1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 #include "llvm/Transforms/InstCombine/InstCombiner.h" 28 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 // How many times is a select replaced by one of its operands? 35 STATISTIC(NumSel, "Number of select opts"); 36 37 38 /// Compute Result = In1+In2, returning true if the result overflowed for this 39 /// type. 40 static bool addWithOverflow(APInt &Result, const APInt &In1, 41 const APInt &In2, bool IsSigned = false) { 42 bool Overflow; 43 if (IsSigned) 44 Result = In1.sadd_ov(In2, Overflow); 45 else 46 Result = In1.uadd_ov(In2, Overflow); 47 48 return Overflow; 49 } 50 51 /// Compute Result = In1-In2, returning true if the result overflowed for this 52 /// type. 53 static bool subWithOverflow(APInt &Result, const APInt &In1, 54 const APInt &In2, bool IsSigned = false) { 55 bool Overflow; 56 if (IsSigned) 57 Result = In1.ssub_ov(In2, Overflow); 58 else 59 Result = In1.usub_ov(In2, Overflow); 60 61 return Overflow; 62 } 63 64 /// Given an icmp instruction, return true if any use of this comparison is a 65 /// branch on sign bit comparison. 66 static bool hasBranchUse(ICmpInst &I) { 67 for (auto *U : I.users()) 68 if (isa<BranchInst>(U)) 69 return true; 70 return false; 71 } 72 73 /// Returns true if the exploded icmp can be expressed as a signed comparison 74 /// to zero and updates the predicate accordingly. 75 /// The signedness of the comparison is preserved. 76 /// TODO: Refactor with decomposeBitTestICmp()? 77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 78 if (!ICmpInst::isSigned(Pred)) 79 return false; 80 81 if (C.isNullValue()) 82 return ICmpInst::isRelational(Pred); 83 84 if (C.isOneValue()) { 85 if (Pred == ICmpInst::ICMP_SLT) { 86 Pred = ICmpInst::ICMP_SLE; 87 return true; 88 } 89 } else if (C.isAllOnesValue()) { 90 if (Pred == ICmpInst::ICMP_SGT) { 91 Pred = ICmpInst::ICMP_SGE; 92 return true; 93 } 94 } 95 96 return false; 97 } 98 99 /// This is called when we see this pattern: 100 /// cmp pred (load (gep GV, ...)), cmpcst 101 /// where GV is a global variable with a constant initializer. Try to simplify 102 /// this into some simple computation that does not need the load. For example 103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 104 /// 105 /// If AndCst is non-null, then the loaded value is masked with that constant 106 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 107 Instruction * 108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 109 GlobalVariable *GV, CmpInst &ICI, 110 ConstantInt *AndCst) { 111 Constant *Init = GV->getInitializer(); 112 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 113 return nullptr; 114 115 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 116 // Don't blow up on huge arrays. 117 if (ArrayElementCount > MaxArraySizeForCombine) 118 return nullptr; 119 120 // There are many forms of this optimization we can handle, for now, just do 121 // the simple index into a single-dimensional array. 122 // 123 // Require: GEP GV, 0, i {{, constant indices}} 124 if (GEP->getNumOperands() < 3 || 125 !isa<ConstantInt>(GEP->getOperand(1)) || 126 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 127 isa<Constant>(GEP->getOperand(2))) 128 return nullptr; 129 130 // Check that indices after the variable are constants and in-range for the 131 // type they index. Collect the indices. This is typically for arrays of 132 // structs. 133 SmallVector<unsigned, 4> LaterIndices; 134 135 Type *EltTy = Init->getType()->getArrayElementType(); 136 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 137 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 138 if (!Idx) return nullptr; // Variable index. 139 140 uint64_t IdxVal = Idx->getZExtValue(); 141 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 142 143 if (StructType *STy = dyn_cast<StructType>(EltTy)) 144 EltTy = STy->getElementType(IdxVal); 145 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 146 if (IdxVal >= ATy->getNumElements()) return nullptr; 147 EltTy = ATy->getElementType(); 148 } else { 149 return nullptr; // Unknown type. 150 } 151 152 LaterIndices.push_back(IdxVal); 153 } 154 155 enum { Overdefined = -3, Undefined = -2 }; 156 157 // Variables for our state machines. 158 159 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 160 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 161 // and 87 is the second (and last) index. FirstTrueElement is -2 when 162 // undefined, otherwise set to the first true element. SecondTrueElement is 163 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 164 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 165 166 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 167 // form "i != 47 & i != 87". Same state transitions as for true elements. 168 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 169 170 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 171 /// define a state machine that triggers for ranges of values that the index 172 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 173 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 174 /// index in the range (inclusive). We use -2 for undefined here because we 175 /// use relative comparisons and don't want 0-1 to match -1. 176 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 177 178 // MagicBitvector - This is a magic bitvector where we set a bit if the 179 // comparison is true for element 'i'. If there are 64 elements or less in 180 // the array, this will fully represent all the comparison results. 181 uint64_t MagicBitvector = 0; 182 183 // Scan the array and see if one of our patterns matches. 184 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 185 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 186 Constant *Elt = Init->getAggregateElement(i); 187 if (!Elt) return nullptr; 188 189 // If this is indexing an array of structures, get the structure element. 190 if (!LaterIndices.empty()) 191 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 192 193 // If the element is masked, handle it. 194 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 195 196 // Find out if the comparison would be true or false for the i'th element. 197 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 198 CompareRHS, DL, &TLI); 199 // If the result is undef for this element, ignore it. 200 if (isa<UndefValue>(C)) { 201 // Extend range state machines to cover this element in case there is an 202 // undef in the middle of the range. 203 if (TrueRangeEnd == (int)i-1) 204 TrueRangeEnd = i; 205 if (FalseRangeEnd == (int)i-1) 206 FalseRangeEnd = i; 207 continue; 208 } 209 210 // If we can't compute the result for any of the elements, we have to give 211 // up evaluating the entire conditional. 212 if (!isa<ConstantInt>(C)) return nullptr; 213 214 // Otherwise, we know if the comparison is true or false for this element, 215 // update our state machines. 216 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 217 218 // State machine for single/double/range index comparison. 219 if (IsTrueForElt) { 220 // Update the TrueElement state machine. 221 if (FirstTrueElement == Undefined) 222 FirstTrueElement = TrueRangeEnd = i; // First true element. 223 else { 224 // Update double-compare state machine. 225 if (SecondTrueElement == Undefined) 226 SecondTrueElement = i; 227 else 228 SecondTrueElement = Overdefined; 229 230 // Update range state machine. 231 if (TrueRangeEnd == (int)i-1) 232 TrueRangeEnd = i; 233 else 234 TrueRangeEnd = Overdefined; 235 } 236 } else { 237 // Update the FalseElement state machine. 238 if (FirstFalseElement == Undefined) 239 FirstFalseElement = FalseRangeEnd = i; // First false element. 240 else { 241 // Update double-compare state machine. 242 if (SecondFalseElement == Undefined) 243 SecondFalseElement = i; 244 else 245 SecondFalseElement = Overdefined; 246 247 // Update range state machine. 248 if (FalseRangeEnd == (int)i-1) 249 FalseRangeEnd = i; 250 else 251 FalseRangeEnd = Overdefined; 252 } 253 } 254 255 // If this element is in range, update our magic bitvector. 256 if (i < 64 && IsTrueForElt) 257 MagicBitvector |= 1ULL << i; 258 259 // If all of our states become overdefined, bail out early. Since the 260 // predicate is expensive, only check it every 8 elements. This is only 261 // really useful for really huge arrays. 262 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 263 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 264 FalseRangeEnd == Overdefined) 265 return nullptr; 266 } 267 268 // Now that we've scanned the entire array, emit our new comparison(s). We 269 // order the state machines in complexity of the generated code. 270 Value *Idx = GEP->getOperand(2); 271 272 // If the index is larger than the pointer size of the target, truncate the 273 // index down like the GEP would do implicitly. We don't have to do this for 274 // an inbounds GEP because the index can't be out of range. 275 if (!GEP->isInBounds()) { 276 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 277 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 278 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 279 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 280 } 281 282 // If inbounds keyword is not present, Idx * ElementSize can overflow. 283 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 284 // Then, there are two possible values for Idx to match offset 0: 285 // 0x00..00, 0x80..00. 286 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 287 // comparison is false if Idx was 0x80..00. 288 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 289 unsigned ElementSize = 290 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 291 auto MaskIdx = [&](Value* Idx){ 292 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 293 Value *Mask = ConstantInt::get(Idx->getType(), -1); 294 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 295 Idx = Builder.CreateAnd(Idx, Mask); 296 } 297 return Idx; 298 }; 299 300 // If the comparison is only true for one or two elements, emit direct 301 // comparisons. 302 if (SecondTrueElement != Overdefined) { 303 Idx = MaskIdx(Idx); 304 // None true -> false. 305 if (FirstTrueElement == Undefined) 306 return replaceInstUsesWith(ICI, Builder.getFalse()); 307 308 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 309 310 // True for one element -> 'i == 47'. 311 if (SecondTrueElement == Undefined) 312 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 313 314 // True for two elements -> 'i == 47 | i == 72'. 315 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 316 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 317 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 318 return BinaryOperator::CreateOr(C1, C2); 319 } 320 321 // If the comparison is only false for one or two elements, emit direct 322 // comparisons. 323 if (SecondFalseElement != Overdefined) { 324 Idx = MaskIdx(Idx); 325 // None false -> true. 326 if (FirstFalseElement == Undefined) 327 return replaceInstUsesWith(ICI, Builder.getTrue()); 328 329 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 330 331 // False for one element -> 'i != 47'. 332 if (SecondFalseElement == Undefined) 333 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 334 335 // False for two elements -> 'i != 47 & i != 72'. 336 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 337 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 338 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 339 return BinaryOperator::CreateAnd(C1, C2); 340 } 341 342 // If the comparison can be replaced with a range comparison for the elements 343 // where it is true, emit the range check. 344 if (TrueRangeEnd != Overdefined) { 345 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 346 Idx = MaskIdx(Idx); 347 348 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 349 if (FirstTrueElement) { 350 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 351 Idx = Builder.CreateAdd(Idx, Offs); 352 } 353 354 Value *End = ConstantInt::get(Idx->getType(), 355 TrueRangeEnd-FirstTrueElement+1); 356 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 357 } 358 359 // False range check. 360 if (FalseRangeEnd != Overdefined) { 361 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 362 Idx = MaskIdx(Idx); 363 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 364 if (FirstFalseElement) { 365 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 366 Idx = Builder.CreateAdd(Idx, Offs); 367 } 368 369 Value *End = ConstantInt::get(Idx->getType(), 370 FalseRangeEnd-FirstFalseElement); 371 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 372 } 373 374 // If a magic bitvector captures the entire comparison state 375 // of this load, replace it with computation that does: 376 // ((magic_cst >> i) & 1) != 0 377 { 378 Type *Ty = nullptr; 379 380 // Look for an appropriate type: 381 // - The type of Idx if the magic fits 382 // - The smallest fitting legal type 383 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 384 Ty = Idx->getType(); 385 else 386 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 387 388 if (Ty) { 389 Idx = MaskIdx(Idx); 390 Value *V = Builder.CreateIntCast(Idx, Ty, false); 391 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 392 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 393 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 394 } 395 } 396 397 return nullptr; 398 } 399 400 /// Return a value that can be used to compare the *offset* implied by a GEP to 401 /// zero. For example, if we have &A[i], we want to return 'i' for 402 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 403 /// are involved. The above expression would also be legal to codegen as 404 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 405 /// This latter form is less amenable to optimization though, and we are allowed 406 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 407 /// 408 /// If we can't emit an optimized form for this expression, this returns null. 409 /// 410 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 411 const DataLayout &DL) { 412 gep_type_iterator GTI = gep_type_begin(GEP); 413 414 // Check to see if this gep only has a single variable index. If so, and if 415 // any constant indices are a multiple of its scale, then we can compute this 416 // in terms of the scale of the variable index. For example, if the GEP 417 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 418 // because the expression will cross zero at the same point. 419 unsigned i, e = GEP->getNumOperands(); 420 int64_t Offset = 0; 421 for (i = 1; i != e; ++i, ++GTI) { 422 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 423 // Compute the aggregate offset of constant indices. 424 if (CI->isZero()) continue; 425 426 // Handle a struct index, which adds its field offset to the pointer. 427 if (StructType *STy = GTI.getStructTypeOrNull()) { 428 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 429 } else { 430 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 431 Offset += Size*CI->getSExtValue(); 432 } 433 } else { 434 // Found our variable index. 435 break; 436 } 437 } 438 439 // If there are no variable indices, we must have a constant offset, just 440 // evaluate it the general way. 441 if (i == e) return nullptr; 442 443 Value *VariableIdx = GEP->getOperand(i); 444 // Determine the scale factor of the variable element. For example, this is 445 // 4 if the variable index is into an array of i32. 446 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 447 448 // Verify that there are no other variable indices. If so, emit the hard way. 449 for (++i, ++GTI; i != e; ++i, ++GTI) { 450 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 451 if (!CI) return nullptr; 452 453 // Compute the aggregate offset of constant indices. 454 if (CI->isZero()) continue; 455 456 // Handle a struct index, which adds its field offset to the pointer. 457 if (StructType *STy = GTI.getStructTypeOrNull()) { 458 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 459 } else { 460 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 461 Offset += Size*CI->getSExtValue(); 462 } 463 } 464 465 // Okay, we know we have a single variable index, which must be a 466 // pointer/array/vector index. If there is no offset, life is simple, return 467 // the index. 468 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 469 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 470 if (Offset == 0) { 471 // Cast to intptrty in case a truncation occurs. If an extension is needed, 472 // we don't need to bother extending: the extension won't affect where the 473 // computation crosses zero. 474 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 475 IntPtrWidth) { 476 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 477 } 478 return VariableIdx; 479 } 480 481 // Otherwise, there is an index. The computation we will do will be modulo 482 // the pointer size. 483 Offset = SignExtend64(Offset, IntPtrWidth); 484 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 485 486 // To do this transformation, any constant index must be a multiple of the 487 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 488 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 489 // multiple of the variable scale. 490 int64_t NewOffs = Offset / (int64_t)VariableScale; 491 if (Offset != NewOffs*(int64_t)VariableScale) 492 return nullptr; 493 494 // Okay, we can do this evaluation. Start by converting the index to intptr. 495 if (VariableIdx->getType() != IntPtrTy) 496 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 497 true /*Signed*/); 498 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 499 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 500 } 501 502 /// Returns true if we can rewrite Start as a GEP with pointer Base 503 /// and some integer offset. The nodes that need to be re-written 504 /// for this transformation will be added to Explored. 505 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 506 const DataLayout &DL, 507 SetVector<Value *> &Explored) { 508 SmallVector<Value *, 16> WorkList(1, Start); 509 Explored.insert(Base); 510 511 // The following traversal gives us an order which can be used 512 // when doing the final transformation. Since in the final 513 // transformation we create the PHI replacement instructions first, 514 // we don't have to get them in any particular order. 515 // 516 // However, for other instructions we will have to traverse the 517 // operands of an instruction first, which means that we have to 518 // do a post-order traversal. 519 while (!WorkList.empty()) { 520 SetVector<PHINode *> PHIs; 521 522 while (!WorkList.empty()) { 523 if (Explored.size() >= 100) 524 return false; 525 526 Value *V = WorkList.back(); 527 528 if (Explored.contains(V)) { 529 WorkList.pop_back(); 530 continue; 531 } 532 533 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 534 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 535 // We've found some value that we can't explore which is different from 536 // the base. Therefore we can't do this transformation. 537 return false; 538 539 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 540 auto *CI = cast<CastInst>(V); 541 if (!CI->isNoopCast(DL)) 542 return false; 543 544 if (Explored.count(CI->getOperand(0)) == 0) 545 WorkList.push_back(CI->getOperand(0)); 546 } 547 548 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 549 // We're limiting the GEP to having one index. This will preserve 550 // the original pointer type. We could handle more cases in the 551 // future. 552 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 553 GEP->getType() != Start->getType()) 554 return false; 555 556 if (Explored.count(GEP->getOperand(0)) == 0) 557 WorkList.push_back(GEP->getOperand(0)); 558 } 559 560 if (WorkList.back() == V) { 561 WorkList.pop_back(); 562 // We've finished visiting this node, mark it as such. 563 Explored.insert(V); 564 } 565 566 if (auto *PN = dyn_cast<PHINode>(V)) { 567 // We cannot transform PHIs on unsplittable basic blocks. 568 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 569 return false; 570 Explored.insert(PN); 571 PHIs.insert(PN); 572 } 573 } 574 575 // Explore the PHI nodes further. 576 for (auto *PN : PHIs) 577 for (Value *Op : PN->incoming_values()) 578 if (Explored.count(Op) == 0) 579 WorkList.push_back(Op); 580 } 581 582 // Make sure that we can do this. Since we can't insert GEPs in a basic 583 // block before a PHI node, we can't easily do this transformation if 584 // we have PHI node users of transformed instructions. 585 for (Value *Val : Explored) { 586 for (Value *Use : Val->uses()) { 587 588 auto *PHI = dyn_cast<PHINode>(Use); 589 auto *Inst = dyn_cast<Instruction>(Val); 590 591 if (Inst == Base || Inst == PHI || !Inst || !PHI || 592 Explored.count(PHI) == 0) 593 continue; 594 595 if (PHI->getParent() == Inst->getParent()) 596 return false; 597 } 598 } 599 return true; 600 } 601 602 // Sets the appropriate insert point on Builder where we can add 603 // a replacement Instruction for V (if that is possible). 604 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 605 bool Before = true) { 606 if (auto *PHI = dyn_cast<PHINode>(V)) { 607 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 608 return; 609 } 610 if (auto *I = dyn_cast<Instruction>(V)) { 611 if (!Before) 612 I = &*std::next(I->getIterator()); 613 Builder.SetInsertPoint(I); 614 return; 615 } 616 if (auto *A = dyn_cast<Argument>(V)) { 617 // Set the insertion point in the entry block. 618 BasicBlock &Entry = A->getParent()->getEntryBlock(); 619 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 620 return; 621 } 622 // Otherwise, this is a constant and we don't need to set a new 623 // insertion point. 624 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 625 } 626 627 /// Returns a re-written value of Start as an indexed GEP using Base as a 628 /// pointer. 629 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 630 const DataLayout &DL, 631 SetVector<Value *> &Explored) { 632 // Perform all the substitutions. This is a bit tricky because we can 633 // have cycles in our use-def chains. 634 // 1. Create the PHI nodes without any incoming values. 635 // 2. Create all the other values. 636 // 3. Add the edges for the PHI nodes. 637 // 4. Emit GEPs to get the original pointers. 638 // 5. Remove the original instructions. 639 Type *IndexType = IntegerType::get( 640 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 641 642 DenseMap<Value *, Value *> NewInsts; 643 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 644 645 // Create the new PHI nodes, without adding any incoming values. 646 for (Value *Val : Explored) { 647 if (Val == Base) 648 continue; 649 // Create empty phi nodes. This avoids cyclic dependencies when creating 650 // the remaining instructions. 651 if (auto *PHI = dyn_cast<PHINode>(Val)) 652 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 653 PHI->getName() + ".idx", PHI); 654 } 655 IRBuilder<> Builder(Base->getContext()); 656 657 // Create all the other instructions. 658 for (Value *Val : Explored) { 659 660 if (NewInsts.find(Val) != NewInsts.end()) 661 continue; 662 663 if (auto *CI = dyn_cast<CastInst>(Val)) { 664 // Don't get rid of the intermediate variable here; the store can grow 665 // the map which will invalidate the reference to the input value. 666 Value *V = NewInsts[CI->getOperand(0)]; 667 NewInsts[CI] = V; 668 continue; 669 } 670 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 671 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 672 : GEP->getOperand(1); 673 setInsertionPoint(Builder, GEP); 674 // Indices might need to be sign extended. GEPs will magically do 675 // this, but we need to do it ourselves here. 676 if (Index->getType()->getScalarSizeInBits() != 677 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 678 Index = Builder.CreateSExtOrTrunc( 679 Index, NewInsts[GEP->getOperand(0)]->getType(), 680 GEP->getOperand(0)->getName() + ".sext"); 681 } 682 683 auto *Op = NewInsts[GEP->getOperand(0)]; 684 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 685 NewInsts[GEP] = Index; 686 else 687 NewInsts[GEP] = Builder.CreateNSWAdd( 688 Op, Index, GEP->getOperand(0)->getName() + ".add"); 689 continue; 690 } 691 if (isa<PHINode>(Val)) 692 continue; 693 694 llvm_unreachable("Unexpected instruction type"); 695 } 696 697 // Add the incoming values to the PHI nodes. 698 for (Value *Val : Explored) { 699 if (Val == Base) 700 continue; 701 // All the instructions have been created, we can now add edges to the 702 // phi nodes. 703 if (auto *PHI = dyn_cast<PHINode>(Val)) { 704 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 705 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 706 Value *NewIncoming = PHI->getIncomingValue(I); 707 708 if (NewInsts.find(NewIncoming) != NewInsts.end()) 709 NewIncoming = NewInsts[NewIncoming]; 710 711 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 712 } 713 } 714 } 715 716 for (Value *Val : Explored) { 717 if (Val == Base) 718 continue; 719 720 // Depending on the type, for external users we have to emit 721 // a GEP or a GEP + ptrtoint. 722 setInsertionPoint(Builder, Val, false); 723 724 // If required, create an inttoptr instruction for Base. 725 Value *NewBase = Base; 726 if (!Base->getType()->isPointerTy()) 727 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 728 Start->getName() + "to.ptr"); 729 730 Value *GEP = Builder.CreateInBoundsGEP( 731 Start->getType()->getPointerElementType(), NewBase, 732 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 733 734 if (!Val->getType()->isPointerTy()) { 735 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 736 Val->getName() + ".conv"); 737 GEP = Cast; 738 } 739 Val->replaceAllUsesWith(GEP); 740 } 741 742 return NewInsts[Start]; 743 } 744 745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 746 /// the input Value as a constant indexed GEP. Returns a pair containing 747 /// the GEPs Pointer and Index. 748 static std::pair<Value *, Value *> 749 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 750 Type *IndexType = IntegerType::get(V->getContext(), 751 DL.getIndexTypeSizeInBits(V->getType())); 752 753 Constant *Index = ConstantInt::getNullValue(IndexType); 754 while (true) { 755 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 756 // We accept only inbouds GEPs here to exclude the possibility of 757 // overflow. 758 if (!GEP->isInBounds()) 759 break; 760 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 761 GEP->getType() == V->getType()) { 762 V = GEP->getOperand(0); 763 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 764 Index = ConstantExpr::getAdd( 765 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 766 continue; 767 } 768 break; 769 } 770 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 771 if (!CI->isNoopCast(DL)) 772 break; 773 V = CI->getOperand(0); 774 continue; 775 } 776 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 777 if (!CI->isNoopCast(DL)) 778 break; 779 V = CI->getOperand(0); 780 continue; 781 } 782 break; 783 } 784 return {V, Index}; 785 } 786 787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 788 /// We can look through PHIs, GEPs and casts in order to determine a common base 789 /// between GEPLHS and RHS. 790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 791 ICmpInst::Predicate Cond, 792 const DataLayout &DL) { 793 // FIXME: Support vector of pointers. 794 if (GEPLHS->getType()->isVectorTy()) 795 return nullptr; 796 797 if (!GEPLHS->hasAllConstantIndices()) 798 return nullptr; 799 800 // Make sure the pointers have the same type. 801 if (GEPLHS->getType() != RHS->getType()) 802 return nullptr; 803 804 Value *PtrBase, *Index; 805 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 806 807 // The set of nodes that will take part in this transformation. 808 SetVector<Value *> Nodes; 809 810 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 811 return nullptr; 812 813 // We know we can re-write this as 814 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 815 // Since we've only looked through inbouds GEPs we know that we 816 // can't have overflow on either side. We can therefore re-write 817 // this as: 818 // OFFSET1 cmp OFFSET2 819 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 820 821 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 822 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 823 // offset. Since Index is the offset of LHS to the base pointer, we will now 824 // compare the offsets instead of comparing the pointers. 825 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 826 } 827 828 /// Fold comparisons between a GEP instruction and something else. At this point 829 /// we know that the GEP is on the LHS of the comparison. 830 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 831 ICmpInst::Predicate Cond, 832 Instruction &I) { 833 // Don't transform signed compares of GEPs into index compares. Even if the 834 // GEP is inbounds, the final add of the base pointer can have signed overflow 835 // and would change the result of the icmp. 836 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 837 // the maximum signed value for the pointer type. 838 if (ICmpInst::isSigned(Cond)) 839 return nullptr; 840 841 // Look through bitcasts and addrspacecasts. We do not however want to remove 842 // 0 GEPs. 843 if (!isa<GetElementPtrInst>(RHS)) 844 RHS = RHS->stripPointerCasts(); 845 846 Value *PtrBase = GEPLHS->getOperand(0); 847 // FIXME: Support vector pointer GEPs. 848 if (PtrBase == RHS && GEPLHS->isInBounds() && 849 !GEPLHS->getType()->isVectorTy()) { 850 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 851 // This transformation (ignoring the base and scales) is valid because we 852 // know pointers can't overflow since the gep is inbounds. See if we can 853 // output an optimized form. 854 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 855 856 // If not, synthesize the offset the hard way. 857 if (!Offset) 858 Offset = EmitGEPOffset(GEPLHS); 859 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 860 Constant::getNullValue(Offset->getType())); 861 } 862 863 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 864 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 865 !NullPointerIsDefined(I.getFunction(), 866 RHS->getType()->getPointerAddressSpace())) { 867 // For most address spaces, an allocation can't be placed at null, but null 868 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 869 // the only valid inbounds address derived from null, is null itself. 870 // Thus, we have four cases to consider: 871 // 1) Base == nullptr, Offset == 0 -> inbounds, null 872 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 873 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 874 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 875 // 876 // (Note if we're indexing a type of size 0, that simply collapses into one 877 // of the buckets above.) 