1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 #include "llvm/Transforms/InstCombine/InstCombiner.h" 28 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 // How many times is a select replaced by one of its operands? 35 STATISTIC(NumSel, "Number of select opts"); 36 37 38 /// Compute Result = In1+In2, returning true if the result overflowed for this 39 /// type. 40 static bool addWithOverflow(APInt &Result, const APInt &In1, 41 const APInt &In2, bool IsSigned = false) { 42 bool Overflow; 43 if (IsSigned) 44 Result = In1.sadd_ov(In2, Overflow); 45 else 46 Result = In1.uadd_ov(In2, Overflow); 47 48 return Overflow; 49 } 50 51 /// Compute Result = In1-In2, returning true if the result overflowed for this 52 /// type. 53 static bool subWithOverflow(APInt &Result, const APInt &In1, 54 const APInt &In2, bool IsSigned = false) { 55 bool Overflow; 56 if (IsSigned) 57 Result = In1.ssub_ov(In2, Overflow); 58 else 59 Result = In1.usub_ov(In2, Overflow); 60 61 return Overflow; 62 } 63 64 /// Given an icmp instruction, return true if any use of this comparison is a 65 /// branch on sign bit comparison. 66 static bool hasBranchUse(ICmpInst &I) { 67 for (auto *U : I.users()) 68 if (isa<BranchInst>(U)) 69 return true; 70 return false; 71 } 72 73 /// Returns true if the exploded icmp can be expressed as a signed comparison 74 /// to zero and updates the predicate accordingly. 75 /// The signedness of the comparison is preserved. 76 /// TODO: Refactor with decomposeBitTestICmp()? 77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 78 if (!ICmpInst::isSigned(Pred)) 79 return false; 80 81 if (C.isNullValue()) 82 return ICmpInst::isRelational(Pred); 83 84 if (C.isOneValue()) { 85 if (Pred == ICmpInst::ICMP_SLT) { 86 Pred = ICmpInst::ICMP_SLE; 87 return true; 88 } 89 } else if (C.isAllOnesValue()) { 90 if (Pred == ICmpInst::ICMP_SGT) { 91 Pred = ICmpInst::ICMP_SGE; 92 return true; 93 } 94 } 95 96 return false; 97 } 98 99 /// Given a signed integer type and a set of known zero and one bits, compute 100 /// the maximum and minimum values that could have the specified known zero and 101 /// known one bits, returning them in Min/Max. 102 /// TODO: Move to method on KnownBits struct? 103 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 104 APInt &Min, APInt &Max) { 105 assert(Known.getBitWidth() == Min.getBitWidth() && 106 Known.getBitWidth() == Max.getBitWidth() && 107 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 108 APInt UnknownBits = ~(Known.Zero|Known.One); 109 110 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 111 // bit if it is unknown. 112 Min = Known.One; 113 Max = Known.One|UnknownBits; 114 115 if (UnknownBits.isNegative()) { // Sign bit is unknown 116 Min.setSignBit(); 117 Max.clearSignBit(); 118 } 119 } 120 121 /// Given an unsigned integer type and a set of known zero and one bits, compute 122 /// the maximum and minimum values that could have the specified known zero and 123 /// known one bits, returning them in Min/Max. 124 /// TODO: Move to method on KnownBits struct? 125 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 126 APInt &Min, APInt &Max) { 127 assert(Known.getBitWidth() == Min.getBitWidth() && 128 Known.getBitWidth() == Max.getBitWidth() && 129 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 130 APInt UnknownBits = ~(Known.Zero|Known.One); 131 132 // The minimum value is when the unknown bits are all zeros. 133 Min = Known.One; 134 // The maximum value is when the unknown bits are all ones. 135 Max = Known.One|UnknownBits; 136 } 137 138 /// This is called when we see this pattern: 139 /// cmp pred (load (gep GV, ...)), cmpcst 140 /// where GV is a global variable with a constant initializer. Try to simplify 141 /// this into some simple computation that does not need the load. For example 142 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 143 /// 144 /// If AndCst is non-null, then the loaded value is masked with that constant 145 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 146 Instruction * 147 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 148 GlobalVariable *GV, CmpInst &ICI, 149 ConstantInt *AndCst) { 150 Constant *Init = GV->getInitializer(); 151 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 152 return nullptr; 153 154 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 155 // Don't blow up on huge arrays. 156 if (ArrayElementCount > MaxArraySizeForCombine) 157 return nullptr; 158 159 // There are many forms of this optimization we can handle, for now, just do 160 // the simple index into a single-dimensional array. 161 // 162 // Require: GEP GV, 0, i {{, constant indices}} 163 if (GEP->getNumOperands() < 3 || 164 !isa<ConstantInt>(GEP->getOperand(1)) || 165 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 166 isa<Constant>(GEP->getOperand(2))) 167 return nullptr; 168 169 // Check that indices after the variable are constants and in-range for the 170 // type they index. Collect the indices. This is typically for arrays of 171 // structs. 172 SmallVector<unsigned, 4> LaterIndices; 173 174 Type *EltTy = Init->getType()->getArrayElementType(); 175 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 176 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 177 if (!Idx) return nullptr; // Variable index. 178 179 uint64_t IdxVal = Idx->getZExtValue(); 180 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 181 182 if (StructType *STy = dyn_cast<StructType>(EltTy)) 183 EltTy = STy->getElementType(IdxVal); 184 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 185 if (IdxVal >= ATy->getNumElements()) return nullptr; 186 EltTy = ATy->getElementType(); 187 } else { 188 return nullptr; // Unknown type. 189 } 190 191 LaterIndices.push_back(IdxVal); 192 } 193 194 enum { Overdefined = -3, Undefined = -2 }; 195 196 // Variables for our state machines. 197 198 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 199 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 200 // and 87 is the second (and last) index. FirstTrueElement is -2 when 201 // undefined, otherwise set to the first true element. SecondTrueElement is 202 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 203 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 204 205 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 206 // form "i != 47 & i != 87". Same state transitions as for true elements. 207 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 208 209 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 210 /// define a state machine that triggers for ranges of values that the index 211 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 212 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 213 /// index in the range (inclusive). We use -2 for undefined here because we 214 /// use relative comparisons and don't want 0-1 to match -1. 215 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 216 217 // MagicBitvector - This is a magic bitvector where we set a bit if the 218 // comparison is true for element 'i'. If there are 64 elements or less in 219 // the array, this will fully represent all the comparison results. 220 uint64_t MagicBitvector = 0; 221 222 // Scan the array and see if one of our patterns matches. 223 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 224 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 225 Constant *Elt = Init->getAggregateElement(i); 226 if (!Elt) return nullptr; 227 228 // If this is indexing an array of structures, get the structure element. 229 if (!LaterIndices.empty()) 230 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 231 232 // If the element is masked, handle it. 233 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 234 235 // Find out if the comparison would be true or false for the i'th element. 236 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 237 CompareRHS, DL, &TLI); 238 // If the result is undef for this element, ignore it. 239 if (isa<UndefValue>(C)) { 240 // Extend range state machines to cover this element in case there is an 241 // undef in the middle of the range. 242 if (TrueRangeEnd == (int)i-1) 243 TrueRangeEnd = i; 244 if (FalseRangeEnd == (int)i-1) 245 FalseRangeEnd = i; 246 continue; 247 } 248 249 // If we can't compute the result for any of the elements, we have to give 250 // up evaluating the entire conditional. 251 if (!isa<ConstantInt>(C)) return nullptr; 252 253 // Otherwise, we know if the comparison is true or false for this element, 254 // update our state machines. 255 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 256 257 // State machine for single/double/range index comparison. 258 if (IsTrueForElt) { 259 // Update the TrueElement state machine. 260 if (FirstTrueElement == Undefined) 261 FirstTrueElement = TrueRangeEnd = i; // First true element. 262 else { 263 // Update double-compare state machine. 264 if (SecondTrueElement == Undefined) 265 SecondTrueElement = i; 266 else 267 SecondTrueElement = Overdefined; 268 269 // Update range state machine. 270 if (TrueRangeEnd == (int)i-1) 271 TrueRangeEnd = i; 272 else 273 TrueRangeEnd = Overdefined; 274 } 275 } else { 276 // Update the FalseElement state machine. 277 if (FirstFalseElement == Undefined) 278 FirstFalseElement = FalseRangeEnd = i; // First false element. 279 else { 280 // Update double-compare state machine. 281 if (SecondFalseElement == Undefined) 282 SecondFalseElement = i; 283 else 284 SecondFalseElement = Overdefined; 285 286 // Update range state machine. 287 if (FalseRangeEnd == (int)i-1) 288 FalseRangeEnd = i; 289 else 290 FalseRangeEnd = Overdefined; 291 } 292 } 293 294 // If this element is in range, update our magic bitvector. 295 if (i < 64 && IsTrueForElt) 296 MagicBitvector |= 1ULL << i; 297 298 // If all of our states become overdefined, bail out early. Since the 299 // predicate is expensive, only check it every 8 elements. This is only 300 // really useful for really huge arrays. 301 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 302 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 303 FalseRangeEnd == Overdefined) 304 return nullptr; 305 } 306 307 // Now that we've scanned the entire array, emit our new comparison(s). We 308 // order the state machines in complexity of the generated code. 309 Value *Idx = GEP->getOperand(2); 310 311 // If the index is larger than the pointer size of the target, truncate the 312 // index down like the GEP would do implicitly. We don't have to do this for 313 // an inbounds GEP because the index can't be out of range. 314 if (!GEP->isInBounds()) { 315 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 316 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 317 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 318 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 319 } 320 321 // If the comparison is only true for one or two elements, emit direct 322 // comparisons. 323 if (SecondTrueElement != Overdefined) { 324 // None true -> false. 325 if (FirstTrueElement == Undefined) 326 return replaceInstUsesWith(ICI, Builder.getFalse()); 327 328 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 329 330 // True for one element -> 'i == 47'. 331 if (SecondTrueElement == Undefined) 332 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 333 334 // True for two elements -> 'i == 47 | i == 72'. 335 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 336 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 337 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 338 return BinaryOperator::CreateOr(C1, C2); 339 } 340 341 // If the comparison is only false for one or two elements, emit direct 342 // comparisons. 343 if (SecondFalseElement != Overdefined) { 344 // None false -> true. 345 if (FirstFalseElement == Undefined) 346 return replaceInstUsesWith(ICI, Builder.getTrue()); 347 348 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 349 350 // False for one element -> 'i != 47'. 351 if (SecondFalseElement == Undefined) 352 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 353 354 // False for two elements -> 'i != 47 & i != 72'. 355 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 356 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 357 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 358 return BinaryOperator::CreateAnd(C1, C2); 359 } 360 361 // If the comparison can be replaced with a range comparison for the elements 362 // where it is true, emit the range check. 363 if (TrueRangeEnd != Overdefined) { 364 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 365 366 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 367 if (FirstTrueElement) { 368 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 369 Idx = Builder.CreateAdd(Idx, Offs); 370 } 371 372 Value *End = ConstantInt::get(Idx->getType(), 373 TrueRangeEnd-FirstTrueElement+1); 374 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 375 } 376 377 // False range check. 378 if (FalseRangeEnd != Overdefined) { 379 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 380 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 381 if (FirstFalseElement) { 382 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 383 Idx = Builder.CreateAdd(Idx, Offs); 384 } 385 386 Value *End = ConstantInt::get(Idx->getType(), 387 FalseRangeEnd-FirstFalseElement); 388 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 389 } 390 391 // If a magic bitvector captures the entire comparison state 392 // of this load, replace it with computation that does: 393 // ((magic_cst >> i) & 1) != 0 394 { 395 Type *Ty = nullptr; 396 397 // Look for an appropriate type: 398 // - The type of Idx if the magic fits 399 // - The smallest fitting legal type 400 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 401 Ty = Idx->getType(); 402 else 403 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 404 405 if (Ty) { 406 Value *V = Builder.CreateIntCast(Idx, Ty, false); 407 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 408 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 409 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 410 } 411 } 412 413 return nullptr; 414 } 415 416 /// Return a value that can be used to compare the *offset* implied by a GEP to 417 /// zero. For example, if we have &A[i], we want to return 'i' for 418 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 419 /// are involved. The above expression would also be legal to codegen as 420 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 421 /// This latter form is less amenable to optimization though, and we are allowed 422 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 423 /// 424 /// If we can't emit an optimized form for this expression, this returns null. 425 /// 426 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 427 const DataLayout &DL) { 428 gep_type_iterator GTI = gep_type_begin(GEP); 429 430 // Check to see if this gep only has a single variable index. If so, and if 431 // any constant indices are a multiple of its scale, then we can compute this 432 // in terms of the scale of the variable index. For example, if the GEP 433 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 434 // because the expression will cross zero at the same point. 