1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/Debug.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 // How many times is a select replaced by one of its operands?
36 STATISTIC(NumSel, "Number of select opts");
37 
38 
39 static ConstantInt *extractElement(Constant *V, Constant *Idx) {
40   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
41 }
42 
43 static bool hasAddOverflow(ConstantInt *Result,
44                            ConstantInt *In1, ConstantInt *In2,
45                            bool IsSigned) {
46   if (!IsSigned)
47     return Result->getValue().ult(In1->getValue());
48 
49   if (In2->isNegative())
50     return Result->getValue().sgt(In1->getValue());
51   return Result->getValue().slt(In1->getValue());
52 }
53 
54 /// Compute Result = In1+In2, returning true if the result overflowed for this
55 /// type.
56 static bool addWithOverflow(Constant *&Result, Constant *In1,
57                             Constant *In2, bool IsSigned = false) {
58   Result = ConstantExpr::getAdd(In1, In2);
59 
60   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
61     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63       if (hasAddOverflow(extractElement(Result, Idx),
64                          extractElement(In1, Idx),
65                          extractElement(In2, Idx),
66                          IsSigned))
67         return true;
68     }
69     return false;
70   }
71 
72   return hasAddOverflow(cast<ConstantInt>(Result),
73                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74                         IsSigned);
75 }
76 
77 static bool hasSubOverflow(ConstantInt *Result,
78                            ConstantInt *In1, ConstantInt *In2,
79                            bool IsSigned) {
80   if (!IsSigned)
81     return Result->getValue().ugt(In1->getValue());
82 
83   if (In2->isNegative())
84     return Result->getValue().slt(In1->getValue());
85 
86   return Result->getValue().sgt(In1->getValue());
87 }
88 
89 /// Compute Result = In1-In2, returning true if the result overflowed for this
90 /// type.
91 static bool subWithOverflow(Constant *&Result, Constant *In1,
92                             Constant *In2, bool IsSigned = false) {
93   Result = ConstantExpr::getSub(In1, In2);
94 
95   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
96     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98       if (hasSubOverflow(extractElement(Result, Idx),
99                          extractElement(In1, Idx),
100                          extractElement(In2, Idx),
101                          IsSigned))
102         return true;
103     }
104     return false;
105   }
106 
107   return hasSubOverflow(cast<ConstantInt>(Result),
108                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109                         IsSigned);
110 }
111 
112 /// Given an icmp instruction, return true if any use of this comparison is a
113 /// branch on sign bit comparison.
114 static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) {
115   for (auto *U : I.users())
116     if (isa<BranchInst>(U))
117       return isSignBit;
118   return false;
119 }
120 
121 /// Given an exploded icmp instruction, return true if the comparison only
122 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
123 /// result of the comparison is true when the input value is signed.
124 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
125                            bool &TrueIfSigned) {
126   switch (Pred) {
127   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
128     TrueIfSigned = true;
129     return RHS == 0;
130   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
131     TrueIfSigned = true;
132     return RHS.isAllOnesValue();
133   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
134     TrueIfSigned = false;
135     return RHS.isAllOnesValue();
136   case ICmpInst::ICMP_UGT:
137     // True if LHS u> RHS and RHS == high-bit-mask - 1
138     TrueIfSigned = true;
139     return RHS.isMaxSignedValue();
140   case ICmpInst::ICMP_UGE:
141     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
142     TrueIfSigned = true;
143     return RHS.isSignBit();
144   default:
145     return false;
146   }
147 }
148 
149 /// Returns true if the exploded icmp can be expressed as a signed comparison
150 /// to zero and updates the predicate accordingly.
151 /// The signedness of the comparison is preserved.
152 /// TODO: Refactor with decomposeBitTestICmp()?
153 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
154   if (!ICmpInst::isSigned(Pred))
155     return false;
156 
157   if (C == 0)
158     return ICmpInst::isRelational(Pred);
159 
160   if (C == 1) {
161     if (Pred == ICmpInst::ICMP_SLT) {
162       Pred = ICmpInst::ICMP_SLE;
163       return true;
164     }
165   } else if (C.isAllOnesValue()) {
166     if (Pred == ICmpInst::ICMP_SGT) {
167       Pred = ICmpInst::ICMP_SGE;
168       return true;
169     }
170   }
171 
172   return false;
173 }
174 
175 /// Given a signed integer type and a set of known zero and one bits, compute
176 /// the maximum and minimum values that could have the specified known zero and
177 /// known one bits, returning them in Min/Max.
178 static void computeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
179                                                    const APInt &KnownOne,
180                                                    APInt &Min, APInt &Max) {
181   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
182          KnownZero.getBitWidth() == Min.getBitWidth() &&
183          KnownZero.getBitWidth() == Max.getBitWidth() &&
184          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
185   APInt UnknownBits = ~(KnownZero|KnownOne);
186 
187   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
188   // bit if it is unknown.
189   Min = KnownOne;
190   Max = KnownOne|UnknownBits;
191 
192   if (UnknownBits.isNegative()) { // Sign bit is unknown
193     Min.setBit(Min.getBitWidth()-1);
194     Max.clearBit(Max.getBitWidth()-1);
195   }
196 }
197 
198 /// Given an unsigned integer type and a set of known zero and one bits, compute
199 /// the maximum and minimum values that could have the specified known zero and
200 /// known one bits, returning them in Min/Max.
201 static void computeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
202                                                      const APInt &KnownOne,
203                                                      APInt &Min, APInt &Max) {
204   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
205          KnownZero.getBitWidth() == Min.getBitWidth() &&
206          KnownZero.getBitWidth() == Max.getBitWidth() &&
207          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
208   APInt UnknownBits = ~(KnownZero|KnownOne);
209 
210   // The minimum value is when the unknown bits are all zeros.
211   Min = KnownOne;
212   // The maximum value is when the unknown bits are all ones.
213   Max = KnownOne|UnknownBits;
214 }
215 
216 /// This is called when we see this pattern:
217 ///   cmp pred (load (gep GV, ...)), cmpcst
218 /// where GV is a global variable with a constant initializer. Try to simplify
219 /// this into some simple computation that does not need the load. For example
220 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
221 ///
222 /// If AndCst is non-null, then the loaded value is masked with that constant
223 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
224 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
225                                                         GlobalVariable *GV,
226                                                         CmpInst &ICI,
227                                                         ConstantInt *AndCst) {
228   Constant *Init = GV->getInitializer();
229   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
230     return nullptr;
231 
232   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
233   if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
234 
235   // There are many forms of this optimization we can handle, for now, just do
236   // the simple index into a single-dimensional array.
237   //
238   // Require: GEP GV, 0, i {{, constant indices}}
239   if (GEP->getNumOperands() < 3 ||
240       !isa<ConstantInt>(GEP->getOperand(1)) ||
241       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
242       isa<Constant>(GEP->getOperand(2)))
243     return nullptr;
244 
245   // Check that indices after the variable are constants and in-range for the
246   // type they index.  Collect the indices.  This is typically for arrays of
247   // structs.
248   SmallVector<unsigned, 4> LaterIndices;
249 
250   Type *EltTy = Init->getType()->getArrayElementType();
251   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
252     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
253     if (!Idx) return nullptr;  // Variable index.
254 
255     uint64_t IdxVal = Idx->getZExtValue();
256     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
257 
258     if (StructType *STy = dyn_cast<StructType>(EltTy))
259       EltTy = STy->getElementType(IdxVal);
260     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
261       if (IdxVal >= ATy->getNumElements()) return nullptr;
262       EltTy = ATy->getElementType();
263     } else {
264       return nullptr; // Unknown type.
265     }
266 
267     LaterIndices.push_back(IdxVal);
268   }
269 
270   enum { Overdefined = -3, Undefined = -2 };
271 
272   // Variables for our state machines.
273 
274   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
275   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
276   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
277   // undefined, otherwise set to the first true element.  SecondTrueElement is
278   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
279   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
280 
281   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
282   // form "i != 47 & i != 87".  Same state transitions as for true elements.
283   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
284 
285   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
286   /// define a state machine that triggers for ranges of values that the index
287   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
288   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
289   /// index in the range (inclusive).  We use -2 for undefined here because we
290   /// use relative comparisons and don't want 0-1 to match -1.
291   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
292 
293   // MagicBitvector - This is a magic bitvector where we set a bit if the
294   // comparison is true for element 'i'.  If there are 64 elements or less in
295   // the array, this will fully represent all the comparison results.
296   uint64_t MagicBitvector = 0;
297 
298   // Scan the array and see if one of our patterns matches.
299   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
300   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
301     Constant *Elt = Init->getAggregateElement(i);
302     if (!Elt) return nullptr;
303 
304     // If this is indexing an array of structures, get the structure element.
305     if (!LaterIndices.empty())
306       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
307 
308     // If the element is masked, handle it.
309     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
310 
311     // Find out if the comparison would be true or false for the i'th element.
312     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
313                                                   CompareRHS, DL, &TLI);
314     // If the result is undef for this element, ignore it.
315     if (isa<UndefValue>(C)) {
316       // Extend range state machines to cover this element in case there is an
317       // undef in the middle of the range.
318       if (TrueRangeEnd == (int)i-1)
319         TrueRangeEnd = i;
320       if (FalseRangeEnd == (int)i-1)
321         FalseRangeEnd = i;
322       continue;
323     }
324 
325     // If we can't compute the result for any of the elements, we have to give
326     // up evaluating the entire conditional.
327     if (!isa<ConstantInt>(C)) return nullptr;
328 
329     // Otherwise, we know if the comparison is true or false for this element,
330     // update our state machines.
331     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
332 
333     // State machine for single/double/range index comparison.
334     if (IsTrueForElt) {
335       // Update the TrueElement state machine.
336       if (FirstTrueElement == Undefined)
337         FirstTrueElement = TrueRangeEnd = i;  // First true element.
338       else {
339         // Update double-compare state machine.
340         if (SecondTrueElement == Undefined)
341           SecondTrueElement = i;
342         else
343           SecondTrueElement = Overdefined;
344 
345         // Update range state machine.
346         if (TrueRangeEnd == (int)i-1)
347           TrueRangeEnd = i;
348         else
349           TrueRangeEnd = Overdefined;
350       }
351     } else {
352       // Update the FalseElement state machine.
353       if (FirstFalseElement == Undefined)
354         FirstFalseElement = FalseRangeEnd = i; // First false element.
355       else {
356         // Update double-compare state machine.
357         if (SecondFalseElement == Undefined)
358           SecondFalseElement = i;
359         else
360           SecondFalseElement = Overdefined;
361 
362         // Update range state machine.
363         if (FalseRangeEnd == (int)i-1)
364           FalseRangeEnd = i;
365         else
366           FalseRangeEnd = Overdefined;
367       }
368     }
369 
370     // If this element is in range, update our magic bitvector.
371     if (i < 64 && IsTrueForElt)
372       MagicBitvector |= 1ULL << i;
373 
374     // If all of our states become overdefined, bail out early.  Since the
375     // predicate is expensive, only check it every 8 elements.  This is only
376     // really useful for really huge arrays.
377     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
378         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
379         FalseRangeEnd == Overdefined)
380       return nullptr;
381   }
382 
383   // Now that we've scanned the entire array, emit our new comparison(s).  We
384   // order the state machines in complexity of the generated code.
385   Value *Idx = GEP->getOperand(2);
386 
387   // If the index is larger than the pointer size of the target, truncate the
388   // index down like the GEP would do implicitly.  We don't have to do this for
389   // an inbounds GEP because the index can't be out of range.
390   if (!GEP->isInBounds()) {
391     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
392     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
393     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
394       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
395   }
396 
397   // If the comparison is only true for one or two elements, emit direct
398   // comparisons.
399   if (SecondTrueElement != Overdefined) {
400     // None true -> false.
401     if (FirstTrueElement == Undefined)
402       return replaceInstUsesWith(ICI, Builder->getFalse());
403 
404     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
405 
406     // True for one element -> 'i == 47'.
407     if (SecondTrueElement == Undefined)
408       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
409 
410     // True for two elements -> 'i == 47 | i == 72'.
411     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
412     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
413     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
414     return BinaryOperator::CreateOr(C1, C2);
415   }
416 
417   // If the comparison is only false for one or two elements, emit direct
418   // comparisons.
419   if (SecondFalseElement != Overdefined) {
420     // None false -> true.
421     if (FirstFalseElement == Undefined)
422       return replaceInstUsesWith(ICI, Builder->getTrue());
423 
424     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
425 
426     // False for one element -> 'i != 47'.
427     if (SecondFalseElement == Undefined)
428       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
429 
430     // False for two elements -> 'i != 47 & i != 72'.
431     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
432     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
433     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
434     return BinaryOperator::CreateAnd(C1, C2);
435   }
436 
437   // If the comparison can be replaced with a range comparison for the elements
438   // where it is true, emit the range check.
439   if (TrueRangeEnd != Overdefined) {
440     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
441 
442     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
443     if (FirstTrueElement) {
444       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
445       Idx = Builder->CreateAdd(Idx, Offs);
446     }
447 
448     Value *End = ConstantInt::get(Idx->getType(),
449                                   TrueRangeEnd-FirstTrueElement+1);
450     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
451   }
452 
453   // False range check.
454   if (FalseRangeEnd != Overdefined) {
455     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
456     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
457     if (FirstFalseElement) {
458       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
459       Idx = Builder->CreateAdd(Idx, Offs);
460     }
461 
462     Value *End = ConstantInt::get(Idx->getType(),
463                                   FalseRangeEnd-FirstFalseElement);
464     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
465   }
466 
467   // If a magic bitvector captures the entire comparison state
468   // of this load, replace it with computation that does:
469   //   ((magic_cst >> i) & 1) != 0
470   {
471     Type *Ty = nullptr;
472 
473     // Look for an appropriate type:
474     // - The type of Idx if the magic fits
475     // - The smallest fitting legal type if we have a DataLayout
476     // - Default to i32
477     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
478       Ty = Idx->getType();
479     else
480       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
481 
482     if (Ty) {
483       Value *V = Builder->CreateIntCast(Idx, Ty, false);
484       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
485       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
486       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
487     }
488   }
489 
490   return nullptr;
491 }
492 
493 /// Return a value that can be used to compare the *offset* implied by a GEP to
494 /// zero. For example, if we have &A[i], we want to return 'i' for
495 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
496 /// are involved. The above expression would also be legal to codegen as
497 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
498 /// This latter form is less amenable to optimization though, and we are allowed
499 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
500 ///
501 /// If we can't emit an optimized form for this expression, this returns null.
502 ///
503 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
504                                           const DataLayout &DL) {
505   gep_type_iterator GTI = gep_type_begin(GEP);
506 
507   // Check to see if this gep only has a single variable index.  If so, and if
508   // any constant indices are a multiple of its scale, then we can compute this
509   // in terms of the scale of the variable index.  For example, if the GEP
510   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
511   // because the expression will cross zero at the same point.
512   unsigned i, e = GEP->getNumOperands();
513   int64_t Offset = 0;
514   for (i = 1; i != e; ++i, ++GTI) {
515     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
516       // Compute the aggregate offset of constant indices.
517       if (CI->isZero()) continue;
518 
519       // Handle a struct index, which adds its field offset to the pointer.
520       if (StructType *STy = GTI.getStructTypeOrNull()) {
521         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
522       } else {
523         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
524         Offset += Size*CI->getSExtValue();
525       }
526     } else {
527       // Found our variable index.
528       break;
529     }
530   }
531 
532   // If there are no variable indices, we must have a constant offset, just
533   // evaluate it the general way.
534   if (i == e) return nullptr;
535 
536   Value *VariableIdx = GEP->getOperand(i);
537   // Determine the scale factor of the variable element.  For example, this is
538   // 4 if the variable index is into an array of i32.
539   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
540 
541   // Verify that there are no other variable indices.  If so, emit the hard way.
542   for (++i, ++GTI; i != e; ++i, ++GTI) {
543     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
544     if (!CI) return nullptr;
545 
546     // Compute the aggregate offset of constant indices.
547     if (CI->isZero()) continue;
548 
549     // Handle a struct index, which adds its field offset to the pointer.
550     if (StructType *STy = GTI.getStructTypeOrNull()) {
551       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
552     } else {
553       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
554       Offset += Size*CI->getSExtValue();
555     }
556   }
557 
558   // Okay, we know we have a single variable index, which must be a
559   // pointer/array/vector index.  If there is no offset, life is simple, return
560   // the index.
561   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
562   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
563   if (Offset == 0) {
564     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
565     // we don't need to bother extending: the extension won't affect where the
566     // computation crosses zero.
567     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
568       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
569     }
570     return VariableIdx;
571   }
572 
573   // Otherwise, there is an index.  The computation we will do will be modulo
574   // the pointer size, so get it.
575   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
576 
577   Offset &= PtrSizeMask;
578   VariableScale &= PtrSizeMask;
579 
580   // To do this transformation, any constant index must be a multiple of the
581   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
582   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
583   // multiple of the variable scale.
584   int64_t NewOffs = Offset / (int64_t)VariableScale;
585   if (Offset != NewOffs*(int64_t)VariableScale)
586     return nullptr;
587 
588   // Okay, we can do this evaluation.  Start by converting the index to intptr.
589   if (VariableIdx->getType() != IntPtrTy)
590     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
591                                             true /*Signed*/);
592   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
593   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
594 }
595 
596 /// Returns true if we can rewrite Start as a GEP with pointer Base
597 /// and some integer offset. The nodes that need to be re-written
598 /// for this transformation will be added to Explored.
599 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
600                                   const DataLayout &DL,
601                                   SetVector<Value *> &Explored) {
602   SmallVector<Value *, 16> WorkList(1, Start);
603   Explored.insert(Base);
604 
605   // The following traversal gives us an order which can be used
606   // when doing the final transformation. Since in the final
607   // transformation we create the PHI replacement instructions first,
608   // we don't have to get them in any particular order.
609   //
610   // However, for other instructions we will have to traverse the
611   // operands of an instruction first, which means that we have to
612   // do a post-order traversal.
613   while (!WorkList.empty()) {
614     SetVector<PHINode *> PHIs;
615 
616     while (!WorkList.empty()) {
617       if (Explored.size() >= 100)
618         return false;
619 
620       Value *V = WorkList.back();
621 
622       if (Explored.count(V) != 0) {
623         WorkList.pop_back();
624         continue;
625       }
626 
627       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
628           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
629         // We've found some value that we can't explore which is different from
630         // the base. Therefore we can't do this transformation.
631         return false;
632 
633       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
634         auto *CI = dyn_cast<CastInst>(V);
635         if (!CI->isNoopCast(DL))
636           return false;
637 
638         if (Explored.count(CI->getOperand(0)) == 0)
639           WorkList.push_back(CI->getOperand(0));
640       }
641 
642       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
643         // We're limiting the GEP to having one index. This will preserve
644         // the original pointer type. We could handle more cases in the
645         // future.
646         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
647             GEP->getType() != Start->getType())
648           return false;
649 
650         if (Explored.count(GEP->getOperand(0)) == 0)
651           WorkList.push_back(GEP->getOperand(0));
652       }
653 
654       if (WorkList.back() == V) {
655         WorkList.pop_back();
656         // We've finished visiting this node, mark it as such.
657         Explored.insert(V);
658       }
659 
660       if (auto *PN = dyn_cast<PHINode>(V)) {
661         // We cannot transform PHIs on unsplittable basic blocks.
662         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
663           return false;
664         Explored.insert(PN);
665         PHIs.insert(PN);
666       }
667     }
668 
669     // Explore the PHI nodes further.
670     for (auto *PN : PHIs)
671       for (Value *Op : PN->incoming_values())
672         if (Explored.count(Op) == 0)
673           WorkList.push_back(Op);
674   }
675 
676   // Make sure that we can do this. Since we can't insert GEPs in a basic
677   // block before a PHI node, we can't easily do this transformation if
678   // we have PHI node users of transformed instructions.
