1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isNullValue())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOneValue()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnesValue()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// Given a signed integer type and a set of known zero and one bits, compute
99 /// the maximum and minimum values that could have the specified known zero and
100 /// known one bits, returning them in Min/Max.
101 /// TODO: Move to method on KnownBits struct?
102 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
103                                                    APInt &Min, APInt &Max) {
104   assert(Known.getBitWidth() == Min.getBitWidth() &&
105          Known.getBitWidth() == Max.getBitWidth() &&
106          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
107   APInt UnknownBits = ~(Known.Zero|Known.One);
108 
109   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
110   // bit if it is unknown.
111   Min = Known.One;
112   Max = Known.One|UnknownBits;
113 
114   if (UnknownBits.isNegative()) { // Sign bit is unknown
115     Min.setSignBit();
116     Max.clearSignBit();
117   }
118 }
119 
120 /// Given an unsigned integer type and a set of known zero and one bits, compute
121 /// the maximum and minimum values that could have the specified known zero and
122 /// known one bits, returning them in Min/Max.
123 /// TODO: Move to method on KnownBits struct?
124 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
125                                                      APInt &Min, APInt &Max) {
126   assert(Known.getBitWidth() == Min.getBitWidth() &&
127          Known.getBitWidth() == Max.getBitWidth() &&
128          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
129   APInt UnknownBits = ~(Known.Zero|Known.One);
130 
131   // The minimum value is when the unknown bits are all zeros.
132   Min = Known.One;
133   // The maximum value is when the unknown bits are all ones.
134   Max = Known.One|UnknownBits;
135 }
136 
137 /// This is called when we see this pattern:
138 ///   cmp pred (load (gep GV, ...)), cmpcst
139 /// where GV is a global variable with a constant initializer. Try to simplify
140 /// this into some simple computation that does not need the load. For example
141 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
142 ///
143 /// If AndCst is non-null, then the loaded value is masked with that constant
144 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
145 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
146                                                         GlobalVariable *GV,
147                                                         CmpInst &ICI,
148                                                         ConstantInt *AndCst) {
149   Constant *Init = GV->getInitializer();
150   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
151     return nullptr;
152 
153   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
154   // Don't blow up on huge arrays.
155   if (ArrayElementCount > MaxArraySizeForCombine)
156     return nullptr;
157 
158   // There are many forms of this optimization we can handle, for now, just do
159   // the simple index into a single-dimensional array.
160   //
161   // Require: GEP GV, 0, i {{, constant indices}}
162   if (GEP->getNumOperands() < 3 ||
163       !isa<ConstantInt>(GEP->getOperand(1)) ||
164       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
165       isa<Constant>(GEP->getOperand(2)))
166     return nullptr;
167 
168   // Check that indices after the variable are constants and in-range for the
169   // type they index.  Collect the indices.  This is typically for arrays of
170   // structs.
171   SmallVector<unsigned, 4> LaterIndices;
172 
173   Type *EltTy = Init->getType()->getArrayElementType();
174   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
175     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
176     if (!Idx) return nullptr;  // Variable index.
177 
178     uint64_t IdxVal = Idx->getZExtValue();
179     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
180 
181     if (StructType *STy = dyn_cast<StructType>(EltTy))
182       EltTy = STy->getElementType(IdxVal);
183     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
184       if (IdxVal >= ATy->getNumElements()) return nullptr;
185       EltTy = ATy->getElementType();
186     } else {
187       return nullptr; // Unknown type.
188     }
189 
190     LaterIndices.push_back(IdxVal);
191   }
192 
193   enum { Overdefined = -3, Undefined = -2 };
194 
195   // Variables for our state machines.
196 
197   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
198   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
199   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
200   // undefined, otherwise set to the first true element.  SecondTrueElement is
201   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
202   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
203 
204   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
205   // form "i != 47 & i != 87".  Same state transitions as for true elements.
206   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
207 
208   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
209   /// define a state machine that triggers for ranges of values that the index
210   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
211   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
212   /// index in the range (inclusive).  We use -2 for undefined here because we
213   /// use relative comparisons and don't want 0-1 to match -1.
214   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
215 
216   // MagicBitvector - This is a magic bitvector where we set a bit if the
217   // comparison is true for element 'i'.  If there are 64 elements or less in
218   // the array, this will fully represent all the comparison results.
219   uint64_t MagicBitvector = 0;
220 
221   // Scan the array and see if one of our patterns matches.
222   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
223   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
224     Constant *Elt = Init->getAggregateElement(i);
225     if (!Elt) return nullptr;
226 
227     // If this is indexing an array of structures, get the structure element.
228     if (!LaterIndices.empty())
229       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
230 
231     // If the element is masked, handle it.
232     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
233 
234     // Find out if the comparison would be true or false for the i'th element.
235     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
236                                                   CompareRHS, DL, &TLI);
237     // If the result is undef for this element, ignore it.
238     if (isa<UndefValue>(C)) {
239       // Extend range state machines to cover this element in case there is an
240       // undef in the middle of the range.
241       if (TrueRangeEnd == (int)i-1)
242         TrueRangeEnd = i;
243       if (FalseRangeEnd == (int)i-1)
244         FalseRangeEnd = i;
245       continue;
246     }
247 
248     // If we can't compute the result for any of the elements, we have to give
249     // up evaluating the entire conditional.
250     if (!isa<ConstantInt>(C)) return nullptr;
251 
252     // Otherwise, we know if the comparison is true or false for this element,
253     // update our state machines.
254     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
255 
256     // State machine for single/double/range index comparison.
257     if (IsTrueForElt) {
258       // Update the TrueElement state machine.
259       if (FirstTrueElement == Undefined)
260         FirstTrueElement = TrueRangeEnd = i;  // First true element.
261       else {
262         // Update double-compare state machine.
263         if (SecondTrueElement == Undefined)
264           SecondTrueElement = i;
265         else
266           SecondTrueElement = Overdefined;
267 
268         // Update range state machine.
269         if (TrueRangeEnd == (int)i-1)
270           TrueRangeEnd = i;
271         else
272           TrueRangeEnd = Overdefined;
273       }
274     } else {
275       // Update the FalseElement state machine.
276       if (FirstFalseElement == Undefined)
277         FirstFalseElement = FalseRangeEnd = i; // First false element.
278       else {
279         // Update double-compare state machine.
280         if (SecondFalseElement == Undefined)
281           SecondFalseElement = i;
282         else
283           SecondFalseElement = Overdefined;
284 
285         // Update range state machine.
286         if (FalseRangeEnd == (int)i-1)
287           FalseRangeEnd = i;
288         else
289           FalseRangeEnd = Overdefined;
290       }
291     }
292 
293     // If this element is in range, update our magic bitvector.
294     if (i < 64 && IsTrueForElt)
295       MagicBitvector |= 1ULL << i;
296 
297     // If all of our states become overdefined, bail out early.  Since the
298     // predicate is expensive, only check it every 8 elements.  This is only
299     // really useful for really huge arrays.
300     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
301         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
302         FalseRangeEnd == Overdefined)
303       return nullptr;
304   }
305 
306   // Now that we've scanned the entire array, emit our new comparison(s).  We
307   // order the state machines in complexity of the generated code.
308   Value *Idx = GEP->getOperand(2);
309 
310   // If the index is larger than the pointer size of the target, truncate the
311   // index down like the GEP would do implicitly.  We don't have to do this for
312   // an inbounds GEP because the index can't be out of range.
313   if (!GEP->isInBounds()) {
314     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
315     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
316     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
317       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
318   }
319 
320   // If the comparison is only true for one or two elements, emit direct
321   // comparisons.
322   if (SecondTrueElement != Overdefined) {
323     // None true -> false.
324     if (FirstTrueElement == Undefined)
325       return replaceInstUsesWith(ICI, Builder.getFalse());
326 
327     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
328 
329     // True for one element -> 'i == 47'.
330     if (SecondTrueElement == Undefined)
331       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
332 
333     // True for two elements -> 'i == 47 | i == 72'.
334     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
335     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
336     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
337     return BinaryOperator::CreateOr(C1, C2);
338   }
339 
340   // If the comparison is only false for one or two elements, emit direct
341   // comparisons.
342   if (SecondFalseElement != Overdefined) {
343     // None false -> true.
344     if (FirstFalseElement == Undefined)
345       return replaceInstUsesWith(ICI, Builder.getTrue());
346 
347     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
348 
349     // False for one element -> 'i != 47'.
350     if (SecondFalseElement == Undefined)
351       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
352 
353     // False for two elements -> 'i != 47 & i != 72'.
354     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
355     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
356     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
357     return BinaryOperator::CreateAnd(C1, C2);
358   }
359 
360   // If the comparison can be replaced with a range comparison for the elements
361   // where it is true, emit the range check.
362   if (TrueRangeEnd != Overdefined) {
363     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
364 
365     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
366     if (FirstTrueElement) {
367       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
368       Idx = Builder.CreateAdd(Idx, Offs);
369     }
370 
371     Value *End = ConstantInt::get(Idx->getType(),
372                                   TrueRangeEnd-FirstTrueElement+1);
373     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
374   }
375 
376   // False range check.
377   if (FalseRangeEnd != Overdefined) {
378     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
379     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
380     if (FirstFalseElement) {
381       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
382       Idx = Builder.CreateAdd(Idx, Offs);
383     }
384 
385     Value *End = ConstantInt::get(Idx->getType(),
386                                   FalseRangeEnd-FirstFalseElement);
387     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
388   }
389 
390   // If a magic bitvector captures the entire comparison state
391   // of this load, replace it with computation that does:
392   //   ((magic_cst >> i) & 1) != 0
393   {
394     Type *Ty = nullptr;
395 
396     // Look for an appropriate type:
397     // - The type of Idx if the magic fits
398     // - The smallest fitting legal type
399     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
400       Ty = Idx->getType();
401     else
402       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
403 
404     if (Ty) {
405       Value *V = Builder.CreateIntCast(Idx, Ty, false);
406       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
407       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
408       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
409     }
410   }
411 
412   return nullptr;
413 }
414 
415 /// Return a value that can be used to compare the *offset* implied by a GEP to
416 /// zero. For example, if we have &A[i], we want to return 'i' for
417 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
418 /// are involved. The above expression would also be legal to codegen as
419 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
420 /// This latter form is less amenable to optimization though, and we are allowed
421 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
422 ///
423 /// If we can't emit an optimized form for this expression, this returns null.
424 ///
425 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
426                                           const DataLayout &DL) {
427   gep_type_iterator GTI = gep_type_begin(GEP);
428 
429   // Check to see if this gep only has a single variable index.  If so, and if
430   // any constant indices are a multiple of its scale, then we can compute this
431   // in terms of the scale of the variable index.  For example, if the GEP
432   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
433   // because the expression will cross zero at the same point.
434   unsigned i, e = GEP->getNumOperands();
435   int64_t Offset = 0;
436   for (i = 1; i != e; ++i, ++GTI) {
437     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
438       // Compute the aggregate offset of constant indices.
439       if (CI->isZero()) continue;
440 
441       // Handle a struct index, which adds its field offset to the pointer.
442       if (StructType *STy = GTI.getStructTypeOrNull()) {
443         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
444       } else {
445         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
446         Offset += Size*CI->getSExtValue();
447       }
448     } else {
449       // Found our variable index.
450       break;
451     }
452   }
453 
454   // If there are no variable indices, we must have a constant offset, just
455   // evaluate it the general way.
456   if (i == e) return nullptr;
457 
458   Value *VariableIdx = GEP->getOperand(i);
459   // Determine the scale factor of the variable element.  For example, this is
460   // 4 if the variable index is into an array of i32.
461   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
462 
463   // Verify that there are no other variable indices.  If so, emit the hard way.
464   for (++i, ++GTI; i != e; ++i, ++GTI) {
465     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
466     if (!CI) return nullptr;
467 
468     // Compute the aggregate offset of constant indices.
469     if (CI->isZero()) continue;
470 
471     // Handle a struct index, which adds its field offset to the pointer.
472     if (StructType *STy = GTI.getStructTypeOrNull()) {
473       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
474     } else {
475       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
476       Offset += Size*CI->getSExtValue();
477     }
478   }
479 
480   // Okay, we know we have a single variable index, which must be a
481   // pointer/array/vector index.  If there is no offset, life is simple, return
482   // the index.
483   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
484   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
485   if (Offset == 0) {
486     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
487     // we don't need to bother extending: the extension won't affect where the
488     // computation crosses zero.
489     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
490       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
491     }
492     return VariableIdx;
493   }
494 
495   // Otherwise, there is an index.  The computation we will do will be modulo
496   // the pointer size.
497   Offset = SignExtend64(Offset, IntPtrWidth);
498   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
499 
500   // To do this transformation, any constant index must be a multiple of the
501   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
502   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
503   // multiple of the variable scale.
504   int64_t NewOffs = Offset / (int64_t)VariableScale;
505   if (Offset != NewOffs*(int64_t)VariableScale)
506     return nullptr;
507 
508   // Okay, we can do this evaluation.  Start by converting the index to intptr.
509   if (VariableIdx->getType() != IntPtrTy)
510     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
511                                             true /*Signed*/);
512   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
513   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
514 }
515 
516 /// Returns true if we can rewrite Start as a GEP with pointer Base
517 /// and some integer offset. The nodes that need to be re-written
518 /// for this transformation will be added to Explored.
519 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
520                                   const DataLayout &DL,
521                                   SetVector<Value *> &Explored) {
522   SmallVector<Value *, 16> WorkList(1, Start);
523   Explored.insert(Base);
524 
525   // The following traversal gives us an order which can be used
526   // when doing the final transformation. Since in the final
527   // transformation we create the PHI replacement instructions first,
528   // we don't have to get them in any particular order.
529   //
530   // However, for other instructions we will have to traverse the
531   // operands of an instruction first, which means that we have to
532   // do a post-order traversal.
533   while (!WorkList.empty()) {
534     SetVector<PHINode *> PHIs;
535 
536     while (!WorkList.empty()) {
537       if (Explored.size() >= 100)
538         return false;
539 
540       Value *V = WorkList.back();
541 
542       if (Explored.count(V) != 0) {
543         WorkList.pop_back();
544         continue;
545       }
546 
547       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
548           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
549         // We've found some value that we can't explore which is different from
550         // the base. Therefore we can't do this transformation.
551         return false;
552 
553       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
554         auto *CI = dyn_cast<CastInst>(V);
555         if (!CI->isNoopCast(DL))
556           return false;
557 
558         if (Explored.count(CI->getOperand(0)) == 0)
559           WorkList.push_back(CI->getOperand(0));
560       }
561 
562       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
563         // We're limiting the GEP to having one index. This will preserve
564         // the original pointer type. We could handle more cases in the
565         // future.
566         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
567             GEP->getType() != Start->getType())
568           return false;
569 
570         if (Explored.count(GEP->getOperand(0)) == 0)
571           WorkList.push_back(GEP->getOperand(0));
572       }
573 
574       if (WorkList.back() == V) {
575         WorkList.pop_back();
576         // We've finished visiting this node, mark it as such.
577         Explored.insert(V);
578       }
579 
580       if (auto *PN = dyn_cast<PHINode>(V)) {
581         // We cannot transform PHIs on unsplittable basic blocks.
582         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
583           return false;
584         Explored.insert(PN);
585         PHIs.insert(PN);
586       }
587     }
588 
589     // Explore the PHI nodes further.
590     for (auto *PN : PHIs)
591       for (Value *Op : PN->incoming_values())
592         if (Explored.count(Op) == 0)
593           WorkList.push_back(Op);
594   }
595 
596   // Make sure that we can do this. Since we can't insert GEPs in a basic
597   // block before a PHI node, we can't easily do this transformation if
598   // we have PHI node users of transformed instructions.
599   for (Value *Val : Explored) {
600     for (Value *Use : Val->uses()) {
601 
602       auto *PHI = dyn_cast<PHINode>(Use);
603       auto *Inst = dyn_cast<Instruction>(Val);
604 
605       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
606           Explored.count(PHI) == 0)
607         continue;
608 
609       if (PHI->getParent() == Inst->getParent())
610         return false;
611     }
612   }
613   return true;
614 }
615 
616 // Sets the appropriate insert point on Builder where we can add
617 // a replacement Instruction for V (if that is possible).
618 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
619                               bool Before = true) {
620   if (auto *PHI = dyn_cast<PHINode>(V)) {
621     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
622     return;
623   }
624   if (auto *I = dyn_cast<Instruction>(V)) {
625     if (!Before)
626       I = &*std::next(I->getIterator());
627     Builder.SetInsertPoint(I);
628     return;
629   }
630   if (auto *A = dyn_cast<Argument>(V)) {
631     // Set the insertion point in the entry block.
632     BasicBlock &Entry = A->getParent()->getEntryBlock();
633     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
634     return;
635   }
636   // Otherwise, this is a constant and we don't need to set a new
637   // insertion point.
638   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
639 }
640 
641 /// Returns a re-written value of Start as an indexed GEP using Base as a
642 /// pointer.
643 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
644                                  const DataLayout &DL,
645                                  SetVector<Value *> &Explored) {
646   // Perform all the substitutions. This is a bit tricky because we can
647   // have cycles in our use-def chains.
648   // 1. Create the PHI nodes without any incoming values.
649   // 2. Create all the other values.
650   // 3. Add the edges for the PHI nodes.
651   // 4. Emit GEPs to get the original pointers.
652   // 5. Remove the original instructions.
653   Type *IndexType = IntegerType::get(
654       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
655 
656   DenseMap<Value *, Value *> NewInsts;
657   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
658 
659   // Create the new PHI nodes, without adding any incoming values.
660   for (Value *Val : Explored) {
661     if (Val == Base)
662       continue;
663     // Create empty phi nodes. This avoids cyclic dependencies when creating
664     // the remaining instructions.
665     if (auto *PHI = dyn_cast<PHINode>(Val))
666       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
667                                       PHI->getName() + ".idx", PHI);
668   }
669   IRBuilder<> Builder(Base->getContext());
670 
671   // Create all the other instructions.
672   for (Value *Val : Explored) {
673 
674     if (NewInsts.find(Val) != NewInsts.end())
675       continue;
676 
677     if (auto *CI = dyn_cast<CastInst>(Val)) {
678       // Don't get rid of the intermediate variable here; the store can grow
679       // the map which will invalidate the reference to the input value.
680       Value *V = NewInsts[CI->getOperand(0)];
681       NewInsts[CI] = V;
682       continue;
683     }
684     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
685       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
686                                                   : GEP->getOperand(1);
687       setInsertionPoint(Builder, GEP);
688       // Indices might need to be sign extended. GEPs will magically do
689       // this, but we need to do it ourselves here.
690       if (Index->getType()->getScalarSizeInBits() !=
691           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
692         Index = Builder.CreateSExtOrTrunc(
693             Index, NewInsts[GEP->getOperand(0)]->getType(),
694             GEP->getOperand(0)->getName() + ".sext");
695       }
696 
697       auto *Op = NewInsts[GEP->getOperand(0)];
698       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
699         NewInsts[GEP] = Index;
700       else
701         NewInsts[GEP] = Builder.CreateNSWAdd(
702             Op, Index, GEP->getOperand(0)->getName() + ".add");
703       continue;
704     }
705     if (isa<PHINode>(Val))
706       continue;
707 
708     llvm_unreachable("Unexpected instruction type");
709   }
710 
711   // Add the incoming values to the PHI nodes.
712   for (Value *Val : Explored) {
713     if (Val == Base)
714       continue;
715     // All the instructions have been created, we can now add edges to the
716     // phi nodes.
717     if (auto *PHI = dyn_cast<PHINode>(Val)) {
718       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
719       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
720         Value *NewIncoming = PHI->getIncomingValue(I);
721 
722         if (NewInsts.find(NewIncoming) != NewInsts.end())
723           NewIncoming = NewInsts[NewIncoming];
724 
725         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
726       }
727     }
728   }
729 
730   for (Value *Val : Explored) {
731     if (Val == Base)
732       continue;
733 
734     // Depending on the type, for external users we have to emit
735     // a GEP or a GEP + ptrtoint.
736     setInsertionPoint(Builder, Val, false);
737 
738     // If required, create an inttoptr instruction for Base.
739     Value *NewBase = Base;
740     if (!Base->getType()->isPointerTy())
741       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
742                                                Start->getName() + "to.ptr");
743 
744     Value *GEP = Builder.CreateInBoundsGEP(
745         Start->getType()->getPointerElementType(), NewBase,
746         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
747 
748     if (!Val->getType()->isPointerTy()) {
749       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
750                                               Val->getName() + ".conv");
751       GEP = Cast;
752     }
753     Val->replaceAllUsesWith(GEP);
754   }
755 
756   return NewInsts[Start];
757 }
758 
759 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
760 /// the input Value as a constant indexed GEP. Returns a pair containing
761 /// the GEPs Pointer and Index.
762 static std::pair<Value *, Value *>
763 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
764   Type *IndexType = IntegerType::get(V->getContext(),
765                                      DL.getIndexTypeSizeInBits(V->getType()));
766 
767   Constant *Index = ConstantInt::getNullValue(IndexType);
768   while (true) {
769     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
770       // We accept only inbouds GEPs here to exclude the possibility of
771       // overflow.
772       if (!GEP->isInBounds())
773         break;
774       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
775           GEP->getType() == V->getType()) {
776         V = GEP->getOperand(0);
777         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
778         Index = ConstantExpr::getAdd(
779             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
780         continue;
781       }
782       break;
783     }
784     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
785       if (!CI->isNoopCast(DL))
786         break;
787       V = CI->getOperand(0);
788       continue;
789     }
790     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
791       if (!CI->isNoopCast(DL))
792         break;
793       V = CI->getOperand(0);
794       continue;
795     }
796     break;
797   }
798   return {V, Index};
799 }
800 
801 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
802 /// We can look through PHIs, GEPs and casts in order to determine a common base
803 /// between GEPLHS and RHS.
804 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
805                                               ICmpInst::Predicate Cond,
806                                               const DataLayout &DL) {
807   // FIXME: Support vector of pointers.
808   if (GEPLHS->getType()->isVectorTy())
809     return nullptr;
810 
811   if (!GEPLHS->hasAllConstantIndices())
812     return nullptr;
813 
814   // Make sure the pointers have the same type.
815   if (GEPLHS->getType() != RHS->getType())
816     return nullptr;
817 
818   Value *PtrBase, *Index;
819   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
820 
821   // The set of nodes that will take part in this transformation.
822   SetVector<Value *> Nodes;
823 
824   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
825     return nullptr;
826 
827   // We know we can re-write this as
828   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
829   // Since we've only looked through inbouds GEPs we know that we
830   // can't have overflow on either side. We can therefore re-write
831   // this as:
832   //   OFFSET1 cmp OFFSET2
833   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
834 
835   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
836   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
837   // offset. Since Index is the offset of LHS to the base pointer, we will now
838   // compare the offsets instead of comparing the pointers.