878 // 879 // In general, we're allowed to make values less poison (i.e. remove 880 // sources of full UB), so in this case, we just select between the two 881 // non-poison cases (1 and 4 above). 882 // 883 // For vectors, we apply the same reasoning on a per-lane basis. 884 auto *Base = GEPLHS->getPointerOperand(); 885 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 886 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 887 Base = Builder.CreateVectorSplat(EC, Base); 888 } 889 return new ICmpInst(Cond, Base, 890 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 891 cast<Constant>(RHS), Base->getType())); 892 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 893 // If the base pointers are different, but the indices are the same, just 894 // compare the base pointer. 895 if (PtrBase != GEPRHS->getOperand(0)) { 896 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 897 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 898 GEPRHS->getOperand(0)->getType(); 899 if (IndicesTheSame) 900 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 901 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 902 IndicesTheSame = false; 903 break; 904 } 905 906 // If all indices are the same, just compare the base pointers. 907 Type *BaseType = GEPLHS->getOperand(0)->getType(); 908 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 909 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 910 911 // If we're comparing GEPs with two base pointers that only differ in type 912 // and both GEPs have only constant indices or just one use, then fold 913 // the compare with the adjusted indices. 914 // FIXME: Support vector of pointers. 915 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 916 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 917 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 918 PtrBase->stripPointerCasts() == 919 GEPRHS->getOperand(0)->stripPointerCasts() && 920 !GEPLHS->getType()->isVectorTy()) { 921 Value *LOffset = EmitGEPOffset(GEPLHS); 922 Value *ROffset = EmitGEPOffset(GEPRHS); 923 924 // If we looked through an addrspacecast between different sized address 925 // spaces, the LHS and RHS pointers are different sized 926 // integers. Truncate to the smaller one. 927 Type *LHSIndexTy = LOffset->getType(); 928 Type *RHSIndexTy = ROffset->getType(); 929 if (LHSIndexTy != RHSIndexTy) { 930 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 931 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 932 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 933 } else 934 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 935 } 936 937 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 938 LOffset, ROffset); 939 return replaceInstUsesWith(I, Cmp); 940 } 941 942 // Otherwise, the base pointers are different and the indices are 943 // different. Try convert this to an indexed compare by looking through 944 // PHIs/casts. 945 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 946 } 947 948 // If one of the GEPs has all zero indices, recurse. 949 // FIXME: Handle vector of pointers. 950 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 951 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 952 ICmpInst::getSwappedPredicate(Cond), I); 953 954 // If the other GEP has all zero indices, recurse. 955 // FIXME: Handle vector of pointers. 956 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 957 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 958 959 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 960 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 961 // If the GEPs only differ by one index, compare it. 962 unsigned NumDifferences = 0; // Keep track of # differences. 963 unsigned DiffOperand = 0; // The operand that differs. 964 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 965 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 966 Type *LHSType = GEPLHS->getOperand(i)->getType(); 967 Type *RHSType = GEPRHS->getOperand(i)->getType(); 968 // FIXME: Better support for vector of pointers. 969 if (LHSType->getPrimitiveSizeInBits() != 970 RHSType->getPrimitiveSizeInBits() || 971 (GEPLHS->getType()->isVectorTy() && 972 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 973 // Irreconcilable differences. 974 NumDifferences = 2; 975 break; 976 } 977 978 if (NumDifferences++) break; 979 DiffOperand = i; 980 } 981 982 if (NumDifferences == 0) // SAME GEP? 983 return replaceInstUsesWith(I, // No comparison is needed here. 984 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 985 986 else if (NumDifferences == 1 && GEPsInBounds) { 987 Value *LHSV = GEPLHS->getOperand(DiffOperand); 988 Value *RHSV = GEPRHS->getOperand(DiffOperand); 989 // Make sure we do a signed comparison here. 990 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 991 } 992 } 993 994 // Only lower this if the icmp is the only user of the GEP or if we expect 995 // the result to fold to a constant! 996 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 997 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 998 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 999 Value *L = EmitGEPOffset(GEPLHS); 1000 Value *R = EmitGEPOffset(GEPRHS); 1001 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1002 } 1003 } 1004 1005 // Try convert this to an indexed compare by looking through PHIs/casts as a 1006 // last resort. 1007 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1008 } 1009 1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1011 const AllocaInst *Alloca, 1012 const Value *Other) { 1013 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1014 1015 // It would be tempting to fold away comparisons between allocas and any 1016 // pointer not based on that alloca (e.g. an argument). However, even 1017 // though such pointers cannot alias, they can still compare equal. 1018 // 1019 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1020 // doesn't escape we can argue that it's impossible to guess its value, and we 1021 // can therefore act as if any such guesses are wrong. 1022 // 1023 // The code below checks that the alloca doesn't escape, and that it's only 1024 // used in a comparison once (the current instruction). The 1025 // single-comparison-use condition ensures that we're trivially folding all 1026 // comparisons against the alloca consistently, and avoids the risk of 1027 // erroneously folding a comparison of the pointer with itself. 1028 1029 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1030 1031 SmallVector<const Use *, 32> Worklist; 1032 for (const Use &U : Alloca->uses()) { 1033 if (Worklist.size() >= MaxIter) 1034 return nullptr; 1035 Worklist.push_back(&U); 1036 } 1037 1038 unsigned NumCmps = 0; 1039 while (!Worklist.empty()) { 1040 assert(Worklist.size() <= MaxIter); 1041 const Use *U = Worklist.pop_back_val(); 1042 const Value *V = U->getUser(); 1043 --MaxIter; 1044 1045 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1046 isa<SelectInst>(V)) { 1047 // Track the uses. 1048 } else if (isa<LoadInst>(V)) { 1049 // Loading from the pointer doesn't escape it. 1050 continue; 1051 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1052 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1053 if (SI->getValueOperand() == U->get()) 1054 return nullptr; 1055 continue; 1056 } else if (isa<ICmpInst>(V)) { 1057 if (NumCmps++) 1058 return nullptr; // Found more than one cmp. 1059 continue; 1060 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1061 switch (Intrin->getIntrinsicID()) { 1062 // These intrinsics don't escape or compare the pointer. Memset is safe 1063 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1064 // we don't allow stores, so src cannot point to V. 1065 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1066 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1067 continue; 1068 default: 1069 return nullptr; 1070 } 1071 } else { 1072 return nullptr; 1073 } 1074 for (const Use &U : V->uses()) { 1075 if (Worklist.size() >= MaxIter) 1076 return nullptr; 1077 Worklist.push_back(&U); 1078 } 1079 } 1080 1081 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1082 return replaceInstUsesWith( 1083 ICI, 1084 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1085 } 1086 1087 /// Fold "icmp pred (X+C), X". 1088 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1089 ICmpInst::Predicate Pred) { 1090 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1091 // so the values can never be equal. Similarly for all other "or equals" 1092 // operators. 1093 assert(!!C && "C should not be zero!"); 1094 1095 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1096 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1097 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1098 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1099 Constant *R = ConstantInt::get(X->getType(), 1100 APInt::getMaxValue(C.getBitWidth()) - C); 1101 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1102 } 1103 1104 // (X+1) >u X --> X <u (0-1) --> X != 255 1105 // (X+2) >u X --> X <u (0-2) --> X <u 254 1106 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1107 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1108 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1109 ConstantInt::get(X->getType(), -C)); 1110 1111 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1112 1113 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1114 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1115 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1116 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1117 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1118 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1119 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1120 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1121 ConstantInt::get(X->getType(), SMax - C)); 1122 1123 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1124 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1125 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1126 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1127 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1128 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1129 1130 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1131 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1132 ConstantInt::get(X->getType(), SMax - (C - 1))); 1133 } 1134 1135 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1136 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1137 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1138 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1139 const APInt &AP1, 1140 const APInt &AP2) { 1141 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1142 1143 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1144 if (I.getPredicate() == I.ICMP_NE) 1145 Pred = CmpInst::getInversePredicate(Pred); 1146 return new ICmpInst(Pred, LHS, RHS); 1147 }; 1148 1149 // Don't bother doing any work for cases which InstSimplify handles. 1150 if (AP2.isNullValue()) 1151 return nullptr; 1152 1153 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1154 if (IsAShr) { 1155 if (AP2.isAllOnesValue()) 1156 return nullptr; 1157 if (AP2.isNegative() != AP1.isNegative()) 1158 return nullptr; 1159 if (AP2.sgt(AP1)) 1160 return nullptr; 1161 } 1162 1163 if (!AP1) 1164 // 'A' must be large enough to shift out the highest set bit. 1165 return getICmp(I.ICMP_UGT, A, 1166 ConstantInt::get(A->getType(), AP2.logBase2())); 1167 1168 if (AP1 == AP2) 1169 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1170 1171 int Shift; 1172 if (IsAShr && AP1.isNegative()) 1173 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1174 else 1175 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1176 1177 if (Shift > 0) { 1178 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1179 // There are multiple solutions if we are comparing against -1 and the LHS 1180 // of the ashr is not a power of two. 1181 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1182 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1183 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1184 } else if (AP1 == AP2.lshr(Shift)) { 1185 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1186 } 1187 } 1188 1189 // Shifting const2 will never be equal to const1. 1190 // FIXME: This should always be handled by InstSimplify? 1191 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1192 return replaceInstUsesWith(I, TorF); 1193 } 1194 1195 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1196 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1197 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1198 const APInt &AP1, 1199 const APInt &AP2) { 1200 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1201 1202 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1203 if (I.getPredicate() == I.ICMP_NE) 1204 Pred = CmpInst::getInversePredicate(Pred); 1205 return new ICmpInst(Pred, LHS, RHS); 1206 }; 1207 1208 // Don't bother doing any work for cases which InstSimplify handles. 1209 if (AP2.isNullValue()) 1210 return nullptr; 1211 1212 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1213 1214 if (!AP1 && AP2TrailingZeros != 0) 1215 return getICmp( 1216 I.ICMP_UGE, A, 1217 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1218 1219 if (AP1 == AP2) 1220 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1221 1222 // Get the distance between the lowest bits that are set. 1223 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1224 1225 if (Shift > 0 && AP2.shl(Shift) == AP1) 1226 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1227 1228 // Shifting const2 will never be equal to const1. 1229 // FIXME: This should always be handled by InstSimplify? 1230 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1231 return replaceInstUsesWith(I, TorF); 1232 } 1233 1234 /// The caller has matched a pattern of the form: 1235 /// I = icmp ugt (add (add A, B), CI2), CI1 1236 /// If this is of the form: 1237 /// sum = a + b 1238 /// if (sum+128 >u 255) 1239 /// Then replace it with llvm.sadd.with.overflow.i8. 1240 /// 1241 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1242 ConstantInt *CI2, ConstantInt *CI1, 1243 InstCombinerImpl &IC) { 1244 // The transformation we're trying to do here is to transform this into an 1245 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1246 // with a narrower add, and discard the add-with-constant that is part of the 1247 // range check (if we can't eliminate it, this isn't profitable). 1248 1249 // In order to eliminate the add-with-constant, the compare can be its only 1250 // use. 1251 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1252 if (!AddWithCst->hasOneUse()) 1253 return nullptr; 1254 1255 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1256 if (!CI2->getValue().isPowerOf2()) 1257 return nullptr; 1258 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1259 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1260 return nullptr; 1261 1262 // The width of the new add formed is 1 more than the bias. 1263 ++NewWidth; 1264 1265 // Check to see that CI1 is an all-ones value with NewWidth bits. 1266 if (CI1->getBitWidth() == NewWidth || 1267 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1268 return nullptr; 1269 1270 // This is only really a signed overflow check if the inputs have been 1271 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1272 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1273 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1274 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1275 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1276 return nullptr; 1277 1278 // In order to replace the original add with a narrower 1279 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1280 // and truncates that discard the high bits of the add. Verify that this is 1281 // the case. 1282 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1283 for (User *U : OrigAdd->users()) { 1284 if (U == AddWithCst) 1285 continue; 1286 1287 // Only accept truncates for now. We would really like a nice recursive 1288 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1289 // chain to see which bits of a value are actually demanded. If the 1290 // original add had another add which was then immediately truncated, we 1291 // could still do the transformation. 1292 TruncInst *TI = dyn_cast<TruncInst>(U); 1293 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1294 return nullptr; 1295 } 1296 1297 // If the pattern matches, truncate the inputs to the narrower type and 1298 // use the sadd_with_overflow intrinsic to efficiently compute both the 1299 // result and the overflow bit. 1300 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1301 Function *F = Intrinsic::getDeclaration( 1302 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1303 1304 InstCombiner::BuilderTy &Builder = IC.Builder; 1305 1306 // Put the new code above the original add, in case there are any uses of the 1307 // add between the add and the compare. 1308 Builder.SetInsertPoint(OrigAdd); 1309 1310 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1311 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1312 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1313 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1314 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1315 1316 // The inner add was the result of the narrow add, zero extended to the 1317 // wider type. Replace it with the result computed by the intrinsic. 1318 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1319 IC.eraseInstFromFunction(*OrigAdd); 1320 1321 // The original icmp gets replaced with the overflow value. 1322 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1323 } 1324 1325 /// If we have: 1326 /// icmp eq/ne (urem/srem %x, %y), 0 1327 /// iff %y is a power-of-two, we can replace this with a bit test: 1328 /// icmp eq/ne (and %x, (add %y, -1)), 0 1329 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1330 // This fold is only valid for equality predicates. 1331 if (!I.isEquality()) 1332 return nullptr; 1333 ICmpInst::Predicate Pred; 1334 Value *X, *Y, *Zero; 1335 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1336 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1337 return nullptr; 1338 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1339 return nullptr; 1340 // This may increase instruction count, we don't enforce that Y is a constant. 1341 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1342 Value *Masked = Builder.CreateAnd(X, Mask); 1343 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1344 } 1345 1346 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1347 /// by one-less-than-bitwidth into a sign test on the original value. 1348 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1349 Instruction *Val; 1350 ICmpInst::Predicate Pred; 1351 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1352 return nullptr; 1353 1354 Value *X; 1355 Type *XTy; 1356 1357 Constant *C; 1358 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1359 XTy = X->getType(); 1360 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1361 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1362 APInt(XBitWidth, XBitWidth - 1)))) 1363 return nullptr; 1364 } else if (isa<BinaryOperator>(Val) && 1365 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1366 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1367 /*AnalyzeForSignBitExtraction=*/true))) { 1368 XTy = X->getType(); 1369 } else 1370 return nullptr; 1371 1372 return ICmpInst::Create(Instruction::ICmp, 1373 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1374 : ICmpInst::ICMP_SLT, 1375 X, ConstantInt::getNullValue(XTy)); 1376 } 1377 1378 // Handle icmp pred X, 0 1379 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1380 CmpInst::Predicate Pred = Cmp.getPredicate(); 1381 if (!match(Cmp.getOperand(1), m_Zero())) 1382 return nullptr; 1383 1384 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1385 if (Pred == ICmpInst::ICMP_SGT) { 1386 Value *A, *B; 1387 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1388 if (SPR.Flavor == SPF_SMIN) { 1389 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1390 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1391 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1392 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1393 } 1394 } 1395 1396 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1397 return New; 1398 1399 // Given: 1400 // icmp eq/ne (urem %x, %y), 0 1401 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1402 // icmp eq/ne %x, 0 1403 Value *X, *Y; 1404 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1405 ICmpInst::isEquality(Pred)) { 1406 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1407 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1408 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1409 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1410 } 1411 1412 return nullptr; 1413 } 1414 1415 /// Fold icmp Pred X, C. 1416 /// TODO: This code structure does not make sense. The saturating add fold 1417 /// should be moved to some other helper and extended as noted below (it is also 1418 /// possible that code has been made unnecessary - do we canonicalize IR to 1419 /// overflow/saturating intrinsics or not?). 1420 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1421 // Match the following pattern, which is a common idiom when writing 1422 // overflow-safe integer arithmetic functions. The source performs an addition 1423 // in wider type and explicitly checks for overflow using comparisons against 1424 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1425 // 1426 // TODO: This could probably be generalized to handle other overflow-safe 1427 // operations if we worked out the formulas to compute the appropriate magic 1428 // constants. 1429 // 1430 // sum = a + b 1431 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1432 CmpInst::Predicate Pred = Cmp.getPredicate(); 1433 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1434 Value *A, *B; 1435 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1436 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1437 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1438 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1439 return Res; 1440 1441 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1442 Constant *C = dyn_cast<Constant>(Op1); 1443 if (!C || C->canTrap()) 1444 return nullptr; 1445 1446 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1447 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1448 Type *Ty = Cmp.getType(); 1449 Builder.SetInsertPoint(Phi); 1450 PHINode *NewPhi = 1451 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1452 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1453 auto *Input = 1454 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1455 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1456 NewPhi->addIncoming(BoolInput, Predecessor); 1457 } 1458 NewPhi->takeName(&Cmp); 1459 return replaceInstUsesWith(Cmp, NewPhi); 1460 } 1461 1462 return nullptr; 1463 } 1464 1465 /// Canonicalize icmp instructions based on dominating conditions. 1466 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1467 // This is a cheap/incomplete check for dominance - just match a single 1468 // predecessor with a conditional branch. 1469 BasicBlock *CmpBB = Cmp.getParent(); 1470 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1471 if (!DomBB) 1472 return nullptr; 1473 1474 Value *DomCond; 1475 BasicBlock *TrueBB, *FalseBB; 1476 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1477 return nullptr; 1478 1479 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1480 "Predecessor block does not point to successor?"); 1481 1482 // The branch should get simplified. Don't bother simplifying this condition. 1483 if (TrueBB == FalseBB) 1484 return nullptr; 1485 1486 // Try to simplify this compare to T/F based on the dominating condition. 1487 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1488 if (Imp) 1489 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1490 1491 CmpInst::Predicate Pred = Cmp.getPredicate(); 1492 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1493 ICmpInst::Predicate DomPred; 1494 const APInt *C, *DomC; 1495 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1496 match(Y, m_APInt(C))) { 1497 // We have 2 compares of a variable with constants. Calculate the constant 1498 // ranges of those compares to see if we can transform the 2nd compare: 1499 // DomBB: 1500 // DomCond = icmp DomPred X, DomC 1501 // br DomCond, CmpBB, FalseBB 1502 // CmpBB: 1503 // Cmp = icmp Pred X, C 1504 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1505 ConstantRange DominatingCR = 1506 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1507 : ConstantRange::makeExactICmpRegion( 1508 CmpInst::getInversePredicate(DomPred), *DomC); 1509 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1510 ConstantRange Difference = DominatingCR.difference(CR); 1511 if (Intersection.isEmptySet()) 1512 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1513 if (Difference.isEmptySet()) 1514 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1515 1516 // Canonicalizing a sign bit comparison that gets used in a branch, 1517 // pessimizes codegen by generating branch on zero instruction instead 1518 // of a test and branch. So we avoid canonicalizing in such situations 1519 // because test and branch instruction has better branch displacement 1520 // than compare and branch instruction. 1521 bool UnusedBit; 1522 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1523 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1524 return nullptr; 1525 1526 // Avoid an infinite loop with min/max canonicalization. 1527 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1528 if (Cmp.hasOneUse() && 1529 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1530 return nullptr; 1531 1532 if (const APInt *EqC = Intersection.getSingleElement()) 1533 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1534 if (const APInt *NeC = Difference.getSingleElement()) 1535 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1536 } 1537 1538 return nullptr; 1539 } 1540 1541 /// Fold icmp (trunc X, Y), C. 1542 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1543 TruncInst *Trunc, 1544 const APInt &C) { 1545 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1546 Value *X = Trunc->getOperand(0); 1547 if (C.isOneValue() && C.getBitWidth() > 1) { 1548 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1549 Value *V = nullptr; 1550 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1551 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1552 ConstantInt::get(V->getType(), 1)); 1553 } 1554 1555 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1556 SrcBits = X->getType()->getScalarSizeInBits(); 1557 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1558 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1559 // of the high bits truncated out of x are known. 1560 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1561 1562 // If all the high bits are known, we can do this xform. 1563 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1564 // Pull in the high bits from known-ones set. 1565 APInt NewRHS = C.zext(SrcBits); 1566 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1567 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1568 } 1569 } 1570 1571 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1572 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1573 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1574 Value *ShOp; 1575 const APInt *ShAmtC; 1576 bool TrueIfSigned; 1577 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1578 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1579 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1580 return TrueIfSigned 1581 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1582 ConstantInt::getNullValue(X->getType())) 1583 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1584 ConstantInt::getAllOnesValue(X->getType())); 1585 } 1586 1587 return nullptr; 1588 } 1589 1590 /// Fold icmp (xor X, Y), C. 1591 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1592 BinaryOperator *Xor, 1593 const APInt &C) { 1594 Value *X = Xor->getOperand(0); 1595 Value *Y = Xor->getOperand(1); 1596 const APInt *XorC; 1597 if (!match(Y, m_APInt(XorC))) 1598 return nullptr; 1599 1600 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1601 // fold the xor. 1602 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1603 bool TrueIfSigned = false; 1604 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1605 1606 // If the sign bit of the XorCst is not set, there is no change to 1607 // the operation, just stop using the Xor. 1608 if (!XorC->isNegative()) 1609 return replaceOperand(Cmp, 0, X); 1610 1611 // Emit the opposite comparison. 1612 if (TrueIfSigned) 1613 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1614 ConstantInt::getAllOnesValue(X->getType())); 1615 else 1616 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1617 ConstantInt::getNullValue(X->getType())); 1618 } 1619 1620 if (Xor->hasOneUse()) { 1621 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1622 if (!Cmp.isEquality() && XorC->isSignMask()) { 1623 Pred = Cmp.getFlippedSignednessPredicate(); 1624 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1625 } 1626 1627 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1628 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1629 Pred = Cmp.getFlippedSignednessPredicate(); 1630 Pred = Cmp.getSwappedPredicate(Pred); 1631 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1632 } 1633 } 1634 1635 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1636 if (Pred == ICmpInst::ICMP_UGT) { 1637 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1638 if (*XorC == ~C && (C + 1).isPowerOf2()) 1639 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1640 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1641 if (*XorC == C && (C + 1).isPowerOf2()) 1642 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1643 } 1644 if (Pred == ICmpInst::ICMP_ULT) { 1645 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1646 if (*XorC == -C && C.isPowerOf2()) 1647 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1648 ConstantInt::get(X->getType(), ~C)); 1649 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1650 if (*XorC == C && (-C).isPowerOf2()) 1651 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1652 ConstantInt::get(X->getType(), ~C)); 1653 } 1654 return nullptr; 1655 } 1656 1657 /// Fold icmp (and (sh X, Y), C2), C1. 