679   for (Value *Val : Explored) {
680     for (Value *Use : Val->uses()) {
681 
682       auto *PHI = dyn_cast<PHINode>(Use);
683       auto *Inst = dyn_cast<Instruction>(Val);
684 
685       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
686           Explored.count(PHI) == 0)
687         continue;
688 
689       if (PHI->getParent() == Inst->getParent())
690         return false;
691     }
692   }
693   return true;
694 }
695 
696 // Sets the appropriate insert point on Builder where we can add
697 // a replacement Instruction for V (if that is possible).
698 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
699                               bool Before = true) {
700   if (auto *PHI = dyn_cast<PHINode>(V)) {
701     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
702     return;
703   }
704   if (auto *I = dyn_cast<Instruction>(V)) {
705     if (!Before)
706       I = &*std::next(I->getIterator());
707     Builder.SetInsertPoint(I);
708     return;
709   }
710   if (auto *A = dyn_cast<Argument>(V)) {
711     // Set the insertion point in the entry block.
712     BasicBlock &Entry = A->getParent()->getEntryBlock();
713     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
714     return;
715   }
716   // Otherwise, this is a constant and we don't need to set a new
717   // insertion point.
718   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
719 }
720 
721 /// Returns a re-written value of Start as an indexed GEP using Base as a
722 /// pointer.
723 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
724                                  const DataLayout &DL,
725                                  SetVector<Value *> &Explored) {
726   // Perform all the substitutions. This is a bit tricky because we can
727   // have cycles in our use-def chains.
728   // 1. Create the PHI nodes without any incoming values.
729   // 2. Create all the other values.
730   // 3. Add the edges for the PHI nodes.
731   // 4. Emit GEPs to get the original pointers.
732   // 5. Remove the original instructions.
733   Type *IndexType = IntegerType::get(
734       Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
735 
736   DenseMap<Value *, Value *> NewInsts;
737   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
738 
739   // Create the new PHI nodes, without adding any incoming values.
740   for (Value *Val : Explored) {
741     if (Val == Base)
742       continue;
743     // Create empty phi nodes. This avoids cyclic dependencies when creating
744     // the remaining instructions.
745     if (auto *PHI = dyn_cast<PHINode>(Val))
746       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
747                                       PHI->getName() + ".idx", PHI);
748   }
749   IRBuilder<> Builder(Base->getContext());
750 
751   // Create all the other instructions.
752   for (Value *Val : Explored) {
753 
754     if (NewInsts.find(Val) != NewInsts.end())
755       continue;
756 
757     if (auto *CI = dyn_cast<CastInst>(Val)) {
758       NewInsts[CI] = NewInsts[CI->getOperand(0)];
759       continue;
760     }
761     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
762       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
763                                                   : GEP->getOperand(1);
764       setInsertionPoint(Builder, GEP);
765       // Indices might need to be sign extended. GEPs will magically do
766       // this, but we need to do it ourselves here.
767       if (Index->getType()->getScalarSizeInBits() !=
768           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
769         Index = Builder.CreateSExtOrTrunc(
770             Index, NewInsts[GEP->getOperand(0)]->getType(),
771             GEP->getOperand(0)->getName() + ".sext");
772       }
773 
774       auto *Op = NewInsts[GEP->getOperand(0)];
775       if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
776         NewInsts[GEP] = Index;
777       else
778         NewInsts[GEP] = Builder.CreateNSWAdd(
779             Op, Index, GEP->getOperand(0)->getName() + ".add");
780       continue;
781     }
782     if (isa<PHINode>(Val))
783       continue;
784 
785     llvm_unreachable("Unexpected instruction type");
786   }
787 
788   // Add the incoming values to the PHI nodes.
789   for (Value *Val : Explored) {
790     if (Val == Base)
791       continue;
792     // All the instructions have been created, we can now add edges to the
793     // phi nodes.
794     if (auto *PHI = dyn_cast<PHINode>(Val)) {
795       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
796       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
797         Value *NewIncoming = PHI->getIncomingValue(I);
798 
799         if (NewInsts.find(NewIncoming) != NewInsts.end())
800           NewIncoming = NewInsts[NewIncoming];
801 
802         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
803       }
804     }
805   }
806 
807   for (Value *Val : Explored) {
808     if (Val == Base)
809       continue;
810 
811     // Depending on the type, for external users we have to emit
812     // a GEP or a GEP + ptrtoint.
813     setInsertionPoint(Builder, Val, false);
814 
815     // If required, create an inttoptr instruction for Base.
816     Value *NewBase = Base;
817     if (!Base->getType()->isPointerTy())
818       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
819                                                Start->getName() + "to.ptr");
820 
821     Value *GEP = Builder.CreateInBoundsGEP(
822         Start->getType()->getPointerElementType(), NewBase,
823         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
824 
825     if (!Val->getType()->isPointerTy()) {
826       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
827                                               Val->getName() + ".conv");
828       GEP = Cast;
829     }
830     Val->replaceAllUsesWith(GEP);
831   }
832 
833   return NewInsts[Start];
834 }
835 
836 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
837 /// the input Value as a constant indexed GEP. Returns a pair containing
838 /// the GEPs Pointer and Index.
839 static std::pair<Value *, Value *>
840 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
841   Type *IndexType = IntegerType::get(V->getContext(),
842                                      DL.getPointerTypeSizeInBits(V->getType()));
843 
844   Constant *Index = ConstantInt::getNullValue(IndexType);
845   while (true) {
846     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
847       // We accept only inbouds GEPs here to exclude the possibility of
848       // overflow.
849       if (!GEP->isInBounds())
850         break;
851       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
852           GEP->getType() == V->getType()) {
853         V = GEP->getOperand(0);
854         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
855         Index = ConstantExpr::getAdd(
856             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
857         continue;
858       }
859       break;
860     }
861     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
862       if (!CI->isNoopCast(DL))
863         break;
864       V = CI->getOperand(0);
865       continue;
866     }
867     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
868       if (!CI->isNoopCast(DL))
869         break;
870       V = CI->getOperand(0);
871       continue;
872     }
873     break;
874   }
875   return {V, Index};
876 }
877 
878 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
879 /// We can look through PHIs, GEPs and casts in order to determine a common base
880 /// between GEPLHS and RHS.
881 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
882                                               ICmpInst::Predicate Cond,
883                                               const DataLayout &DL) {
884   if (!GEPLHS->hasAllConstantIndices())
885     return nullptr;
886 
887   Value *PtrBase, *Index;
888   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
889 
890   // The set of nodes that will take part in this transformation.
891   SetVector<Value *> Nodes;
892 
893   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
894     return nullptr;
895 
896   // We know we can re-write this as
897   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
898   // Since we've only looked through inbouds GEPs we know that we
899   // can't have overflow on either side. We can therefore re-write
900   // this as:
901   //   OFFSET1 cmp OFFSET2
902   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
903 
904   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
905   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
906   // offset. Since Index is the offset of LHS to the base pointer, we will now
907   // compare the offsets instead of comparing the pointers.
908   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
909 }
910 
911 /// Fold comparisons between a GEP instruction and something else. At this point
912 /// we know that the GEP is on the LHS of the comparison.
913 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
914                                        ICmpInst::Predicate Cond,
915                                        Instruction &I) {
916   // Don't transform signed compares of GEPs into index compares. Even if the
917   // GEP is inbounds, the final add of the base pointer can have signed overflow
918   // and would change the result of the icmp.
919   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
920   // the maximum signed value for the pointer type.
921   if (ICmpInst::isSigned(Cond))
922     return nullptr;
923 
924   // Look through bitcasts and addrspacecasts. We do not however want to remove
925   // 0 GEPs.
926   if (!isa<GetElementPtrInst>(RHS))
927     RHS = RHS->stripPointerCasts();
928 
929   Value *PtrBase = GEPLHS->getOperand(0);
930   if (PtrBase == RHS && GEPLHS->isInBounds()) {
931     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
932     // This transformation (ignoring the base and scales) is valid because we
933     // know pointers can't overflow since the gep is inbounds.  See if we can
934     // output an optimized form.
935     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
936 
937     // If not, synthesize the offset the hard way.
938     if (!Offset)
939       Offset = EmitGEPOffset(GEPLHS);
940     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
941                         Constant::getNullValue(Offset->getType()));
942   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
943     // If the base pointers are different, but the indices are the same, just
944     // compare the base pointer.
945     if (PtrBase != GEPRHS->getOperand(0)) {
946       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
947       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
948                         GEPRHS->getOperand(0)->getType();
949       if (IndicesTheSame)
950         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
951           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
952             IndicesTheSame = false;
953             break;
954           }
955 
956       // If all indices are the same, just compare the base pointers.
957       if (IndicesTheSame)
958         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
959 
960       // If we're comparing GEPs with two base pointers that only differ in type
961       // and both GEPs have only constant indices or just one use, then fold
962       // the compare with the adjusted indices.
963       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
964           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
965           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
966           PtrBase->stripPointerCasts() ==
967               GEPRHS->getOperand(0)->stripPointerCasts()) {
968         Value *LOffset = EmitGEPOffset(GEPLHS);
969         Value *ROffset = EmitGEPOffset(GEPRHS);
970 
971         // If we looked through an addrspacecast between different sized address
972         // spaces, the LHS and RHS pointers are different sized
973         // integers. Truncate to the smaller one.
974         Type *LHSIndexTy = LOffset->getType();
975         Type *RHSIndexTy = ROffset->getType();
976         if (LHSIndexTy != RHSIndexTy) {
977           if (LHSIndexTy->getPrimitiveSizeInBits() <
978               RHSIndexTy->getPrimitiveSizeInBits()) {
979             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
980           } else
981             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
982         }
983 
984         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
985                                          LOffset, ROffset);
986         return replaceInstUsesWith(I, Cmp);
987       }
988 
989       // Otherwise, the base pointers are different and the indices are
990       // different. Try convert this to an indexed compare by looking through
991       // PHIs/casts.
992       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
993     }
994 
995     // If one of the GEPs has all zero indices, recurse.
996     if (GEPLHS->hasAllZeroIndices())
997       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
998                          ICmpInst::getSwappedPredicate(Cond), I);
999 
1000     // If the other GEP has all zero indices, recurse.
1001     if (GEPRHS->hasAllZeroIndices())
1002       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
1003 
1004     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
1005     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
1006       // If the GEPs only differ by one index, compare it.
1007       unsigned NumDifferences = 0;  // Keep track of # differences.
1008       unsigned DiffOperand = 0;     // The operand that differs.
1009       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
1010         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
1011           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
1012                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
1013             // Irreconcilable differences.
1014             NumDifferences = 2;
1015             break;
1016           } else {
1017             if (NumDifferences++) break;
1018             DiffOperand = i;
1019           }
1020         }
1021 
1022       if (NumDifferences == 0)   // SAME GEP?
1023         return replaceInstUsesWith(I, // No comparison is needed here.
1024                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
1025 
1026       else if (NumDifferences == 1 && GEPsInBounds) {
1027         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1028         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1029         // Make sure we do a signed comparison here.
1030         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1031       }
1032     }
1033 
1034     // Only lower this if the icmp is the only user of the GEP or if we expect
1035     // the result to fold to a constant!
1036     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1037         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1038       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1039       Value *L = EmitGEPOffset(GEPLHS);
1040       Value *R = EmitGEPOffset(GEPRHS);
1041       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1042     }
1043   }
1044 
1045   // Try convert this to an indexed compare by looking through PHIs/casts as a
1046   // last resort.
1047   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1048 }
1049 
1050 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1051                                          const AllocaInst *Alloca,
1052                                          const Value *Other) {
1053   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1054 
1055   // It would be tempting to fold away comparisons between allocas and any
1056   // pointer not based on that alloca (e.g. an argument). However, even
1057   // though such pointers cannot alias, they can still compare equal.
1058   //
1059   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1060   // doesn't escape we can argue that it's impossible to guess its value, and we
1061   // can therefore act as if any such guesses are wrong.
1062   //
1063   // The code below checks that the alloca doesn't escape, and that it's only
1064   // used in a comparison once (the current instruction). The
1065   // single-comparison-use condition ensures that we're trivially folding all
1066   // comparisons against the alloca consistently, and avoids the risk of
1067   // erroneously folding a comparison of the pointer with itself.
1068 
1069   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1070 
1071   SmallVector<const Use *, 32> Worklist;
1072   for (const Use &U : Alloca->uses()) {
1073     if (Worklist.size() >= MaxIter)
1074       return nullptr;
1075     Worklist.push_back(&U);
1076   }
1077 
1078   unsigned NumCmps = 0;
1079   while (!Worklist.empty()) {
1080     assert(Worklist.size() <= MaxIter);
1081     const Use *U = Worklist.pop_back_val();
1082     const Value *V = U->getUser();
1083     --MaxIter;
1084 
1085     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1086         isa<SelectInst>(V)) {
1087       // Track the uses.
1088     } else if (isa<LoadInst>(V)) {
1089       // Loading from the pointer doesn't escape it.
1090       continue;
1091     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1092       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1093       if (SI->getValueOperand() == U->get())
1094         return nullptr;
1095       continue;
1096     } else if (isa<ICmpInst>(V)) {
1097       if (NumCmps++)
1098         return nullptr; // Found more than one cmp.
1099       continue;
1100     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1101       switch (Intrin->getIntrinsicID()) {
1102         // These intrinsics don't escape or compare the pointer. Memset is safe
1103         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1104         // we don't allow stores, so src cannot point to V.
1105         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1106         case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
1107         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1108           continue;
1109         default:
1110           return nullptr;
1111       }
1112     } else {
1113       return nullptr;
1114     }
1115     for (const Use &U : V->uses()) {
1116       if (Worklist.size() >= MaxIter)
1117         return nullptr;
1118       Worklist.push_back(&U);
1119     }
1120   }
1121 
1122   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1123   return replaceInstUsesWith(
1124       ICI,
1125       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1126 }
1127 
1128 /// Fold "icmp pred (X+CI), X".
1129 Instruction *InstCombiner::foldICmpAddOpConst(Instruction &ICI,
1130                                               Value *X, ConstantInt *CI,
1131                                               ICmpInst::Predicate Pred) {
1132   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1133   // so the values can never be equal.  Similarly for all other "or equals"
1134   // operators.
1135 
1136   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1137   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1138   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1139   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1140     Value *R =
1141       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
1142     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1143   }
1144 
1145   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1146   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1147   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1148   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1149     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
1150 
1151   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
1152   ConstantInt *SMax = ConstantInt::get(X->getContext(),
1153                                        APInt::getSignedMaxValue(BitWidth));
1154 
1155   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1156   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1157   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1158   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1159   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1160   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1161   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1162     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
1163 
1164   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1165   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1166   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1167   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1168   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1169   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1170 
1171   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1172   Constant *C = Builder->getInt(CI->getValue()-1);
1173   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
1174 }
1175 
1176 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1177 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1178 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1179 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1180                                                  const APInt &AP1,
1181                                                  const APInt &AP2) {
1182   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1183 
1184   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1185     if (I.getPredicate() == I.ICMP_NE)
1186       Pred = CmpInst::getInversePredicate(Pred);
1187     return new ICmpInst(Pred, LHS, RHS);
1188   };
1189 
1190   // Don't bother doing any work for cases which InstSimplify handles.
1191   if (AP2 == 0)
1192     return nullptr;
1193 
1194   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1195   if (IsAShr) {
1196     if (AP2.isAllOnesValue())
1197       return nullptr;
1198     if (AP2.isNegative() != AP1.isNegative())
1199       return nullptr;
1200     if (AP2.sgt(AP1))
1201       return nullptr;
1202   }
1203 
1204   if (!AP1)
1205     // 'A' must be large enough to shift out the highest set bit.
1206     return getICmp(I.ICMP_UGT, A,
1207                    ConstantInt::get(A->getType(), AP2.logBase2()));
1208 
1209   if (AP1 == AP2)
1210     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1211 
1212   int Shift;
1213   if (IsAShr && AP1.isNegative())
1214     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1215   else
1216     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1217 
1218   if (Shift > 0) {
1219     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1220       // There are multiple solutions if we are comparing against -1 and the LHS
1221       // of the ashr is not a power of two.
1222       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1223         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1224       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1225     } else if (AP1 == AP2.lshr(Shift)) {
1226       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1227     }
1228   }
1229 
1230   // Shifting const2 will never be equal to const1.
1231   // FIXME: This should always be handled by InstSimplify?
1232   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1233   return replaceInstUsesWith(I, TorF);
1234 }
1235 
1236 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1237 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1238 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1239                                                  const APInt &AP1,
1240                                                  const APInt &AP2) {
1241   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1242 
1243   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1244     if (I.getPredicate() == I.ICMP_NE)
1245       Pred = CmpInst::getInversePredicate(Pred);
1246     return new ICmpInst(Pred, LHS, RHS);
1247   };
1248 
1249   // Don't bother doing any work for cases which InstSimplify handles.
1250   if (AP2 == 0)
1251     return nullptr;
1252 
1253   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1254 
1255   if (!AP1 && AP2TrailingZeros != 0)
1256     return getICmp(
1257         I.ICMP_UGE, A,
1258         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1259 
1260   if (AP1 == AP2)
1261     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1262 
1263   // Get the distance between the lowest bits that are set.
1264   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1265 
1266   if (Shift > 0 && AP2.shl(Shift) == AP1)
1267     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1268 
1269   // Shifting const2 will never be equal to const1.
1270   // FIXME: This should always be handled by InstSimplify?
1271   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1272   return replaceInstUsesWith(I, TorF);
1273 }
1274 
1275 /// The caller has matched a pattern of the form:
1276 ///   I = icmp ugt (add (add A, B), CI2), CI1
1277 /// If this is of the form:
1278 ///   sum = a + b
1279 ///   if (sum+128 >u 255)
1280 /// Then replace it with llvm.sadd.with.overflow.i8.
1281 ///
1282 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1283                                           ConstantInt *CI2, ConstantInt *CI1,
1284                                           InstCombiner &IC) {
1285   // The transformation we're trying to do here is to transform this into an
1286   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1287   // with a narrower add, and discard the add-with-constant that is part of the
1288   // range check (if we can't eliminate it, this isn't profitable).
1289 
1290   // In order to eliminate the add-with-constant, the compare can be its only
1291   // use.
1292   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1293   if (!AddWithCst->hasOneUse())
1294     return nullptr;
1295 
1296   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1297   if (!CI2->getValue().isPowerOf2())
1298     return nullptr;
1299   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1300   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1301     return nullptr;
1302 
1303   // The width of the new add formed is 1 more than the bias.
1304   ++NewWidth;
1305 
1306   // Check to see that CI1 is an all-ones value with NewWidth bits.
1307   if (CI1->getBitWidth() == NewWidth ||
1308       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1309     return nullptr;
1310 
1311   // This is only really a signed overflow check if the inputs have been
1312   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1313   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1314   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1315   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1316       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1317     return nullptr;
1318 
1319   // In order to replace the original add with a narrower
1320   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1321   // and truncates that discard the high bits of the add.  Verify that this is
1322   // the case.
1323   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1324   for (User *U : OrigAdd->users()) {
1325     if (U == AddWithCst)
1326       continue;
1327 
1328     // Only accept truncates for now.  We would really like a nice recursive
1329     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1330     // chain to see which bits of a value are actually demanded.  If the
1331     // original add had another add which was then immediately truncated, we
1332     // could still do the transformation.
1333     TruncInst *TI = dyn_cast<TruncInst>(U);
1334     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1335       return nullptr;
1336   }
1337 
1338   // If the pattern matches, truncate the inputs to the narrower type and
1339   // use the sadd_with_overflow intrinsic to efficiently compute both the
1340   // result and the overflow bit.
1341   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1342   Value *F = Intrinsic::getDeclaration(I.getModule(),
1343                                        Intrinsic::sadd_with_overflow, NewType);
1344 
1345   InstCombiner::BuilderTy *Builder = IC.Builder;
1346 
1347   // Put the new code above the original add, in case there are any uses of the
1348   // add between the add and the compare.
1349   Builder->SetInsertPoint(OrigAdd);
1350 
1351   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName() + ".trunc");
1352   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName() + ".trunc");
1353   CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
1354   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1355   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1356 
1357   // The inner add was the result of the narrow add, zero extended to the
1358   // wider type.  Replace it with the result computed by the intrinsic.
1359   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1360 
1361   // The original icmp gets replaced with the overflow value.