435 unsigned i, e = GEP->getNumOperands(); 436 int64_t Offset = 0; 437 for (i = 1; i != e; ++i, ++GTI) { 438 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 439 // Compute the aggregate offset of constant indices. 440 if (CI->isZero()) continue; 441 442 // Handle a struct index, which adds its field offset to the pointer. 443 if (StructType *STy = GTI.getStructTypeOrNull()) { 444 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 445 } else { 446 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 447 Offset += Size*CI->getSExtValue(); 448 } 449 } else { 450 // Found our variable index. 451 break; 452 } 453 } 454 455 // If there are no variable indices, we must have a constant offset, just 456 // evaluate it the general way. 457 if (i == e) return nullptr; 458 459 Value *VariableIdx = GEP->getOperand(i); 460 // Determine the scale factor of the variable element. For example, this is 461 // 4 if the variable index is into an array of i32. 462 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 463 464 // Verify that there are no other variable indices. If so, emit the hard way. 465 for (++i, ++GTI; i != e; ++i, ++GTI) { 466 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 467 if (!CI) return nullptr; 468 469 // Compute the aggregate offset of constant indices. 470 if (CI->isZero()) continue; 471 472 // Handle a struct index, which adds its field offset to the pointer. 473 if (StructType *STy = GTI.getStructTypeOrNull()) { 474 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 475 } else { 476 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 477 Offset += Size*CI->getSExtValue(); 478 } 479 } 480 481 // Okay, we know we have a single variable index, which must be a 482 // pointer/array/vector index. If there is no offset, life is simple, return 483 // the index. 484 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 485 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 486 if (Offset == 0) { 487 // Cast to intptrty in case a truncation occurs. If an extension is needed, 488 // we don't need to bother extending: the extension won't affect where the 489 // computation crosses zero. 490 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 491 IntPtrWidth) { 492 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 493 } 494 return VariableIdx; 495 } 496 497 // Otherwise, there is an index. The computation we will do will be modulo 498 // the pointer size. 499 Offset = SignExtend64(Offset, IntPtrWidth); 500 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 501 502 // To do this transformation, any constant index must be a multiple of the 503 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 504 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 505 // multiple of the variable scale. 506 int64_t NewOffs = Offset / (int64_t)VariableScale; 507 if (Offset != NewOffs*(int64_t)VariableScale) 508 return nullptr; 509 510 // Okay, we can do this evaluation. Start by converting the index to intptr. 511 if (VariableIdx->getType() != IntPtrTy) 512 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 513 true /*Signed*/); 514 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 515 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 516 } 517 518 /// Returns true if we can rewrite Start as a GEP with pointer Base 519 /// and some integer offset. The nodes that need to be re-written 520 /// for this transformation will be added to Explored. 521 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 522 const DataLayout &DL, 523 SetVector<Value *> &Explored) { 524 SmallVector<Value *, 16> WorkList(1, Start); 525 Explored.insert(Base); 526 527 // The following traversal gives us an order which can be used 528 // when doing the final transformation. Since in the final 529 // transformation we create the PHI replacement instructions first, 530 // we don't have to get them in any particular order. 531 // 532 // However, for other instructions we will have to traverse the 533 // operands of an instruction first, which means that we have to 534 // do a post-order traversal. 535 while (!WorkList.empty()) { 536 SetVector<PHINode *> PHIs; 537 538 while (!WorkList.empty()) { 539 if (Explored.size() >= 100) 540 return false; 541 542 Value *V = WorkList.back(); 543 544 if (Explored.count(V) != 0) { 545 WorkList.pop_back(); 546 continue; 547 } 548 549 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 550 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 551 // We've found some value that we can't explore which is different from 552 // the base. Therefore we can't do this transformation. 553 return false; 554 555 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 556 auto *CI = cast<CastInst>(V); 557 if (!CI->isNoopCast(DL)) 558 return false; 559 560 if (Explored.count(CI->getOperand(0)) == 0) 561 WorkList.push_back(CI->getOperand(0)); 562 } 563 564 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 565 // We're limiting the GEP to having one index. This will preserve 566 // the original pointer type. We could handle more cases in the 567 // future. 568 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 569 GEP->getType() != Start->getType()) 570 return false; 571 572 if (Explored.count(GEP->getOperand(0)) == 0) 573 WorkList.push_back(GEP->getOperand(0)); 574 } 575 576 if (WorkList.back() == V) { 577 WorkList.pop_back(); 578 // We've finished visiting this node, mark it as such. 579 Explored.insert(V); 580 } 581 582 if (auto *PN = dyn_cast<PHINode>(V)) { 583 // We cannot transform PHIs on unsplittable basic blocks. 584 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 585 return false; 586 Explored.insert(PN); 587 PHIs.insert(PN); 588 } 589 } 590 591 // Explore the PHI nodes further. 592 for (auto *PN : PHIs) 593 for (Value *Op : PN->incoming_values()) 594 if (Explored.count(Op) == 0) 595 WorkList.push_back(Op); 596 } 597 598 // Make sure that we can do this. Since we can't insert GEPs in a basic 599 // block before a PHI node, we can't easily do this transformation if 600 // we have PHI node users of transformed instructions. 601 for (Value *Val : Explored) { 602 for (Value *Use : Val->uses()) { 603 604 auto *PHI = dyn_cast<PHINode>(Use); 605 auto *Inst = dyn_cast<Instruction>(Val); 606 607 if (Inst == Base || Inst == PHI || !Inst || !PHI || 608 Explored.count(PHI) == 0) 609 continue; 610 611 if (PHI->getParent() == Inst->getParent()) 612 return false; 613 } 614 } 615 return true; 616 } 617 618 // Sets the appropriate insert point on Builder where we can add 619 // a replacement Instruction for V (if that is possible). 620 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 621 bool Before = true) { 622 if (auto *PHI = dyn_cast<PHINode>(V)) { 623 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 624 return; 625 } 626 if (auto *I = dyn_cast<Instruction>(V)) { 627 if (!Before) 628 I = &*std::next(I->getIterator()); 629 Builder.SetInsertPoint(I); 630 return; 631 } 632 if (auto *A = dyn_cast<Argument>(V)) { 633 // Set the insertion point in the entry block. 634 BasicBlock &Entry = A->getParent()->getEntryBlock(); 635 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 636 return; 637 } 638 // Otherwise, this is a constant and we don't need to set a new 639 // insertion point. 640 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 641 } 642 643 /// Returns a re-written value of Start as an indexed GEP using Base as a 644 /// pointer. 645 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 646 const DataLayout &DL, 647 SetVector<Value *> &Explored) { 648 // Perform all the substitutions. This is a bit tricky because we can 649 // have cycles in our use-def chains. 650 // 1. Create the PHI nodes without any incoming values. 651 // 2. Create all the other values. 652 // 3. Add the edges for the PHI nodes. 653 // 4. Emit GEPs to get the original pointers. 654 // 5. Remove the original instructions. 655 Type *IndexType = IntegerType::get( 656 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 657 658 DenseMap<Value *, Value *> NewInsts; 659 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 660 661 // Create the new PHI nodes, without adding any incoming values. 662 for (Value *Val : Explored) { 663 if (Val == Base) 664 continue; 665 // Create empty phi nodes. This avoids cyclic dependencies when creating 666 // the remaining instructions. 667 if (auto *PHI = dyn_cast<PHINode>(Val)) 668 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 669 PHI->getName() + ".idx", PHI); 670 } 671 IRBuilder<> Builder(Base->getContext()); 672 673 // Create all the other instructions. 674 for (Value *Val : Explored) { 675 676 if (NewInsts.find(Val) != NewInsts.end()) 677 continue; 678 679 if (auto *CI = dyn_cast<CastInst>(Val)) { 680 // Don't get rid of the intermediate variable here; the store can grow 681 // the map which will invalidate the reference to the input value. 682 Value *V = NewInsts[CI->getOperand(0)]; 683 NewInsts[CI] = V; 684 continue; 685 } 686 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 687 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 688 : GEP->getOperand(1); 689 setInsertionPoint(Builder, GEP); 690 // Indices might need to be sign extended. GEPs will magically do 691 // this, but we need to do it ourselves here. 692 if (Index->getType()->getScalarSizeInBits() != 693 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 694 Index = Builder.CreateSExtOrTrunc( 695 Index, NewInsts[GEP->getOperand(0)]->getType(), 696 GEP->getOperand(0)->getName() + ".sext"); 697 } 698 699 auto *Op = NewInsts[GEP->getOperand(0)]; 700 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 701 NewInsts[GEP] = Index; 702 else 703 NewInsts[GEP] = Builder.CreateNSWAdd( 704 Op, Index, GEP->getOperand(0)->getName() + ".add"); 705 continue; 706 } 707 if (isa<PHINode>(Val)) 708 continue; 709 710 llvm_unreachable("Unexpected instruction type"); 711 } 712 713 // Add the incoming values to the PHI nodes. 714 for (Value *Val : Explored) { 715 if (Val == Base) 716 continue; 717 // All the instructions have been created, we can now add edges to the 718 // phi nodes. 719 if (auto *PHI = dyn_cast<PHINode>(Val)) { 720 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 721 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 722 Value *NewIncoming = PHI->getIncomingValue(I); 723 724 if (NewInsts.find(NewIncoming) != NewInsts.end()) 725 NewIncoming = NewInsts[NewIncoming]; 726 727 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 728 } 729 } 730 } 731 732 for (Value *Val : Explored) { 733 if (Val == Base) 734 continue; 735 736 // Depending on the type, for external users we have to emit 737 // a GEP or a GEP + ptrtoint. 738 setInsertionPoint(Builder, Val, false); 739 740 // If required, create an inttoptr instruction for Base. 741 Value *NewBase = Base; 742 if (!Base->getType()->isPointerTy()) 743 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 744 Start->getName() + "to.ptr"); 745 746 Value *GEP = Builder.CreateInBoundsGEP( 747 Start->getType()->getPointerElementType(), NewBase, 748 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 749 750 if (!Val->getType()->isPointerTy()) { 751 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 752 Val->getName() + ".conv"); 753 GEP = Cast; 754 } 755 Val->replaceAllUsesWith(GEP); 756 } 757 758 return NewInsts[Start]; 759 } 760 761 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 762 /// the input Value as a constant indexed GEP. Returns a pair containing 763 /// the GEPs Pointer and Index. 764 static std::pair<Value *, Value *> 765 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 766 Type *IndexType = IntegerType::get(V->getContext(), 767 DL.getIndexTypeSizeInBits(V->getType())); 768 769 Constant *Index = ConstantInt::getNullValue(IndexType); 770 while (true) { 771 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 772 // We accept only inbouds GEPs here to exclude the possibility of 773 // overflow. 774 if (!GEP->isInBounds()) 775 break; 776 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 777 GEP->getType() == V->getType()) { 778 V = GEP->getOperand(0); 779 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 780 Index = ConstantExpr::getAdd( 781 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 782 continue; 783 } 784 break; 785 } 786 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 787 if (!CI->isNoopCast(DL)) 788 break; 789 V = CI->getOperand(0); 790 continue; 791 } 792 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 793 if (!CI->isNoopCast(DL)) 794 break; 795 V = CI->getOperand(0); 796 continue; 797 } 798 break; 799 } 800 return {V, Index}; 801 } 802 803 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 804 /// We can look through PHIs, GEPs and casts in order to determine a common base 805 /// between GEPLHS and RHS. 806 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 807 ICmpInst::Predicate Cond, 808 const DataLayout &DL) { 809 // FIXME: Support vector of pointers. 810 if (GEPLHS->getType()->isVectorTy()) 811 return nullptr; 812 813 if (!GEPLHS->hasAllConstantIndices()) 814 return nullptr; 815 816 // Make sure the pointers have the same type. 817 if (GEPLHS->getType() != RHS->getType()) 818 return nullptr; 819 820 Value *PtrBase, *Index; 821 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 822 823 // The set of nodes that will take part in this transformation. 