1658 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1659 BinaryOperator *And, 1660 const APInt &C1, 1661 const APInt &C2) { 1662 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1663 if (!Shift || !Shift->isShift()) 1664 return nullptr; 1665 1666 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1667 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1668 // code produced by the clang front-end, for bitfield access. 1669 // This seemingly simple opportunity to fold away a shift turns out to be 1670 // rather complicated. See PR17827 for details. 1671 unsigned ShiftOpcode = Shift->getOpcode(); 1672 bool IsShl = ShiftOpcode == Instruction::Shl; 1673 const APInt *C3; 1674 if (match(Shift->getOperand(1), m_APInt(C3))) { 1675 APInt NewAndCst, NewCmpCst; 1676 bool AnyCmpCstBitsShiftedOut; 1677 if (ShiftOpcode == Instruction::Shl) { 1678 // For a left shift, we can fold if the comparison is not signed. We can 1679 // also fold a signed comparison if the mask value and comparison value 1680 // are not negative. These constraints may not be obvious, but we can 1681 // prove that they are correct using an SMT solver. 1682 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1683 return nullptr; 1684 1685 NewCmpCst = C1.lshr(*C3); 1686 NewAndCst = C2.lshr(*C3); 1687 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1688 } else if (ShiftOpcode == Instruction::LShr) { 1689 // For a logical right shift, we can fold if the comparison is not signed. 1690 // We can also fold a signed comparison if the shifted mask value and the 1691 // shifted comparison value are not negative. These constraints may not be 1692 // obvious, but we can prove that they are correct using an SMT solver. 1693 NewCmpCst = C1.shl(*C3); 1694 NewAndCst = C2.shl(*C3); 1695 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1696 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1697 return nullptr; 1698 } else { 1699 // For an arithmetic shift, check that both constants don't use (in a 1700 // signed sense) the top bits being shifted out. 1701 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1702 NewCmpCst = C1.shl(*C3); 1703 NewAndCst = C2.shl(*C3); 1704 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1705 if (NewAndCst.ashr(*C3) != C2) 1706 return nullptr; 1707 } 1708 1709 if (AnyCmpCstBitsShiftedOut) { 1710 // If we shifted bits out, the fold is not going to work out. As a 1711 // special case, check to see if this means that the result is always 1712 // true or false now. 1713 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1714 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1715 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1716 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1717 } else { 1718 Value *NewAnd = Builder.CreateAnd( 1719 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1720 return new ICmpInst(Cmp.getPredicate(), 1721 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1722 } 1723 } 1724 1725 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1726 // preferable because it allows the C2 << Y expression to be hoisted out of a 1727 // loop if Y is invariant and X is not. 1728 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1729 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1730 // Compute C2 << Y. 1731 Value *NewShift = 1732 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1733 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1734 1735 // Compute X & (C2 << Y). 1736 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1737 return replaceOperand(Cmp, 0, NewAnd); 1738 } 1739 1740 return nullptr; 1741 } 1742 1743 /// Fold icmp (and X, C2), C1. 1744 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1745 BinaryOperator *And, 1746 const APInt &C1) { 1747 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1748 1749 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1750 // TODO: We canonicalize to the longer form for scalars because we have 1751 // better analysis/folds for icmp, and codegen may be better with icmp. 1752 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1753 match(And->getOperand(1), m_One())) 1754 return new TruncInst(And->getOperand(0), Cmp.getType()); 1755 1756 const APInt *C2; 1757 Value *X; 1758 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1759 return nullptr; 1760 1761 // Don't perform the following transforms if the AND has multiple uses 1762 if (!And->hasOneUse()) 1763 return nullptr; 1764 1765 if (Cmp.isEquality() && C1.isNullValue()) { 1766 // Restrict this fold to single-use 'and' (PR10267). 1767 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1768 if (C2->isSignMask()) { 1769 Constant *Zero = Constant::getNullValue(X->getType()); 1770 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1771 return new ICmpInst(NewPred, X, Zero); 1772 } 1773 1774 // Restrict this fold only for single-use 'and' (PR10267). 1775 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1776 if ((~(*C2) + 1).isPowerOf2()) { 1777 Constant *NegBOC = 1778 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1779 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1780 return new ICmpInst(NewPred, X, NegBOC); 1781 } 1782 } 1783 1784 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1785 // the input width without changing the value produced, eliminate the cast: 1786 // 1787 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1788 // 1789 // We can do this transformation if the constants do not have their sign bits 1790 // set or if it is an equality comparison. Extending a relational comparison 1791 // when we're checking the sign bit would not work. 1792 Value *W; 1793 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1794 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1795 // TODO: Is this a good transform for vectors? Wider types may reduce 1796 // throughput. Should this transform be limited (even for scalars) by using 1797 // shouldChangeType()? 1798 if (!Cmp.getType()->isVectorTy()) { 1799 Type *WideType = W->getType(); 1800 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1801 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1802 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1803 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1804 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1805 } 1806 } 1807 1808 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1809 return I; 1810 1811 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1812 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1813 // 1814 // iff pred isn't signed 1815 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1816 match(And->getOperand(1), m_One())) { 1817 Constant *One = cast<Constant>(And->getOperand(1)); 1818 Value *Or = And->getOperand(0); 1819 Value *A, *B, *LShr; 1820 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1821 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1822 unsigned UsesRemoved = 0; 1823 if (And->hasOneUse()) 1824 ++UsesRemoved; 1825 if (Or->hasOneUse()) 1826 ++UsesRemoved; 1827 if (LShr->hasOneUse()) 1828 ++UsesRemoved; 1829 1830 // Compute A & ((1 << B) | 1) 1831 Value *NewOr = nullptr; 1832 if (auto *C = dyn_cast<Constant>(B)) { 1833 if (UsesRemoved >= 1) 1834 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1835 } else { 1836 if (UsesRemoved >= 3) 1837 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1838 /*HasNUW=*/true), 1839 One, Or->getName()); 1840 } 1841 if (NewOr) { 1842 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1843 return replaceOperand(Cmp, 0, NewAnd); 1844 } 1845 } 1846 } 1847 1848 return nullptr; 1849 } 1850 1851 /// Fold icmp (and X, Y), C. 1852 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1853 BinaryOperator *And, 1854 const APInt &C) { 1855 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1856 return I; 1857 1858 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1859 bool TrueIfNeg; 1860 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1861 // ((X - 1) & ~X) < 0 --> X == 0 1862 // ((X - 1) & ~X) >= 0 --> X != 0 1863 Value *X; 1864 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1865 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1866 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1867 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1868 } 1869 } 1870 1871 // TODO: These all require that Y is constant too, so refactor with the above. 1872 1873 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1874 Value *X = And->getOperand(0); 1875 Value *Y = And->getOperand(1); 1876 if (auto *LI = dyn_cast<LoadInst>(X)) 1877 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1878 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1879 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1880 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1881 ConstantInt *C2 = cast<ConstantInt>(Y); 1882 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1883 return Res; 1884 } 1885 1886 if (!Cmp.isEquality()) 1887 return nullptr; 1888 1889 // X & -C == -C -> X > u ~C 1890 // X & -C != -C -> X <= u ~C 1891 // iff C is a power of 2 1892 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1893 auto NewPred = 1894 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1895 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1896 } 1897 1898 // (X & C2) == 0 -> (trunc X) >= 0 1899 // (X & C2) != 0 -> (trunc X) < 0 1900 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1901 const APInt *C2; 1902 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1903 int32_t ExactLogBase2 = C2->exactLogBase2(); 1904 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1905 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1906 if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) 1907 NTy = VectorType::get(NTy, AndVTy->getElementCount()); 1908 Value *Trunc = Builder.CreateTrunc(X, NTy); 1909 auto NewPred = 1910 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE : CmpInst::ICMP_SLT; 1911 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1912 } 1913 } 1914 1915 return nullptr; 1916 } 1917 1918 /// Fold icmp (or X, Y), C. 1919 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1920 BinaryOperator *Or, 1921 const APInt &C) { 1922 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1923 if (C.isOneValue()) { 1924 // icmp slt signum(V) 1 --> icmp slt V, 1 1925 Value *V = nullptr; 1926 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1927 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1928 ConstantInt::get(V->getType(), 1)); 1929 } 1930 1931 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1932 const APInt *MaskC; 1933 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1934 if (*MaskC == C && (C + 1).isPowerOf2()) { 1935 // X | C == C --> X <=u C 1936 // X | C != C --> X >u C 1937 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1938 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1939 return new ICmpInst(Pred, OrOp0, OrOp1); 1940 } 1941 1942 // More general: canonicalize 'equality with set bits mask' to 1943 // 'equality with clear bits mask'. 1944 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1945 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1946 if (Or->hasOneUse()) { 1947 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1948 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1949 return new ICmpInst(Pred, And, NewC); 1950 } 1951 } 1952 1953 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1954 return nullptr; 1955 1956 Value *P, *Q; 1957 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1958 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1959 // -> and (icmp eq P, null), (icmp eq Q, null). 1960 Value *CmpP = 1961 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1962 Value *CmpQ = 1963 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1964 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1965 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1966 } 1967 1968 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1969 // a shorter form that has more potential to be folded even further. 1970 Value *X1, *X2, *X3, *X4; 1971 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1972 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1973 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1974 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1975 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1976 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1977 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1978 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1979 } 1980 1981 return nullptr; 1982 } 1983 1984 /// Fold icmp (mul X, Y), C. 1985 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1986 BinaryOperator *Mul, 1987 const APInt &C) { 1988 const APInt *MulC; 1989 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1990 return nullptr; 1991 1992 // If this is a test of the sign bit and the multiply is sign-preserving with 1993 // a constant operand, use the multiply LHS operand instead. 1994 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1995 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1996 if (MulC->isNegative()) 1997 Pred = ICmpInst::getSwappedPredicate(Pred); 1998 return new ICmpInst(Pred, Mul->getOperand(0), 1999 Constant::getNullValue(Mul->getType())); 2000 } 2001 2002 // If the multiply does not wrap, try to divide the compare constant by the 2003 // multiplication factor. 2004 if (Cmp.isEquality() && !MulC->isNullValue()) { 2005 // (mul nsw X, MulC) == C --> X == C /s MulC 2006 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) { 2007 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 2008 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2009 } 2010 // (mul nuw X, MulC) == C --> X == C /u MulC 2011 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) { 2012 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 2013 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2014 } 2015 } 2016 2017 return nullptr; 2018 } 2019 2020 /// Fold icmp (shl 1, Y), C. 2021 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2022 const APInt &C) { 2023 Value *Y; 2024 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2025 return nullptr; 2026 2027 Type *ShiftType = Shl->getType(); 2028 unsigned TypeBits = C.getBitWidth(); 2029 bool CIsPowerOf2 = C.isPowerOf2(); 2030 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2031 if (Cmp.isUnsigned()) { 2032 // (1 << Y) pred C -> Y pred Log2(C) 2033 if (!CIsPowerOf2) { 2034 // (1 << Y) < 30 -> Y <= 4 2035 // (1 << Y) <= 30 -> Y <= 4 2036 // (1 << Y) >= 30 -> Y > 4 2037 // (1 << Y) > 30 -> Y > 4 2038 if (Pred == ICmpInst::ICMP_ULT) 2039 Pred = ICmpInst::ICMP_ULE; 2040 else if (Pred == ICmpInst::ICMP_UGE) 2041 Pred = ICmpInst::ICMP_UGT; 2042 } 2043 2044 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2045 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2046 unsigned CLog2 = C.logBase2(); 2047 if (CLog2 == TypeBits - 1) { 2048 if (Pred == ICmpInst::ICMP_UGE) 2049 Pred = ICmpInst::ICMP_EQ; 2050 else if (Pred == ICmpInst::ICMP_ULT) 2051 Pred = ICmpInst::ICMP_NE; 2052 } 2053 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2054 } else if (Cmp.isSigned()) { 2055 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2056 if (C.isAllOnesValue()) { 2057 // (1 << Y) <= -1 -> Y == 31 2058 if (Pred == ICmpInst::ICMP_SLE) 2059 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2060 2061 // (1 << Y) > -1 -> Y != 31 2062 if (Pred == ICmpInst::ICMP_SGT) 2063 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2064 } else if (!C) { 2065 // (1 << Y) < 0 -> Y == 31 2066 // (1 << Y) <= 0 -> Y == 31 2067 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2068 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2069 2070 // (1 << Y) >= 0 -> Y != 31 2071 // (1 << Y) > 0 -> Y != 31 2072 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2073 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2074 } 2075 } else if (Cmp.isEquality() && CIsPowerOf2) { 2076 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2077 } 2078 2079 return nullptr; 2080 } 2081 2082 /// Fold icmp (shl X, Y), C. 2083 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2084 BinaryOperator *Shl, 2085 const APInt &C) { 2086 const APInt *ShiftVal; 2087 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2088 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2089 2090 const APInt *ShiftAmt; 2091 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2092 return foldICmpShlOne(Cmp, Shl, C); 2093 2094 // Check that the shift amount is in range. If not, don't perform undefined 2095 // shifts. When the shift is visited, it will be simplified. 2096 unsigned TypeBits = C.getBitWidth(); 2097 if (ShiftAmt->uge(TypeBits)) 2098 return nullptr; 2099 2100 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2101 Value *X = Shl->getOperand(0); 2102 Type *ShType = Shl->getType(); 2103 2104 // NSW guarantees that we are only shifting out sign bits from the high bits, 2105 // so we can ASHR the compare constant without needing a mask and eliminate 2106 // the shift. 2107 if (Shl->hasNoSignedWrap()) { 2108 if (Pred == ICmpInst::ICMP_SGT) { 2109 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2110 APInt ShiftedC = C.ashr(*ShiftAmt); 2111 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2112 } 2113 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2114 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2115 APInt ShiftedC = C.ashr(*ShiftAmt); 2116 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2117 } 2118 if (Pred == ICmpInst::ICMP_SLT) { 2119 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2120 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2121 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2122 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2123 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2124 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2125 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2126 } 2127 // If this is a signed comparison to 0 and the shift is sign preserving, 2128 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2129 // do that if we're sure to not continue on in this function. 2130 if (isSignTest(Pred, C)) 2131 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2132 } 2133 2134 // NUW guarantees that we are only shifting out zero bits from the high bits, 2135 // so we can LSHR the compare constant without needing a mask and eliminate 2136 // the shift. 2137 if (Shl->hasNoUnsignedWrap()) { 2138 if (Pred == ICmpInst::ICMP_UGT) { 2139 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2140 APInt ShiftedC = C.lshr(*ShiftAmt); 2141 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2142 } 2143 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2144 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2145 APInt ShiftedC = C.lshr(*ShiftAmt); 2146 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2147 } 2148 if (Pred == ICmpInst::ICMP_ULT) { 2149 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2150 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2151 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2152 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2153 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2154 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2155 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2156 } 2157 } 2158 2159 if (Cmp.isEquality() && Shl->hasOneUse()) { 2160 // Strength-reduce the shift into an 'and'. 2161 Constant *Mask = ConstantInt::get( 2162 ShType, 2163 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2164 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2165 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2166 return new ICmpInst(Pred, And, LShrC); 2167 } 2168 2169 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2170 bool TrueIfSigned = false; 2171 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2172 // (X << 31) <s 0 --> (X & 1) != 0 2173 Constant *Mask = ConstantInt::get( 2174 ShType, 2175 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2176 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2177 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2178 And, Constant::getNullValue(ShType)); 2179 } 2180 2181 // Simplify 'shl' inequality test into 'and' equality test. 2182 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2183 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2184 if ((C + 1).isPowerOf2() && 2185 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2186 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2187 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2188 : ICmpInst::ICMP_NE, 2189 And, Constant::getNullValue(ShType)); 2190 } 2191 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2192 if (C.isPowerOf2() && 2193 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2194 Value *And = 2195 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2196 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2197 : ICmpInst::ICMP_NE, 2198 And, Constant::getNullValue(ShType)); 2199 } 2200 } 2201 2202 // Transform (icmp pred iM (shl iM %v, N), C) 2203 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2204 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2205 // This enables us to get rid of the shift in favor of a trunc that may be 2206 // free on the target. It has the additional benefit of comparing to a 2207 // smaller constant that may be more target-friendly. 2208 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2209 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2210 DL.isLegalInteger(TypeBits - Amt)) { 2211 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2212 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2213 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2214 Constant *NewC = 2215 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2216 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2217 } 2218 2219 return nullptr; 2220 } 2221 2222 /// Fold icmp ({al}shr X, Y), C. 2223 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2224 BinaryOperator *Shr, 2225 const APInt &C) { 2226 // An exact shr only shifts out zero bits, so: 2227 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2228 Value *X = Shr->getOperand(0); 2229 CmpInst::Predicate Pred = Cmp.getPredicate(); 2230 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2231 C.isNullValue()) 2232 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2233 2234 const APInt *ShiftVal; 2235 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2236 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2237 2238 const APInt *ShiftAmt; 2239 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2240 return nullptr; 2241 2242 // Check that the shift amount is in range. If not, don't perform undefined 2243 // shifts. When the shift is visited it will be simplified. 2244 unsigned TypeBits = C.getBitWidth(); 2245 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2246 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2247 return nullptr; 2248 2249 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2250 bool IsExact = Shr->isExact(); 2251 Type *ShrTy = Shr->getType(); 2252 // TODO: If we could guarantee that InstSimplify would handle all of the 2253 // constant-value-based preconditions in the folds below, then we could assert 2254 // those conditions rather than checking them. This is difficult because of 2255 // undef/poison (PR34838). 2256 if (IsAShr) { 2257 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2258 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2259 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2260 APInt ShiftedC = C.shl(ShAmtVal); 2261 if (ShiftedC.ashr(ShAmtVal) == C) 2262 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2263 } 2264 if (Pred == CmpInst::ICMP_SGT) { 2265 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2266 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2267 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2268 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2269 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2270 } 2271 2272 // If the compare constant has significant bits above the lowest sign-bit, 2273 // then convert an unsigned cmp to a test of the sign-bit: 2274 // (ashr X, ShiftC) u> C --> X s< 0 2275 // (ashr X, ShiftC) u< C --> X s> -1 2276 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2277 if (Pred == CmpInst::ICMP_UGT) { 2278 return new ICmpInst(CmpInst::ICMP_SLT, X, 2279 ConstantInt::getNullValue(ShrTy)); 2280 } 2281 if (Pred == CmpInst::ICMP_ULT) { 2282 return new ICmpInst(CmpInst::ICMP_SGT, X, 2283 ConstantInt::getAllOnesValue(ShrTy)); 2284 } 2285 } 2286 } else { 2287 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2288 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2289 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2290 APInt ShiftedC = C.shl(ShAmtVal); 2291 if (ShiftedC.lshr(ShAmtVal) == C) 2292 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2293 } 2294 if (Pred == CmpInst::ICMP_UGT) { 2295 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2296 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2297 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2298 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2299 } 2300 } 2301 2302 if (!Cmp.isEquality()) 2303 return nullptr; 2304 2305 // Handle equality comparisons of shift-by-constant. 2306 2307 // If the comparison constant changes with the shift, the comparison cannot 2308 // succeed (bits of the comparison constant cannot match the shifted value). 2309 // This should be known by InstSimplify and already be folded to true/false. 2310 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2311 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2312 "Expected icmp+shr simplify did not occur."); 2313 2314 // If the bits shifted out are known zero, compare the unshifted value: 2315 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2316 if (Shr->isExact()) 2317 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2318 2319 if (C.isNullValue()) { 2320 // == 0 is u< 1. 2321 if (Pred == CmpInst::ICMP_EQ) 2322 return new ICmpInst(CmpInst::ICMP_ULT, X, 2323 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2324 else 2325 return new ICmpInst(CmpInst::ICMP_UGT, X, 2326 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2327 } 2328 2329 if (Shr->hasOneUse()) { 2330 // Canonicalize the shift into an 'and': 2331 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2332 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2333 Constant *Mask = ConstantInt::get(ShrTy, Val); 2334 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2335 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2336 } 2337 2338 return nullptr; 2339 } 2340 2341 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2342 BinaryOperator *SRem, 2343 const APInt &C) { 2344 // Match an 'is positive' or 'is negative' comparison of remainder by a 2345 // constant power-of-2 value: 2346 // (X % pow2C) sgt/slt 0 2347 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2348 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2349 return nullptr; 2350 2351 // TODO: The one-use check is standard because we do not typically want to 2352 // create longer instruction sequences, but this might be a special-case 2353 // because srem is not good for analysis or codegen. 2354 if (!SRem->hasOneUse()) 2355 return nullptr; 2356 2357 const APInt *DivisorC; 2358 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2359 return nullptr; 2360 2361 // Mask off the sign bit and the modulo bits (low-bits). 2362 Type *Ty = SRem->getType(); 2363 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2364 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2365 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2366 2367 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2368 // bit is set. Example: 2369 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2370 if (Pred == ICmpInst::ICMP_SGT) 2371 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2372 2373 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2374 // bit is set. Example: 2375 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2376 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2377 } 2378 2379 /// Fold icmp (udiv X, Y), C. 2380 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2381 BinaryOperator *UDiv, 2382 const APInt &C) { 2383 const APInt *C2; 2384 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2385 return nullptr; 2386 2387 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2388 2389 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2390 Value *Y = UDiv->getOperand(1); 2391 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2392 assert(!C.isMaxValue() && 2393 "icmp ugt X, UINT_MAX should have been simplified already."); 2394 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2395 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2396 } 2397 2398 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2399 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2400 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2401 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2402 ConstantInt::get(Y->getType(), C2->udiv(C))); 2403 } 2404 2405 return nullptr; 2406 } 2407 2408 /// Fold icmp ({su}div X, Y), C. 2409 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2410 BinaryOperator *Div, 2411 const APInt &C) { 2412 // Fold: icmp pred ([us]div X, C2), C -> range test 2413 // Fold this div into the comparison, producing a range check. 2414 // Determine, based on the divide type, what the range is being 2415 // checked. If there is an overflow on the low or high side, remember 2416 // it, otherwise compute the range [low, hi) bounding the new value. 2417 // See: InsertRangeTest above for the kinds of replacements possible. 2418 const APInt *C2; 2419 if (!match(Div->getOperand(1), m_APInt(C2))) 2420 return nullptr; 2421 2422 // FIXME: If the operand types don't match the type of the divide 2423 // then don't attempt this transform. The code below doesn't have the 2424 // logic to deal with a signed divide and an unsigned compare (and 2425 // vice versa). This is because (x /s C2) <s C produces different 2426 // results than (x /s C2) <u C or (x /u C2) <s C or even 2427 // (x /u C2) <u C. Simply casting the operands and result won't 2428 // work. :( The if statement below tests that condition and bails 2429 // if it finds it. 2430 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2431 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2432 return nullptr; 2433 2434 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2435 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2436 // division-by-constant cases should be present, we can not assert that they 2437 // have happened before we reach this icmp instruction. 