1362   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1363 }
1364 
1365 // Fold icmp Pred X, C.
1366 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1367   CmpInst::Predicate Pred = Cmp.getPredicate();
1368   Value *X = Cmp.getOperand(0);
1369 
1370   const APInt *C;
1371   if (!match(Cmp.getOperand(1), m_APInt(C)))
1372     return nullptr;
1373 
1374   Value *A = nullptr, *B = nullptr;
1375 
1376   // Match the following pattern, which is a common idiom when writing
1377   // overflow-safe integer arithmetic functions. The source performs an addition
1378   // in wider type and explicitly checks for overflow using comparisons against
1379   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1380   //
1381   // TODO: This could probably be generalized to handle other overflow-safe
1382   // operations if we worked out the formulas to compute the appropriate magic
1383   // constants.
1384   //
1385   // sum = a + b
1386   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1387   {
1388     ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1389     if (Pred == ICmpInst::ICMP_UGT &&
1390         match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1391       if (Instruction *Res = processUGT_ADDCST_ADD(
1392               Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this))
1393         return Res;
1394   }
1395 
1396   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1397   if (*C == 0 && Pred == ICmpInst::ICMP_SGT) {
1398     SelectPatternResult SPR = matchSelectPattern(X, A, B);
1399     if (SPR.Flavor == SPF_SMIN) {
1400       if (isKnownPositive(A, DL))
1401         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1402       if (isKnownPositive(B, DL))
1403         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1404     }
1405   }
1406 
1407   // FIXME: Use m_APInt to allow folds for splat constants.
1408   ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1));
1409   if (!CI)
1410     return nullptr;
1411 
1412   // Canonicalize icmp instructions based on dominating conditions.
1413   BasicBlock *Parent = Cmp.getParent();
1414   BasicBlock *Dom = Parent->getSinglePredecessor();
1415   auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
1416   ICmpInst::Predicate Pred2;
1417   BasicBlock *TrueBB, *FalseBB;
1418   ConstantInt *CI2;
1419   if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)),
1420                            TrueBB, FalseBB)) &&
1421       TrueBB != FalseBB) {
1422     ConstantRange CR =
1423         ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue());
1424     ConstantRange DominatingCR =
1425         (Parent == TrueBB)
1426             ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue())
1427             : ConstantRange::makeExactICmpRegion(
1428                   CmpInst::getInversePredicate(Pred2), CI2->getValue());
1429     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1430     ConstantRange Difference = DominatingCR.difference(CR);
1431     if (Intersection.isEmptySet())
1432       return replaceInstUsesWith(Cmp, Builder->getFalse());
1433     if (Difference.isEmptySet())
1434       return replaceInstUsesWith(Cmp, Builder->getTrue());
1435 
1436     // If this is a normal comparison, it demands all bits. If it is a sign
1437     // bit comparison, it only demands the sign bit.
1438     bool UnusedBit;
1439     bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit);
1440 
1441     // Canonicalizing a sign bit comparison that gets used in a branch,
1442     // pessimizes codegen by generating branch on zero instruction instead
1443     // of a test and branch. So we avoid canonicalizing in such situations
1444     // because test and branch instruction has better branch displacement
1445     // than compare and branch instruction.
1446     if (!isBranchOnSignBitCheck(Cmp, IsSignBit) && !Cmp.isEquality()) {
1447       if (auto *AI = Intersection.getSingleElement())
1448         return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder->getInt(*AI));
1449       if (auto *AD = Difference.getSingleElement())
1450         return new ICmpInst(ICmpInst::ICMP_NE, X, Builder->getInt(*AD));
1451     }
1452   }
1453 
1454   return nullptr;
1455 }
1456 
1457 /// Fold icmp (trunc X, Y), C.
1458 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1459                                                  Instruction *Trunc,
1460                                                  const APInt *C) {
1461   ICmpInst::Predicate Pred = Cmp.getPredicate();
1462   Value *X = Trunc->getOperand(0);
1463   if (*C == 1 && C->getBitWidth() > 1) {
1464     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1465     Value *V = nullptr;
1466     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1467       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1468                           ConstantInt::get(V->getType(), 1));
1469   }
1470 
1471   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1472     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1473     // of the high bits truncated out of x are known.
1474     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1475              SrcBits = X->getType()->getScalarSizeInBits();
1476     APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1477     computeKnownBits(X, KnownZero, KnownOne, 0, &Cmp);
1478 
1479     // If all the high bits are known, we can do this xform.
1480     if ((KnownZero | KnownOne).countLeadingOnes() >= SrcBits - DstBits) {
1481       // Pull in the high bits from known-ones set.
1482       APInt NewRHS = C->zext(SrcBits);
1483       NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1484       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1485     }
1486   }
1487 
1488   return nullptr;
1489 }
1490 
1491 /// Fold icmp (xor X, Y), C.
1492 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1493                                                BinaryOperator *Xor,
1494                                                const APInt *C) {
1495   Value *X = Xor->getOperand(0);
1496   Value *Y = Xor->getOperand(1);
1497   const APInt *XorC;
1498   if (!match(Y, m_APInt(XorC)))
1499     return nullptr;
1500 
1501   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1502   // fold the xor.
1503   ICmpInst::Predicate Pred = Cmp.getPredicate();
1504   if ((Pred == ICmpInst::ICMP_SLT && *C == 0) ||
1505       (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) {
1506 
1507     // If the sign bit of the XorCst is not set, there is no change to
1508     // the operation, just stop using the Xor.
1509     if (!XorC->isNegative()) {
1510       Cmp.setOperand(0, X);
1511       Worklist.Add(Xor);
1512       return &Cmp;
1513     }
1514 
1515     // Was the old condition true if the operand is positive?
1516     bool isTrueIfPositive = Pred == ICmpInst::ICMP_SGT;
1517 
1518     // If so, the new one isn't.
1519     isTrueIfPositive ^= true;
1520 
1521     Constant *CmpConstant = cast<Constant>(Cmp.getOperand(1));
1522     if (isTrueIfPositive)
1523       return new ICmpInst(ICmpInst::ICMP_SGT, X, SubOne(CmpConstant));
1524     else
1525       return new ICmpInst(ICmpInst::ICMP_SLT, X, AddOne(CmpConstant));
1526   }
1527 
1528   if (Xor->hasOneUse()) {
1529     // (icmp u/s (xor X SignBit), C) -> (icmp s/u X, (xor C SignBit))
1530     if (!Cmp.isEquality() && XorC->isSignBit()) {
1531       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1532                             : Cmp.getSignedPredicate();
1533       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
1534     }
1535 
1536     // (icmp u/s (xor X ~SignBit), C) -> (icmp s/u X, (xor C ~SignBit))
1537     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1538       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1539                             : Cmp.getSignedPredicate();
1540       Pred = Cmp.getSwappedPredicate(Pred);
1541       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
1542     }
1543   }
1544 
1545   // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1546   //   iff -C is a power of 2
1547   if (Pred == ICmpInst::ICMP_UGT && *XorC == ~(*C) && (*C + 1).isPowerOf2())
1548     return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1549 
1550   // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1551   //   iff -C is a power of 2
1552   if (Pred == ICmpInst::ICMP_ULT && *XorC == -(*C) && C->isPowerOf2())
1553     return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
1554 
1555   return nullptr;
1556 }
1557 
1558 /// Fold icmp (and (sh X, Y), C2), C1.
1559 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1560                                             const APInt *C1, const APInt *C2) {
1561   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1562   if (!Shift || !Shift->isShift())
1563     return nullptr;
1564 
1565   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1566   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1567   // code produced by the clang front-end, for bitfield access.
1568   // This seemingly simple opportunity to fold away a shift turns out to be
1569   // rather complicated. See PR17827 for details.
1570   unsigned ShiftOpcode = Shift->getOpcode();
1571   bool IsShl = ShiftOpcode == Instruction::Shl;
1572   const APInt *C3;
1573   if (match(Shift->getOperand(1), m_APInt(C3))) {
1574     bool CanFold = false;
1575     if (ShiftOpcode == Instruction::AShr) {
1576       // There may be some constraints that make this possible, but nothing
1577       // simple has been discovered yet.
1578       CanFold = false;
1579     } else if (ShiftOpcode == Instruction::Shl) {
1580       // For a left shift, we can fold if the comparison is not signed. We can
1581       // also fold a signed comparison if the mask value and comparison value
1582       // are not negative. These constraints may not be obvious, but we can
1583       // prove that they are correct using an SMT solver.
1584       if (!Cmp.isSigned() || (!C2->isNegative() && !C1->isNegative()))
1585         CanFold = true;
1586     } else if (ShiftOpcode == Instruction::LShr) {
1587       // For a logical right shift, we can fold if the comparison is not signed.
1588       // We can also fold a signed comparison if the shifted mask value and the
1589       // shifted comparison value are not negative. These constraints may not be
1590       // obvious, but we can prove that they are correct using an SMT solver.
1591       if (!Cmp.isSigned() ||
1592           (!C2->shl(*C3).isNegative() && !C1->shl(*C3).isNegative()))
1593         CanFold = true;
1594     }
1595 
1596     if (CanFold) {
1597       APInt NewCst = IsShl ? C1->lshr(*C3) : C1->shl(*C3);
1598       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1599       // Check to see if we are shifting out any of the bits being compared.
1600       if (SameAsC1 != *C1) {
1601         // If we shifted bits out, the fold is not going to work out. As a
1602         // special case, check to see if this means that the result is always
1603         // true or false now.
1604         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1605           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1606         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1607           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1608       } else {
1609         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1610         APInt NewAndCst = IsShl ? C2->lshr(*C3) : C2->shl(*C3);
1611         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1612         And->setOperand(0, Shift->getOperand(0));
1613         Worklist.Add(Shift); // Shift is dead.
1614         return &Cmp;
1615       }
1616     }
1617   }
1618 
1619   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1620   // preferable because it allows the C2 << Y expression to be hoisted out of a
1621   // loop if Y is invariant and X is not.
1622   if (Shift->hasOneUse() && *C1 == 0 && Cmp.isEquality() &&
1623       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1624     // Compute C2 << Y.
1625     Value *NewShift =
1626         IsShl ? Builder->CreateLShr(And->getOperand(1), Shift->getOperand(1))
1627               : Builder->CreateShl(And->getOperand(1), Shift->getOperand(1));
1628 
1629     // Compute X & (C2 << Y).
1630     Value *NewAnd = Builder->CreateAnd(Shift->getOperand(0), NewShift);
1631     Cmp.setOperand(0, NewAnd);
1632     return &Cmp;
1633   }
1634 
1635   return nullptr;
1636 }
1637 
1638 /// Fold icmp (and X, C2), C1.
1639 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1640                                                  BinaryOperator *And,
1641                                                  const APInt *C1) {
1642   const APInt *C2;
1643   if (!match(And->getOperand(1), m_APInt(C2)))
1644     return nullptr;
1645 
1646   if (!And->hasOneUse() || !And->getOperand(0)->hasOneUse())
1647     return nullptr;
1648 
1649   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1650   // the input width without changing the value produced, eliminate the cast:
1651   //
1652   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1653   //
1654   // We can do this transformation if the constants do not have their sign bits
1655   // set or if it is an equality comparison. Extending a relational comparison
1656   // when we're checking the sign bit would not work.
1657   Value *W;
1658   if (match(And->getOperand(0), m_Trunc(m_Value(W))) &&
1659       (Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) {
1660     // TODO: Is this a good transform for vectors? Wider types may reduce
1661     // throughput. Should this transform be limited (even for scalars) by using
1662     // ShouldChangeType()?
1663     if (!Cmp.getType()->isVectorTy()) {
1664       Type *WideType = W->getType();
1665       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1666       Constant *ZextC1 = ConstantInt::get(WideType, C1->zext(WideScalarBits));
1667       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1668       Value *NewAnd = Builder->CreateAnd(W, ZextC2, And->getName());
1669       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1670     }
1671   }
1672 
1673   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2))
1674     return I;
1675 
1676   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1677   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1678   //
1679   // iff pred isn't signed
1680   if (!Cmp.isSigned() && *C1 == 0 && match(And->getOperand(1), m_One())) {
1681     Constant *One = cast<Constant>(And->getOperand(1));
1682     Value *Or = And->getOperand(0);
1683     Value *A, *B, *LShr;
1684     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1685         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1686       unsigned UsesRemoved = 0;
1687       if (And->hasOneUse())
1688         ++UsesRemoved;
1689       if (Or->hasOneUse())
1690         ++UsesRemoved;
1691       if (LShr->hasOneUse())
1692         ++UsesRemoved;
1693 
1694       // Compute A & ((1 << B) | 1)
1695       Value *NewOr = nullptr;
1696       if (auto *C = dyn_cast<Constant>(B)) {
1697         if (UsesRemoved >= 1)
1698           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1699       } else {
1700         if (UsesRemoved >= 3)
1701           NewOr = Builder->CreateOr(Builder->CreateShl(One, B, LShr->getName(),
1702                                                        /*HasNUW=*/true),
1703                                     One, Or->getName());
1704       }
1705       if (NewOr) {
1706         Value *NewAnd = Builder->CreateAnd(A, NewOr, And->getName());
1707         Cmp.setOperand(0, NewAnd);
1708         return &Cmp;
1709       }
1710     }
1711   }
1712 
1713   // (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a
1714   // result greater than C1.
1715   unsigned NumTZ = C2->countTrailingZeros();
1716   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && NumTZ < C2->getBitWidth() &&
1717       APInt::getOneBitSet(C2->getBitWidth(), NumTZ).ugt(*C1)) {
1718     Constant *Zero = Constant::getNullValue(And->getType());
1719     return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
1720   }
1721 
1722   return nullptr;
1723 }
1724 
1725 /// Fold icmp (and X, Y), C.
1726 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1727                                                BinaryOperator *And,
1728                                                const APInt *C) {
1729   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1730     return I;
1731 
1732   // TODO: These all require that Y is constant too, so refactor with the above.
1733 
1734   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1735   Value *X = And->getOperand(0);
1736   Value *Y = And->getOperand(1);
1737   if (auto *LI = dyn_cast<LoadInst>(X))
1738     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1739       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1740         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1741             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1742           ConstantInt *C2 = cast<ConstantInt>(Y);
1743           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1744             return Res;
1745         }
1746 
1747   if (!Cmp.isEquality())
1748     return nullptr;
1749 
1750   // X & -C == -C -> X >  u ~C
1751   // X & -C != -C -> X <= u ~C
1752   //   iff C is a power of 2
1753   if (Cmp.getOperand(1) == Y && (-(*C)).isPowerOf2()) {
1754     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1755                                                           : CmpInst::ICMP_ULE;
1756     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1757   }
1758 
1759   // (X & C2) == 0 -> (trunc X) >= 0
1760   // (X & C2) != 0 -> (trunc X) <  0
1761   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1762   const APInt *C2;
1763   if (And->hasOneUse() && *C == 0 && match(Y, m_APInt(C2))) {
1764     int32_t ExactLogBase2 = C2->exactLogBase2();
1765     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1766       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1767       if (And->getType()->isVectorTy())
1768         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1769       Value *Trunc = Builder->CreateTrunc(X, NTy);
1770       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1771                                                             : CmpInst::ICMP_SLT;
1772       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1773     }
1774   }
1775 
1776   return nullptr;
1777 }
1778 
1779 /// Fold icmp (or X, Y), C.
1780 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1781                                               const APInt *C) {
1782   ICmpInst::Predicate Pred = Cmp.getPredicate();
1783   if (*C == 1) {
1784     // icmp slt signum(V) 1 --> icmp slt V, 1
1785     Value *V = nullptr;
1786     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1787       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1788                           ConstantInt::get(V->getType(), 1));
1789   }
1790 
1791   if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse())
1792     return nullptr;
1793 
1794   Value *P, *Q;
1795   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1796     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1797     // -> and (icmp eq P, null), (icmp eq Q, null).
1798     Value *CmpP =
1799         Builder->CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1800     Value *CmpQ =
1801         Builder->CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1802     auto LogicOpc = Pred == ICmpInst::Predicate::ICMP_EQ ? Instruction::And
1803                                                          : Instruction::Or;
1804     return BinaryOperator::Create(LogicOpc, CmpP, CmpQ);
1805   }
1806 
1807   return nullptr;
1808 }
1809 
1810 /// Fold icmp (mul X, Y), C.
1811 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1812                                                BinaryOperator *Mul,
1813                                                const APInt *C) {
1814   const APInt *MulC;
1815   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1816     return nullptr;
1817 
1818   // If this is a test of the sign bit and the multiply is sign-preserving with
1819   // a constant operand, use the multiply LHS operand instead.
1820   ICmpInst::Predicate Pred = Cmp.getPredicate();
1821   if (isSignTest(Pred, *C) && Mul->hasNoSignedWrap()) {
1822     if (MulC->isNegative())
1823       Pred = ICmpInst::getSwappedPredicate(Pred);
1824     return new ICmpInst(Pred, Mul->getOperand(0),
1825                         Constant::getNullValue(Mul->getType()));
1826   }
1827 
1828   return nullptr;
1829 }
1830 
1831 /// Fold icmp (shl 1, Y), C.
1832 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1833                                    const APInt *C) {
1834   Value *Y;
1835   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1836     return nullptr;
1837 
1838   Type *ShiftType = Shl->getType();
1839   uint32_t TypeBits = C->getBitWidth();
1840   bool CIsPowerOf2 = C->isPowerOf2();
1841   ICmpInst::Predicate Pred = Cmp.getPredicate();
1842   if (Cmp.isUnsigned()) {
1843     // (1 << Y) pred C -> Y pred Log2(C)
1844     if (!CIsPowerOf2) {
1845       // (1 << Y) <  30 -> Y <= 4
1846       // (1 << Y) <= 30 -> Y <= 4
1847       // (1 << Y) >= 30 -> Y >  4
1848       // (1 << Y) >  30 -> Y >  4
1849       if (Pred == ICmpInst::ICMP_ULT)
1850         Pred = ICmpInst::ICMP_ULE;
1851       else if (Pred == ICmpInst::ICMP_UGE)
1852         Pred = ICmpInst::ICMP_UGT;
1853     }
1854 
1855     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1856     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1857     unsigned CLog2 = C->logBase2();
1858     if (CLog2 == TypeBits - 1) {
1859       if (Pred == ICmpInst::ICMP_UGE)
1860         Pred = ICmpInst::ICMP_EQ;
1861       else if (Pred == ICmpInst::ICMP_ULT)
1862         Pred = ICmpInst::ICMP_NE;
1863     }
1864     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1865   } else if (Cmp.isSigned()) {
1866     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1867     if (C->isAllOnesValue()) {
1868       // (1 << Y) <= -1 -> Y == 31
1869       if (Pred == ICmpInst::ICMP_SLE)
1870         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1871 
1872       // (1 << Y) >  -1 -> Y != 31
1873       if (Pred == ICmpInst::ICMP_SGT)
1874         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1875     } else if (!(*C)) {
1876       // (1 << Y) <  0 -> Y == 31
1877       // (1 << Y) <= 0 -> Y == 31
1878       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1879         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1880 
1881       // (1 << Y) >= 0 -> Y != 31
1882       // (1 << Y) >  0 -> Y != 31
1883       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1884         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1885     }
1886   } else if (Cmp.isEquality() && CIsPowerOf2) {
1887     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C->logBase2()));
1888   }
1889 
1890   return nullptr;
1891 }
1892 
1893 /// Fold icmp (shl X, Y), C.
1894 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
1895                                                BinaryOperator *Shl,
1896                                                const APInt *C) {
1897   const APInt *ShiftVal;
1898   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
1899     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), *C, *ShiftVal);
1900 
1901   const APInt *ShiftAmt;
1902   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
1903     return foldICmpShlOne(Cmp, Shl, C);
1904 
1905   // Check that the shift amount is in range. If not, don't perform undefined
1906   // shifts. When the shift is visited, it will be simplified.