839   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
840 }
841 
842 /// Fold comparisons between a GEP instruction and something else. At this point
843 /// we know that the GEP is on the LHS of the comparison.
844 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
845                                        ICmpInst::Predicate Cond,
846                                        Instruction &I) {
847   // Don't transform signed compares of GEPs into index compares. Even if the
848   // GEP is inbounds, the final add of the base pointer can have signed overflow
849   // and would change the result of the icmp.
850   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
851   // the maximum signed value for the pointer type.
852   if (ICmpInst::isSigned(Cond))
853     return nullptr;
854 
855   // Look through bitcasts and addrspacecasts. We do not however want to remove
856   // 0 GEPs.
857   if (!isa<GetElementPtrInst>(RHS))
858     RHS = RHS->stripPointerCasts();
859 
860   Value *PtrBase = GEPLHS->getOperand(0);
861   // FIXME: Support vector pointer GEPs.
862   if (PtrBase == RHS && GEPLHS->isInBounds() &&
863       !GEPLHS->getType()->isVectorTy()) {
864     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
865     // This transformation (ignoring the base and scales) is valid because we
866     // know pointers can't overflow since the gep is inbounds.  See if we can
867     // output an optimized form.
868     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
869 
870     // If not, synthesize the offset the hard way.
871     if (!Offset)
872       Offset = EmitGEPOffset(GEPLHS);
873     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
874                         Constant::getNullValue(Offset->getType()));
875   }
876 
877   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
878       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
879       !NullPointerIsDefined(I.getFunction(),
880                             RHS->getType()->getPointerAddressSpace())) {
881     // For most address spaces, an allocation can't be placed at null, but null
882     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
883     // the only valid inbounds address derived from null, is null itself.
884     // Thus, we have four cases to consider:
885     // 1) Base == nullptr, Offset == 0 -> inbounds, null
886     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
887     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
888     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
889     //
890     // (Note if we're indexing a type of size 0, that simply collapses into one
891     //  of the buckets above.)
892     //
893     // In general, we're allowed to make values less poison (i.e. remove
894     //   sources of full UB), so in this case, we just select between the two
895     //   non-poison cases (1 and 4 above).
896     //
897     // For vectors, we apply the same reasoning on a per-lane basis.
898     auto *Base = GEPLHS->getPointerOperand();
899     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
900       int NumElts = GEPLHS->getType()->getVectorNumElements();
901       Base = Builder.CreateVectorSplat(NumElts, Base);
902     }
903     return new ICmpInst(Cond, Base,
904                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
905                             cast<Constant>(RHS), Base->getType()));
906   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
907     // If the base pointers are different, but the indices are the same, just
908     // compare the base pointer.
909     if (PtrBase != GEPRHS->getOperand(0)) {
910       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
911       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
912                         GEPRHS->getOperand(0)->getType();
913       if (IndicesTheSame)
914         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
915           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
916             IndicesTheSame = false;
917             break;
918           }
919 
920       // If all indices are the same, just compare the base pointers.
921       Type *BaseType = GEPLHS->getOperand(0)->getType();
922       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
923         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
924 
925       // If we're comparing GEPs with two base pointers that only differ in type
926       // and both GEPs have only constant indices or just one use, then fold
927       // the compare with the adjusted indices.
928       // FIXME: Support vector of pointers.
929       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
930           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
931           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
932           PtrBase->stripPointerCasts() ==
933               GEPRHS->getOperand(0)->stripPointerCasts() &&
934           !GEPLHS->getType()->isVectorTy()) {
935         Value *LOffset = EmitGEPOffset(GEPLHS);
936         Value *ROffset = EmitGEPOffset(GEPRHS);
937 
938         // If we looked through an addrspacecast between different sized address
939         // spaces, the LHS and RHS pointers are different sized
940         // integers. Truncate to the smaller one.
941         Type *LHSIndexTy = LOffset->getType();
942         Type *RHSIndexTy = ROffset->getType();
943         if (LHSIndexTy != RHSIndexTy) {
944           if (LHSIndexTy->getPrimitiveSizeInBits() <
945               RHSIndexTy->getPrimitiveSizeInBits()) {
946             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
947           } else
948             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
949         }
950 
951         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
952                                         LOffset, ROffset);
953         return replaceInstUsesWith(I, Cmp);
954       }
955 
956       // Otherwise, the base pointers are different and the indices are
957       // different. Try convert this to an indexed compare by looking through
958       // PHIs/casts.
959       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
960     }
961 
962     // If one of the GEPs has all zero indices, recurse.
963     // FIXME: Handle vector of pointers.
964     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
965       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
966                          ICmpInst::getSwappedPredicate(Cond), I);
967 
968     // If the other GEP has all zero indices, recurse.
969     // FIXME: Handle vector of pointers.
970     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
971       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
972 
973     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
974     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
975       // If the GEPs only differ by one index, compare it.
976       unsigned NumDifferences = 0;  // Keep track of # differences.
977       unsigned DiffOperand = 0;     // The operand that differs.
978       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
979         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
980           Type *LHSType = GEPLHS->getOperand(i)->getType();
981           Type *RHSType = GEPRHS->getOperand(i)->getType();
982           // FIXME: Better support for vector of pointers.
983           if (LHSType->getPrimitiveSizeInBits() !=
984                    RHSType->getPrimitiveSizeInBits() ||
985               (GEPLHS->getType()->isVectorTy() &&
986                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
987             // Irreconcilable differences.
988             NumDifferences = 2;
989             break;
990           }
991 
992           if (NumDifferences++) break;
993           DiffOperand = i;
994         }
995 
996       if (NumDifferences == 0)   // SAME GEP?
997         return replaceInstUsesWith(I, // No comparison is needed here.
998           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
999 
1000       else if (NumDifferences == 1 && GEPsInBounds) {
1001         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1002         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1003         // Make sure we do a signed comparison here.
1004         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1005       }
1006     }
1007 
1008     // Only lower this if the icmp is the only user of the GEP or if we expect
1009     // the result to fold to a constant!
1010     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1011         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1012       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1013       Value *L = EmitGEPOffset(GEPLHS);
1014       Value *R = EmitGEPOffset(GEPRHS);
1015       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1016     }
1017   }
1018 
1019   // Try convert this to an indexed compare by looking through PHIs/casts as a
1020   // last resort.
1021   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1022 }
1023 
1024 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1025                                          const AllocaInst *Alloca,
1026                                          const Value *Other) {
1027   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1028 
1029   // It would be tempting to fold away comparisons between allocas and any
1030   // pointer not based on that alloca (e.g. an argument). However, even
1031   // though such pointers cannot alias, they can still compare equal.
1032   //
1033   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1034   // doesn't escape we can argue that it's impossible to guess its value, and we
1035   // can therefore act as if any such guesses are wrong.
1036   //
1037   // The code below checks that the alloca doesn't escape, and that it's only
1038   // used in a comparison once (the current instruction). The
1039   // single-comparison-use condition ensures that we're trivially folding all
1040   // comparisons against the alloca consistently, and avoids the risk of
1041   // erroneously folding a comparison of the pointer with itself.
1042 
1043   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1044 
1045   SmallVector<const Use *, 32> Worklist;
1046   for (const Use &U : Alloca->uses()) {
1047     if (Worklist.size() >= MaxIter)
1048       return nullptr;
1049     Worklist.push_back(&U);
1050   }
1051 
1052   unsigned NumCmps = 0;
1053   while (!Worklist.empty()) {
1054     assert(Worklist.size() <= MaxIter);
1055     const Use *U = Worklist.pop_back_val();
1056     const Value *V = U->getUser();
1057     --MaxIter;
1058 
1059     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1060         isa<SelectInst>(V)) {
1061       // Track the uses.
1062     } else if (isa<LoadInst>(V)) {
1063       // Loading from the pointer doesn't escape it.
1064       continue;
1065     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1066       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1067       if (SI->getValueOperand() == U->get())
1068         return nullptr;
1069       continue;
1070     } else if (isa<ICmpInst>(V)) {
1071       if (NumCmps++)
1072         return nullptr; // Found more than one cmp.
1073       continue;
1074     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1075       switch (Intrin->getIntrinsicID()) {
1076         // These intrinsics don't escape or compare the pointer. Memset is safe
1077         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1078         // we don't allow stores, so src cannot point to V.
1079         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1080         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1081           continue;
1082         default:
1083           return nullptr;
1084       }
1085     } else {
1086       return nullptr;
1087     }
1088     for (const Use &U : V->uses()) {
1089       if (Worklist.size() >= MaxIter)
1090         return nullptr;
1091       Worklist.push_back(&U);
1092     }
1093   }
1094 
1095   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1096   return replaceInstUsesWith(
1097       ICI,
1098       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1099 }
1100 
1101 /// Fold "icmp pred (X+C), X".
1102 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1103                                               ICmpInst::Predicate Pred) {
1104   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1105   // so the values can never be equal.  Similarly for all other "or equals"
1106   // operators.
1107   assert(!!C && "C should not be zero!");
1108 
1109   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1110   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1111   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1112   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1113     Constant *R = ConstantInt::get(X->getType(),
1114                                    APInt::getMaxValue(C.getBitWidth()) - C);
1115     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1116   }
1117 
1118   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1119   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1120   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1121   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1122     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1123                         ConstantInt::get(X->getType(), -C));
1124 
1125   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1126 
1127   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1128   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1129   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1130   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1131   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1132   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1133   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1134     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1135                         ConstantInt::get(X->getType(), SMax - C));
1136 
1137   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1138   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1139   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1140   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1141   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1142   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1143 
1144   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1145   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1146                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1147 }
1148 
1149 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1150 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1151 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1152 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1153                                                  const APInt &AP1,
1154                                                  const APInt &AP2) {
1155   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1156 
1157   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1158     if (I.getPredicate() == I.ICMP_NE)
1159       Pred = CmpInst::getInversePredicate(Pred);
1160     return new ICmpInst(Pred, LHS, RHS);
1161   };
1162 
1163   // Don't bother doing any work for cases which InstSimplify handles.
1164   if (AP2.isNullValue())
1165     return nullptr;
1166 
1167   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1168   if (IsAShr) {
1169     if (AP2.isAllOnesValue())
1170       return nullptr;
1171     if (AP2.isNegative() != AP1.isNegative())
1172       return nullptr;
1173     if (AP2.sgt(AP1))
1174       return nullptr;
1175   }
1176 
1177   if (!AP1)
1178     // 'A' must be large enough to shift out the highest set bit.
1179     return getICmp(I.ICMP_UGT, A,
1180                    ConstantInt::get(A->getType(), AP2.logBase2()));
1181 
1182   if (AP1 == AP2)
1183     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1184 
1185   int Shift;
1186   if (IsAShr && AP1.isNegative())
1187     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1188   else
1189     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1190 
1191   if (Shift > 0) {
1192     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1193       // There are multiple solutions if we are comparing against -1 and the LHS
1194       // of the ashr is not a power of two.
1195       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1196         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1197       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1198     } else if (AP1 == AP2.lshr(Shift)) {
1199       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1200     }
1201   }
1202 
1203   // Shifting const2 will never be equal to const1.
1204   // FIXME: This should always be handled by InstSimplify?
1205   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1206   return replaceInstUsesWith(I, TorF);
1207 }
1208 
1209 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1210 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1211 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1212                                                  const APInt &AP1,
1213                                                  const APInt &AP2) {
1214   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1215 
1216   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1217     if (I.getPredicate() == I.ICMP_NE)
1218       Pred = CmpInst::getInversePredicate(Pred);
1219     return new ICmpInst(Pred, LHS, RHS);
1220   };
1221 
1222   // Don't bother doing any work for cases which InstSimplify handles.
1223   if (AP2.isNullValue())
1224     return nullptr;
1225 
1226   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1227 
1228   if (!AP1 && AP2TrailingZeros != 0)
1229     return getICmp(
1230         I.ICMP_UGE, A,
1231         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1232 
1233   if (AP1 == AP2)
1234     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1235 
1236   // Get the distance between the lowest bits that are set.
1237   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1238 
1239   if (Shift > 0 && AP2.shl(Shift) == AP1)
1240     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1241 
1242   // Shifting const2 will never be equal to const1.
1243   // FIXME: This should always be handled by InstSimplify?
1244   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1245   return replaceInstUsesWith(I, TorF);
1246 }
1247 
1248 /// The caller has matched a pattern of the form:
1249 ///   I = icmp ugt (add (add A, B), CI2), CI1
1250 /// If this is of the form:
1251 ///   sum = a + b
1252 ///   if (sum+128 >u 255)
1253 /// Then replace it with llvm.sadd.with.overflow.i8.
1254 ///
1255 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1256                                           ConstantInt *CI2, ConstantInt *CI1,
1257                                           InstCombiner &IC) {
1258   // The transformation we're trying to do here is to transform this into an
1259   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1260   // with a narrower add, and discard the add-with-constant that is part of the
1261   // range check (if we can't eliminate it, this isn't profitable).
1262 
1263   // In order to eliminate the add-with-constant, the compare can be its only
1264   // use.
1265   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1266   if (!AddWithCst->hasOneUse())
1267     return nullptr;
1268 
1269   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1270   if (!CI2->getValue().isPowerOf2())
1271     return nullptr;
1272   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1273   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1274     return nullptr;
1275 
1276   // The width of the new add formed is 1 more than the bias.
1277   ++NewWidth;
1278 
1279   // Check to see that CI1 is an all-ones value with NewWidth bits.
1280   if (CI1->getBitWidth() == NewWidth ||
1281       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1282     return nullptr;
1283 
1284   // This is only really a signed overflow check if the inputs have been
1285   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1286   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1287   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1288   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1289       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1290     return nullptr;
1291 
1292   // In order to replace the original add with a narrower
1293   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1294   // and truncates that discard the high bits of the add.  Verify that this is
1295   // the case.
1296   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1297   for (User *U : OrigAdd->users()) {
1298     if (U == AddWithCst)
1299       continue;
1300 
1301     // Only accept truncates for now.  We would really like a nice recursive
1302     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1303     // chain to see which bits of a value are actually demanded.  If the
1304     // original add had another add which was then immediately truncated, we
1305     // could still do the transformation.
1306     TruncInst *TI = dyn_cast<TruncInst>(U);
1307     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1308       return nullptr;
1309   }
1310 
1311   // If the pattern matches, truncate the inputs to the narrower type and
1312   // use the sadd_with_overflow intrinsic to efficiently compute both the
1313   // result and the overflow bit.
1314   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1315   Function *F = Intrinsic::getDeclaration(
1316       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1317 
1318   InstCombiner::BuilderTy &Builder = IC.Builder;
1319 
1320   // Put the new code above the original add, in case there are any uses of the
1321   // add between the add and the compare.
1322   Builder.SetInsertPoint(OrigAdd);
1323 
1324   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1325   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1326   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1327   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1328   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1329 
1330   // The inner add was the result of the narrow add, zero extended to the
1331   // wider type.  Replace it with the result computed by the intrinsic.
1332   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1333 
1334   // The original icmp gets replaced with the overflow value.
1335   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1336 }
1337 
1338 /// If we have:
1339 ///   icmp eq/ne (urem/srem %x, %y), 0
1340 /// iff %y is a power-of-two, we can replace this with a bit test:
1341 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1342 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1343   // This fold is only valid for equality predicates.
1344   if (!I.isEquality())
1345     return nullptr;
1346   ICmpInst::Predicate Pred;
1347   Value *X, *Y, *Zero;
1348   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1349                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1350     return nullptr;
1351   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1352     return nullptr;
1353   // This may increase instruction count, we don't enforce that Y is a constant.
1354   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1355   Value *Masked = Builder.CreateAnd(X, Mask);
1356   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1357 }
1358 
1359 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1360 /// by one-less-than-bitwidth into a sign test on the original value.
1361 Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) {
1362   Instruction *Val;
1363   ICmpInst::Predicate Pred;
1364   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1365     return nullptr;
1366 
1367   Value *X;
1368   Type *XTy;
1369 
1370   Constant *C;
1371   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1372     XTy = X->getType();
1373     unsigned XBitWidth = XTy->getScalarSizeInBits();
1374     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1375                                      APInt(XBitWidth, XBitWidth - 1))))
1376       return nullptr;
1377   } else if (isa<BinaryOperator>(Val) &&
1378              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1379                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1380                   /*AnalyzeForSignBitExtraction=*/true))) {
1381     XTy = X->getType();
1382   } else
1383     return nullptr;
1384 
1385   return ICmpInst::Create(Instruction::ICmp,
1386                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1387                                                     : ICmpInst::ICMP_SLT,
1388                           X, ConstantInt::getNullValue(XTy));
1389 }
1390 
1391 // Handle  icmp pred X, 0
1392 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1393   CmpInst::Predicate Pred = Cmp.getPredicate();
1394   if (!match(Cmp.getOperand(1), m_Zero()))
1395     return nullptr;
1396 
1397   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1398   if (Pred == ICmpInst::ICMP_SGT) {
1399     Value *A, *B;
1400     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1401     if (SPR.Flavor == SPF_SMIN) {
1402       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1403         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1404       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1405         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1406     }
1407   }
1408 
1409   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1410     return New;
1411 
1412   // Given:
1413   //   icmp eq/ne (urem %x, %y), 0
1414   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1415   //   icmp eq/ne %x, 0
1416   Value *X, *Y;
1417   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1418       ICmpInst::isEquality(Pred)) {
1419     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1420     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1421     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1422       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1423   }
1424 
1425   return nullptr;
1426 }
1427 
1428 /// Fold icmp Pred X, C.
1429 /// TODO: This code structure does not make sense. The saturating add fold
1430 /// should be moved to some other helper and extended as noted below (it is also
1431 /// possible that code has been made unnecessary - do we canonicalize IR to
1432 /// overflow/saturating intrinsics or not?).
1433 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1434   // Match the following pattern, which is a common idiom when writing
1435   // overflow-safe integer arithmetic functions. The source performs an addition
1436   // in wider type and explicitly checks for overflow using comparisons against
1437   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1438   //
1439   // TODO: This could probably be generalized to handle other overflow-safe
1440   // operations if we worked out the formulas to compute the appropriate magic
1441   // constants.
1442   //
1443   // sum = a + b
1444   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1445   CmpInst::Predicate Pred = Cmp.getPredicate();
1446   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1447   Value *A, *B;
1448   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1449   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1450       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1451     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1452       return Res;
1453 
1454   return nullptr;
1455 }
1456 
1457 /// Canonicalize icmp instructions based on dominating conditions.
1458 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1459   // This is a cheap/incomplete check for dominance - just match a single
1460   // predecessor with a conditional branch.
1461   BasicBlock *CmpBB = Cmp.getParent();
1462   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463   if (!DomBB)
1464     return nullptr;
1465 
1466   Value *DomCond;
1467   BasicBlock *TrueBB, *FalseBB;
1468   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1469     return nullptr;
1470 
1471   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1472          "Predecessor block does not point to successor?");
1473 
1474   // The branch should get simplified. Don't bother simplifying this condition.
1475   if (TrueBB == FalseBB)
1476     return nullptr;
1477 
1478   // Try to simplify this compare to T/F based on the dominating condition.
1479   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1480   if (Imp)
1481     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1482 
1483   CmpInst::Predicate Pred = Cmp.getPredicate();
1484   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1485   ICmpInst::Predicate DomPred;
1486   const APInt *C, *DomC;
1487   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1488       match(Y, m_APInt(C))) {
1489     // We have 2 compares of a variable with constants. Calculate the constant
1490     // ranges of those compares to see if we can transform the 2nd compare:
1491     // DomBB:
1492     //   DomCond = icmp DomPred X, DomC
1493     //   br DomCond, CmpBB, FalseBB
1494     // CmpBB:
1495     //   Cmp = icmp Pred X, C
1496     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1497     ConstantRange DominatingCR =
1498         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1499                           : ConstantRange::makeExactICmpRegion(
1500                                 CmpInst::getInversePredicate(DomPred), *DomC);
1501     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1502     ConstantRange Difference = DominatingCR.difference(CR);
1503     if (Intersection.isEmptySet())
1504       return replaceInstUsesWith(Cmp, Builder.getFalse());
1505     if (Difference.isEmptySet())
1506       return replaceInstUsesWith(Cmp, Builder.getTrue());
1507 
1508     // Canonicalizing a sign bit comparison that gets used in a branch,
1509     // pessimizes codegen by generating branch on zero instruction instead
1510     // of a test and branch. So we avoid canonicalizing in such situations
1511     // because test and branch instruction has better branch displacement
1512     // than compare and branch instruction.
1513     bool UnusedBit;
1514     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1515     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1516       return nullptr;
1517 
1518     if (const APInt *EqC = Intersection.getSingleElement())
1519       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1520     if (const APInt *NeC = Difference.getSingleElement())
1521       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1522   }
1523 
1524   return nullptr;
1525 }
1526 
1527 /// Fold icmp (trunc X, Y), C.
1528 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1529                                                  TruncInst *Trunc,
1530                                                  const APInt &C) {
1531   ICmpInst::Predicate Pred = Cmp.getPredicate();
1532   Value *X = Trunc->getOperand(0);
1533   if (C.isOneValue() && C.getBitWidth() > 1) {
1534     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1535     Value *V = nullptr;
1536     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1537       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1538                           ConstantInt::get(V->getType(), 1));
1539   }
1540 
1541   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1542     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1543     // of the high bits truncated out of x are known.
1544     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1545              SrcBits = X->getType()->getScalarSizeInBits();
1546     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1547 
1548     // If all the high bits are known, we can do this xform.
1549     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1550       // Pull in the high bits from known-ones set.
1551       APInt NewRHS = C.zext(SrcBits);
1552       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1553       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1554     }
1555   }
1556 
1557   return nullptr;
1558 }
1559 
1560 /// Fold icmp (xor X, Y), C.
1561 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1562                                                BinaryOperator *Xor,
1563                                                const APInt &C) {
1564   Value *X = Xor->getOperand(0);
1565   Value *Y = Xor->getOperand(1);
1566   const APInt *XorC;
1567   if (!match(Y, m_APInt(XorC)))
1568     return nullptr;
1569 
1570   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1571   // fold the xor.
1572   ICmpInst::Predicate Pred = Cmp.getPredicate();
1573   bool TrueIfSigned = false;
1574   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1575 
1576     // If the sign bit of the XorCst is not set, there is no change to
1577     // the operation, just stop using the Xor.
1578     if (!XorC->isNegative())
1579       return replaceOperand(Cmp, 0, X);
1580 
1581     // Emit the opposite comparison.