824 SetVector<Value *> Nodes; 825 826 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 827 return nullptr; 828 829 // We know we can re-write this as 830 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 831 // Since we've only looked through inbouds GEPs we know that we 832 // can't have overflow on either side. We can therefore re-write 833 // this as: 834 // OFFSET1 cmp OFFSET2 835 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 836 837 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 838 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 839 // offset. Since Index is the offset of LHS to the base pointer, we will now 840 // compare the offsets instead of comparing the pointers. 841 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 842 } 843 844 /// Fold comparisons between a GEP instruction and something else. At this point 845 /// we know that the GEP is on the LHS of the comparison. 846 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 847 ICmpInst::Predicate Cond, 848 Instruction &I) { 849 // Don't transform signed compares of GEPs into index compares. Even if the 850 // GEP is inbounds, the final add of the base pointer can have signed overflow 851 // and would change the result of the icmp. 852 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 853 // the maximum signed value for the pointer type. 854 if (ICmpInst::isSigned(Cond)) 855 return nullptr; 856 857 // Look through bitcasts and addrspacecasts. We do not however want to remove 858 // 0 GEPs. 859 if (!isa<GetElementPtrInst>(RHS)) 860 RHS = RHS->stripPointerCasts(); 861 862 Value *PtrBase = GEPLHS->getOperand(0); 863 // FIXME: Support vector pointer GEPs. 864 if (PtrBase == RHS && GEPLHS->isInBounds() && 865 !GEPLHS->getType()->isVectorTy()) { 866 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 867 // This transformation (ignoring the base and scales) is valid because we 868 // know pointers can't overflow since the gep is inbounds. See if we can 869 // output an optimized form. 870 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 871 872 // If not, synthesize the offset the hard way. 873 if (!Offset) 874 Offset = EmitGEPOffset(GEPLHS); 875 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 876 Constant::getNullValue(Offset->getType())); 877 } 878 879 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 880 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 881 !NullPointerIsDefined(I.getFunction(), 882 RHS->getType()->getPointerAddressSpace())) { 883 // For most address spaces, an allocation can't be placed at null, but null 884 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 885 // the only valid inbounds address derived from null, is null itself. 886 // Thus, we have four cases to consider: 887 // 1) Base == nullptr, Offset == 0 -> inbounds, null 888 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 889 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 890 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 891 // 892 // (Note if we're indexing a type of size 0, that simply collapses into one 893 // of the buckets above.) 894 // 895 // In general, we're allowed to make values less poison (i.e. remove 896 // sources of full UB), so in this case, we just select between the two 897 // non-poison cases (1 and 4 above). 898 // 899 // For vectors, we apply the same reasoning on a per-lane basis. 900 auto *Base = GEPLHS->getPointerOperand(); 901 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 902 int NumElts = cast<FixedVectorType>(GEPLHS->getType())->getNumElements(); 903 Base = Builder.CreateVectorSplat(NumElts, Base); 904 } 905 return new ICmpInst(Cond, Base, 906 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 907 cast<Constant>(RHS), Base->getType())); 908 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 909 // If the base pointers are different, but the indices are the same, just 910 // compare the base pointer. 911 if (PtrBase != GEPRHS->getOperand(0)) { 912 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 913 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 914 GEPRHS->getOperand(0)->getType(); 915 if (IndicesTheSame) 916 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 917 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 918 IndicesTheSame = false; 919 break; 920 } 921 922 // If all indices are the same, just compare the base pointers. 923 Type *BaseType = GEPLHS->getOperand(0)->getType(); 924 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 925 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 926 927 // If we're comparing GEPs with two base pointers that only differ in type 928 // and both GEPs have only constant indices or just one use, then fold 929 // the compare with the adjusted indices. 930 // FIXME: Support vector of pointers. 931 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 932 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 933 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 934 PtrBase->stripPointerCasts() == 935 GEPRHS->getOperand(0)->stripPointerCasts() && 936 !GEPLHS->getType()->isVectorTy()) { 937 Value *LOffset = EmitGEPOffset(GEPLHS); 938 Value *ROffset = EmitGEPOffset(GEPRHS); 939 940 // If we looked through an addrspacecast between different sized address 941 // spaces, the LHS and RHS pointers are different sized 942 // integers. Truncate to the smaller one. 943 Type *LHSIndexTy = LOffset->getType(); 944 Type *RHSIndexTy = ROffset->getType(); 945 if (LHSIndexTy != RHSIndexTy) { 946 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 947 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 948 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 949 } else 950 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 951 } 952 953 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 954 LOffset, ROffset); 955 return replaceInstUsesWith(I, Cmp); 956 } 957 958 // Otherwise, the base pointers are different and the indices are 959 // different. Try convert this to an indexed compare by looking through 960 // PHIs/casts. 961 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 962 } 963 964 // If one of the GEPs has all zero indices, recurse. 965 // FIXME: Handle vector of pointers. 966 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 967 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 968 ICmpInst::getSwappedPredicate(Cond), I); 969 970 // If the other GEP has all zero indices, recurse. 971 // FIXME: Handle vector of pointers. 972 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 973 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 974 975 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 976 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 977 // If the GEPs only differ by one index, compare it. 978 unsigned NumDifferences = 0; // Keep track of # differences. 979 unsigned DiffOperand = 0; // The operand that differs. 980 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 981 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 982 Type *LHSType = GEPLHS->getOperand(i)->getType(); 983 Type *RHSType = GEPRHS->getOperand(i)->getType(); 984 // FIXME: Better support for vector of pointers. 985 if (LHSType->getPrimitiveSizeInBits() != 986 RHSType->getPrimitiveSizeInBits() || 987 (GEPLHS->getType()->isVectorTy() && 988 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 989 // Irreconcilable differences. 990 NumDifferences = 2; 991 break; 992 } 993 994 if (NumDifferences++) break; 995 DiffOperand = i; 996 } 997 998 if (NumDifferences == 0) // SAME GEP? 999 return replaceInstUsesWith(I, // No comparison is needed here. 1000 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 1001 1002 else if (NumDifferences == 1 && GEPsInBounds) { 1003 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1004 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1005 // Make sure we do a signed comparison here. 1006 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1007 } 1008 } 1009 1010 // Only lower this if the icmp is the only user of the GEP or if we expect 1011 // the result to fold to a constant! 1012 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1013 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1014 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1015 Value *L = EmitGEPOffset(GEPLHS); 1016 Value *R = EmitGEPOffset(GEPRHS); 1017 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1018 } 1019 } 1020 1021 // Try convert this to an indexed compare by looking through PHIs/casts as a 1022 // last resort. 1023 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1024 } 1025 1026 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1027 const AllocaInst *Alloca, 1028 const Value *Other) { 1029 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1030 1031 // It would be tempting to fold away comparisons between allocas and any 1032 // pointer not based on that alloca (e.g. an argument). However, even 1033 // though such pointers cannot alias, they can still compare equal. 1034 // 1035 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1036 // doesn't escape we can argue that it's impossible to guess its value, and we 1037 // can therefore act as if any such guesses are wrong. 1038 // 1039 // The code below checks that the alloca doesn't escape, and that it's only 1040 // used in a comparison once (the current instruction). The 1041 // single-comparison-use condition ensures that we're trivially folding all 1042 // comparisons against the alloca consistently, and avoids the risk of 1043 // erroneously folding a comparison of the pointer with itself. 1044 1045 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1046 1047 SmallVector<const Use *, 32> Worklist; 1048 for (const Use &U : Alloca->uses()) { 1049 if (Worklist.size() >= MaxIter) 1050 return nullptr; 1051 Worklist.push_back(&U); 1052 } 1053 1054 unsigned NumCmps = 0; 1055 while (!Worklist.empty()) { 1056 assert(Worklist.size() <= MaxIter); 1057 const Use *U = Worklist.pop_back_val(); 1058 const Value *V = U->getUser(); 1059 --MaxIter; 1060 1061 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1062 isa<SelectInst>(V)) { 1063 // Track the uses. 1064 } else if (isa<LoadInst>(V)) { 1065 // Loading from the pointer doesn't escape it. 1066 continue; 1067 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1068 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1069 if (SI->getValueOperand() == U->get()) 1070 return nullptr; 1071 continue; 1072 } else if (isa<ICmpInst>(V)) { 1073 if (NumCmps++) 1074 return nullptr; // Found more than one cmp. 1075 continue; 1076 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1077 switch (Intrin->getIntrinsicID()) { 1078 // These intrinsics don't escape or compare the pointer. Memset is safe 1079 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1080 // we don't allow stores, so src cannot point to V. 1081 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1082 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1083 continue; 1084 default: 1085 return nullptr; 1086 } 1087 } else { 1088 return nullptr; 1089 } 1090 for (const Use &U : V->uses()) { 1091 if (Worklist.size() >= MaxIter) 1092 return nullptr; 1093 Worklist.push_back(&U); 1094 } 1095 } 1096 1097 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1098 return replaceInstUsesWith( 1099 ICI, 1100 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1101 } 1102 1103 /// Fold "icmp pred (X+C), X". 1104 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1105 ICmpInst::Predicate Pred) { 1106 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1107 // so the values can never be equal. Similarly for all other "or equals" 1108 // operators. 1109 assert(!!C && "C should not be zero!"); 1110 1111 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1112 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1113 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1114 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1115 Constant *R = ConstantInt::get(X->getType(), 1116 APInt::getMaxValue(C.getBitWidth()) - C); 1117 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1118 } 1119 1120 // (X+1) >u X --> X <u (0-1) --> X != 255 1121 // (X+2) >u X --> X <u (0-2) --> X <u 254 1122 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1123 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1124 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1125 ConstantInt::get(X->getType(), -C)); 1126 1127 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1128 1129 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1130 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1131 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1132 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1133 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1134 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1135 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1136 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1137 ConstantInt::get(X->getType(), SMax - C)); 1138 1139 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1140 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1141 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1142 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1143 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1144 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1145 1146 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1147 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1148 ConstantInt::get(X->getType(), SMax - (C - 1))); 1149 } 1150 1151 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1152 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1153 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1154 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1155 const APInt &AP1, 1156 const APInt &AP2) { 1157 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1158 1159 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1160 if (I.getPredicate() == I.ICMP_NE) 1161 Pred = CmpInst::getInversePredicate(Pred); 1162 return new ICmpInst(Pred, LHS, RHS); 1163 }; 1164 1165 // Don't bother doing any work for cases which InstSimplify handles. 