1907   unsigned TypeBits = C->getBitWidth();
1908   if (ShiftAmt->uge(TypeBits))
1909     return nullptr;
1910 
1911   ICmpInst::Predicate Pred = Cmp.getPredicate();
1912   Value *X = Shl->getOperand(0);
1913   Type *ShType = Shl->getType();
1914 
1915   // NSW guarantees that we are only shifting out sign bits from the high bits,
1916   // so we can ASHR the compare constant without needing a mask and eliminate
1917   // the shift.
1918   if (Shl->hasNoSignedWrap()) {
1919     if (Pred == ICmpInst::ICMP_SGT) {
1920       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
1921       APInt ShiftedC = C->ashr(*ShiftAmt);
1922       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1923     }
1924     if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) {
1925       // This is the same code as the SGT case, but assert the pre-condition
1926       // that is needed for this to work with equality predicates.
1927       assert(C->ashr(*ShiftAmt).shl(*ShiftAmt) == *C &&
1928              "Compare known true or false was not folded");
1929       APInt ShiftedC = C->ashr(*ShiftAmt);
1930       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1931     }
1932     if (Pred == ICmpInst::ICMP_SLT) {
1933       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
1934       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
1935       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
1936       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
1937       assert(!C->isMinSignedValue() && "Unexpected icmp slt");
1938       APInt ShiftedC = (*C - 1).ashr(*ShiftAmt) + 1;
1939       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1940     }
1941     // If this is a signed comparison to 0 and the shift is sign preserving,
1942     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
1943     // do that if we're sure to not continue on in this function.
1944     if (isSignTest(Pred, *C))
1945       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
1946   }
1947 
1948   // NUW guarantees that we are only shifting out zero bits from the high bits,
1949   // so we can LSHR the compare constant without needing a mask and eliminate
1950   // the shift.
1951   if (Shl->hasNoUnsignedWrap()) {
1952     if (Pred == ICmpInst::ICMP_UGT) {
1953       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
1954       APInt ShiftedC = C->lshr(*ShiftAmt);
1955       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1956     }
1957     if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) {
1958       // This is the same code as the UGT case, but assert the pre-condition
1959       // that is needed for this to work with equality predicates.
1960       assert(C->lshr(*ShiftAmt).shl(*ShiftAmt) == *C &&
1961              "Compare known true or false was not folded");
1962       APInt ShiftedC = C->lshr(*ShiftAmt);
1963       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1964     }
1965     if (Pred == ICmpInst::ICMP_ULT) {
1966       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
1967       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
1968       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
1969       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
1970       assert(C->ugt(0) && "ult 0 should have been eliminated");
1971       APInt ShiftedC = (*C - 1).lshr(*ShiftAmt) + 1;
1972       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1973     }
1974   }
1975 
1976   if (Cmp.isEquality() && Shl->hasOneUse()) {
1977     // Strength-reduce the shift into an 'and'.
1978     Constant *Mask = ConstantInt::get(
1979         ShType,
1980         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
1981     Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
1982     Constant *LShrC = ConstantInt::get(ShType, C->lshr(*ShiftAmt));
1983     return new ICmpInst(Pred, And, LShrC);
1984   }
1985 
1986   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1987   bool TrueIfSigned = false;
1988   if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) {
1989     // (X << 31) <s 0  --> (X & 1) != 0
1990     Constant *Mask = ConstantInt::get(
1991         ShType,
1992         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
1993     Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
1994     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1995                         And, Constant::getNullValue(ShType));
1996   }
1997 
1998   // Transform (icmp pred iM (shl iM %v, N), C)
1999   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2000   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2001   // This enables us to get rid of the shift in favor of a trunc that may be
2002   // free on the target. It has the additional benefit of comparing to a
2003   // smaller constant that may be more target-friendly.
2004   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2005   if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt &&
2006       DL.isLegalInteger(TypeBits - Amt)) {
2007     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2008     if (ShType->isVectorTy())
2009       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2010     Constant *NewC =
2011         ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt));
2012     return new ICmpInst(Pred, Builder->CreateTrunc(X, TruncTy), NewC);
2013   }
2014 
2015   return nullptr;
2016 }
2017 
2018 /// Fold icmp ({al}shr X, Y), C.
2019 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2020                                                BinaryOperator *Shr,
2021                                                const APInt *C) {
2022   // An exact shr only shifts out zero bits, so:
2023   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2024   Value *X = Shr->getOperand(0);
2025   CmpInst::Predicate Pred = Cmp.getPredicate();
2026   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && *C == 0)
2027     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2028 
2029   const APInt *ShiftVal;
2030   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2031     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), *C, *ShiftVal);
2032 
2033   const APInt *ShiftAmt;
2034   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2035     return nullptr;
2036 
2037   // Check that the shift amount is in range. If not, don't perform undefined
2038   // shifts. When the shift is visited it will be simplified.
2039   unsigned TypeBits = C->getBitWidth();
2040   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2041   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2042     return nullptr;
2043 
2044   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2045   if (!Cmp.isEquality()) {
2046     // If we have an unsigned comparison and an ashr, we can't simplify this.
2047     // Similarly for signed comparisons with lshr.
2048     if (Cmp.isSigned() != IsAShr)
2049       return nullptr;
2050 
2051     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
2052     // by a power of 2.  Since we already have logic to simplify these,
2053     // transform to div and then simplify the resultant comparison.
2054     if (IsAShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1))
2055       return nullptr;
2056 
2057     // Revisit the shift (to delete it).
2058     Worklist.Add(Shr);
2059 
2060     Constant *DivCst = ConstantInt::get(
2061         Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
2062 
2063     Value *Tmp = IsAShr ? Builder->CreateSDiv(X, DivCst, "", Shr->isExact())
2064                         : Builder->CreateUDiv(X, DivCst, "", Shr->isExact());
2065 
2066     Cmp.setOperand(0, Tmp);
2067 
2068     // If the builder folded the binop, just return it.
2069     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
2070     if (!TheDiv)
2071       return &Cmp;
2072 
2073     // Otherwise, fold this div/compare.
2074     assert(TheDiv->getOpcode() == Instruction::SDiv ||
2075            TheDiv->getOpcode() == Instruction::UDiv);
2076 
2077     Instruction *Res = foldICmpDivConstant(Cmp, TheDiv, C);
2078     assert(Res && "This div/cst should have folded!");
2079     return Res;
2080   }
2081 
2082   // Handle equality comparisons of shift-by-constant.
2083 
2084   // If the comparison constant changes with the shift, the comparison cannot
2085   // succeed (bits of the comparison constant cannot match the shifted value).
2086   // This should be known by InstSimplify and already be folded to true/false.
2087   assert(((IsAShr && C->shl(ShAmtVal).ashr(ShAmtVal) == *C) ||
2088           (!IsAShr && C->shl(ShAmtVal).lshr(ShAmtVal) == *C)) &&
2089          "Expected icmp+shr simplify did not occur.");
2090 
2091   // Check if the bits shifted out are known to be zero. If so, we can compare
2092   // against the unshifted value:
2093   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2094   Constant *ShiftedCmpRHS = ConstantInt::get(Shr->getType(), *C << ShAmtVal);
2095   if (Shr->hasOneUse()) {
2096     if (Shr->isExact())
2097       return new ICmpInst(Pred, X, ShiftedCmpRHS);
2098 
2099     // Otherwise strength reduce the shift into an 'and'.
2100     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2101     Constant *Mask = ConstantInt::get(Shr->getType(), Val);
2102     Value *And = Builder->CreateAnd(X, Mask, Shr->getName() + ".mask");
2103     return new ICmpInst(Pred, And, ShiftedCmpRHS);
2104   }
2105 
2106   return nullptr;
2107 }
2108 
2109 /// Fold icmp (udiv X, Y), C.
2110 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2111                                                 BinaryOperator *UDiv,
2112                                                 const APInt *C) {
2113   const APInt *C2;
2114   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2115     return nullptr;
2116 
2117   assert(C2 != 0 && "udiv 0, X should have been simplified already.");
2118 
2119   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2120   Value *Y = UDiv->getOperand(1);
2121   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2122     assert(!C->isMaxValue() &&
2123            "icmp ugt X, UINT_MAX should have been simplified already.");
2124     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2125                         ConstantInt::get(Y->getType(), C2->udiv(*C + 1)));
2126   }
2127 
2128   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2129   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2130     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2131     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2132                         ConstantInt::get(Y->getType(), C2->udiv(*C)));
2133   }
2134 
2135   return nullptr;
2136 }
2137 
2138 /// Fold icmp ({su}div X, Y), C.
2139 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2140                                                BinaryOperator *Div,
2141                                                const APInt *C) {
2142   // Fold: icmp pred ([us]div X, C2), C -> range test
2143   // Fold this div into the comparison, producing a range check.
2144   // Determine, based on the divide type, what the range is being
2145   // checked.  If there is an overflow on the low or high side, remember
2146   // it, otherwise compute the range [low, hi) bounding the new value.
2147   // See: InsertRangeTest above for the kinds of replacements possible.
2148   const APInt *C2;
2149   if (!match(Div->getOperand(1), m_APInt(C2)))
2150     return nullptr;
2151 
2152   // FIXME: If the operand types don't match the type of the divide
2153   // then don't attempt this transform. The code below doesn't have the
2154   // logic to deal with a signed divide and an unsigned compare (and
2155   // vice versa). This is because (x /s C2) <s C  produces different
2156   // results than (x /s C2) <u C or (x /u C2) <s C or even
2157   // (x /u C2) <u C.  Simply casting the operands and result won't
2158   // work. :(  The if statement below tests that condition and bails
2159   // if it finds it.
2160   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2161   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2162     return nullptr;
2163 
2164   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2165   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2166   // division-by-constant cases should be present, we can not assert that they
2167   // have happened before we reach this icmp instruction.
2168   if (*C2 == 0 || *C2 == 1 || (DivIsSigned && C2->isAllOnesValue()))
2169     return nullptr;
2170 
2171   // TODO: We could do all of the computations below using APInt.
2172   Constant *CmpRHS = cast<Constant>(Cmp.getOperand(1));
2173   Constant *DivRHS = cast<Constant>(Div->getOperand(1));
2174 
2175   // Compute Prod = CmpRHS * DivRHS. We are essentially solving an equation of
2176   // form X / C2 = C. We solve for X by multiplying C2 (DivRHS) and C (CmpRHS).
2177   // By solving for X, we can turn this into a range check instead of computing
2178   // a divide.
2179   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
2180 
2181   // Determine if the product overflows by seeing if the product is not equal to
2182   // the divide. Make sure we do the same kind of divide as in the LHS
2183   // instruction that we're folding.
2184   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS)
2185                              : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
2186 
2187   ICmpInst::Predicate Pred = Cmp.getPredicate();
2188 
2189   // If the division is known to be exact, then there is no remainder from the
2190   // divide, so the covered range size is unit, otherwise it is the divisor.
2191   Constant *RangeSize =
2192       Div->isExact() ? ConstantInt::get(Div->getType(), 1) : DivRHS;
2193 
2194   // Figure out the interval that is being checked.  For example, a comparison
2195   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2196   // Compute this interval based on the constants involved and the signedness of
2197   // the compare/divide.  This computes a half-open interval, keeping track of
2198   // whether either value in the interval overflows.  After analysis each
2199   // overflow variable is set to 0 if it's corresponding bound variable is valid
2200   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2201   int LoOverflow = 0, HiOverflow = 0;
2202   Constant *LoBound = nullptr, *HiBound = nullptr;
2203 
2204   if (!DivIsSigned) {  // udiv
2205     // e.g. X/5 op 3  --> [15, 20)
2206     LoBound = Prod;
2207     HiOverflow = LoOverflow = ProdOV;
2208     if (!HiOverflow) {
2209       // If this is not an exact divide, then many values in the range collapse
2210       // to the same result value.
2211       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2212     }
2213   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2214     if (*C == 0) {       // (X / pos) op 0
2215       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2216       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
2217       HiBound = RangeSize;
2218     } else if (C->isStrictlyPositive()) {   // (X / pos) op pos
2219       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2220       HiOverflow = LoOverflow = ProdOV;
2221       if (!HiOverflow)
2222         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2223     } else {                       // (X / pos) op neg
2224       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2225       HiBound = AddOne(Prod);
2226       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2227       if (!LoOverflow) {
2228         Constant *DivNeg = ConstantExpr::getNeg(RangeSize);
2229         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2230       }
2231     }
2232   } else if (C2->isNegative()) { // Divisor is < 0.
2233     if (Div->isExact())
2234       RangeSize = ConstantExpr::getNeg(RangeSize);
2235     if (*C == 0) {       // (X / neg) op 0
2236       // e.g. X/-5 op 0  --> [-4, 5)
2237       LoBound = AddOne(RangeSize);
2238       HiBound = ConstantExpr::getNeg(RangeSize);
2239       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
2240         HiOverflow = 1;            // [INTMIN+1, overflow)
2241         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
2242       }
2243     } else if (C->isStrictlyPositive()) {   // (X / neg) op pos
2244       // e.g. X/-5 op 3  --> [-19, -14)
2245       HiBound = AddOne(Prod);
2246       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2247       if (!LoOverflow)
2248         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2249     } else {                       // (X / neg) op neg
2250       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2251       LoOverflow = HiOverflow = ProdOV;
2252       if (!HiOverflow)
2253         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2254     }
2255 
2256     // Dividing by a negative swaps the condition.  LT <-> GT
2257     Pred = ICmpInst::getSwappedPredicate(Pred);
2258   }
2259 
2260   Value *X = Div->getOperand(0);
2261   switch (Pred) {
2262     default: llvm_unreachable("Unhandled icmp opcode!");
2263     case ICmpInst::ICMP_EQ:
2264       if (LoOverflow && HiOverflow)
2265         return replaceInstUsesWith(Cmp, Builder->getFalse());
2266       if (HiOverflow)
2267         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2268                             ICmpInst::ICMP_UGE, X, LoBound);
2269       if (LoOverflow)
2270         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2271                             ICmpInst::ICMP_ULT, X, HiBound);
2272       return replaceInstUsesWith(
2273           Cmp, insertRangeTest(X, LoBound->getUniqueInteger(),
2274                                HiBound->getUniqueInteger(), DivIsSigned, true));
2275     case ICmpInst::ICMP_NE:
2276       if (LoOverflow && HiOverflow)
2277         return replaceInstUsesWith(Cmp, Builder->getTrue());
2278       if (HiOverflow)
2279         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2280                             ICmpInst::ICMP_ULT, X, LoBound);
2281       if (LoOverflow)
2282         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2283                             ICmpInst::ICMP_UGE, X, HiBound);
2284       return replaceInstUsesWith(Cmp,
2285                                  insertRangeTest(X, LoBound->getUniqueInteger(),
2286                                                  HiBound->getUniqueInteger(),
2287                                                  DivIsSigned, false));
2288     case ICmpInst::ICMP_ULT:
2289     case ICmpInst::ICMP_SLT:
2290       if (LoOverflow == +1)   // Low bound is greater than input range.
2291         return replaceInstUsesWith(Cmp, Builder->getTrue());
2292       if (LoOverflow == -1)   // Low bound is less than input range.
2293         return replaceInstUsesWith(Cmp, Builder->getFalse());
2294       return new ICmpInst(Pred, X, LoBound);
2295     case ICmpInst::ICMP_UGT:
2296     case ICmpInst::ICMP_SGT:
2297       if (HiOverflow == +1)       // High bound greater than input range.
2298         return replaceInstUsesWith(Cmp, Builder->getFalse());
2299       if (HiOverflow == -1)       // High bound less than input range.
2300         return replaceInstUsesWith(Cmp, Builder->getTrue());
2301       if (Pred == ICmpInst::ICMP_UGT)
2302         return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
2303       return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
2304   }
2305 
2306   return nullptr;
2307 }
2308 
2309 /// Fold icmp (sub X, Y), C.
2310 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2311                                                BinaryOperator *Sub,
2312                                                const APInt *C) {
2313   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2314   ICmpInst::Predicate Pred = Cmp.getPredicate();
2315 
2316   // The following transforms are only worth it if the only user of the subtract
2317   // is the icmp.
2318   if (!Sub->hasOneUse())
2319     return nullptr;
2320 
2321   if (Sub->hasNoSignedWrap()) {
2322     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2323     if (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())
2324       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2325 
2326     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2327     if (Pred == ICmpInst::ICMP_SGT && *C == 0)
2328       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2329 
2330     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2331     if (Pred == ICmpInst::ICMP_SLT && *C == 0)
2332       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2333 
2334     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2335     if (Pred == ICmpInst::ICMP_SLT && *C == 1)
2336       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2337   }
2338 
2339   const APInt *C2;
2340   if (!match(X, m_APInt(C2)))
2341     return nullptr;
2342 
2343   // C2 - Y <u C -> (Y | (C - 1)) == C2
2344   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2345   if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
2346       (*C2 & (*C - 1)) == (*C - 1))
2347     return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateOr(Y, *C - 1), X);
2348 
2349   // C2 - Y >u C -> (Y | C) != C2
2350   //   iff C2 & C == C and C + 1 is a power of 2
2351   if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == *C)
2352     return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateOr(Y, *C), X);
2353 
2354   return nullptr;
2355 }
2356 
2357 /// Fold icmp (add X, Y), C.
2358 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2359                                                BinaryOperator *Add,
2360                                                const APInt *C) {
2361   Value *Y = Add->getOperand(1);
2362   const APInt *C2;
2363   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2364     return nullptr;
2365 
2366   // Fold icmp pred (add X, C2), C.
2367   Value *X = Add->getOperand(0);
2368   Type *Ty = Add->getType();
2369   auto CR =
2370       ConstantRange::makeExactICmpRegion(Cmp.getPredicate(), *C).subtract(*C2);
2371   const APInt &Upper = CR.getUpper();
2372   const APInt &Lower = CR.getLower();
2373   if (Cmp.isSigned()) {
2374     if (Lower.isSignBit())
2375       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2376     if (Upper.isSignBit())
2377       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2378   } else {
2379     if (Lower.isMinValue())
2380       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2381     if (Upper.isMinValue())
2382       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2383   }
2384 
2385   if (!Add->hasOneUse())
2386     return nullptr;
2387 
2388   // X+C <u C2 -> (X & -C2) == C
2389   //   iff C & (C2-1) == 0
2390   //       C2 is a power of 2
2391   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
2392       (*C2 & (*C - 1)) == 0)
2393     return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateAnd(X, -(*C)),
2394                         ConstantExpr::getNeg(cast<Constant>(Y)));
2395 
2396   // X+C >u C2 -> (X & ~C2) != C
2397   //   iff C & C2 == 0
2398   //       C2+1 is a power of 2
2399   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() &&
2400       (*C2 & *C) == 0)
2401     return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateAnd(X, ~(*C)),
2402                         ConstantExpr::getNeg(cast<Constant>(Y)));
2403 
2404   return nullptr;
2405 }
2406 
2407 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2408 /// where X is some kind of instruction.
2409 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2410   const APInt *C;
2411   if (!match(Cmp.getOperand(1), m_APInt(C)))
2412     return nullptr;
2413 
2414   BinaryOperator *BO;
2415   if (match(Cmp.getOperand(0), m_BinOp(BO))) {
2416     switch (BO->getOpcode()) {
2417     case Instruction::Xor:
2418       if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
2419         return I;
2420       break;
2421     case Instruction::And:
2422       if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
2423         return I;
2424       break;
2425     case Instruction::Or:
2426       if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
2427         return I;
2428       break;
2429     case Instruction::Mul:
2430       if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
2431         return I;
2432       break;
2433     case Instruction::Shl:
2434       if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
2435         return I;
2436       break;
2437     case Instruction::LShr:
2438     case Instruction::AShr:
2439       if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
2440         return I;
2441       break;
2442     case Instruction::UDiv:
2443       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
2444         return I;
2445       LLVM_FALLTHROUGH;
2446     case Instruction::SDiv:
2447       if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
2448         return I;
2449       break;
2450     case Instruction::Sub:
2451       if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
2452         return I;
2453       break;
2454     case Instruction::Add:
2455       if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
2456         return I;
2457       break;
2458     default:
2459       break;
2460     }
2461     // TODO: These folds could be refactored to be part of the above calls.
