0 2184 // C2 is a power of 2 2185 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 2186 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0) 2187 return new ICmpInst(ICmpInst::ICMP_EQ, 2188 Builder->CreateAnd(LHSI->getOperand(0), -RHSV), 2189 ConstantExpr::getNeg(LHSC)); 2190 2191 // X-C1 >u C2 -> (X & ~C2) != C1 2192 // iff C1 & C2 == 0 2193 // C2+1 is a power of 2 2194 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 2195 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0) 2196 return new ICmpInst(ICmpInst::ICMP_NE, 2197 Builder->CreateAnd(LHSI->getOperand(0), ~RHSV), 2198 ConstantExpr::getNeg(LHSC)); 2199 } 2200 break; 2201 } 2202 2203 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. 2204 if (ICI.isEquality()) { 2205 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 2206 2207 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 2208 // the second operand is a constant, simplify a bit. 2209 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { 2210 switch (BO->getOpcode()) { 2211 case Instruction::SRem: 2212 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2213 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ 2214 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); 2215 if (V.sgt(1) && V.isPowerOf2()) { 2216 Value *NewRem = 2217 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), 2218 BO->getName()); 2219 return new ICmpInst(ICI.getPredicate(), NewRem, 2220 Constant::getNullValue(BO->getType())); 2221 } 2222 } 2223 break; 2224 case Instruction::Add: 2225 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2226 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2227 if (BO->hasOneUse()) 2228 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2229 ConstantExpr::getSub(RHS, BOp1C)); 2230 } else if (RHSV == 0) { 2231 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2232 // efficiently invertible, or if the add has just this one use. 2233 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2234 2235 if (Value *NegVal = dyn_castNegVal(BOp1)) 2236 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); 2237 if (Value *NegVal = dyn_castNegVal(BOp0)) 2238 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); 2239 if (BO->hasOneUse()) { 2240 Value *Neg = Builder->CreateNeg(BOp1); 2241 Neg->takeName(BO); 2242 return new ICmpInst(ICI.getPredicate(), BOp0, Neg); 2243 } 2244 } 2245 break; 2246 case Instruction::Xor: 2247 if (BO->hasOneUse()) { 2248 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { 2249 // For the xor case, we can xor two constants together, eliminating 2250 // the explicit xor. 2251 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2252 ConstantExpr::getXor(RHS, BOC)); 2253 } else if (RHSV == 0) { 2254 // Replace ((xor A, B) != 0) with (A != B) 2255 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2256 BO->getOperand(1)); 2257 } 2258 } 2259 break; 2260 case Instruction::Sub: 2261 if (BO->hasOneUse()) { 2262 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) { 2263 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants. 2264 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1), 2265 ConstantExpr::getSub(BOp0C, RHS)); 2266 } else if (RHSV == 0) { 2267 // Replace ((sub A, B) != 0) with (A != B) 2268 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2269 BO->getOperand(1)); 2270 } 2271 } 2272 break; 2273 case Instruction::Or: 2274 // If bits are being or'd in that are not present in the constant we 2275 // are comparing against, then the comparison could never succeed! 2276 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2277 Constant *NotCI = ConstantExpr::getNot(RHS); 2278 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) 2279 return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 2280 2281 // Comparing if all bits outside of a constant mask are set? 2282 // Replace (X | C) == -1 with (X & ~C) == ~C. 2283 // This removes the -1 constant. 2284 if (BO->hasOneUse() && RHS->isAllOnesValue()) { 2285 Constant *NotBOC = ConstantExpr::getNot(BOC); 2286 Value *And = Builder->CreateAnd(BO->getOperand(0), NotBOC); 2287 return new ICmpInst(ICI.getPredicate(), And, NotBOC); 2288 } 2289 } 2290 break; 2291 2292 case Instruction::And: 2293 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2294 // If bits are being compared against that are and'd out, then the 2295 // comparison can never succeed! 2296 if ((RHSV & ~BOC->getValue()) != 0) 2297 return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 2298 2299 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2300 if (RHS == BOC && RHSV.isPowerOf2()) 2301 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : 2302 ICmpInst::ICMP_NE, LHSI, 2303 Constant::getNullValue(RHS->getType())); 2304 2305 // Don't perform the following transforms if the AND has multiple uses 2306 if (!BO->hasOneUse()) 2307 break; 2308 2309 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 2310 if (BOC->getValue().isSignBit()) { 2311 Value *X = BO->getOperand(0); 2312 Constant *Zero = Constant::getNullValue(X->getType()); 2313 ICmpInst::Predicate pred = isICMP_NE ? 2314 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 2315 return new ICmpInst(pred, X, Zero); 2316 } 2317 2318 // ((X & ~7) == 0) --> X < 8 2319 if (RHSV == 0 && isHighOnes(BOC)) { 2320 Value *X = BO->getOperand(0); 2321 Constant *NegX = ConstantExpr::getNeg(BOC); 2322 ICmpInst::Predicate pred = isICMP_NE ? 2323 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2324 return new ICmpInst(pred, X, NegX); 2325 } 2326 } 2327 break; 2328 case Instruction::Mul: 2329 if (RHSV == 0 && BO->hasNoSignedWrap()) { 2330 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2331 // The trivial case (mul X, 0) is handled by InstSimplify 2332 // General case : (mul X, C) != 0 iff X != 0 2333 // (mul X, C) == 0 iff X == 0 2334 if (!BOC->isZero()) 2335 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2336 Constant::getNullValue(RHS->getType())); 2337 } 2338 } 2339 break; 2340 default: break; 2341 } 2342 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { 2343 // Handle icmp {eq|ne} <intrinsic>, intcst. 2344 switch (II->getIntrinsicID()) { 2345 case Intrinsic::bswap: 2346 Worklist.Add(II); 2347 ICI.setOperand(0, II->getArgOperand(0)); 2348 ICI.setOperand(1, Builder->getInt(RHSV.byteSwap())); 2349 return &ICI; 2350 case Intrinsic::ctlz: 2351 case Intrinsic::cttz: 2352 // ctz(A) == bitwidth(a) -> A == 0 and likewise for != 2353 if (RHSV == RHS->getType()->getBitWidth()) { 2354 Worklist.Add(II); 2355 ICI.setOperand(0, II->getArgOperand(0)); 2356 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0)); 2357 return &ICI; 2358 } 2359 break; 2360 case Intrinsic::ctpop: 2361 // popcount(A) == 0 -> A == 0 and likewise for != 2362 if (RHS->isZero()) { 2363 Worklist.Add(II); 2364 ICI.setOperand(0, II->getArgOperand(0)); 2365 ICI.setOperand(1, RHS); 2366 return &ICI; 2367 } 2368 break; 2369 default: 2370 break; 2371 } 2372 } 2373 } 2374 return nullptr; 2375 } 2376 2377 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). 2378 /// We only handle extending casts so far. 2379 /// 2380 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { 2381 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); 2382 Value *LHSCIOp = LHSCI->getOperand(0); 2383 Type *SrcTy = LHSCIOp->getType(); 2384 Type *DestTy = LHSCI->getType(); 2385 Value *RHSCIOp; 2386 2387 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 2388 // integer type is the same size as the pointer type. 2389 if (LHSCI->getOpcode() == Instruction::PtrToInt && 2390 DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { 2391 Value *RHSOp = nullptr; 2392 if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) { 2393 Value *RHSCIOp = RHSC->getOperand(0); 2394 if (RHSCIOp->getType()->getPointerAddressSpace() == 2395 LHSCIOp->getType()->getPointerAddressSpace()) { 2396 RHSOp = RHSC->getOperand(0); 2397 // If the pointer types don't match, insert a bitcast. 2398 if (LHSCIOp->getType() != RHSOp->getType()) 2399 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); 2400 } 2401 } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) 2402 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 2403 2404 if (RHSOp) 2405 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); 2406 } 2407 2408 // The code below only handles extension cast instructions, so far. 2409 // Enforce this. 2410 if (LHSCI->getOpcode() != Instruction::ZExt && 2411 LHSCI->getOpcode() != Instruction::SExt) 2412 return nullptr; 2413 2414 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 2415 bool isSignedCmp = ICI.isSigned(); 2416 2417 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { 2418 // Not an extension from the same type? 2419 RHSCIOp = CI->getOperand(0); 2420 if (RHSCIOp->getType() != LHSCIOp->getType()) 2421 return nullptr; 2422 2423 // If the signedness of the two casts doesn't agree (i.e. one is a sext 2424 // and the other is a zext), then we can't handle this. 2425 if (CI->getOpcode() != LHSCI->getOpcode()) 2426 return nullptr; 2427 2428 // Deal with equality cases early. 2429 if (ICI.isEquality()) 2430 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 2431 2432 // A signed comparison of sign extended values simplifies into a 2433 // signed comparison. 2434 if (isSignedCmp && isSignedExt) 2435 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 2436 2437 // The other three cases all fold into an unsigned comparison. 2438 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 2439 } 2440 2441 // If we aren't dealing with a constant on the RHS, exit early 2442 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); 2443 if (!CI) 2444 return nullptr; 2445 2446 // Compute the constant that would happen if we truncated to SrcTy then 2447 // reextended to DestTy. 2448 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); 2449 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), 2450 Res1, DestTy); 2451 2452 // If the re-extended constant didn't change... 2453 if (Res2 == CI) { 2454 // Deal with equality cases early. 2455 if (ICI.isEquality()) 2456 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 2457 2458 // A signed comparison of sign extended values simplifies into a 2459 // signed comparison. 2460 if (isSignedExt && isSignedCmp) 2461 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 2462 2463 // The other three cases all fold into an unsigned comparison. 2464 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1); 2465 } 2466 2467 // The re-extended constant changed so the constant cannot be represented 2468 // in the shorter type. Consequently, we cannot emit a simple comparison. 2469 // All the cases that fold to true or false will have already been handled 2470 // by SimplifyICmpInst, so only deal with the tricky case. 2471 2472 if (isSignedCmp || !isSignedExt) 2473 return nullptr; 2474 2475 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 2476 // should have been folded away previously and not enter in here. 2477 2478 // We're performing an unsigned comp with a sign extended value. 2479 // This is true if the input is >= 0. [aka >s -1] 2480 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 2481 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName()); 2482 2483 // Finally, return the value computed. 2484 if (ICI.getPredicate() == ICmpInst::ICMP_ULT) 2485 return replaceInstUsesWith(ICI, Result); 2486 2487 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 2488 return BinaryOperator::CreateNot(Result); 2489 } 2490 2491 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form: 2492 /// I = icmp ugt (add (add A, B), CI2), CI1 2493 /// If this is of the form: 2494 /// sum = a + b 2495 /// if (sum+128 >u 255) 2496 /// Then replace it with llvm.sadd.with.overflow.i8. 2497 /// 2498 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 2499 ConstantInt *CI2, ConstantInt *CI1, 2500 InstCombiner &IC) { 2501 // The transformation we're trying to do here is to transform this into an 2502 // llvm.sadd.with.overflow. To do this, we have to replace the original add 2503 // with a narrower add, and discard the add-with-constant that is part of the 2504 // range check (if we can't eliminate it, this isn't profitable). 