1166 if (AP2.isNullValue()) 1167 return nullptr; 1168 1169 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1170 if (IsAShr) { 1171 if (AP2.isAllOnesValue()) 1172 return nullptr; 1173 if (AP2.isNegative() != AP1.isNegative()) 1174 return nullptr; 1175 if (AP2.sgt(AP1)) 1176 return nullptr; 1177 } 1178 1179 if (!AP1) 1180 // 'A' must be large enough to shift out the highest set bit. 1181 return getICmp(I.ICMP_UGT, A, 1182 ConstantInt::get(A->getType(), AP2.logBase2())); 1183 1184 if (AP1 == AP2) 1185 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1186 1187 int Shift; 1188 if (IsAShr && AP1.isNegative()) 1189 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1190 else 1191 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1192 1193 if (Shift > 0) { 1194 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1195 // There are multiple solutions if we are comparing against -1 and the LHS 1196 // of the ashr is not a power of two. 1197 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1198 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1199 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1200 } else if (AP1 == AP2.lshr(Shift)) { 1201 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1202 } 1203 } 1204 1205 // Shifting const2 will never be equal to const1. 1206 // FIXME: This should always be handled by InstSimplify? 1207 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1208 return replaceInstUsesWith(I, TorF); 1209 } 1210 1211 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1212 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1213 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1214 const APInt &AP1, 1215 const APInt &AP2) { 1216 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1217 1218 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1219 if (I.getPredicate() == I.ICMP_NE) 1220 Pred = CmpInst::getInversePredicate(Pred); 1221 return new ICmpInst(Pred, LHS, RHS); 1222 }; 1223 1224 // Don't bother doing any work for cases which InstSimplify handles. 1225 if (AP2.isNullValue()) 1226 return nullptr; 1227 1228 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1229 1230 if (!AP1 && AP2TrailingZeros != 0) 1231 return getICmp( 1232 I.ICMP_UGE, A, 1233 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1234 1235 if (AP1 == AP2) 1236 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1237 1238 // Get the distance between the lowest bits that are set. 1239 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1240 1241 if (Shift > 0 && AP2.shl(Shift) == AP1) 1242 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1243 1244 // Shifting const2 will never be equal to const1. 1245 // FIXME: This should always be handled by InstSimplify? 1246 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1247 return replaceInstUsesWith(I, TorF); 1248 } 1249 1250 /// The caller has matched a pattern of the form: 1251 /// I = icmp ugt (add (add A, B), CI2), CI1 1252 /// If this is of the form: 1253 /// sum = a + b 1254 /// if (sum+128 >u 255) 1255 /// Then replace it with llvm.sadd.with.overflow.i8. 1256 /// 1257 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1258 ConstantInt *CI2, ConstantInt *CI1, 1259 InstCombinerImpl &IC) { 1260 // The transformation we're trying to do here is to transform this into an 1261 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1262 // with a narrower add, and discard the add-with-constant that is part of the 1263 // range check (if we can't eliminate it, this isn't profitable). 1264 1265 // In order to eliminate the add-with-constant, the compare can be its only 1266 // use. 1267 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1268 if (!AddWithCst->hasOneUse()) 1269 return nullptr; 1270 1271 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1272 if (!CI2->getValue().isPowerOf2()) 1273 return nullptr; 1274 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1275 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1276 return nullptr; 1277 1278 // The width of the new add formed is 1 more than the bias. 1279 ++NewWidth; 1280 1281 // Check to see that CI1 is an all-ones value with NewWidth bits. 1282 if (CI1->getBitWidth() == NewWidth || 1283 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1284 return nullptr; 1285 1286 // This is only really a signed overflow check if the inputs have been 1287 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1288 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1289 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1290 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1291 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1292 return nullptr; 1293 1294 // In order to replace the original add with a narrower 1295 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1296 // and truncates that discard the high bits of the add. Verify that this is 1297 // the case. 1298 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1299 for (User *U : OrigAdd->users()) { 1300 if (U == AddWithCst) 1301 continue; 1302 1303 // Only accept truncates for now. We would really like a nice recursive 1304 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1305 // chain to see which bits of a value are actually demanded. If the 1306 // original add had another add which was then immediately truncated, we 1307 // could still do the transformation. 1308 TruncInst *TI = dyn_cast<TruncInst>(U); 1309 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1310 return nullptr; 1311 } 1312 1313 // If the pattern matches, truncate the inputs to the narrower type and 1314 // use the sadd_with_overflow intrinsic to efficiently compute both the 1315 // result and the overflow bit. 1316 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1317 Function *F = Intrinsic::getDeclaration( 1318 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1319 1320 InstCombiner::BuilderTy &Builder = IC.Builder; 1321 1322 // Put the new code above the original add, in case there are any uses of the 1323 // add between the add and the compare. 1324 Builder.SetInsertPoint(OrigAdd); 1325 1326 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1327 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1328 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1329 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1330 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1331 1332 // The inner add was the result of the narrow add, zero extended to the 1333 // wider type. Replace it with the result computed by the intrinsic. 1334 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1335 IC.eraseInstFromFunction(*OrigAdd); 1336 1337 // The original icmp gets replaced with the overflow value. 1338 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1339 } 1340 1341 /// If we have: 1342 /// icmp eq/ne (urem/srem %x, %y), 0 1343 /// iff %y is a power-of-two, we can replace this with a bit test: 1344 /// icmp eq/ne (and %x, (add %y, -1)), 0 1345 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1346 // This fold is only valid for equality predicates. 1347 if (!I.isEquality()) 1348 return nullptr; 1349 ICmpInst::Predicate Pred; 1350 Value *X, *Y, *Zero; 1351 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1352 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1353 return nullptr; 1354 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1355 return nullptr; 1356 // This may increase instruction count, we don't enforce that Y is a constant. 1357 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1358 Value *Masked = Builder.CreateAnd(X, Mask); 1359 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1360 } 1361 1362 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1363 /// by one-less-than-bitwidth into a sign test on the original value. 1364 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1365 Instruction *Val; 1366 ICmpInst::Predicate Pred; 1367 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1368 return nullptr; 1369 1370 Value *X; 1371 Type *XTy; 1372 1373 Constant *C; 1374 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1375 XTy = X->getType(); 1376 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1377 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1378 APInt(XBitWidth, XBitWidth - 1)))) 1379 return nullptr; 1380 } else if (isa<BinaryOperator>(Val) && 1381 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1382 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1383 /*AnalyzeForSignBitExtraction=*/true))) { 1384 XTy = X->getType(); 1385 } else 1386 return nullptr; 1387 1388 return ICmpInst::Create(Instruction::ICmp, 1389 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1390 : ICmpInst::ICMP_SLT, 1391 X, ConstantInt::getNullValue(XTy)); 1392 } 1393 1394 // Handle icmp pred X, 0 1395 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1396 CmpInst::Predicate Pred = Cmp.getPredicate(); 1397 if (!match(Cmp.getOperand(1), m_Zero())) 1398 return nullptr; 1399 1400 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1401 if (Pred == ICmpInst::ICMP_SGT) { 1402 Value *A, *B; 1403 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1404 if (SPR.Flavor == SPF_SMIN) { 1405 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1406 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1407 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1408 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1409 } 1410 } 1411 1412 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1413 return New; 1414 1415 // Given: 1416 // icmp eq/ne (urem %x, %y), 0 1417 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1418 // icmp eq/ne %x, 0 1419 Value *X, *Y; 1420 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1421 ICmpInst::isEquality(Pred)) { 1422 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1423 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1424 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1425 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1426 } 1427 1428 return nullptr; 1429 } 1430 1431 /// Fold icmp Pred X, C. 1432 /// TODO: This code structure does not make sense. The saturating add fold 1433 /// should be moved to some other helper and extended as noted below (it is also 1434 /// possible that code has been made unnecessary - do we canonicalize IR to 1435 /// overflow/saturating intrinsics or not?). 1436 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1437 // Match the following pattern, which is a common idiom when writing 1438 // overflow-safe integer arithmetic functions. The source performs an addition 1439 // in wider type and explicitly checks for overflow using comparisons against 1440 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1441 // 1442 // TODO: This could probably be generalized to handle other overflow-safe 1443 // operations if we worked out the formulas to compute the appropriate magic 1444 // constants. 1445 // 1446 // sum = a + b 1447 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1448 CmpInst::Predicate Pred = Cmp.getPredicate(); 1449 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1450 Value *A, *B; 1451 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1452 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1453 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1454 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1455 return Res; 1456 1457 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1458 Constant *C = dyn_cast<Constant>(Op1); 1459 if (!C) 1460 return nullptr; 1461 1462 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1463 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1464 Type *Ty = Cmp.getType(); 1465 Builder.SetInsertPoint(Phi); 1466 PHINode *NewPhi = 1467 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1468 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1469 auto *Input = 1470 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1471 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1472 NewPhi->addIncoming(BoolInput, Predecessor); 1473 } 1474 NewPhi->takeName(&Cmp); 1475 return replaceInstUsesWith(Cmp, NewPhi); 1476 } 1477 1478 return nullptr; 1479 } 1480 1481 /// Canonicalize icmp instructions based on dominating conditions. 1482 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1483 // This is a cheap/incomplete check for dominance - just match a single 1484 // predecessor with a conditional branch. 1485 BasicBlock *CmpBB = Cmp.getParent(); 1486 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1487 if (!DomBB) 1488 return nullptr; 1489 1490 Value *DomCond; 1491 BasicBlock *TrueBB, *FalseBB; 1492 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1493 return nullptr; 1494 1495 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1496 "Predecessor block does not point to successor?"); 1497 1498 // The branch should get simplified. Don't bother simplifying this condition. 1499 if (TrueBB == FalseBB) 1500 return nullptr; 1501 1502 // Try to simplify this compare to T/F based on the dominating condition. 1503 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1504 if (Imp) 1505 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1506 1507 CmpInst::Predicate Pred = Cmp.getPredicate(); 1508 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1509 ICmpInst::Predicate DomPred; 1510 const APInt *C, *DomC; 1511 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1512 match(Y, m_APInt(C))) { 1513 // We have 2 compares of a variable with constants. Calculate the constant 1514 // ranges of those compares to see if we can transform the 2nd compare: 1515 // DomBB: 1516 // DomCond = icmp DomPred X, DomC 1517 // br DomCond, CmpBB, FalseBB 1518 // CmpBB: 1519 // Cmp = icmp Pred X, C 1520 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1521 ConstantRange DominatingCR = 1522 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1523 : ConstantRange::makeExactICmpRegion( 1524 CmpInst::getInversePredicate(DomPred), *DomC); 1525 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1526 ConstantRange Difference = DominatingCR.difference(CR); 1527 if (Intersection.isEmptySet()) 1528 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1529 if (Difference.isEmptySet()) 1530 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1531 1532 // Canonicalizing a sign bit comparison that gets used in a branch, 1533 // pessimizes codegen by generating branch on zero instruction instead 1534 // of a test and branch. So we avoid canonicalizing in such situations 1535 // because test and branch instruction has better branch displacement 1536 // than compare and branch instruction. 