2462     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C))
2463       return I;
2464   }
2465 
2466   Instruction *LHSI;
2467   if (match(Cmp.getOperand(0), m_Instruction(LHSI)) &&
2468       LHSI->getOpcode() == Instruction::Trunc)
2469     if (Instruction *I = foldICmpTruncConstant(Cmp, LHSI, C))
2470       return I;
2471 
2472   if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, C))
2473     return I;
2474 
2475   return nullptr;
2476 }
2477 
2478 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2479 /// icmp eq/ne BO, C.
2480 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2481                                                              BinaryOperator *BO,
2482                                                              const APInt *C) {
2483   // TODO: Some of these folds could work with arbitrary constants, but this
2484   // function is limited to scalar and vector splat constants.
2485   if (!Cmp.isEquality())
2486     return nullptr;
2487 
2488   ICmpInst::Predicate Pred = Cmp.getPredicate();
2489   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2490   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2491   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2492 
2493   switch (BO->getOpcode()) {
2494   case Instruction::SRem:
2495     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2496     if (*C == 0 && BO->hasOneUse()) {
2497       const APInt *BOC;
2498       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2499         Value *NewRem = Builder->CreateURem(BOp0, BOp1, BO->getName());
2500         return new ICmpInst(Pred, NewRem,
2501                             Constant::getNullValue(BO->getType()));
2502       }
2503     }
2504     break;
2505   case Instruction::Add: {
2506     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2507     const APInt *BOC;
2508     if (match(BOp1, m_APInt(BOC))) {
2509       if (BO->hasOneUse()) {
2510         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2511         return new ICmpInst(Pred, BOp0, SubC);
2512       }
2513     } else if (*C == 0) {
2514       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2515       // efficiently invertible, or if the add has just this one use.
2516       if (Value *NegVal = dyn_castNegVal(BOp1))
2517         return new ICmpInst(Pred, BOp0, NegVal);
2518       if (Value *NegVal = dyn_castNegVal(BOp0))
2519         return new ICmpInst(Pred, NegVal, BOp1);
2520       if (BO->hasOneUse()) {
2521         Value *Neg = Builder->CreateNeg(BOp1);
2522         Neg->takeName(BO);
2523         return new ICmpInst(Pred, BOp0, Neg);
2524       }
2525     }
2526     break;
2527   }
2528   case Instruction::Xor:
2529     if (BO->hasOneUse()) {
2530       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2531         // For the xor case, we can xor two constants together, eliminating
2532         // the explicit xor.
2533         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2534       } else if (*C == 0) {
2535         // Replace ((xor A, B) != 0) with (A != B)
2536         return new ICmpInst(Pred, BOp0, BOp1);
2537       }
2538     }
2539     break;
2540   case Instruction::Sub:
2541     if (BO->hasOneUse()) {
2542       const APInt *BOC;
2543       if (match(BOp0, m_APInt(BOC))) {
2544         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2545         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2546         return new ICmpInst(Pred, BOp1, SubC);
2547       } else if (*C == 0) {
2548         // Replace ((sub A, B) != 0) with (A != B).
2549         return new ICmpInst(Pred, BOp0, BOp1);
2550       }
2551     }
2552     break;
2553   case Instruction::Or: {
2554     const APInt *BOC;
2555     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2556       // Comparing if all bits outside of a constant mask are set?
2557       // Replace (X | C) == -1 with (X & ~C) == ~C.
2558       // This removes the -1 constant.
2559       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2560       Value *And = Builder->CreateAnd(BOp0, NotBOC);
2561       return new ICmpInst(Pred, And, NotBOC);
2562     }
2563     break;
2564   }
2565   case Instruction::And: {
2566     const APInt *BOC;
2567     if (match(BOp1, m_APInt(BOC))) {
2568       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2569       if (C == BOC && C->isPowerOf2())
2570         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2571                             BO, Constant::getNullValue(RHS->getType()));
2572 
2573       // Don't perform the following transforms if the AND has multiple uses
2574       if (!BO->hasOneUse())
2575         break;
2576 
2577       // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
2578       if (BOC->isSignBit()) {
2579         Constant *Zero = Constant::getNullValue(BOp0->getType());
2580         auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
2581         return new ICmpInst(NewPred, BOp0, Zero);
2582       }
2583 
2584       // ((X & ~7) == 0) --> X < 8
2585       if (*C == 0 && (~(*BOC) + 1).isPowerOf2()) {
2586         Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
2587         auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
2588         return new ICmpInst(NewPred, BOp0, NegBOC);
2589       }
2590     }
2591     break;
2592   }
2593   case Instruction::Mul:
2594     if (*C == 0 && BO->hasNoSignedWrap()) {
2595       const APInt *BOC;
2596       if (match(BOp1, m_APInt(BOC)) && *BOC != 0) {
2597         // The trivial case (mul X, 0) is handled by InstSimplify.
2598         // General case : (mul X, C) != 0 iff X != 0
2599         //                (mul X, C) == 0 iff X == 0
2600         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
2601       }
2602     }
2603     break;
2604   case Instruction::UDiv:
2605     if (*C == 0) {
2606       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2607       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
2608       return new ICmpInst(NewPred, BOp1, BOp0);
2609     }
2610     break;
2611   default:
2612     break;
2613   }
2614   return nullptr;
2615 }
2616 
2617 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
2618 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
2619                                                          const APInt *C) {
2620   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0));
2621   if (!II || !Cmp.isEquality())
2622     return nullptr;
2623 
2624   // Handle icmp {eq|ne} <intrinsic>, intcst.
2625   switch (II->getIntrinsicID()) {
2626   case Intrinsic::bswap:
2627     Worklist.Add(II);
2628     Cmp.setOperand(0, II->getArgOperand(0));
2629     Cmp.setOperand(1, Builder->getInt(C->byteSwap()));
2630     return &Cmp;
2631   case Intrinsic::ctlz:
2632   case Intrinsic::cttz:
2633     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
2634     if (*C == C->getBitWidth()) {
2635       Worklist.Add(II);
2636       Cmp.setOperand(0, II->getArgOperand(0));
2637       Cmp.setOperand(1, ConstantInt::getNullValue(II->getType()));
2638       return &Cmp;
2639     }
2640     break;
2641   case Intrinsic::ctpop: {
2642     // popcount(A) == 0  ->  A == 0 and likewise for !=
2643     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
2644     bool IsZero = *C == 0;
2645     if (IsZero || *C == C->getBitWidth()) {
2646       Worklist.Add(II);
2647       Cmp.setOperand(0, II->getArgOperand(0));
2648       auto *NewOp = IsZero ? Constant::getNullValue(II->getType())
2649                            : Constant::getAllOnesValue(II->getType());
2650       Cmp.setOperand(1, NewOp);
2651       return &Cmp;
2652     }
2653     break;
2654   }
2655   default:
2656     break;
2657   }
2658   return nullptr;
2659 }
2660 
2661 /// Handle icmp with constant (but not simple integer constant) RHS.
2662 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
2663   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2664   Constant *RHSC = dyn_cast<Constant>(Op1);
2665   Instruction *LHSI = dyn_cast<Instruction>(Op0);
2666   if (!RHSC || !LHSI)
2667     return nullptr;
2668 
2669   switch (LHSI->getOpcode()) {
2670   case Instruction::GetElementPtr:
2671     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2672     if (RHSC->isNullValue() &&
2673         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2674       return new ICmpInst(
2675           I.getPredicate(), LHSI->getOperand(0),
2676           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2677     break;
2678   case Instruction::PHI:
2679     // Only fold icmp into the PHI if the phi and icmp are in the same
2680     // block.  If in the same block, we're encouraging jump threading.  If
2681     // not, we are just pessimizing the code by making an i1 phi.
2682     if (LHSI->getParent() == I.getParent())
2683       if (Instruction *NV = FoldOpIntoPhi(I))
2684         return NV;
2685     break;
2686   case Instruction::Select: {
2687     // If either operand of the select is a constant, we can fold the
2688     // comparison into the select arms, which will cause one to be
2689     // constant folded and the select turned into a bitwise or.
2690     Value *Op1 = nullptr, *Op2 = nullptr;
2691     ConstantInt *CI = nullptr;
2692     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2693       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2694       CI = dyn_cast<ConstantInt>(Op1);
2695     }
2696     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2697       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2698       CI = dyn_cast<ConstantInt>(Op2);
2699     }
2700 
2701     // We only want to perform this transformation if it will not lead to
2702     // additional code. This is true if either both sides of the select
2703     // fold to a constant (in which case the icmp is replaced with a select
2704     // which will usually simplify) or this is the only user of the
2705     // select (in which case we are trading a select+icmp for a simpler
2706     // select+icmp) or all uses of the select can be replaced based on
2707     // dominance information ("Global cases").
2708     bool Transform = false;
2709     if (Op1 && Op2)
2710       Transform = true;
2711     else if (Op1 || Op2) {
2712       // Local case
2713       if (LHSI->hasOneUse())
2714         Transform = true;
2715       // Global cases
2716       else if (CI && !CI->isZero())
2717         // When Op1 is constant try replacing select with second operand.
2718         // Otherwise Op2 is constant and try replacing select with first
2719         // operand.
2720         Transform =
2721             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
2722     }
2723     if (Transform) {
2724       if (!Op1)
2725         Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
2726                                   I.getName());
2727       if (!Op2)
2728         Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
2729                                   I.getName());
2730       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2731     }
2732     break;
2733   }
2734   case Instruction::IntToPtr:
2735     // icmp pred inttoptr(X), null -> icmp pred X, 0
2736     if (RHSC->isNullValue() &&
2737         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
2738       return new ICmpInst(
2739           I.getPredicate(), LHSI->getOperand(0),
2740           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2741     break;
2742 
2743   case Instruction::Load:
2744     // Try to optimize things like "A[i] > 4" to index computations.
2745     if (GetElementPtrInst *GEP =
2746             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2747       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2748         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2749             !cast<LoadInst>(LHSI)->isVolatile())
2750           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
2751             return Res;
2752     }
2753     break;
2754   }
2755 
2756   return nullptr;
2757 }
2758 
2759 /// Try to fold icmp (binop), X or icmp X, (binop).
2760 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
2761   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2762 
2763   // Special logic for binary operators.
2764   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2765   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2766   if (!BO0 && !BO1)
2767     return nullptr;
2768 
2769   CmpInst::Predicate Pred = I.getPredicate();
2770   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2771   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2772     NoOp0WrapProblem =
2773         ICmpInst::isEquality(Pred) ||
2774         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2775         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2776   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2777     NoOp1WrapProblem =
2778         ICmpInst::isEquality(Pred) ||
2779         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2780         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2781 
2782   // Analyze the case when either Op0 or Op1 is an add instruction.
2783   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2784   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2785   if (BO0 && BO0->getOpcode() == Instruction::Add) {
2786     A = BO0->getOperand(0);
2787     B = BO0->getOperand(1);
2788   }
2789   if (BO1 && BO1->getOpcode() == Instruction::Add) {
2790     C = BO1->getOperand(0);
2791     D = BO1->getOperand(1);
2792   }
2793 
2794   // icmp (X+cst) < 0 --> X < -cst
2795   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
2796     if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
2797       if (!RHSC->isMinValue(/*isSigned=*/true))
2798         return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
2799 
2800   // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2801   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2802     return new ICmpInst(Pred, A == Op1 ? B : A,
2803                         Constant::getNullValue(Op1->getType()));
2804 
2805   // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2806   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2807     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2808                         C == Op0 ? D : C);
2809 
2810   // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2811   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
2812       NoOp1WrapProblem &&
2813       // Try not to increase register pressure.
2814       BO0->hasOneUse() && BO1->hasOneUse()) {
2815     // Determine Y and Z in the form icmp (X+Y), (X+Z).
2816     Value *Y, *Z;
2817     if (A == C) {
2818       // C + B == C + D  ->  B == D
2819       Y = B;
2820       Z = D;
2821     } else if (A == D) {
2822       // D + B == C + D  ->  B == C
2823       Y = B;
2824       Z = C;
2825     } else if (B == C) {
2826       // A + C == C + D  ->  A == D
2827       Y = A;
2828       Z = D;
2829     } else {
2830       assert(B == D);
2831       // A + D == C + D  ->  A == C
2832       Y = A;
2833       Z = C;
2834     }
2835     return new ICmpInst(Pred, Y, Z);
2836   }
2837 
2838   // icmp slt (X + -1), Y -> icmp sle X, Y
2839   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2840       match(B, m_AllOnes()))
2841     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2842 
2843   // icmp sge (X + -1), Y -> icmp sgt X, Y
2844   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2845       match(B, m_AllOnes()))
2846     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2847 
2848   // icmp sle (X + 1), Y -> icmp slt X, Y
2849   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
2850     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2851 
2852   // icmp sgt (X + 1), Y -> icmp sge X, Y
2853   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
2854     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2855 
2856   // icmp sgt X, (Y + -1) -> icmp sge X, Y
2857   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
2858       match(D, m_AllOnes()))
2859     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
2860 
2861   // icmp sle X, (Y + -1) -> icmp slt X, Y
2862   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
2863       match(D, m_AllOnes()))
2864     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
2865 
2866   // icmp sge X, (Y + 1) -> icmp sgt X, Y
2867   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
2868     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
2869 
2870   // icmp slt X, (Y + 1) -> icmp sle X, Y
2871   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
2872     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
2873 
2874   // TODO: The subtraction-related identities shown below also hold, but
2875   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
2876   // wouldn't happen even if they were implemented.
2877   //
2878   // icmp ult (X - 1), Y -> icmp ule X, Y
2879   // icmp uge (X - 1), Y -> icmp ugt X, Y
2880   // icmp ugt X, (Y - 1) -> icmp uge X, Y
2881   // icmp ule X, (Y - 1) -> icmp ult X, Y
2882 
2883   // icmp ule (X + 1), Y -> icmp ult X, Y
2884   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
2885     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
2886 
2887   // icmp ugt (X + 1), Y -> icmp uge X, Y
2888   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
2889     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
2890 
2891   // icmp uge X, (Y + 1) -> icmp ugt X, Y
2892   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
2893     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
2894 
2895   // icmp ult X, (Y + 1) -> icmp ule X, Y
2896   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
2897     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
2898 
2899   // if C1 has greater magnitude than C2:
2900   //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2901   //  s.t. C3 = C1 - C2
2902   //
2903   // if C2 has greater magnitude than C1:
2904   //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2905   //  s.t. C3 = C2 - C1
2906   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2907       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2908     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2909       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2910         const APInt &AP1 = C1->getValue();
2911         const APInt &AP2 = C2->getValue();
2912         if (AP1.isNegative() == AP2.isNegative()) {
2913           APInt AP1Abs = C1->getValue().abs();
2914           APInt AP2Abs = C2->getValue().abs();
2915           if (AP1Abs.uge(AP2Abs)) {
2916             ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2917             Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2918             return new ICmpInst(Pred, NewAdd, C);
2919           } else {
2920             ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2921             Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2922             return new ICmpInst(Pred, A, NewAdd);
2923           }
2924         }
2925       }
2926 
2927   // Analyze the case when either Op0 or Op1 is a sub instruction.
2928   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2929   A = nullptr;
2930   B = nullptr;
2931   C = nullptr;
2932   D = nullptr;
2933   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
2934     A = BO0->getOperand(0);
2935     B = BO0->getOperand(1);
2936   }
2937   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
2938     C = BO1->getOperand(0);
2939     D = BO1->getOperand(1);
2940   }
2941 
2942   // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2943   if (A == Op1 && NoOp0WrapProblem)
2944     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2945 
2946   // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2947   if (C == Op0 && NoOp1WrapProblem)
2948     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2949 
2950   // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2951   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2952       // Try not to increase register pressure.
2953       BO0->hasOneUse() && BO1->hasOneUse())
2954     return new ICmpInst(Pred, A, C);
2955 
2956   // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2957   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2958       // Try not to increase register pressure.
2959       BO0->hasOneUse() && BO1->hasOneUse())
2960     return new ICmpInst(Pred, D, B);
2961 
2962   // icmp (0-X) < cst --> x > -cst
2963   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
2964     Value *X;
2965     if (match(BO0, m_Neg(m_Value(X))))
2966       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2967         if (!RHSC->isMinValue(/*isSigned=*/true))
2968           return new ICmpInst(I.getSwappedPredicate(), X,
2969                               ConstantExpr::getNeg(RHSC));
2970   }
2971 
2972   BinaryOperator *SRem = nullptr;
2973   // icmp (srem X, Y), Y
2974   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
2975     SRem = BO0;
2976   // icmp Y, (srem X, Y)
2977   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2978            Op0 == BO1->getOperand(1))
2979     SRem = BO1;
2980   if (SRem) {
2981     // We don't check hasOneUse to avoid increasing register pressure because
2982     // the value we use is the same value this instruction was already using.
2983     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2984     default:
2985       break;
2986     case ICmpInst::ICMP_EQ:
2987       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2988     case ICmpInst::ICMP_NE:
2989       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2990     case ICmpInst::ICMP_SGT:
2991     case ICmpInst::ICMP_SGE:
2992       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2993                           Constant::getAllOnesValue(SRem->getType()));
2994     case ICmpInst::ICMP_SLT:
2995     case ICmpInst::ICMP_SLE:
2996       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2997                           Constant::getNullValue(SRem->getType()));
2998     }
2999   }
3000 
3001   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3002       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3003     switch (BO0->getOpcode()) {
3004     default:
3005       break;
3006     case Instruction::Add:
3007     case Instruction::Sub:
3008     case Instruction::Xor:
3009       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3010         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3011                             BO1->getOperand(0));
3012       // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
3013       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3014         if (CI->getValue().isSignBit()) {
3015           ICmpInst::Predicate Pred =
3016               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3017           return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3018         }
3019 
3020         if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
3021           ICmpInst::Predicate Pred =
3022               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3023           Pred = I.getSwappedPredicate(Pred);
3024           return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3025         }
3026       }
3027       break;
3028     case Instruction::Mul:
3029       if (!I.isEquality())
3030         break;
3031 
3032       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3033         // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
3034         // Mask = -1 >> count-trailing-zeros(Cst).
3035         if (!CI->isZero() && !CI->isOne()) {
3036           const APInt &AP = CI->getValue();
3037           ConstantInt *Mask = ConstantInt::get(
3038               I.getContext(),
3039               APInt::getLowBitsSet(AP.getBitWidth(),
3040                                    AP.getBitWidth() - AP.countTrailingZeros()));
3041           Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3042           Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3043           return new ICmpInst(I.getPredicate(), And1, And2);
3044         }
3045       }
3046       break;
3047     case Instruction::UDiv:
3048     case Instruction::LShr:
3049       if (I.isSigned())
3050         break;
3051       LLVM_FALLTHROUGH;
3052     case Instruction::SDiv:
3053     case Instruction::AShr:
3054       if (!BO0->isExact() || !BO1->isExact())
3055         break;
3056       return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3057                           BO1->getOperand(0));
3058     case Instruction::Shl: {
3059       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3060       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3061       if (!NUW && !NSW)
3062         break;
3063       if (!NSW && I.isSigned())
3064         break;
3065       return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3066                           BO1->getOperand(0));
3067     }
3068     }
3069   }
3070 
3071   if (BO0) {
3072     // Transform  A & (L - 1) `ult` L --> L != 0
3073     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3074     auto BitwiseAnd =
3075         m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
3076 
3077     if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
3078       auto *Zero = Constant::getNullValue(BO0->getType());
3079       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3080     }
3081   }
3082 
3083   return nullptr;
3084 }
3085 
3086 /// Fold icmp Pred min|max(X, Y), X.
3087 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
3088   ICmpInst::Predicate Pred = Cmp.getPredicate();
3089   Value *Op0 = Cmp.getOperand(0);
3090   Value *X = Cmp.getOperand(1);
3091 
3092   // Canonicalize minimum or maximum operand to LHS of the icmp.