2438 if (C2->isNullValue() || C2->isOneValue() || 2439 (DivIsSigned && C2->isAllOnesValue())) 2440 return nullptr; 2441 2442 // Compute Prod = C * C2. We are essentially solving an equation of 2443 // form X / C2 = C. We solve for X by multiplying C2 and C. 2444 // By solving for X, we can turn this into a range check instead of computing 2445 // a divide. 2446 APInt Prod = C * *C2; 2447 2448 // Determine if the product overflows by seeing if the product is not equal to 2449 // the divide. Make sure we do the same kind of divide as in the LHS 2450 // instruction that we're folding. 2451 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2452 2453 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2454 2455 // If the division is known to be exact, then there is no remainder from the 2456 // divide, so the covered range size is unit, otherwise it is the divisor. 2457 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2458 2459 // Figure out the interval that is being checked. For example, a comparison 2460 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2461 // Compute this interval based on the constants involved and the signedness of 2462 // the compare/divide. This computes a half-open interval, keeping track of 2463 // whether either value in the interval overflows. After analysis each 2464 // overflow variable is set to 0 if it's corresponding bound variable is valid 2465 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2466 int LoOverflow = 0, HiOverflow = 0; 2467 APInt LoBound, HiBound; 2468 2469 if (!DivIsSigned) { // udiv 2470 // e.g. X/5 op 3 --> [15, 20) 2471 LoBound = Prod; 2472 HiOverflow = LoOverflow = ProdOV; 2473 if (!HiOverflow) { 2474 // If this is not an exact divide, then many values in the range collapse 2475 // to the same result value. 2476 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2477 } 2478 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2479 if (C.isNullValue()) { // (X / pos) op 0 2480 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2481 LoBound = -(RangeSize - 1); 2482 HiBound = RangeSize; 2483 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2484 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2485 HiOverflow = LoOverflow = ProdOV; 2486 if (!HiOverflow) 2487 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2488 } else { // (X / pos) op neg 2489 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2490 HiBound = Prod + 1; 2491 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2492 if (!LoOverflow) { 2493 APInt DivNeg = -RangeSize; 2494 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2495 } 2496 } 2497 } else if (C2->isNegative()) { // Divisor is < 0. 2498 if (Div->isExact()) 2499 RangeSize.negate(); 2500 if (C.isNullValue()) { // (X / neg) op 0 2501 // e.g. X/-5 op 0 --> [-4, 5) 2502 LoBound = RangeSize + 1; 2503 HiBound = -RangeSize; 2504 if (HiBound == *C2) { // -INTMIN = INTMIN 2505 HiOverflow = 1; // [INTMIN+1, overflow) 2506 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2507 } 2508 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2509 // e.g. X/-5 op 3 --> [-19, -14) 2510 HiBound = Prod + 1; 2511 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2512 if (!LoOverflow) 2513 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2514 } else { // (X / neg) op neg 2515 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2516 LoOverflow = HiOverflow = ProdOV; 2517 if (!HiOverflow) 2518 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2519 } 2520 2521 // Dividing by a negative swaps the condition. LT <-> GT 2522 Pred = ICmpInst::getSwappedPredicate(Pred); 2523 } 2524 2525 Value *X = Div->getOperand(0); 2526 switch (Pred) { 2527 default: llvm_unreachable("Unhandled icmp opcode!"); 2528 case ICmpInst::ICMP_EQ: 2529 if (LoOverflow && HiOverflow) 2530 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2531 if (HiOverflow) 2532 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2533 ICmpInst::ICMP_UGE, X, 2534 ConstantInt::get(Div->getType(), LoBound)); 2535 if (LoOverflow) 2536 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2537 ICmpInst::ICMP_ULT, X, 2538 ConstantInt::get(Div->getType(), HiBound)); 2539 return replaceInstUsesWith( 2540 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2541 case ICmpInst::ICMP_NE: 2542 if (LoOverflow && HiOverflow) 2543 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2544 if (HiOverflow) 2545 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2546 ICmpInst::ICMP_ULT, X, 2547 ConstantInt::get(Div->getType(), LoBound)); 2548 if (LoOverflow) 2549 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2550 ICmpInst::ICMP_UGE, X, 2551 ConstantInt::get(Div->getType(), HiBound)); 2552 return replaceInstUsesWith(Cmp, 2553 insertRangeTest(X, LoBound, HiBound, 2554 DivIsSigned, false)); 2555 case ICmpInst::ICMP_ULT: 2556 case ICmpInst::ICMP_SLT: 2557 if (LoOverflow == +1) // Low bound is greater than input range. 2558 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2559 if (LoOverflow == -1) // Low bound is less than input range. 2560 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2561 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2562 case ICmpInst::ICMP_UGT: 2563 case ICmpInst::ICMP_SGT: 2564 if (HiOverflow == +1) // High bound greater than input range. 2565 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2566 if (HiOverflow == -1) // High bound less than input range. 2567 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2568 if (Pred == ICmpInst::ICMP_UGT) 2569 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2570 ConstantInt::get(Div->getType(), HiBound)); 2571 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2572 ConstantInt::get(Div->getType(), HiBound)); 2573 } 2574 2575 return nullptr; 2576 } 2577 2578 /// Fold icmp (sub X, Y), C. 2579 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2580 BinaryOperator *Sub, 2581 const APInt &C) { 2582 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2583 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2584 const APInt *C2; 2585 APInt SubResult; 2586 2587 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2588 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2589 return new ICmpInst(Cmp.getPredicate(), Y, 2590 ConstantInt::get(Y->getType(), 0)); 2591 2592 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2593 if (match(X, m_APInt(C2)) && 2594 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2595 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2596 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2597 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2598 ConstantInt::get(Y->getType(), SubResult)); 2599 2600 // The following transforms are only worth it if the only user of the subtract 2601 // is the icmp. 2602 if (!Sub->hasOneUse()) 2603 return nullptr; 2604 2605 if (Sub->hasNoSignedWrap()) { 2606 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2607 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2608 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2609 2610 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2611 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2612 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2613 2614 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2615 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2616 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2617 2618 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2619 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2620 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2621 } 2622 2623 if (!match(X, m_APInt(C2))) 2624 return nullptr; 2625 2626 // C2 - Y <u C -> (Y | (C - 1)) == C2 2627 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2628 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2629 (*C2 & (C - 1)) == (C - 1)) 2630 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2631 2632 // C2 - Y >u C -> (Y | C) != C2 2633 // iff C2 & C == C and C + 1 is a power of 2 2634 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2635 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2636 2637 return nullptr; 2638 } 2639 2640 /// Fold icmp (add X, Y), C. 2641 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2642 BinaryOperator *Add, 2643 const APInt &C) { 2644 Value *Y = Add->getOperand(1); 2645 const APInt *C2; 2646 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2647 return nullptr; 2648 2649 // Fold icmp pred (add X, C2), C. 2650 Value *X = Add->getOperand(0); 2651 Type *Ty = Add->getType(); 2652 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2653 2654 // If the add does not wrap, we can always adjust the compare by subtracting 2655 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2656 // are canonicalized to SGT/SLT/UGT/ULT. 2657 if ((Add->hasNoSignedWrap() && 2658 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2659 (Add->hasNoUnsignedWrap() && 2660 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2661 bool Overflow; 2662 APInt NewC = 2663 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2664 // If there is overflow, the result must be true or false. 2665 // TODO: Can we assert there is no overflow because InstSimplify always 2666 // handles those cases? 2667 if (!Overflow) 2668 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2669 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2670 } 2671 2672 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2673 const APInt &Upper = CR.getUpper(); 2674 const APInt &Lower = CR.getLower(); 2675 if (Cmp.isSigned()) { 2676 if (Lower.isSignMask()) 2677 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2678 if (Upper.isSignMask()) 2679 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2680 } else { 2681 if (Lower.isMinValue()) 2682 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2683 if (Upper.isMinValue()) 2684 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2685 } 2686 2687 // This set of folds is intentionally placed after folds that use no-wrapping 2688 // flags because those folds are likely better for later analysis/codegen. 2689 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2690 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2691 2692 // Fold compare with offset to opposite sign compare if it eliminates offset: 2693 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2694 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2695 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2696 2697 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2698 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2699 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2700 2701 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2702 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2703 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2704 2705 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2706 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2707 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2708 2709 if (!Add->hasOneUse()) 2710 return nullptr; 2711 2712 // X+C <u C2 -> (X & -C2) == C 2713 // iff C & (C2-1) == 0 2714 // C2 is a power of 2 2715 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2716 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2717 ConstantExpr::getNeg(cast<Constant>(Y))); 2718 2719 // X+C >u C2 -> (X & ~C2) != C 2720 // iff C & C2 == 0 2721 // C2+1 is a power of 2 2722 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2723 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2724 ConstantExpr::getNeg(cast<Constant>(Y))); 2725 2726 return nullptr; 2727 } 2728 2729 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2730 Value *&RHS, ConstantInt *&Less, 2731 ConstantInt *&Equal, 2732 ConstantInt *&Greater) { 2733 // TODO: Generalize this to work with other comparison idioms or ensure 2734 // they get canonicalized into this form. 2735 2736 // select i1 (a == b), 2737 // i32 Equal, 2738 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2739 // where Equal, Less and Greater are placeholders for any three constants. 2740 ICmpInst::Predicate PredA; 2741 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2742 !ICmpInst::isEquality(PredA)) 2743 return false; 2744 Value *EqualVal = SI->getTrueValue(); 2745 Value *UnequalVal = SI->getFalseValue(); 2746 // We still can get non-canonical predicate here, so canonicalize. 2747 if (PredA == ICmpInst::ICMP_NE) 2748 std::swap(EqualVal, UnequalVal); 2749 if (!match(EqualVal, m_ConstantInt(Equal))) 2750 return false; 2751 ICmpInst::Predicate PredB; 2752 Value *LHS2, *RHS2; 2753 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2754 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2755 return false; 2756 // We can get predicate mismatch here, so canonicalize if possible: 2757 // First, ensure that 'LHS' match. 2758 if (LHS2 != LHS) { 2759 // x sgt y <--> y slt x 2760 std::swap(LHS2, RHS2); 2761 PredB = ICmpInst::getSwappedPredicate(PredB); 2762 } 2763 if (LHS2 != LHS) 2764 return false; 2765 // We also need to canonicalize 'RHS'. 2766 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2767 // x sgt C-1 <--> x sge C <--> not(x slt C) 2768 auto FlippedStrictness = 2769 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2770 PredB, cast<Constant>(RHS2)); 2771 if (!FlippedStrictness) 2772 return false; 2773 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2774 RHS2 = FlippedStrictness->second; 2775 // And kind-of perform the result swap. 2776 std::swap(Less, Greater); 2777 PredB = ICmpInst::ICMP_SLT; 2778 } 2779 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2780 } 2781 2782 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2783 SelectInst *Select, 2784 ConstantInt *C) { 2785 2786 assert(C && "Cmp RHS should be a constant int!"); 2787 // If we're testing a constant value against the result of a three way 2788 // comparison, the result can be expressed directly in terms of the 2789 // original values being compared. Note: We could possibly be more 2790 // aggressive here and remove the hasOneUse test. The original select is 2791 // really likely to simplify or sink when we remove a test of the result. 2792 Value *OrigLHS, *OrigRHS; 2793 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2794 if (Cmp.hasOneUse() && 2795 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2796 C3GreaterThan)) { 2797 assert(C1LessThan && C2Equal && C3GreaterThan); 2798 2799 bool TrueWhenLessThan = 2800 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2801 ->isAllOnesValue(); 2802 bool TrueWhenEqual = 2803 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2804 ->isAllOnesValue(); 2805 bool TrueWhenGreaterThan = 2806 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2807 ->isAllOnesValue(); 2808 2809 // This generates the new instruction that will replace the original Cmp 2810 // Instruction. Instead of enumerating the various combinations when 2811 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2812 // false, we rely on chaining of ORs and future passes of InstCombine to 2813 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2814 2815 // When none of the three constants satisfy the predicate for the RHS (C), 2816 // the entire original Cmp can be simplified to a false. 2817 Value *Cond = Builder.getFalse(); 2818 if (TrueWhenLessThan) 2819 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2820 OrigLHS, OrigRHS)); 2821 if (TrueWhenEqual) 2822 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2823 OrigLHS, OrigRHS)); 2824 if (TrueWhenGreaterThan) 2825 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2826 OrigLHS, OrigRHS)); 2827 2828 return replaceInstUsesWith(Cmp, Cond); 2829 } 2830 return nullptr; 2831 } 2832 2833 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2834 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2835 if (!Bitcast) 2836 return nullptr; 2837 2838 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2839 Value *Op1 = Cmp.getOperand(1); 2840 Value *BCSrcOp = Bitcast->getOperand(0); 2841 2842 // Make sure the bitcast doesn't change the number of vector elements. 2843 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2844 Bitcast->getDestTy()->getScalarSizeInBits()) { 2845 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2846 Value *X; 2847 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2848 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2849 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2850 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2851 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2852 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2853 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2854 match(Op1, m_Zero())) 2855 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2856 2857 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2858 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2859 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2860 2861 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2862 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2863 return new ICmpInst(Pred, X, 2864 ConstantInt::getAllOnesValue(X->getType())); 2865 } 2866 2867 // Zero-equality checks are preserved through unsigned floating-point casts: 2868 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2869 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2870 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2871 if (Cmp.isEquality() && match(Op1, m_Zero())) 2872 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2873 2874 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2875 // the FP extend/truncate because that cast does not change the sign-bit. 2876 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2877 // The sign-bit is always the most significant bit in those types. 2878 const APInt *C; 2879 bool TrueIfSigned; 2880 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2881 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2882 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2883 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2884 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2885 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2886 Type *XType = X->getType(); 2887 2888 // We can't currently handle Power style floating point operations here. 2889 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2890 2891 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2892 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2893 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2894 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2895 if (TrueIfSigned) 2896 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2897 ConstantInt::getNullValue(NewType)); 2898 else 2899 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2900 ConstantInt::getAllOnesValue(NewType)); 2901 } 2902 } 2903 } 2904 } 2905 2906 // Test to see if the operands of the icmp are casted versions of other 2907 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2908 if (Bitcast->getType()->isPointerTy() && 2909 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2910 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2911 // so eliminate it as well. 2912 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2913 Op1 = BC2->getOperand(0); 2914 2915 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2916 return new ICmpInst(Pred, BCSrcOp, Op1); 2917 } 2918 2919 const APInt *C; 2920 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2921 !Bitcast->getType()->isIntegerTy() || 2922 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2923 return nullptr; 2924 2925 // If this is checking if all elements of a vector compare are set or not, 2926 // invert the casted vector equality compare and test if all compare 2927 // elements are clear or not. Compare against zero is generally easier for 2928 // analysis and codegen. 2929 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2930 // Example: are all elements equal? --> are zero elements not equal? 2931 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2932 if (Cmp.isEquality() && C->isAllOnesValue() && Bitcast->hasOneUse() && 2933 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2934 Type *ScalarTy = Bitcast->getType(); 2935 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy); 2936 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy)); 2937 } 2938 2939 // If this is checking if all elements of an extended vector are clear or not, 2940 // compare in a narrow type to eliminate the extend: 2941 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2942 Value *X; 2943 if (Cmp.isEquality() && C->isNullValue() && Bitcast->hasOneUse() && 2944 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2945 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2946 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2947 Value *NewCast = Builder.CreateBitCast(X, NewType); 2948 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2949 } 2950 } 2951 2952 // Folding: icmp <pred> iN X, C 2953 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2954 // and C is a splat of a K-bit pattern 2955 // and SC is a constant vector = <C', C', C', ..., C'> 2956 // Into: 2957 // %E = extractelement <M x iK> %vec, i32 C' 2958 // icmp <pred> iK %E, trunc(C) 2959 Value *Vec; 2960 ArrayRef<int> Mask; 2961 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2962 // Check whether every element of Mask is the same constant 2963 if (is_splat(Mask)) { 2964 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2965 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2966 if (C->isSplat(EltTy->getBitWidth())) { 2967 // Fold the icmp based on the value of C 2968 // If C is M copies of an iK sized bit pattern, 2969 // then: 2970 // => %E = extractelement <N x iK> %vec, i32 Elem 2971 // icmp <pred> iK %SplatVal, <pattern> 2972 Value *Elem = Builder.getInt32(Mask[0]); 2973 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2974 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2975 return new ICmpInst(Pred, Extract, NewC); 2976 } 2977 } 2978 } 2979 return nullptr; 2980 } 2981 2982 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2983 /// where X is some kind of instruction. 2984 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 2985 const APInt *C; 2986 if (!match(Cmp.getOperand(1), m_APInt(C))) 2987 return nullptr; 2988 2989 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2990 switch (BO->getOpcode()) { 2991 case Instruction::Xor: 2992 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2993 return I; 2994 break; 2995 case Instruction::And: 2996 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2997 return I; 2998 break; 2999 case Instruction::Or: 3000 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 3001 return I; 3002 break; 3003 case Instruction::Mul: 3004 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 3005 return I; 3006 break; 3007 case Instruction::Shl: 3008 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 3009 return I; 3010 break; 3011 case Instruction::LShr: 3012 case Instruction::AShr: 3013 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 3014 return I; 3015 break; 3016 case Instruction::SRem: 3017 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 3018 return I; 3019 break; 3020 case Instruction::UDiv: 3021 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 3022 return I; 3023 LLVM_FALLTHROUGH; 3024 case Instruction::SDiv: 3025 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 3026 return I; 3027 break; 3028 case Instruction::Sub: 3029 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 3030 return I; 3031 break; 3032 case Instruction::Add: 3033 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 3034 return I; 3035 break; 3036 default: 3037 break; 3038 } 3039 // TODO: These folds could be refactored to be part of the above calls. 3040 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 3041 return I; 3042 } 3043 3044 // Match against CmpInst LHS being instructions other than binary operators. 3045 3046 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 3047 // For now, we only support constant integers while folding the 3048 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3049 // similar to the cases handled by binary ops above. 3050 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3051 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3052 return I; 3053 } 3054 3055 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 3056 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3057 return I; 3058 } 3059 3060 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3061 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3062 return I; 3063 3064 return nullptr; 3065 } 3066 3067 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3068 /// icmp eq/ne BO, C. 3069 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3070 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3071 // TODO: Some of these folds could work with arbitrary constants, but this 3072 // function is limited to scalar and vector splat constants. 3073 if (!Cmp.isEquality()) 3074 return nullptr; 3075 3076 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3077 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3078 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3079 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3080 3081 switch (BO->getOpcode()) { 3082 case Instruction::SRem: 3083 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3084 if (C.isNullValue() && BO->hasOneUse()) { 3085 const APInt *BOC; 3086 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3087 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3088 return new ICmpInst(Pred, NewRem, 3089 Constant::getNullValue(BO->getType())); 3090 } 3091 } 3092 break; 3093 case Instruction::Add: { 3094 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3095 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3096 if (BO->hasOneUse()) 3097 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3098 } else if (C.isNullValue()) { 3099 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3100 // efficiently invertible, or if the add has just this one use. 3101 if (Value *NegVal = dyn_castNegVal(BOp1)) 3102 return new ICmpInst(Pred, BOp0, NegVal); 3103 if (Value *NegVal = dyn_castNegVal(BOp0)) 3104 return new ICmpInst(Pred, NegVal, BOp1); 3105 if (BO->hasOneUse()) { 3106 Value *Neg = Builder.CreateNeg(BOp1); 3107 Neg->takeName(BO); 3108 return new ICmpInst(Pred, BOp0, Neg); 3109 } 3110 } 3111 break; 3112 } 3113 case Instruction::Xor: 3114 if (BO->hasOneUse()) { 3115 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3116 // For the xor case, we can xor two constants together, eliminating 3117 // the explicit xor. 3118 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3119 } else if (C.isNullValue()) { 3120 // Replace ((xor A, B) != 0) with (A != B) 3121 return new ICmpInst(Pred, BOp0, BOp1); 3122 } 3123 } 3124 break; 3125 case Instruction::Sub: 3126 if (BO->hasOneUse()) { 3127 // Only check for constant LHS here, as constant RHS will be canonicalized 3128 // to add and use the fold above. 3129 if (Constant *BOC = dyn_cast<Constant>(BOp0)) { 3130 // Replace ((sub BOC, B) != C) with (B != BOC-C). 3131 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); 3132 } else if (C.isNullValue()) { 3133 // Replace ((sub A, B) != 0) with (A != B). 3134 return new ICmpInst(Pred, BOp0, BOp1); 3135 } 3136 } 3137 break; 3138 case Instruction::Or: { 3139 const APInt *BOC; 3140 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3141 // Comparing if all bits outside of a constant mask are set? 3142 // Replace (X | C) == -1 with (X & ~C) == ~C. 3143 // This removes the -1 constant. 3144 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3145 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3146 return new ICmpInst(Pred, And, NotBOC); 3147 } 3148 break; 3149 } 3150 case Instruction::And: { 3151 const APInt *BOC; 3152 if (match(BOp1, m_APInt(BOC))) { 3153 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3154 if (C == *BOC && C.isPowerOf2()) 3155 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3156 BO, Constant::getNullValue(RHS->getType())); 3157 } 3158 break; 3159 } 3160 case Instruction::UDiv: 3161 if (C.isNullValue()) { 3162 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3163 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3164 return new ICmpInst(NewPred, BOp1, BOp0); 3165 } 3166 break; 3167 default: 3168 break; 3169 } 3170 return nullptr; 3171 } 3172 3173 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3174 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3175 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3176 Type *Ty = II->getType(); 3177 unsigned BitWidth = C.getBitWidth(); 3178 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3179 3180 switch (II->getIntrinsicID()) { 3181 case Intrinsic::abs: 3182 // abs(A) == 0 -> A == 0 3183 // abs(A) == INT_MIN -> A == INT_MIN 3184 if (C.isNullValue() || C.isMinSignedValue()) 3185 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3186 break; 3187 3188 case Intrinsic::bswap: 3189 // bswap(A) == C -> A == bswap(C) 3190 return new ICmpInst(Pred, II->getArgOperand(0), 3191 ConstantInt::get(Ty, C.byteSwap())); 3192 3193 case Intrinsic::ctlz: 3194 case Intrinsic::cttz: { 3195 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3196 if (C == BitWidth) 3197 return new ICmpInst(Pred, II->getArgOperand(0), 3198 ConstantInt::getNullValue(Ty)); 3199 3200 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3201 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3202 // Limit to one use to ensure we don't increase instruction count. 