1537 bool UnusedBit; 1538 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1539 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1540 return nullptr; 1541 1542 if (const APInt *EqC = Intersection.getSingleElement()) 1543 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1544 if (const APInt *NeC = Difference.getSingleElement()) 1545 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1546 } 1547 1548 return nullptr; 1549 } 1550 1551 /// Fold icmp (trunc X, Y), C. 1552 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1553 TruncInst *Trunc, 1554 const APInt &C) { 1555 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1556 Value *X = Trunc->getOperand(0); 1557 if (C.isOneValue() && C.getBitWidth() > 1) { 1558 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1559 Value *V = nullptr; 1560 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1561 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1562 ConstantInt::get(V->getType(), 1)); 1563 } 1564 1565 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1566 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1567 // of the high bits truncated out of x are known. 1568 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1569 SrcBits = X->getType()->getScalarSizeInBits(); 1570 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1571 1572 // If all the high bits are known, we can do this xform. 1573 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1574 // Pull in the high bits from known-ones set. 1575 APInt NewRHS = C.zext(SrcBits); 1576 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1577 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1578 } 1579 } 1580 1581 return nullptr; 1582 } 1583 1584 /// Fold icmp (xor X, Y), C. 1585 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1586 BinaryOperator *Xor, 1587 const APInt &C) { 1588 Value *X = Xor->getOperand(0); 1589 Value *Y = Xor->getOperand(1); 1590 const APInt *XorC; 1591 if (!match(Y, m_APInt(XorC))) 1592 return nullptr; 1593 1594 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1595 // fold the xor. 1596 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1597 bool TrueIfSigned = false; 1598 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1599 1600 // If the sign bit of the XorCst is not set, there is no change to 1601 // the operation, just stop using the Xor. 1602 if (!XorC->isNegative()) 1603 return replaceOperand(Cmp, 0, X); 1604 1605 // Emit the opposite comparison. 1606 if (TrueIfSigned) 1607 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1608 ConstantInt::getAllOnesValue(X->getType())); 1609 else 1610 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1611 ConstantInt::getNullValue(X->getType())); 1612 } 1613 1614 if (Xor->hasOneUse()) { 1615 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1616 if (!Cmp.isEquality() && XorC->isSignMask()) { 1617 Pred = Cmp.getFlippedSignednessPredicate(); 1618 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1619 } 1620 1621 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1622 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1623 Pred = Cmp.getFlippedSignednessPredicate(); 1624 Pred = Cmp.getSwappedPredicate(Pred); 1625 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1626 } 1627 } 1628 1629 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1630 if (Pred == ICmpInst::ICMP_UGT) { 1631 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1632 if (*XorC == ~C && (C + 1).isPowerOf2()) 1633 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1634 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1635 if (*XorC == C && (C + 1).isPowerOf2()) 1636 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1637 } 1638 if (Pred == ICmpInst::ICMP_ULT) { 1639 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1640 if (*XorC == -C && C.isPowerOf2()) 1641 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1642 ConstantInt::get(X->getType(), ~C)); 1643 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1644 if (*XorC == C && (-C).isPowerOf2()) 1645 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1646 ConstantInt::get(X->getType(), ~C)); 1647 } 1648 return nullptr; 1649 } 1650 1651 /// Fold icmp (and (sh X, Y), C2), C1. 1652 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1653 BinaryOperator *And, 1654 const APInt &C1, 1655 const APInt &C2) { 1656 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1657 if (!Shift || !Shift->isShift()) 1658 return nullptr; 1659 1660 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1661 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1662 // code produced by the clang front-end, for bitfield access. 1663 // This seemingly simple opportunity to fold away a shift turns out to be 1664 // rather complicated. See PR17827 for details. 1665 unsigned ShiftOpcode = Shift->getOpcode(); 1666 bool IsShl = ShiftOpcode == Instruction::Shl; 1667 const APInt *C3; 1668 if (match(Shift->getOperand(1), m_APInt(C3))) { 1669 APInt NewAndCst, NewCmpCst; 1670 bool AnyCmpCstBitsShiftedOut; 1671 if (ShiftOpcode == Instruction::Shl) { 1672 // For a left shift, we can fold if the comparison is not signed. We can 1673 // also fold a signed comparison if the mask value and comparison value 1674 // are not negative. These constraints may not be obvious, but we can 1675 // prove that they are correct using an SMT solver. 1676 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1677 return nullptr; 1678 1679 NewCmpCst = C1.lshr(*C3); 1680 NewAndCst = C2.lshr(*C3); 1681 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1682 } else if (ShiftOpcode == Instruction::LShr) { 1683 // For a logical right shift, we can fold if the comparison is not signed. 1684 // We can also fold a signed comparison if the shifted mask value and the 1685 // shifted comparison value are not negative. These constraints may not be 1686 // obvious, but we can prove that they are correct using an SMT solver. 1687 NewCmpCst = C1.shl(*C3); 1688 NewAndCst = C2.shl(*C3); 1689 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1690 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1691 return nullptr; 1692 } else { 1693 // For an arithmetic shift, check that both constants don't use (in a 1694 // signed sense) the top bits being shifted out. 1695 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1696 NewCmpCst = C1.shl(*C3); 1697 NewAndCst = C2.shl(*C3); 1698 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1699 if (NewAndCst.ashr(*C3) != C2) 1700 return nullptr; 1701 } 1702 1703 if (AnyCmpCstBitsShiftedOut) { 1704 // If we shifted bits out, the fold is not going to work out. As a 1705 // special case, check to see if this means that the result is always 1706 // true or false now. 1707 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1708 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1709 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1710 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1711 } else { 1712 Value *NewAnd = Builder.CreateAnd( 1713 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1714 return new ICmpInst(Cmp.getPredicate(), 1715 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1716 } 1717 } 1718 1719 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1720 // preferable because it allows the C2 << Y expression to be hoisted out of a 1721 // loop if Y is invariant and X is not. 1722 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1723 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1724 // Compute C2 << Y. 1725 Value *NewShift = 1726 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1727 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1728 1729 // Compute X & (C2 << Y). 1730 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1731 return replaceOperand(Cmp, 0, NewAnd); 1732 } 1733 1734 return nullptr; 1735 } 1736 1737 /// Fold icmp (and X, C2), C1. 1738 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1739 BinaryOperator *And, 1740 const APInt &C1) { 1741 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1742 1743 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1744 // TODO: We canonicalize to the longer form for scalars because we have 1745 // better analysis/folds for icmp, and codegen may be better with icmp. 1746 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1747 match(And->getOperand(1), m_One())) 1748 return new TruncInst(And->getOperand(0), Cmp.getType()); 1749 1750 const APInt *C2; 1751 Value *X; 1752 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1753 return nullptr; 1754 1755 // Don't perform the following transforms if the AND has multiple uses 1756 if (!And->hasOneUse()) 1757 return nullptr; 1758 1759 if (Cmp.isEquality() && C1.isNullValue()) { 1760 // Restrict this fold to single-use 'and' (PR10267). 1761 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1762 if (C2->isSignMask()) { 1763 Constant *Zero = Constant::getNullValue(X->getType()); 1764 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1765 return new ICmpInst(NewPred, X, Zero); 1766 } 1767 1768 // Restrict this fold only for single-use 'and' (PR10267). 1769 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1770 if ((~(*C2) + 1).isPowerOf2()) { 1771 Constant *NegBOC = 1772 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1773 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1774 return new ICmpInst(NewPred, X, NegBOC); 1775 } 1776 } 1777 1778 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1779 // the input width without changing the value produced, eliminate the cast: 1780 // 1781 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1782 // 1783 // We can do this transformation if the constants do not have their sign bits 1784 // set or if it is an equality comparison. Extending a relational comparison 1785 // when we're checking the sign bit would not work. 1786 Value *W; 1787 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1788 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1789 // TODO: Is this a good transform for vectors? Wider types may reduce 1790 // throughput. Should this transform be limited (even for scalars) by using 1791 // shouldChangeType()? 1792 if (!Cmp.getType()->isVectorTy()) { 1793 Type *WideType = W->getType(); 1794 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1795 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1796 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1797 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1798 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1799 } 1800 } 1801 1802 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1803 return I; 1804 1805 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1806 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1807 // 1808 // iff pred isn't signed 1809 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1810 match(And->getOperand(1), m_One())) { 1811 Constant *One = cast<Constant>(And->getOperand(1)); 1812 Value *Or = And->getOperand(0); 1813 Value *A, *B, *LShr; 1814 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1815 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1816 unsigned UsesRemoved = 0; 1817 if (And->hasOneUse()) 1818 ++UsesRemoved; 1819 if (Or->hasOneUse()) 1820 ++UsesRemoved; 1821 if (LShr->hasOneUse()) 1822 ++UsesRemoved; 1823 1824 // Compute A & ((1 << B) | 1) 1825 Value *NewOr = nullptr; 1826 if (auto *C = dyn_cast<Constant>(B)) { 1827 if (UsesRemoved >= 1) 1828 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1829 } else { 1830 if (UsesRemoved >= 3) 1831 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1832 /*HasNUW=*/true), 1833 One, Or->getName()); 1834 } 1835 if (NewOr) { 1836 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1837 return replaceOperand(Cmp, 0, NewAnd); 1838 } 1839 } 1840 } 1841 1842 return nullptr; 1843 } 1844 1845 /// Fold icmp (and X, Y), C. 1846 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1847 BinaryOperator *And, 1848 const APInt &C) { 1849 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1850 return I; 1851 1852 // TODO: These all require that Y is constant too, so refactor with the above. 1853 1854 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1855 Value *X = And->getOperand(0); 1856 Value *Y = And->getOperand(1); 1857 if (auto *LI = dyn_cast<LoadInst>(X)) 1858 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1859 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1860 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1861 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1862 ConstantInt *C2 = cast<ConstantInt>(Y); 1863 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1864 return Res; 1865 } 1866 1867 if (!Cmp.isEquality()) 1868 return nullptr; 1869 1870 // X & -C == -C -> X > u ~C 1871 // X & -C != -C -> X <= u ~C 1872 // iff C is a power of 2 1873 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1874 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1875 : CmpInst::ICMP_ULE; 1876 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1877 } 1878 1879 // (X & C2) == 0 -> (trunc X) >= 0 1880 // (X & C2) != 0 -> (trunc X) < 0 1881 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1882 const APInt *C2; 1883 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1884 int32_t ExactLogBase2 = C2->exactLogBase2(); 1885 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1886 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1887 if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) 1888 NTy = FixedVectorType::get( 1889 NTy, cast<FixedVectorType>(AndVTy)->getNumElements()); 1890 Value *Trunc = Builder.CreateTrunc(X, NTy); 1891 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1892 : CmpInst::ICMP_SLT; 1893 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1894 } 1895 } 1896 1897 return nullptr; 1898 } 1899 1900 /// Fold icmp (or X, Y), C. 1901 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1902 BinaryOperator *Or, 1903 const APInt &C) { 1904 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1905 if (C.isOneValue()) { 1906 // icmp slt signum(V) 1 --> icmp slt V, 1 1907 Value *V = nullptr; 1908 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1909 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1910 ConstantInt::get(V->getType(), 1)); 1911 } 1912 1913 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1914 const APInt *MaskC; 1915 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1916 if (*MaskC == C && (C + 1).isPowerOf2()) { 1917 // X | C == C --> X <=u C 1918 // X | C != C --> X >u C 1919 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1920 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1921 return new ICmpInst(Pred, OrOp0, OrOp1); 1922 } 1923 1924 // More general: canonicalize 'equality with set bits mask' to 1925 // 'equality with clear bits mask'. 