2505 2506 // In order to eliminate the add-with-constant, the compare can be its only 2507 // use. 2508 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 2509 if (!AddWithCst->hasOneUse()) return nullptr; 2510 2511 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 2512 if (!CI2->getValue().isPowerOf2()) return nullptr; 2513 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 2514 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr; 2515 2516 // The width of the new add formed is 1 more than the bias. 2517 ++NewWidth; 2518 2519 // Check to see that CI1 is an all-ones value with NewWidth bits. 2520 if (CI1->getBitWidth() == NewWidth || 2521 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 2522 return nullptr; 2523 2524 // This is only really a signed overflow check if the inputs have been 2525 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 2526 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 2527 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 2528 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 2529 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 2530 return nullptr; 2531 2532 // In order to replace the original add with a narrower 2533 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 2534 // and truncates that discard the high bits of the add. Verify that this is 2535 // the case. 2536 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 2537 for (User *U : OrigAdd->users()) { 2538 if (U == AddWithCst) continue; 2539 2540 // Only accept truncates for now. We would really like a nice recursive 2541 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 2542 // chain to see which bits of a value are actually demanded. If the 2543 // original add had another add which was then immediately truncated, we 2544 // could still do the transformation. 2545 TruncInst *TI = dyn_cast<TruncInst>(U); 2546 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 2547 return nullptr; 2548 } 2549 2550 // If the pattern matches, truncate the inputs to the narrower type and 2551 // use the sadd_with_overflow intrinsic to efficiently compute both the 2552 // result and the overflow bit. 2553 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 2554 Value *F = Intrinsic::getDeclaration(I.getModule(), 2555 Intrinsic::sadd_with_overflow, NewType); 2556 2557 InstCombiner::BuilderTy *Builder = IC.Builder; 2558 2559 // Put the new code above the original add, in case there are any uses of the 2560 // add between the add and the compare. 2561 Builder->SetInsertPoint(OrigAdd); 2562 2563 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc"); 2564 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc"); 2565 CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd"); 2566 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); 2567 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); 2568 2569 // The inner add was the result of the narrow add, zero extended to the 2570 // wider type. Replace it with the result computed by the intrinsic. 2571 IC.replaceInstUsesWith(*OrigAdd, ZExt); 2572 2573 // The original icmp gets replaced with the overflow value. 2574 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 2575 } 2576 2577 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, 2578 Value *RHS, Instruction &OrigI, 2579 Value *&Result, Constant *&Overflow) { 2580 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 2581 std::swap(LHS, RHS); 2582 2583 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { 2584 Result = OpResult; 2585 Overflow = OverflowVal; 2586 if (ReuseName) 2587 Result->takeName(&OrigI); 2588 return true; 2589 }; 2590 2591 // If the overflow check was an add followed by a compare, the insertion point 2592 // may be pointing to the compare. We want to insert the new instructions 2593 // before the add in case there are uses of the add between the add and the 2594 // compare. 2595 Builder->SetInsertPoint(&OrigI); 2596 2597 switch (OCF) { 2598 case OCF_INVALID: 2599 llvm_unreachable("bad overflow check kind!"); 2600 2601 case OCF_UNSIGNED_ADD: { 2602 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); 2603 if (OR == OverflowResult::NeverOverflows) 2604 return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(), 2605 true); 2606 2607 if (OR == OverflowResult::AlwaysOverflows) 2608 return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true); 2609 } 2610 // FALL THROUGH uadd into sadd 2611 case OCF_SIGNED_ADD: { 2612 // X + 0 -> {X, false} 2613 if (match(RHS, m_Zero())) 2614 return SetResult(LHS, Builder->getFalse(), false); 2615 2616 // We can strength reduce this signed add into a regular add if we can prove 2617 // that it will never overflow. 2618 if (OCF == OCF_SIGNED_ADD) 2619 if (WillNotOverflowSignedAdd(LHS, RHS, OrigI)) 2620 return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(), 2621 true); 2622 break; 2623 } 2624 2625 case OCF_UNSIGNED_SUB: 2626 case OCF_SIGNED_SUB: { 2627 // X - 0 -> {X, false} 2628 if (match(RHS, m_Zero())) 2629 return SetResult(LHS, Builder->getFalse(), false); 2630 2631 if (OCF == OCF_SIGNED_SUB) { 2632 if (WillNotOverflowSignedSub(LHS, RHS, OrigI)) 2633 return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(), 2634 true); 2635 } else { 2636 if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI)) 2637 return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(), 2638 true); 2639 } 2640 break; 2641 } 2642 2643 case OCF_UNSIGNED_MUL: { 2644 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); 2645 if (OR == OverflowResult::NeverOverflows) 2646 return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(), 2647 true); 2648 if (OR == OverflowResult::AlwaysOverflows) 2649 return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true); 2650 } // FALL THROUGH 2651 case OCF_SIGNED_MUL: 2652 // X * undef -> undef 2653 if (isa<UndefValue>(RHS)) 2654 return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false); 2655 2656 // X * 0 -> {0, false} 2657 if (match(RHS, m_Zero())) 2658 return SetResult(RHS, Builder->getFalse(), false); 2659 2660 // X * 1 -> {X, false} 2661 if (match(RHS, m_One())) 2662 return SetResult(LHS, Builder->getFalse(), false); 2663 2664 if (OCF == OCF_SIGNED_MUL) 2665 if (WillNotOverflowSignedMul(LHS, RHS, OrigI)) 2666 return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(), 2667 true); 2668 break; 2669 } 2670 2671 return false; 2672 } 2673 2674 /// \brief Recognize and process idiom involving test for multiplication 2675 /// overflow. 2676 /// 2677 /// The caller has matched a pattern of the form: 2678 /// I = cmp u (mul(zext A, zext B), V 2679 /// The function checks if this is a test for overflow and if so replaces 2680 /// multiplication with call to 'mul.with.overflow' intrinsic. 2681 /// 2682 /// \param I Compare instruction. 2683 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 2684 /// the compare instruction. Must be of integer type. 2685 /// \param OtherVal The other argument of compare instruction. 2686 /// \returns Instruction which must replace the compare instruction, NULL if no 2687 /// replacement required. 2688 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal, 2689 Value *OtherVal, InstCombiner &IC) { 2690 // Don't bother doing this transformation for pointers, don't do it for 2691 // vectors. 2692 if (!isa<IntegerType>(MulVal->getType())) 2693 return nullptr; 2694 2695 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 2696 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 2697 auto *MulInstr = dyn_cast<Instruction>(MulVal); 2698 if (!MulInstr) 2699 return nullptr; 2700 assert(MulInstr->getOpcode() == Instruction::Mul); 2701 2702 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 2703 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 2704 assert(LHS->getOpcode() == Instruction::ZExt); 2705 assert(RHS->getOpcode() == Instruction::ZExt); 2706 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 2707 2708 // Calculate type and width of the result produced by mul.with.overflow. 2709 Type *TyA = A->getType(), *TyB = B->getType(); 2710 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 2711 WidthB = TyB->getPrimitiveSizeInBits(); 2712 unsigned MulWidth; 2713 Type *MulType; 2714 if (WidthB > WidthA) { 2715 MulWidth = WidthB; 2716 MulType = TyB; 2717 } else { 2718 MulWidth = WidthA; 2719 MulType = TyA; 2720 } 2721 2722 // In order to replace the original mul with a narrower mul.with.overflow, 2723 // all uses must ignore upper bits of the product. The number of used low 2724 // bits must be not greater than the width of mul.with.overflow. 2725 if (MulVal->hasNUsesOrMore(2)) 2726 for (User *U : MulVal->users()) { 2727 if (U == &I) 2728 continue; 2729 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2730 // Check if truncation ignores bits above MulWidth. 2731 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 2732 if (TruncWidth > MulWidth) 2733 return nullptr; 2734 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2735 // Check if AND ignores bits above MulWidth. 2736 if (BO->getOpcode() != Instruction::And) 2737 return nullptr; 2738 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2739 const APInt &CVal = CI->getValue(); 2740 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 2741 return nullptr; 2742 } 2743 } else { 2744 // Other uses prohibit this transformation. 2745 return nullptr; 2746 } 2747 } 2748 2749 // Recognize patterns 2750 switch (I.getPredicate()) { 2751 case ICmpInst::ICMP_EQ: 2752 case ICmpInst::ICMP_NE: 2753 // Recognize pattern: 2754 // mulval = mul(zext A, zext B) 2755 // cmp eq/neq mulval, zext trunc mulval 2756 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 2757 if (Zext->hasOneUse()) { 2758 Value *ZextArg = Zext->getOperand(0); 2759 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 2760 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 2761 break; //Recognized 2762 } 2763 2764 // Recognize pattern: 2765 // mulval = mul(zext A, zext B) 2766 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 2767 ConstantInt *CI; 2768 Value *ValToMask; 2769 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 2770 if (ValToMask != MulVal) 2771 return nullptr; 2772 const APInt &CVal = CI->getValue() + 1; 2773 if (CVal.isPowerOf2()) { 2774 unsigned MaskWidth = CVal.logBase2(); 2775 if (MaskWidth == MulWidth) 2776 break; // Recognized 2777 } 2778 } 2779 return nullptr; 2780 2781 case ICmpInst::ICMP_UGT: 2782 // Recognize pattern: 2783 // mulval = mul(zext A, zext B) 2784 // cmp ugt mulval, max 2785 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2786 APInt MaxVal = APInt::getMaxValue(MulWidth); 2787 MaxVal = MaxVal.zext(CI->getBitWidth()); 2788 if (MaxVal.eq(CI->getValue())) 2789 break; // Recognized 2790 } 2791 return nullptr; 2792 2793 case ICmpInst::ICMP_UGE: 2794 // Recognize pattern: 2795 // mulval = mul(zext A, zext B) 2796 // cmp uge mulval, max+1 2797 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2798 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2799 if (MaxVal.eq(CI->getValue())) 2800 break; // Recognized 2801 } 2802 return nullptr; 2803 2804 case ICmpInst::ICMP_ULE: 2805 // Recognize pattern: 2806 // mulval = mul(zext A, zext B) 2807 // cmp ule mulval, max 2808 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2809 APInt MaxVal = APInt::getMaxValue(MulWidth); 2810 MaxVal = MaxVal.zext(CI->getBitWidth()); 2811 if (MaxVal.eq(CI->getValue())) 2812 break; // Recognized 2813 } 2814 return nullptr; 2815 2816 case ICmpInst::ICMP_ULT: 2817 // Recognize pattern: 2818 // mulval = mul(zext A, zext B) 2819 // cmp ule mulval, max + 1 2820 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2821 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2822 if (MaxVal.eq(CI->getValue())) 2823 break; // Recognized 2824 } 2825 return nullptr; 2826 2827 default: 2828 return nullptr; 2829 } 2830 2831 InstCombiner::BuilderTy *Builder = IC.Builder; 2832 Builder->SetInsertPoint(MulInstr); 2833 2834 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 2835 Value *MulA = A, *MulB = B; 2836 if (WidthA < MulWidth) 2837 MulA = Builder->CreateZExt(A, MulType); 2838 if (WidthB < MulWidth) 2839 MulB = Builder->CreateZExt(B, MulType); 2840 Value *F = Intrinsic::getDeclaration(I.getModule(), 2841 Intrinsic::umul_with_overflow, MulType); 2842 CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul"); 2843 IC.Worklist.Add(MulInstr); 2844 2845 // If there are uses of mul result other than the comparison, we know that 2846 // they are truncation or binary AND. Change them to use result of 2847 // mul.with.overflow and adjust properly mask/size. 2848 if (MulVal->hasNUsesOrMore(2)) { 2849 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value"); 2850 for (User *U : MulVal->users()) { 2851 if (U == &I || U == OtherVal) 2852 continue; 2853 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2854 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 2855 IC.replaceInstUsesWith(*TI, Mul); 2856 else 2857 TI->setOperand(0, Mul); 2858 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2859 assert(BO->getOpcode() == Instruction::And); 2860 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 2861 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 2862 APInt ShortMask = CI->getValue().trunc(MulWidth); 2863 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask); 2864 Instruction *Zext = 2865 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType())); 2866 IC.Worklist.Add(Zext); 2867 IC.replaceInstUsesWith(*BO, Zext); 2868 } else { 2869 llvm_unreachable("Unexpected Binary operation"); 2870 } 2871 IC.Worklist.Add(cast<Instruction>(U)); 2872 } 2873 } 2874 if (isa<Instruction>(OtherVal)) 2875 IC.Worklist.Add(cast<Instruction>(OtherVal)); 2876 2877 // The original icmp gets replaced with the overflow value, maybe inverted 2878 // depending on predicate. 