3093   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
3094       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
3095       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
3096       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
3097     std::swap(Op0, X);
3098     Pred = Cmp.getSwappedPredicate();
3099   }
3100 
3101   Value *Y;
3102   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
3103     // smin(X, Y)  == X --> X s<= Y
3104     // smin(X, Y) s>= X --> X s<= Y
3105     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
3106       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
3107 
3108     // smin(X, Y) != X --> X s> Y
3109     // smin(X, Y) s< X --> X s> Y
3110     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
3111       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
3112 
3113     // These cases should be handled in InstSimplify:
3114     // smin(X, Y) s<= X --> true
3115     // smin(X, Y) s> X --> false
3116     return nullptr;
3117   }
3118 
3119   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
3120     // smax(X, Y)  == X --> X s>= Y
3121     // smax(X, Y) s<= X --> X s>= Y
3122     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
3123       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
3124 
3125     // smax(X, Y) != X --> X s< Y
3126     // smax(X, Y) s> X --> X s< Y
3127     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
3128       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
3129 
3130     // These cases should be handled in InstSimplify:
3131     // smax(X, Y) s>= X --> true
3132     // smax(X, Y) s< X --> false
3133     return nullptr;
3134   }
3135 
3136   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
3137     // umin(X, Y)  == X --> X u<= Y
3138     // umin(X, Y) u>= X --> X u<= Y
3139     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
3140       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
3141 
3142     // umin(X, Y) != X --> X u> Y
3143     // umin(X, Y) u< X --> X u> Y
3144     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
3145       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
3146 
3147     // These cases should be handled in InstSimplify:
3148     // umin(X, Y) u<= X --> true
3149     // umin(X, Y) u> X --> false
3150     return nullptr;
3151   }
3152 
3153   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
3154     // umax(X, Y)  == X --> X u>= Y
3155     // umax(X, Y) u<= X --> X u>= Y
3156     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
3157       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
3158 
3159     // umax(X, Y) != X --> X u< Y
3160     // umax(X, Y) u> X --> X u< Y
3161     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
3162       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
3163 
3164     // These cases should be handled in InstSimplify:
3165     // umax(X, Y) u>= X --> true
3166     // umax(X, Y) u< X --> false
3167     return nullptr;
3168   }
3169 
3170   return nullptr;
3171 }
3172 
3173 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
3174   if (!I.isEquality())
3175     return nullptr;
3176 
3177   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3178   Value *A, *B, *C, *D;
3179   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3180     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
3181       Value *OtherVal = A == Op1 ? B : A;
3182       return new ICmpInst(I.getPredicate(), OtherVal,
3183                           Constant::getNullValue(A->getType()));
3184     }
3185 
3186     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3187       // A^c1 == C^c2 --> A == C^(c1^c2)
3188       ConstantInt *C1, *C2;
3189       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
3190           Op1->hasOneUse()) {
3191         Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3192         Value *Xor = Builder->CreateXor(C, NC);
3193         return new ICmpInst(I.getPredicate(), A, Xor);
3194       }
3195 
3196       // A^B == A^D -> B == D
3197       if (A == C)
3198         return new ICmpInst(I.getPredicate(), B, D);
3199       if (A == D)
3200         return new ICmpInst(I.getPredicate(), B, C);
3201       if (B == C)
3202         return new ICmpInst(I.getPredicate(), A, D);
3203       if (B == D)
3204         return new ICmpInst(I.getPredicate(), A, C);
3205     }
3206   }
3207 
3208   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
3209     // A == (A^B)  ->  B == 0
3210     Value *OtherVal = A == Op0 ? B : A;
3211     return new ICmpInst(I.getPredicate(), OtherVal,
3212                         Constant::getNullValue(A->getType()));
3213   }
3214 
3215   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3216   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3217       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3218     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3219 
3220     if (A == C) {
3221       X = B;
3222       Y = D;
3223       Z = A;
3224     } else if (A == D) {
3225       X = B;
3226       Y = C;
3227       Z = A;
3228     } else if (B == C) {
3229       X = A;
3230       Y = D;
3231       Z = B;
3232     } else if (B == D) {
3233       X = A;
3234       Y = C;
3235       Z = B;
3236     }
3237 
3238     if (X) { // Build (X^Y) & Z
3239       Op1 = Builder->CreateXor(X, Y);
3240       Op1 = Builder->CreateAnd(Op1, Z);
3241       I.setOperand(0, Op1);
3242       I.setOperand(1, Constant::getNullValue(Op1->getType()));
3243       return &I;
3244     }
3245   }
3246 
3247   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3248   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3249   ConstantInt *Cst1;
3250   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
3251        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3252       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3253        match(Op1, m_ZExt(m_Value(A))))) {
3254     APInt Pow2 = Cst1->getValue() + 1;
3255     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3256         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3257       return new ICmpInst(I.getPredicate(), A,
3258                           Builder->CreateTrunc(B, A->getType()));
3259   }
3260 
3261   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3262   // For lshr and ashr pairs.
3263   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3264        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3265       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3266        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3267     unsigned TypeBits = Cst1->getBitWidth();
3268     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3269     if (ShAmt < TypeBits && ShAmt != 0) {
3270       ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3271                                      ? ICmpInst::ICMP_UGE
3272                                      : ICmpInst::ICMP_ULT;
3273       Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3274       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3275       return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3276     }
3277   }
3278 
3279   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3280   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3281       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3282     unsigned TypeBits = Cst1->getBitWidth();
3283     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3284     if (ShAmt < TypeBits && ShAmt != 0) {
3285       Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3286       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3287       Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
3288                                       I.getName() + ".mask");
3289       return new ICmpInst(I.getPredicate(), And,
3290                           Constant::getNullValue(Cst1->getType()));
3291     }
3292   }
3293 
3294   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3295   // "icmp (and X, mask), cst"
3296   uint64_t ShAmt = 0;
3297   if (Op0->hasOneUse() &&
3298       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
3299       match(Op1, m_ConstantInt(Cst1)) &&
3300       // Only do this when A has multiple uses.  This is most important to do
3301       // when it exposes other optimizations.
3302       !A->hasOneUse()) {
3303     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3304 
3305     if (ShAmt < ASize) {
3306       APInt MaskV =
3307           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3308       MaskV <<= ShAmt;
3309 
3310       APInt CmpV = Cst1->getValue().zext(ASize);
3311       CmpV <<= ShAmt;
3312 
3313       Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3314       return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3315     }
3316   }
3317 
3318   return nullptr;
3319 }
3320 
3321 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
3322 /// far.
3323 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
3324   const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
3325   Value *LHSCIOp        = LHSCI->getOperand(0);
3326   Type *SrcTy     = LHSCIOp->getType();
3327   Type *DestTy    = LHSCI->getType();
3328   Value *RHSCIOp;
3329 
3330   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
3331   // integer type is the same size as the pointer type.
3332   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
3333       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
3334     Value *RHSOp = nullptr;
3335     if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
3336       Value *RHSCIOp = RHSC->getOperand(0);
3337       if (RHSCIOp->getType()->getPointerAddressSpace() ==
3338           LHSCIOp->getType()->getPointerAddressSpace()) {
3339         RHSOp = RHSC->getOperand(0);
3340         // If the pointer types don't match, insert a bitcast.
3341         if (LHSCIOp->getType() != RHSOp->getType())
3342           RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
3343       }
3344     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
3345       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
3346     }
3347 
3348     if (RHSOp)
3349       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
3350   }
3351 
3352   // The code below only handles extension cast instructions, so far.
3353   // Enforce this.
3354   if (LHSCI->getOpcode() != Instruction::ZExt &&
3355       LHSCI->getOpcode() != Instruction::SExt)
3356     return nullptr;
3357 
3358   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
3359   bool isSignedCmp = ICmp.isSigned();
3360 
3361   if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
3362     // Not an extension from the same type?
3363     RHSCIOp = CI->getOperand(0);
3364     if (RHSCIOp->getType() != LHSCIOp->getType())
3365       return nullptr;
3366 
3367     // If the signedness of the two casts doesn't agree (i.e. one is a sext
3368     // and the other is a zext), then we can't handle this.
3369     if (CI->getOpcode() != LHSCI->getOpcode())
3370       return nullptr;
3371 
3372     // Deal with equality cases early.
3373     if (ICmp.isEquality())
3374       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3375 
3376     // A signed comparison of sign extended values simplifies into a
3377     // signed comparison.
3378     if (isSignedCmp && isSignedExt)
3379       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3380 
3381     // The other three cases all fold into an unsigned comparison.
3382     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
3383   }
3384 
3385   // If we aren't dealing with a constant on the RHS, exit early.
3386   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
3387   if (!C)
3388     return nullptr;
3389 
3390   // Compute the constant that would happen if we truncated to SrcTy then
3391   // re-extended to DestTy.
3392   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
3393   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
3394 
3395   // If the re-extended constant didn't change...
3396   if (Res2 == C) {
3397     // Deal with equality cases early.
3398     if (ICmp.isEquality())
3399       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3400 
3401     // A signed comparison of sign extended values simplifies into a
3402     // signed comparison.
3403     if (isSignedExt && isSignedCmp)
3404       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3405 
3406     // The other three cases all fold into an unsigned comparison.
3407     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
3408   }
3409 
3410   // The re-extended constant changed, partly changed (in the case of a vector),
3411   // or could not be determined to be equal (in the case of a constant
3412   // expression), so the constant cannot be represented in the shorter type.
3413   // Consequently, we cannot emit a simple comparison.
3414   // All the cases that fold to true or false will have already been handled
3415   // by SimplifyICmpInst, so only deal with the tricky case.
3416 
3417   if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
3418     return nullptr;
3419 
3420   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
3421   // should have been folded away previously and not enter in here.
3422 
3423   // We're performing an unsigned comp with a sign extended value.
3424   // This is true if the input is >= 0. [aka >s -1]
3425   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
3426   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
3427 
3428   // Finally, return the value computed.
3429   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
3430     return replaceInstUsesWith(ICmp, Result);
3431 
3432   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
3433   return BinaryOperator::CreateNot(Result);
3434 }
3435 
3436 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
3437                                          Value *RHS, Instruction &OrigI,
3438                                          Value *&Result, Constant *&Overflow) {
3439   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
3440     std::swap(LHS, RHS);
3441 
3442   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
3443     Result = OpResult;
3444     Overflow = OverflowVal;
3445     if (ReuseName)
3446       Result->takeName(&OrigI);
3447     return true;
3448   };
3449 
3450   // If the overflow check was an add followed by a compare, the insertion point
3451   // may be pointing to the compare.  We want to insert the new instructions
3452   // before the add in case there are uses of the add between the add and the
3453   // compare.
3454   Builder->SetInsertPoint(&OrigI);
3455 
3456   switch (OCF) {
3457   case OCF_INVALID:
3458     llvm_unreachable("bad overflow check kind!");
3459 
3460   case OCF_UNSIGNED_ADD: {
3461     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
3462     if (OR == OverflowResult::NeverOverflows)
3463       return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
3464                        true);
3465 
3466     if (OR == OverflowResult::AlwaysOverflows)
3467       return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
3468 
3469     // Fall through uadd into sadd
3470     LLVM_FALLTHROUGH;
3471   }
3472   case OCF_SIGNED_ADD: {
3473     // X + 0 -> {X, false}
3474     if (match(RHS, m_Zero()))
3475       return SetResult(LHS, Builder->getFalse(), false);
3476 
3477     // We can strength reduce this signed add into a regular add if we can prove
3478     // that it will never overflow.
3479     if (OCF == OCF_SIGNED_ADD)
3480       if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
3481         return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
3482                          true);
3483     break;
3484   }
3485 
3486   case OCF_UNSIGNED_SUB:
3487   case OCF_SIGNED_SUB: {
3488     // X - 0 -> {X, false}
3489     if (match(RHS, m_Zero()))
3490       return SetResult(LHS, Builder->getFalse(), false);
3491 
3492     if (OCF == OCF_SIGNED_SUB) {
3493       if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
3494         return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
3495                          true);
3496     } else {
3497       if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
3498         return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
3499                          true);
3500     }
3501     break;
3502   }
3503 
3504   case OCF_UNSIGNED_MUL: {
3505     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
3506     if (OR == OverflowResult::NeverOverflows)
3507       return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
3508                        true);
3509     if (OR == OverflowResult::AlwaysOverflows)
3510       return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
3511     LLVM_FALLTHROUGH;
3512   }
3513   case OCF_SIGNED_MUL:
3514     // X * undef -> undef
3515     if (isa<UndefValue>(RHS))
3516       return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
3517 
3518     // X * 0 -> {0, false}
3519     if (match(RHS, m_Zero()))
3520       return SetResult(RHS, Builder->getFalse(), false);
3521 
3522     // X * 1 -> {X, false}
3523     if (match(RHS, m_One()))
3524       return SetResult(LHS, Builder->getFalse(), false);
3525 
3526     if (OCF == OCF_SIGNED_MUL)
3527       if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
3528         return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
3529                          true);
3530     break;
3531   }
3532 
3533   return false;
3534 }
3535 
3536 /// \brief Recognize and process idiom involving test for multiplication
3537 /// overflow.
3538 ///
3539 /// The caller has matched a pattern of the form:
3540 ///   I = cmp u (mul(zext A, zext B), V
3541 /// The function checks if this is a test for overflow and if so replaces
3542 /// multiplication with call to 'mul.with.overflow' intrinsic.
3543 ///
3544 /// \param I Compare instruction.
3545 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
3546 ///               the compare instruction.  Must be of integer type.
3547 /// \param OtherVal The other argument of compare instruction.
3548 /// \returns Instruction which must replace the compare instruction, NULL if no
3549 ///          replacement required.
3550 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
3551                                          Value *OtherVal, InstCombiner &IC) {
3552   // Don't bother doing this transformation for pointers, don't do it for
3553   // vectors.
3554   if (!isa<IntegerType>(MulVal->getType()))
3555     return nullptr;
3556 
3557   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
3558   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
3559   auto *MulInstr = dyn_cast<Instruction>(MulVal);
3560   if (!MulInstr)
3561     return nullptr;
3562   assert(MulInstr->getOpcode() == Instruction::Mul);
3563 
3564   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
3565        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
3566   assert(LHS->getOpcode() == Instruction::ZExt);
3567   assert(RHS->getOpcode() == Instruction::ZExt);
3568   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
3569 
3570   // Calculate type and width of the result produced by mul.with.overflow.
3571   Type *TyA = A->getType(), *TyB = B->getType();
3572   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
3573            WidthB = TyB->getPrimitiveSizeInBits();
3574   unsigned MulWidth;
3575   Type *MulType;
3576   if (WidthB > WidthA) {
3577     MulWidth = WidthB;
3578     MulType = TyB;
3579   } else {
3580     MulWidth = WidthA;
3581     MulType = TyA;
3582   }
3583 
3584   // In order to replace the original mul with a narrower mul.with.overflow,
3585   // all uses must ignore upper bits of the product.  The number of used low
3586   // bits must be not greater than the width of mul.with.overflow.
3587   if (MulVal->hasNUsesOrMore(2))
3588     for (User *U : MulVal->users()) {
3589       if (U == &I)
3590         continue;
3591       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3592         // Check if truncation ignores bits above MulWidth.
3593         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
3594         if (TruncWidth > MulWidth)
3595           return nullptr;
3596       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3597         // Check if AND ignores bits above MulWidth.
3598         if (BO->getOpcode() != Instruction::And)
3599           return nullptr;
3600         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
3601           const APInt &CVal = CI->getValue();
3602           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
3603             return nullptr;
3604         }
3605       } else {
3606         // Other uses prohibit this transformation.
3607         return nullptr;
3608       }
3609     }
3610 
3611   // Recognize patterns
3612   switch (I.getPredicate()) {
3613   case ICmpInst::ICMP_EQ:
3614   case ICmpInst::ICMP_NE:
3615     // Recognize pattern:
3616     //   mulval = mul(zext A, zext B)
3617     //   cmp eq/neq mulval, zext trunc mulval
3618     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
3619       if (Zext->hasOneUse()) {
3620         Value *ZextArg = Zext->getOperand(0);
3621         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
3622           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
3623             break; //Recognized
3624       }
3625 
3626     // Recognize pattern:
3627     //   mulval = mul(zext A, zext B)
3628     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
3629     ConstantInt *CI;
3630     Value *ValToMask;
3631     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
3632       if (ValToMask != MulVal)
3633         return nullptr;
3634       const APInt &CVal = CI->getValue() + 1;
3635       if (CVal.isPowerOf2()) {
3636         unsigned MaskWidth = CVal.logBase2();
3637         if (MaskWidth == MulWidth)
3638           break; // Recognized
3639       }
3640     }
3641     return nullptr;
3642 
3643   case ICmpInst::ICMP_UGT:
3644     // Recognize pattern:
3645     //   mulval = mul(zext A, zext B)
3646     //   cmp ugt mulval, max
3647     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3648       APInt MaxVal = APInt::getMaxValue(MulWidth);
3649       MaxVal = MaxVal.zext(CI->getBitWidth());
3650       if (MaxVal.eq(CI->getValue()))
3651         break; // Recognized
3652     }
3653     return nullptr;
3654 
3655   case ICmpInst::ICMP_UGE:
3656     // Recognize pattern:
3657     //   mulval = mul(zext A, zext B)
3658     //   cmp uge mulval, max+1
3659     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3660       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3661       if (MaxVal.eq(CI->getValue()))
3662         break; // Recognized
3663     }
3664     return nullptr;
3665 
3666   case ICmpInst::ICMP_ULE:
3667     // Recognize pattern:
3668     //   mulval = mul(zext A, zext B)
3669     //   cmp ule mulval, max
3670     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3671       APInt MaxVal = APInt::getMaxValue(MulWidth);
3672       MaxVal = MaxVal.zext(CI->getBitWidth());
3673       if (MaxVal.eq(CI->getValue()))
3674         break; // Recognized
3675     }
3676     return nullptr;
3677 
3678   case ICmpInst::ICMP_ULT:
3679     // Recognize pattern:
3680     //   mulval = mul(zext A, zext B)
3681     //   cmp ule mulval, max + 1
3682     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3683       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3684       if (MaxVal.eq(CI->getValue()))
3685         break; // Recognized
3686     }
3687     return nullptr;
3688 
3689   default:
3690     return nullptr;
3691   }
3692 
3693   InstCombiner::BuilderTy *Builder = IC.Builder;
3694   Builder->SetInsertPoint(MulInstr);
3695 
3696   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
3697   Value *MulA = A, *MulB = B;
3698   if (WidthA < MulWidth)
3699     MulA = Builder->CreateZExt(A, MulType);
3700   if (WidthB < MulWidth)
3701     MulB = Builder->CreateZExt(B, MulType);
3702   Value *F = Intrinsic::getDeclaration(I.getModule(),
3703                                        Intrinsic::umul_with_overflow, MulType);
3704   CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
3705   IC.Worklist.Add(MulInstr);
3706 
3707   // If there are uses of mul result other than the comparison, we know that
3708   // they are truncation or binary AND. Change them to use result of
3709   // mul.with.overflow and adjust properly mask/size.
3710   if (MulVal->hasNUsesOrMore(2)) {
3711     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
3712     for (User *U : MulVal->users()) {
3713       if (U == &I || U == OtherVal)
3714         continue;
3715       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3716         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
3717           IC.replaceInstUsesWith(*TI, Mul);
3718         else
3719           TI->setOperand(0, Mul);
3720       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3721         assert(BO->getOpcode() == Instruction::And);
3722         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
3723         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
3724         APInt ShortMask = CI->getValue().trunc(MulWidth);
3725         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
3726         Instruction *Zext =
3727             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
3728         IC.Worklist.Add(Zext);
3729         IC.replaceInstUsesWith(*BO, Zext);
3730       } else {
3731         llvm_unreachable("Unexpected Binary operation");
3732       }
3733       IC.Worklist.Add(cast<Instruction>(U));
3734     }
3735   }
3736   if (isa<Instruction>(OtherVal))
3737     IC.Worklist.Add(cast<Instruction>(OtherVal));
3738 
3739   // The original icmp gets replaced with the overflow value, maybe inverted
3740   // depending on predicate.