1926 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1927 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1928 if (Or->hasOneUse()) { 1929 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1930 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1931 return new ICmpInst(Pred, And, NewC); 1932 } 1933 } 1934 1935 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1936 return nullptr; 1937 1938 Value *P, *Q; 1939 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1940 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1941 // -> and (icmp eq P, null), (icmp eq Q, null). 1942 Value *CmpP = 1943 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1944 Value *CmpQ = 1945 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1946 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1947 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1948 } 1949 1950 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1951 // a shorter form that has more potential to be folded even further. 1952 Value *X1, *X2, *X3, *X4; 1953 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1954 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1955 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1956 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1957 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1958 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1959 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1960 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1961 } 1962 1963 return nullptr; 1964 } 1965 1966 /// Fold icmp (mul X, Y), C. 1967 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1968 BinaryOperator *Mul, 1969 const APInt &C) { 1970 const APInt *MulC; 1971 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1972 return nullptr; 1973 1974 // If this is a test of the sign bit and the multiply is sign-preserving with 1975 // a constant operand, use the multiply LHS operand instead. 1976 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1977 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1978 if (MulC->isNegative()) 1979 Pred = ICmpInst::getSwappedPredicate(Pred); 1980 return new ICmpInst(Pred, Mul->getOperand(0), 1981 Constant::getNullValue(Mul->getType())); 1982 } 1983 1984 // If the multiply does not wrap, try to divide the compare constant by the 1985 // multiplication factor. 1986 if (Cmp.isEquality() && !MulC->isNullValue()) { 1987 // (mul nsw X, MulC) == C --> X == C /s MulC 1988 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) { 1989 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1990 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1991 } 1992 // (mul nuw X, MulC) == C --> X == C /u MulC 1993 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) { 1994 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1995 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1996 } 1997 } 1998 1999 return nullptr; 2000 } 2001 2002 /// Fold icmp (shl 1, Y), C. 2003 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2004 const APInt &C) { 2005 Value *Y; 2006 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2007 return nullptr; 2008 2009 Type *ShiftType = Shl->getType(); 2010 unsigned TypeBits = C.getBitWidth(); 2011 bool CIsPowerOf2 = C.isPowerOf2(); 2012 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2013 if (Cmp.isUnsigned()) { 2014 // (1 << Y) pred C -> Y pred Log2(C) 2015 if (!CIsPowerOf2) { 2016 // (1 << Y) < 30 -> Y <= 4 2017 // (1 << Y) <= 30 -> Y <= 4 2018 // (1 << Y) >= 30 -> Y > 4 2019 // (1 << Y) > 30 -> Y > 4 2020 if (Pred == ICmpInst::ICMP_ULT) 2021 Pred = ICmpInst::ICMP_ULE; 2022 else if (Pred == ICmpInst::ICMP_UGE) 2023 Pred = ICmpInst::ICMP_UGT; 2024 } 2025 2026 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2027 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2028 unsigned CLog2 = C.logBase2(); 2029 if (CLog2 == TypeBits - 1) { 2030 if (Pred == ICmpInst::ICMP_UGE) 2031 Pred = ICmpInst::ICMP_EQ; 2032 else if (Pred == ICmpInst::ICMP_ULT) 2033 Pred = ICmpInst::ICMP_NE; 2034 } 2035 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2036 } else if (Cmp.isSigned()) { 2037 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2038 if (C.isAllOnesValue()) { 2039 // (1 << Y) <= -1 -> Y == 31 2040 if (Pred == ICmpInst::ICMP_SLE) 2041 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2042 2043 // (1 << Y) > -1 -> Y != 31 2044 if (Pred == ICmpInst::ICMP_SGT) 2045 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2046 } else if (!C) { 2047 // (1 << Y) < 0 -> Y == 31 2048 // (1 << Y) <= 0 -> Y == 31 2049 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2050 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2051 2052 // (1 << Y) >= 0 -> Y != 31 2053 // (1 << Y) > 0 -> Y != 31 2054 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2055 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2056 } 2057 } else if (Cmp.isEquality() && CIsPowerOf2) { 2058 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2059 } 2060 2061 return nullptr; 2062 } 2063 2064 /// Fold icmp (shl X, Y), C. 2065 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2066 BinaryOperator *Shl, 2067 const APInt &C) { 2068 const APInt *ShiftVal; 2069 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2070 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2071 2072 const APInt *ShiftAmt; 2073 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2074 return foldICmpShlOne(Cmp, Shl, C); 2075 2076 // Check that the shift amount is in range. If not, don't perform undefined 2077 // shifts. When the shift is visited, it will be simplified. 2078 unsigned TypeBits = C.getBitWidth(); 2079 if (ShiftAmt->uge(TypeBits)) 2080 return nullptr; 2081 2082 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2083 Value *X = Shl->getOperand(0); 2084 Type *ShType = Shl->getType(); 2085 2086 // NSW guarantees that we are only shifting out sign bits from the high bits, 2087 // so we can ASHR the compare constant without needing a mask and eliminate 2088 // the shift. 2089 if (Shl->hasNoSignedWrap()) { 2090 if (Pred == ICmpInst::ICMP_SGT) { 2091 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2092 APInt ShiftedC = C.ashr(*ShiftAmt); 2093 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2094 } 2095 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2096 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2097 APInt ShiftedC = C.ashr(*ShiftAmt); 2098 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2099 } 2100 if (Pred == ICmpInst::ICMP_SLT) { 2101 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2102 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2103 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2104 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2105 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2106 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2107 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2108 } 2109 // If this is a signed comparison to 0 and the shift is sign preserving, 2110 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2111 // do that if we're sure to not continue on in this function. 2112 if (isSignTest(Pred, C)) 2113 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2114 } 2115 2116 // NUW guarantees that we are only shifting out zero bits from the high bits, 2117 // so we can LSHR the compare constant without needing a mask and eliminate 2118 // the shift. 2119 if (Shl->hasNoUnsignedWrap()) { 2120 if (Pred == ICmpInst::ICMP_UGT) { 2121 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2122 APInt ShiftedC = C.lshr(*ShiftAmt); 2123 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2124 } 2125 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2126 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2127 APInt ShiftedC = C.lshr(*ShiftAmt); 2128 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2129 } 2130 if (Pred == ICmpInst::ICMP_ULT) { 2131 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2132 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2133 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2134 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2135 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2136 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2137 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2138 } 2139 } 2140 2141 if (Cmp.isEquality() && Shl->hasOneUse()) { 2142 // Strength-reduce the shift into an 'and'. 2143 Constant *Mask = ConstantInt::get( 2144 ShType, 2145 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2146 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2147 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2148 return new ICmpInst(Pred, And, LShrC); 2149 } 2150 2151 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2152 bool TrueIfSigned = false; 2153 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2154 // (X << 31) <s 0 --> (X & 1) != 0 2155 Constant *Mask = ConstantInt::get( 2156 ShType, 2157 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2158 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2159 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2160 And, Constant::getNullValue(ShType)); 2161 } 2162 2163 // Simplify 'shl' inequality test into 'and' equality test. 2164 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2165 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2166 if ((C + 1).isPowerOf2() && 2167 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2168 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2169 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2170 : ICmpInst::ICMP_NE, 2171 And, Constant::getNullValue(ShType)); 2172 } 2173 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2174 if (C.isPowerOf2() && 2175 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2176 Value *And = 2177 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2178 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2179 : ICmpInst::ICMP_NE, 2180 And, Constant::getNullValue(ShType)); 2181 } 2182 } 2183 2184 // Transform (icmp pred iM (shl iM %v, N), C) 2185 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2186 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2187 // This enables us to get rid of the shift in favor of a trunc that may be 2188 // free on the target. It has the additional benefit of comparing to a 2189 // smaller constant that may be more target-friendly. 2190 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2191 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2192 DL.isLegalInteger(TypeBits - Amt)) { 2193 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2194 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2195 TruncTy = FixedVectorType::get( 2196 TruncTy, cast<FixedVectorType>(ShVTy)->getNumElements()); 2197 Constant *NewC = 2198 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2199 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2200 } 2201 2202 return nullptr; 2203 } 2204 2205 /// Fold icmp ({al}shr X, Y), C. 2206 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2207 BinaryOperator *Shr, 2208 const APInt &C) { 2209 // An exact shr only shifts out zero bits, so: 2210 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2211 Value *X = Shr->getOperand(0); 2212 CmpInst::Predicate Pred = Cmp.getPredicate(); 2213 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2214 C.isNullValue()) 2215 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2216 2217 const APInt *ShiftVal; 2218 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2219 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2220 2221 const APInt *ShiftAmt; 2222 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2223 return nullptr; 2224 2225 // Check that the shift amount is in range. If not, don't perform undefined 2226 // shifts. When the shift is visited it will be simplified. 2227 unsigned TypeBits = C.getBitWidth(); 2228 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2229 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2230 return nullptr; 2231 2232 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2233 bool IsExact = Shr->isExact(); 2234 Type *ShrTy = Shr->getType(); 2235 // TODO: If we could guarantee that InstSimplify would handle all of the 2236 // constant-value-based preconditions in the folds below, then we could assert 2237 // those conditions rather than checking them. This is difficult because of 2238 // undef/poison (PR34838). 2239 if (IsAShr) { 2240 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2241 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2242 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2243 APInt ShiftedC = C.shl(ShAmtVal); 2244 if (ShiftedC.ashr(ShAmtVal) == C) 2245 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2246 } 2247 if (Pred == CmpInst::ICMP_SGT) { 2248 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2249 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2250 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2251 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2252 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2253 } 2254 } else { 2255 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2256 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2257 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2258 APInt ShiftedC = C.shl(ShAmtVal); 2259 if (ShiftedC.lshr(ShAmtVal) == C) 2260 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2261 } 2262 if (Pred == CmpInst::ICMP_UGT) { 2263 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2264 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2265 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2266 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2267 } 2268 } 2269 2270 if (!Cmp.isEquality()) 2271 return nullptr; 2272 2273 // Handle equality comparisons of shift-by-constant. 