1582     if (TrueIfSigned)
1583       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1584                           ConstantInt::getAllOnesValue(X->getType()));
1585     else
1586       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1587                           ConstantInt::getNullValue(X->getType()));
1588   }
1589 
1590   if (Xor->hasOneUse()) {
1591     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1592     if (!Cmp.isEquality() && XorC->isSignMask()) {
1593       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1594                             : Cmp.getSignedPredicate();
1595       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1596     }
1597 
1598     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1599     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1600       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1601                             : Cmp.getSignedPredicate();
1602       Pred = Cmp.getSwappedPredicate(Pred);
1603       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1604     }
1605   }
1606 
1607   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1608   if (Pred == ICmpInst::ICMP_UGT) {
1609     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1610     if (*XorC == ~C && (C + 1).isPowerOf2())
1611       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1612     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1613     if (*XorC == C && (C + 1).isPowerOf2())
1614       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1615   }
1616   if (Pred == ICmpInst::ICMP_ULT) {
1617     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1618     if (*XorC == -C && C.isPowerOf2())
1619       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1620                           ConstantInt::get(X->getType(), ~C));
1621     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1622     if (*XorC == C && (-C).isPowerOf2())
1623       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1624                           ConstantInt::get(X->getType(), ~C));
1625   }
1626   return nullptr;
1627 }
1628 
1629 /// Fold icmp (and (sh X, Y), C2), C1.
1630 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1631                                             const APInt &C1, const APInt &C2) {
1632   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1633   if (!Shift || !Shift->isShift())
1634     return nullptr;
1635 
1636   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1637   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1638   // code produced by the clang front-end, for bitfield access.
1639   // This seemingly simple opportunity to fold away a shift turns out to be
1640   // rather complicated. See PR17827 for details.
1641   unsigned ShiftOpcode = Shift->getOpcode();
1642   bool IsShl = ShiftOpcode == Instruction::Shl;
1643   const APInt *C3;
1644   if (match(Shift->getOperand(1), m_APInt(C3))) {
1645     APInt NewAndCst, NewCmpCst;
1646     bool AnyCmpCstBitsShiftedOut;
1647     if (ShiftOpcode == Instruction::Shl) {
1648       // For a left shift, we can fold if the comparison is not signed. We can
1649       // also fold a signed comparison if the mask value and comparison value
1650       // are not negative. These constraints may not be obvious, but we can
1651       // prove that they are correct using an SMT solver.
1652       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1653         return nullptr;
1654 
1655       NewCmpCst = C1.lshr(*C3);
1656       NewAndCst = C2.lshr(*C3);
1657       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1658     } else if (ShiftOpcode == Instruction::LShr) {
1659       // For a logical right shift, we can fold if the comparison is not signed.
1660       // We can also fold a signed comparison if the shifted mask value and the
1661       // shifted comparison value are not negative. These constraints may not be
1662       // obvious, but we can prove that they are correct using an SMT solver.
1663       NewCmpCst = C1.shl(*C3);
1664       NewAndCst = C2.shl(*C3);
1665       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1666       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1667         return nullptr;
1668     } else {
1669       // For an arithmetic shift, check that both constants don't use (in a
1670       // signed sense) the top bits being shifted out.
1671       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1672       NewCmpCst = C1.shl(*C3);
1673       NewAndCst = C2.shl(*C3);
1674       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1675       if (NewAndCst.ashr(*C3) != C2)
1676         return nullptr;
1677     }
1678 
1679     if (AnyCmpCstBitsShiftedOut) {
1680       // If we shifted bits out, the fold is not going to work out. As a
1681       // special case, check to see if this means that the result is always
1682       // true or false now.
1683       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1684         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1685       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1686         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1687     } else {
1688       Value *NewAnd = Builder.CreateAnd(
1689           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1690       return new ICmpInst(Cmp.getPredicate(),
1691           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1692     }
1693   }
1694 
1695   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1696   // preferable because it allows the C2 << Y expression to be hoisted out of a
1697   // loop if Y is invariant and X is not.
1698   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1699       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1700     // Compute C2 << Y.
1701     Value *NewShift =
1702         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1703               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1704 
1705     // Compute X & (C2 << Y).
1706     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1707     return replaceOperand(Cmp, 0, NewAnd);
1708   }
1709 
1710   return nullptr;
1711 }
1712 
1713 /// Fold icmp (and X, C2), C1.
1714 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1715                                                  BinaryOperator *And,
1716                                                  const APInt &C1) {
1717   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1718 
1719   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1720   // TODO: We canonicalize to the longer form for scalars because we have
1721   // better analysis/folds for icmp, and codegen may be better with icmp.
1722   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1723       match(And->getOperand(1), m_One()))
1724     return new TruncInst(And->getOperand(0), Cmp.getType());
1725 
1726   const APInt *C2;
1727   Value *X;
1728   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1729     return nullptr;
1730 
1731   // Don't perform the following transforms if the AND has multiple uses
1732   if (!And->hasOneUse())
1733     return nullptr;
1734 
1735   if (Cmp.isEquality() && C1.isNullValue()) {
1736     // Restrict this fold to single-use 'and' (PR10267).
1737     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1738     if (C2->isSignMask()) {
1739       Constant *Zero = Constant::getNullValue(X->getType());
1740       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1741       return new ICmpInst(NewPred, X, Zero);
1742     }
1743 
1744     // Restrict this fold only for single-use 'and' (PR10267).
1745     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1746     if ((~(*C2) + 1).isPowerOf2()) {
1747       Constant *NegBOC =
1748           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1749       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1750       return new ICmpInst(NewPred, X, NegBOC);
1751     }
1752   }
1753 
1754   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1755   // the input width without changing the value produced, eliminate the cast:
1756   //
1757   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1758   //
1759   // We can do this transformation if the constants do not have their sign bits
1760   // set or if it is an equality comparison. Extending a relational comparison
1761   // when we're checking the sign bit would not work.
1762   Value *W;
1763   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1764       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1765     // TODO: Is this a good transform for vectors? Wider types may reduce
1766     // throughput. Should this transform be limited (even for scalars) by using
1767     // shouldChangeType()?
1768     if (!Cmp.getType()->isVectorTy()) {
1769       Type *WideType = W->getType();
1770       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1771       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1772       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1773       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1774       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1775     }
1776   }
1777 
1778   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1779     return I;
1780 
1781   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1782   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1783   //
1784   // iff pred isn't signed
1785   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1786       match(And->getOperand(1), m_One())) {
1787     Constant *One = cast<Constant>(And->getOperand(1));
1788     Value *Or = And->getOperand(0);
1789     Value *A, *B, *LShr;
1790     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1791         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1792       unsigned UsesRemoved = 0;
1793       if (And->hasOneUse())
1794         ++UsesRemoved;
1795       if (Or->hasOneUse())
1796         ++UsesRemoved;
1797       if (LShr->hasOneUse())
1798         ++UsesRemoved;
1799 
1800       // Compute A & ((1 << B) | 1)
1801       Value *NewOr = nullptr;
1802       if (auto *C = dyn_cast<Constant>(B)) {
1803         if (UsesRemoved >= 1)
1804           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1805       } else {
1806         if (UsesRemoved >= 3)
1807           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1808                                                      /*HasNUW=*/true),
1809                                    One, Or->getName());
1810       }
1811       if (NewOr) {
1812         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1813         return replaceOperand(Cmp, 0, NewAnd);
1814       }
1815     }
1816   }
1817 
1818   return nullptr;
1819 }
1820 
1821 /// Fold icmp (and X, Y), C.
1822 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1823                                                BinaryOperator *And,
1824                                                const APInt &C) {
1825   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1826     return I;
1827 
1828   // TODO: These all require that Y is constant too, so refactor with the above.
1829 
1830   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1831   Value *X = And->getOperand(0);
1832   Value *Y = And->getOperand(1);
1833   if (auto *LI = dyn_cast<LoadInst>(X))
1834     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1835       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1836         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1837             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1838           ConstantInt *C2 = cast<ConstantInt>(Y);
1839           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1840             return Res;
1841         }
1842 
1843   if (!Cmp.isEquality())
1844     return nullptr;
1845 
1846   // X & -C == -C -> X >  u ~C
1847   // X & -C != -C -> X <= u ~C
1848   //   iff C is a power of 2
1849   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1850     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1851                                                           : CmpInst::ICMP_ULE;
1852     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1853   }
1854 
1855   // (X & C2) == 0 -> (trunc X) >= 0
1856   // (X & C2) != 0 -> (trunc X) <  0
1857   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1858   const APInt *C2;
1859   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1860     int32_t ExactLogBase2 = C2->exactLogBase2();
1861     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1862       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1863       if (And->getType()->isVectorTy())
1864         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1865       Value *Trunc = Builder.CreateTrunc(X, NTy);
1866       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1867                                                             : CmpInst::ICMP_SLT;
1868       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1869     }
1870   }
1871 
1872   return nullptr;
1873 }
1874 
1875 /// Fold icmp (or X, Y), C.
1876 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1877                                               const APInt &C) {
1878   ICmpInst::Predicate Pred = Cmp.getPredicate();
1879   if (C.isOneValue()) {
1880     // icmp slt signum(V) 1 --> icmp slt V, 1
1881     Value *V = nullptr;
1882     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1883       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1884                           ConstantInt::get(V->getType(), 1));
1885   }
1886 
1887   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1888   if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) {
1889     // X | C == C --> X <=u C
1890     // X | C != C --> X  >u C
1891     //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1892     if ((C + 1).isPowerOf2()) {
1893       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1894       return new ICmpInst(Pred, OrOp0, OrOp1);
1895     }
1896     // More general: are all bits outside of a mask constant set or not set?
1897     // X | C == C --> (X & ~C) == 0
1898     // X | C != C --> (X & ~C) != 0
1899     if (Or->hasOneUse()) {
1900       Value *A = Builder.CreateAnd(OrOp0, ~C);
1901       return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType()));
1902     }
1903   }
1904 
1905   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1906     return nullptr;
1907 
1908   Value *P, *Q;
1909   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1910     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1911     // -> and (icmp eq P, null), (icmp eq Q, null).
1912     Value *CmpP =
1913         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1914     Value *CmpQ =
1915         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1916     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1917     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1918   }
1919 
1920   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1921   // a shorter form that has more potential to be folded even further.
1922   Value *X1, *X2, *X3, *X4;
1923   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1924       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1925     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1926     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1927     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1928     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1929     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1930     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1931   }
1932 
1933   return nullptr;
1934 }
1935 
1936 /// Fold icmp (mul X, Y), C.
1937 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1938                                                BinaryOperator *Mul,
1939                                                const APInt &C) {
1940   const APInt *MulC;
1941   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1942     return nullptr;
1943 
1944   // If this is a test of the sign bit and the multiply is sign-preserving with
1945   // a constant operand, use the multiply LHS operand instead.
1946   ICmpInst::Predicate Pred = Cmp.getPredicate();
1947   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1948     if (MulC->isNegative())
1949       Pred = ICmpInst::getSwappedPredicate(Pred);
1950     return new ICmpInst(Pred, Mul->getOperand(0),
1951                         Constant::getNullValue(Mul->getType()));
1952   }
1953 
1954   return nullptr;
1955 }
1956 
1957 /// Fold icmp (shl 1, Y), C.
1958 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1959                                    const APInt &C) {
1960   Value *Y;
1961   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1962     return nullptr;
1963 
1964   Type *ShiftType = Shl->getType();
1965   unsigned TypeBits = C.getBitWidth();
1966   bool CIsPowerOf2 = C.isPowerOf2();
1967   ICmpInst::Predicate Pred = Cmp.getPredicate();
1968   if (Cmp.isUnsigned()) {
1969     // (1 << Y) pred C -> Y pred Log2(C)
1970     if (!CIsPowerOf2) {
1971       // (1 << Y) <  30 -> Y <= 4
1972       // (1 << Y) <= 30 -> Y <= 4
1973       // (1 << Y) >= 30 -> Y >  4
1974       // (1 << Y) >  30 -> Y >  4
1975       if (Pred == ICmpInst::ICMP_ULT)
1976         Pred = ICmpInst::ICMP_ULE;
1977       else if (Pred == ICmpInst::ICMP_UGE)
1978         Pred = ICmpInst::ICMP_UGT;
1979     }
1980 
1981     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1982     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1983     unsigned CLog2 = C.logBase2();
1984     if (CLog2 == TypeBits - 1) {
1985       if (Pred == ICmpInst::ICMP_UGE)
1986         Pred = ICmpInst::ICMP_EQ;
1987       else if (Pred == ICmpInst::ICMP_ULT)
1988         Pred = ICmpInst::ICMP_NE;
1989     }
1990     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1991   } else if (Cmp.isSigned()) {
1992     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1993     if (C.isAllOnesValue()) {
1994       // (1 << Y) <= -1 -> Y == 31
1995       if (Pred == ICmpInst::ICMP_SLE)
1996         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1997 
1998       // (1 << Y) >  -1 -> Y != 31
1999       if (Pred == ICmpInst::ICMP_SGT)
2000         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2001     } else if (!C) {
2002       // (1 << Y) <  0 -> Y == 31
2003       // (1 << Y) <= 0 -> Y == 31
2004       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2005         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2006 
2007       // (1 << Y) >= 0 -> Y != 31
2008       // (1 << Y) >  0 -> Y != 31
2009       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2010         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2011     }
2012   } else if (Cmp.isEquality() && CIsPowerOf2) {
2013     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2014   }
2015 
2016   return nullptr;
2017 }
2018 
2019 /// Fold icmp (shl X, Y), C.
2020 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
2021                                                BinaryOperator *Shl,
2022                                                const APInt &C) {
2023   const APInt *ShiftVal;
2024   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2025     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2026 
2027   const APInt *ShiftAmt;
2028   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2029     return foldICmpShlOne(Cmp, Shl, C);
2030 
2031   // Check that the shift amount is in range. If not, don't perform undefined
2032   // shifts. When the shift is visited, it will be simplified.
2033   unsigned TypeBits = C.getBitWidth();
2034   if (ShiftAmt->uge(TypeBits))
2035     return nullptr;
2036 
2037   ICmpInst::Predicate Pred = Cmp.getPredicate();
2038   Value *X = Shl->getOperand(0);
2039   Type *ShType = Shl->getType();
2040 
2041   // NSW guarantees that we are only shifting out sign bits from the high bits,
2042   // so we can ASHR the compare constant without needing a mask and eliminate
2043   // the shift.
2044   if (Shl->hasNoSignedWrap()) {
2045     if (Pred == ICmpInst::ICMP_SGT) {
2046       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2047       APInt ShiftedC = C.ashr(*ShiftAmt);
2048       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2049     }
2050     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2051         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2052       APInt ShiftedC = C.ashr(*ShiftAmt);
2053       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2054     }
2055     if (Pred == ICmpInst::ICMP_SLT) {
2056       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2057       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2058       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2059       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2060       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2061       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2062       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2063     }
2064     // If this is a signed comparison to 0 and the shift is sign preserving,
2065     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2066     // do that if we're sure to not continue on in this function.
2067     if (isSignTest(Pred, C))
2068       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2069   }
2070 
2071   // NUW guarantees that we are only shifting out zero bits from the high bits,
2072   // so we can LSHR the compare constant without needing a mask and eliminate
2073   // the shift.
2074   if (Shl->hasNoUnsignedWrap()) {
2075     if (Pred == ICmpInst::ICMP_UGT) {
2076       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2077       APInt ShiftedC = C.lshr(*ShiftAmt);
2078       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2079     }
2080     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2081         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2082       APInt ShiftedC = C.lshr(*ShiftAmt);
2083       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2084     }
2085     if (Pred == ICmpInst::ICMP_ULT) {
2086       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2087       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2088       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2089       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2090       assert(C.ugt(0) && "ult 0 should have been eliminated");
2091       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2092       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2093     }
2094   }
2095 
2096   if (Cmp.isEquality() && Shl->hasOneUse()) {
2097     // Strength-reduce the shift into an 'and'.
2098     Constant *Mask = ConstantInt::get(
2099         ShType,
2100         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2101     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2102     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2103     return new ICmpInst(Pred, And, LShrC);
2104   }
2105 
2106   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2107   bool TrueIfSigned = false;
2108   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2109     // (X << 31) <s 0  --> (X & 1) != 0
2110     Constant *Mask = ConstantInt::get(
2111         ShType,
2112         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2113     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2114     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2115                         And, Constant::getNullValue(ShType));
2116   }
2117 
2118   // Simplify 'shl' inequality test into 'and' equality test.
2119   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2120     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2121     if ((C + 1).isPowerOf2() &&
2122         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2123       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2124       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2125                                                      : ICmpInst::ICMP_NE,
2126                           And, Constant::getNullValue(ShType));
2127     }
2128     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2129     if (C.isPowerOf2() &&
2130         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2131       Value *And =
2132           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2133       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2134                                                      : ICmpInst::ICMP_NE,
2135                           And, Constant::getNullValue(ShType));
2136     }
2137   }
2138 
2139   // Transform (icmp pred iM (shl iM %v, N), C)
2140   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2141   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2142   // This enables us to get rid of the shift in favor of a trunc that may be
2143   // free on the target. It has the additional benefit of comparing to a
2144   // smaller constant that may be more target-friendly.
2145   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2146   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2147       DL.isLegalInteger(TypeBits - Amt)) {
2148     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2149     if (ShType->isVectorTy())
2150       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2151     Constant *NewC =
2152         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2153     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2154   }
2155 
2156   return nullptr;
2157 }
2158 
2159 /// Fold icmp ({al}shr X, Y), C.
2160 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2161                                                BinaryOperator *Shr,
2162                                                const APInt &C) {
2163   // An exact shr only shifts out zero bits, so:
2164   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2165   Value *X = Shr->getOperand(0);
2166   CmpInst::Predicate Pred = Cmp.getPredicate();
2167   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2168       C.isNullValue())
2169     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2170 
2171   const APInt *ShiftVal;
2172   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2173     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2174 
2175   const APInt *ShiftAmt;
2176   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2177     return nullptr;
2178 
2179   // Check that the shift amount is in range. If not, don't perform undefined
2180   // shifts. When the shift is visited it will be simplified.
2181   unsigned TypeBits = C.getBitWidth();
2182   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2183   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2184     return nullptr;
2185 
2186   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2187   bool IsExact = Shr->isExact();
2188   Type *ShrTy = Shr->getType();
2189   // TODO: If we could guarantee that InstSimplify would handle all of the
2190   // constant-value-based preconditions in the folds below, then we could assert
2191   // those conditions rather than checking them. This is difficult because of
2192   // undef/poison (PR34838).
2193   if (IsAShr) {
2194     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2195       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2196       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2197       APInt ShiftedC = C.shl(ShAmtVal);
2198       if (ShiftedC.ashr(ShAmtVal) == C)
2199         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2200     }
2201     if (Pred == CmpInst::ICMP_SGT) {
2202       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2203       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2204       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2205           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2206         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2207     }
2208   } else {
2209     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2210       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2211       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2212       APInt ShiftedC = C.shl(ShAmtVal);
2213       if (ShiftedC.lshr(ShAmtVal) == C)
2214         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2215     }
2216     if (Pred == CmpInst::ICMP_UGT) {
2217       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2218       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2219       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2220         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2221     }
2222   }
2223 
2224   if (!Cmp.isEquality())
2225     return nullptr;
2226 
2227   // Handle equality comparisons of shift-by-constant.
2228 
2229   // If the comparison constant changes with the shift, the comparison cannot
2230   // succeed (bits of the comparison constant cannot match the shifted value).
2231   // This should be known by InstSimplify and already be folded to true/false.
2232   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2233           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2234          "Expected icmp+shr simplify did not occur.");
2235 
2236   // If the bits shifted out are known zero, compare the unshifted value:
2237   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2238   if (Shr->isExact())
2239     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2240 
2241   if (Shr->hasOneUse()) {
2242     // Canonicalize the shift into an 'and':
2243     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2244     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2245     Constant *Mask = ConstantInt::get(ShrTy, Val);
2246     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2247     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2248   }
2249 
2250   return nullptr;
2251 }
2252 
2253 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
2254                                                 BinaryOperator *SRem,
2255                                                 const APInt &C) {
2256   // Match an 'is positive' or 'is negative' comparison of remainder by a
2257   // constant power-of-2 value:
2258   // (X % pow2C) sgt/slt 0
2259   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2260   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2261     return nullptr;
2262 
2263   // TODO: The one-use check is standard because we do not typically want to
2264   //       create longer instruction sequences, but this might be a special-case
2265   //       because srem is not good for analysis or codegen.
2266   if (!SRem->hasOneUse())
2267     return nullptr;
2268 
2269   const APInt *DivisorC;
2270   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2271     return nullptr;
2272 
2273   // Mask off the sign bit and the modulo bits (low-bits).
2274   Type *Ty = SRem->getType();
2275   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2276   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2277   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2278 
2279   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2280   // bit is set. Example:
2281   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2282   if (Pred == ICmpInst::ICMP_SGT)
2283     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2284 
2285   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2286   // bit is set. Example:
2287   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2288   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2289 }
2290 
2291 /// Fold icmp (udiv X, Y), C.
2292 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2293                                                 BinaryOperator *UDiv,
2294                                                 const APInt &C) {
2295   const APInt *C2;
2296   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2297     return nullptr;
2298 
2299   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2300 
2301   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2302   Value *Y = UDiv->getOperand(1);
2303   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2304     assert(!C.isMaxValue() &&
2305            "icmp ugt X, UINT_MAX should have been simplified already.");
2306     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2307                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2308   }
2309 
2310   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2311   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2312     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2313     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2314                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2315   }
2316 
2317   return nullptr;
2318 }
2319 
2320 /// Fold icmp ({su}div X, Y), C.
2321 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2322                                                BinaryOperator *Div,
2323                                                const APInt &C) {
2324   // Fold: icmp pred ([us]div X, C2), C -> range test
2325   // Fold this div into the comparison, producing a range check.
2326   // Determine, based on the divide type, what the range is being
2327   // checked.  If there is an overflow on the low or high side, remember
2328   // it, otherwise compute the range [low, hi) bounding the new value.
2329   // See: InsertRangeTest above for the kinds of replacements possible.
2330   const APInt *C2;
2331   if (!match(Div->getOperand(1), m_APInt(C2)))
2332     return nullptr;
2333 
2334   // FIXME: If the operand types don't match the type of the divide
2335   // then don't attempt this transform. The code below doesn't have the
2336   // logic to deal with a signed divide and an unsigned compare (and
2337   // vice versa). This is because (x /s C2) <s C  produces different
2338   // results than (x /s C2) <u C or (x /u C2) <s C or even
2339   // (x /u C2) <u C.  Simply casting the operands and result won't
2340   // work. :(  The if statement below tests that condition and bails
2341   // if it finds it.
2342   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2343   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2344     return nullptr;
2345 
2346   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2347   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2348   // division-by-constant cases should be present, we can not assert that they
2349   // have happened before we reach this icmp instruction.
2350   if (C2->isNullValue() || C2->isOneValue() ||
2351       (DivIsSigned && C2->isAllOnesValue()))
2352     return nullptr;
2353 
2354   // Compute Prod = C * C2. We are essentially solving an equation of
2355   // form X / C2 = C. We solve for X by multiplying C2 and C.
2356   // By solving for X, we can turn this into a range check instead of computing
2357   // a divide.