2879 bool Inverse = false; 2880 switch (I.getPredicate()) { 2881 case ICmpInst::ICMP_NE: 2882 break; 2883 case ICmpInst::ICMP_EQ: 2884 Inverse = true; 2885 break; 2886 case ICmpInst::ICMP_UGT: 2887 case ICmpInst::ICMP_UGE: 2888 if (I.getOperand(0) == MulVal) 2889 break; 2890 Inverse = true; 2891 break; 2892 case ICmpInst::ICMP_ULT: 2893 case ICmpInst::ICMP_ULE: 2894 if (I.getOperand(1) == MulVal) 2895 break; 2896 Inverse = true; 2897 break; 2898 default: 2899 llvm_unreachable("Unexpected predicate"); 2900 } 2901 if (Inverse) { 2902 Value *Res = Builder->CreateExtractValue(Call, 1); 2903 return BinaryOperator::CreateNot(Res); 2904 } 2905 2906 return ExtractValueInst::Create(Call, 1); 2907 } 2908 2909 // DemandedBitsLHSMask - When performing a comparison against a constant, 2910 // it is possible that not all the bits in the LHS are demanded. This helper 2911 // method computes the mask that IS demanded. 2912 static APInt DemandedBitsLHSMask(ICmpInst &I, 2913 unsigned BitWidth, bool isSignCheck) { 2914 if (isSignCheck) 2915 return APInt::getSignBit(BitWidth); 2916 2917 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 2918 if (!CI) return APInt::getAllOnesValue(BitWidth); 2919 const APInt &RHS = CI->getValue(); 2920 2921 switch (I.getPredicate()) { 2922 // For a UGT comparison, we don't care about any bits that 2923 // correspond to the trailing ones of the comparand. The value of these 2924 // bits doesn't impact the outcome of the comparison, because any value 2925 // greater than the RHS must differ in a bit higher than these due to carry. 2926 case ICmpInst::ICMP_UGT: { 2927 unsigned trailingOnes = RHS.countTrailingOnes(); 2928 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); 2929 return ~lowBitsSet; 2930 } 2931 2932 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 2933 // Any value less than the RHS must differ in a higher bit because of carries. 2934 case ICmpInst::ICMP_ULT: { 2935 unsigned trailingZeros = RHS.countTrailingZeros(); 2936 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); 2937 return ~lowBitsSet; 2938 } 2939 2940 default: 2941 return APInt::getAllOnesValue(BitWidth); 2942 } 2943 } 2944 2945 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst 2946 /// should be swapped. 2947 /// The decision is based on how many times these two operands are reused 2948 /// as subtract operands and their positions in those instructions. 2949 /// The rational is that several architectures use the same instruction for 2950 /// both subtract and cmp, thus it is better if the order of those operands 2951 /// match. 2952 /// \return true if Op0 and Op1 should be swapped. 2953 static bool swapMayExposeCSEOpportunities(const Value * Op0, 2954 const Value * Op1) { 2955 // Filter out pointer value as those cannot appears directly in subtract. 2956 // FIXME: we may want to go through inttoptrs or bitcasts. 2957 if (Op0->getType()->isPointerTy()) 2958 return false; 2959 // Count every uses of both Op0 and Op1 in a subtract. 2960 // Each time Op0 is the first operand, count -1: swapping is bad, the 2961 // subtract has already the same layout as the compare. 2962 // Each time Op0 is the second operand, count +1: swapping is good, the 2963 // subtract has a different layout as the compare. 2964 // At the end, if the benefit is greater than 0, Op0 should come second to 2965 // expose more CSE opportunities. 2966 int GlobalSwapBenefits = 0; 2967 for (const User *U : Op0->users()) { 2968 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U); 2969 if (!BinOp || BinOp->getOpcode() != Instruction::Sub) 2970 continue; 2971 // If Op0 is the first argument, this is not beneficial to swap the 2972 // arguments. 2973 int LocalSwapBenefits = -1; 2974 unsigned Op1Idx = 1; 2975 if (BinOp->getOperand(Op1Idx) == Op0) { 2976 Op1Idx = 0; 2977 LocalSwapBenefits = 1; 2978 } 2979 if (BinOp->getOperand(Op1Idx) != Op1) 2980 continue; 2981 GlobalSwapBenefits += LocalSwapBenefits; 2982 } 2983 return GlobalSwapBenefits > 0; 2984 } 2985 2986 /// \brief Check that one use is in the same block as the definition and all 2987 /// other uses are in blocks dominated by a given block 2988 /// 2989 /// \param DI Definition 2990 /// \param UI Use 2991 /// \param DB Block that must dominate all uses of \p DI outside 2992 /// the parent block 2993 /// \return true when \p UI is the only use of \p DI in the parent block 2994 /// and all other uses of \p DI are in blocks dominated by \p DB. 2995 /// 2996 bool InstCombiner::dominatesAllUses(const Instruction *DI, 2997 const Instruction *UI, 2998 const BasicBlock *DB) const { 2999 assert(DI && UI && "Instruction not defined\n"); 3000 // ignore incomplete definitions 3001 if (!DI->getParent()) 3002 return false; 3003 // DI and UI must be in the same block 3004 if (DI->getParent() != UI->getParent()) 3005 return false; 3006 // Protect from self-referencing blocks 3007 if (DI->getParent() == DB) 3008 return false; 3009 // DominatorTree available? 3010 if (!DT) 3011 return false; 3012 for (const User *U : DI->users()) { 3013 auto *Usr = cast<Instruction>(U); 3014 if (Usr != UI && !DT->dominates(DB, Usr->getParent())) 3015 return false; 3016 } 3017 return true; 3018 } 3019 3020 /// 3021 /// true when the instruction sequence within a block is select-cmp-br. 3022 /// 3023 static bool isChainSelectCmpBranch(const SelectInst *SI) { 3024 const BasicBlock *BB = SI->getParent(); 3025 if (!BB) 3026 return false; 3027 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 3028 if (!BI || BI->getNumSuccessors() != 2) 3029 return false; 3030 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 3031 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 3032 return false; 3033 return true; 3034 } 3035 3036 /// 3037 /// \brief True when a select result is replaced by one of its operands 3038 /// in select-icmp sequence. This will eventually result in the elimination 3039 /// of the select. 3040 /// 3041 /// \param SI Select instruction 3042 /// \param Icmp Compare instruction 3043 /// \param SIOpd Operand that replaces the select 3044 /// 3045 /// Notes: 3046 /// - The replacement is global and requires dominator information 3047 /// - The caller is responsible for the actual replacement 3048 /// 3049 /// Example: 3050 /// 3051 /// entry: 3052 /// %4 = select i1 %3, %C* %0, %C* null 3053 /// %5 = icmp eq %C* %4, null 3054 /// br i1 %5, label %9, label %7 3055 /// ... 3056 /// ; <label>:7 ; preds = %entry 3057 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 3058 /// ... 3059 /// 3060 /// can be transformed to 3061 /// 3062 /// %5 = icmp eq %C* %0, null 3063 /// %6 = select i1 %3, i1 %5, i1 true 3064 /// br i1 %6, label %9, label %7 3065 /// ... 3066 /// ; <label>:7 ; preds = %entry 3067 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 3068 /// 3069 /// Similar when the first operand of the select is a constant or/and 3070 /// the compare is for not equal rather than equal. 3071 /// 3072 /// NOTE: The function is only called when the select and compare constants 3073 /// are equal, the optimization can work only for EQ predicates. This is not a 3074 /// major restriction since a NE compare should be 'normalized' to an equal 3075 /// compare, which usually happens in the combiner and test case 3076 /// select-cmp-br.ll 3077 /// checks for it. 3078 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 3079 const ICmpInst *Icmp, 3080 const unsigned SIOpd) { 3081 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 3082 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 3083 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 3084 // The check for the unique predecessor is not the best that can be 3085 // done. But it protects efficiently against cases like when SI's 3086 // home block has two successors, Succ and Succ1, and Succ1 predecessor 3087 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 3088 // replaced can be reached on either path. So the uniqueness check 3089 // guarantees that the path all uses of SI (outside SI's parent) are on 3090 // is disjoint from all other paths out of SI. But that information 3091 // is more expensive to compute, and the trade-off here is in favor 3092 // of compile-time. 3093 if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 3094 NumSel++; 3095 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 3096 return true; 3097 } 3098 } 3099 return false; 3100 } 3101 3102 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 3103 /// it into the appropriate icmp lt or icmp gt instruction. This transform 3104 /// allows them to be folded in visitICmpInst. 3105 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 3106 ICmpInst::Predicate Pred = I.getPredicate(); 3107 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 3108 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 3109 return nullptr; 3110 3111 Value *Op0 = I.getOperand(0); 3112 Value *Op1 = I.getOperand(1); 3113 auto *Op1C = dyn_cast<Constant>(Op1); 3114 if (!Op1C) 3115 return nullptr; 3116 3117 // Check if the constant operand can be safely incremented/decremented without 3118 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 3119 // the edge cases for us, so we just assert on them. For vectors, we must 3120 // handle the edge cases. 3121 Type *Op1Type = Op1->getType(); 3122 bool IsSigned = I.isSigned(); 3123 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 3124 auto *CI = dyn_cast<ConstantInt>(Op1C); 3125 if (CI) { 3126 // A <= MAX -> TRUE ; A >= MIN -> TRUE 3127 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 3128 } else if (Op1Type->isVectorTy()) { 3129 // TODO? If the edge cases for vectors were guaranteed to be handled as they 3130 // are for scalar, we could remove the min/max checks. However, to do that, 3131 // we would have to use insertelement/shufflevector to replace edge values. 3132 unsigned NumElts = Op1Type->getVectorNumElements(); 3133 for (unsigned i = 0; i != NumElts; ++i) { 3134 Constant *Elt = Op1C->getAggregateElement(i); 3135 if (!Elt) 3136 return nullptr; 3137 3138 if (isa<UndefValue>(Elt)) 3139 continue; 3140 // Bail out if we can't determine if this constant is min/max or if we 3141 // know that this constant is min/max. 3142 auto *CI = dyn_cast<ConstantInt>(Elt); 3143 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 3144 return nullptr; 3145 } 3146 } else { 3147 // ConstantExpr? 