2274 2275 // If the comparison constant changes with the shift, the comparison cannot 2276 // succeed (bits of the comparison constant cannot match the shifted value). 2277 // This should be known by InstSimplify and already be folded to true/false. 2278 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2279 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2280 "Expected icmp+shr simplify did not occur."); 2281 2282 // If the bits shifted out are known zero, compare the unshifted value: 2283 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2284 if (Shr->isExact()) 2285 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2286 2287 if (Shr->hasOneUse()) { 2288 // Canonicalize the shift into an 'and': 2289 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2290 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2291 Constant *Mask = ConstantInt::get(ShrTy, Val); 2292 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2293 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2294 } 2295 2296 return nullptr; 2297 } 2298 2299 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2300 BinaryOperator *SRem, 2301 const APInt &C) { 2302 // Match an 'is positive' or 'is negative' comparison of remainder by a 2303 // constant power-of-2 value: 2304 // (X % pow2C) sgt/slt 0 2305 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2306 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2307 return nullptr; 2308 2309 // TODO: The one-use check is standard because we do not typically want to 2310 // create longer instruction sequences, but this might be a special-case 2311 // because srem is not good for analysis or codegen. 2312 if (!SRem->hasOneUse()) 2313 return nullptr; 2314 2315 const APInt *DivisorC; 2316 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2317 return nullptr; 2318 2319 // Mask off the sign bit and the modulo bits (low-bits). 2320 Type *Ty = SRem->getType(); 2321 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2322 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2323 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2324 2325 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2326 // bit is set. Example: 2327 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2328 if (Pred == ICmpInst::ICMP_SGT) 2329 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2330 2331 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2332 // bit is set. Example: 2333 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2334 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2335 } 2336 2337 /// Fold icmp (udiv X, Y), C. 2338 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2339 BinaryOperator *UDiv, 2340 const APInt &C) { 2341 const APInt *C2; 2342 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2343 return nullptr; 2344 2345 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2346 2347 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2348 Value *Y = UDiv->getOperand(1); 2349 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2350 assert(!C.isMaxValue() && 2351 "icmp ugt X, UINT_MAX should have been simplified already."); 2352 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2353 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2354 } 2355 2356 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2357 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2358 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2359 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2360 ConstantInt::get(Y->getType(), C2->udiv(C))); 2361 } 2362 2363 return nullptr; 2364 } 2365 2366 /// Fold icmp ({su}div X, Y), C. 2367 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2368 BinaryOperator *Div, 2369 const APInt &C) { 2370 // Fold: icmp pred ([us]div X, C2), C -> range test 2371 // Fold this div into the comparison, producing a range check. 2372 // Determine, based on the divide type, what the range is being 2373 // checked. If there is an overflow on the low or high side, remember 2374 // it, otherwise compute the range [low, hi) bounding the new value. 2375 // See: InsertRangeTest above for the kinds of replacements possible. 2376 const APInt *C2; 2377 if (!match(Div->getOperand(1), m_APInt(C2))) 2378 return nullptr; 2379 2380 // FIXME: If the operand types don't match the type of the divide 2381 // then don't attempt this transform. The code below doesn't have the 2382 // logic to deal with a signed divide and an unsigned compare (and 2383 // vice versa). This is because (x /s C2) <s C produces different 2384 // results than (x /s C2) <u C or (x /u C2) <s C or even 2385 // (x /u C2) <u C. Simply casting the operands and result won't 2386 // work. :( The if statement below tests that condition and bails 2387 // if it finds it. 2388 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2389 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2390 return nullptr; 2391 2392 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2393 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2394 // division-by-constant cases should be present, we can not assert that they 2395 // have happened before we reach this icmp instruction. 2396 if (C2->isNullValue() || C2->isOneValue() || 2397 (DivIsSigned && C2->isAllOnesValue())) 2398 return nullptr; 2399 2400 // Compute Prod = C * C2. We are essentially solving an equation of 2401 // form X / C2 = C. We solve for X by multiplying C2 and C. 2402 // By solving for X, we can turn this into a range check instead of computing 2403 // a divide. 2404 APInt Prod = C * *C2; 2405 2406 // Determine if the product overflows by seeing if the product is not equal to 2407 // the divide. Make sure we do the same kind of divide as in the LHS 2408 // instruction that we're folding. 2409 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2410 2411 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2412 2413 // If the division is known to be exact, then there is no remainder from the 2414 // divide, so the covered range size is unit, otherwise it is the divisor. 2415 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2416 2417 // Figure out the interval that is being checked. For example, a comparison 2418 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2419 // Compute this interval based on the constants involved and the signedness of 2420 // the compare/divide. This computes a half-open interval, keeping track of 2421 // whether either value in the interval overflows. After analysis each 2422 // overflow variable is set to 0 if it's corresponding bound variable is valid 2423 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2424 int LoOverflow = 0, HiOverflow = 0; 2425 APInt LoBound, HiBound; 2426 2427 if (!DivIsSigned) { // udiv 2428 // e.g. X/5 op 3 --> [15, 20) 2429 LoBound = Prod; 2430 HiOverflow = LoOverflow = ProdOV; 2431 if (!HiOverflow) { 2432 // If this is not an exact divide, then many values in the range collapse 2433 // to the same result value. 2434 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2435 } 2436 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2437 if (C.isNullValue()) { // (X / pos) op 0 2438 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2439 LoBound = -(RangeSize - 1); 2440 HiBound = RangeSize; 2441 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2442 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2443 HiOverflow = LoOverflow = ProdOV; 2444 if (!HiOverflow) 2445 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2446 } else { // (X / pos) op neg 2447 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2448 HiBound = Prod + 1; 2449 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2450 if (!LoOverflow) { 2451 APInt DivNeg = -RangeSize; 2452 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2453 } 2454 } 2455 } else if (C2->isNegative()) { // Divisor is < 0. 2456 if (Div->isExact()) 2457 RangeSize.negate(); 2458 if (C.isNullValue()) { // (X / neg) op 0 2459 // e.g. X/-5 op 0 --> [-4, 5) 2460 LoBound = RangeSize + 1; 2461 HiBound = -RangeSize; 2462 if (HiBound == *C2) { // -INTMIN = INTMIN 2463 HiOverflow = 1; // [INTMIN+1, overflow) 2464 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2465 } 2466 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2467 // e.g. X/-5 op 3 --> [-19, -14) 2468 HiBound = Prod + 1; 2469 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2470 if (!LoOverflow) 2471 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2472 } else { // (X / neg) op neg 2473 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2474 LoOverflow = HiOverflow = ProdOV; 2475 if (!HiOverflow) 2476 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2477 } 2478 2479 // Dividing by a negative swaps the condition. LT <-> GT 2480 Pred = ICmpInst::getSwappedPredicate(Pred); 2481 } 2482 2483 Value *X = Div->getOperand(0); 2484 switch (Pred) { 2485 default: llvm_unreachable("Unhandled icmp opcode!"); 2486 case ICmpInst::ICMP_EQ: 2487 if (LoOverflow && HiOverflow) 2488 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2489 if (HiOverflow) 2490 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2491 ICmpInst::ICMP_UGE, X, 2492 ConstantInt::get(Div->getType(), LoBound)); 2493 if (LoOverflow) 2494 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2495 ICmpInst::ICMP_ULT, X, 2496 ConstantInt::get(Div->getType(), HiBound)); 2497 return replaceInstUsesWith( 2498 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2499 case ICmpInst::ICMP_NE: 2500 if (LoOverflow && HiOverflow) 2501 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2502 if (HiOverflow) 2503 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2504 ICmpInst::ICMP_ULT, X, 2505 ConstantInt::get(Div->getType(), LoBound)); 2506 if (LoOverflow) 2507 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2508 ICmpInst::ICMP_UGE, X, 2509 ConstantInt::get(Div->getType(), HiBound)); 2510 return replaceInstUsesWith(Cmp, 2511 insertRangeTest(X, LoBound, HiBound, 2512 DivIsSigned, false)); 2513 case ICmpInst::ICMP_ULT: 2514 case ICmpInst::ICMP_SLT: 2515 if (LoOverflow == +1) // Low bound is greater than input range. 2516 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2517 if (LoOverflow == -1) // Low bound is less than input range. 2518 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2519 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2520 case ICmpInst::ICMP_UGT: 2521 case ICmpInst::ICMP_SGT: 2522 if (HiOverflow == +1) // High bound greater than input range. 2523 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2524 if (HiOverflow == -1) // High bound less than input range. 2525 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2526 if (Pred == ICmpInst::ICMP_UGT) 2527 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2528 ConstantInt::get(Div->getType(), HiBound)); 2529 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2530 ConstantInt::get(Div->getType(), HiBound)); 2531 } 2532 2533 return nullptr; 2534 } 2535 2536 /// Fold icmp (sub X, Y), C. 2537 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2538 BinaryOperator *Sub, 2539 const APInt &C) { 2540 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2541 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2542 const APInt *C2; 2543 APInt SubResult; 2544 2545 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2546 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2547 return new ICmpInst(Cmp.getPredicate(), Y, 2548 ConstantInt::get(Y->getType(), 0)); 2549 2550 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2551 if (match(X, m_APInt(C2)) && 2552 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2553 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2554 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2555 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2556 ConstantInt::get(Y->getType(), SubResult)); 2557 2558 // The following transforms are only worth it if the only user of the subtract 2559 // is the icmp. 2560 if (!Sub->hasOneUse()) 2561 return nullptr; 2562 2563 if (Sub->hasNoSignedWrap()) { 2564 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2565 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2566 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2567 2568 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2569 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2570 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2571 2572 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2573 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2574 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2575 2576 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2577 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2578 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2579 } 2580 2581 if (!match(X, m_APInt(C2))) 2582 return nullptr; 2583 2584 // C2 - Y <u C -> (Y | (C - 1)) == C2 2585 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2586 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2587 (*C2 & (C - 1)) == (C - 1)) 2588 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2589 2590 // C2 - Y >u C -> (Y | C) != C2 2591 // iff C2 & C == C and C + 1 is a power of 2 2592 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2593 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2594 2595 return nullptr; 2596 } 2597 2598 /// Fold icmp (add X, Y), C. 2599 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2600 BinaryOperator *Add, 2601 const APInt &C) { 2602 Value *Y = Add->getOperand(1); 2603 const APInt *C2; 2604 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2605 return nullptr; 2606 2607 // Fold icmp pred (add X, C2), C. 2608 Value *X = Add->getOperand(0); 2609 Type *Ty = Add->getType(); 2610 CmpInst::Predicate Pred = Cmp.getPredicate(); 2611 2612 // If the add does not wrap, we can always adjust the compare by subtracting 2613 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2614 // are canonicalized to SGT/SLT/UGT/ULT. 2615 if ((Add->hasNoSignedWrap() && 2616 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2617 (Add->hasNoUnsignedWrap() && 2618 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2619 bool Overflow; 2620 APInt NewC = 2621 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2622 // If there is overflow, the result must be true or false. 