3203 unsigned Num = C.getLimitedValue(BitWidth); 3204 if (Num != BitWidth && II->hasOneUse()) { 3205 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3206 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3207 : APInt::getHighBitsSet(BitWidth, Num + 1); 3208 APInt Mask2 = IsTrailing 3209 ? APInt::getOneBitSet(BitWidth, Num) 3210 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3211 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3212 ConstantInt::get(Ty, Mask2)); 3213 } 3214 break; 3215 } 3216 3217 case Intrinsic::ctpop: { 3218 // popcount(A) == 0 -> A == 0 and likewise for != 3219 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3220 bool IsZero = C.isNullValue(); 3221 if (IsZero || C == BitWidth) 3222 return new ICmpInst(Pred, II->getArgOperand(0), 3223 IsZero ? Constant::getNullValue(Ty) 3224 : Constant::getAllOnesValue(Ty)); 3225 3226 break; 3227 } 3228 3229 case Intrinsic::fshl: 3230 case Intrinsic::fshr: 3231 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3232 // (rot X, ?) == 0/-1 --> X == 0/-1 3233 // TODO: This transform is safe to re-use undef elts in a vector, but 3234 // the constant value passed in by the caller doesn't allow that. 3235 if (C.isNullValue() || C.isAllOnesValue()) 3236 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3237 3238 const APInt *RotAmtC; 3239 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3240 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3241 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3242 return new ICmpInst(Pred, II->getArgOperand(0), 3243 II->getIntrinsicID() == Intrinsic::fshl 3244 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3245 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3246 } 3247 break; 3248 3249 case Intrinsic::uadd_sat: { 3250 // uadd.sat(a, b) == 0 -> (a | b) == 0 3251 if (C.isNullValue()) { 3252 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3253 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3254 } 3255 break; 3256 } 3257 3258 case Intrinsic::usub_sat: { 3259 // usub.sat(a, b) == 0 -> a <= b 3260 if (C.isNullValue()) { 3261 ICmpInst::Predicate NewPred = 3262 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3263 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3264 } 3265 break; 3266 } 3267 default: 3268 break; 3269 } 3270 3271 return nullptr; 3272 } 3273 3274 /// Fold an icmp with LLVM intrinsics 3275 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3276 assert(Cmp.isEquality()); 3277 3278 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3279 Value *Op0 = Cmp.getOperand(0); 3280 Value *Op1 = Cmp.getOperand(1); 3281 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3282 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3283 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3284 return nullptr; 3285 3286 switch (IIOp0->getIntrinsicID()) { 3287 case Intrinsic::bswap: 3288 case Intrinsic::bitreverse: 3289 // If both operands are byte-swapped or bit-reversed, just compare the 3290 // original values. 3291 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3292 case Intrinsic::fshl: 3293 case Intrinsic::fshr: 3294 // If both operands are rotated by same amount, just compare the 3295 // original values. 3296 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3297 break; 3298 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3299 break; 3300 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3301 break; 3302 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3303 default: 3304 break; 3305 } 3306 3307 return nullptr; 3308 } 3309 3310 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3311 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3312 IntrinsicInst *II, 3313 const APInt &C) { 3314 if (Cmp.isEquality()) 3315 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3316 3317 Type *Ty = II->getType(); 3318 unsigned BitWidth = C.getBitWidth(); 3319 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3320 switch (II->getIntrinsicID()) { 3321 case Intrinsic::ctpop: { 3322 // (ctpop X > BitWidth - 1) --> X == -1 3323 Value *X = II->getArgOperand(0); 3324 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3325 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3326 ConstantInt::getAllOnesValue(Ty)); 3327 // (ctpop X < BitWidth) --> X != -1 3328 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3329 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3330 ConstantInt::getAllOnesValue(Ty)); 3331 break; 3332 } 3333 case Intrinsic::ctlz: { 3334 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3335 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3336 unsigned Num = C.getLimitedValue(); 3337 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3338 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3339 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3340 } 3341 3342 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3343 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3344 unsigned Num = C.getLimitedValue(); 3345 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3346 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3347 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3348 } 3349 break; 3350 } 3351 case Intrinsic::cttz: { 3352 // Limit to one use to ensure we don't increase instruction count. 3353 if (!II->hasOneUse()) 3354 return nullptr; 3355 3356 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3357 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3358 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3359 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3360 Builder.CreateAnd(II->getArgOperand(0), Mask), 3361 ConstantInt::getNullValue(Ty)); 3362 } 3363 3364 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3365 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3366 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3367 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3368 Builder.CreateAnd(II->getArgOperand(0), Mask), 3369 ConstantInt::getNullValue(Ty)); 3370 } 3371 break; 3372 } 3373 default: 3374 break; 3375 } 3376 3377 return nullptr; 3378 } 3379 3380 /// Handle icmp with constant (but not simple integer constant) RHS. 3381 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3382 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3383 Constant *RHSC = dyn_cast<Constant>(Op1); 3384 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3385 if (!RHSC || !LHSI) 3386 return nullptr; 3387 3388 switch (LHSI->getOpcode()) { 3389 case Instruction::GetElementPtr: 3390 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3391 if (RHSC->isNullValue() && 3392 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3393 return new ICmpInst( 3394 I.getPredicate(), LHSI->getOperand(0), 3395 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3396 break; 3397 case Instruction::PHI: 3398 // Only fold icmp into the PHI if the phi and icmp are in the same 3399 // block. If in the same block, we're encouraging jump threading. If 3400 // not, we are just pessimizing the code by making an i1 phi. 3401 if (LHSI->getParent() == I.getParent()) 3402 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3403 return NV; 3404 break; 3405 case Instruction::Select: { 3406 // If either operand of the select is a constant, we can fold the 3407 // comparison into the select arms, which will cause one to be 3408 // constant folded and the select turned into a bitwise or. 3409 Value *Op1 = nullptr, *Op2 = nullptr; 3410 ConstantInt *CI = nullptr; 3411 3412 auto SimplifyOp = [&](Value *V) { 3413 Value *Op = nullptr; 3414 if (Constant *C = dyn_cast<Constant>(V)) { 3415 Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3416 } else if (RHSC->isNullValue()) { 3417 // If null is being compared, check if it can be further simplified. 3418 Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ); 3419 } 3420 return Op; 3421 }; 3422 Op1 = SimplifyOp(LHSI->getOperand(1)); 3423 if (Op1) 3424 CI = dyn_cast<ConstantInt>(Op1); 3425 3426 Op2 = SimplifyOp(LHSI->getOperand(2)); 3427 if (Op2) 3428 CI = dyn_cast<ConstantInt>(Op2); 3429 3430 // We only want to perform this transformation if it will not lead to 3431 // additional code. This is true if either both sides of the select 3432 // fold to a constant (in which case the icmp is replaced with a select 3433 // which will usually simplify) or this is the only user of the 3434 // select (in which case we are trading a select+icmp for a simpler 3435 // select+icmp) or all uses of the select can be replaced based on 3436 // dominance information ("Global cases"). 3437 bool Transform = false; 3438 if (Op1 && Op2) 3439 Transform = true; 3440 else if (Op1 || Op2) { 3441 // Local case 3442 if (LHSI->hasOneUse()) 3443 Transform = true; 3444 // Global cases 3445 else if (CI && !CI->isZero()) 3446 // When Op1 is constant try replacing select with second operand. 3447 // Otherwise Op2 is constant and try replacing select with first 3448 // operand. 3449 Transform = 3450 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3451 } 3452 if (Transform) { 3453 if (!Op1) 3454 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3455 I.getName()); 3456 if (!Op2) 3457 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3458 I.getName()); 3459 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3460 } 3461 break; 3462 } 3463 case Instruction::IntToPtr: 3464 // icmp pred inttoptr(X), null -> icmp pred X, 0 3465 if (RHSC->isNullValue() && 3466 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3467 return new ICmpInst( 3468 I.getPredicate(), LHSI->getOperand(0), 3469 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3470 break; 3471 3472 case Instruction::Load: 3473 // Try to optimize things like "A[i] > 4" to index computations. 3474 if (GetElementPtrInst *GEP = 3475 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3476 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3477 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3478 !cast<LoadInst>(LHSI)->isVolatile()) 3479 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3480 return Res; 3481 } 3482 break; 3483 } 3484 3485 return nullptr; 3486 } 3487 3488 /// Some comparisons can be simplified. 3489 /// In this case, we are looking for comparisons that look like 3490 /// a check for a lossy truncation. 3491 /// Folds: 3492 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3493 /// Where Mask is some pattern that produces all-ones in low bits: 3494 /// (-1 >> y) 3495 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3496 /// ~(-1 << y) 3497 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3498 /// The Mask can be a constant, too. 3499 /// For some predicates, the operands are commutative. 3500 /// For others, x can only be on a specific side. 3501 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3502 InstCombiner::BuilderTy &Builder) { 3503 ICmpInst::Predicate SrcPred; 3504 Value *X, *M, *Y; 3505 auto m_VariableMask = m_CombineOr( 3506 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3507 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3508 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3509 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3510 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3511 if (!match(&I, m_c_ICmp(SrcPred, 3512 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3513 m_Deferred(X)))) 3514 return nullptr; 3515 3516 ICmpInst::Predicate DstPred; 3517 switch (SrcPred) { 3518 case ICmpInst::Predicate::ICMP_EQ: 3519 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3520 DstPred = ICmpInst::Predicate::ICMP_ULE; 3521 break; 3522 case ICmpInst::Predicate::ICMP_NE: 3523 // x & (-1 >> y) != x -> x u> (-1 >> y) 3524 DstPred = ICmpInst::Predicate::ICMP_UGT; 3525 break; 3526 case ICmpInst::Predicate::ICMP_ULT: 3527 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3528 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3529 DstPred = ICmpInst::Predicate::ICMP_UGT; 3530 break; 3531 case ICmpInst::Predicate::ICMP_UGE: 3532 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3533 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3534 DstPred = ICmpInst::Predicate::ICMP_ULE; 3535 break; 3536 case ICmpInst::Predicate::ICMP_SLT: 3537 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3538 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3539 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3540 return nullptr; 3541 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3542 return nullptr; 3543 DstPred = ICmpInst::Predicate::ICMP_SGT; 3544 break; 3545 case ICmpInst::Predicate::ICMP_SGE: 3546 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3547 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3548 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3549 return nullptr; 3550 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3551 return nullptr; 3552 DstPred = ICmpInst::Predicate::ICMP_SLE; 3553 break; 3554 case ICmpInst::Predicate::ICMP_SGT: 3555 case ICmpInst::Predicate::ICMP_SLE: 3556 return nullptr; 3557 case ICmpInst::Predicate::ICMP_UGT: 3558 case ICmpInst::Predicate::ICMP_ULE: 3559 llvm_unreachable("Instsimplify took care of commut. variant"); 3560 break; 3561 default: 3562 llvm_unreachable("All possible folds are handled."); 3563 } 3564 3565 // The mask value may be a vector constant that has undefined elements. But it 3566 // may not be safe to propagate those undefs into the new compare, so replace 3567 // those elements by copying an existing, defined, and safe scalar constant. 3568 Type *OpTy = M->getType(); 3569 auto *VecC = dyn_cast<Constant>(M); 3570 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3571 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3572 Constant *SafeReplacementConstant = nullptr; 3573 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3574 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3575 SafeReplacementConstant = VecC->getAggregateElement(i); 3576 break; 3577 } 3578 } 3579 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3580 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3581 } 3582 3583 return Builder.CreateICmp(DstPred, X, M); 3584 } 3585 3586 /// Some comparisons can be simplified. 3587 /// In this case, we are looking for comparisons that look like 3588 /// a check for a lossy signed truncation. 3589 /// Folds: (MaskedBits is a constant.) 3590 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3591 /// Into: 3592 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3593 /// Where KeptBits = bitwidth(%x) - MaskedBits 3594 static Value * 3595 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3596 InstCombiner::BuilderTy &Builder) { 3597 ICmpInst::Predicate SrcPred; 3598 Value *X; 3599 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3600 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3601 if (!match(&I, m_c_ICmp(SrcPred, 3602 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3603 m_APInt(C1))), 3604 m_Deferred(X)))) 3605 return nullptr; 3606 3607 // Potential handling of non-splats: for each element: 3608 // * if both are undef, replace with constant 0. 3609 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3610 // * if both are not undef, and are different, bailout. 3611 // * else, only one is undef, then pick the non-undef one. 3612 3613 // The shift amount must be equal. 3614 if (*C0 != *C1) 3615 return nullptr; 3616 const APInt &MaskedBits = *C0; 3617 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3618 3619 ICmpInst::Predicate DstPred; 3620 switch (SrcPred) { 3621 case ICmpInst::Predicate::ICMP_EQ: 3622 // ((%x << MaskedBits) a>> MaskedBits) == %x 3623 // => 3624 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3625 DstPred = ICmpInst::Predicate::ICMP_ULT; 3626 break; 3627 case ICmpInst::Predicate::ICMP_NE: 3628 // ((%x << MaskedBits) a>> MaskedBits) != %x 3629 // => 3630 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3631 DstPred = ICmpInst::Predicate::ICMP_UGE; 3632 break; 3633 // FIXME: are more folds possible? 3634 default: 3635 return nullptr; 3636 } 3637 3638 auto *XType = X->getType(); 3639 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3640 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3641 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3642 3643 // KeptBits = bitwidth(%x) - MaskedBits 3644 const APInt KeptBits = BitWidth - MaskedBits; 3645 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3646 // ICmpCst = (1 << KeptBits) 3647 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3648 assert(ICmpCst.isPowerOf2()); 3649 // AddCst = (1 << (KeptBits-1)) 3650 const APInt AddCst = ICmpCst.lshr(1); 3651 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3652 3653 // T0 = add %x, AddCst 3654 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3655 // T1 = T0 DstPred ICmpCst 3656 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3657 3658 return T1; 3659 } 3660 3661 // Given pattern: 3662 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3663 // we should move shifts to the same hand of 'and', i.e. rewrite as 3664 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3665 // We are only interested in opposite logical shifts here. 3666 // One of the shifts can be truncated. 3667 // If we can, we want to end up creating 'lshr' shift. 3668 static Value * 3669 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3670 InstCombiner::BuilderTy &Builder) { 3671 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3672 !I.getOperand(0)->hasOneUse()) 3673 return nullptr; 3674 3675 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3676 3677 // Look for an 'and' of two logical shifts, one of which may be truncated. 3678 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3679 Instruction *XShift, *MaybeTruncation, *YShift; 3680 if (!match( 3681 I.getOperand(0), 3682 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3683 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3684 m_AnyLogicalShift, m_Instruction(YShift))), 3685 m_Instruction(MaybeTruncation))))) 3686 return nullptr; 3687 3688 // We potentially looked past 'trunc', but only when matching YShift, 3689 // therefore YShift must have the widest type. 3690 Instruction *WidestShift = YShift; 3691 // Therefore XShift must have the shallowest type. 3692 // Or they both have identical types if there was no truncation. 3693 Instruction *NarrowestShift = XShift; 3694 3695 Type *WidestTy = WidestShift->getType(); 3696 Type *NarrowestTy = NarrowestShift->getType(); 3697 assert(NarrowestTy == I.getOperand(0)->getType() && 3698 "We did not look past any shifts while matching XShift though."); 3699 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3700 3701 // If YShift is a 'lshr', swap the shifts around. 3702 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3703 std::swap(XShift, YShift); 3704 3705 // The shifts must be in opposite directions. 3706 auto XShiftOpcode = XShift->getOpcode(); 3707 if (XShiftOpcode == YShift->getOpcode()) 3708 return nullptr; // Do not care about same-direction shifts here. 3709 3710 Value *X, *XShAmt, *Y, *YShAmt; 3711 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3712 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3713 3714 // If one of the values being shifted is a constant, then we will end with 3715 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3716 // however, we will need to ensure that we won't increase instruction count. 3717 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3718 // At least one of the hands of the 'and' should be one-use shift. 3719 if (!match(I.getOperand(0), 3720 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3721 return nullptr; 3722 if (HadTrunc) { 3723 // Due to the 'trunc', we will need to widen X. For that either the old 3724 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3725 if (!MaybeTruncation->hasOneUse() && 3726 !NarrowestShift->getOperand(1)->hasOneUse()) 3727 return nullptr; 3728 } 3729 } 3730 3731 // We have two shift amounts from two different shifts. The types of those 3732 // shift amounts may not match. If that's the case let's bailout now. 3733 if (XShAmt->getType() != YShAmt->getType()) 3734 return nullptr; 3735 3736 // As input, we have the following pattern: 3737 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3738 // We want to rewrite that as: 3739 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3740 // While we know that originally (Q+K) would not overflow 3741 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3742 // shift amounts. so it may now overflow in smaller bitwidth. 3743 // To ensure that does not happen, we need to ensure that the total maximal 3744 // shift amount is still representable in that smaller bit width. 3745 unsigned MaximalPossibleTotalShiftAmount = 3746 (WidestTy->getScalarSizeInBits() - 1) + 3747 (NarrowestTy->getScalarSizeInBits() - 1); 3748 APInt MaximalRepresentableShiftAmount = 3749 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3750 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3751 return nullptr; 3752 3753 // Can we fold (XShAmt+YShAmt) ? 3754 auto *NewShAmt = dyn_cast_or_null<Constant>( 3755 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3756 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3757 if (!NewShAmt) 3758 return nullptr; 3759 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3760 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3761 3762 // Is the new shift amount smaller than the bit width? 3763 // FIXME: could also rely on ConstantRange. 3764 if (!match(NewShAmt, 3765 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3766 APInt(WidestBitWidth, WidestBitWidth)))) 3767 return nullptr; 3768 3769 // An extra legality check is needed if we had trunc-of-lshr. 3770 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3771 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3772 WidestShift]() { 3773 // It isn't obvious whether it's worth it to analyze non-constants here. 3774 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3775 // If *any* of these preconditions matches we can perform the fold. 3776 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3777 ? NewShAmt->getSplatValue() 3778 : NewShAmt; 3779 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3780 if (NewShAmtSplat && 3781 (NewShAmtSplat->isNullValue() || 3782 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3783 return true; 3784 // We consider *min* leading zeros so a single outlier 3785 // blocks the transform as opposed to allowing it. 3786 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3787 KnownBits Known = computeKnownBits(C, SQ.DL); 3788 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3789 // If the value being shifted has at most lowest bit set we can fold. 3790 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3791 if (MaxActiveBits <= 1) 3792 return true; 3793 // Precondition: NewShAmt u<= countLeadingZeros(C) 3794 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3795 return true; 3796 } 3797 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3798 KnownBits Known = computeKnownBits(C, SQ.DL); 3799 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3800 // If the value being shifted has at most lowest bit set we can fold. 3801 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3802 if (MaxActiveBits <= 1) 3803 return true; 3804 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3805 if (NewShAmtSplat) { 3806 APInt AdjNewShAmt = 3807 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3808 if (AdjNewShAmt.ule(MinLeadZero)) 3809 return true; 3810 } 3811 } 3812 return false; // Can't tell if it's ok. 3813 }; 3814 if (!CanFold()) 3815 return nullptr; 3816 } 3817 3818 // All good, we can do this fold. 3819 X = Builder.CreateZExt(X, WidestTy); 3820 Y = Builder.CreateZExt(Y, WidestTy); 3821 // The shift is the same that was for X. 3822 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3823 ? Builder.CreateLShr(X, NewShAmt) 3824 : Builder.CreateShl(X, NewShAmt); 3825 Value *T1 = Builder.CreateAnd(T0, Y); 3826 return Builder.CreateICmp(I.getPredicate(), T1, 3827 Constant::getNullValue(WidestTy)); 3828 } 3829 3830 /// Fold 3831 /// (-1 u/ x) u< y 3832 /// ((x * y) ?/ x) != y 3833 /// to 3834 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3835 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3836 /// will mean that we are looking for the opposite answer. 3837 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3838 ICmpInst::Predicate Pred; 3839 Value *X, *Y; 3840 Instruction *Mul; 3841 Instruction *Div; 3842 bool NeedNegation; 3843 // Look for: (-1 u/ x) u</u>= y 3844 if (!I.isEquality() && 3845 match(&I, m_c_ICmp(Pred, 3846 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3847 m_Instruction(Div)), 3848 m_Value(Y)))) { 3849 Mul = nullptr; 3850 3851 // Are we checking that overflow does not happen, or does happen? 3852 switch (Pred) { 3853 case ICmpInst::Predicate::ICMP_ULT: 3854 NeedNegation = false; 3855 break; // OK 3856 case ICmpInst::Predicate::ICMP_UGE: 3857 NeedNegation = true; 3858 break; // OK 3859 default: 3860 return nullptr; // Wrong predicate. 3861 } 3862 } else // Look for: ((x * y) / x) !=/== y 3863 if (I.isEquality() && 3864 match(&I, 3865 m_c_ICmp(Pred, m_Value(Y), 3866 m_CombineAnd( 3867 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3868 m_Value(X)), 3869 m_Instruction(Mul)), 3870 m_Deferred(X))), 3871 m_Instruction(Div))))) { 3872 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3873 } else 3874 return nullptr; 3875 3876 BuilderTy::InsertPointGuard Guard(Builder); 3877 // If the pattern included (x * y), we'll want to insert new instructions 3878 // right before that original multiplication so that we can replace it. 3879 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3880 if (MulHadOtherUses) 3881 Builder.SetInsertPoint(Mul); 3882 3883 Function *F = Intrinsic::getDeclaration(I.getModule(), 3884 Div->getOpcode() == Instruction::UDiv 3885 ? Intrinsic::umul_with_overflow 3886 : Intrinsic::smul_with_overflow, 3887 X->getType()); 3888 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3889 3890 // If the multiplication was used elsewhere, to ensure that we don't leave 3891 // "duplicate" instructions, replace uses of that original multiplication 3892 // with the multiplication result from the with.overflow intrinsic. 3893 if (MulHadOtherUses) 3894 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3895 3896 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3897 if (NeedNegation) // This technically increases instruction count. 3898 Res = Builder.CreateNot(Res, "mul.not.ov"); 3899 3900 // If we replaced the mul, erase it. Do this after all uses of Builder, 3901 // as the mul is used as insertion point. 3902 if (MulHadOtherUses) 3903 eraseInstFromFunction(*Mul); 3904 3905 return Res; 3906 } 3907 3908 static Instruction *foldICmpXNegX(ICmpInst &I) { 3909 CmpInst::Predicate Pred; 3910 Value *X; 3911 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3912 return nullptr; 3913 3914 if (ICmpInst::isSigned(Pred)) 3915 Pred = ICmpInst::getSwappedPredicate(Pred); 3916 else if (ICmpInst::isUnsigned(Pred)) 3917 Pred = ICmpInst::getSignedPredicate(Pred); 3918 // else for equality-comparisons just keep the predicate. 3919 3920 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3921 Constant::getNullValue(X->getType()), I.getName()); 3922 } 3923 3924 /// Try to fold icmp (binop), X or icmp X, (binop). 3925 /// TODO: A large part of this logic is duplicated in InstSimplify's 3926 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3927 /// duplication. 3928 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3929 const SimplifyQuery &SQ) { 3930 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3931 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3932 3933 // Special logic for binary operators. 3934 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3935 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3936 if (!BO0 && !BO1) 3937 return nullptr; 3938 3939 if (Instruction *NewICmp = foldICmpXNegX(I)) 3940 return NewICmp; 3941 3942 const CmpInst::Predicate Pred = I.getPredicate(); 3943 Value *X; 3944 3945 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3946 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3947 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3948 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3949 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3950 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3951 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3952 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3953 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3954 3955 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3956 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3957 NoOp0WrapProblem = 3958 ICmpInst::isEquality(Pred) || 3959 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3960 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3961 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3962 NoOp1WrapProblem = 3963 ICmpInst::isEquality(Pred) || 3964 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3965 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3966 3967 // Analyze the case when either Op0 or Op1 is an add instruction. 3968 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3969 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3970 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3971 A = BO0->getOperand(0); 3972 B = BO0->getOperand(1); 3973 } 3974 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3975 C = BO1->getOperand(0); 3976 D = BO1->getOperand(1); 3977 } 3978 3979 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3980 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3981 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3982 return new ICmpInst(Pred, A == Op1 ? B : A, 3983 Constant::getNullValue(Op1->getType())); 3984 3985 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3986 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3987 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3988 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3989 C == Op0 ? D : C); 3990 3991 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3992 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3993 NoOp1WrapProblem) { 3994 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3995 Value *Y, *Z; 3996 if (A == C) { 3997 // C + B == C + D -> B == D 3998 Y = B; 3999 Z = D; 4000 } else if (A == D) { 4001 // D + B == C + D -> B == C 4002 Y = B; 4003 Z = C; 4004 } else if (B == C) { 4005 // A + C == C + D -> A == D 4006 Y = A; 4007 Z = D; 4008 } else { 4009 assert(B == D); 4010 // A + D == C + D -> A == C 4011 Y = A; 4012 Z = C; 4013 } 4014 return new ICmpInst(Pred, Y, Z); 4015 } 4016 4017 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4018 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4019 match(B, m_AllOnes())) 4020 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4021 4022 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4023 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4024 match(B, m_AllOnes())) 4025 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4026 4027 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4028 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4029 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4030 4031 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4032 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4033 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4034 4035 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4036 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4037 match(D, m_AllOnes())) 4038 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4039 4040 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4041 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4042 match(D, m_AllOnes())) 4043 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4044 4045 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4046 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4047 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4048 4049 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4050 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4051 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4052 4053 // TODO: The subtraction-related identities shown below also hold, but 4054 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4055 // wouldn't happen even if they were implemented. 