2358   APInt Prod = C * *C2;
2359 
2360   // Determine if the product overflows by seeing if the product is not equal to
2361   // the divide. Make sure we do the same kind of divide as in the LHS
2362   // instruction that we're folding.
2363   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2364 
2365   ICmpInst::Predicate Pred = Cmp.getPredicate();
2366 
2367   // If the division is known to be exact, then there is no remainder from the
2368   // divide, so the covered range size is unit, otherwise it is the divisor.
2369   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2370 
2371   // Figure out the interval that is being checked.  For example, a comparison
2372   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2373   // Compute this interval based on the constants involved and the signedness of
2374   // the compare/divide.  This computes a half-open interval, keeping track of
2375   // whether either value in the interval overflows.  After analysis each
2376   // overflow variable is set to 0 if it's corresponding bound variable is valid
2377   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2378   int LoOverflow = 0, HiOverflow = 0;
2379   APInt LoBound, HiBound;
2380 
2381   if (!DivIsSigned) {  // udiv
2382     // e.g. X/5 op 3  --> [15, 20)
2383     LoBound = Prod;
2384     HiOverflow = LoOverflow = ProdOV;
2385     if (!HiOverflow) {
2386       // If this is not an exact divide, then many values in the range collapse
2387       // to the same result value.
2388       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2389     }
2390   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2391     if (C.isNullValue()) {       // (X / pos) op 0
2392       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2393       LoBound = -(RangeSize - 1);
2394       HiBound = RangeSize;
2395     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2396       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2397       HiOverflow = LoOverflow = ProdOV;
2398       if (!HiOverflow)
2399         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2400     } else {                       // (X / pos) op neg
2401       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2402       HiBound = Prod + 1;
2403       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2404       if (!LoOverflow) {
2405         APInt DivNeg = -RangeSize;
2406         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2407       }
2408     }
2409   } else if (C2->isNegative()) { // Divisor is < 0.
2410     if (Div->isExact())
2411       RangeSize.negate();
2412     if (C.isNullValue()) { // (X / neg) op 0
2413       // e.g. X/-5 op 0  --> [-4, 5)
2414       LoBound = RangeSize + 1;
2415       HiBound = -RangeSize;
2416       if (HiBound == *C2) {        // -INTMIN = INTMIN
2417         HiOverflow = 1;            // [INTMIN+1, overflow)
2418         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2419       }
2420     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2421       // e.g. X/-5 op 3  --> [-19, -14)
2422       HiBound = Prod + 1;
2423       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2424       if (!LoOverflow)
2425         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2426     } else {                       // (X / neg) op neg
2427       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2428       LoOverflow = HiOverflow = ProdOV;
2429       if (!HiOverflow)
2430         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2431     }
2432 
2433     // Dividing by a negative swaps the condition.  LT <-> GT
2434     Pred = ICmpInst::getSwappedPredicate(Pred);
2435   }
2436 
2437   Value *X = Div->getOperand(0);
2438   switch (Pred) {
2439     default: llvm_unreachable("Unhandled icmp opcode!");
2440     case ICmpInst::ICMP_EQ:
2441       if (LoOverflow && HiOverflow)
2442         return replaceInstUsesWith(Cmp, Builder.getFalse());
2443       if (HiOverflow)
2444         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2445                             ICmpInst::ICMP_UGE, X,
2446                             ConstantInt::get(Div->getType(), LoBound));
2447       if (LoOverflow)
2448         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2449                             ICmpInst::ICMP_ULT, X,
2450                             ConstantInt::get(Div->getType(), HiBound));
2451       return replaceInstUsesWith(
2452           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2453     case ICmpInst::ICMP_NE:
2454       if (LoOverflow && HiOverflow)
2455         return replaceInstUsesWith(Cmp, Builder.getTrue());
2456       if (HiOverflow)
2457         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2458                             ICmpInst::ICMP_ULT, X,
2459                             ConstantInt::get(Div->getType(), LoBound));
2460       if (LoOverflow)
2461         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2462                             ICmpInst::ICMP_UGE, X,
2463                             ConstantInt::get(Div->getType(), HiBound));
2464       return replaceInstUsesWith(Cmp,
2465                                  insertRangeTest(X, LoBound, HiBound,
2466                                                  DivIsSigned, false));
2467     case ICmpInst::ICMP_ULT:
2468     case ICmpInst::ICMP_SLT:
2469       if (LoOverflow == +1)   // Low bound is greater than input range.
2470         return replaceInstUsesWith(Cmp, Builder.getTrue());
2471       if (LoOverflow == -1)   // Low bound is less than input range.
2472         return replaceInstUsesWith(Cmp, Builder.getFalse());
2473       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2474     case ICmpInst::ICMP_UGT:
2475     case ICmpInst::ICMP_SGT:
2476       if (HiOverflow == +1)       // High bound greater than input range.
2477         return replaceInstUsesWith(Cmp, Builder.getFalse());
2478       if (HiOverflow == -1)       // High bound less than input range.
2479         return replaceInstUsesWith(Cmp, Builder.getTrue());
2480       if (Pred == ICmpInst::ICMP_UGT)
2481         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2482                             ConstantInt::get(Div->getType(), HiBound));
2483       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2484                           ConstantInt::get(Div->getType(), HiBound));
2485   }
2486 
2487   return nullptr;
2488 }
2489 
2490 /// Fold icmp (sub X, Y), C.
2491 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2492                                                BinaryOperator *Sub,
2493                                                const APInt &C) {
2494   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2495   ICmpInst::Predicate Pred = Cmp.getPredicate();
2496   const APInt *C2;
2497   APInt SubResult;
2498 
2499   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2500   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2501     return new ICmpInst(Cmp.getPredicate(), Y,
2502                         ConstantInt::get(Y->getType(), 0));
2503 
2504   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2505   if (match(X, m_APInt(C2)) &&
2506       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2507        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2508       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2509     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2510                         ConstantInt::get(Y->getType(), SubResult));
2511 
2512   // The following transforms are only worth it if the only user of the subtract
2513   // is the icmp.
2514   if (!Sub->hasOneUse())
2515     return nullptr;
2516 
2517   if (Sub->hasNoSignedWrap()) {
2518     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2519     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2520       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2521 
2522     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2523     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2524       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2525 
2526     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2527     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2528       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2529 
2530     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2531     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2532       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2533   }
2534 
2535   if (!match(X, m_APInt(C2)))
2536     return nullptr;
2537 
2538   // C2 - Y <u C -> (Y | (C - 1)) == C2
2539   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2540   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2541       (*C2 & (C - 1)) == (C - 1))
2542     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2543 
2544   // C2 - Y >u C -> (Y | C) != C2
2545   //   iff C2 & C == C and C + 1 is a power of 2
2546   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2547     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2548 
2549   return nullptr;
2550 }
2551 
2552 /// Fold icmp (add X, Y), C.
2553 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2554                                                BinaryOperator *Add,
2555                                                const APInt &C) {
2556   Value *Y = Add->getOperand(1);
2557   const APInt *C2;
2558   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2559     return nullptr;
2560 
2561   // Fold icmp pred (add X, C2), C.
2562   Value *X = Add->getOperand(0);
2563   Type *Ty = Add->getType();
2564   CmpInst::Predicate Pred = Cmp.getPredicate();
2565 
2566   // If the add does not wrap, we can always adjust the compare by subtracting
2567   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2568   // are canonicalized to SGT/SLT/UGT/ULT.
2569   if ((Add->hasNoSignedWrap() &&
2570        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2571       (Add->hasNoUnsignedWrap() &&
2572        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2573     bool Overflow;
2574     APInt NewC =
2575         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2576     // If there is overflow, the result must be true or false.
2577     // TODO: Can we assert there is no overflow because InstSimplify always
2578     // handles those cases?
2579     if (!Overflow)
2580       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2581       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2582   }
2583 
2584   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2585   const APInt &Upper = CR.getUpper();
2586   const APInt &Lower = CR.getLower();
2587   if (Cmp.isSigned()) {
2588     if (Lower.isSignMask())
2589       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2590     if (Upper.isSignMask())
2591       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2592   } else {
2593     if (Lower.isMinValue())
2594       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2595     if (Upper.isMinValue())
2596       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2597   }
2598 
2599   if (!Add->hasOneUse())
2600     return nullptr;
2601 
2602   // X+C <u C2 -> (X & -C2) == C
2603   //   iff C & (C2-1) == 0
2604   //       C2 is a power of 2
2605   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2606     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2607                         ConstantExpr::getNeg(cast<Constant>(Y)));
2608 
2609   // X+C >u C2 -> (X & ~C2) != C
2610   //   iff C & C2 == 0
2611   //       C2+1 is a power of 2
2612   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2613     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2614                         ConstantExpr::getNeg(cast<Constant>(Y)));
2615 
2616   return nullptr;
2617 }
2618 
2619 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2620                                            Value *&RHS, ConstantInt *&Less,
2621                                            ConstantInt *&Equal,
2622                                            ConstantInt *&Greater) {
2623   // TODO: Generalize this to work with other comparison idioms or ensure
2624   // they get canonicalized into this form.
2625 
2626   // select i1 (a == b),
2627   //        i32 Equal,
2628   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2629   // where Equal, Less and Greater are placeholders for any three constants.
2630   ICmpInst::Predicate PredA;
2631   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2632       !ICmpInst::isEquality(PredA))
2633     return false;
2634   Value *EqualVal = SI->getTrueValue();
2635   Value *UnequalVal = SI->getFalseValue();
2636   // We still can get non-canonical predicate here, so canonicalize.
2637   if (PredA == ICmpInst::ICMP_NE)
2638     std::swap(EqualVal, UnequalVal);
2639   if (!match(EqualVal, m_ConstantInt(Equal)))
2640     return false;
2641   ICmpInst::Predicate PredB;
2642   Value *LHS2, *RHS2;
2643   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2644                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2645     return false;
2646   // We can get predicate mismatch here, so canonicalize if possible:
2647   // First, ensure that 'LHS' match.
2648   if (LHS2 != LHS) {
2649     // x sgt y <--> y slt x
2650     std::swap(LHS2, RHS2);
2651     PredB = ICmpInst::getSwappedPredicate(PredB);
2652   }
2653   if (LHS2 != LHS)
2654     return false;
2655   // We also need to canonicalize 'RHS'.
2656   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2657     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2658     auto FlippedStrictness =
2659         getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
2660     if (!FlippedStrictness)
2661       return false;
2662     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2663     RHS2 = FlippedStrictness->second;
2664     // And kind-of perform the result swap.
2665     std::swap(Less, Greater);
2666     PredB = ICmpInst::ICMP_SLT;
2667   }
2668   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2669 }
2670 
2671 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2672                                                   SelectInst *Select,
2673                                                   ConstantInt *C) {
2674 
2675   assert(C && "Cmp RHS should be a constant int!");
2676   // If we're testing a constant value against the result of a three way
2677   // comparison, the result can be expressed directly in terms of the
2678   // original values being compared.  Note: We could possibly be more
2679   // aggressive here and remove the hasOneUse test. The original select is
2680   // really likely to simplify or sink when we remove a test of the result.
2681   Value *OrigLHS, *OrigRHS;
2682   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2683   if (Cmp.hasOneUse() &&
2684       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2685                               C3GreaterThan)) {
2686     assert(C1LessThan && C2Equal && C3GreaterThan);
2687 
2688     bool TrueWhenLessThan =
2689         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2690             ->isAllOnesValue();
2691     bool TrueWhenEqual =
2692         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2693             ->isAllOnesValue();
2694     bool TrueWhenGreaterThan =
2695         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2696             ->isAllOnesValue();
2697 
2698     // This generates the new instruction that will replace the original Cmp
2699     // Instruction. Instead of enumerating the various combinations when
2700     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2701     // false, we rely on chaining of ORs and future passes of InstCombine to
2702     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2703 
2704     // When none of the three constants satisfy the predicate for the RHS (C),
2705     // the entire original Cmp can be simplified to a false.
2706     Value *Cond = Builder.getFalse();
2707     if (TrueWhenLessThan)
2708       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2709                                                        OrigLHS, OrigRHS));
2710     if (TrueWhenEqual)
2711       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2712                                                        OrigLHS, OrigRHS));
2713     if (TrueWhenGreaterThan)
2714       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2715                                                        OrigLHS, OrigRHS));
2716 
2717     return replaceInstUsesWith(Cmp, Cond);
2718   }
2719   return nullptr;
2720 }
2721 
2722 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2723                                     InstCombiner::BuilderTy &Builder) {
2724   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2725   if (!Bitcast)
2726     return nullptr;
2727 
2728   ICmpInst::Predicate Pred = Cmp.getPredicate();
2729   Value *Op1 = Cmp.getOperand(1);
2730   Value *BCSrcOp = Bitcast->getOperand(0);
2731 
2732   // Make sure the bitcast doesn't change the number of vector elements.
2733   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2734           Bitcast->getDestTy()->getScalarSizeInBits()) {
2735     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2736     Value *X;
2737     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2738       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2739       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2740       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2741       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2742       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2743            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2744           match(Op1, m_Zero()))
2745         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2746 
2747       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2748       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2749         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2750 
2751       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2752       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2753         return new ICmpInst(Pred, X,
2754                             ConstantInt::getAllOnesValue(X->getType()));
2755     }
2756 
2757     // Zero-equality checks are preserved through unsigned floating-point casts:
2758     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2759     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2760     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2761       if (Cmp.isEquality() && match(Op1, m_Zero()))
2762         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2763   }
2764 
2765   // Test to see if the operands of the icmp are casted versions of other
2766   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2767   if (Bitcast->getType()->isPointerTy() &&
2768       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2769     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2770     // so eliminate it as well.
2771     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2772       Op1 = BC2->getOperand(0);
2773 
2774     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2775     return new ICmpInst(Pred, BCSrcOp, Op1);
2776   }
2777 
2778   // Folding: icmp <pred> iN X, C
2779   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2780   //    and C is a splat of a K-bit pattern
2781   //    and SC is a constant vector = <C', C', C', ..., C'>
2782   // Into:
2783   //   %E = extractelement <M x iK> %vec, i32 C'
2784   //   icmp <pred> iK %E, trunc(C)
2785   const APInt *C;
2786   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2787       !Bitcast->getType()->isIntegerTy() ||
2788       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2789     return nullptr;
2790 
2791   Value *Vec;
2792   Constant *Mask;
2793   if (match(BCSrcOp,
2794             m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2795     // Check whether every element of Mask is the same constant
2796     if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2797       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2798       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2799       if (C->isSplat(EltTy->getBitWidth())) {
2800         // Fold the icmp based on the value of C
2801         // If C is M copies of an iK sized bit pattern,
2802         // then:
2803         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2804         //       icmp <pred> iK %SplatVal, <pattern>
2805         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2806         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2807         return new ICmpInst(Pred, Extract, NewC);
2808       }
2809     }
2810   }
2811   return nullptr;
2812 }
2813 
2814 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2815 /// where X is some kind of instruction.
2816 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2817   const APInt *C;
2818   if (!match(Cmp.getOperand(1), m_APInt(C)))
2819     return nullptr;
2820 
2821   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2822     switch (BO->getOpcode()) {
2823     case Instruction::Xor:
2824       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2825         return I;
2826       break;
2827     case Instruction::And:
2828       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2829         return I;
2830       break;
2831     case Instruction::Or:
2832       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2833         return I;
2834       break;
2835     case Instruction::Mul:
2836       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2837         return I;
2838       break;
2839     case Instruction::Shl:
2840       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2841         return I;
2842       break;
2843     case Instruction::LShr:
2844     case Instruction::AShr:
2845       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2846         return I;
2847       break;
2848     case Instruction::SRem:
2849       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2850         return I;
2851       break;
2852     case Instruction::UDiv:
2853       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2854         return I;
2855       LLVM_FALLTHROUGH;
2856     case Instruction::SDiv:
2857       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2858         return I;
2859       break;
2860     case Instruction::Sub:
2861       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2862         return I;
2863       break;
2864     case Instruction::Add:
2865       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2866         return I;
2867       break;
2868     default:
2869       break;
2870     }
2871     // TODO: These folds could be refactored to be part of the above calls.
2872     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2873       return I;
2874   }
2875 
2876   // Match against CmpInst LHS being instructions other than binary operators.
2877 
2878   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2879     // For now, we only support constant integers while folding the
2880     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2881     // similar to the cases handled by binary ops above.
2882     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2883       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2884         return I;
2885   }
2886 
2887   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2888     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2889       return I;
2890   }
2891 
2892   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2893     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2894       return I;
2895 
2896   return nullptr;
2897 }
2898 
2899 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2900 /// icmp eq/ne BO, C.
2901 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2902                                                              BinaryOperator *BO,
2903                                                              const APInt &C) {
2904   // TODO: Some of these folds could work with arbitrary constants, but this
2905   // function is limited to scalar and vector splat constants.
2906   if (!Cmp.isEquality())
2907     return nullptr;
2908 
2909   ICmpInst::Predicate Pred = Cmp.getPredicate();
2910   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2911   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2912   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2913 
2914   switch (BO->getOpcode()) {
2915   case Instruction::SRem:
2916     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2917     if (C.isNullValue() && BO->hasOneUse()) {
2918       const APInt *BOC;
2919       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2920         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2921         return new ICmpInst(Pred, NewRem,
2922                             Constant::getNullValue(BO->getType()));
2923       }
2924     }
2925     break;
2926   case Instruction::Add: {
2927     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2928     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2929       if (BO->hasOneUse())
2930         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
2931     } else if (C.isNullValue()) {
2932       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2933       // efficiently invertible, or if the add has just this one use.
2934       if (Value *NegVal = dyn_castNegVal(BOp1))
2935         return new ICmpInst(Pred, BOp0, NegVal);
2936       if (Value *NegVal = dyn_castNegVal(BOp0))
2937         return new ICmpInst(Pred, NegVal, BOp1);
2938       if (BO->hasOneUse()) {
2939         Value *Neg = Builder.CreateNeg(BOp1);
2940         Neg->takeName(BO);
2941         return new ICmpInst(Pred, BOp0, Neg);
2942       }
2943     }
2944     break;
2945   }
2946   case Instruction::Xor:
2947     if (BO->hasOneUse()) {
2948       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2949         // For the xor case, we can xor two constants together, eliminating
2950         // the explicit xor.
2951         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2952       } else if (C.isNullValue()) {
2953         // Replace ((xor A, B) != 0) with (A != B)
2954         return new ICmpInst(Pred, BOp0, BOp1);
2955       }
2956     }
2957     break;
2958   case Instruction::Sub:
2959     if (BO->hasOneUse()) {
2960       // Only check for constant LHS here, as constant RHS will be canonicalized
2961       // to add and use the fold above.
2962       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
2963         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2964         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
2965       } else if (C.isNullValue()) {
2966         // Replace ((sub A, B) != 0) with (A != B).
2967         return new ICmpInst(Pred, BOp0, BOp1);
2968       }
2969     }
2970     break;
2971   case Instruction::Or: {
2972     const APInt *BOC;
2973     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2974       // Comparing if all bits outside of a constant mask are set?
2975       // Replace (X | C) == -1 with (X & ~C) == ~C.
2976       // This removes the -1 constant.
2977       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2978       Value *And = Builder.CreateAnd(BOp0, NotBOC);
2979       return new ICmpInst(Pred, And, NotBOC);
2980     }
2981     break;
2982   }
2983   case Instruction::And: {
2984     const APInt *BOC;
2985     if (match(BOp1, m_APInt(BOC))) {
2986       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2987       if (C == *BOC && C.isPowerOf2())
2988         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2989                             BO, Constant::getNullValue(RHS->getType()));
2990     }
2991     break;
2992   }
2993   case Instruction::Mul:
2994     if (C.isNullValue() && BO->hasNoSignedWrap()) {
2995       const APInt *BOC;
2996       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
2997         // The trivial case (mul X, 0) is handled by InstSimplify.
2998         // General case : (mul X, C) != 0 iff X != 0
2999         //                (mul X, C) == 0 iff X == 0
3000         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
3001       }
3002     }
3003     break;
3004   case Instruction::UDiv:
3005     if (C.isNullValue()) {
3006       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3007       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3008       return new ICmpInst(NewPred, BOp1, BOp0);
3009     }
3010     break;
3011   default:
3012     break;
3013   }
3014   return nullptr;
3015 }
3016 
3017 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3018 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
3019                                                            IntrinsicInst *II,
3020                                                            const APInt &C) {
3021   Type *Ty = II->getType();
3022   unsigned BitWidth = C.getBitWidth();
3023   switch (II->getIntrinsicID()) {
3024   case Intrinsic::bswap:
3025     // bswap(A) == C  ->  A == bswap(C)
3026     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3027                         ConstantInt::get(Ty, C.byteSwap()));
3028 
3029   case Intrinsic::ctlz:
3030   case Intrinsic::cttz: {
3031     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3032     if (C == BitWidth)
3033       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3034                           ConstantInt::getNullValue(Ty));
3035 
3036     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3037     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3038     // Limit to one use to ensure we don't increase instruction count.
3039     unsigned Num = C.getLimitedValue(BitWidth);
3040     if (Num != BitWidth && II->hasOneUse()) {
3041       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3042       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3043                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3044       APInt Mask2 = IsTrailing
3045         ? APInt::getOneBitSet(BitWidth, Num)
3046         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3047       return new ICmpInst(Cmp.getPredicate(),
3048           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3049           ConstantInt::get(Ty, Mask2));
3050     }
3051     break;
3052   }
3053 
3054   case Intrinsic::ctpop: {
3055     // popcount(A) == 0  ->  A == 0 and likewise for !=
3056     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3057     bool IsZero = C.isNullValue();
3058     if (IsZero || C == BitWidth)
3059       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3060           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3061 
3062     break;
3063   }
3064 
3065   case Intrinsic::uadd_sat: {
3066     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3067     if (C.isNullValue()) {
3068       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3069       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3070     }
3071     break;
3072   }
3073 
3074   case Intrinsic::usub_sat: {
3075     // usub.sat(a, b) == 0  ->  a <= b
3076     if (C.isNullValue()) {
3077       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3078           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3079       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3080     }
3081     break;
3082   }
3083   default:
3084     break;
3085   }
3086 
3087   return nullptr;
3088 }
3089 
3090 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3091 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3092                                                          IntrinsicInst *II,
3093                                                          const APInt &C) {
3094   if (Cmp.isEquality())
3095     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3096 
3097   Type *Ty = II->getType();
3098   unsigned BitWidth = C.getBitWidth();
3099   switch (II->getIntrinsicID()) {
3100   case Intrinsic::ctlz: {
3101     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3102     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3103       unsigned Num = C.getLimitedValue();
3104       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3105       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3106                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3107     }
3108 
3109     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3110     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3111         C.uge(1) && C.ule(BitWidth)) {
3112       unsigned Num = C.getLimitedValue();
3113       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3114       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3115                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3116     }
3117     break;
3118   }
3119   case Intrinsic::cttz: {
3120     // Limit to one use to ensure we don't increase instruction count.