3148 return nullptr; 3149 } 3150 3151 // Increment or decrement the constant and set the new comparison predicate: 3152 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 3153 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 3154 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 3155 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 3156 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 3157 } 3158 3159 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 3160 bool Changed = false; 3161 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3162 unsigned Op0Cplxity = getComplexity(Op0); 3163 unsigned Op1Cplxity = getComplexity(Op1); 3164 3165 /// Orders the operands of the compare so that they are listed from most 3166 /// complex to least complex. This puts constants before unary operators, 3167 /// before binary operators. 3168 if (Op0Cplxity < Op1Cplxity || 3169 (Op0Cplxity == Op1Cplxity && 3170 swapMayExposeCSEOpportunities(Op0, Op1))) { 3171 I.swapOperands(); 3172 std::swap(Op0, Op1); 3173 Changed = true; 3174 } 3175 3176 if (Value *V = 3177 SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I)) 3178 return replaceInstUsesWith(I, V); 3179 3180 // comparing -val or val with non-zero is the same as just comparing val 3181 // ie, abs(val) != 0 -> val != 0 3182 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) 3183 { 3184 Value *Cond, *SelectTrue, *SelectFalse; 3185 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 3186 m_Value(SelectFalse)))) { 3187 if (Value *V = dyn_castNegVal(SelectTrue)) { 3188 if (V == SelectFalse) 3189 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 3190 } 3191 else if (Value *V = dyn_castNegVal(SelectFalse)) { 3192 if (V == SelectTrue) 3193 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 3194 } 3195 } 3196 } 3197 3198 Type *Ty = Op0->getType(); 3199 3200 // icmp's with boolean values can always be turned into bitwise operations 3201 if (Ty->isIntegerTy(1)) { 3202 switch (I.getPredicate()) { 3203 default: llvm_unreachable("Invalid icmp instruction!"); 3204 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) 3205 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp"); 3206 return BinaryOperator::CreateNot(Xor); 3207 } 3208 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B 3209 return BinaryOperator::CreateXor(Op0, Op1); 3210 3211 case ICmpInst::ICMP_UGT: 3212 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult 3213 // FALL THROUGH 3214 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B 3215 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 3216 return BinaryOperator::CreateAnd(Not, Op1); 3217 } 3218 case ICmpInst::ICMP_SGT: 3219 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt 3220 // FALL THROUGH 3221 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B 3222 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 3223 return BinaryOperator::CreateAnd(Not, Op0); 3224 } 3225 case ICmpInst::ICMP_UGE: 3226 std::swap(Op0, Op1); // Change icmp uge -> icmp ule 3227 // FALL THROUGH 3228 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B 3229 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 3230 return BinaryOperator::CreateOr(Not, Op1); 3231 } 3232 case ICmpInst::ICMP_SGE: 3233 std::swap(Op0, Op1); // Change icmp sge -> icmp sle 3234 // FALL THROUGH 3235 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B 3236 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 3237 return BinaryOperator::CreateOr(Not, Op0); 3238 } 3239 } 3240 } 3241 3242 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 3243 return NewICmp; 3244 3245 unsigned BitWidth = 0; 3246 if (Ty->isIntOrIntVectorTy()) 3247 BitWidth = Ty->getScalarSizeInBits(); 3248 else // Get pointer size. 3249 BitWidth = DL.getTypeSizeInBits(Ty->getScalarType()); 3250 3251 bool isSignBit = false; 3252 3253 // See if we are doing a comparison with a constant. 3254 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3255 Value *A = nullptr, *B = nullptr; 3256 3257 // Match the following pattern, which is a common idiom when writing 3258 // overflow-safe integer arithmetic function. The source performs an 3259 // addition in wider type, and explicitly checks for overflow using 3260 // comparisons against INT_MIN and INT_MAX. Simplify this by using the 3261 // sadd_with_overflow intrinsic. 3262 // 3263 // TODO: This could probably be generalized to handle other overflow-safe 3264 // operations if we worked out the formulas to compute the appropriate 3265 // magic constants. 3266 // 3267 // sum = a + b 3268 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 3269 { 3270 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 3271 if (I.getPredicate() == ICmpInst::ICMP_UGT && 3272 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 3273 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this)) 3274 return Res; 3275 } 3276 3277 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 3278 if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT) 3279 if (auto *SI = dyn_cast<SelectInst>(Op0)) { 3280 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 3281 if (SPR.Flavor == SPF_SMIN) { 3282 if (isKnownPositive(A, DL)) 3283 return new ICmpInst(I.getPredicate(), B, CI); 3284 if (isKnownPositive(B, DL)) 3285 return new ICmpInst(I.getPredicate(), A, CI); 3286 } 3287 } 3288 3289 3290 // The following transforms are only 'worth it' if the only user of the 3291 // subtraction is the icmp. 3292 if (Op0->hasOneUse()) { 3293 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) 3294 if (I.isEquality() && CI->isZero() && 3295 match(Op0, m_Sub(m_Value(A), m_Value(B)))) 3296 return new ICmpInst(I.getPredicate(), A, B); 3297 3298 // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B) 3299 if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() && 3300 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3301 return new ICmpInst(ICmpInst::ICMP_SGE, A, B); 3302 3303 // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B) 3304 if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() && 3305 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3306 return new ICmpInst(ICmpInst::ICMP_SGT, A, B); 3307 3308 // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B) 3309 if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() && 3310 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3311 return new ICmpInst(ICmpInst::ICMP_SLT, A, B); 3312 3313 // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B) 3314 if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() && 3315 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3316 return new ICmpInst(ICmpInst::ICMP_SLE, A, B); 3317 } 3318 3319 if (I.isEquality()) { 3320 ConstantInt *CI2; 3321 if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) || 3322 match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) { 3323 // (icmp eq/ne (ashr/lshr const2, A), const1) 3324 if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2)) 3325 return Inst; 3326 } 3327 if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) { 3328 // (icmp eq/ne (shl const2, A), const1) 3329 if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2)) 3330 return Inst; 3331 } 3332 } 3333 3334 // If this comparison is a normal comparison, it demands all 3335 // bits, if it is a sign bit comparison, it only demands the sign bit. 3336 bool UnusedBit; 3337 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); 3338 3339 // Canonicalize icmp instructions based on dominating conditions. 3340 BasicBlock *Parent = I.getParent(); 3341 BasicBlock *Dom = Parent->getSinglePredecessor(); 3342 auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr; 3343 ICmpInst::Predicate Pred; 3344 BasicBlock *TrueBB, *FalseBB; 3345 ConstantInt *CI2; 3346 if (BI && match(BI, m_Br(m_ICmp(Pred, m_Specific(Op0), m_ConstantInt(CI2)), 3347 TrueBB, FalseBB)) && 3348 TrueBB != FalseBB) { 3349 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(I.getPredicate(), 3350 CI->getValue()); 3351 ConstantRange DominatingCR = 3352 (Parent == TrueBB) 3353 ? ConstantRange::makeExactICmpRegion(Pred, CI2->getValue()) 3354 : ConstantRange::makeExactICmpRegion( 3355 CmpInst::getInversePredicate(Pred), CI2->getValue()); 3356 ConstantRange Intersection = DominatingCR.intersectWith(CR); 3357 ConstantRange Difference = DominatingCR.difference(CR); 3358 if (Intersection.isEmptySet()) 3359 return replaceInstUsesWith(I, Builder->getFalse()); 3360 if (Difference.isEmptySet()) 3361 return replaceInstUsesWith(I, Builder->getTrue()); 3362 // Canonicalizing a sign bit comparison that gets used in a branch, 3363 // pessimizes codegen by generating branch on zero instruction instead 3364 // of a test and branch. So we avoid canonicalizing in such situations 3365 // because test and branch instruction has better branch displacement 3366 // than compare and branch instruction. 3367 if (!isBranchOnSignBitCheck(I, isSignBit) && !I.isEquality()) { 3368 if (auto *AI = Intersection.getSingleElement()) 3369 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Builder->getInt(*AI)); 3370 if (auto *AD = Difference.getSingleElement()) 3371 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Builder->getInt(*AD)); 3372 } 3373 } 3374 } 3375 3376 // See if we can fold the comparison based on range information we can get 3377 // by checking whether bits are known to be zero or one in the input. 3378 if (BitWidth != 0) { 3379 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); 3380 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); 3381 3382 if (SimplifyDemandedBits(I.getOperandUse(0), 3383 DemandedBitsLHSMask(I, BitWidth, isSignBit), 3384 Op0KnownZero, Op0KnownOne, 0)) 3385 return &I; 3386 if (SimplifyDemandedBits(I.getOperandUse(1), 3387 APInt::getAllOnesValue(BitWidth), Op1KnownZero, 3388 Op1KnownOne, 0)) 3389 return &I; 3390 3391 // Given the known and unknown bits, compute a range that the LHS could be 3392 // in. Compute the Min, Max and RHS values based on the known bits. For the 3393 // EQ and NE we use unsigned values. 3394 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 3395 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 3396 if (I.isSigned()) { 3397 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 3398 Op0Min, Op0Max); 3399 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 3400 Op1Min, Op1Max); 3401 } else { 3402 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 3403 Op0Min, Op0Max); 3404 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 3405 Op1Min, Op1Max); 3406 } 3407 3408 // If Min and Max are known to be the same, then SimplifyDemandedBits 3409 // figured out that the LHS is a constant. Just constant fold this now so 3410 // that code below can assume that Min != Max. 3411 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 3412 return new ICmpInst(I.getPredicate(), 3413 ConstantInt::get(Op0->getType(), Op0Min), Op1); 3414 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 3415 return new ICmpInst(I.getPredicate(), Op0, 3416 ConstantInt::get(Op1->getType(), Op1Min)); 3417 3418 // Based on the range information we know about the LHS, see if we can 3419 // simplify this comparison. For example, (x&4) < 8 is always true. 3420 switch (I.getPredicate()) { 3421 default: llvm_unreachable("Unknown icmp opcode!"); 3422 case ICmpInst::ICMP_EQ: { 3423 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 3424 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3425 3426 // If all bits are known zero except for one, then we know at most one 3427 // bit is set. If the comparison is against zero, then this is a check 3428 // to see if *that* bit is set. 3429 APInt Op0KnownZeroInverted = ~Op0KnownZero; 3430 if (~Op1KnownZero == 0) { 3431 // If the LHS is an AND with the same constant, look through it. 3432 Value *LHS = nullptr; 3433 ConstantInt *LHSC = nullptr; 3434 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 3435 LHSC->getValue() != Op0KnownZeroInverted) 3436 LHS = Op0; 3437 3438 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 3439 // then turn "((1 << x)&8) == 0" into "x != 3". 3440 // or turn "((1 << x)&7) == 0" into "x > 2". 3441 Value *X = nullptr; 3442 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 3443 APInt ValToCheck = Op0KnownZeroInverted; 3444 if (ValToCheck.isPowerOf2()) { 3445 unsigned CmpVal = ValToCheck.countTrailingZeros(); 3446 return new ICmpInst(ICmpInst::ICMP_NE, X, 3447 ConstantInt::get(X->getType(), CmpVal)); 3448 } else if ((++ValToCheck).isPowerOf2()) { 3449 unsigned CmpVal = ValToCheck.countTrailingZeros() - 1; 3450 return new ICmpInst(ICmpInst::ICMP_UGT, X, 3451 ConstantInt::get(X->getType(), CmpVal)); 3452 } 3453 } 3454 3455 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 3456 // then turn "((8 >>u x)&1) == 0" into "x != 3". 