3741   bool Inverse = false;
3742   switch (I.getPredicate()) {
3743   case ICmpInst::ICMP_NE:
3744     break;
3745   case ICmpInst::ICMP_EQ:
3746     Inverse = true;
3747     break;
3748   case ICmpInst::ICMP_UGT:
3749   case ICmpInst::ICMP_UGE:
3750     if (I.getOperand(0) == MulVal)
3751       break;
3752     Inverse = true;
3753     break;
3754   case ICmpInst::ICMP_ULT:
3755   case ICmpInst::ICMP_ULE:
3756     if (I.getOperand(1) == MulVal)
3757       break;
3758     Inverse = true;
3759     break;
3760   default:
3761     llvm_unreachable("Unexpected predicate");
3762   }
3763   if (Inverse) {
3764     Value *Res = Builder->CreateExtractValue(Call, 1);
3765     return BinaryOperator::CreateNot(Res);
3766   }
3767 
3768   return ExtractValueInst::Create(Call, 1);
3769 }
3770 
3771 /// When performing a comparison against a constant, it is possible that not all
3772 /// the bits in the LHS are demanded. This helper method computes the mask that
3773 /// IS demanded.
3774 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth,
3775                                     bool isSignCheck) {
3776   if (isSignCheck)
3777     return APInt::getSignBit(BitWidth);
3778 
3779   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3780   if (!CI) return APInt::getAllOnesValue(BitWidth);
3781   const APInt &RHS = CI->getValue();
3782 
3783   switch (I.getPredicate()) {
3784   // For a UGT comparison, we don't care about any bits that
3785   // correspond to the trailing ones of the comparand.  The value of these
3786   // bits doesn't impact the outcome of the comparison, because any value
3787   // greater than the RHS must differ in a bit higher than these due to carry.
3788   case ICmpInst::ICMP_UGT: {
3789     unsigned trailingOnes = RHS.countTrailingOnes();
3790     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
3791     return ~lowBitsSet;
3792   }
3793 
3794   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
3795   // Any value less than the RHS must differ in a higher bit because of carries.
3796   case ICmpInst::ICMP_ULT: {
3797     unsigned trailingZeros = RHS.countTrailingZeros();
3798     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
3799     return ~lowBitsSet;
3800   }
3801 
3802   default:
3803     return APInt::getAllOnesValue(BitWidth);
3804   }
3805 }
3806 
3807 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
3808 /// should be swapped.
3809 /// The decision is based on how many times these two operands are reused
3810 /// as subtract operands and their positions in those instructions.
3811 /// The rational is that several architectures use the same instruction for
3812 /// both subtract and cmp, thus it is better if the order of those operands
3813 /// match.
3814 /// \return true if Op0 and Op1 should be swapped.
3815 static bool swapMayExposeCSEOpportunities(const Value * Op0,
3816                                           const Value * Op1) {
3817   // Filter out pointer value as those cannot appears directly in subtract.
3818   // FIXME: we may want to go through inttoptrs or bitcasts.
3819   if (Op0->getType()->isPointerTy())
3820     return false;
3821   // Count every uses of both Op0 and Op1 in a subtract.
3822   // Each time Op0 is the first operand, count -1: swapping is bad, the
3823   // subtract has already the same layout as the compare.
3824   // Each time Op0 is the second operand, count +1: swapping is good, the
3825   // subtract has a different layout as the compare.
3826   // At the end, if the benefit is greater than 0, Op0 should come second to
3827   // expose more CSE opportunities.
3828   int GlobalSwapBenefits = 0;
3829   for (const User *U : Op0->users()) {
3830     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
3831     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
3832       continue;
3833     // If Op0 is the first argument, this is not beneficial to swap the
3834     // arguments.
3835     int LocalSwapBenefits = -1;
3836     unsigned Op1Idx = 1;
3837     if (BinOp->getOperand(Op1Idx) == Op0) {
3838       Op1Idx = 0;
3839       LocalSwapBenefits = 1;
3840     }
3841     if (BinOp->getOperand(Op1Idx) != Op1)
3842       continue;
3843     GlobalSwapBenefits += LocalSwapBenefits;
3844   }
3845   return GlobalSwapBenefits > 0;
3846 }
3847 
3848 /// \brief Check that one use is in the same block as the definition and all
3849 /// other uses are in blocks dominated by a given block.
3850 ///
3851 /// \param DI Definition
3852 /// \param UI Use
3853 /// \param DB Block that must dominate all uses of \p DI outside
3854 ///           the parent block
3855 /// \return true when \p UI is the only use of \p DI in the parent block
3856 /// and all other uses of \p DI are in blocks dominated by \p DB.
3857 ///
3858 bool InstCombiner::dominatesAllUses(const Instruction *DI,
3859                                     const Instruction *UI,
3860                                     const BasicBlock *DB) const {
3861   assert(DI && UI && "Instruction not defined\n");
3862   // Ignore incomplete definitions.
3863   if (!DI->getParent())
3864     return false;
3865   // DI and UI must be in the same block.
3866   if (DI->getParent() != UI->getParent())
3867     return false;
3868   // Protect from self-referencing blocks.
3869   if (DI->getParent() == DB)
3870     return false;
3871   for (const User *U : DI->users()) {
3872     auto *Usr = cast<Instruction>(U);
3873     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
3874       return false;
3875   }
3876   return true;
3877 }
3878 
3879 /// Return true when the instruction sequence within a block is select-cmp-br.
3880 static bool isChainSelectCmpBranch(const SelectInst *SI) {
3881   const BasicBlock *BB = SI->getParent();
3882   if (!BB)
3883     return false;
3884   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
3885   if (!BI || BI->getNumSuccessors() != 2)
3886     return false;
3887   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
3888   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
3889     return false;
3890   return true;
3891 }
3892 
3893 /// \brief True when a select result is replaced by one of its operands
3894 /// in select-icmp sequence. This will eventually result in the elimination
3895 /// of the select.
3896 ///
3897 /// \param SI    Select instruction
3898 /// \param Icmp  Compare instruction
3899 /// \param SIOpd Operand that replaces the select
3900 ///
3901 /// Notes:
3902 /// - The replacement is global and requires dominator information
3903 /// - The caller is responsible for the actual replacement
3904 ///
3905 /// Example:
3906 ///
3907 /// entry:
3908 ///  %4 = select i1 %3, %C* %0, %C* null
3909 ///  %5 = icmp eq %C* %4, null
3910 ///  br i1 %5, label %9, label %7
3911 ///  ...
3912 ///  ; <label>:7                                       ; preds = %entry
3913 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
3914 ///  ...
3915 ///
3916 /// can be transformed to
3917 ///
3918 ///  %5 = icmp eq %C* %0, null
3919 ///  %6 = select i1 %3, i1 %5, i1 true
3920 ///  br i1 %6, label %9, label %7
3921 ///  ...
3922 ///  ; <label>:7                                       ; preds = %entry
3923 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
3924 ///
3925 /// Similar when the first operand of the select is a constant or/and
3926 /// the compare is for not equal rather than equal.
3927 ///
3928 /// NOTE: The function is only called when the select and compare constants
3929 /// are equal, the optimization can work only for EQ predicates. This is not a
3930 /// major restriction since a NE compare should be 'normalized' to an equal
3931 /// compare, which usually happens in the combiner and test case
3932 /// select-cmp-br.ll checks for it.
3933 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
3934                                              const ICmpInst *Icmp,
3935                                              const unsigned SIOpd) {
3936   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
3937   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
3938     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
3939     // The check for the unique predecessor is not the best that can be
3940     // done. But it protects efficiently against cases like when SI's
3941     // home block has two successors, Succ and Succ1, and Succ1 predecessor
3942     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
3943     // replaced can be reached on either path. So the uniqueness check
3944     // guarantees that the path all uses of SI (outside SI's parent) are on
3945     // is disjoint from all other paths out of SI. But that information
3946     // is more expensive to compute, and the trade-off here is in favor
3947     // of compile-time.
3948     if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
3949       NumSel++;
3950       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
3951       return true;
3952     }
3953   }
3954   return false;
3955 }
3956 
3957 /// Try to fold the comparison based on range information we can get by checking
3958 /// whether bits are known to be zero or one in the inputs.
3959 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
3960   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3961   Type *Ty = Op0->getType();
3962   ICmpInst::Predicate Pred = I.getPredicate();
3963 
3964   // Get scalar or pointer size.
3965   unsigned BitWidth = Ty->isIntOrIntVectorTy()
3966                           ? Ty->getScalarSizeInBits()
3967                           : DL.getTypeSizeInBits(Ty->getScalarType());
3968 
3969   if (!BitWidth)
3970     return nullptr;
3971 
3972   // If this is a normal comparison, it demands all bits. If it is a sign bit
3973   // comparison, it only demands the sign bit.
3974   bool IsSignBit = false;
3975   const APInt *CmpC;
3976   if (match(Op1, m_APInt(CmpC))) {
3977     bool UnusedBit;
3978     IsSignBit = isSignBitCheck(Pred, *CmpC, UnusedBit);
3979   }
3980 
3981   APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
3982   APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
3983 
3984   if (SimplifyDemandedBits(I.getOperandUse(0),
3985                            getDemandedBitsLHSMask(I, BitWidth, IsSignBit),
3986                            Op0KnownZero, Op0KnownOne, 0))
3987     return &I;
3988 
3989   if (SimplifyDemandedBits(I.getOperandUse(1), APInt::getAllOnesValue(BitWidth),
3990                            Op1KnownZero, Op1KnownOne, 0))
3991     return &I;
3992 
3993   // Given the known and unknown bits, compute a range that the LHS could be
3994   // in.  Compute the Min, Max and RHS values based on the known bits. For the
3995   // EQ and NE we use unsigned values.
3996   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
3997   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
3998   if (I.isSigned()) {
3999     computeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
4000                                            Op0Max);
4001     computeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
4002                                            Op1Max);
4003   } else {
4004     computeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
4005                                              Op0Max);
4006     computeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
4007                                              Op1Max);
4008   }
4009 
4010   // If Min and Max are known to be the same, then SimplifyDemandedBits
4011   // figured out that the LHS is a constant. Constant fold this now, so that
4012   // code below can assume that Min != Max.
4013   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4014     return new ICmpInst(Pred, ConstantInt::get(Op0->getType(), Op0Min), Op1);
4015   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4016     return new ICmpInst(Pred, Op0, ConstantInt::get(Op1->getType(), Op1Min));
4017 
4018   // Based on the range information we know about the LHS, see if we can
4019   // simplify this comparison.  For example, (x&4) < 8 is always true.
4020   switch (Pred) {
4021   default:
4022     llvm_unreachable("Unknown icmp opcode!");
4023   case ICmpInst::ICMP_EQ:
4024   case ICmpInst::ICMP_NE: {
4025     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4026       return Pred == CmpInst::ICMP_EQ
4027                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4028                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4029     }
4030 
4031     // If all bits are known zero except for one, then we know at most one bit
4032     // is set. If the comparison is against zero, then this is a check to see if
4033     // *that* bit is set.
4034     APInt Op0KnownZeroInverted = ~Op0KnownZero;
4035     if (~Op1KnownZero == 0) {
4036       // If the LHS is an AND with the same constant, look through it.
4037       Value *LHS = nullptr;
4038       const APInt *LHSC;
4039       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4040           *LHSC != Op0KnownZeroInverted)
4041         LHS = Op0;
4042 
4043       Value *X;
4044       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4045         APInt ValToCheck = Op0KnownZeroInverted;
4046         Type *XTy = X->getType();
4047         if (ValToCheck.isPowerOf2()) {
4048           // ((1 << X) & 8) == 0 -> X != 3
4049           // ((1 << X) & 8) != 0 -> X == 3
4050           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4051           auto NewPred = ICmpInst::getInversePredicate(Pred);
4052           return new ICmpInst(NewPred, X, CmpC);
4053         } else if ((++ValToCheck).isPowerOf2()) {
4054           // ((1 << X) & 7) == 0 -> X >= 3
4055           // ((1 << X) & 7) != 0 -> X  < 3
4056           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4057           auto NewPred =
4058               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4059           return new ICmpInst(NewPred, X, CmpC);
4060         }
4061       }
4062 
4063       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4064       const APInt *CI;
4065       if (Op0KnownZeroInverted == 1 &&
4066           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4067         // ((8 >>u X) & 1) == 0 -> X != 3
4068         // ((8 >>u X) & 1) != 0 -> X == 3
4069         unsigned CmpVal = CI->countTrailingZeros();
4070         auto NewPred = ICmpInst::getInversePredicate(Pred);
4071         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4072       }
4073     }
4074     break;
4075   }
4076   case ICmpInst::ICMP_ULT: {
4077     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4078       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4079     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
4080       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4081     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
4082       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4083 
4084     const APInt *CmpC;
4085     if (match(Op1, m_APInt(CmpC))) {
4086       // A <u C -> A == C-1 if min(A)+1 == C
4087       if (Op1Max == Op0Min + 1) {
4088         Constant *CMinus1 = ConstantInt::get(Op0->getType(), *CmpC - 1);
4089         return new ICmpInst(ICmpInst::ICMP_EQ, Op0, CMinus1);
4090       }
4091       // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
4092       if (CmpC->isMinSignedValue()) {
4093         Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
4094         return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
4095       }
4096     }
4097     break;
4098   }
4099   case ICmpInst::ICMP_UGT: {
4100     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
4101       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4102 
4103     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
4104       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4105 
4106     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
4107       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4108 
4109     const APInt *CmpC;
4110     if (match(Op1, m_APInt(CmpC))) {
4111       // A >u C -> A == C+1 if max(a)-1 == C
4112       if (*CmpC == Op0Max - 1)
4113         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4114                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4115 
4116       // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
4117       if (CmpC->isMaxSignedValue())
4118         return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
4119                             Constant::getNullValue(Op0->getType()));
4120     }
4121     break;
4122   }
4123   case ICmpInst::ICMP_SLT:
4124     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
4125       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4126     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
4127       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4128     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
4129       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4130     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
4131       if (Op1Max == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
4132         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4133                             Builder->getInt(CI->getValue() - 1));
4134     }
4135     break;
4136   case ICmpInst::ICMP_SGT:
4137     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
4138       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4139     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
4140       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4141 
4142     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
4143       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4144     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
4145       if (Op1Min == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
4146         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4147                             Builder->getInt(CI->getValue() + 1));
4148     }
4149     break;
4150   case ICmpInst::ICMP_SGE:
4151     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
4152     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
4153       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4154     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
4155       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4156     break;
4157   case ICmpInst::ICMP_SLE:
4158     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
4159     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
4160       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4161     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
4162       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4163     break;
4164   case ICmpInst::ICMP_UGE:
4165     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
4166     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
4167       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4168     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
4169       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4170     break;
4171   case ICmpInst::ICMP_ULE:
4172     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
4173     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
4174       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4175     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
4176       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4177     break;
4178   }
4179 
4180   // Turn a signed comparison into an unsigned one if both operands are known to
4181   // have the same sign.
4182   if (I.isSigned() &&
4183       ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
4184        (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
4185     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
4186 
4187   return nullptr;
4188 }
4189 
4190 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
4191 /// it into the appropriate icmp lt or icmp gt instruction. This transform
4192 /// allows them to be folded in visitICmpInst.
4193 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
4194   ICmpInst::Predicate Pred = I.getPredicate();
4195   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
4196       Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
4197     return nullptr;
4198 
4199   Value *Op0 = I.getOperand(0);
4200   Value *Op1 = I.getOperand(1);
4201   auto *Op1C = dyn_cast<Constant>(Op1);
4202   if (!Op1C)
4203     return nullptr;
4204 
4205   // Check if the constant operand can be safely incremented/decremented without
4206   // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
4207   // the edge cases for us, so we just assert on them. For vectors, we must
4208   // handle the edge cases.
4209   Type *Op1Type = Op1->getType();
4210   bool IsSigned = I.isSigned();
4211   bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
4212   auto *CI = dyn_cast<ConstantInt>(Op1C);
4213   if (CI) {
4214     // A <= MAX -> TRUE ; A >= MIN -> TRUE
4215     assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
4216   } else if (Op1Type->isVectorTy()) {
4217     // TODO? If the edge cases for vectors were guaranteed to be handled as they
4218     // are for scalar, we could remove the min/max checks. However, to do that,
4219     // we would have to use insertelement/shufflevector to replace edge values.
4220     unsigned NumElts = Op1Type->getVectorNumElements();
4221     for (unsigned i = 0; i != NumElts; ++i) {
4222       Constant *Elt = Op1C->getAggregateElement(i);
4223       if (!Elt)
4224         return nullptr;
4225 
4226       if (isa<UndefValue>(Elt))
4227         continue;
4228 
4229       // Bail out if we can't determine if this constant is min/max or if we
4230       // know that this constant is min/max.
4231       auto *CI = dyn_cast<ConstantInt>(Elt);
4232       if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
4233         return nullptr;
4234     }
4235   } else {
4236     // ConstantExpr?
4237     return nullptr;
4238   }
4239 
4240   // Increment or decrement the constant and set the new comparison predicate:
4241   // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
4242   Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
4243   CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
4244   NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
4245   return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
4246 }
4247 
4248 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4249   bool Changed = false;
4250   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4251   unsigned Op0Cplxity = getComplexity(Op0);
4252   unsigned Op1Cplxity = getComplexity(Op1);
4253 
4254   /// Orders the operands of the compare so that they are listed from most
4255   /// complex to least complex.  This puts constants before unary operators,
4256   /// before binary operators.
4257   if (Op0Cplxity < Op1Cplxity ||
4258       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
4259     I.swapOperands();
4260     std::swap(Op0, Op1);
4261     Changed = true;
4262   }
4263 
4264   if (Value *V =
4265           SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, &TLI, &DT, &AC, &I))
4266     return replaceInstUsesWith(I, V);
4267 
4268   // comparing -val or val with non-zero is the same as just comparing val
4269   // ie, abs(val) != 0 -> val != 0
4270   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
4271     Value *Cond, *SelectTrue, *SelectFalse;
4272     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
4273                             m_Value(SelectFalse)))) {
4274       if (Value *V = dyn_castNegVal(SelectTrue)) {
4275         if (V == SelectFalse)
4276           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4277       }
4278       else if (Value *V = dyn_castNegVal(SelectFalse)) {
4279         if (V == SelectTrue)
4280           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4281       }
4282     }
4283   }
4284 
4285   Type *Ty = Op0->getType();
4286 
4287   // icmp's with boolean values can always be turned into bitwise operations
4288   if (Ty->getScalarType()->isIntegerTy(1)) {
4289     switch (I.getPredicate()) {
4290     default: llvm_unreachable("Invalid icmp instruction!");
4291     case ICmpInst::ICMP_EQ: {                // icmp eq i1 A, B -> ~(A^B)
4292       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName() + "tmp");
4293       return BinaryOperator::CreateNot(Xor);
4294     }
4295     case ICmpInst::ICMP_NE:                  // icmp ne i1 A, B -> A^B
4296       return BinaryOperator::CreateXor(Op0, Op1);
4297 
4298     case ICmpInst::ICMP_UGT:
4299       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
4300       LLVM_FALLTHROUGH;
4301     case ICmpInst::ICMP_ULT:{                // icmp ult i1 A, B -> ~A & B
4302       Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
4303       return BinaryOperator::CreateAnd(Not, Op1);
4304     }
4305     case ICmpInst::ICMP_SGT:
4306       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
4307       LLVM_FALLTHROUGH;
4308     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
4309       Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
4310       return BinaryOperator::CreateAnd(Not, Op0);
4311     }
4312     case ICmpInst::ICMP_UGE:
4313       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
4314       LLVM_FALLTHROUGH;
4315     case ICmpInst::ICMP_ULE: {               // icmp ule i1 A, B -> ~A | B
4316       Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
4317       return BinaryOperator::CreateOr(Not, Op1);
4318     }
4319     case ICmpInst::ICMP_SGE:
4320       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
4321       LLVM_FALLTHROUGH;
4322     case ICmpInst::ICMP_SLE: {               // icmp sle i1 A, B -> A | ~B
4323       Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
4324       return BinaryOperator::CreateOr(Not, Op0);
4325     }
4326     }
4327   }
4328 
4329   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
4330     return NewICmp;
4331 
4332   if (Instruction *Res = foldICmpWithConstant(I))
4333     return Res;
4334 
4335   if (Instruction *Res = foldICmpUsingKnownBits(I))
4336     return Res;
4337 
4338   // Test if the ICmpInst instruction is used exclusively by a select as
4339   // part of a minimum or maximum operation. If so, refrain from doing
4340   // any other folding. This helps out other analyses which understand
4341   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4342   // and CodeGen. And in this case, at least one of the comparison
4343   // operands has at least one user besides the compare (the select),
4344   // which would often largely negate the benefit of folding anyway.