3121     if (!II->hasOneUse())
3122       return nullptr;
3123 
3124     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3125     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3126       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3127       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3128                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3129                              ConstantInt::getNullValue(Ty));
3130     }
3131 
3132     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3133     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3134         C.uge(1) && C.ule(BitWidth)) {
3135       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3136       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3137                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3138                              ConstantInt::getNullValue(Ty));
3139     }
3140     break;
3141   }
3142   default:
3143     break;
3144   }
3145 
3146   return nullptr;
3147 }
3148 
3149 /// Handle icmp with constant (but not simple integer constant) RHS.
3150 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3151   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3152   Constant *RHSC = dyn_cast<Constant>(Op1);
3153   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3154   if (!RHSC || !LHSI)
3155     return nullptr;
3156 
3157   switch (LHSI->getOpcode()) {
3158   case Instruction::GetElementPtr:
3159     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3160     if (RHSC->isNullValue() &&
3161         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3162       return new ICmpInst(
3163           I.getPredicate(), LHSI->getOperand(0),
3164           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3165     break;
3166   case Instruction::PHI:
3167     // Only fold icmp into the PHI if the phi and icmp are in the same
3168     // block.  If in the same block, we're encouraging jump threading.  If
3169     // not, we are just pessimizing the code by making an i1 phi.
3170     if (LHSI->getParent() == I.getParent())
3171       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3172         return NV;
3173     break;
3174   case Instruction::Select: {
3175     // If either operand of the select is a constant, we can fold the
3176     // comparison into the select arms, which will cause one to be
3177     // constant folded and the select turned into a bitwise or.
3178     Value *Op1 = nullptr, *Op2 = nullptr;
3179     ConstantInt *CI = nullptr;
3180     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3181       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3182       CI = dyn_cast<ConstantInt>(Op1);
3183     }
3184     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3185       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3186       CI = dyn_cast<ConstantInt>(Op2);
3187     }
3188 
3189     // We only want to perform this transformation if it will not lead to
3190     // additional code. This is true if either both sides of the select
3191     // fold to a constant (in which case the icmp is replaced with a select
3192     // which will usually simplify) or this is the only user of the
3193     // select (in which case we are trading a select+icmp for a simpler
3194     // select+icmp) or all uses of the select can be replaced based on
3195     // dominance information ("Global cases").
3196     bool Transform = false;
3197     if (Op1 && Op2)
3198       Transform = true;
3199     else if (Op1 || Op2) {
3200       // Local case
3201       if (LHSI->hasOneUse())
3202         Transform = true;
3203       // Global cases
3204       else if (CI && !CI->isZero())
3205         // When Op1 is constant try replacing select with second operand.
3206         // Otherwise Op2 is constant and try replacing select with first
3207         // operand.
3208         Transform =
3209             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3210     }
3211     if (Transform) {
3212       if (!Op1)
3213         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3214                                  I.getName());
3215       if (!Op2)
3216         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3217                                  I.getName());
3218       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3219     }
3220     break;
3221   }
3222   case Instruction::IntToPtr:
3223     // icmp pred inttoptr(X), null -> icmp pred X, 0
3224     if (RHSC->isNullValue() &&
3225         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3226       return new ICmpInst(
3227           I.getPredicate(), LHSI->getOperand(0),
3228           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3229     break;
3230 
3231   case Instruction::Load:
3232     // Try to optimize things like "A[i] > 4" to index computations.
3233     if (GetElementPtrInst *GEP =
3234             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3235       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3236         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3237             !cast<LoadInst>(LHSI)->isVolatile())
3238           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3239             return Res;
3240     }
3241     break;
3242   }
3243 
3244   return nullptr;
3245 }
3246 
3247 /// Some comparisons can be simplified.
3248 /// In this case, we are looking for comparisons that look like
3249 /// a check for a lossy truncation.
3250 /// Folds:
3251 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3252 /// Where Mask is some pattern that produces all-ones in low bits:
3253 ///    (-1 >> y)
3254 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3255 ///   ~(-1 << y)
3256 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3257 /// The Mask can be a constant, too.
3258 /// For some predicates, the operands are commutative.
3259 /// For others, x can only be on a specific side.
3260 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3261                                           InstCombiner::BuilderTy &Builder) {
3262   ICmpInst::Predicate SrcPred;
3263   Value *X, *M, *Y;
3264   auto m_VariableMask = m_CombineOr(
3265       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3266                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3267       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3268                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3269   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3270   if (!match(&I, m_c_ICmp(SrcPred,
3271                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3272                           m_Deferred(X))))
3273     return nullptr;
3274 
3275   ICmpInst::Predicate DstPred;
3276   switch (SrcPred) {
3277   case ICmpInst::Predicate::ICMP_EQ:
3278     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3279     DstPred = ICmpInst::Predicate::ICMP_ULE;
3280     break;
3281   case ICmpInst::Predicate::ICMP_NE:
3282     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3283     DstPred = ICmpInst::Predicate::ICMP_UGT;
3284     break;
3285   case ICmpInst::Predicate::ICMP_ULT:
3286     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3287     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3288     DstPred = ICmpInst::Predicate::ICMP_UGT;
3289     break;
3290   case ICmpInst::Predicate::ICMP_UGE:
3291     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3292     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3293     DstPred = ICmpInst::Predicate::ICMP_ULE;
3294     break;
3295   case ICmpInst::Predicate::ICMP_SLT:
3296     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3297     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3298     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3299       return nullptr;
3300     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3301       return nullptr;
3302     DstPred = ICmpInst::Predicate::ICMP_SGT;
3303     break;
3304   case ICmpInst::Predicate::ICMP_SGE:
3305     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3306     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3307     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3308       return nullptr;
3309     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3310       return nullptr;
3311     DstPred = ICmpInst::Predicate::ICMP_SLE;
3312     break;
3313   case ICmpInst::Predicate::ICMP_SGT:
3314   case ICmpInst::Predicate::ICMP_SLE:
3315     return nullptr;
3316   case ICmpInst::Predicate::ICMP_UGT:
3317   case ICmpInst::Predicate::ICMP_ULE:
3318     llvm_unreachable("Instsimplify took care of commut. variant");
3319     break;
3320   default:
3321     llvm_unreachable("All possible folds are handled.");
3322   }
3323 
3324   // The mask value may be a vector constant that has undefined elements. But it
3325   // may not be safe to propagate those undefs into the new compare, so replace
3326   // those elements by copying an existing, defined, and safe scalar constant.
3327   Type *OpTy = M->getType();
3328   auto *VecC = dyn_cast<Constant>(M);
3329   if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3330     Constant *SafeReplacementConstant = nullptr;
3331     for (unsigned i = 0, e = OpTy->getVectorNumElements(); i != e; ++i) {
3332       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3333         SafeReplacementConstant = VecC->getAggregateElement(i);
3334         break;
3335       }
3336     }
3337     assert(SafeReplacementConstant && "Failed to find undef replacement");
3338     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3339   }
3340 
3341   return Builder.CreateICmp(DstPred, X, M);
3342 }
3343 
3344 /// Some comparisons can be simplified.
3345 /// In this case, we are looking for comparisons that look like
3346 /// a check for a lossy signed truncation.
3347 /// Folds:   (MaskedBits is a constant.)
3348 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3349 /// Into:
3350 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3351 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3352 static Value *
3353 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3354                                  InstCombiner::BuilderTy &Builder) {
3355   ICmpInst::Predicate SrcPred;
3356   Value *X;
3357   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3358   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3359   if (!match(&I, m_c_ICmp(SrcPred,
3360                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3361                                           m_APInt(C1))),
3362                           m_Deferred(X))))
3363     return nullptr;
3364 
3365   // Potential handling of non-splats: for each element:
3366   //  * if both are undef, replace with constant 0.
3367   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3368   //  * if both are not undef, and are different, bailout.
3369   //  * else, only one is undef, then pick the non-undef one.
3370 
3371   // The shift amount must be equal.
3372   if (*C0 != *C1)
3373     return nullptr;
3374   const APInt &MaskedBits = *C0;
3375   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3376 
3377   ICmpInst::Predicate DstPred;
3378   switch (SrcPred) {
3379   case ICmpInst::Predicate::ICMP_EQ:
3380     // ((%x << MaskedBits) a>> MaskedBits) == %x
3381     //   =>
3382     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3383     DstPred = ICmpInst::Predicate::ICMP_ULT;
3384     break;
3385   case ICmpInst::Predicate::ICMP_NE:
3386     // ((%x << MaskedBits) a>> MaskedBits) != %x
3387     //   =>
3388     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3389     DstPred = ICmpInst::Predicate::ICMP_UGE;
3390     break;
3391   // FIXME: are more folds possible?
3392   default:
3393     return nullptr;
3394   }
3395 
3396   auto *XType = X->getType();
3397   const unsigned XBitWidth = XType->getScalarSizeInBits();
3398   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3399   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3400 
3401   // KeptBits = bitwidth(%x) - MaskedBits
3402   const APInt KeptBits = BitWidth - MaskedBits;
3403   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3404   // ICmpCst = (1 << KeptBits)
3405   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3406   assert(ICmpCst.isPowerOf2());
3407   // AddCst = (1 << (KeptBits-1))
3408   const APInt AddCst = ICmpCst.lshr(1);
3409   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3410 
3411   // T0 = add %x, AddCst
3412   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3413   // T1 = T0 DstPred ICmpCst
3414   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3415 
3416   return T1;
3417 }
3418 
3419 // Given pattern:
3420 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3421 // we should move shifts to the same hand of 'and', i.e. rewrite as
3422 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3423 // We are only interested in opposite logical shifts here.
3424 // One of the shifts can be truncated.
3425 // If we can, we want to end up creating 'lshr' shift.
3426 static Value *
3427 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3428                                            InstCombiner::BuilderTy &Builder) {
3429   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3430       !I.getOperand(0)->hasOneUse())
3431     return nullptr;
3432 
3433   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3434 
3435   // Look for an 'and' of two logical shifts, one of which may be truncated.
3436   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3437   Instruction *XShift, *MaybeTruncation, *YShift;
3438   if (!match(
3439           I.getOperand(0),
3440           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3441                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3442                                    m_AnyLogicalShift, m_Instruction(YShift))),
3443                                m_Instruction(MaybeTruncation)))))
3444     return nullptr;
3445 
3446   // We potentially looked past 'trunc', but only when matching YShift,
3447   // therefore YShift must have the widest type.
3448   Instruction *WidestShift = YShift;
3449   // Therefore XShift must have the shallowest type.
3450   // Or they both have identical types if there was no truncation.
3451   Instruction *NarrowestShift = XShift;
3452 
3453   Type *WidestTy = WidestShift->getType();
3454   Type *NarrowestTy = NarrowestShift->getType();
3455   assert(NarrowestTy == I.getOperand(0)->getType() &&
3456          "We did not look past any shifts while matching XShift though.");
3457   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3458 
3459   // If YShift is a 'lshr', swap the shifts around.
3460   if (match(YShift, m_LShr(m_Value(), m_Value())))
3461     std::swap(XShift, YShift);
3462 
3463   // The shifts must be in opposite directions.
3464   auto XShiftOpcode = XShift->getOpcode();
3465   if (XShiftOpcode == YShift->getOpcode())
3466     return nullptr; // Do not care about same-direction shifts here.
3467 
3468   Value *X, *XShAmt, *Y, *YShAmt;
3469   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3470   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3471 
3472   // If one of the values being shifted is a constant, then we will end with
3473   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3474   // however, we will need to ensure that we won't increase instruction count.
3475   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3476     // At least one of the hands of the 'and' should be one-use shift.
3477     if (!match(I.getOperand(0),
3478                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3479       return nullptr;
3480     if (HadTrunc) {
3481       // Due to the 'trunc', we will need to widen X. For that either the old
3482       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3483       if (!MaybeTruncation->hasOneUse() &&
3484           !NarrowestShift->getOperand(1)->hasOneUse())
3485         return nullptr;
3486     }
3487   }
3488 
3489   // We have two shift amounts from two different shifts. The types of those
3490   // shift amounts may not match. If that's the case let's bailout now.
3491   if (XShAmt->getType() != YShAmt->getType())
3492     return nullptr;
3493 
3494   // As input, we have the following pattern:
3495   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3496   // We want to rewrite that as:
3497   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3498   // While we know that originally (Q+K) would not overflow
3499   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3500   // shift amounts. so it may now overflow in smaller bitwidth.
3501   // To ensure that does not happen, we need to ensure that the total maximal
3502   // shift amount is still representable in that smaller bit width.
3503   unsigned MaximalPossibleTotalShiftAmount =
3504       (WidestTy->getScalarSizeInBits() - 1) +
3505       (NarrowestTy->getScalarSizeInBits() - 1);
3506   APInt MaximalRepresentableShiftAmount =
3507       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3508   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3509     return nullptr;
3510 
3511   // Can we fold (XShAmt+YShAmt) ?
3512   auto *NewShAmt = dyn_cast_or_null<Constant>(
3513       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3514                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3515   if (!NewShAmt)
3516     return nullptr;
3517   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3518   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3519 
3520   // Is the new shift amount smaller than the bit width?
3521   // FIXME: could also rely on ConstantRange.
3522   if (!match(NewShAmt,
3523              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3524                                 APInt(WidestBitWidth, WidestBitWidth))))
3525     return nullptr;
3526 
3527   // An extra legality check is needed if we had trunc-of-lshr.
3528   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3529     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3530                     WidestShift]() {
3531       // It isn't obvious whether it's worth it to analyze non-constants here.
3532       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3533       // If *any* of these preconditions matches we can perform the fold.
3534       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3535                                     ? NewShAmt->getSplatValue()
3536                                     : NewShAmt;
3537       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3538       if (NewShAmtSplat &&
3539           (NewShAmtSplat->isNullValue() ||
3540            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3541         return true;
3542       // We consider *min* leading zeros so a single outlier
3543       // blocks the transform as opposed to allowing it.
3544       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3545         KnownBits Known = computeKnownBits(C, SQ.DL);
3546         unsigned MinLeadZero = Known.countMinLeadingZeros();
3547         // If the value being shifted has at most lowest bit set we can fold.
3548         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3549         if (MaxActiveBits <= 1)
3550           return true;
3551         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3552         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3553           return true;
3554       }
3555       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3556         KnownBits Known = computeKnownBits(C, SQ.DL);
3557         unsigned MinLeadZero = Known.countMinLeadingZeros();
3558         // If the value being shifted has at most lowest bit set we can fold.
3559         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3560         if (MaxActiveBits <= 1)
3561           return true;
3562         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3563         if (NewShAmtSplat) {
3564           APInt AdjNewShAmt =
3565               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3566           if (AdjNewShAmt.ule(MinLeadZero))
3567             return true;
3568         }
3569       }
3570       return false; // Can't tell if it's ok.
3571     };
3572     if (!CanFold())
3573       return nullptr;
3574   }
3575 
3576   // All good, we can do this fold.
3577   X = Builder.CreateZExt(X, WidestTy);
3578   Y = Builder.CreateZExt(Y, WidestTy);
3579   // The shift is the same that was for X.
3580   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3581                   ? Builder.CreateLShr(X, NewShAmt)
3582                   : Builder.CreateShl(X, NewShAmt);
3583   Value *T1 = Builder.CreateAnd(T0, Y);
3584   return Builder.CreateICmp(I.getPredicate(), T1,
3585                             Constant::getNullValue(WidestTy));
3586 }
3587 
3588 /// Fold
3589 ///   (-1 u/ x) u< y
3590 ///   ((x * y) u/ x) != y
3591 /// to
3592 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3593 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3594 /// will mean that we are looking for the opposite answer.
3595 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3596   ICmpInst::Predicate Pred;
3597   Value *X, *Y;
3598   Instruction *Mul;
3599   bool NeedNegation;
3600   // Look for: (-1 u/ x) u</u>= y
3601   if (!I.isEquality() &&
3602       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3603                          m_Value(Y)))) {
3604     Mul = nullptr;
3605 
3606     // Are we checking that overflow does not happen, or does happen?
3607     switch (Pred) {
3608     case ICmpInst::Predicate::ICMP_ULT:
3609       NeedNegation = false;
3610       break; // OK
3611     case ICmpInst::Predicate::ICMP_UGE:
3612       NeedNegation = true;
3613       break; // OK
3614     default:
3615       return nullptr; // Wrong predicate.
3616     }
3617   } else // Look for: ((x * y) u/ x) !=/== y
3618       if (I.isEquality() &&
3619           match(&I, m_c_ICmp(Pred, m_Value(Y),
3620                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3621                                                                   m_Value(X)),
3622                                                           m_Instruction(Mul)),
3623                                              m_Deferred(X)))))) {
3624     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3625   } else
3626     return nullptr;
3627 
3628   BuilderTy::InsertPointGuard Guard(Builder);
3629   // If the pattern included (x * y), we'll want to insert new instructions
3630   // right before that original multiplication so that we can replace it.
3631   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3632   if (MulHadOtherUses)
3633     Builder.SetInsertPoint(Mul);
3634 
3635   Function *F = Intrinsic::getDeclaration(
3636       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3637   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3638 
3639   // If the multiplication was used elsewhere, to ensure that we don't leave
3640   // "duplicate" instructions, replace uses of that original multiplication
3641   // with the multiplication result from the with.overflow intrinsic.
3642   if (MulHadOtherUses)
3643     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3644 
3645   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3646   if (NeedNegation) // This technically increases instruction count.
3647     Res = Builder.CreateNot(Res, "umul.not.ov");
3648 
3649   return Res;
3650 }
3651 
3652 /// Try to fold icmp (binop), X or icmp X, (binop).
3653 /// TODO: A large part of this logic is duplicated in InstSimplify's
3654 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3655 /// duplication.
3656 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) {
3657   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3658   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3659 
3660   // Special logic for binary operators.
3661   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3662   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3663   if (!BO0 && !BO1)
3664     return nullptr;
3665 
3666   const CmpInst::Predicate Pred = I.getPredicate();
3667   Value *X;
3668 
3669   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3670   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3671   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3672       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3673     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3674   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3675   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3676       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3677     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3678 
3679   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3680   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3681     NoOp0WrapProblem =
3682         ICmpInst::isEquality(Pred) ||
3683         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3684         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3685   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3686     NoOp1WrapProblem =
3687         ICmpInst::isEquality(Pred) ||
3688         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3689         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3690 
3691   // Analyze the case when either Op0 or Op1 is an add instruction.
3692   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3693   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3694   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3695     A = BO0->getOperand(0);
3696     B = BO0->getOperand(1);
3697   }
3698   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3699     C = BO1->getOperand(0);
3700     D = BO1->getOperand(1);
3701   }
3702 
3703   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3704   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3705   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3706     return new ICmpInst(Pred, A == Op1 ? B : A,
3707                         Constant::getNullValue(Op1->getType()));
3708 
3709   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3710   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3711   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3712     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3713                         C == Op0 ? D : C);
3714 
3715   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3716   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3717       NoOp1WrapProblem) {
3718     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3719     Value *Y, *Z;
3720     if (A == C) {
3721       // C + B == C + D  ->  B == D
3722       Y = B;
3723       Z = D;
3724     } else if (A == D) {
3725       // D + B == C + D  ->  B == C
3726       Y = B;
3727       Z = C;
3728     } else if (B == C) {
3729       // A + C == C + D  ->  A == D
3730       Y = A;
3731       Z = D;
3732     } else {
3733       assert(B == D);
3734       // A + D == C + D  ->  A == C
3735       Y = A;
3736       Z = C;
3737     }
3738     return new ICmpInst(Pred, Y, Z);
3739   }
3740 
3741   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3742   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3743       match(B, m_AllOnes()))
3744     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3745 
3746   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3747   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3748       match(B, m_AllOnes()))
3749     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3750 
3751   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3752   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3753     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3754 
3755   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3756   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3757     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3758 
3759   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3760   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3761       match(D, m_AllOnes()))
3762     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3763 
3764   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3765   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3766       match(D, m_AllOnes()))
3767     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3768 
3769   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3770   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3771     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3772 
3773   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3774   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3775     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3776 
3777   // TODO: The subtraction-related identities shown below also hold, but
3778   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3779   // wouldn't happen even if they were implemented.
3780   //
3781   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3782   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3783   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3784   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3785 
3786   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3787   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3788     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3789 
3790   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3791   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3792     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3793 
3794   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3795   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3796     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3797 
3798   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3799   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3800     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3801 
3802   // if C1 has greater magnitude than C2:
3803   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3804   //  s.t. C3 = C1 - C2
3805   //
3806   // if C2 has greater magnitude than C1:
3807   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3808   //  s.t. C3 = C2 - C1
3809   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3810       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3811     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3812       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3813         const APInt &AP1 = C1->getValue();
3814         const APInt &AP2 = C2->getValue();
3815         if (AP1.isNegative() == AP2.isNegative()) {
3816           APInt AP1Abs = C1->getValue().abs();
3817           APInt AP2Abs = C2->getValue().abs();
3818           if (AP1Abs.uge(AP2Abs)) {
3819             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3820             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3821             return new ICmpInst(Pred, NewAdd, C);
3822           } else {
3823             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3824             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3825             return new ICmpInst(Pred, A, NewAdd);
3826           }
3827         }
3828       }
3829 
3830   // Analyze the case when either Op0 or Op1 is a sub instruction.
3831   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3832   A = nullptr;
3833   B = nullptr;
3834   C = nullptr;
3835   D = nullptr;
3836   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3837     A = BO0->getOperand(0);
3838     B = BO0->getOperand(1);
3839   }
3840   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3841     C = BO1->getOperand(0);
3842     D = BO1->getOperand(1);
3843   }
3844 
3845   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3846   if (A == Op1 && NoOp0WrapProblem)
3847     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3848   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3849   if (C == Op0 && NoOp1WrapProblem)
3850     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3851 
3852   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3853   // (A - B) u>/u<= A --> B u>/u<= A
3854   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3855     return new ICmpInst(Pred, B, A);
3856   // C u</u>= (C - D) --> C u</u>= D
3857   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3858     return new ICmpInst(Pred, C, D);
3859   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3860   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3861       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3862     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3863   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3864   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3865       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3866     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3867 
3868   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3869   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3870     return new ICmpInst(Pred, A, C);
3871 
3872   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3873   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3874     return new ICmpInst(Pred, D, B);
3875 
3876   // icmp (0-X) < cst --> x > -cst
3877   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3878     Value *X;
3879     if (match(BO0, m_Neg(m_Value(X))))
3880       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3881         if (RHSC->isNotMinSignedValue())
3882           return new ICmpInst(I.getSwappedPredicate(), X,
3883                               ConstantExpr::getNeg(RHSC));
3884   }
3885 
3886   BinaryOperator *SRem = nullptr;
3887   // icmp (srem X, Y), Y
3888   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3889     SRem = BO0;
3890   // icmp Y, (srem X, Y)
3891   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3892            Op0 == BO1->getOperand(1))
3893     SRem = BO1;
3894   if (SRem) {
3895     // We don't check hasOneUse to avoid increasing register pressure because
3896     // the value we use is the same value this instruction was already using.