3457 const APInt *CI; 3458 if (Op0KnownZeroInverted == 1 && 3459 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 3460 return new ICmpInst(ICmpInst::ICMP_NE, X, 3461 ConstantInt::get(X->getType(), 3462 CI->countTrailingZeros())); 3463 } 3464 break; 3465 } 3466 case ICmpInst::ICMP_NE: { 3467 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 3468 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3469 3470 // If all bits are known zero except for one, then we know at most one 3471 // bit is set. If the comparison is against zero, then this is a check 3472 // to see if *that* bit is set. 3473 APInt Op0KnownZeroInverted = ~Op0KnownZero; 3474 if (~Op1KnownZero == 0) { 3475 // If the LHS is an AND with the same constant, look through it. 3476 Value *LHS = nullptr; 3477 ConstantInt *LHSC = nullptr; 3478 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 3479 LHSC->getValue() != Op0KnownZeroInverted) 3480 LHS = Op0; 3481 3482 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 3483 // then turn "((1 << x)&8) != 0" into "x == 3". 3484 // or turn "((1 << x)&7) != 0" into "x < 3". 3485 Value *X = nullptr; 3486 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 3487 APInt ValToCheck = Op0KnownZeroInverted; 3488 if (ValToCheck.isPowerOf2()) { 3489 unsigned CmpVal = ValToCheck.countTrailingZeros(); 3490 return new ICmpInst(ICmpInst::ICMP_EQ, X, 3491 ConstantInt::get(X->getType(), CmpVal)); 3492 } else if ((++ValToCheck).isPowerOf2()) { 3493 unsigned CmpVal = ValToCheck.countTrailingZeros(); 3494 return new ICmpInst(ICmpInst::ICMP_ULT, X, 3495 ConstantInt::get(X->getType(), CmpVal)); 3496 } 3497 } 3498 3499 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 3500 // then turn "((8 >>u x)&1) != 0" into "x == 3". 3501 const APInt *CI; 3502 if (Op0KnownZeroInverted == 1 && 3503 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 3504 return new ICmpInst(ICmpInst::ICMP_EQ, X, 3505 ConstantInt::get(X->getType(), 3506 CI->countTrailingZeros())); 3507 } 3508 break; 3509 } 3510 case ICmpInst::ICMP_ULT: 3511 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 3512 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3513 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 3514 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3515 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 3516 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3517 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3518 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C 3519 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3520 Builder->getInt(CI->getValue()-1)); 3521 3522 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear 3523 if (CI->isMinValue(true)) 3524 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 3525 Constant::getAllOnesValue(Op0->getType())); 3526 } 3527 break; 3528 case ICmpInst::ICMP_UGT: 3529 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 3530 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3531 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 3532 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3533 3534 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 3535 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3536 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3537 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C 3538 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3539 Builder->getInt(CI->getValue()+1)); 3540 3541 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set 3542 if (CI->isMaxValue(true)) 3543 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 3544 Constant::getNullValue(Op0->getType())); 3545 } 3546 break; 3547 case ICmpInst::ICMP_SLT: 3548 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 3549 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3550 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 3551 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3552 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 3553 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3554 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3555 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C 3556 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3557 Builder->getInt(CI->getValue()-1)); 3558 } 3559 break; 3560 case ICmpInst::ICMP_SGT: 3561 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 3562 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3563 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 3564 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3565 3566 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 3567 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3568 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3569 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C 3570 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3571 Builder->getInt(CI->getValue()+1)); 3572 } 3573 break; 3574 case ICmpInst::ICMP_SGE: 3575 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 3576 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 3577 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3578 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 3579 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3580 break; 3581 case ICmpInst::ICMP_SLE: 3582 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 3583 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 3584 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3585 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 3586 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3587 break; 3588 case ICmpInst::ICMP_UGE: 3589 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 3590 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 3591 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3592 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 3593 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3594 break; 3595 case ICmpInst::ICMP_ULE: 3596 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 3597 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 3598 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3599 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 3600 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3601 break; 3602 } 3603 3604 // Turn a signed comparison into an unsigned one if both operands 3605 // are known to have the same sign. 3606 if (I.isSigned() && 3607 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || 3608 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) 3609 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 3610 } 3611 3612 // Test if the ICmpInst instruction is used exclusively by a select as 3613 // part of a minimum or maximum operation. If so, refrain from doing 3614 // any other folding. This helps out other analyses which understand 3615 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 3616 // and CodeGen. And in this case, at least one of the comparison 3617 // operands has at least one user besides the compare (the select), 3618 // which would often largely negate the benefit of folding anyway. 3619 if (I.hasOneUse()) 3620 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 3621 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 3622 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 3623 return nullptr; 3624 3625 // See if we are doing a comparison between a constant and an instruction that 3626 // can be folded into the comparison. 3627 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3628 Value *A = nullptr, *B = nullptr; 3629 // Since the RHS is a ConstantInt (CI), if the left hand side is an 3630 // instruction, see if that instruction also has constants so that the 3631 // instruction can be folded into the icmp 3632 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3633 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) 3634 return Res; 3635 3636 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3637 if (I.isEquality() && CI->isZero() && 3638 match(Op0, m_UDiv(m_Value(A), m_Value(B)))) { 3639 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_EQ 3640 ? ICmpInst::ICMP_UGT 3641 : ICmpInst::ICMP_ULE; 3642 return new ICmpInst(Pred, B, A); 3643 } 3644 } 3645 3646 // Handle icmp with constant (but not simple integer constant) RHS 3647 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 3648 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3649 switch (LHSI->getOpcode()) { 3650 case Instruction::GetElementPtr: 3651 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3652 if (RHSC->isNullValue() && 3653 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3654 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 3655 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3656 break; 3657 case Instruction::PHI: 3658 // Only fold icmp into the PHI if the phi and icmp are in the same 3659 // block. If in the same block, we're encouraging jump threading. If 3660 // not, we are just pessimizing the code by making an i1 phi. 3661 if (LHSI->getParent() == I.getParent()) 3662 if (Instruction *NV = FoldOpIntoPhi(I)) 3663 return NV; 3664 break; 3665 case Instruction::Select: { 3666 // If either operand of the select is a constant, we can fold the 3667 // comparison into the select arms, which will cause one to be 3668 // constant folded and the select turned into a bitwise or. 3669 Value *Op1 = nullptr, *Op2 = nullptr; 3670 ConstantInt *CI = nullptr; 3671 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3672 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3673 CI = dyn_cast<ConstantInt>(Op1); 3674 } 3675 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3676 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3677 CI = dyn_cast<ConstantInt>(Op2); 3678 } 3679 3680 // We only want to perform this transformation if it will not lead to 3681 // additional code. This is true if either both sides of the select 3682 // fold to a constant (in which case the icmp is replaced with a select 3683 // which will usually simplify) or this is the only user of the 3684 // select (in which case we are trading a select+icmp for a simpler 3685 // select+icmp) or all uses of the select can be replaced based on 3686 // dominance information ("Global cases"). 3687 bool Transform = false; 3688 if (Op1 && Op2) 3689 Transform = true; 3690 else if (Op1 || Op2) { 3691 // Local case 3692 if (LHSI->hasOneUse()) 3693 Transform = true; 3694 // Global cases 3695 else if (CI && !CI->isZero()) 3696 // When Op1 is constant try replacing select with second operand. 3697 // Otherwise Op2 is constant and try replacing select with first 3698 // operand. 3699 Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, 3700 Op1 ? 2 : 1); 3701 } 3702 if (Transform) { 3703 if (!Op1) 3704 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), 3705 RHSC, I.getName()); 3706 if (!Op2) 3707 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), 3708 RHSC, I.getName()); 3709 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3710 } 3711 break; 3712 } 3713 case Instruction::IntToPtr: 3714 // icmp pred inttoptr(X), null -> icmp pred X, 0 3715 if (RHSC->isNullValue() && 3716 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3717 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 3718 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3719 break; 3720 3721 case Instruction::Load: 3722 // Try to optimize things like "A[i] > 4" to index computations. 3723 if (GetElementPtrInst *GEP = 3724 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3725 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3726 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3727 !cast<LoadInst>(LHSI)->isVolatile()) 3728 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3729 return Res; 3730 } 3731 break; 3732 } 3733 } 3734 3735 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 3736 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 3737 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) 3738 return NI; 3739 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 3740 if (Instruction *NI = FoldGEPICmp(GEP, Op0, 3741 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 3742 return NI; 3743 3744 // Try to optimize equality comparisons against alloca-based pointers. 