4056 // 4057 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4058 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4059 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4060 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4061 4062 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4063 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4064 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4065 4066 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4067 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4068 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4069 4070 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4071 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4072 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4073 4074 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4075 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4076 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4077 4078 // if C1 has greater magnitude than C2: 4079 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4080 // s.t. C3 = C1 - C2 4081 // 4082 // if C2 has greater magnitude than C1: 4083 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4084 // s.t. C3 = C2 - C1 4085 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4086 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 4087 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 4088 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 4089 const APInt &AP1 = C1->getValue(); 4090 const APInt &AP2 = C2->getValue(); 4091 if (AP1.isNegative() == AP2.isNegative()) { 4092 APInt AP1Abs = C1->getValue().abs(); 4093 APInt AP2Abs = C2->getValue().abs(); 4094 if (AP1Abs.uge(AP2Abs)) { 4095 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 4096 bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1); 4097 bool HasNSW = BO0->hasNoSignedWrap(); 4098 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4099 return new ICmpInst(Pred, NewAdd, C); 4100 } else { 4101 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 4102 bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2); 4103 bool HasNSW = BO1->hasNoSignedWrap(); 4104 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4105 return new ICmpInst(Pred, A, NewAdd); 4106 } 4107 } 4108 } 4109 4110 // Analyze the case when either Op0 or Op1 is a sub instruction. 4111 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4112 A = nullptr; 4113 B = nullptr; 4114 C = nullptr; 4115 D = nullptr; 4116 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4117 A = BO0->getOperand(0); 4118 B = BO0->getOperand(1); 4119 } 4120 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4121 C = BO1->getOperand(0); 4122 D = BO1->getOperand(1); 4123 } 4124 4125 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4126 if (A == Op1 && NoOp0WrapProblem) 4127 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4128 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4129 if (C == Op0 && NoOp1WrapProblem) 4130 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4131 4132 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4133 // (A - B) u>/u<= A --> B u>/u<= A 4134 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4135 return new ICmpInst(Pred, B, A); 4136 // C u</u>= (C - D) --> C u</u>= D 4137 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4138 return new ICmpInst(Pred, C, D); 4139 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4140 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4141 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4142 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4143 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4144 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4145 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4146 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4147 4148 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4149 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4150 return new ICmpInst(Pred, A, C); 4151 4152 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4153 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4154 return new ICmpInst(Pred, D, B); 4155 4156 // icmp (0-X) < cst --> x > -cst 4157 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4158 Value *X; 4159 if (match(BO0, m_Neg(m_Value(X)))) 4160 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4161 if (RHSC->isNotMinSignedValue()) 4162 return new ICmpInst(I.getSwappedPredicate(), X, 4163 ConstantExpr::getNeg(RHSC)); 4164 } 4165 4166 { 4167 // Try to remove shared constant multiplier from equality comparison: 4168 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4169 Value *X, *Y; 4170 const APInt *C; 4171 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4172 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4173 if (!C->countTrailingZeros() || 4174 (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4175 (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4176 return new ICmpInst(Pred, X, Y); 4177 } 4178 4179 BinaryOperator *SRem = nullptr; 4180 // icmp (srem X, Y), Y 4181 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4182 SRem = BO0; 4183 // icmp Y, (srem X, Y) 4184 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4185 Op0 == BO1->getOperand(1)) 4186 SRem = BO1; 4187 if (SRem) { 4188 // We don't check hasOneUse to avoid increasing register pressure because 4189 // the value we use is the same value this instruction was already using. 4190 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4191 default: 4192 break; 4193 case ICmpInst::ICMP_EQ: 4194 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4195 case ICmpInst::ICMP_NE: 4196 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4197 case ICmpInst::ICMP_SGT: 4198 case ICmpInst::ICMP_SGE: 4199 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4200 Constant::getAllOnesValue(SRem->getType())); 4201 case ICmpInst::ICMP_SLT: 4202 case ICmpInst::ICMP_SLE: 4203 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4204 Constant::getNullValue(SRem->getType())); 4205 } 4206 } 4207 4208 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4209 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4210 switch (BO0->getOpcode()) { 4211 default: 4212 break; 4213 case Instruction::Add: 4214 case Instruction::Sub: 4215 case Instruction::Xor: { 4216 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4217 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4218 4219 const APInt *C; 4220 if (match(BO0->getOperand(1), m_APInt(C))) { 4221 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4222 if (C->isSignMask()) { 4223 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4224 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4225 } 4226 4227 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4228 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4229 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4230 NewPred = I.getSwappedPredicate(NewPred); 4231 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4232 } 4233 } 4234 break; 4235 } 4236 case Instruction::Mul: { 4237 if (!I.isEquality()) 4238 break; 4239 4240 const APInt *C; 4241 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 4242 !C->isOneValue()) { 4243 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4244 // Mask = -1 >> count-trailing-zeros(C). 4245 if (unsigned TZs = C->countTrailingZeros()) { 4246 Constant *Mask = ConstantInt::get( 4247 BO0->getType(), 4248 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4249 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4250 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4251 return new ICmpInst(Pred, And1, And2); 4252 } 4253 } 4254 break; 4255 } 4256 case Instruction::UDiv: 4257 case Instruction::LShr: 4258 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4259 break; 4260 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4261 4262 case Instruction::SDiv: 4263 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4264 break; 4265 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4266 4267 case Instruction::AShr: 4268 if (!BO0->isExact() || !BO1->isExact()) 4269 break; 4270 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4271 4272 case Instruction::Shl: { 4273 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4274 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4275 if (!NUW && !NSW) 4276 break; 4277 if (!NSW && I.isSigned()) 4278 break; 4279 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4280 } 4281 } 4282 } 4283 4284 if (BO0) { 4285 // Transform A & (L - 1) `ult` L --> L != 0 4286 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4287 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4288 4289 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4290 auto *Zero = Constant::getNullValue(BO0->getType()); 4291 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4292 } 4293 } 4294 4295 if (Value *V = foldMultiplicationOverflowCheck(I)) 4296 return replaceInstUsesWith(I, V); 4297 4298 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4299 return replaceInstUsesWith(I, V); 4300 4301 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4302 return replaceInstUsesWith(I, V); 4303 4304 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4305 return replaceInstUsesWith(I, V); 4306 4307 return nullptr; 4308 } 4309 4310 /// Fold icmp Pred min|max(X, Y), X. 4311 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4312 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4313 Value *Op0 = Cmp.getOperand(0); 4314 Value *X = Cmp.getOperand(1); 4315 4316 // Canonicalize minimum or maximum operand to LHS of the icmp. 4317 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4318 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4319 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4320 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4321 std::swap(Op0, X); 4322 Pred = Cmp.getSwappedPredicate(); 4323 } 4324 4325 Value *Y; 4326 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4327 // smin(X, Y) == X --> X s<= Y 4328 // smin(X, Y) s>= X --> X s<= Y 4329 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4330 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4331 4332 // smin(X, Y) != X --> X s> Y 4333 // smin(X, Y) s< X --> X s> Y 4334 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4335 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4336 4337 // These cases should be handled in InstSimplify: 4338 // smin(X, Y) s<= X --> true 4339 // smin(X, Y) s> X --> false 4340 return nullptr; 4341 } 4342 4343 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4344 // smax(X, Y) == X --> X s>= Y 4345 // smax(X, Y) s<= X --> X s>= Y 4346 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4347 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4348 4349 // smax(X, Y) != X --> X s< Y 4350 // smax(X, Y) s> X --> X s< Y 4351 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4352 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4353 4354 // These cases should be handled in InstSimplify: 4355 // smax(X, Y) s>= X --> true 4356 // smax(X, Y) s< X --> false 4357 return nullptr; 4358 } 4359 4360 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4361 // umin(X, Y) == X --> X u<= Y 4362 // umin(X, Y) u>= X --> X u<= Y 4363 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4364 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4365 4366 // umin(X, Y) != X --> X u> Y 4367 // umin(X, Y) u< X --> X u> Y 4368 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4369 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4370 4371 // These cases should be handled in InstSimplify: 4372 // umin(X, Y) u<= X --> true 4373 // umin(X, Y) u> X --> false 4374 return nullptr; 4375 } 4376 4377 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4378 // umax(X, Y) == X --> X u>= Y 4379 // umax(X, Y) u<= X --> X u>= Y 4380 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4381 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4382 4383 // umax(X, Y) != X --> X u< Y 4384 // umax(X, Y) u> X --> X u< Y 4385 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4386 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4387 4388 // These cases should be handled in InstSimplify: 4389 // umax(X, Y) u>= X --> true 4390 // umax(X, Y) u< X --> false 4391 return nullptr; 4392 } 4393 4394 return nullptr; 4395 } 4396 4397 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4398 if (!I.isEquality()) 4399 return nullptr; 4400 4401 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4402 const CmpInst::Predicate Pred = I.getPredicate(); 4403 Value *A, *B, *C, *D; 4404 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4405 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4406 Value *OtherVal = A == Op1 ? B : A; 4407 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4408 } 4409 4410 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4411 // A^c1 == C^c2 --> A == C^(c1^c2) 4412 ConstantInt *C1, *C2; 4413 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4414 Op1->hasOneUse()) { 4415 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4416 Value *Xor = Builder.CreateXor(C, NC); 4417 return new ICmpInst(Pred, A, Xor); 4418 } 4419 4420 // A^B == A^D -> B == D 4421 if (A == C) 4422 return new ICmpInst(Pred, B, D); 4423 if (A == D) 4424 return new ICmpInst(Pred, B, C); 4425 if (B == C) 4426 return new ICmpInst(Pred, A, D); 4427 if (B == D) 4428 return new ICmpInst(Pred, A, C); 4429 } 4430 } 4431 4432 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4433 // A == (A^B) -> B == 0 4434 Value *OtherVal = A == Op0 ? B : A; 4435 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4436 } 4437 4438 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4439 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4440 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4441 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4442 4443 if (A == C) { 4444 X = B; 4445 Y = D; 4446 Z = A; 4447 } else if (A == D) { 4448 X = B; 4449 Y = C; 4450 Z = A; 4451 } else if (B == C) { 4452 X = A; 4453 Y = D; 4454 Z = B; 4455 } else if (B == D) { 4456 X = A; 4457 Y = C; 4458 Z = B; 4459 } 4460 4461 if (X) { // Build (X^Y) & Z 4462 Op1 = Builder.CreateXor(X, Y); 4463 Op1 = Builder.CreateAnd(Op1, Z); 4464 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4465 } 4466 } 4467 4468 { 4469 // Similar to above, but specialized for constant because invert is needed: 4470 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4471 Value *X, *Y; 4472 Constant *C; 4473 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4474 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4475 Value *Xor = Builder.CreateXor(X, Y); 4476 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4477 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4478 } 4479 } 4480 4481 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4482 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4483 ConstantInt *Cst1; 4484 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4485 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4486 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4487 match(Op1, m_ZExt(m_Value(A))))) { 4488 APInt Pow2 = Cst1->getValue() + 1; 4489 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4490 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4491 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4492 } 4493 4494 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4495 // For lshr and ashr pairs. 4496 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4497 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4498 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4499 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4500 unsigned TypeBits = Cst1->getBitWidth(); 4501 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4502 if (ShAmt < TypeBits && ShAmt != 0) { 4503 ICmpInst::Predicate NewPred = 4504 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4505 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4506 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4507 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4508 } 4509 } 4510 4511 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4512 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4513 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4514 unsigned TypeBits = Cst1->getBitWidth(); 4515 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4516 if (ShAmt < TypeBits && ShAmt != 0) { 4517 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4518 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4519 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4520 I.getName() + ".mask"); 4521 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4522 } 4523 } 4524 4525 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4526 // "icmp (and X, mask), cst" 4527 uint64_t ShAmt = 0; 4528 if (Op0->hasOneUse() && 4529 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4530 match(Op1, m_ConstantInt(Cst1)) && 4531 // Only do this when A has multiple uses. This is most important to do 4532 // when it exposes other optimizations. 4533 !A->hasOneUse()) { 4534 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4535 4536 if (ShAmt < ASize) { 4537 APInt MaskV = 4538 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4539 MaskV <<= ShAmt; 4540 4541 APInt CmpV = Cst1->getValue().zext(ASize); 4542 CmpV <<= ShAmt; 4543 4544 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4545 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4546 } 4547 } 4548 4549 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4550 return ICmp; 4551 4552 // Canonicalize checking for a power-of-2-or-zero value: 4553 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4554 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4555 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4556 m_Deferred(A)))) || 4557 !match(Op1, m_ZeroInt())) 4558 A = nullptr; 4559 4560 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4561 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4562 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4563 A = Op1; 4564 else if (match(Op1, 4565 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4566 A = Op0; 4567 4568 if (A) { 4569 Type *Ty = A->getType(); 4570 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4571 return Pred == ICmpInst::ICMP_EQ 4572 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4573 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4574 } 4575 4576 return nullptr; 4577 } 4578 4579 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4580 InstCombiner::BuilderTy &Builder) { 4581 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4582 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4583 Value *X; 4584 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4585 return nullptr; 4586 4587 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4588 bool IsSignedCmp = ICmp.isSigned(); 4589 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4590 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4591 // and the other is a zext), then we can't handle this. 4592 // TODO: This is too strict. We can handle some predicates (equality?). 4593 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4594 return nullptr; 4595 4596 // Not an extension from the same type? 4597 Value *Y = CastOp1->getOperand(0); 4598 Type *XTy = X->getType(), *YTy = Y->getType(); 4599 if (XTy != YTy) { 4600 // One of the casts must have one use because we are creating a new cast. 4601 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4602 return nullptr; 4603 // Extend the narrower operand to the type of the wider operand. 4604 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4605 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4606 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4607 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4608 else 4609 return nullptr; 4610 } 4611 4612 // (zext X) == (zext Y) --> X == Y 4613 // (sext X) == (sext Y) --> X == Y 4614 if (ICmp.isEquality()) 4615 return new ICmpInst(ICmp.getPredicate(), X, Y); 4616 4617 // A signed comparison of sign extended values simplifies into a 4618 // signed comparison. 4619 if (IsSignedCmp && IsSignedExt) 4620 return new ICmpInst(ICmp.getPredicate(), X, Y); 4621 4622 // The other three cases all fold into an unsigned comparison. 4623 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4624 } 4625 4626 // Below here, we are only folding a compare with constant. 4627 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4628 if (!C) 4629 return nullptr; 4630 4631 // Compute the constant that would happen if we truncated to SrcTy then 4632 // re-extended to DestTy. 4633 Type *SrcTy = CastOp0->getSrcTy(); 4634 Type *DestTy = CastOp0->getDestTy(); 4635 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4636 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4637 4638 // If the re-extended constant didn't change... 4639 if (Res2 == C) { 4640 if (ICmp.isEquality()) 4641 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4642 4643 // A signed comparison of sign extended values simplifies into a 4644 // signed comparison. 4645 if (IsSignedExt && IsSignedCmp) 4646 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4647 4648 // The other three cases all fold into an unsigned comparison. 4649 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4650 } 4651 4652 // The re-extended constant changed, partly changed (in the case of a vector), 4653 // or could not be determined to be equal (in the case of a constant 4654 // expression), so the constant cannot be represented in the shorter type. 4655 // All the cases that fold to true or false will have already been handled 4656 // by SimplifyICmpInst, so only deal with the tricky case. 4657 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4658 return nullptr; 4659 4660 // Is source op positive? 4661 // icmp ult (sext X), C --> icmp sgt X, -1 4662 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4663 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4664 4665 // Is source op negative? 4666 // icmp ugt (sext X), C --> icmp slt X, 0 4667 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4668 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4669 } 4670 4671 /// Handle icmp (cast x), (cast or constant). 4672 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4673 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4674 // icmp compares only pointer's value. 4675 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4676 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4677 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4678 if (SimplifiedOp0 || SimplifiedOp1) 4679 return new ICmpInst(ICmp.getPredicate(), 4680 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4681 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4682 4683 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4684 if (!CastOp0) 4685 return nullptr; 4686 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4687 return nullptr; 4688 4689 Value *Op0Src = CastOp0->getOperand(0); 4690 Type *SrcTy = CastOp0->getSrcTy(); 4691 Type *DestTy = CastOp0->getDestTy(); 4692 4693 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4694 // integer type is the same size as the pointer type. 4695 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4696 if (isa<VectorType>(SrcTy)) { 4697 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4698 DestTy = cast<VectorType>(DestTy)->getElementType(); 4699 } 4700 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4701 }; 4702 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4703 CompatibleSizes(SrcTy, DestTy)) { 4704 Value *NewOp1 = nullptr; 4705 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4706 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4707 if (PtrSrc->getType()->getPointerAddressSpace() == 4708 Op0Src->getType()->getPointerAddressSpace()) { 4709 NewOp1 = PtrToIntOp1->getOperand(0); 4710 // If the pointer types don't match, insert a bitcast. 4711 if (Op0Src->getType() != NewOp1->getType()) 4712 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4713 } 4714 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4715 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4716 } 4717 4718 if (NewOp1) 4719 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4720 } 4721 4722 return foldICmpWithZextOrSext(ICmp, Builder); 4723 } 4724 4725 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4726 switch (BinaryOp) { 4727 default: 4728 llvm_unreachable("Unsupported binary op"); 4729 case Instruction::Add: 4730 case Instruction::Sub: 4731 return match(RHS, m_Zero()); 4732 case Instruction::Mul: 4733 return match(RHS, m_One()); 4734 } 4735 } 4736 4737 OverflowResult 4738 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4739 bool IsSigned, Value *LHS, Value *RHS, 4740 Instruction *CxtI) const { 4741 switch (BinaryOp) { 4742 default: 4743 llvm_unreachable("Unsupported binary op"); 4744 case Instruction::Add: 4745 if (IsSigned) 4746 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4747 else 4748 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4749 case Instruction::Sub: 4750 if (IsSigned) 4751 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4752 else 4753 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4754 case Instruction::Mul: 4755 if (IsSigned) 4756 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4757 else 4758 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4759 } 4760 } 4761 4762 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4763 bool IsSigned, Value *LHS, 4764 Value *RHS, Instruction &OrigI, 4765 Value *&Result, 4766 Constant *&Overflow) { 4767 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4768 std::swap(LHS, RHS); 4769 4770 // If the overflow check was an add followed by a compare, the insertion point 4771 // may be pointing to the compare. We want to insert the new instructions 4772 // before the add in case there are uses of the add between the add and the 4773 // compare. 4774 Builder.SetInsertPoint(&OrigI); 4775 4776 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4777 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4778 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4779 4780 if (isNeutralValue(BinaryOp, RHS)) { 4781 Result = LHS; 4782 Overflow = ConstantInt::getFalse(OverflowTy); 4783 return true; 4784 } 4785 4786 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4787 case OverflowResult::MayOverflow: 4788 return false; 4789 case OverflowResult::AlwaysOverflowsLow: 4790 case OverflowResult::AlwaysOverflowsHigh: 4791 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4792 Result->takeName(&OrigI); 4793 Overflow = ConstantInt::getTrue(OverflowTy); 4794 return true; 4795 case OverflowResult::NeverOverflows: 4796 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4797 Result->takeName(&OrigI); 4798 Overflow = ConstantInt::getFalse(OverflowTy); 4799 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4800 if (IsSigned) 4801 Inst->setHasNoSignedWrap(); 4802 else 4803 Inst->setHasNoUnsignedWrap(); 4804 } 4805 return true; 4806 } 4807 4808 llvm_unreachable("Unexpected overflow result"); 4809 } 4810 4811 /// Recognize and process idiom involving test for multiplication 4812 /// overflow. 4813 /// 4814 /// The caller has matched a pattern of the form: 4815 /// I = cmp u (mul(zext A, zext B), V 4816 /// The function checks if this is a test for overflow and if so replaces 4817 /// multiplication with call to 'mul.with.overflow' intrinsic. 4818 /// 4819 /// \param I Compare instruction. 4820 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4821 /// the compare instruction. Must be of integer type. 4822 /// \param OtherVal The other argument of compare instruction. 4823 /// \returns Instruction which must replace the compare instruction, NULL if no 4824 /// replacement required. 4825 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4826 Value *OtherVal, 4827 InstCombinerImpl &IC) { 4828 // Don't bother doing this transformation for pointers, don't do it for 4829 // vectors. 4830 if (!isa<IntegerType>(MulVal->getType())) 4831 return nullptr; 4832 4833 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4834 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4835 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4836 if (!MulInstr) 4837 return nullptr; 4838 assert(MulInstr->getOpcode() == Instruction::Mul); 4839 4840 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4841 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4842 assert(LHS->getOpcode() == Instruction::ZExt); 4843 assert(RHS->getOpcode() == Instruction::ZExt); 4844 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4845 4846 // Calculate type and width of the result produced by mul.with.overflow. 4847 Type *TyA = A->getType(), *TyB = B->getType(); 4848 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4849 WidthB = TyB->getPrimitiveSizeInBits(); 4850 unsigned MulWidth; 4851 Type *MulType; 4852 if (WidthB > WidthA) { 4853 MulWidth = WidthB; 4854 MulType = TyB; 4855 } else { 4856 MulWidth = WidthA; 4857 MulType = TyA; 4858 } 4859 4860 // In order to replace the original mul with a narrower mul.with.overflow, 4861 // all uses must ignore upper bits of the product. The number of used low 4862 // bits must be not greater than the width of mul.with.overflow. 4863 if (MulVal->hasNUsesOrMore(2)) 4864 for (User *U : MulVal->users()) { 4865 if (U == &I) 4866 continue; 4867 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4868 // Check if truncation ignores bits above MulWidth. 4869 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4870 if (TruncWidth > MulWidth) 4871 return nullptr; 4872 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4873 // Check if AND ignores bits above MulWidth. 4874 if (BO->getOpcode() != Instruction::And) 4875 return nullptr; 4876 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4877 const APInt &CVal = CI->getValue(); 4878 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4879 return nullptr; 4880 } else { 4881 // In this case we could have the operand of the binary operation 4882 // being defined in another block, and performing the replacement 4883 // could break the dominance relation. 4884 return nullptr; 4885 } 4886 } else { 4887 // Other uses prohibit this transformation. 