3897     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3898     default:
3899       break;
3900     case ICmpInst::ICMP_EQ:
3901       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3902     case ICmpInst::ICMP_NE:
3903       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3904     case ICmpInst::ICMP_SGT:
3905     case ICmpInst::ICMP_SGE:
3906       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3907                           Constant::getAllOnesValue(SRem->getType()));
3908     case ICmpInst::ICMP_SLT:
3909     case ICmpInst::ICMP_SLE:
3910       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3911                           Constant::getNullValue(SRem->getType()));
3912     }
3913   }
3914 
3915   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3916       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3917     switch (BO0->getOpcode()) {
3918     default:
3919       break;
3920     case Instruction::Add:
3921     case Instruction::Sub:
3922     case Instruction::Xor: {
3923       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3924         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3925 
3926       const APInt *C;
3927       if (match(BO0->getOperand(1), m_APInt(C))) {
3928         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3929         if (C->isSignMask()) {
3930           ICmpInst::Predicate NewPred =
3931               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3932           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3933         }
3934 
3935         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3936         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3937           ICmpInst::Predicate NewPred =
3938               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3939           NewPred = I.getSwappedPredicate(NewPred);
3940           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3941         }
3942       }
3943       break;
3944     }
3945     case Instruction::Mul: {
3946       if (!I.isEquality())
3947         break;
3948 
3949       const APInt *C;
3950       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3951           !C->isOneValue()) {
3952         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3953         // Mask = -1 >> count-trailing-zeros(C).
3954         if (unsigned TZs = C->countTrailingZeros()) {
3955           Constant *Mask = ConstantInt::get(
3956               BO0->getType(),
3957               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3958           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
3959           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
3960           return new ICmpInst(Pred, And1, And2);
3961         }
3962         // If there are no trailing zeros in the multiplier, just eliminate
3963         // the multiplies (no masking is needed):
3964         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3965         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3966       }
3967       break;
3968     }
3969     case Instruction::UDiv:
3970     case Instruction::LShr:
3971       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3972         break;
3973       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3974 
3975     case Instruction::SDiv:
3976       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3977         break;
3978       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3979 
3980     case Instruction::AShr:
3981       if (!BO0->isExact() || !BO1->isExact())
3982         break;
3983       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3984 
3985     case Instruction::Shl: {
3986       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3987       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3988       if (!NUW && !NSW)
3989         break;
3990       if (!NSW && I.isSigned())
3991         break;
3992       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3993     }
3994     }
3995   }
3996 
3997   if (BO0) {
3998     // Transform  A & (L - 1) `ult` L --> L != 0
3999     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4000     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4001 
4002     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4003       auto *Zero = Constant::getNullValue(BO0->getType());
4004       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4005     }
4006   }
4007 
4008   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4009     return replaceInstUsesWith(I, V);
4010 
4011   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4012     return replaceInstUsesWith(I, V);
4013 
4014   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4015     return replaceInstUsesWith(I, V);
4016 
4017   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4018     return replaceInstUsesWith(I, V);
4019 
4020   return nullptr;
4021 }
4022 
4023 /// Fold icmp Pred min|max(X, Y), X.
4024 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4025   ICmpInst::Predicate Pred = Cmp.getPredicate();
4026   Value *Op0 = Cmp.getOperand(0);
4027   Value *X = Cmp.getOperand(1);
4028 
4029   // Canonicalize minimum or maximum operand to LHS of the icmp.
4030   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4031       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4032       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4033       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4034     std::swap(Op0, X);
4035     Pred = Cmp.getSwappedPredicate();
4036   }
4037 
4038   Value *Y;
4039   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4040     // smin(X, Y)  == X --> X s<= Y
4041     // smin(X, Y) s>= X --> X s<= Y
4042     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4043       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4044 
4045     // smin(X, Y) != X --> X s> Y
4046     // smin(X, Y) s< X --> X s> Y
4047     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4048       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4049 
4050     // These cases should be handled in InstSimplify:
4051     // smin(X, Y) s<= X --> true
4052     // smin(X, Y) s> X --> false
4053     return nullptr;
4054   }
4055 
4056   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4057     // smax(X, Y)  == X --> X s>= Y
4058     // smax(X, Y) s<= X --> X s>= Y
4059     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4060       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4061 
4062     // smax(X, Y) != X --> X s< Y
4063     // smax(X, Y) s> X --> X s< Y
4064     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4065       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4066 
4067     // These cases should be handled in InstSimplify:
4068     // smax(X, Y) s>= X --> true
4069     // smax(X, Y) s< X --> false
4070     return nullptr;
4071   }
4072 
4073   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4074     // umin(X, Y)  == X --> X u<= Y
4075     // umin(X, Y) u>= X --> X u<= Y
4076     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4077       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4078 
4079     // umin(X, Y) != X --> X u> Y
4080     // umin(X, Y) u< X --> X u> Y
4081     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4082       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4083 
4084     // These cases should be handled in InstSimplify:
4085     // umin(X, Y) u<= X --> true
4086     // umin(X, Y) u> X --> false
4087     return nullptr;
4088   }
4089 
4090   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4091     // umax(X, Y)  == X --> X u>= Y
4092     // umax(X, Y) u<= X --> X u>= Y
4093     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4094       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4095 
4096     // umax(X, Y) != X --> X u< Y
4097     // umax(X, Y) u> X --> X u< Y
4098     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4099       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4100 
4101     // These cases should be handled in InstSimplify:
4102     // umax(X, Y) u>= X --> true
4103     // umax(X, Y) u< X --> false
4104     return nullptr;
4105   }
4106 
4107   return nullptr;
4108 }
4109 
4110 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
4111   if (!I.isEquality())
4112     return nullptr;
4113 
4114   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4115   const CmpInst::Predicate Pred = I.getPredicate();
4116   Value *A, *B, *C, *D;
4117   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4118     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4119       Value *OtherVal = A == Op1 ? B : A;
4120       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4121     }
4122 
4123     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4124       // A^c1 == C^c2 --> A == C^(c1^c2)
4125       ConstantInt *C1, *C2;
4126       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4127           Op1->hasOneUse()) {
4128         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4129         Value *Xor = Builder.CreateXor(C, NC);
4130         return new ICmpInst(Pred, A, Xor);
4131       }
4132 
4133       // A^B == A^D -> B == D
4134       if (A == C)
4135         return new ICmpInst(Pred, B, D);
4136       if (A == D)
4137         return new ICmpInst(Pred, B, C);
4138       if (B == C)
4139         return new ICmpInst(Pred, A, D);
4140       if (B == D)
4141         return new ICmpInst(Pred, A, C);
4142     }
4143   }
4144 
4145   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4146     // A == (A^B)  ->  B == 0
4147     Value *OtherVal = A == Op0 ? B : A;
4148     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4149   }
4150 
4151   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4152   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4153       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4154     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4155 
4156     if (A == C) {
4157       X = B;
4158       Y = D;
4159       Z = A;
4160     } else if (A == D) {
4161       X = B;
4162       Y = C;
4163       Z = A;
4164     } else if (B == C) {
4165       X = A;
4166       Y = D;
4167       Z = B;
4168     } else if (B == D) {
4169       X = A;
4170       Y = C;
4171       Z = B;
4172     }
4173 
4174     if (X) { // Build (X^Y) & Z
4175       Op1 = Builder.CreateXor(X, Y);
4176       Op1 = Builder.CreateAnd(Op1, Z);
4177       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4178     }
4179   }
4180 
4181   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4182   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4183   ConstantInt *Cst1;
4184   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4185        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4186       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4187        match(Op1, m_ZExt(m_Value(A))))) {
4188     APInt Pow2 = Cst1->getValue() + 1;
4189     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4190         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4191       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4192   }
4193 
4194   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4195   // For lshr and ashr pairs.
4196   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4197        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4198       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4199        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4200     unsigned TypeBits = Cst1->getBitWidth();
4201     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4202     if (ShAmt < TypeBits && ShAmt != 0) {
4203       ICmpInst::Predicate NewPred =
4204           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4205       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4206       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4207       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4208     }
4209   }
4210 
4211   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4212   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4213       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4214     unsigned TypeBits = Cst1->getBitWidth();
4215     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4216     if (ShAmt < TypeBits && ShAmt != 0) {
4217       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4218       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4219       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4220                                       I.getName() + ".mask");
4221       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4222     }
4223   }
4224 
4225   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4226   // "icmp (and X, mask), cst"
4227   uint64_t ShAmt = 0;
4228   if (Op0->hasOneUse() &&
4229       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4230       match(Op1, m_ConstantInt(Cst1)) &&
4231       // Only do this when A has multiple uses.  This is most important to do
4232       // when it exposes other optimizations.
4233       !A->hasOneUse()) {
4234     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4235 
4236     if (ShAmt < ASize) {
4237       APInt MaskV =
4238           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4239       MaskV <<= ShAmt;
4240 
4241       APInt CmpV = Cst1->getValue().zext(ASize);
4242       CmpV <<= ShAmt;
4243 
4244       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4245       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4246     }
4247   }
4248 
4249   // If both operands are byte-swapped or bit-reversed, just compare the
4250   // original values.
4251   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4252   // and handle more intrinsics.
4253   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4254       (match(Op0, m_BitReverse(m_Value(A))) &&
4255        match(Op1, m_BitReverse(m_Value(B)))))
4256     return new ICmpInst(Pred, A, B);
4257 
4258   // Canonicalize checking for a power-of-2-or-zero value:
4259   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4260   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4261   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4262                                    m_Deferred(A)))) ||
4263       !match(Op1, m_ZeroInt()))
4264     A = nullptr;
4265 
4266   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4267   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4268   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4269     A = Op1;
4270   else if (match(Op1,
4271                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4272     A = Op0;
4273 
4274   if (A) {
4275     Type *Ty = A->getType();
4276     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4277     return Pred == ICmpInst::ICMP_EQ
4278         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4279         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4280   }
4281 
4282   return nullptr;
4283 }
4284 
4285 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4286                                            InstCombiner::BuilderTy &Builder) {
4287   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4288   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4289   Value *X;
4290   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4291     return nullptr;
4292 
4293   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4294   bool IsSignedCmp = ICmp.isSigned();
4295   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4296     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4297     // and the other is a zext), then we can't handle this.
4298     // TODO: This is too strict. We can handle some predicates (equality?).
4299     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4300       return nullptr;
4301 
4302     // Not an extension from the same type?
4303     Value *Y = CastOp1->getOperand(0);
4304     Type *XTy = X->getType(), *YTy = Y->getType();
4305     if (XTy != YTy) {
4306       // One of the casts must have one use because we are creating a new cast.
4307       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4308         return nullptr;
4309       // Extend the narrower operand to the type of the wider operand.
4310       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4311         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4312       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4313         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4314       else
4315         return nullptr;
4316     }
4317 
4318     // (zext X) == (zext Y) --> X == Y
4319     // (sext X) == (sext Y) --> X == Y
4320     if (ICmp.isEquality())
4321       return new ICmpInst(ICmp.getPredicate(), X, Y);
4322 
4323     // A signed comparison of sign extended values simplifies into a
4324     // signed comparison.
4325     if (IsSignedCmp && IsSignedExt)
4326       return new ICmpInst(ICmp.getPredicate(), X, Y);
4327 
4328     // The other three cases all fold into an unsigned comparison.
4329     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4330   }
4331 
4332   // Below here, we are only folding a compare with constant.
4333   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4334   if (!C)
4335     return nullptr;
4336 
4337   // Compute the constant that would happen if we truncated to SrcTy then
4338   // re-extended to DestTy.
4339   Type *SrcTy = CastOp0->getSrcTy();
4340   Type *DestTy = CastOp0->getDestTy();
4341   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4342   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4343 
4344   // If the re-extended constant didn't change...
4345   if (Res2 == C) {
4346     if (ICmp.isEquality())
4347       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4348 
4349     // A signed comparison of sign extended values simplifies into a
4350     // signed comparison.
4351     if (IsSignedExt && IsSignedCmp)
4352       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4353 
4354     // The other three cases all fold into an unsigned comparison.
4355     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4356   }
4357 
4358   // The re-extended constant changed, partly changed (in the case of a vector),
4359   // or could not be determined to be equal (in the case of a constant
4360   // expression), so the constant cannot be represented in the shorter type.
4361   // All the cases that fold to true or false will have already been handled
4362   // by SimplifyICmpInst, so only deal with the tricky case.
4363   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4364     return nullptr;
4365 
4366   // Is source op positive?
4367   // icmp ult (sext X), C --> icmp sgt X, -1
4368   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4369     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4370 
4371   // Is source op negative?
4372   // icmp ugt (sext X), C --> icmp slt X, 0
4373   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4374   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4375 }
4376 
4377 /// Handle icmp (cast x), (cast or constant).
4378 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
4379   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4380   if (!CastOp0)
4381     return nullptr;
4382   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4383     return nullptr;
4384 
4385   Value *Op0Src = CastOp0->getOperand(0);
4386   Type *SrcTy = CastOp0->getSrcTy();
4387   Type *DestTy = CastOp0->getDestTy();
4388 
4389   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4390   // integer type is the same size as the pointer type.
4391   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4392     if (isa<VectorType>(SrcTy)) {
4393       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4394       DestTy = cast<VectorType>(DestTy)->getElementType();
4395     }
4396     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4397   };
4398   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4399       CompatibleSizes(SrcTy, DestTy)) {
4400     Value *NewOp1 = nullptr;
4401     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4402       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4403       if (PtrSrc->getType()->getPointerAddressSpace() ==
4404           Op0Src->getType()->getPointerAddressSpace()) {
4405         NewOp1 = PtrToIntOp1->getOperand(0);
4406         // If the pointer types don't match, insert a bitcast.
4407         if (Op0Src->getType() != NewOp1->getType())
4408           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4409       }
4410     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4411       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4412     }
4413 
4414     if (NewOp1)
4415       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4416   }
4417 
4418   return foldICmpWithZextOrSext(ICmp, Builder);
4419 }
4420 
4421 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4422   switch (BinaryOp) {
4423     default:
4424       llvm_unreachable("Unsupported binary op");
4425     case Instruction::Add:
4426     case Instruction::Sub:
4427       return match(RHS, m_Zero());
4428     case Instruction::Mul:
4429       return match(RHS, m_One());
4430   }
4431 }
4432 
4433 OverflowResult InstCombiner::computeOverflow(
4434     Instruction::BinaryOps BinaryOp, bool IsSigned,
4435     Value *LHS, Value *RHS, Instruction *CxtI) const {
4436   switch (BinaryOp) {
4437     default:
4438       llvm_unreachable("Unsupported binary op");
4439     case Instruction::Add:
4440       if (IsSigned)
4441         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4442       else
4443         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4444     case Instruction::Sub:
4445       if (IsSigned)
4446         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4447       else
4448         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4449     case Instruction::Mul:
4450       if (IsSigned)
4451         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4452       else
4453         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4454   }
4455 }
4456 
4457 bool InstCombiner::OptimizeOverflowCheck(
4458     Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4459     Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4460   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4461     std::swap(LHS, RHS);
4462 
4463   // If the overflow check was an add followed by a compare, the insertion point
4464   // may be pointing to the compare.  We want to insert the new instructions
4465   // before the add in case there are uses of the add between the add and the
4466   // compare.
4467   Builder.SetInsertPoint(&OrigI);
4468 
4469   if (isNeutralValue(BinaryOp, RHS)) {
4470     Result = LHS;
4471     Overflow = Builder.getFalse();
4472     return true;
4473   }
4474 
4475   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4476     case OverflowResult::MayOverflow:
4477       return false;
4478     case OverflowResult::AlwaysOverflowsLow:
4479     case OverflowResult::AlwaysOverflowsHigh:
4480       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4481       Result->takeName(&OrigI);
4482       Overflow = Builder.getTrue();
4483       return true;
4484     case OverflowResult::NeverOverflows:
4485       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4486       Result->takeName(&OrigI);
4487       Overflow = Builder.getFalse();
4488       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4489         if (IsSigned)
4490           Inst->setHasNoSignedWrap();
4491         else
4492           Inst->setHasNoUnsignedWrap();
4493       }
4494       return true;
4495   }
4496 
4497   llvm_unreachable("Unexpected overflow result");
4498 }
4499 
4500 /// Recognize and process idiom involving test for multiplication
4501 /// overflow.
4502 ///
4503 /// The caller has matched a pattern of the form:
4504 ///   I = cmp u (mul(zext A, zext B), V
4505 /// The function checks if this is a test for overflow and if so replaces
4506 /// multiplication with call to 'mul.with.overflow' intrinsic.
4507 ///
4508 /// \param I Compare instruction.
4509 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4510 ///               the compare instruction.  Must be of integer type.
4511 /// \param OtherVal The other argument of compare instruction.
4512 /// \returns Instruction which must replace the compare instruction, NULL if no
4513 ///          replacement required.
4514 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4515                                          Value *OtherVal, InstCombiner &IC) {
4516   // Don't bother doing this transformation for pointers, don't do it for
4517   // vectors.
4518   if (!isa<IntegerType>(MulVal->getType()))
4519     return nullptr;
4520 
4521   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4522   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4523   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4524   if (!MulInstr)
4525     return nullptr;
4526   assert(MulInstr->getOpcode() == Instruction::Mul);
4527 
4528   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4529        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4530   assert(LHS->getOpcode() == Instruction::ZExt);
4531   assert(RHS->getOpcode() == Instruction::ZExt);
4532   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4533 
4534   // Calculate type and width of the result produced by mul.with.overflow.
4535   Type *TyA = A->getType(), *TyB = B->getType();
4536   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4537            WidthB = TyB->getPrimitiveSizeInBits();
4538   unsigned MulWidth;
4539   Type *MulType;
4540   if (WidthB > WidthA) {
4541     MulWidth = WidthB;
4542     MulType = TyB;
4543   } else {
4544     MulWidth = WidthA;
4545     MulType = TyA;
4546   }
4547 
4548   // In order to replace the original mul with a narrower mul.with.overflow,
4549   // all uses must ignore upper bits of the product.  The number of used low
4550   // bits must be not greater than the width of mul.with.overflow.
4551   if (MulVal->hasNUsesOrMore(2))
4552     for (User *U : MulVal->users()) {
4553       if (U == &I)
4554         continue;
4555       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4556         // Check if truncation ignores bits above MulWidth.
4557         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4558         if (TruncWidth > MulWidth)
4559           return nullptr;
4560       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4561         // Check if AND ignores bits above MulWidth.
4562         if (BO->getOpcode() != Instruction::And)
4563           return nullptr;
4564         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4565           const APInt &CVal = CI->getValue();
4566           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4567             return nullptr;
4568         } else {
4569           // In this case we could have the operand of the binary operation
4570           // being defined in another block, and performing the replacement
4571           // could break the dominance relation.
4572           return nullptr;
4573         }
4574       } else {
4575         // Other uses prohibit this transformation.
4576         return nullptr;
4577       }
4578     }
4579 
4580   // Recognize patterns
4581   switch (I.getPredicate()) {
4582   case ICmpInst::ICMP_EQ:
4583   case ICmpInst::ICMP_NE:
4584     // Recognize pattern:
4585     //   mulval = mul(zext A, zext B)
4586     //   cmp eq/neq mulval, zext trunc mulval
4587     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4588       if (Zext->hasOneUse()) {
4589         Value *ZextArg = Zext->getOperand(0);
4590         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4591           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4592             break; //Recognized
4593       }
4594 
4595     // Recognize pattern:
4596     //   mulval = mul(zext A, zext B)
4597     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4598     ConstantInt *CI;
4599     Value *ValToMask;
4600     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4601       if (ValToMask != MulVal)
4602         return nullptr;
4603       const APInt &CVal = CI->getValue() + 1;
4604       if (CVal.isPowerOf2()) {
4605         unsigned MaskWidth = CVal.logBase2();
4606         if (MaskWidth == MulWidth)
4607           break; // Recognized
4608       }
4609     }
4610     return nullptr;
4611 
4612   case ICmpInst::ICMP_UGT:
4613     // Recognize pattern:
4614     //   mulval = mul(zext A, zext B)
4615     //   cmp ugt mulval, max
4616     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4617       APInt MaxVal = APInt::getMaxValue(MulWidth);
4618       MaxVal = MaxVal.zext(CI->getBitWidth());
4619       if (MaxVal.eq(CI->getValue()))
4620         break; // Recognized
4621     }
4622     return nullptr;
4623 
4624   case ICmpInst::ICMP_UGE:
4625     // Recognize pattern:
4626     //   mulval = mul(zext A, zext B)
4627     //   cmp uge mulval, max+1
4628     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4629       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4630       if (MaxVal.eq(CI->getValue()))
4631         break; // Recognized
4632     }
4633     return nullptr;
4634 
4635   case ICmpInst::ICMP_ULE:
4636     // Recognize pattern:
4637     //   mulval = mul(zext A, zext B)
4638     //   cmp ule mulval, max
4639     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4640       APInt MaxVal = APInt::getMaxValue(MulWidth);
4641       MaxVal = MaxVal.zext(CI->getBitWidth());
4642       if (MaxVal.eq(CI->getValue()))
4643         break; // Recognized
4644     }
4645     return nullptr;
4646 
4647   case ICmpInst::ICMP_ULT:
4648     // Recognize pattern:
4649     //   mulval = mul(zext A, zext B)
4650     //   cmp ule mulval, max + 1
4651     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4652       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4653       if (MaxVal.eq(CI->getValue()))
4654         break; // Recognized
4655     }
4656     return nullptr;
4657 
4658   default:
4659     return nullptr;
4660   }
4661 
4662   InstCombiner::BuilderTy &Builder = IC.Builder;
4663   Builder.SetInsertPoint(MulInstr);
4664 
4665   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4666   Value *MulA = A, *MulB = B;
4667   if (WidthA < MulWidth)
4668     MulA = Builder.CreateZExt(A, MulType);
4669   if (WidthB < MulWidth)
4670     MulB = Builder.CreateZExt(B, MulType);
4671   Function *F = Intrinsic::getDeclaration(
4672       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4673   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4674   IC.Worklist.push(MulInstr);
4675 
4676   // If there are uses of mul result other than the comparison, we know that
4677   // they are truncation or binary AND. Change them to use result of
4678   // mul.with.overflow and adjust properly mask/size.