3745 if (Op0->getType()->isPointerTy() && I.isEquality()) { 3746 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 3747 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 3748 if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1)) 3749 return New; 3750 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 3751 if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0)) 3752 return New; 3753 } 3754 3755 // Test to see if the operands of the icmp are casted versions of other 3756 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 3757 // now. 3758 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 3759 if (Op0->getType()->isPointerTy() && 3760 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 3761 // We keep moving the cast from the left operand over to the right 3762 // operand, where it can often be eliminated completely. 3763 Op0 = CI->getOperand(0); 3764 3765 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 3766 // so eliminate it as well. 3767 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 3768 Op1 = CI2->getOperand(0); 3769 3770 // If Op1 is a constant, we can fold the cast into the constant. 3771 if (Op0->getType() != Op1->getType()) { 3772 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 3773 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 3774 } else { 3775 // Otherwise, cast the RHS right before the icmp 3776 Op1 = Builder->CreateBitCast(Op1, Op0->getType()); 3777 } 3778 } 3779 return new ICmpInst(I.getPredicate(), Op0, Op1); 3780 } 3781 } 3782 3783 if (isa<CastInst>(Op0)) { 3784 // Handle the special case of: icmp (cast bool to X), <cst> 3785 // This comes up when you have code like 3786 // int X = A < B; 3787 // if (X) ... 3788 // For generality, we handle any zero-extension of any operand comparison 3789 // with a constant or another cast from the same type. 3790 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 3791 if (Instruction *R = visitICmpInstWithCastAndCast(I)) 3792 return R; 3793 } 3794 3795 // Special logic for binary operators. 3796 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3797 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3798 if (BO0 || BO1) { 3799 CmpInst::Predicate Pred = I.getPredicate(); 3800 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3801 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3802 NoOp0WrapProblem = ICmpInst::isEquality(Pred) || 3803 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3804 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3805 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3806 NoOp1WrapProblem = ICmpInst::isEquality(Pred) || 3807 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3808 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3809 3810 // Analyze the case when either Op0 or Op1 is an add instruction. 3811 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3812 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3813 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3814 A = BO0->getOperand(0); 3815 B = BO0->getOperand(1); 3816 } 3817 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3818 C = BO1->getOperand(0); 3819 D = BO1->getOperand(1); 3820 } 3821 3822 // icmp (X+cst) < 0 --> X < -cst 3823 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero())) 3824 if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B)) 3825 if (!RHSC->isMinValue(/*isSigned=*/true)) 3826 return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC)); 3827 3828 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3829 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3830 return new ICmpInst(Pred, A == Op1 ? B : A, 3831 Constant::getNullValue(Op1->getType())); 3832 3833 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3834 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3835 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3836 C == Op0 ? D : C); 3837 3838 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3839 if (A && C && (A == C || A == D || B == C || B == D) && 3840 NoOp0WrapProblem && NoOp1WrapProblem && 3841 // Try not to increase register pressure. 3842 BO0->hasOneUse() && BO1->hasOneUse()) { 3843 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3844 Value *Y, *Z; 3845 if (A == C) { 3846 // C + B == C + D -> B == D 3847 Y = B; 3848 Z = D; 3849 } else if (A == D) { 3850 // D + B == C + D -> B == C 3851 Y = B; 3852 Z = C; 3853 } else if (B == C) { 3854 // A + C == C + D -> A == D 3855 Y = A; 3856 Z = D; 3857 } else { 3858 assert(B == D); 3859 // A + D == C + D -> A == C 3860 Y = A; 3861 Z = C; 3862 } 3863 return new ICmpInst(Pred, Y, Z); 3864 } 3865 3866 // icmp slt (X + -1), Y -> icmp sle X, Y 3867 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3868 match(B, m_AllOnes())) 3869 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3870 3871 // icmp sge (X + -1), Y -> icmp sgt X, Y 3872 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3873 match(B, m_AllOnes())) 3874 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3875 3876 // icmp sle (X + 1), Y -> icmp slt X, Y 3877 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && 3878 match(B, m_One())) 3879 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3880 3881 // icmp sgt (X + 1), Y -> icmp sge X, Y 3882 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && 3883 match(B, m_One())) 3884 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3885 3886 // icmp sgt X, (Y + -1) -> icmp sge X, Y 3887 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3888 match(D, m_AllOnes())) 3889 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3890 3891 // icmp sle X, (Y + -1) -> icmp slt X, Y 3892 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3893 match(D, m_AllOnes())) 3894 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3895 3896 // icmp sge X, (Y + 1) -> icmp sgt X, Y 3897 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && 3898 match(D, m_One())) 3899 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3900 3901 // icmp slt X, (Y + 1) -> icmp sle X, Y 3902 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && 3903 match(D, m_One())) 3904 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3905 3906 // if C1 has greater magnitude than C2: 3907 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3908 // s.t. C3 = C1 - C2 3909 // 3910 // if C2 has greater magnitude than C1: 3911 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3912 // s.t. C3 = C2 - C1 3913 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3914 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3915 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3916 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3917 const APInt &AP1 = C1->getValue(); 3918 const APInt &AP2 = C2->getValue(); 3919 if (AP1.isNegative() == AP2.isNegative()) { 3920 APInt AP1Abs = C1->getValue().abs(); 3921 APInt AP2Abs = C2->getValue().abs(); 3922 if (AP1Abs.uge(AP2Abs)) { 3923 ConstantInt *C3 = Builder->getInt(AP1 - AP2); 3924 Value *NewAdd = Builder->CreateNSWAdd(A, C3); 3925 return new ICmpInst(Pred, NewAdd, C); 3926 } else { 3927 ConstantInt *C3 = Builder->getInt(AP2 - AP1); 3928 Value *NewAdd = Builder->CreateNSWAdd(C, C3); 3929 return new ICmpInst(Pred, A, NewAdd); 3930 } 3931 } 3932 } 3933 3934 3935 // Analyze the case when either Op0 or Op1 is a sub instruction. 3936 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3937 A = nullptr; 3938 B = nullptr; 3939 C = nullptr; 3940 D = nullptr; 3941 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3942 A = BO0->getOperand(0); 3943 B = BO0->getOperand(1); 3944 } 3945 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3946 C = BO1->getOperand(0); 3947 D = BO1->getOperand(1); 3948 } 3949 3950 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3951 if (A == Op1 && NoOp0WrapProblem) 3952 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3953 3954 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3955 if (C == Op0 && NoOp1WrapProblem) 3956 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3957 3958 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3959 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3960 // Try not to increase register pressure. 3961 BO0->hasOneUse() && BO1->hasOneUse()) 3962 return new ICmpInst(Pred, A, C); 3963 3964 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3965 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3966 // Try not to increase register pressure. 3967 BO0->hasOneUse() && BO1->hasOneUse()) 3968 return new ICmpInst(Pred, D, B); 3969 3970 // icmp (0-X) < cst --> x > -cst 3971 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3972 Value *X; 3973 if (match(BO0, m_Neg(m_Value(X)))) 3974 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 3975 if (!RHSC->isMinValue(/*isSigned=*/true)) 3976 return new ICmpInst(I.getSwappedPredicate(), X, 3977 ConstantExpr::getNeg(RHSC)); 3978 } 3979 3980 BinaryOperator *SRem = nullptr; 3981 // icmp (srem X, Y), Y 3982 if (BO0 && BO0->getOpcode() == Instruction::SRem && 3983 Op1 == BO0->getOperand(1)) 3984 SRem = BO0; 3985 // icmp Y, (srem X, Y) 3986 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3987 Op0 == BO1->getOperand(1)) 3988 SRem = BO1; 3989 if (SRem) { 3990 // We don't check hasOneUse to avoid increasing register pressure because 3991 // the value we use is the same value this instruction was already using. 3992 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3993 default: break; 3994 case ICmpInst::ICMP_EQ: 3995 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3996 case ICmpInst::ICMP_NE: 3997 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3998 case ICmpInst::ICMP_SGT: 3999 case ICmpInst::ICMP_SGE: 4000 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4001 Constant::getAllOnesValue(SRem->getType())); 4002 case ICmpInst::ICMP_SLT: 4003 case ICmpInst::ICMP_SLE: 4004 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4005 Constant::getNullValue(SRem->getType())); 4006 } 4007 } 4008 4009 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && 4010 BO0->hasOneUse() && BO1->hasOneUse() && 4011 BO0->getOperand(1) == BO1->getOperand(1)) { 4012 switch (BO0->getOpcode()) { 4013 default: break; 4014 case Instruction::Add: 4015 case Instruction::Sub: 4016 case Instruction::Xor: 4017 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4018 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 4019 BO1->getOperand(0)); 4020 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b 4021 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 4022 if (CI->getValue().isSignBit()) { 4023 ICmpInst::Predicate Pred = I.isSigned() 4024 ? I.getUnsignedPredicate() 4025 : I.getSignedPredicate(); 4026 return new ICmpInst(Pred, BO0->getOperand(0), 4027 BO1->getOperand(0)); 4028 } 4029 4030 if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) { 4031 ICmpInst::Predicate Pred = I.isSigned() 4032 ? I.getUnsignedPredicate() 4033 : I.getSignedPredicate(); 4034 Pred = I.getSwappedPredicate(Pred); 4035 return new ICmpInst(Pred, BO0->getOperand(0), 4036 BO1->getOperand(0)); 4037 } 4038 } 4039 break; 4040 case Instruction::Mul: 4041 if (!I.isEquality()) 4042 break; 4043 4044 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 4045 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask 4046 // Mask = -1 >> count-trailing-zeros(Cst). 