4345   if (I.hasOneUse())
4346     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4347       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4348           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4349         return nullptr;
4350 
4351   if (Instruction *Res = foldICmpInstWithConstant(I))
4352     return Res;
4353 
4354   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
4355     return Res;
4356 
4357   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
4358   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
4359     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
4360       return NI;
4361   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
4362     if (Instruction *NI = foldGEPICmp(GEP, Op0,
4363                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
4364       return NI;
4365 
4366   // Try to optimize equality comparisons against alloca-based pointers.
4367   if (Op0->getType()->isPointerTy() && I.isEquality()) {
4368     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
4369     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
4370       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
4371         return New;
4372     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
4373       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
4374         return New;
4375   }
4376 
4377   // Test to see if the operands of the icmp are casted versions of other
4378   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
4379   // now.
4380   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
4381     if (Op0->getType()->isPointerTy() &&
4382         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
4383       // We keep moving the cast from the left operand over to the right
4384       // operand, where it can often be eliminated completely.
4385       Op0 = CI->getOperand(0);
4386 
4387       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
4388       // so eliminate it as well.
4389       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
4390         Op1 = CI2->getOperand(0);
4391 
4392       // If Op1 is a constant, we can fold the cast into the constant.
4393       if (Op0->getType() != Op1->getType()) {
4394         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
4395           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
4396         } else {
4397           // Otherwise, cast the RHS right before the icmp
4398           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
4399         }
4400       }
4401       return new ICmpInst(I.getPredicate(), Op0, Op1);
4402     }
4403   }
4404 
4405   if (isa<CastInst>(Op0)) {
4406     // Handle the special case of: icmp (cast bool to X), <cst>
4407     // This comes up when you have code like
4408     //   int X = A < B;
4409     //   if (X) ...
4410     // For generality, we handle any zero-extension of any operand comparison
4411     // with a constant or another cast from the same type.
4412     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
4413       if (Instruction *R = foldICmpWithCastAndCast(I))
4414         return R;
4415   }
4416 
4417   if (Instruction *Res = foldICmpBinOp(I))
4418     return Res;
4419 
4420   if (Instruction *Res = foldICmpWithMinMax(I))
4421     return Res;
4422 
4423   {
4424     Value *A, *B;
4425     // Transform (A & ~B) == 0 --> (A & B) != 0
4426     // and       (A & ~B) != 0 --> (A & B) == 0
4427     // if A is a power of 2.
4428     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
4429         match(Op1, m_Zero()) &&
4430         isKnownToBeAPowerOfTwo(A, DL, false, 0, &AC, &I, &DT) && I.isEquality())
4431       return new ICmpInst(I.getInversePredicate(),
4432                           Builder->CreateAnd(A, B),
4433                           Op1);
4434 
4435     // ~x < ~y --> y < x
4436     // ~x < cst --> ~cst < x
4437     if (match(Op0, m_Not(m_Value(A)))) {
4438       if (match(Op1, m_Not(m_Value(B))))
4439         return new ICmpInst(I.getPredicate(), B, A);
4440       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
4441         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
4442     }
4443 
4444     Instruction *AddI = nullptr;
4445     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
4446                                      m_Instruction(AddI))) &&
4447         isa<IntegerType>(A->getType())) {
4448       Value *Result;
4449       Constant *Overflow;
4450       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
4451                                 Overflow)) {
4452         replaceInstUsesWith(*AddI, Result);
4453         return replaceInstUsesWith(I, Overflow);
4454       }
4455     }
4456 
4457     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
4458     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4459       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
4460         return R;
4461     }
4462     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4463       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
4464         return R;
4465     }
4466   }
4467 
4468   if (Instruction *Res = foldICmpEquality(I))
4469     return Res;
4470 
4471   // The 'cmpxchg' instruction returns an aggregate containing the old value and
4472   // an i1 which indicates whether or not we successfully did the swap.
4473   //
4474   // Replace comparisons between the old value and the expected value with the
4475   // indicator that 'cmpxchg' returns.
4476   //
4477   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
4478   // spuriously fail.  In those cases, the old value may equal the expected
4479   // value but it is possible for the swap to not occur.
4480   if (I.getPredicate() == ICmpInst::ICMP_EQ)
4481     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
4482       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
4483         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
4484             !ACXI->isWeak())
4485           return ExtractValueInst::Create(ACXI, 1);
4486 
4487   {
4488     Value *X; ConstantInt *Cst;
4489     // icmp X+Cst, X
4490     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
4491       return foldICmpAddOpConst(I, X, Cst, I.getPredicate());
4492 
4493     // icmp X, X+Cst
4494     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
4495       return foldICmpAddOpConst(I, X, Cst, I.getSwappedPredicate());
4496   }
4497   return Changed ? &I : nullptr;
4498 }
4499 
4500 /// Fold fcmp ([us]itofp x, cst) if possible.
4501 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
4502                                                 Constant *RHSC) {
4503   if (!isa<ConstantFP>(RHSC)) return nullptr;
4504   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
4505 
4506   // Get the width of the mantissa.  We don't want to hack on conversions that
4507   // might lose information from the integer, e.g. "i64 -> float"
4508   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
4509   if (MantissaWidth == -1) return nullptr;  // Unknown.
4510 
4511   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
4512 
4513   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
4514 
4515   if (I.isEquality()) {
4516     FCmpInst::Predicate P = I.getPredicate();
4517     bool IsExact = false;
4518     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
4519     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
4520 
4521     // If the floating point constant isn't an integer value, we know if we will
4522     // ever compare equal / not equal to it.
4523     if (!IsExact) {
4524       // TODO: Can never be -0.0 and other non-representable values
4525       APFloat RHSRoundInt(RHS);
4526       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
4527       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
4528         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
4529           return replaceInstUsesWith(I, Builder->getFalse());
4530 
4531         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
4532         return replaceInstUsesWith(I, Builder->getTrue());
4533       }
4534     }
4535 
4536     // TODO: If the constant is exactly representable, is it always OK to do
4537     // equality compares as integer?
4538   }
4539 
4540   // Check to see that the input is converted from an integer type that is small
4541   // enough that preserves all bits.  TODO: check here for "known" sign bits.
4542   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
4543   unsigned InputSize = IntTy->getScalarSizeInBits();
4544 
4545   // Following test does NOT adjust InputSize downwards for signed inputs,
4546   // because the most negative value still requires all the mantissa bits
4547   // to distinguish it from one less than that value.
4548   if ((int)InputSize > MantissaWidth) {
4549     // Conversion would lose accuracy. Check if loss can impact comparison.
4550     int Exp = ilogb(RHS);
4551     if (Exp == APFloat::IEK_Inf) {
4552       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
4553       if (MaxExponent < (int)InputSize - !LHSUnsigned)
4554         // Conversion could create infinity.
4555         return nullptr;
4556     } else {
4557       // Note that if RHS is zero or NaN, then Exp is negative
4558       // and first condition is trivially false.
4559       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
4560         // Conversion could affect comparison.
4561         return nullptr;
4562     }
4563   }
4564 
4565   // Otherwise, we can potentially simplify the comparison.  We know that it
4566   // will always come through as an integer value and we know the constant is
4567   // not a NAN (it would have been previously simplified).
4568   assert(!RHS.isNaN() && "NaN comparison not already folded!");
4569 
4570   ICmpInst::Predicate Pred;
4571   switch (I.getPredicate()) {
4572   default: llvm_unreachable("Unexpected predicate!");
4573   case FCmpInst::FCMP_UEQ:
4574   case FCmpInst::FCMP_OEQ:
4575     Pred = ICmpInst::ICMP_EQ;
4576     break;
4577   case FCmpInst::FCMP_UGT:
4578   case FCmpInst::FCMP_OGT:
4579     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
4580     break;
4581   case FCmpInst::FCMP_UGE:
4582   case FCmpInst::FCMP_OGE:
4583     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
4584     break;
4585   case FCmpInst::FCMP_ULT:
4586   case FCmpInst::FCMP_OLT:
4587     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
4588     break;
4589   case FCmpInst::FCMP_ULE:
4590   case FCmpInst::FCMP_OLE:
4591     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
4592     break;
4593   case FCmpInst::FCMP_UNE:
4594   case FCmpInst::FCMP_ONE:
4595     Pred = ICmpInst::ICMP_NE;
4596     break;
4597   case FCmpInst::FCMP_ORD:
4598     return replaceInstUsesWith(I, Builder->getTrue());
4599   case FCmpInst::FCMP_UNO:
4600     return replaceInstUsesWith(I, Builder->getFalse());
4601   }
4602 
4603   // Now we know that the APFloat is a normal number, zero or inf.
4604 
4605   // See if the FP constant is too large for the integer.  For example,
4606   // comparing an i8 to 300.0.
4607   unsigned IntWidth = IntTy->getScalarSizeInBits();
4608 
4609   if (!LHSUnsigned) {
4610     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
4611     // and large values.
4612     APFloat SMax(RHS.getSemantics());
4613     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
4614                           APFloat::rmNearestTiesToEven);
4615     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
4616       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
4617           Pred == ICmpInst::ICMP_SLE)
4618         return replaceInstUsesWith(I, Builder->getTrue());
4619       return replaceInstUsesWith(I, Builder->getFalse());
4620     }
4621   } else {
4622     // If the RHS value is > UnsignedMax, fold the comparison. This handles
4623     // +INF and large values.
4624     APFloat UMax(RHS.getSemantics());
4625     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
4626                           APFloat::rmNearestTiesToEven);
4627     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
4628       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
4629           Pred == ICmpInst::ICMP_ULE)
4630         return replaceInstUsesWith(I, Builder->getTrue());
4631       return replaceInstUsesWith(I, Builder->getFalse());
4632     }
4633   }
4634 
4635   if (!LHSUnsigned) {
4636     // See if the RHS value is < SignedMin.
4637     APFloat SMin(RHS.getSemantics());
4638     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
4639                           APFloat::rmNearestTiesToEven);
4640     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
4641       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
4642           Pred == ICmpInst::ICMP_SGE)
4643         return replaceInstUsesWith(I, Builder->getTrue());
4644       return replaceInstUsesWith(I, Builder->getFalse());
4645     }
4646   } else {
4647     // See if the RHS value is < UnsignedMin.
4648     APFloat SMin(RHS.getSemantics());
4649     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
4650                           APFloat::rmNearestTiesToEven);
4651     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
4652       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
4653           Pred == ICmpInst::ICMP_UGE)
4654         return replaceInstUsesWith(I, Builder->getTrue());
4655       return replaceInstUsesWith(I, Builder->getFalse());
4656     }
4657   }
4658 
4659   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
4660   // [0, UMAX], but it may still be fractional.  See if it is fractional by
4661   // casting the FP value to the integer value and back, checking for equality.
4662   // Don't do this for zero, because -0.0 is not fractional.
4663   Constant *RHSInt = LHSUnsigned
4664     ? ConstantExpr::getFPToUI(RHSC, IntTy)
4665     : ConstantExpr::getFPToSI(RHSC, IntTy);
4666   if (!RHS.isZero()) {
4667     bool Equal = LHSUnsigned
4668       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
4669       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
4670     if (!Equal) {
4671       // If we had a comparison against a fractional value, we have to adjust
4672       // the compare predicate and sometimes the value.  RHSC is rounded towards
4673       // zero at this point.
4674       switch (Pred) {
4675       default: llvm_unreachable("Unexpected integer comparison!");
4676       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
4677         return replaceInstUsesWith(I, Builder->getTrue());
4678       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
4679         return replaceInstUsesWith(I, Builder->getFalse());
4680       case ICmpInst::ICMP_ULE:
4681         // (float)int <= 4.4   --> int <= 4
4682         // (float)int <= -4.4  --> false
4683         if (RHS.isNegative())
4684           return replaceInstUsesWith(I, Builder->getFalse());
4685         break;
4686       case ICmpInst::ICMP_SLE:
4687         // (float)int <= 4.4   --> int <= 4
4688         // (float)int <= -4.4  --> int < -4
4689         if (RHS.isNegative())
4690           Pred = ICmpInst::ICMP_SLT;
4691         break;
4692       case ICmpInst::ICMP_ULT:
4693         // (float)int < -4.4   --> false
4694         // (float)int < 4.4    --> int <= 4
4695         if (RHS.isNegative())
4696           return replaceInstUsesWith(I, Builder->getFalse());
4697         Pred = ICmpInst::ICMP_ULE;
4698         break;
4699       case ICmpInst::ICMP_SLT:
4700         // (float)int < -4.4   --> int < -4
4701         // (float)int < 4.4    --> int <= 4
4702         if (!RHS.isNegative())
4703           Pred = ICmpInst::ICMP_SLE;
4704         break;
4705       case ICmpInst::ICMP_UGT:
4706         // (float)int > 4.4    --> int > 4
4707         // (float)int > -4.4   --> true
4708         if (RHS.isNegative())
4709           return replaceInstUsesWith(I, Builder->getTrue());
4710         break;
4711       case ICmpInst::ICMP_SGT:
4712         // (float)int > 4.4    --> int > 4
4713         // (float)int > -4.4   --> int >= -4
4714         if (RHS.isNegative())
4715           Pred = ICmpInst::ICMP_SGE;
4716         break;
4717       case ICmpInst::ICMP_UGE:
4718         // (float)int >= -4.4   --> true
4719         // (float)int >= 4.4    --> int > 4
4720         if (RHS.isNegative())
4721           return replaceInstUsesWith(I, Builder->getTrue());
4722         Pred = ICmpInst::ICMP_UGT;
4723         break;
4724       case ICmpInst::ICMP_SGE:
4725         // (float)int >= -4.4   --> int >= -4
4726         // (float)int >= 4.4    --> int > 4
4727         if (!RHS.isNegative())
4728           Pred = ICmpInst::ICMP_SGT;
4729         break;
4730       }
4731     }
4732   }
4733 
4734   // Lower this FP comparison into an appropriate integer version of the
4735   // comparison.
4736   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
4737 }
4738 
4739 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4740   bool Changed = false;
4741 
4742   /// Orders the operands of the compare so that they are listed from most
4743   /// complex to least complex.  This puts constants before unary operators,
4744   /// before binary operators.
4745   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
4746     I.swapOperands();
4747     Changed = true;
4748   }
4749 
4750   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4751 
4752   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
4753                                   I.getFastMathFlags(), DL, &TLI, &DT, &AC, &I))
4754     return replaceInstUsesWith(I, V);
4755 
4756   // Simplify 'fcmp pred X, X'
4757   if (Op0 == Op1) {
4758     switch (I.getPredicate()) {
4759     default: llvm_unreachable("Unknown predicate!");
4760     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
4761     case FCmpInst::FCMP_ULT:    // True if unordered or less than
4762     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
4763     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
4764       // Canonicalize these to be 'fcmp uno %X, 0.0'.
4765       I.setPredicate(FCmpInst::FCMP_UNO);
4766       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4767       return &I;
4768 
4769     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
4770     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
4771     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
4772     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
4773       // Canonicalize these to be 'fcmp ord %X, 0.0'.
4774       I.setPredicate(FCmpInst::FCMP_ORD);
4775       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4776       return &I;
4777     }
4778   }
4779 
4780   // Test if the FCmpInst instruction is used exclusively by a select as
4781   // part of a minimum or maximum operation. If so, refrain from doing
4782   // any other folding. This helps out other analyses which understand
4783   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4784   // and CodeGen. And in this case, at least one of the comparison
4785   // operands has at least one user besides the compare (the select),
4786   // which would often largely negate the benefit of folding anyway.
4787   if (I.hasOneUse())
4788     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4789       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4790           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4791         return nullptr;
4792 
4793   // Handle fcmp with constant RHS
4794   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4795     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4796       switch (LHSI->getOpcode()) {
4797       case Instruction::FPExt: {
4798         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
4799         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
4800         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
4801         if (!RHSF)
4802           break;
4803 
4804         const fltSemantics *Sem;
4805         // FIXME: This shouldn't be here.
4806         if (LHSExt->getSrcTy()->isHalfTy())
4807           Sem = &APFloat::IEEEhalf();
4808         else if (LHSExt->getSrcTy()->isFloatTy())
4809           Sem = &APFloat::IEEEsingle();
4810         else if (LHSExt->getSrcTy()->isDoubleTy())
4811           Sem = &APFloat::IEEEdouble();
4812         else if (LHSExt->getSrcTy()->isFP128Ty())
4813           Sem = &APFloat::IEEEquad();
4814         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
4815           Sem = &APFloat::x87DoubleExtended();
4816         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
4817           Sem = &APFloat::PPCDoubleDouble();
4818         else
4819           break;
4820 
4821         bool Lossy;
4822         APFloat F = RHSF->getValueAPF();
4823         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
4824 
4825         // Avoid lossy conversions and denormals. Zero is a special case
4826         // that's OK to convert.
4827         APFloat Fabs = F;
4828         Fabs.clearSign();
4829         if (!Lossy &&
4830             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
4831                  APFloat::cmpLessThan) || Fabs.isZero()))
4832 
4833           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4834                               ConstantFP::get(RHSC->getContext(), F));
4835         break;
4836       }
4837       case Instruction::PHI:
4838         // Only fold fcmp into the PHI if the phi and fcmp are in the same
4839         // block.  If in the same block, we're encouraging jump threading.  If
4840         // not, we are just pessimizing the code by making an i1 phi.
4841         if (LHSI->getParent() == I.getParent())
4842           if (Instruction *NV = FoldOpIntoPhi(I))
4843             return NV;
4844         break;
4845       case Instruction::SIToFP:
4846       case Instruction::UIToFP:
4847         if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
4848           return NV;
4849         break;
4850       case Instruction::FSub: {
4851         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
4852         Value *Op;
4853         if (match(LHSI, m_FNeg(m_Value(Op))))
4854           return new FCmpInst(I.getSwappedPredicate(), Op,
4855                               ConstantExpr::getFNeg(RHSC));
4856         break;
4857       }
4858       case Instruction::Load:
4859         if (GetElementPtrInst *GEP =
4860             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
4861           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4862             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
4863                 !cast<LoadInst>(LHSI)->isVolatile())
4864               if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
4865                 return Res;
4866         }
4867         break;
4868       case Instruction::Call: {
4869         if (!RHSC->isNullValue())
4870           break;
4871 
4872         CallInst *CI = cast<CallInst>(LHSI);
4873         Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI);
4874         if (IID != Intrinsic::fabs)
4875           break;
4876 
4877         // Various optimization for fabs compared with zero.
4878         switch (I.getPredicate()) {
4879         default:
4880           break;
4881         // fabs(x) < 0 --> false
4882         case FCmpInst::FCMP_OLT:
4883           llvm_unreachable("handled by SimplifyFCmpInst");
4884         // fabs(x) > 0 --> x != 0
4885         case FCmpInst::FCMP_OGT:
4886           return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
4887         // fabs(x) <= 0 --> x == 0
4888         case FCmpInst::FCMP_OLE:
4889           return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
4890         // fabs(x) >= 0 --> !isnan(x)
4891         case FCmpInst::FCMP_OGE:
4892           return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
4893         // fabs(x) == 0 --> x == 0
4894         // fabs(x) != 0 --> x != 0
4895         case FCmpInst::FCMP_OEQ:
4896         case FCmpInst::FCMP_UEQ:
4897         case FCmpInst::FCMP_ONE:
4898         case FCmpInst::FCMP_UNE:
4899           return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
4900         }
4901       }
4902       }
4903   }
4904 
4905   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
4906   Value *X, *Y;
4907   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
4908     return new FCmpInst(I.getSwappedPredicate(), X, Y);
4909 
4910   // fcmp (fpext x), (fpext y) -> fcmp x, y
4911   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
4912     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
4913       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
4914         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4915                             RHSExt->getOperand(0));
4916 
4917   return Changed ? &I : nullptr;
4918 }
4919