4679   if (MulVal->hasNUsesOrMore(2)) {
4680     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4681     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4682       User *U = *UI++;
4683       if (U == &I || U == OtherVal)
4684         continue;
4685       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4686         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4687           IC.replaceInstUsesWith(*TI, Mul);
4688         else
4689           TI->setOperand(0, Mul);
4690       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4691         assert(BO->getOpcode() == Instruction::And);
4692         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4693         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4694         APInt ShortMask = CI->getValue().trunc(MulWidth);
4695         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4696         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4697         IC.replaceInstUsesWith(*BO, Zext);
4698       } else {
4699         llvm_unreachable("Unexpected Binary operation");
4700       }
4701       IC.Worklist.push(cast<Instruction>(U));
4702     }
4703   }
4704   if (isa<Instruction>(OtherVal))
4705     IC.Worklist.push(cast<Instruction>(OtherVal));
4706 
4707   // The original icmp gets replaced with the overflow value, maybe inverted
4708   // depending on predicate.
4709   bool Inverse = false;
4710   switch (I.getPredicate()) {
4711   case ICmpInst::ICMP_NE:
4712     break;
4713   case ICmpInst::ICMP_EQ:
4714     Inverse = true;
4715     break;
4716   case ICmpInst::ICMP_UGT:
4717   case ICmpInst::ICMP_UGE:
4718     if (I.getOperand(0) == MulVal)
4719       break;
4720     Inverse = true;
4721     break;
4722   case ICmpInst::ICMP_ULT:
4723   case ICmpInst::ICMP_ULE:
4724     if (I.getOperand(1) == MulVal)
4725       break;
4726     Inverse = true;
4727     break;
4728   default:
4729     llvm_unreachable("Unexpected predicate");
4730   }
4731   if (Inverse) {
4732     Value *Res = Builder.CreateExtractValue(Call, 1);
4733     return BinaryOperator::CreateNot(Res);
4734   }
4735 
4736   return ExtractValueInst::Create(Call, 1);
4737 }
4738 
4739 /// When performing a comparison against a constant, it is possible that not all
4740 /// the bits in the LHS are demanded. This helper method computes the mask that
4741 /// IS demanded.
4742 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4743   const APInt *RHS;
4744   if (!match(I.getOperand(1), m_APInt(RHS)))
4745     return APInt::getAllOnesValue(BitWidth);
4746 
4747   // If this is a normal comparison, it demands all bits. If it is a sign bit
4748   // comparison, it only demands the sign bit.
4749   bool UnusedBit;
4750   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4751     return APInt::getSignMask(BitWidth);
4752 
4753   switch (I.getPredicate()) {
4754   // For a UGT comparison, we don't care about any bits that
4755   // correspond to the trailing ones of the comparand.  The value of these
4756   // bits doesn't impact the outcome of the comparison, because any value
4757   // greater than the RHS must differ in a bit higher than these due to carry.
4758   case ICmpInst::ICMP_UGT:
4759     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4760 
4761   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4762   // Any value less than the RHS must differ in a higher bit because of carries.
4763   case ICmpInst::ICMP_ULT:
4764     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4765 
4766   default:
4767     return APInt::getAllOnesValue(BitWidth);
4768   }
4769 }
4770 
4771 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4772 /// should be swapped.
4773 /// The decision is based on how many times these two operands are reused
4774 /// as subtract operands and their positions in those instructions.
4775 /// The rationale is that several architectures use the same instruction for
4776 /// both subtract and cmp. Thus, it is better if the order of those operands
4777 /// match.
4778 /// \return true if Op0 and Op1 should be swapped.
4779 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4780   // Filter out pointer values as those cannot appear directly in subtract.
4781   // FIXME: we may want to go through inttoptrs or bitcasts.
4782   if (Op0->getType()->isPointerTy())
4783     return false;
4784   // If a subtract already has the same operands as a compare, swapping would be
4785   // bad. If a subtract has the same operands as a compare but in reverse order,
4786   // then swapping is good.
4787   int GoodToSwap = 0;
4788   for (const User *U : Op0->users()) {
4789     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4790       GoodToSwap++;
4791     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4792       GoodToSwap--;
4793   }
4794   return GoodToSwap > 0;
4795 }
4796 
4797 /// Check that one use is in the same block as the definition and all
4798 /// other uses are in blocks dominated by a given block.
4799 ///
4800 /// \param DI Definition
4801 /// \param UI Use
4802 /// \param DB Block that must dominate all uses of \p DI outside
4803 ///           the parent block
4804 /// \return true when \p UI is the only use of \p DI in the parent block
4805 /// and all other uses of \p DI are in blocks dominated by \p DB.
4806 ///
4807 bool InstCombiner::dominatesAllUses(const Instruction *DI,
4808                                     const Instruction *UI,
4809                                     const BasicBlock *DB) const {
4810   assert(DI && UI && "Instruction not defined\n");
4811   // Ignore incomplete definitions.
4812   if (!DI->getParent())
4813     return false;
4814   // DI and UI must be in the same block.
4815   if (DI->getParent() != UI->getParent())
4816     return false;
4817   // Protect from self-referencing blocks.
4818   if (DI->getParent() == DB)
4819     return false;
4820   for (const User *U : DI->users()) {
4821     auto *Usr = cast<Instruction>(U);
4822     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4823       return false;
4824   }
4825   return true;
4826 }
4827 
4828 /// Return true when the instruction sequence within a block is select-cmp-br.
4829 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4830   const BasicBlock *BB = SI->getParent();
4831   if (!BB)
4832     return false;
4833   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4834   if (!BI || BI->getNumSuccessors() != 2)
4835     return false;
4836   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4837   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4838     return false;
4839   return true;
4840 }
4841 
4842 /// True when a select result is replaced by one of its operands
4843 /// in select-icmp sequence. This will eventually result in the elimination
4844 /// of the select.
4845 ///
4846 /// \param SI    Select instruction
4847 /// \param Icmp  Compare instruction
4848 /// \param SIOpd Operand that replaces the select
4849 ///
4850 /// Notes:
4851 /// - The replacement is global and requires dominator information
4852 /// - The caller is responsible for the actual replacement
4853 ///
4854 /// Example:
4855 ///
4856 /// entry:
4857 ///  %4 = select i1 %3, %C* %0, %C* null
4858 ///  %5 = icmp eq %C* %4, null
4859 ///  br i1 %5, label %9, label %7
4860 ///  ...
4861 ///  ; <label>:7                                       ; preds = %entry
4862 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4863 ///  ...
4864 ///
4865 /// can be transformed to
4866 ///
4867 ///  %5 = icmp eq %C* %0, null
4868 ///  %6 = select i1 %3, i1 %5, i1 true
4869 ///  br i1 %6, label %9, label %7
4870 ///  ...
4871 ///  ; <label>:7                                       ; preds = %entry
4872 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4873 ///
4874 /// Similar when the first operand of the select is a constant or/and
4875 /// the compare is for not equal rather than equal.
4876 ///
4877 /// NOTE: The function is only called when the select and compare constants
4878 /// are equal, the optimization can work only for EQ predicates. This is not a
4879 /// major restriction since a NE compare should be 'normalized' to an equal
4880 /// compare, which usually happens in the combiner and test case
4881 /// select-cmp-br.ll checks for it.
4882 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4883                                              const ICmpInst *Icmp,
4884                                              const unsigned SIOpd) {
4885   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4886   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4887     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4888     // The check for the single predecessor is not the best that can be
4889     // done. But it protects efficiently against cases like when SI's
4890     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4891     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4892     // replaced can be reached on either path. So the uniqueness check
4893     // guarantees that the path all uses of SI (outside SI's parent) are on
4894     // is disjoint from all other paths out of SI. But that information
4895     // is more expensive to compute, and the trade-off here is in favor
4896     // of compile-time. It should also be noticed that we check for a single
4897     // predecessor and not only uniqueness. This to handle the situation when
4898     // Succ and Succ1 points to the same basic block.
4899     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4900       NumSel++;
4901       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4902       return true;
4903     }
4904   }
4905   return false;
4906 }
4907 
4908 /// Try to fold the comparison based on range information we can get by checking
4909 /// whether bits are known to be zero or one in the inputs.
4910 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4911   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4912   Type *Ty = Op0->getType();
4913   ICmpInst::Predicate Pred = I.getPredicate();
4914 
4915   // Get scalar or pointer size.
4916   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4917                           ? Ty->getScalarSizeInBits()
4918                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
4919 
4920   if (!BitWidth)
4921     return nullptr;
4922 
4923   KnownBits Op0Known(BitWidth);
4924   KnownBits Op1Known(BitWidth);
4925 
4926   if (SimplifyDemandedBits(&I, 0,
4927                            getDemandedBitsLHSMask(I, BitWidth),
4928                            Op0Known, 0))
4929     return &I;
4930 
4931   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4932                            Op1Known, 0))
4933     return &I;
4934 
4935   // Given the known and unknown bits, compute a range that the LHS could be
4936   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4937   // EQ and NE we use unsigned values.
4938   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4939   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4940   if (I.isSigned()) {
4941     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4942     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4943   } else {
4944     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4945     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4946   }
4947 
4948   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4949   // out that the LHS or RHS is a constant. Constant fold this now, so that
4950   // code below can assume that Min != Max.
4951   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4952     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4953   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4954     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4955 
4956   // Based on the range information we know about the LHS, see if we can
4957   // simplify this comparison.  For example, (x&4) < 8 is always true.
4958   switch (Pred) {
4959   default:
4960     llvm_unreachable("Unknown icmp opcode!");
4961   case ICmpInst::ICMP_EQ:
4962   case ICmpInst::ICMP_NE: {
4963     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4964       return Pred == CmpInst::ICMP_EQ
4965                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4966                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4967     }
4968 
4969     // If all bits are known zero except for one, then we know at most one bit
4970     // is set. If the comparison is against zero, then this is a check to see if
4971     // *that* bit is set.
4972     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4973     if (Op1Known.isZero()) {
4974       // If the LHS is an AND with the same constant, look through it.
4975       Value *LHS = nullptr;
4976       const APInt *LHSC;
4977       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4978           *LHSC != Op0KnownZeroInverted)
4979         LHS = Op0;
4980 
4981       Value *X;
4982       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4983         APInt ValToCheck = Op0KnownZeroInverted;
4984         Type *XTy = X->getType();
4985         if (ValToCheck.isPowerOf2()) {
4986           // ((1 << X) & 8) == 0 -> X != 3
4987           // ((1 << X) & 8) != 0 -> X == 3
4988           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4989           auto NewPred = ICmpInst::getInversePredicate(Pred);
4990           return new ICmpInst(NewPred, X, CmpC);
4991         } else if ((++ValToCheck).isPowerOf2()) {
4992           // ((1 << X) & 7) == 0 -> X >= 3
4993           // ((1 << X) & 7) != 0 -> X  < 3
4994           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4995           auto NewPred =
4996               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4997           return new ICmpInst(NewPred, X, CmpC);
4998         }
4999       }
5000 
5001       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5002       const APInt *CI;
5003       if (Op0KnownZeroInverted.isOneValue() &&
5004           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5005         // ((8 >>u X) & 1) == 0 -> X != 3
5006         // ((8 >>u X) & 1) != 0 -> X == 3
5007         unsigned CmpVal = CI->countTrailingZeros();
5008         auto NewPred = ICmpInst::getInversePredicate(Pred);
5009         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5010       }
5011     }
5012     break;
5013   }
5014   case ICmpInst::ICMP_ULT: {
5015     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5016       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5017     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5018       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5019     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5020       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5021 
5022     const APInt *CmpC;
5023     if (match(Op1, m_APInt(CmpC))) {
5024       // A <u C -> A == C-1 if min(A)+1 == C
5025       if (*CmpC == Op0Min + 1)
5026         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5027                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5028       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5029       // exceeds the log2 of C.
5030       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5031         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5032                             Constant::getNullValue(Op1->getType()));
5033     }
5034     break;
5035   }
5036   case ICmpInst::ICMP_UGT: {
5037     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5038       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5039     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5040       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5041     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5042       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5043 
5044     const APInt *CmpC;
5045     if (match(Op1, m_APInt(CmpC))) {
5046       // A >u C -> A == C+1 if max(a)-1 == C
5047       if (*CmpC == Op0Max - 1)
5048         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5049                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5050       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5051       // exceeds the log2 of C.
5052       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5053         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5054                             Constant::getNullValue(Op1->getType()));
5055     }
5056     break;
5057   }
5058   case ICmpInst::ICMP_SLT: {
5059     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5060       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5061     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5062       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5063     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5064       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5065     const APInt *CmpC;
5066     if (match(Op1, m_APInt(CmpC))) {
5067       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5068         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5069                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5070     }
5071     break;
5072   }
5073   case ICmpInst::ICMP_SGT: {
5074     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5075       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5076     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5077       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5078     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5079       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5080     const APInt *CmpC;
5081     if (match(Op1, m_APInt(CmpC))) {
5082       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5083         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5084                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5085     }
5086     break;
5087   }
5088   case ICmpInst::ICMP_SGE:
5089     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5090     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5091       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5092     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5093       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5094     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5095       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5096     break;
5097   case ICmpInst::ICMP_SLE:
5098     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5099     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5100       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5101     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5102       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5103     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5104       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5105     break;
5106   case ICmpInst::ICMP_UGE:
5107     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5108     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5109       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5110     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5111       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5112     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5113       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5114     break;
5115   case ICmpInst::ICMP_ULE:
5116     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5117     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5118       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5119     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5120       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5121     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5122       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5123     break;
5124   }
5125 
5126   // Turn a signed comparison into an unsigned one if both operands are known to
5127   // have the same sign.
5128   if (I.isSigned() &&
5129       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5130        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5131     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5132 
5133   return nullptr;
5134 }
5135 
5136 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5137 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5138                                                Constant *C) {
5139   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5140          "Only for relational integer predicates.");
5141 
5142   Type *Type = C->getType();
5143   bool IsSigned = ICmpInst::isSigned(Pred);
5144 
5145   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5146   bool WillIncrement =
5147       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5148 
5149   // Check if the constant operand can be safely incremented/decremented
5150   // without overflowing/underflowing.
5151   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5152     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5153   };
5154 
5155   Constant *SafeReplacementConstant = nullptr;
5156   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5157     // Bail out if the constant can't be safely incremented/decremented.
5158     if (!ConstantIsOk(CI))
5159       return llvm::None;
5160   } else if (Type->isVectorTy()) {
5161     unsigned NumElts = Type->getVectorNumElements();
5162     for (unsigned i = 0; i != NumElts; ++i) {
5163       Constant *Elt = C->getAggregateElement(i);
5164       if (!Elt)
5165         return llvm::None;
5166 
5167       if (isa<UndefValue>(Elt))
5168         continue;
5169 
5170       // Bail out if we can't determine if this constant is min/max or if we
5171       // know that this constant is min/max.
5172       auto *CI = dyn_cast<ConstantInt>(Elt);
5173       if (!CI || !ConstantIsOk(CI))
5174         return llvm::None;
5175 
5176       if (!SafeReplacementConstant)
5177         SafeReplacementConstant = CI;
5178     }
5179   } else {
5180     // ConstantExpr?
5181     return llvm::None;
5182   }
5183 
5184   // It may not be safe to change a compare predicate in the presence of
5185   // undefined elements, so replace those elements with the first safe constant
5186   // that we found.
5187   if (C->containsUndefElement()) {
5188     assert(SafeReplacementConstant && "Replacement constant not set");
5189     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5190   }
5191 
5192   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5193 
5194   // Increment or decrement the constant.
5195   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5196   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5197 
5198   return std::make_pair(NewPred, NewC);
5199 }
5200 
5201 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5202 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5203 /// allows them to be folded in visitICmpInst.
5204 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5205   ICmpInst::Predicate Pred = I.getPredicate();
5206   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5207       isCanonicalPredicate(Pred))
5208     return nullptr;
5209 
5210   Value *Op0 = I.getOperand(0);
5211   Value *Op1 = I.getOperand(1);
5212   auto *Op1C = dyn_cast<Constant>(Op1);
5213   if (!Op1C)
5214     return nullptr;
5215 
5216   auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5217   if (!FlippedStrictness)
5218     return nullptr;
5219 
5220   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5221 }
5222 
5223 /// Integer compare with boolean values can always be turned into bitwise ops.
5224 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5225                                          InstCombiner::BuilderTy &Builder) {
5226   Value *A = I.getOperand(0), *B = I.getOperand(1);
5227   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5228 
5229   // A boolean compared to true/false can be simplified to Op0/true/false in
5230   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5231   // Cases not handled by InstSimplify are always 'not' of Op0.
5232   if (match(B, m_Zero())) {
5233     switch (I.getPredicate()) {
5234       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5235       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5236       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5237         return BinaryOperator::CreateNot(A);
5238       default:
5239         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5240     }
5241   } else if (match(B, m_One())) {
5242     switch (I.getPredicate()) {
5243       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5244       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5245       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5246         return BinaryOperator::CreateNot(A);
5247       default:
5248         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5249     }
5250   }
5251 
5252   switch (I.getPredicate()) {
5253   default:
5254     llvm_unreachable("Invalid icmp instruction!");
5255   case ICmpInst::ICMP_EQ:
5256     // icmp eq i1 A, B -> ~(A ^ B)
5257     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5258 
5259   case ICmpInst::ICMP_NE:
5260     // icmp ne i1 A, B -> A ^ B
5261     return BinaryOperator::CreateXor(A, B);
5262 
5263   case ICmpInst::ICMP_UGT:
5264     // icmp ugt -> icmp ult
5265     std::swap(A, B);
5266     LLVM_FALLTHROUGH;
5267   case ICmpInst::ICMP_ULT:
5268     // icmp ult i1 A, B -> ~A & B
5269     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5270 
5271   case ICmpInst::ICMP_SGT:
5272     // icmp sgt -> icmp slt
5273     std::swap(A, B);
5274     LLVM_FALLTHROUGH;
5275   case ICmpInst::ICMP_SLT:
5276     // icmp slt i1 A, B -> A & ~B
5277     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5278 
5279   case ICmpInst::ICMP_UGE:
5280     // icmp uge -> icmp ule
5281     std::swap(A, B);
5282     LLVM_FALLTHROUGH;
5283   case ICmpInst::ICMP_ULE:
5284     // icmp ule i1 A, B -> ~A | B
5285     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5286 
5287   case ICmpInst::ICMP_SGE:
5288     // icmp sge -> icmp sle
5289     std::swap(A, B);
5290     LLVM_FALLTHROUGH;
5291   case ICmpInst::ICMP_SLE:
5292     // icmp sle i1 A, B -> A | ~B
5293     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5294   }
5295 }
5296 
5297 // Transform pattern like:
5298 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5299 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5300 // Into:
5301 //   (X l>> Y) != 0
5302 //   (X l>> Y) == 0
5303 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5304                                             InstCombiner::BuilderTy &Builder) {
5305   ICmpInst::Predicate Pred, NewPred;
5306   Value *X, *Y;
5307   if (match(&Cmp,
5308             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5309     switch (Pred) {
5310     case ICmpInst::ICMP_ULE:
5311       NewPred = ICmpInst::ICMP_NE;
5312       break;
5313     case ICmpInst::ICMP_UGT:
5314       NewPred = ICmpInst::ICMP_EQ;
5315       break;
5316     default:
5317       return nullptr;
5318     }
5319   } else if (match(&Cmp, m_c_ICmp(Pred,
5320                                   m_OneUse(m_CombineOr(
5321                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5322                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5323                                             m_AllOnes()))),
5324                                   m_Value(X)))) {
5325     // The variant with 'add' is not canonical, (the variant with 'not' is)
5326     // we only get it because it has extra uses, and can't be canonicalized,
5327 
5328     switch (Pred) {
5329     case ICmpInst::ICMP_ULT:
5330       NewPred = ICmpInst::ICMP_NE;
5331       break;
5332     case ICmpInst::ICMP_UGE:
5333       NewPred = ICmpInst::ICMP_EQ;
5334       break;
5335     default:
5336       return nullptr;
5337     }
5338   } else
5339     return nullptr;
5340 
5341   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5342   Constant *Zero = Constant::getNullValue(NewX->getType());
5343   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5344 }
5345 
5346 static Instruction *foldVectorCmp(CmpInst &Cmp,
5347                                   InstCombiner::BuilderTy &Builder) {
5348   const CmpInst::Predicate Pred = Cmp.getPredicate();
5349   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5350   bool IsFP = isa<FCmpInst>(Cmp);
5351 
5352   Value *V1, *V2;
5353   Constant *M;
5354   if (!match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))))
5355     return nullptr;
5356 
5357   // If both arguments of the cmp are shuffles that use the same mask and
5358   // shuffle within a single vector, move the shuffle after the cmp:
5359   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5360   Type *V1Ty = V1->getType();
5361   if (match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
5362       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5363     Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, V2)
5364                          : Builder.CreateICmp(Pred, V1, V2);
5365     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5366   }
5367 
5368   // Try to canonicalize compare with splatted operand and splat constant.
5369   // TODO: We could generalize this for more than splats. See/use the code in
5370   //       InstCombiner::foldVectorBinop().
5371   Constant *C;
5372   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5373     return nullptr;
5374 
5375   // Length-changing splats are ok, so adjust the constants as needed:
5376   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5377   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5378   Constant *ScalarM = M->getSplatValue(/* AllowUndefs */ true);
5379   if (ScalarC && ScalarM) {
5380     // We allow undefs in matching, but this transform removes those for safety.
5381     // Demanded elements analysis should be able to recover some/all of that.
5382     C = ConstantVector::getSplat(V1Ty->getVectorNumElements(), ScalarC);
5383     M = ConstantVector::getSplat(M->getType()->getVectorNumElements(), ScalarM);
5384     Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, C)
5385                          : Builder.CreateICmp(Pred, V1, C);
5386     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5387   }
5388 
5389   return nullptr;
5390 }
5391 
5392 // extract(uadd.with.overflow(A, B), 0) ult A
5393 //  -> extract(uadd.with.overflow(A, B), 1)
5394 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5395   CmpInst::Predicate Pred = I.getPredicate();
5396   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5397 
5398   Value *UAddOv;
5399   Value *A, *B;
5400   auto UAddOvResultPat = m_ExtractValue<0>(
5401       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5402   if (match(Op0, UAddOvResultPat) &&
5403       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5404        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5405         (match(A, m_One()) || match(B, m_One()))) ||
5406        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5407         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5408     // extract(uadd.with.overflow(A, B), 0) < A
5409     // extract(uadd.with.overflow(A, 1), 0) == 0
5410     // extract(uadd.with.overflow(A, -1), 0) != -1
5411     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5412   else if (match(Op1, UAddOvResultPat) &&
5413            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5414     // A > extract(uadd.with.overflow(A, B), 0)
5415     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5416   else
5417     return nullptr;
5418 
5419   return ExtractValueInst::Create(UAddOv, 1);
5420 }
5421 
5422 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5423   bool Changed = false;
5424   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5425   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5426   unsigned Op0Cplxity = getComplexity(Op0);
5427   unsigned Op1Cplxity = getComplexity(Op1);
5428 
5429   /// Orders the operands of the compare so that they are listed from most
5430   /// complex to least complex.  This puts constants before unary operators,
5431   /// before binary operators.