4047 if (!CI->isZero() && !CI->isOne()) { 4048 const APInt &AP = CI->getValue(); 4049 ConstantInt *Mask = ConstantInt::get(I.getContext(), 4050 APInt::getLowBitsSet(AP.getBitWidth(), 4051 AP.getBitWidth() - 4052 AP.countTrailingZeros())); 4053 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask); 4054 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask); 4055 return new ICmpInst(I.getPredicate(), And1, And2); 4056 } 4057 } 4058 break; 4059 case Instruction::UDiv: 4060 case Instruction::LShr: 4061 if (I.isSigned()) 4062 break; 4063 // fall-through 4064 case Instruction::SDiv: 4065 case Instruction::AShr: 4066 if (!BO0->isExact() || !BO1->isExact()) 4067 break; 4068 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 4069 BO1->getOperand(0)); 4070 case Instruction::Shl: { 4071 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4072 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4073 if (!NUW && !NSW) 4074 break; 4075 if (!NSW && I.isSigned()) 4076 break; 4077 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 4078 BO1->getOperand(0)); 4079 } 4080 } 4081 } 4082 4083 if (BO0) { 4084 // Transform A & (L - 1) `ult` L --> L != 0 4085 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4086 auto BitwiseAnd = 4087 m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value())); 4088 4089 if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) { 4090 auto *Zero = Constant::getNullValue(BO0->getType()); 4091 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4092 } 4093 } 4094 } 4095 4096 { Value *A, *B; 4097 // Transform (A & ~B) == 0 --> (A & B) != 0 4098 // and (A & ~B) != 0 --> (A & B) == 0 4099 // if A is a power of 2. 4100 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 4101 match(Op1, m_Zero()) && 4102 isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality()) 4103 return new ICmpInst(I.getInversePredicate(), 4104 Builder->CreateAnd(A, B), 4105 Op1); 4106 4107 // ~x < ~y --> y < x 4108 // ~x < cst --> ~cst < x 4109 if (match(Op0, m_Not(m_Value(A)))) { 4110 if (match(Op1, m_Not(m_Value(B)))) 4111 return new ICmpInst(I.getPredicate(), B, A); 4112 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 4113 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A); 4114 } 4115 4116 Instruction *AddI = nullptr; 4117 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 4118 m_Instruction(AddI))) && 4119 isa<IntegerType>(A->getType())) { 4120 Value *Result; 4121 Constant *Overflow; 4122 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, 4123 Overflow)) { 4124 replaceInstUsesWith(*AddI, Result); 4125 return replaceInstUsesWith(I, Overflow); 4126 } 4127 } 4128 4129 // (zext a) * (zext b) --> llvm.umul.with.overflow. 4130 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4131 if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this)) 4132 return R; 4133 } 4134 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4135 if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this)) 4136 return R; 4137 } 4138 } 4139 4140 if (I.isEquality()) { 4141 Value *A, *B, *C, *D; 4142 4143 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4144 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4145 Value *OtherVal = A == Op1 ? B : A; 4146 return new ICmpInst(I.getPredicate(), OtherVal, 4147 Constant::getNullValue(A->getType())); 4148 } 4149 4150 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4151 // A^c1 == C^c2 --> A == C^(c1^c2) 4152 ConstantInt *C1, *C2; 4153 if (match(B, m_ConstantInt(C1)) && 4154 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { 4155 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue()); 4156 Value *Xor = Builder->CreateXor(C, NC); 4157 return new ICmpInst(I.getPredicate(), A, Xor); 4158 } 4159 4160 // A^B == A^D -> B == D 4161 if (A == C) return new ICmpInst(I.getPredicate(), B, D); 4162 if (A == D) return new ICmpInst(I.getPredicate(), B, C); 4163 if (B == C) return new ICmpInst(I.getPredicate(), A, D); 4164 if (B == D) return new ICmpInst(I.getPredicate(), A, C); 4165 } 4166 } 4167 4168 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 4169 (A == Op0 || B == Op0)) { 4170 // A == (A^B) -> B == 0 4171 Value *OtherVal = A == Op0 ? B : A; 4172 return new ICmpInst(I.getPredicate(), OtherVal, 4173 Constant::getNullValue(A->getType())); 4174 } 4175 4176 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4177 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4178 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4179 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4180 4181 if (A == C) { 4182 X = B; Y = D; Z = A; 4183 } else if (A == D) { 4184 X = B; Y = C; Z = A; 4185 } else if (B == C) { 4186 X = A; Y = D; Z = B; 4187 } else if (B == D) { 4188 X = A; Y = C; Z = B; 4189 } 4190 4191 if (X) { // Build (X^Y) & Z 4192 Op1 = Builder->CreateXor(X, Y); 4193 Op1 = Builder->CreateAnd(Op1, Z); 4194 I.setOperand(0, Op1); 4195 I.setOperand(1, Constant::getNullValue(Op1->getType())); 4196 return &I; 4197 } 4198 } 4199 4200 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4201 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4202 ConstantInt *Cst1; 4203 if ((Op0->hasOneUse() && 4204 match(Op0, m_ZExt(m_Value(A))) && 4205 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4206 (Op1->hasOneUse() && 4207 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4208 match(Op1, m_ZExt(m_Value(A))))) { 4209 APInt Pow2 = Cst1->getValue() + 1; 4210 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4211 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4212 return new ICmpInst(I.getPredicate(), A, 4213 Builder->CreateTrunc(B, A->getType())); 4214 } 4215 4216 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4217 // For lshr and ashr pairs. 4218 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4219 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4220 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4221 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4222 unsigned TypeBits = Cst1->getBitWidth(); 4223 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4224 if (ShAmt < TypeBits && ShAmt != 0) { 4225 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE 4226 ? ICmpInst::ICMP_UGE 4227 : ICmpInst::ICMP_ULT; 4228 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 4229 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4230 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal)); 4231 } 4232 } 4233 4234 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4235 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4236 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4237 unsigned TypeBits = Cst1->getBitWidth(); 4238 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4239 if (ShAmt < TypeBits && ShAmt != 0) { 4240 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 4241 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4242 Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal), 4243 I.getName() + ".mask"); 4244 return new ICmpInst(I.getPredicate(), And, 4245 Constant::getNullValue(Cst1->getType())); 4246 } 4247 } 4248 4249 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4250 // "icmp (and X, mask), cst" 4251 uint64_t ShAmt = 0; 4252 if (Op0->hasOneUse() && 4253 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), 4254 m_ConstantInt(ShAmt))))) && 4255 match(Op1, m_ConstantInt(Cst1)) && 4256 // Only do this when A has multiple uses. This is most important to do 4257 // when it exposes other optimizations. 4258 !A->hasOneUse()) { 4259 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4260 4261 if (ShAmt < ASize) { 4262 APInt MaskV = 4263 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4264 MaskV <<= ShAmt; 4265 4266 APInt CmpV = Cst1->getValue().zext(ASize); 4267 CmpV <<= ShAmt; 4268 4269 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); 4270 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); 4271 } 4272 } 4273 } 4274 4275 // The 'cmpxchg' instruction returns an aggregate containing the old value and 4276 // an i1 which indicates whether or not we successfully did the swap. 4277 // 4278 // Replace comparisons between the old value and the expected value with the 4279 // indicator that 'cmpxchg' returns. 4280 // 4281 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 4282 // spuriously fail. In those cases, the old value may equal the expected 4283 // value but it is possible for the swap to not occur. 4284 if (I.getPredicate() == ICmpInst::ICMP_EQ) 4285 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 4286 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 4287 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 4288 !ACXI->isWeak()) 4289 return ExtractValueInst::Create(ACXI, 1); 4290 4291 { 4292 Value *X; ConstantInt *Cst; 4293 // icmp X+Cst, X 4294 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 4295 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate()); 4296 4297 // icmp X, X+Cst 4298 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 4299 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate()); 4300 } 4301 return Changed ? &I : nullptr; 4302 } 4303 4304 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. 4305 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, 4306 Instruction *LHSI, 4307 Constant *RHSC) { 4308 if (!isa<ConstantFP>(RHSC)) return nullptr; 4309 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 4310 4311 // Get the width of the mantissa. We don't want to hack on conversions that 4312 // might lose information from the integer, e.g. "i64 -> float" 4313 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 4314 if (MantissaWidth == -1) return nullptr; // Unknown. 4315 4316 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 4317 4318 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 4319 4320 if (I.isEquality()) { 4321 FCmpInst::Predicate P = I.getPredicate(); 4322 bool IsExact = false; 4323 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 4324 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 4325 4326 // If the floating point constant isn't an integer value, we know if we will 4327 // ever compare equal / not equal to it. 4328 if (!IsExact) { 4329 // TODO: Can never be -0.0 and other non-representable values 4330 APFloat RHSRoundInt(RHS); 4331 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 4332 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 4333 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 4334 return replaceInstUsesWith(I, Builder->getFalse()); 4335 4336 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 4337 return replaceInstUsesWith(I, Builder->getTrue()); 4338 } 4339 } 4340 4341 // TODO: If the constant is exactly representable, is it always OK to do 4342 // equality compares as integer? 4343 } 4344 4345 // Check to see that the input is converted from an integer type that is small 4346 // enough that preserves all bits. TODO: check here for "known" sign bits. 4347 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 4348 unsigned InputSize = IntTy->getScalarSizeInBits(); 4349 4350 // Following test does NOT adjust InputSize downwards for signed inputs, 4351 // because the most negative value still requires all the mantissa bits 4352 // to distinguish it from one less than that value. 4353 if ((int)InputSize > MantissaWidth) { 4354 // Conversion would lose accuracy. Check if loss can impact comparison. 4355 int Exp = ilogb(RHS); 4356 if (Exp == APFloat::IEK_Inf) { 4357 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 4358 if (MaxExponent < (int)InputSize - !LHSUnsigned) 4359 // Conversion could create infinity. 4360 return nullptr; 4361 } else { 4362 // Note that if RHS is zero or NaN, then Exp is negative 4363 // and first condition is trivially false. 4364 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 4365 // Conversion could affect comparison. 4366 return nullptr; 4367 } 4368 } 4369 4370 // Otherwise, we can potentially simplify the comparison. We know that it 4371 // will always come through as an integer value and we know the constant is 4372 // not a NAN (it would have been previously simplified). 4373 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 4374 4375 ICmpInst::Predicate Pred; 4376 switch (I.getPredicate()) { 4377 default: llvm_unreachable("Unexpected predicate!"); 4378 case FCmpInst::FCMP_UEQ: 4379 case FCmpInst::FCMP_OEQ: 4380 Pred = ICmpInst::ICMP_EQ; 4381 break; 4382 case FCmpInst::FCMP_UGT: 4383 case FCmpInst::FCMP_OGT: 4384 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 4385 break; 4386 case FCmpInst::FCMP_UGE: 4387 case FCmpInst::FCMP_OGE: 4388 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 4389 break; 4390 case FCmpInst::FCMP_ULT: 4391 case FCmpInst::FCMP_OLT: 4392 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 4393 break; 4394 case FCmpInst::FCMP_ULE: 4395 case FCmpInst::FCMP_OLE: 4396 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 4397 break; 4398 case FCmpInst::FCMP_UNE: 4399 case FCmpInst::FCMP_ONE: 4400 Pred = ICmpInst::ICMP_NE; 4401 break; 4402 case FCmpInst::FCMP_ORD: 4403 return replaceInstUsesWith(I, Builder->getTrue()); 4404 case FCmpInst::FCMP_UNO: 4405 return replaceInstUsesWith(I, Builder->getFalse()); 4406 } 4407 4408 // Now we know that the APFloat is a normal number, zero or inf. 4409 4410 // See if the FP constant is too large for the integer. For example, 4411 // comparing an i8 to 300.0. 