4888 return nullptr; 4889 } 4890 } 4891 4892 // Recognize patterns 4893 switch (I.getPredicate()) { 4894 case ICmpInst::ICMP_EQ: 4895 case ICmpInst::ICMP_NE: 4896 // Recognize pattern: 4897 // mulval = mul(zext A, zext B) 4898 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4899 ConstantInt *CI; 4900 Value *ValToMask; 4901 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4902 if (ValToMask != MulVal) 4903 return nullptr; 4904 const APInt &CVal = CI->getValue() + 1; 4905 if (CVal.isPowerOf2()) { 4906 unsigned MaskWidth = CVal.logBase2(); 4907 if (MaskWidth == MulWidth) 4908 break; // Recognized 4909 } 4910 } 4911 return nullptr; 4912 4913 case ICmpInst::ICMP_UGT: 4914 // Recognize pattern: 4915 // mulval = mul(zext A, zext B) 4916 // cmp ugt mulval, max 4917 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4918 APInt MaxVal = APInt::getMaxValue(MulWidth); 4919 MaxVal = MaxVal.zext(CI->getBitWidth()); 4920 if (MaxVal.eq(CI->getValue())) 4921 break; // Recognized 4922 } 4923 return nullptr; 4924 4925 case ICmpInst::ICMP_UGE: 4926 // Recognize pattern: 4927 // mulval = mul(zext A, zext B) 4928 // cmp uge mulval, max+1 4929 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4930 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4931 if (MaxVal.eq(CI->getValue())) 4932 break; // Recognized 4933 } 4934 return nullptr; 4935 4936 case ICmpInst::ICMP_ULE: 4937 // Recognize pattern: 4938 // mulval = mul(zext A, zext B) 4939 // cmp ule mulval, max 4940 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4941 APInt MaxVal = APInt::getMaxValue(MulWidth); 4942 MaxVal = MaxVal.zext(CI->getBitWidth()); 4943 if (MaxVal.eq(CI->getValue())) 4944 break; // Recognized 4945 } 4946 return nullptr; 4947 4948 case ICmpInst::ICMP_ULT: 4949 // Recognize pattern: 4950 // mulval = mul(zext A, zext B) 4951 // cmp ule mulval, max + 1 4952 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4953 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4954 if (MaxVal.eq(CI->getValue())) 4955 break; // Recognized 4956 } 4957 return nullptr; 4958 4959 default: 4960 return nullptr; 4961 } 4962 4963 InstCombiner::BuilderTy &Builder = IC.Builder; 4964 Builder.SetInsertPoint(MulInstr); 4965 4966 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4967 Value *MulA = A, *MulB = B; 4968 if (WidthA < MulWidth) 4969 MulA = Builder.CreateZExt(A, MulType); 4970 if (WidthB < MulWidth) 4971 MulB = Builder.CreateZExt(B, MulType); 4972 Function *F = Intrinsic::getDeclaration( 4973 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4974 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4975 IC.addToWorklist(MulInstr); 4976 4977 // If there are uses of mul result other than the comparison, we know that 4978 // they are truncation or binary AND. Change them to use result of 4979 // mul.with.overflow and adjust properly mask/size. 4980 if (MulVal->hasNUsesOrMore(2)) { 4981 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4982 for (User *U : make_early_inc_range(MulVal->users())) { 4983 if (U == &I || U == OtherVal) 4984 continue; 4985 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4986 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4987 IC.replaceInstUsesWith(*TI, Mul); 4988 else 4989 TI->setOperand(0, Mul); 4990 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4991 assert(BO->getOpcode() == Instruction::And); 4992 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4993 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4994 APInt ShortMask = CI->getValue().trunc(MulWidth); 4995 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4996 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 4997 IC.replaceInstUsesWith(*BO, Zext); 4998 } else { 4999 llvm_unreachable("Unexpected Binary operation"); 5000 } 5001 IC.addToWorklist(cast<Instruction>(U)); 5002 } 5003 } 5004 if (isa<Instruction>(OtherVal)) 5005 IC.addToWorklist(cast<Instruction>(OtherVal)); 5006 5007 // The original icmp gets replaced with the overflow value, maybe inverted 5008 // depending on predicate. 5009 bool Inverse = false; 5010 switch (I.getPredicate()) { 5011 case ICmpInst::ICMP_NE: 5012 break; 5013 case ICmpInst::ICMP_EQ: 5014 Inverse = true; 5015 break; 5016 case ICmpInst::ICMP_UGT: 5017 case ICmpInst::ICMP_UGE: 5018 if (I.getOperand(0) == MulVal) 5019 break; 5020 Inverse = true; 5021 break; 5022 case ICmpInst::ICMP_ULT: 5023 case ICmpInst::ICMP_ULE: 5024 if (I.getOperand(1) == MulVal) 5025 break; 5026 Inverse = true; 5027 break; 5028 default: 5029 llvm_unreachable("Unexpected predicate"); 5030 } 5031 if (Inverse) { 5032 Value *Res = Builder.CreateExtractValue(Call, 1); 5033 return BinaryOperator::CreateNot(Res); 5034 } 5035 5036 return ExtractValueInst::Create(Call, 1); 5037 } 5038 5039 /// When performing a comparison against a constant, it is possible that not all 5040 /// the bits in the LHS are demanded. This helper method computes the mask that 5041 /// IS demanded. 5042 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5043 const APInt *RHS; 5044 if (!match(I.getOperand(1), m_APInt(RHS))) 5045 return APInt::getAllOnes(BitWidth); 5046 5047 // If this is a normal comparison, it demands all bits. If it is a sign bit 5048 // comparison, it only demands the sign bit. 5049 bool UnusedBit; 5050 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5051 return APInt::getSignMask(BitWidth); 5052 5053 switch (I.getPredicate()) { 5054 // For a UGT comparison, we don't care about any bits that 5055 // correspond to the trailing ones of the comparand. The value of these 5056 // bits doesn't impact the outcome of the comparison, because any value 5057 // greater than the RHS must differ in a bit higher than these due to carry. 5058 case ICmpInst::ICMP_UGT: 5059 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5060 5061 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5062 // Any value less than the RHS must differ in a higher bit because of carries. 5063 case ICmpInst::ICMP_ULT: 5064 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5065 5066 default: 5067 return APInt::getAllOnes(BitWidth); 5068 } 5069 } 5070 5071 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5072 /// should be swapped. 5073 /// The decision is based on how many times these two operands are reused 5074 /// as subtract operands and their positions in those instructions. 5075 /// The rationale is that several architectures use the same instruction for 5076 /// both subtract and cmp. Thus, it is better if the order of those operands 5077 /// match. 5078 /// \return true if Op0 and Op1 should be swapped. 5079 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5080 // Filter out pointer values as those cannot appear directly in subtract. 5081 // FIXME: we may want to go through inttoptrs or bitcasts. 5082 if (Op0->getType()->isPointerTy()) 5083 return false; 5084 // If a subtract already has the same operands as a compare, swapping would be 5085 // bad. If a subtract has the same operands as a compare but in reverse order, 5086 // then swapping is good. 5087 int GoodToSwap = 0; 5088 for (const User *U : Op0->users()) { 5089 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5090 GoodToSwap++; 5091 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5092 GoodToSwap--; 5093 } 5094 return GoodToSwap > 0; 5095 } 5096 5097 /// Check that one use is in the same block as the definition and all 5098 /// other uses are in blocks dominated by a given block. 5099 /// 5100 /// \param DI Definition 5101 /// \param UI Use 5102 /// \param DB Block that must dominate all uses of \p DI outside 5103 /// the parent block 5104 /// \return true when \p UI is the only use of \p DI in the parent block 5105 /// and all other uses of \p DI are in blocks dominated by \p DB. 5106 /// 5107 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5108 const Instruction *UI, 5109 const BasicBlock *DB) const { 5110 assert(DI && UI && "Instruction not defined\n"); 5111 // Ignore incomplete definitions. 5112 if (!DI->getParent()) 5113 return false; 5114 // DI and UI must be in the same block. 5115 if (DI->getParent() != UI->getParent()) 5116 return false; 5117 // Protect from self-referencing blocks. 5118 if (DI->getParent() == DB) 5119 return false; 5120 for (const User *U : DI->users()) { 5121 auto *Usr = cast<Instruction>(U); 5122 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5123 return false; 5124 } 5125 return true; 5126 } 5127 5128 /// Return true when the instruction sequence within a block is select-cmp-br. 5129 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5130 const BasicBlock *BB = SI->getParent(); 5131 if (!BB) 5132 return false; 5133 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5134 if (!BI || BI->getNumSuccessors() != 2) 5135 return false; 5136 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5137 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5138 return false; 5139 return true; 5140 } 5141 5142 /// True when a select result is replaced by one of its operands 5143 /// in select-icmp sequence. This will eventually result in the elimination 5144 /// of the select. 5145 /// 5146 /// \param SI Select instruction 5147 /// \param Icmp Compare instruction 5148 /// \param SIOpd Operand that replaces the select 5149 /// 5150 /// Notes: 5151 /// - The replacement is global and requires dominator information 5152 /// - The caller is responsible for the actual replacement 5153 /// 5154 /// Example: 5155 /// 5156 /// entry: 5157 /// %4 = select i1 %3, %C* %0, %C* null 5158 /// %5 = icmp eq %C* %4, null 5159 /// br i1 %5, label %9, label %7 5160 /// ... 5161 /// ; <label>:7 ; preds = %entry 5162 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5163 /// ... 5164 /// 5165 /// can be transformed to 5166 /// 5167 /// %5 = icmp eq %C* %0, null 5168 /// %6 = select i1 %3, i1 %5, i1 true 5169 /// br i1 %6, label %9, label %7 5170 /// ... 5171 /// ; <label>:7 ; preds = %entry 5172 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5173 /// 5174 /// Similar when the first operand of the select is a constant or/and 5175 /// the compare is for not equal rather than equal. 5176 /// 5177 /// NOTE: The function is only called when the select and compare constants 5178 /// are equal, the optimization can work only for EQ predicates. This is not a 5179 /// major restriction since a NE compare should be 'normalized' to an equal 5180 /// compare, which usually happens in the combiner and test case 5181 /// select-cmp-br.ll checks for it. 5182 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5183 const ICmpInst *Icmp, 5184 const unsigned SIOpd) { 5185 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5186 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5187 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5188 // The check for the single predecessor is not the best that can be 5189 // done. But it protects efficiently against cases like when SI's 5190 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5191 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5192 // replaced can be reached on either path. So the uniqueness check 5193 // guarantees that the path all uses of SI (outside SI's parent) are on 5194 // is disjoint from all other paths out of SI. But that information 5195 // is more expensive to compute, and the trade-off here is in favor 5196 // of compile-time. It should also be noticed that we check for a single 5197 // predecessor and not only uniqueness. This to handle the situation when 5198 // Succ and Succ1 points to the same basic block. 5199 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5200 NumSel++; 5201 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5202 return true; 5203 } 5204 } 5205 return false; 5206 } 5207 5208 /// Try to fold the comparison based on range information we can get by checking 5209 /// whether bits are known to be zero or one in the inputs. 5210 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5211 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5212 Type *Ty = Op0->getType(); 5213 ICmpInst::Predicate Pred = I.getPredicate(); 5214 5215 // Get scalar or pointer size. 5216 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5217 ? Ty->getScalarSizeInBits() 5218 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5219 5220 if (!BitWidth) 5221 return nullptr; 5222 5223 KnownBits Op0Known(BitWidth); 5224 KnownBits Op1Known(BitWidth); 5225 5226 if (SimplifyDemandedBits(&I, 0, 5227 getDemandedBitsLHSMask(I, BitWidth), 5228 Op0Known, 0)) 5229 return &I; 5230 5231 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5232 return &I; 5233 5234 // Given the known and unknown bits, compute a range that the LHS could be 5235 // in. Compute the Min, Max and RHS values based on the known bits. For the 5236 // EQ and NE we use unsigned values. 5237 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5238 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5239 if (I.isSigned()) { 5240 Op0Min = Op0Known.getSignedMinValue(); 5241 Op0Max = Op0Known.getSignedMaxValue(); 5242 Op1Min = Op1Known.getSignedMinValue(); 5243 Op1Max = Op1Known.getSignedMaxValue(); 5244 } else { 5245 Op0Min = Op0Known.getMinValue(); 5246 Op0Max = Op0Known.getMaxValue(); 5247 Op1Min = Op1Known.getMinValue(); 5248 Op1Max = Op1Known.getMaxValue(); 5249 } 5250 5251 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5252 // out that the LHS or RHS is a constant. Constant fold this now, so that 5253 // code below can assume that Min != Max. 5254 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5255 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5256 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5257 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5258 5259 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5260 // min/max canonical compare with some other compare. That could lead to 5261 // conflict with select canonicalization and infinite looping. 5262 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5263 auto isMinMaxCmp = [&](Instruction &Cmp) { 5264 if (!Cmp.hasOneUse()) 5265 return false; 5266 Value *A, *B; 5267 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5268 if (!SelectPatternResult::isMinOrMax(SPF)) 5269 return false; 5270 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5271 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5272 }; 5273 if (!isMinMaxCmp(I)) { 5274 switch (Pred) { 5275 default: 5276 break; 5277 case ICmpInst::ICMP_ULT: { 5278 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5279 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5280 const APInt *CmpC; 5281 if (match(Op1, m_APInt(CmpC))) { 5282 // A <u C -> A == C-1 if min(A)+1 == C 5283 if (*CmpC == Op0Min + 1) 5284 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5285 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5286 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5287 // exceeds the log2 of C. 5288 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5289 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5290 Constant::getNullValue(Op1->getType())); 5291 } 5292 break; 5293 } 5294 case ICmpInst::ICMP_UGT: { 5295 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5296 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5297 const APInt *CmpC; 5298 if (match(Op1, m_APInt(CmpC))) { 5299 // A >u C -> A == C+1 if max(a)-1 == C 5300 if (*CmpC == Op0Max - 1) 5301 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5302 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5303 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5304 // exceeds the log2 of C. 5305 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5306 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5307 Constant::getNullValue(Op1->getType())); 5308 } 5309 break; 5310 } 5311 case ICmpInst::ICMP_SLT: { 5312 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5313 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5314 const APInt *CmpC; 5315 if (match(Op1, m_APInt(CmpC))) { 5316 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5317 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5318 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5319 } 5320 break; 5321 } 5322 case ICmpInst::ICMP_SGT: { 5323 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5324 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5325 const APInt *CmpC; 5326 if (match(Op1, m_APInt(CmpC))) { 5327 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5328 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5329 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5330 } 5331 break; 5332 } 5333 } 5334 } 5335 5336 // Based on the range information we know about the LHS, see if we can 5337 // simplify this comparison. For example, (x&4) < 8 is always true. 5338 switch (Pred) { 5339 default: 5340 llvm_unreachable("Unknown icmp opcode!"); 5341 case ICmpInst::ICMP_EQ: 5342 case ICmpInst::ICMP_NE: { 5343 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5344 return replaceInstUsesWith( 5345 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5346 5347 // If all bits are known zero except for one, then we know at most one bit 5348 // is set. If the comparison is against zero, then this is a check to see if 5349 // *that* bit is set. 5350 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5351 if (Op1Known.isZero()) { 5352 // If the LHS is an AND with the same constant, look through it. 5353 Value *LHS = nullptr; 5354 const APInt *LHSC; 5355 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5356 *LHSC != Op0KnownZeroInverted) 5357 LHS = Op0; 5358 5359 Value *X; 5360 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5361 APInt ValToCheck = Op0KnownZeroInverted; 5362 Type *XTy = X->getType(); 5363 if (ValToCheck.isPowerOf2()) { 5364 // ((1 << X) & 8) == 0 -> X != 3 5365 // ((1 << X) & 8) != 0 -> X == 3 5366 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5367 auto NewPred = ICmpInst::getInversePredicate(Pred); 5368 return new ICmpInst(NewPred, X, CmpC); 5369 } else if ((++ValToCheck).isPowerOf2()) { 5370 // ((1 << X) & 7) == 0 -> X >= 3 5371 // ((1 << X) & 7) != 0 -> X < 3 5372 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5373 auto NewPred = 5374 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5375 return new ICmpInst(NewPred, X, CmpC); 5376 } 5377 } 5378 5379 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5380 const APInt *CI; 5381 if (Op0KnownZeroInverted.isOneValue() && 5382 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5383 // ((8 >>u X) & 1) == 0 -> X != 3 5384 // ((8 >>u X) & 1) != 0 -> X == 3 5385 unsigned CmpVal = CI->countTrailingZeros(); 5386 auto NewPred = ICmpInst::getInversePredicate(Pred); 5387 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5388 } 5389 } 5390 break; 5391 } 5392 case ICmpInst::ICMP_ULT: { 5393 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5394 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5395 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5396 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5397 break; 5398 } 5399 case ICmpInst::ICMP_UGT: { 5400 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5401 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5402 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5403 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5404 break; 5405 } 5406 case ICmpInst::ICMP_SLT: { 5407 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5408 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5409 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5410 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5411 break; 5412 } 5413 case ICmpInst::ICMP_SGT: { 5414 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5415 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5416 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5417 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5418 break; 5419 } 5420 case ICmpInst::ICMP_SGE: 5421 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5422 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5423 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5424 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5425 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5426 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5427 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5428 break; 5429 case ICmpInst::ICMP_SLE: 5430 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5431 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5432 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5433 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5434 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5435 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5436 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5437 break; 5438 case ICmpInst::ICMP_UGE: 5439 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5440 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5441 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5442 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5443 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5444 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5445 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5446 break; 5447 case ICmpInst::ICMP_ULE: 5448 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5449 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5450 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5451 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5452 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5453 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5454 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5455 break; 5456 } 5457 5458 // Turn a signed comparison into an unsigned one if both operands are known to 5459 // have the same sign. 5460 if (I.isSigned() && 5461 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5462 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5463 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5464 5465 return nullptr; 5466 } 5467 5468 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5469 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5470 Constant *C) { 5471 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5472 "Only for relational integer predicates."); 5473 5474 Type *Type = C->getType(); 5475 bool IsSigned = ICmpInst::isSigned(Pred); 5476 5477 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5478 bool WillIncrement = 5479 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5480 5481 // Check if the constant operand can be safely incremented/decremented 5482 // without overflowing/underflowing. 5483 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5484 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5485 }; 5486 5487 Constant *SafeReplacementConstant = nullptr; 5488 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5489 // Bail out if the constant can't be safely incremented/decremented. 5490 if (!ConstantIsOk(CI)) 5491 return llvm::None; 5492 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5493 unsigned NumElts = FVTy->getNumElements(); 5494 for (unsigned i = 0; i != NumElts; ++i) { 5495 Constant *Elt = C->getAggregateElement(i); 5496 if (!Elt) 5497 return llvm::None; 5498 5499 if (isa<UndefValue>(Elt)) 5500 continue; 5501 5502 // Bail out if we can't determine if this constant is min/max or if we 5503 // know that this constant is min/max. 5504 auto *CI = dyn_cast<ConstantInt>(Elt); 5505 if (!CI || !ConstantIsOk(CI)) 5506 return llvm::None; 5507 5508 if (!SafeReplacementConstant) 5509 SafeReplacementConstant = CI; 5510 } 5511 } else { 5512 // ConstantExpr? 5513 return llvm::None; 5514 } 5515 5516 // It may not be safe to change a compare predicate in the presence of 5517 // undefined elements, so replace those elements with the first safe constant 5518 // that we found. 5519 // TODO: in case of poison, it is safe; let's replace undefs only. 5520 if (C->containsUndefOrPoisonElement()) { 5521 assert(SafeReplacementConstant && "Replacement constant not set"); 5522 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5523 } 5524 5525 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5526 5527 // Increment or decrement the constant. 5528 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5529 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5530 5531 return std::make_pair(NewPred, NewC); 5532 } 5533 5534 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5535 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5536 /// allows them to be folded in visitICmpInst. 5537 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5538 ICmpInst::Predicate Pred = I.getPredicate(); 5539 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5540 InstCombiner::isCanonicalPredicate(Pred)) 5541 return nullptr; 5542 5543 Value *Op0 = I.getOperand(0); 5544 Value *Op1 = I.getOperand(1); 5545 auto *Op1C = dyn_cast<Constant>(Op1); 5546 if (!Op1C) 5547 return nullptr; 5548 5549 auto FlippedStrictness = 5550 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5551 if (!FlippedStrictness) 5552 return nullptr; 5553 5554 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5555 } 5556 5557 /// If we have a comparison with a non-canonical predicate, if we can update 5558 /// all the users, invert the predicate and adjust all the users. 5559 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5560 // Is the predicate already canonical? 5561 CmpInst::Predicate Pred = I.getPredicate(); 5562 if (InstCombiner::isCanonicalPredicate(Pred)) 5563 return nullptr; 5564 5565 // Can all users be adjusted to predicate inversion? 5566 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5567 return nullptr; 5568 5569 // Ok, we can canonicalize comparison! 5570 // Let's first invert the comparison's predicate. 5571 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5572 I.setName(I.getName() + ".not"); 5573 5574 // And, adapt users. 5575 freelyInvertAllUsersOf(&I); 5576 5577 return &I; 5578 } 5579 5580 /// Integer compare with boolean values can always be turned into bitwise ops. 5581 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5582 InstCombiner::BuilderTy &Builder) { 5583 Value *A = I.getOperand(0), *B = I.getOperand(1); 5584 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5585 5586 // A boolean compared to true/false can be simplified to Op0/true/false in 5587 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5588 // Cases not handled by InstSimplify are always 'not' of Op0. 5589 if (match(B, m_Zero())) { 5590 switch (I.getPredicate()) { 5591 case CmpInst::ICMP_EQ: // A == 0 -> !A 5592 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5593 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5594 return BinaryOperator::CreateNot(A); 5595 default: 5596 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5597 } 5598 } else if (match(B, m_One())) { 5599 switch (I.getPredicate()) { 5600 case CmpInst::ICMP_NE: // A != 1 -> !A 5601 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5602 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5603 return BinaryOperator::CreateNot(A); 5604 default: 5605 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5606 } 5607 } 5608 5609 switch (I.getPredicate()) { 5610 default: 5611 llvm_unreachable("Invalid icmp instruction!"); 5612 case ICmpInst::ICMP_EQ: 5613 // icmp eq i1 A, B -> ~(A ^ B) 5614 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5615 5616 case ICmpInst::ICMP_NE: 5617 // icmp ne i1 A, B -> A ^ B 5618 return BinaryOperator::CreateXor(A, B); 5619 5620 case ICmpInst::ICMP_UGT: 5621 // icmp ugt -> icmp ult 5622 std::swap(A, B); 5623 LLVM_FALLTHROUGH; 5624 case ICmpInst::ICMP_ULT: 5625 // icmp ult i1 A, B -> ~A & B 5626 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5627 5628 case ICmpInst::ICMP_SGT: 5629 // icmp sgt -> icmp slt 5630 std::swap(A, B); 5631 LLVM_FALLTHROUGH; 5632 case ICmpInst::ICMP_SLT: 5633 // icmp slt i1 A, B -> A & ~B 5634 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5635 5636 case ICmpInst::ICMP_UGE: 5637 // icmp uge -> icmp ule 5638 std::swap(A, B); 5639 LLVM_FALLTHROUGH; 5640 case ICmpInst::ICMP_ULE: 5641 // icmp ule i1 A, B -> ~A | B 5642 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5643 5644 case ICmpInst::ICMP_SGE: 5645 // icmp sge -> icmp sle 5646 std::swap(A, B); 5647 LLVM_FALLTHROUGH; 5648 case ICmpInst::ICMP_SLE: 5649 // icmp sle i1 A, B -> A | ~B 5650 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5651 } 5652 } 5653 5654 // Transform pattern like: 5655 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5656 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5657 // Into: 5658 // (X l>> Y) != 0 5659 // (X l>> Y) == 0 5660 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5661 InstCombiner::BuilderTy &Builder) { 5662 ICmpInst::Predicate Pred, NewPred; 5663 Value *X, *Y; 5664 if (match(&Cmp, 5665 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5666 switch (Pred) { 5667 case ICmpInst::ICMP_ULE: 5668 NewPred = ICmpInst::ICMP_NE; 5669 break; 5670 case ICmpInst::ICMP_UGT: 5671 NewPred = ICmpInst::ICMP_EQ; 5672 break; 5673 default: 5674 return nullptr; 5675 } 5676 } else if (match(&Cmp, m_c_ICmp(Pred, 5677 m_OneUse(m_CombineOr( 5678 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5679 m_Add(m_Shl(m_One(), m_Value(Y)), 5680 m_AllOnes()))), 5681 m_Value(X)))) { 5682 // The variant with 'add' is not canonical, (the variant with 'not' is) 5683 // we only get it because it has extra uses, and can't be canonicalized, 5684 5685 switch (Pred) { 5686 case ICmpInst::ICMP_ULT: 5687 NewPred = ICmpInst::ICMP_NE; 5688 break; 5689 case ICmpInst::ICMP_UGE: 5690 NewPred = ICmpInst::ICMP_EQ; 5691 break; 5692 default: 5693 return nullptr; 5694 } 5695 } else 5696 return nullptr; 5697 5698 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5699 Constant *Zero = Constant::getNullValue(NewX->getType()); 5700 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5701 } 5702 5703 static Instruction *foldVectorCmp(CmpInst &Cmp, 5704 InstCombiner::BuilderTy &Builder) { 5705 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5706 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5707 Value *V1, *V2; 5708 ArrayRef<int> M; 5709 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5710 return nullptr; 5711 5712 // If both arguments of the cmp are shuffles that use the same mask and 5713 // shuffle within a single vector, move the shuffle after the cmp: 5714 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5715 Type *V1Ty = V1->getType(); 5716 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5717 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5718 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5719 return new ShuffleVectorInst(NewCmp, M); 5720 } 5721 5722 // Try to canonicalize compare with splatted operand and splat constant. 5723 // TODO: We could generalize this for more than splats. See/use the code in 5724 // InstCombiner::foldVectorBinop(). 