5432   if (Op0Cplxity < Op1Cplxity ||
5433       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5434     I.swapOperands();
5435     std::swap(Op0, Op1);
5436     Changed = true;
5437   }
5438 
5439   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5440     return replaceInstUsesWith(I, V);
5441 
5442   // Comparing -val or val with non-zero is the same as just comparing val
5443   // ie, abs(val) != 0 -> val != 0
5444   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5445     Value *Cond, *SelectTrue, *SelectFalse;
5446     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5447                             m_Value(SelectFalse)))) {
5448       if (Value *V = dyn_castNegVal(SelectTrue)) {
5449         if (V == SelectFalse)
5450           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5451       }
5452       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5453         if (V == SelectTrue)
5454           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5455       }
5456     }
5457   }
5458 
5459   if (Op0->getType()->isIntOrIntVectorTy(1))
5460     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5461       return Res;
5462 
5463   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
5464     return NewICmp;
5465 
5466   if (Instruction *Res = foldICmpWithConstant(I))
5467     return Res;
5468 
5469   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5470     return Res;
5471 
5472   if (Instruction *Res = foldICmpBinOp(I, Q))
5473     return Res;
5474 
5475   if (Instruction *Res = foldICmpUsingKnownBits(I))
5476     return Res;
5477 
5478   // Test if the ICmpInst instruction is used exclusively by a select as
5479   // part of a minimum or maximum operation. If so, refrain from doing
5480   // any other folding. This helps out other analyses which understand
5481   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5482   // and CodeGen. And in this case, at least one of the comparison
5483   // operands has at least one user besides the compare (the select),
5484   // which would often largely negate the benefit of folding anyway.
5485   //
5486   // Do the same for the other patterns recognized by matchSelectPattern.
5487   if (I.hasOneUse())
5488     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5489       Value *A, *B;
5490       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5491       if (SPR.Flavor != SPF_UNKNOWN)
5492         return nullptr;
5493     }
5494 
5495   // Do this after checking for min/max to prevent infinite looping.
5496   if (Instruction *Res = foldICmpWithZero(I))
5497     return Res;
5498 
5499   // FIXME: We only do this after checking for min/max to prevent infinite
5500   // looping caused by a reverse canonicalization of these patterns for min/max.
5501   // FIXME: The organization of folds is a mess. These would naturally go into
5502   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5503   // down here after the min/max restriction.
5504   ICmpInst::Predicate Pred = I.getPredicate();
5505   const APInt *C;
5506   if (match(Op1, m_APInt(C))) {
5507     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5508     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5509       Constant *Zero = Constant::getNullValue(Op0->getType());
5510       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5511     }
5512 
5513     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5514     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5515       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5516       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5517     }
5518   }
5519 
5520   if (Instruction *Res = foldICmpInstWithConstant(I))
5521     return Res;
5522 
5523   // Try to match comparison as a sign bit test. Intentionally do this after
5524   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5525   if (Instruction *New = foldSignBitTest(I))
5526     return New;
5527 
5528   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5529     return Res;
5530 
5531   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5532   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5533     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5534       return NI;
5535   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5536     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5537                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5538       return NI;
5539 
5540   // Try to optimize equality comparisons against alloca-based pointers.
5541   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5542     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5543     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5544       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5545         return New;
5546     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5547       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5548         return New;
5549   }
5550 
5551   if (Instruction *Res = foldICmpBitCast(I, Builder))
5552     return Res;
5553 
5554   if (Instruction *R = foldICmpWithCastOp(I))
5555     return R;
5556 
5557   if (Instruction *Res = foldICmpWithMinMax(I))
5558     return Res;
5559 
5560   {
5561     Value *A, *B;
5562     // Transform (A & ~B) == 0 --> (A & B) != 0
5563     // and       (A & ~B) != 0 --> (A & B) == 0
5564     // if A is a power of 2.
5565     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5566         match(Op1, m_Zero()) &&
5567         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5568       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5569                           Op1);
5570 
5571     // ~X < ~Y --> Y < X
5572     // ~X < C -->  X > ~C
5573     if (match(Op0, m_Not(m_Value(A)))) {
5574       if (match(Op1, m_Not(m_Value(B))))
5575         return new ICmpInst(I.getPredicate(), B, A);
5576 
5577       const APInt *C;
5578       if (match(Op1, m_APInt(C)))
5579         return new ICmpInst(I.getSwappedPredicate(), A,
5580                             ConstantInt::get(Op1->getType(), ~(*C)));
5581     }
5582 
5583     Instruction *AddI = nullptr;
5584     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5585                                      m_Instruction(AddI))) &&
5586         isa<IntegerType>(A->getType())) {
5587       Value *Result;
5588       Constant *Overflow;
5589       // m_UAddWithOverflow can match patterns that do not include  an explicit
5590       // "add" instruction, so check the opcode of the matched op.
5591       if (AddI->getOpcode() == Instruction::Add &&
5592           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5593                                 Result, Overflow)) {
5594         replaceInstUsesWith(*AddI, Result);
5595         return replaceInstUsesWith(I, Overflow);
5596       }
5597     }
5598 
5599     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5600     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5601       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5602         return R;
5603     }
5604     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5605       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5606         return R;
5607     }
5608   }
5609 
5610   if (Instruction *Res = foldICmpEquality(I))
5611     return Res;
5612 
5613   if (Instruction *Res = foldICmpOfUAddOv(I))
5614     return Res;
5615 
5616   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5617   // an i1 which indicates whether or not we successfully did the swap.
5618   //
5619   // Replace comparisons between the old value and the expected value with the
5620   // indicator that 'cmpxchg' returns.
5621   //
5622   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5623   // spuriously fail.  In those cases, the old value may equal the expected
5624   // value but it is possible for the swap to not occur.
5625   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5626     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5627       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5628         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5629             !ACXI->isWeak())
5630           return ExtractValueInst::Create(ACXI, 1);
5631 
5632   {
5633     Value *X;
5634     const APInt *C;
5635     // icmp X+Cst, X
5636     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5637       return foldICmpAddOpConst(X, *C, I.getPredicate());
5638 
5639     // icmp X, X+Cst
5640     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5641       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5642   }
5643 
5644   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5645     return Res;
5646 
5647   if (I.getType()->isVectorTy())
5648     if (Instruction *Res = foldVectorCmp(I, Builder))
5649       return Res;
5650 
5651   return Changed ? &I : nullptr;
5652 }
5653 
5654 /// Fold fcmp ([us]itofp x, cst) if possible.
5655 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5656                                                 Constant *RHSC) {
5657   if (!isa<ConstantFP>(RHSC)) return nullptr;
5658   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5659 
5660   // Get the width of the mantissa.  We don't want to hack on conversions that
5661   // might lose information from the integer, e.g. "i64 -> float"
5662   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5663   if (MantissaWidth == -1) return nullptr;  // Unknown.
5664 
5665   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5666 
5667   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5668 
5669   if (I.isEquality()) {
5670     FCmpInst::Predicate P = I.getPredicate();
5671     bool IsExact = false;
5672     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5673     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5674 
5675     // If the floating point constant isn't an integer value, we know if we will
5676     // ever compare equal / not equal to it.
5677     if (!IsExact) {
5678       // TODO: Can never be -0.0 and other non-representable values
5679       APFloat RHSRoundInt(RHS);
5680       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5681       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
5682         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5683           return replaceInstUsesWith(I, Builder.getFalse());
5684 
5685         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5686         return replaceInstUsesWith(I, Builder.getTrue());
5687       }
5688     }
5689 
5690     // TODO: If the constant is exactly representable, is it always OK to do
5691     // equality compares as integer?
5692   }
5693 
5694   // Check to see that the input is converted from an integer type that is small
5695   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5696   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5697   unsigned InputSize = IntTy->getScalarSizeInBits();
5698 
5699   // Following test does NOT adjust InputSize downwards for signed inputs,
5700   // because the most negative value still requires all the mantissa bits
5701   // to distinguish it from one less than that value.
5702   if ((int)InputSize > MantissaWidth) {
5703     // Conversion would lose accuracy. Check if loss can impact comparison.
5704     int Exp = ilogb(RHS);
5705     if (Exp == APFloat::IEK_Inf) {
5706       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5707       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5708         // Conversion could create infinity.
5709         return nullptr;
5710     } else {
5711       // Note that if RHS is zero or NaN, then Exp is negative
5712       // and first condition is trivially false.
5713       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5714         // Conversion could affect comparison.
5715         return nullptr;
5716     }
5717   }
5718 
5719   // Otherwise, we can potentially simplify the comparison.  We know that it
5720   // will always come through as an integer value and we know the constant is
5721   // not a NAN (it would have been previously simplified).
5722   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5723 
5724   ICmpInst::Predicate Pred;
5725   switch (I.getPredicate()) {
5726   default: llvm_unreachable("Unexpected predicate!");
5727   case FCmpInst::FCMP_UEQ:
5728   case FCmpInst::FCMP_OEQ:
5729     Pred = ICmpInst::ICMP_EQ;
5730     break;
5731   case FCmpInst::FCMP_UGT:
5732   case FCmpInst::FCMP_OGT:
5733     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5734     break;
5735   case FCmpInst::FCMP_UGE:
5736   case FCmpInst::FCMP_OGE:
5737     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5738     break;
5739   case FCmpInst::FCMP_ULT:
5740   case FCmpInst::FCMP_OLT:
5741     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5742     break;
5743   case FCmpInst::FCMP_ULE:
5744   case FCmpInst::FCMP_OLE:
5745     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5746     break;
5747   case FCmpInst::FCMP_UNE:
5748   case FCmpInst::FCMP_ONE:
5749     Pred = ICmpInst::ICMP_NE;
5750     break;
5751   case FCmpInst::FCMP_ORD:
5752     return replaceInstUsesWith(I, Builder.getTrue());
5753   case FCmpInst::FCMP_UNO:
5754     return replaceInstUsesWith(I, Builder.getFalse());
5755   }
5756 
5757   // Now we know that the APFloat is a normal number, zero or inf.
5758 
5759   // See if the FP constant is too large for the integer.  For example,
5760   // comparing an i8 to 300.0.
5761   unsigned IntWidth = IntTy->getScalarSizeInBits();
5762 
5763   if (!LHSUnsigned) {
5764     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5765     // and large values.
5766     APFloat SMax(RHS.getSemantics());
5767     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5768                           APFloat::rmNearestTiesToEven);
5769     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
5770       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5771           Pred == ICmpInst::ICMP_SLE)
5772         return replaceInstUsesWith(I, Builder.getTrue());
5773       return replaceInstUsesWith(I, Builder.getFalse());
5774     }
5775   } else {
5776     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5777     // +INF and large values.
5778     APFloat UMax(RHS.getSemantics());
5779     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5780                           APFloat::rmNearestTiesToEven);
5781     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
5782       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5783           Pred == ICmpInst::ICMP_ULE)
5784         return replaceInstUsesWith(I, Builder.getTrue());
5785       return replaceInstUsesWith(I, Builder.getFalse());
5786     }
5787   }
5788 
5789   if (!LHSUnsigned) {
5790     // See if the RHS value is < SignedMin.
5791     APFloat SMin(RHS.getSemantics());
5792     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5793                           APFloat::rmNearestTiesToEven);
5794     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5795       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5796           Pred == ICmpInst::ICMP_SGE)
5797         return replaceInstUsesWith(I, Builder.getTrue());
5798       return replaceInstUsesWith(I, Builder.getFalse());
5799     }
5800   } else {
5801     // See if the RHS value is < UnsignedMin.
5802     APFloat UMin(RHS.getSemantics());
5803     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5804                           APFloat::rmNearestTiesToEven);
5805     if (UMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
5806       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5807           Pred == ICmpInst::ICMP_UGE)
5808         return replaceInstUsesWith(I, Builder.getTrue());
5809       return replaceInstUsesWith(I, Builder.getFalse());
5810     }
5811   }
5812 
5813   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5814   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5815   // casting the FP value to the integer value and back, checking for equality.
5816   // Don't do this for zero, because -0.0 is not fractional.
5817   Constant *RHSInt = LHSUnsigned
5818     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5819     : ConstantExpr::getFPToSI(RHSC, IntTy);
5820   if (!RHS.isZero()) {
5821     bool Equal = LHSUnsigned
5822       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5823       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5824     if (!Equal) {
5825       // If we had a comparison against a fractional value, we have to adjust
5826       // the compare predicate and sometimes the value.  RHSC is rounded towards
5827       // zero at this point.
5828       switch (Pred) {
5829       default: llvm_unreachable("Unexpected integer comparison!");
5830       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5831         return replaceInstUsesWith(I, Builder.getTrue());
5832       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5833         return replaceInstUsesWith(I, Builder.getFalse());
5834       case ICmpInst::ICMP_ULE:
5835         // (float)int <= 4.4   --> int <= 4
5836         // (float)int <= -4.4  --> false
5837         if (RHS.isNegative())
5838           return replaceInstUsesWith(I, Builder.getFalse());
5839         break;
5840       case ICmpInst::ICMP_SLE:
5841         // (float)int <= 4.4   --> int <= 4
5842         // (float)int <= -4.4  --> int < -4
5843         if (RHS.isNegative())
5844           Pred = ICmpInst::ICMP_SLT;
5845         break;
5846       case ICmpInst::ICMP_ULT:
5847         // (float)int < -4.4   --> false
5848         // (float)int < 4.4    --> int <= 4
5849         if (RHS.isNegative())
5850           return replaceInstUsesWith(I, Builder.getFalse());
5851         Pred = ICmpInst::ICMP_ULE;
5852         break;
5853       case ICmpInst::ICMP_SLT:
5854         // (float)int < -4.4   --> int < -4
5855         // (float)int < 4.4    --> int <= 4
5856         if (!RHS.isNegative())
5857           Pred = ICmpInst::ICMP_SLE;
5858         break;
5859       case ICmpInst::ICMP_UGT:
5860         // (float)int > 4.4    --> int > 4
5861         // (float)int > -4.4   --> true
5862         if (RHS.isNegative())
5863           return replaceInstUsesWith(I, Builder.getTrue());
5864         break;
5865       case ICmpInst::ICMP_SGT:
5866         // (float)int > 4.4    --> int > 4
5867         // (float)int > -4.4   --> int >= -4
5868         if (RHS.isNegative())
5869           Pred = ICmpInst::ICMP_SGE;
5870         break;
5871       case ICmpInst::ICMP_UGE:
5872         // (float)int >= -4.4   --> true
5873         // (float)int >= 4.4    --> int > 4
5874         if (RHS.isNegative())
5875           return replaceInstUsesWith(I, Builder.getTrue());
5876         Pred = ICmpInst::ICMP_UGT;
5877         break;
5878       case ICmpInst::ICMP_SGE:
5879         // (float)int >= -4.4   --> int >= -4
5880         // (float)int >= 4.4    --> int > 4
5881         if (!RHS.isNegative())
5882           Pred = ICmpInst::ICMP_SGT;
5883         break;
5884       }
5885     }
5886   }
5887 
5888   // Lower this FP comparison into an appropriate integer version of the
5889   // comparison.
5890   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5891 }
5892 
5893 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5894 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5895                                               Constant *RHSC) {
5896   // When C is not 0.0 and infinities are not allowed:
5897   // (C / X) < 0.0 is a sign-bit test of X
5898   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5899   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5900   //
5901   // Proof:
5902   // Multiply (C / X) < 0.0 by X * X / C.
5903   // - X is non zero, if it is the flag 'ninf' is violated.
5904   // - C defines the sign of X * X * C. Thus it also defines whether to swap
5905   //   the predicate. C is also non zero by definition.
5906   //
5907   // Thus X * X / C is non zero and the transformation is valid. [qed]
5908 
5909   FCmpInst::Predicate Pred = I.getPredicate();
5910 
5911   // Check that predicates are valid.
5912   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5913       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5914     return nullptr;
5915 
5916   // Check that RHS operand is zero.
5917   if (!match(RHSC, m_AnyZeroFP()))
5918     return nullptr;
5919 
5920   // Check fastmath flags ('ninf').
5921   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5922     return nullptr;
5923 
5924   // Check the properties of the dividend. It must not be zero to avoid a
5925   // division by zero (see Proof).
5926   const APFloat *C;
5927   if (!match(LHSI->getOperand(0), m_APFloat(C)))
5928     return nullptr;
5929 
5930   if (C->isZero())
5931     return nullptr;
5932 
5933   // Get swapped predicate if necessary.
5934   if (C->isNegative())
5935     Pred = I.getSwappedPredicate();
5936 
5937   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5938 }
5939 
5940 /// Optimize fabs(X) compared with zero.
5941 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) {
5942   Value *X;
5943   if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5944       !match(I.getOperand(1), m_PosZeroFP()))
5945     return nullptr;
5946 
5947   auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5948     I->setPredicate(P);
5949     I->setOperand(0, X);
5950     return I;
5951   };
5952 
5953   switch (I.getPredicate()) {
5954   case FCmpInst::FCMP_UGE:
5955   case FCmpInst::FCMP_OLT:
5956     // fabs(X) >= 0.0 --> true
5957     // fabs(X) <  0.0 --> false
5958     llvm_unreachable("fcmp should have simplified");
5959 
5960   case FCmpInst::FCMP_OGT:
5961     // fabs(X) > 0.0 --> X != 0.0
5962     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
5963 
5964   case FCmpInst::FCMP_UGT:
5965     // fabs(X) u> 0.0 --> X u!= 0.0
5966     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
5967 
5968   case FCmpInst::FCMP_OLE:
5969     // fabs(X) <= 0.0 --> X == 0.0
5970     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
5971 
5972   case FCmpInst::FCMP_ULE:
5973     // fabs(X) u<= 0.0 --> X u== 0.0
5974     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
5975 
5976   case FCmpInst::FCMP_OGE:
5977     // fabs(X) >= 0.0 --> !isnan(X)
5978     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5979     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
5980 
5981   case FCmpInst::FCMP_ULT:
5982     // fabs(X) u< 0.0 --> isnan(X)
5983     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5984     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
5985 
5986   case FCmpInst::FCMP_OEQ:
5987   case FCmpInst::FCMP_UEQ:
5988   case FCmpInst::FCMP_ONE:
5989   case FCmpInst::FCMP_UNE:
5990   case FCmpInst::FCMP_ORD:
5991   case FCmpInst::FCMP_UNO:
5992     // Look through the fabs() because it doesn't change anything but the sign.
5993     // fabs(X) == 0.0 --> X == 0.0,
5994     // fabs(X) != 0.0 --> X != 0.0
5995     // isnan(fabs(X)) --> isnan(X)
5996     // !isnan(fabs(X) --> !isnan(X)
5997     return replacePredAndOp0(&I, I.getPredicate(), X);
5998 
5999   default:
6000     return nullptr;
6001   }
6002 }
6003 
6004 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
6005   bool Changed = false;
6006 
6007   /// Orders the operands of the compare so that they are listed from most
6008   /// complex to least complex.  This puts constants before unary operators,
6009   /// before binary operators.
6010   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6011     I.swapOperands();
6012     Changed = true;
6013   }
6014 
6015   const CmpInst::Predicate Pred = I.getPredicate();
6016   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6017   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6018                                   SQ.getWithInstruction(&I)))
6019     return replaceInstUsesWith(I, V);
6020 
6021   // Simplify 'fcmp pred X, X'
6022   Type *OpType = Op0->getType();
6023   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6024   if (Op0 == Op1) {
6025     switch (Pred) {
6026       default: break;
6027     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6028     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6029     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6030     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6031       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6032       I.setPredicate(FCmpInst::FCMP_UNO);
6033       I.setOperand(1, Constant::getNullValue(OpType));
6034       return &I;
6035 
6036     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6037     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6038     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6039     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6040       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6041       I.setPredicate(FCmpInst::FCMP_ORD);
6042       I.setOperand(1, Constant::getNullValue(OpType));
6043       return &I;
6044     }
6045   }
6046 
6047   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6048   // then canonicalize the operand to 0.0.
6049   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6050     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6051       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6052 
6053     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6054       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6055   }
6056 
6057   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6058   Value *X, *Y;
6059   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6060     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6061 
6062   // Test if the FCmpInst instruction is used exclusively by a select as
6063   // part of a minimum or maximum operation. If so, refrain from doing
6064   // any other folding. This helps out other analyses which understand
6065   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6066   // and CodeGen. And in this case, at least one of the comparison
6067   // operands has at least one user besides the compare (the select),
6068   // which would often largely negate the benefit of folding anyway.
6069   if (I.hasOneUse())
6070     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6071       Value *A, *B;
6072       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6073       if (SPR.Flavor != SPF_UNKNOWN)
6074         return nullptr;
6075     }
6076 
6077   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6078   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6079   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6080     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6081 
6082   // Handle fcmp with instruction LHS and constant RHS.
6083   Instruction *LHSI;
6084   Constant *RHSC;
6085   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6086     switch (LHSI->getOpcode()) {
6087     case Instruction::PHI:
6088       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6089       // block.  If in the same block, we're encouraging jump threading.  If
6090       // not, we are just pessimizing the code by making an i1 phi.
6091       if (LHSI->getParent() == I.getParent())
6092         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6093           return NV;
6094       break;
6095     case Instruction::SIToFP:
6096     case Instruction::UIToFP:
6097       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6098         return NV;
6099       break;
6100     case Instruction::FDiv:
6101       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6102         return NV;
6103       break;
6104     case Instruction::Load:
6105       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6106         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6107           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6108               !cast<LoadInst>(LHSI)->isVolatile())
6109             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6110               return Res;
6111       break;
6112   }
6113   }
6114 
6115   if (Instruction *R = foldFabsWithFcmpZero(I))
6116     return R;
6117 
6118   if (match(Op0, m_FNeg(m_Value(X)))) {
6119     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6120     Constant *C;
6121     if (match(Op1, m_Constant(C))) {
6122       Constant *NegC = ConstantExpr::getFNeg(C);
6123       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6124     }
6125   }
6126 
6127   if (match(Op0, m_FPExt(m_Value(X)))) {
6128     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6129     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6130       return new FCmpInst(Pred, X, Y, "", &I);
6131 
6132     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6133     const APFloat *C;
6134     if (match(Op1, m_APFloat(C))) {
6135       const fltSemantics &FPSem =
6136           X->getType()->getScalarType()->getFltSemantics();
6137       bool Lossy;
6138       APFloat TruncC = *C;
6139       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6140 
6141       // Avoid lossy conversions and denormals.
6142       // Zero is a special case that's OK to convert.
6143       APFloat Fabs = TruncC;
6144       Fabs.clearSign();
6145       if (!Lossy &&
6146           ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) !=
6147             APFloat::cmpLessThan) || Fabs.isZero())) {
6148         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6149         return new FCmpInst(Pred, X, NewC, "", &I);
6150       }
6151     }
6152   }
6153 
6154   if (I.getType()->isVectorTy())
6155     if (Instruction *Res = foldVectorCmp(I, Builder))
6156       return Res;
6157 
6158   return Changed ? &I : nullptr;
6159 }
6160