4412 unsigned IntWidth = IntTy->getScalarSizeInBits(); 4413 4414 if (!LHSUnsigned) { 4415 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 4416 // and large values. 4417 APFloat SMax(RHS.getSemantics()); 4418 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 4419 APFloat::rmNearestTiesToEven); 4420 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 4421 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 4422 Pred == ICmpInst::ICMP_SLE) 4423 return replaceInstUsesWith(I, Builder->getTrue()); 4424 return replaceInstUsesWith(I, Builder->getFalse()); 4425 } 4426 } else { 4427 // If the RHS value is > UnsignedMax, fold the comparison. This handles 4428 // +INF and large values. 4429 APFloat UMax(RHS.getSemantics()); 4430 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 4431 APFloat::rmNearestTiesToEven); 4432 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 4433 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 4434 Pred == ICmpInst::ICMP_ULE) 4435 return replaceInstUsesWith(I, Builder->getTrue()); 4436 return replaceInstUsesWith(I, Builder->getFalse()); 4437 } 4438 } 4439 4440 if (!LHSUnsigned) { 4441 // See if the RHS value is < SignedMin. 4442 APFloat SMin(RHS.getSemantics()); 4443 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 4444 APFloat::rmNearestTiesToEven); 4445 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 4446 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 4447 Pred == ICmpInst::ICMP_SGE) 4448 return replaceInstUsesWith(I, Builder->getTrue()); 4449 return replaceInstUsesWith(I, Builder->getFalse()); 4450 } 4451 } else { 4452 // See if the RHS value is < UnsignedMin. 4453 APFloat SMin(RHS.getSemantics()); 4454 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 4455 APFloat::rmNearestTiesToEven); 4456 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 4457 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 4458 Pred == ICmpInst::ICMP_UGE) 4459 return replaceInstUsesWith(I, Builder->getTrue()); 4460 return replaceInstUsesWith(I, Builder->getFalse()); 4461 } 4462 } 4463 4464 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 4465 // [0, UMAX], but it may still be fractional. See if it is fractional by 4466 // casting the FP value to the integer value and back, checking for equality. 4467 // Don't do this for zero, because -0.0 is not fractional. 4468 Constant *RHSInt = LHSUnsigned 4469 ? ConstantExpr::getFPToUI(RHSC, IntTy) 4470 : ConstantExpr::getFPToSI(RHSC, IntTy); 4471 if (!RHS.isZero()) { 4472 bool Equal = LHSUnsigned 4473 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 4474 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 4475 if (!Equal) { 4476 // If we had a comparison against a fractional value, we have to adjust 4477 // the compare predicate and sometimes the value. RHSC is rounded towards 4478 // zero at this point. 4479 switch (Pred) { 4480 default: llvm_unreachable("Unexpected integer comparison!"); 4481 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 4482 return replaceInstUsesWith(I, Builder->getTrue()); 4483 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 4484 return replaceInstUsesWith(I, Builder->getFalse()); 4485 case ICmpInst::ICMP_ULE: 4486 // (float)int <= 4.4 --> int <= 4 4487 // (float)int <= -4.4 --> false 4488 if (RHS.isNegative()) 4489 return replaceInstUsesWith(I, Builder->getFalse()); 4490 break; 4491 case ICmpInst::ICMP_SLE: 4492 // (float)int <= 4.4 --> int <= 4 4493 // (float)int <= -4.4 --> int < -4 4494 if (RHS.isNegative()) 4495 Pred = ICmpInst::ICMP_SLT; 4496 break; 4497 case ICmpInst::ICMP_ULT: 4498 // (float)int < -4.4 --> false 4499 // (float)int < 4.4 --> int <= 4 4500 if (RHS.isNegative()) 4501 return replaceInstUsesWith(I, Builder->getFalse()); 4502 Pred = ICmpInst::ICMP_ULE; 4503 break; 4504 case ICmpInst::ICMP_SLT: 4505 // (float)int < -4.4 --> int < -4 4506 // (float)int < 4.4 --> int <= 4 4507 if (!RHS.isNegative()) 4508 Pred = ICmpInst::ICMP_SLE; 4509 break; 4510 case ICmpInst::ICMP_UGT: 4511 // (float)int > 4.4 --> int > 4 4512 // (float)int > -4.4 --> true 4513 if (RHS.isNegative()) 4514 return replaceInstUsesWith(I, Builder->getTrue()); 4515 break; 4516 case ICmpInst::ICMP_SGT: 4517 // (float)int > 4.4 --> int > 4 4518 // (float)int > -4.4 --> int >= -4 4519 if (RHS.isNegative()) 4520 Pred = ICmpInst::ICMP_SGE; 4521 break; 4522 case ICmpInst::ICMP_UGE: 4523 // (float)int >= -4.4 --> true 4524 // (float)int >= 4.4 --> int > 4 4525 if (RHS.isNegative()) 4526 return replaceInstUsesWith(I, Builder->getTrue()); 4527 Pred = ICmpInst::ICMP_UGT; 4528 break; 4529 case ICmpInst::ICMP_SGE: 4530 // (float)int >= -4.4 --> int >= -4 4531 // (float)int >= 4.4 --> int > 4 4532 if (!RHS.isNegative()) 4533 Pred = ICmpInst::ICMP_SGT; 4534 break; 4535 } 4536 } 4537 } 4538 4539 // Lower this FP comparison into an appropriate integer version of the 4540 // comparison. 4541 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 4542 } 4543 4544 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 4545 bool Changed = false; 4546 4547 /// Orders the operands of the compare so that they are listed from most 4548 /// complex to least complex. This puts constants before unary operators, 4549 /// before binary operators. 4550 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 4551 I.swapOperands(); 4552 Changed = true; 4553 } 4554 4555 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4556 4557 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, 4558 I.getFastMathFlags(), DL, TLI, DT, AC, &I)) 4559 return replaceInstUsesWith(I, V); 4560 4561 // Simplify 'fcmp pred X, X' 4562 if (Op0 == Op1) { 4563 switch (I.getPredicate()) { 4564 default: llvm_unreachable("Unknown predicate!"); 4565 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 4566 case FCmpInst::FCMP_ULT: // True if unordered or less than 4567 case FCmpInst::FCMP_UGT: // True if unordered or greater than 4568 case FCmpInst::FCMP_UNE: // True if unordered or not equal 4569 // Canonicalize these to be 'fcmp uno %X, 0.0'. 4570 I.setPredicate(FCmpInst::FCMP_UNO); 4571 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4572 return &I; 4573 4574 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 4575 case FCmpInst::FCMP_OEQ: // True if ordered and equal 4576 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 4577 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 4578 // Canonicalize these to be 'fcmp ord %X, 0.0'. 4579 I.setPredicate(FCmpInst::FCMP_ORD); 4580 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4581 return &I; 4582 } 4583 } 4584 4585 // Test if the FCmpInst instruction is used exclusively by a select as 4586 // part of a minimum or maximum operation. If so, refrain from doing 4587 // any other folding. This helps out other analyses which understand 4588 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4589 // and CodeGen. And in this case, at least one of the comparison 4590 // operands has at least one user besides the compare (the select), 4591 // which would often largely negate the benefit of folding anyway. 4592 if (I.hasOneUse()) 4593 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 4594 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 4595 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 4596 return nullptr; 4597 4598 // Handle fcmp with constant RHS 4599 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 4600 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 4601 switch (LHSI->getOpcode()) { 4602 case Instruction::FPExt: { 4603 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 4604 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 4605 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 4606 if (!RHSF) 4607 break; 4608 4609 const fltSemantics *Sem; 4610 // FIXME: This shouldn't be here. 4611 if (LHSExt->getSrcTy()->isHalfTy()) 4612 Sem = &APFloat::IEEEhalf; 4613 else if (LHSExt->getSrcTy()->isFloatTy()) 4614 Sem = &APFloat::IEEEsingle; 4615 else if (LHSExt->getSrcTy()->isDoubleTy()) 4616 Sem = &APFloat::IEEEdouble; 4617 else if (LHSExt->getSrcTy()->isFP128Ty()) 4618 Sem = &APFloat::IEEEquad; 4619 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 4620 Sem = &APFloat::x87DoubleExtended; 4621 else if (LHSExt->getSrcTy()->isPPC_FP128Ty()) 4622 Sem = &APFloat::PPCDoubleDouble; 4623 else 4624 break; 4625 4626 bool Lossy; 4627 APFloat F = RHSF->getValueAPF(); 4628 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 4629 4630 // Avoid lossy conversions and denormals. Zero is a special case 4631 // that's OK to convert. 4632 APFloat Fabs = F; 4633 Fabs.clearSign(); 4634 if (!Lossy && 4635 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 4636 APFloat::cmpLessThan) || Fabs.isZero())) 4637 4638 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4639 ConstantFP::get(RHSC->getContext(), F)); 4640 break; 4641 } 4642 case Instruction::PHI: 4643 // Only fold fcmp into the PHI if the phi and fcmp are in the same 4644 // block. If in the same block, we're encouraging jump threading. If 4645 // not, we are just pessimizing the code by making an i1 phi. 4646 if (LHSI->getParent() == I.getParent()) 4647 if (Instruction *NV = FoldOpIntoPhi(I)) 4648 return NV; 4649 break; 4650 case Instruction::SIToFP: 4651 case Instruction::UIToFP: 4652 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) 4653 return NV; 4654 break; 4655 case Instruction::FSub: { 4656 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 4657 Value *Op; 4658 if (match(LHSI, m_FNeg(m_Value(Op)))) 4659 return new FCmpInst(I.getSwappedPredicate(), Op, 4660 ConstantExpr::getFNeg(RHSC)); 4661 break; 4662 } 4663 case Instruction::Load: 4664 if (GetElementPtrInst *GEP = 4665 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 4666 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 4667 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 4668 !cast<LoadInst>(LHSI)->isVolatile()) 4669 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 4670 return Res; 4671 } 4672 break; 4673 case Instruction::Call: { 4674 if (!RHSC->isNullValue()) 4675 break; 4676 4677 CallInst *CI = cast<CallInst>(LHSI); 4678 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 4679 if (IID != Intrinsic::fabs) 4680 break; 4681 4682 // Various optimization for fabs compared with zero. 4683 switch (I.getPredicate()) { 4684 default: 4685 break; 4686 // fabs(x) < 0 --> false 4687 case FCmpInst::FCMP_OLT: 4688 llvm_unreachable("handled by SimplifyFCmpInst"); 4689 // fabs(x) > 0 --> x != 0 4690 case FCmpInst::FCMP_OGT: 4691 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC); 4692 // fabs(x) <= 0 --> x == 0 4693 case FCmpInst::FCMP_OLE: 4694 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC); 4695 // fabs(x) >= 0 --> !isnan(x) 4696 case FCmpInst::FCMP_OGE: 4697 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC); 4698 // fabs(x) == 0 --> x == 0 4699 // fabs(x) != 0 --> x != 0 4700 case FCmpInst::FCMP_OEQ: 4701 case FCmpInst::FCMP_UEQ: 4702 case FCmpInst::FCMP_ONE: 4703 case FCmpInst::FCMP_UNE: 4704 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC); 4705 } 4706 } 4707 } 4708 } 4709 4710 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 4711 Value *X, *Y; 4712 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 4713 return new FCmpInst(I.getSwappedPredicate(), X, Y); 4714 4715 // fcmp (fpext x), (fpext y) -> fcmp x, y 4716 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 4717 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 4718 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 4719 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4720 RHSExt->getOperand(0)); 4721 4722 return Changed ? &I : nullptr; 4723 } 4724