5725 Constant *C; 5726 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5727 return nullptr; 5728 5729 // Length-changing splats are ok, so adjust the constants as needed: 5730 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5731 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5732 int MaskSplatIndex; 5733 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5734 // We allow undefs in matching, but this transform removes those for safety. 5735 // Demanded elements analysis should be able to recover some/all of that. 5736 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5737 ScalarC); 5738 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5739 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5740 return new ShuffleVectorInst(NewCmp, NewM); 5741 } 5742 5743 return nullptr; 5744 } 5745 5746 // extract(uadd.with.overflow(A, B), 0) ult A 5747 // -> extract(uadd.with.overflow(A, B), 1) 5748 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5749 CmpInst::Predicate Pred = I.getPredicate(); 5750 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5751 5752 Value *UAddOv; 5753 Value *A, *B; 5754 auto UAddOvResultPat = m_ExtractValue<0>( 5755 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5756 if (match(Op0, UAddOvResultPat) && 5757 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5758 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5759 (match(A, m_One()) || match(B, m_One()))) || 5760 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5761 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5762 // extract(uadd.with.overflow(A, B), 0) < A 5763 // extract(uadd.with.overflow(A, 1), 0) == 0 5764 // extract(uadd.with.overflow(A, -1), 0) != -1 5765 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5766 else if (match(Op1, UAddOvResultPat) && 5767 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5768 // A > extract(uadd.with.overflow(A, B), 0) 5769 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5770 else 5771 return nullptr; 5772 5773 return ExtractValueInst::Create(UAddOv, 1); 5774 } 5775 5776 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5777 if (!I.getOperand(0)->getType()->isPointerTy() || 5778 NullPointerIsDefined( 5779 I.getParent()->getParent(), 5780 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5781 return nullptr; 5782 } 5783 Instruction *Op; 5784 if (match(I.getOperand(0), m_Instruction(Op)) && 5785 match(I.getOperand(1), m_Zero()) && 5786 Op->isLaunderOrStripInvariantGroup()) { 5787 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5788 Op->getOperand(0), I.getOperand(1)); 5789 } 5790 return nullptr; 5791 } 5792 5793 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5794 bool Changed = false; 5795 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5796 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5797 unsigned Op0Cplxity = getComplexity(Op0); 5798 unsigned Op1Cplxity = getComplexity(Op1); 5799 5800 /// Orders the operands of the compare so that they are listed from most 5801 /// complex to least complex. This puts constants before unary operators, 5802 /// before binary operators. 5803 if (Op0Cplxity < Op1Cplxity || 5804 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5805 I.swapOperands(); 5806 std::swap(Op0, Op1); 5807 Changed = true; 5808 } 5809 5810 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5811 return replaceInstUsesWith(I, V); 5812 5813 // Comparing -val or val with non-zero is the same as just comparing val 5814 // ie, abs(val) != 0 -> val != 0 5815 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5816 Value *Cond, *SelectTrue, *SelectFalse; 5817 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5818 m_Value(SelectFalse)))) { 5819 if (Value *V = dyn_castNegVal(SelectTrue)) { 5820 if (V == SelectFalse) 5821 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5822 } 5823 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5824 if (V == SelectTrue) 5825 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5826 } 5827 } 5828 } 5829 5830 if (Op0->getType()->isIntOrIntVectorTy(1)) 5831 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5832 return Res; 5833 5834 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5835 return Res; 5836 5837 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5838 return Res; 5839 5840 if (Instruction *Res = foldICmpWithConstant(I)) 5841 return Res; 5842 5843 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5844 return Res; 5845 5846 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5847 return Res; 5848 5849 // Test if the ICmpInst instruction is used exclusively by a select as 5850 // part of a minimum or maximum operation. If so, refrain from doing 5851 // any other folding. This helps out other analyses which understand 5852 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5853 // and CodeGen. And in this case, at least one of the comparison 5854 // operands has at least one user besides the compare (the select), 5855 // which would often largely negate the benefit of folding anyway. 5856 // 5857 // Do the same for the other patterns recognized by matchSelectPattern. 5858 if (I.hasOneUse()) 5859 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5860 Value *A, *B; 5861 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5862 if (SPR.Flavor != SPF_UNKNOWN) 5863 return nullptr; 5864 } 5865 5866 // Do this after checking for min/max to prevent infinite looping. 5867 if (Instruction *Res = foldICmpWithZero(I)) 5868 return Res; 5869 5870 // FIXME: We only do this after checking for min/max to prevent infinite 5871 // looping caused by a reverse canonicalization of these patterns for min/max. 5872 // FIXME: The organization of folds is a mess. These would naturally go into 5873 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5874 // down here after the min/max restriction. 5875 ICmpInst::Predicate Pred = I.getPredicate(); 5876 const APInt *C; 5877 if (match(Op1, m_APInt(C))) { 5878 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5879 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5880 Constant *Zero = Constant::getNullValue(Op0->getType()); 5881 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5882 } 5883 5884 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5885 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5886 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5887 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5888 } 5889 } 5890 5891 // The folds in here may rely on wrapping flags and special constants, so 5892 // they can break up min/max idioms in some cases but not seemingly similar 5893 // patterns. 5894 // FIXME: It may be possible to enhance select folding to make this 5895 // unnecessary. It may also be moot if we canonicalize to min/max 5896 // intrinsics. 5897 if (Instruction *Res = foldICmpBinOp(I, Q)) 5898 return Res; 5899 5900 if (Instruction *Res = foldICmpInstWithConstant(I)) 5901 return Res; 5902 5903 // Try to match comparison as a sign bit test. Intentionally do this after 5904 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5905 if (Instruction *New = foldSignBitTest(I)) 5906 return New; 5907 5908 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5909 return Res; 5910 5911 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5912 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5913 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5914 return NI; 5915 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5916 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5917 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5918 return NI; 5919 5920 // Try to optimize equality comparisons against alloca-based pointers. 5921 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5922 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5923 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 5924 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5925 return New; 5926 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 5927 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5928 return New; 5929 } 5930 5931 if (Instruction *Res = foldICmpBitCast(I)) 5932 return Res; 5933 5934 // TODO: Hoist this above the min/max bailout. 5935 if (Instruction *R = foldICmpWithCastOp(I)) 5936 return R; 5937 5938 if (Instruction *Res = foldICmpWithMinMax(I)) 5939 return Res; 5940 5941 { 5942 Value *A, *B; 5943 // Transform (A & ~B) == 0 --> (A & B) != 0 5944 // and (A & ~B) != 0 --> (A & B) == 0 5945 // if A is a power of 2. 5946 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5947 match(Op1, m_Zero()) && 5948 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5949 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5950 Op1); 5951 5952 // ~X < ~Y --> Y < X 5953 // ~X < C --> X > ~C 5954 if (match(Op0, m_Not(m_Value(A)))) { 5955 if (match(Op1, m_Not(m_Value(B)))) 5956 return new ICmpInst(I.getPredicate(), B, A); 5957 5958 const APInt *C; 5959 if (match(Op1, m_APInt(C))) 5960 return new ICmpInst(I.getSwappedPredicate(), A, 5961 ConstantInt::get(Op1->getType(), ~(*C))); 5962 } 5963 5964 Instruction *AddI = nullptr; 5965 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5966 m_Instruction(AddI))) && 5967 isa<IntegerType>(A->getType())) { 5968 Value *Result; 5969 Constant *Overflow; 5970 // m_UAddWithOverflow can match patterns that do not include an explicit 5971 // "add" instruction, so check the opcode of the matched op. 5972 if (AddI->getOpcode() == Instruction::Add && 5973 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 5974 Result, Overflow)) { 5975 replaceInstUsesWith(*AddI, Result); 5976 eraseInstFromFunction(*AddI); 5977 return replaceInstUsesWith(I, Overflow); 5978 } 5979 } 5980 5981 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5982 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5983 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5984 return R; 5985 } 5986 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5987 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5988 return R; 5989 } 5990 } 5991 5992 if (Instruction *Res = foldICmpEquality(I)) 5993 return Res; 5994 5995 if (Instruction *Res = foldICmpOfUAddOv(I)) 5996 return Res; 5997 5998 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5999 // an i1 which indicates whether or not we successfully did the swap. 6000 // 6001 // Replace comparisons between the old value and the expected value with the 6002 // indicator that 'cmpxchg' returns. 6003 // 6004 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6005 // spuriously fail. In those cases, the old value may equal the expected 6006 // value but it is possible for the swap to not occur. 6007 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6008 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6009 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6010 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6011 !ACXI->isWeak()) 6012 return ExtractValueInst::Create(ACXI, 1); 6013 6014 { 6015 Value *X; 6016 const APInt *C; 6017 // icmp X+Cst, X 6018 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6019 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6020 6021 // icmp X, X+Cst 6022 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6023 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6024 } 6025 6026 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6027 return Res; 6028 6029 if (I.getType()->isVectorTy()) 6030 if (Instruction *Res = foldVectorCmp(I, Builder)) 6031 return Res; 6032 6033 if (Instruction *Res = foldICmpInvariantGroup(I)) 6034 return Res; 6035 6036 return Changed ? &I : nullptr; 6037 } 6038 6039 /// Fold fcmp ([us]itofp x, cst) if possible. 6040 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6041 Instruction *LHSI, 6042 Constant *RHSC) { 6043 if (!isa<ConstantFP>(RHSC)) return nullptr; 6044 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6045 6046 // Get the width of the mantissa. We don't want to hack on conversions that 6047 // might lose information from the integer, e.g. "i64 -> float" 6048 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6049 if (MantissaWidth == -1) return nullptr; // Unknown. 6050 6051 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6052 6053 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6054 6055 if (I.isEquality()) { 6056 FCmpInst::Predicate P = I.getPredicate(); 6057 bool IsExact = false; 6058 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6059 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6060 6061 // If the floating point constant isn't an integer value, we know if we will 6062 // ever compare equal / not equal to it. 6063 if (!IsExact) { 6064 // TODO: Can never be -0.0 and other non-representable values 6065 APFloat RHSRoundInt(RHS); 6066 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6067 if (RHS != RHSRoundInt) { 6068 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6069 return replaceInstUsesWith(I, Builder.getFalse()); 6070 6071 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6072 return replaceInstUsesWith(I, Builder.getTrue()); 6073 } 6074 } 6075 6076 // TODO: If the constant is exactly representable, is it always OK to do 6077 // equality compares as integer? 6078 } 6079 6080 // Check to see that the input is converted from an integer type that is small 6081 // enough that preserves all bits. TODO: check here for "known" sign bits. 6082 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6083 unsigned InputSize = IntTy->getScalarSizeInBits(); 6084 6085 // Following test does NOT adjust InputSize downwards for signed inputs, 6086 // because the most negative value still requires all the mantissa bits 6087 // to distinguish it from one less than that value. 6088 if ((int)InputSize > MantissaWidth) { 6089 // Conversion would lose accuracy. Check if loss can impact comparison. 6090 int Exp = ilogb(RHS); 6091 if (Exp == APFloat::IEK_Inf) { 6092 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6093 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6094 // Conversion could create infinity. 6095 return nullptr; 6096 } else { 6097 // Note that if RHS is zero or NaN, then Exp is negative 6098 // and first condition is trivially false. 6099 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6100 // Conversion could affect comparison. 6101 return nullptr; 6102 } 6103 } 6104 6105 // Otherwise, we can potentially simplify the comparison. We know that it 6106 // will always come through as an integer value and we know the constant is 6107 // not a NAN (it would have been previously simplified). 6108 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6109 6110 ICmpInst::Predicate Pred; 6111 switch (I.getPredicate()) { 6112 default: llvm_unreachable("Unexpected predicate!"); 6113 case FCmpInst::FCMP_UEQ: 6114 case FCmpInst::FCMP_OEQ: 6115 Pred = ICmpInst::ICMP_EQ; 6116 break; 6117 case FCmpInst::FCMP_UGT: 6118 case FCmpInst::FCMP_OGT: 6119 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6120 break; 6121 case FCmpInst::FCMP_UGE: 6122 case FCmpInst::FCMP_OGE: 6123 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6124 break; 6125 case FCmpInst::FCMP_ULT: 6126 case FCmpInst::FCMP_OLT: 6127 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6128 break; 6129 case FCmpInst::FCMP_ULE: 6130 case FCmpInst::FCMP_OLE: 6131 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6132 break; 6133 case FCmpInst::FCMP_UNE: 6134 case FCmpInst::FCMP_ONE: 6135 Pred = ICmpInst::ICMP_NE; 6136 break; 6137 case FCmpInst::FCMP_ORD: 6138 return replaceInstUsesWith(I, Builder.getTrue()); 6139 case FCmpInst::FCMP_UNO: 6140 return replaceInstUsesWith(I, Builder.getFalse()); 6141 } 6142 6143 // Now we know that the APFloat is a normal number, zero or inf. 6144 6145 // See if the FP constant is too large for the integer. For example, 6146 // comparing an i8 to 300.0. 6147 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6148 6149 if (!LHSUnsigned) { 6150 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6151 // and large values. 6152 APFloat SMax(RHS.getSemantics()); 6153 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6154 APFloat::rmNearestTiesToEven); 6155 if (SMax < RHS) { // smax < 13123.0 6156 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6157 Pred == ICmpInst::ICMP_SLE) 6158 return replaceInstUsesWith(I, Builder.getTrue()); 6159 return replaceInstUsesWith(I, Builder.getFalse()); 6160 } 6161 } else { 6162 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6163 // +INF and large values. 6164 APFloat UMax(RHS.getSemantics()); 6165 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6166 APFloat::rmNearestTiesToEven); 6167 if (UMax < RHS) { // umax < 13123.0 6168 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6169 Pred == ICmpInst::ICMP_ULE) 6170 return replaceInstUsesWith(I, Builder.getTrue()); 6171 return replaceInstUsesWith(I, Builder.getFalse()); 6172 } 6173 } 6174 6175 if (!LHSUnsigned) { 6176 // See if the RHS value is < SignedMin. 6177 APFloat SMin(RHS.getSemantics()); 6178 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6179 APFloat::rmNearestTiesToEven); 6180 if (SMin > RHS) { // smin > 12312.0 6181 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6182 Pred == ICmpInst::ICMP_SGE) 6183 return replaceInstUsesWith(I, Builder.getTrue()); 6184 return replaceInstUsesWith(I, Builder.getFalse()); 6185 } 6186 } else { 6187 // See if the RHS value is < UnsignedMin. 6188 APFloat UMin(RHS.getSemantics()); 6189 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6190 APFloat::rmNearestTiesToEven); 6191 if (UMin > RHS) { // umin > 12312.0 6192 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6193 Pred == ICmpInst::ICMP_UGE) 6194 return replaceInstUsesWith(I, Builder.getTrue()); 6195 return replaceInstUsesWith(I, Builder.getFalse()); 6196 } 6197 } 6198 6199 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6200 // [0, UMAX], but it may still be fractional. See if it is fractional by 6201 // casting the FP value to the integer value and back, checking for equality. 6202 // Don't do this for zero, because -0.0 is not fractional. 6203 Constant *RHSInt = LHSUnsigned 6204 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6205 : ConstantExpr::getFPToSI(RHSC, IntTy); 6206 if (!RHS.isZero()) { 6207 bool Equal = LHSUnsigned 6208 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6209 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6210 if (!Equal) { 6211 // If we had a comparison against a fractional value, we have to adjust 6212 // the compare predicate and sometimes the value. RHSC is rounded towards 6213 // zero at this point. 6214 switch (Pred) { 6215 default: llvm_unreachable("Unexpected integer comparison!"); 6216 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6217 return replaceInstUsesWith(I, Builder.getTrue()); 6218 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6219 return replaceInstUsesWith(I, Builder.getFalse()); 6220 case ICmpInst::ICMP_ULE: 6221 // (float)int <= 4.4 --> int <= 4 6222 // (float)int <= -4.4 --> false 6223 if (RHS.isNegative()) 6224 return replaceInstUsesWith(I, Builder.getFalse()); 6225 break; 6226 case ICmpInst::ICMP_SLE: 6227 // (float)int <= 4.4 --> int <= 4 6228 // (float)int <= -4.4 --> int < -4 6229 if (RHS.isNegative()) 6230 Pred = ICmpInst::ICMP_SLT; 6231 break; 6232 case ICmpInst::ICMP_ULT: 6233 // (float)int < -4.4 --> false 6234 // (float)int < 4.4 --> int <= 4 6235 if (RHS.isNegative()) 6236 return replaceInstUsesWith(I, Builder.getFalse()); 6237 Pred = ICmpInst::ICMP_ULE; 6238 break; 6239 case ICmpInst::ICMP_SLT: 6240 // (float)int < -4.4 --> int < -4 6241 // (float)int < 4.4 --> int <= 4 6242 if (!RHS.isNegative()) 6243 Pred = ICmpInst::ICMP_SLE; 6244 break; 6245 case ICmpInst::ICMP_UGT: 6246 // (float)int > 4.4 --> int > 4 6247 // (float)int > -4.4 --> true 6248 if (RHS.isNegative()) 6249 return replaceInstUsesWith(I, Builder.getTrue()); 6250 break; 6251 case ICmpInst::ICMP_SGT: 6252 // (float)int > 4.4 --> int > 4 6253 // (float)int > -4.4 --> int >= -4 6254 if (RHS.isNegative()) 6255 Pred = ICmpInst::ICMP_SGE; 6256 break; 6257 case ICmpInst::ICMP_UGE: 6258 // (float)int >= -4.4 --> true 6259 // (float)int >= 4.4 --> int > 4 6260 if (RHS.isNegative()) 6261 return replaceInstUsesWith(I, Builder.getTrue()); 6262 Pred = ICmpInst::ICMP_UGT; 6263 break; 6264 case ICmpInst::ICMP_SGE: 6265 // (float)int >= -4.4 --> int >= -4 6266 // (float)int >= 4.4 --> int > 4 6267 if (!RHS.isNegative()) 6268 Pred = ICmpInst::ICMP_SGT; 6269 break; 6270 } 6271 } 6272 } 6273 6274 // Lower this FP comparison into an appropriate integer version of the 6275 // comparison. 6276 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6277 } 6278 6279 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6280 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6281 Constant *RHSC) { 6282 // When C is not 0.0 and infinities are not allowed: 6283 // (C / X) < 0.0 is a sign-bit test of X 6284 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6285 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6286 // 6287 // Proof: 6288 // Multiply (C / X) < 0.0 by X * X / C. 6289 // - X is non zero, if it is the flag 'ninf' is violated. 6290 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6291 // the predicate. C is also non zero by definition. 6292 // 6293 // Thus X * X / C is non zero and the transformation is valid. [qed] 6294 6295 FCmpInst::Predicate Pred = I.getPredicate(); 6296 6297 // Check that predicates are valid. 6298 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6299 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6300 return nullptr; 6301 6302 // Check that RHS operand is zero. 6303 if (!match(RHSC, m_AnyZeroFP())) 6304 return nullptr; 6305 6306 // Check fastmath flags ('ninf'). 6307 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6308 return nullptr; 6309 6310 // Check the properties of the dividend. It must not be zero to avoid a 6311 // division by zero (see Proof). 6312 const APFloat *C; 6313 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6314 return nullptr; 6315 6316 if (C->isZero()) 6317 return nullptr; 6318 6319 // Get swapped predicate if necessary. 6320 if (C->isNegative()) 6321 Pred = I.getSwappedPredicate(); 6322 6323 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6324 } 6325 6326 /// Optimize fabs(X) compared with zero. 6327 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6328 Value *X; 6329 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6330 !match(I.getOperand(1), m_PosZeroFP())) 6331 return nullptr; 6332 6333 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6334 I->setPredicate(P); 6335 return IC.replaceOperand(*I, 0, X); 6336 }; 6337 6338 switch (I.getPredicate()) { 6339 case FCmpInst::FCMP_UGE: 6340 case FCmpInst::FCMP_OLT: 6341 // fabs(X) >= 0.0 --> true 6342 // fabs(X) < 0.0 --> false 6343 llvm_unreachable("fcmp should have simplified"); 6344 6345 case FCmpInst::FCMP_OGT: 6346 // fabs(X) > 0.0 --> X != 0.0 6347 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6348 6349 case FCmpInst::FCMP_UGT: 6350 // fabs(X) u> 0.0 --> X u!= 0.0 6351 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6352 6353 case FCmpInst::FCMP_OLE: 6354 // fabs(X) <= 0.0 --> X == 0.0 6355 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6356 6357 case FCmpInst::FCMP_ULE: 6358 // fabs(X) u<= 0.0 --> X u== 0.0 6359 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6360 6361 case FCmpInst::FCMP_OGE: 6362 // fabs(X) >= 0.0 --> !isnan(X) 6363 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6364 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6365 6366 case FCmpInst::FCMP_ULT: 6367 // fabs(X) u< 0.0 --> isnan(X) 6368 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6369 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6370 6371 case FCmpInst::FCMP_OEQ: 6372 case FCmpInst::FCMP_UEQ: 6373 case FCmpInst::FCMP_ONE: 6374 case FCmpInst::FCMP_UNE: 6375 case FCmpInst::FCMP_ORD: 6376 case FCmpInst::FCMP_UNO: 6377 // Look through the fabs() because it doesn't change anything but the sign. 6378 // fabs(X) == 0.0 --> X == 0.0, 6379 // fabs(X) != 0.0 --> X != 0.0 6380 // isnan(fabs(X)) --> isnan(X) 6381 // !isnan(fabs(X) --> !isnan(X) 6382 return replacePredAndOp0(&I, I.getPredicate(), X); 6383 6384 default: 6385 return nullptr; 6386 } 6387 } 6388 6389 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6390 bool Changed = false; 6391 6392 /// Orders the operands of the compare so that they are listed from most 6393 /// complex to least complex. This puts constants before unary operators, 6394 /// before binary operators. 6395 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6396 I.swapOperands(); 6397 Changed = true; 6398 } 6399 6400 const CmpInst::Predicate Pred = I.getPredicate(); 6401 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6402 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6403 SQ.getWithInstruction(&I))) 6404 return replaceInstUsesWith(I, V); 6405 6406 // Simplify 'fcmp pred X, X' 6407 Type *OpType = Op0->getType(); 6408 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6409 if (Op0 == Op1) { 6410 switch (Pred) { 6411 default: break; 6412 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6413 case FCmpInst::FCMP_ULT: // True if unordered or less than 6414 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6415 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6416 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6417 I.setPredicate(FCmpInst::FCMP_UNO); 6418 I.setOperand(1, Constant::getNullValue(OpType)); 6419 return &I; 6420 6421 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6422 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6423 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6424 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6425 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6426 I.setPredicate(FCmpInst::FCMP_ORD); 6427 I.setOperand(1, Constant::getNullValue(OpType)); 6428 return &I; 6429 } 6430 } 6431 6432 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6433 // then canonicalize the operand to 0.0. 6434 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6435 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6436 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6437 6438 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6439 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6440 } 6441 6442 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6443 Value *X, *Y; 6444 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6445 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6446 6447 // Test if the FCmpInst instruction is used exclusively by a select as 6448 // part of a minimum or maximum operation. If so, refrain from doing 6449 // any other folding. This helps out other analyses which understand 6450 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6451 // and CodeGen. And in this case, at least one of the comparison 6452 // operands has at least one user besides the compare (the select), 6453 // which would often largely negate the benefit of folding anyway. 6454 if (I.hasOneUse()) 6455 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6456 Value *A, *B; 6457 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6458 if (SPR.Flavor != SPF_UNKNOWN) 6459 return nullptr; 6460 } 6461 6462 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6463 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6464 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6465 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6466 6467 // Handle fcmp with instruction LHS and constant RHS. 6468 Instruction *LHSI; 6469 Constant *RHSC; 6470 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6471 switch (LHSI->getOpcode()) { 6472 case Instruction::PHI: 6473 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6474 // block. If in the same block, we're encouraging jump threading. If 6475 // not, we are just pessimizing the code by making an i1 phi. 6476 if (LHSI->getParent() == I.getParent()) 6477 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6478 return NV; 6479 break; 6480 case Instruction::SIToFP: 6481 case Instruction::UIToFP: 6482 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6483 return NV; 6484 break; 6485 case Instruction::FDiv: 6486 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6487 return NV; 6488 break; 6489 case Instruction::Load: 6490 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6491 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6492 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6493 !cast<LoadInst>(LHSI)->isVolatile()) 6494 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6495 return Res; 6496 break; 6497 } 6498 } 6499 6500 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6501 return R; 6502 6503 if (match(Op0, m_FNeg(m_Value(X)))) { 6504 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6505 Constant *C; 6506 if (match(Op1, m_Constant(C))) { 6507 Constant *NegC = ConstantExpr::getFNeg(C); 6508 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6509 } 6510 } 6511 6512 if (match(Op0, m_FPExt(m_Value(X)))) { 6513 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6514 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6515 return new FCmpInst(Pred, X, Y, "", &I); 6516 6517 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6518 const APFloat *C; 6519 if (match(Op1, m_APFloat(C))) { 6520 const fltSemantics &FPSem = 6521 X->getType()->getScalarType()->getFltSemantics(); 6522 bool Lossy; 6523 APFloat TruncC = *C; 6524 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6525 6526 // Avoid lossy conversions and denormals. 6527 // Zero is a special case that's OK to convert. 6528 APFloat Fabs = TruncC; 6529 Fabs.clearSign(); 6530 if (!Lossy && 6531 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6532 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6533 return new FCmpInst(Pred, X, NewC, "", &I); 6534 } 6535 } 6536 } 6537 6538 // Convert a sign-bit test of an FP value into a cast and integer compare. 6539 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6540 // TODO: Handle non-zero compare constants. 6541 // TODO: Handle other predicates. 6542 const APFloat *C; 6543 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6544 m_Value(X)))) && 6545 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6546 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6547 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6548 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6549 6550 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6551 if (Pred == FCmpInst::FCMP_OLT) { 6552 Value *IntX = Builder.CreateBitCast(X, IntType); 6553 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6554 ConstantInt::getNullValue(IntType)); 6555 } 6556 } 6557 6558 if (I.getType()->isVectorTy()) 6559 if (Instruction *Res = foldVectorCmp(I, Builder)) 6560 return Res; 6561 6562 return Changed ? &I : nullptr; 6563 } 6564