2623 // TODO: Can we assert there is no overflow because InstSimplify always 2624 // handles those cases? 2625 if (!Overflow) 2626 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2627 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2628 } 2629 2630 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2631 const APInt &Upper = CR.getUpper(); 2632 const APInt &Lower = CR.getLower(); 2633 if (Cmp.isSigned()) { 2634 if (Lower.isSignMask()) 2635 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2636 if (Upper.isSignMask()) 2637 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2638 } else { 2639 if (Lower.isMinValue()) 2640 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2641 if (Upper.isMinValue()) 2642 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2643 } 2644 2645 if (!Add->hasOneUse()) 2646 return nullptr; 2647 2648 // X+C <u C2 -> (X & -C2) == C 2649 // iff C & (C2-1) == 0 2650 // C2 is a power of 2 2651 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2652 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2653 ConstantExpr::getNeg(cast<Constant>(Y))); 2654 2655 // X+C >u C2 -> (X & ~C2) != C 2656 // iff C & C2 == 0 2657 // C2+1 is a power of 2 2658 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2659 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2660 ConstantExpr::getNeg(cast<Constant>(Y))); 2661 2662 return nullptr; 2663 } 2664 2665 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2666 Value *&RHS, ConstantInt *&Less, 2667 ConstantInt *&Equal, 2668 ConstantInt *&Greater) { 2669 // TODO: Generalize this to work with other comparison idioms or ensure 2670 // they get canonicalized into this form. 2671 2672 // select i1 (a == b), 2673 // i32 Equal, 2674 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2675 // where Equal, Less and Greater are placeholders for any three constants. 2676 ICmpInst::Predicate PredA; 2677 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2678 !ICmpInst::isEquality(PredA)) 2679 return false; 2680 Value *EqualVal = SI->getTrueValue(); 2681 Value *UnequalVal = SI->getFalseValue(); 2682 // We still can get non-canonical predicate here, so canonicalize. 2683 if (PredA == ICmpInst::ICMP_NE) 2684 std::swap(EqualVal, UnequalVal); 2685 if (!match(EqualVal, m_ConstantInt(Equal))) 2686 return false; 2687 ICmpInst::Predicate PredB; 2688 Value *LHS2, *RHS2; 2689 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2690 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2691 return false; 2692 // We can get predicate mismatch here, so canonicalize if possible: 2693 // First, ensure that 'LHS' match. 2694 if (LHS2 != LHS) { 2695 // x sgt y <--> y slt x 2696 std::swap(LHS2, RHS2); 2697 PredB = ICmpInst::getSwappedPredicate(PredB); 2698 } 2699 if (LHS2 != LHS) 2700 return false; 2701 // We also need to canonicalize 'RHS'. 2702 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2703 // x sgt C-1 <--> x sge C <--> not(x slt C) 2704 auto FlippedStrictness = 2705 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2706 PredB, cast<Constant>(RHS2)); 2707 if (!FlippedStrictness) 2708 return false; 2709 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2710 RHS2 = FlippedStrictness->second; 2711 // And kind-of perform the result swap. 2712 std::swap(Less, Greater); 2713 PredB = ICmpInst::ICMP_SLT; 2714 } 2715 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2716 } 2717 2718 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2719 SelectInst *Select, 2720 ConstantInt *C) { 2721 2722 assert(C && "Cmp RHS should be a constant int!"); 2723 // If we're testing a constant value against the result of a three way 2724 // comparison, the result can be expressed directly in terms of the 2725 // original values being compared. Note: We could possibly be more 2726 // aggressive here and remove the hasOneUse test. The original select is 2727 // really likely to simplify or sink when we remove a test of the result. 2728 Value *OrigLHS, *OrigRHS; 2729 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2730 if (Cmp.hasOneUse() && 2731 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2732 C3GreaterThan)) { 2733 assert(C1LessThan && C2Equal && C3GreaterThan); 2734 2735 bool TrueWhenLessThan = 2736 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2737 ->isAllOnesValue(); 2738 bool TrueWhenEqual = 2739 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2740 ->isAllOnesValue(); 2741 bool TrueWhenGreaterThan = 2742 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2743 ->isAllOnesValue(); 2744 2745 // This generates the new instruction that will replace the original Cmp 2746 // Instruction. Instead of enumerating the various combinations when 2747 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2748 // false, we rely on chaining of ORs and future passes of InstCombine to 2749 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2750 2751 // When none of the three constants satisfy the predicate for the RHS (C), 2752 // the entire original Cmp can be simplified to a false. 2753 Value *Cond = Builder.getFalse(); 2754 if (TrueWhenLessThan) 2755 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2756 OrigLHS, OrigRHS)); 2757 if (TrueWhenEqual) 2758 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2759 OrigLHS, OrigRHS)); 2760 if (TrueWhenGreaterThan) 2761 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2762 OrigLHS, OrigRHS)); 2763 2764 return replaceInstUsesWith(Cmp, Cond); 2765 } 2766 return nullptr; 2767 } 2768 2769 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2770 InstCombiner::BuilderTy &Builder) { 2771 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2772 if (!Bitcast) 2773 return nullptr; 2774 2775 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2776 Value *Op1 = Cmp.getOperand(1); 2777 Value *BCSrcOp = Bitcast->getOperand(0); 2778 2779 // Make sure the bitcast doesn't change the number of vector elements. 2780 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2781 Bitcast->getDestTy()->getScalarSizeInBits()) { 2782 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2783 Value *X; 2784 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2785 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2786 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2787 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2788 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2789 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2790 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2791 match(Op1, m_Zero())) 2792 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2793 2794 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2795 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2796 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2797 2798 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2799 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2800 return new ICmpInst(Pred, X, 2801 ConstantInt::getAllOnesValue(X->getType())); 2802 } 2803 2804 // Zero-equality checks are preserved through unsigned floating-point casts: 2805 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2806 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2807 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2808 if (Cmp.isEquality() && match(Op1, m_Zero())) 2809 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2810 2811 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2812 // the FP extend/truncate because that cast does not change the sign-bit. 2813 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2814 // The sign-bit is always the most significant bit in those types. 2815 const APInt *C; 2816 bool TrueIfSigned; 2817 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2818 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2819 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2820 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2821 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2822 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2823 Type *XType = X->getType(); 2824 2825 // We can't currently handle Power style floating point operations here. 2826 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2827 2828 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2829 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2830 NewType = FixedVectorType::get( 2831 NewType, cast<FixedVectorType>(XVTy)->getNumElements()); 2832 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2833 if (TrueIfSigned) 2834 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2835 ConstantInt::getNullValue(NewType)); 2836 else 2837 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2838 ConstantInt::getAllOnesValue(NewType)); 2839 } 2840 } 2841 } 2842 } 2843 2844 // Test to see if the operands of the icmp are casted versions of other 2845 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2846 if (Bitcast->getType()->isPointerTy() && 2847 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2848 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2849 // so eliminate it as well. 2850 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2851 Op1 = BC2->getOperand(0); 2852 2853 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2854 return new ICmpInst(Pred, BCSrcOp, Op1); 2855 } 2856 2857 // Folding: icmp <pred> iN X, C 2858 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2859 // and C is a splat of a K-bit pattern 2860 // and SC is a constant vector = <C', C', C', ..., C'> 2861 // Into: 2862 // %E = extractelement <M x iK> %vec, i32 C' 2863 // icmp <pred> iK %E, trunc(C) 2864 const APInt *C; 2865 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2866 !Bitcast->getType()->isIntegerTy() || 2867 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2868 return nullptr; 2869 2870 Value *Vec; 2871 ArrayRef<int> Mask; 2872 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2873 // Check whether every element of Mask is the same constant 2874 if (is_splat(Mask)) { 2875 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2876 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2877 if (C->isSplat(EltTy->getBitWidth())) { 2878 // Fold the icmp based on the value of C 2879 // If C is M copies of an iK sized bit pattern, 2880 // then: 2881 // => %E = extractelement <N x iK> %vec, i32 Elem 2882 // icmp <pred> iK %SplatVal, <pattern> 2883 Value *Elem = Builder.getInt32(Mask[0]); 2884 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2885 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2886 return new ICmpInst(Pred, Extract, NewC); 2887 } 2888 } 2889 } 2890 return nullptr; 2891 } 2892 2893 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2894 /// where X is some kind of instruction. 2895 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 2896 const APInt *C; 2897 if (!match(Cmp.getOperand(1), m_APInt(C))) 2898 return nullptr; 2899 2900 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2901 switch (BO->getOpcode()) { 2902 case Instruction::Xor: 2903 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2904 return I; 2905 break; 2906 case Instruction::And: 2907 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2908 return I; 2909 break; 2910 case Instruction::Or: 2911 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2912 return I; 2913 break; 2914 case Instruction::Mul: 2915 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2916 return I; 2917 break; 2918 case Instruction::Shl: 2919 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2920 return I; 2921 break; 2922 case Instruction::LShr: 2923 case Instruction::AShr: 2924 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2925 return I; 2926 break; 2927 case Instruction::SRem: 2928 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 2929 return I; 2930 break; 2931 case Instruction::UDiv: 2932 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2933 return I; 2934 LLVM_FALLTHROUGH; 2935 case Instruction::SDiv: 2936 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2937 return I; 2938 break; 2939 case Instruction::Sub: 2940 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2941 return I; 2942 break; 2943 case Instruction::Add: 2944 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2945 return I; 2946 break; 2947 default: 2948 break; 2949 } 2950 // TODO: These folds could be refactored to be part of the above calls. 2951 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2952 return I; 2953 } 2954 2955 // Match against CmpInst LHS being instructions other than binary operators. 2956 2957 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2958 // For now, we only support constant integers while folding the 2959 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2960 // similar to the cases handled by binary ops above. 2961 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2962 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2963 return I; 2964 } 2965 2966 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2967 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2968 return I; 2969 } 2970 2971 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2972 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2973 return I; 2974 2975 return nullptr; 2976 } 2977 2978 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2979 /// icmp eq/ne BO, C. 2980 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 2981 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 2982 // TODO: Some of these folds could work with arbitrary constants, but this 2983 // function is limited to scalar and vector splat constants. 2984 if (!Cmp.isEquality()) 2985 return nullptr; 2986 2987 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2988 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2989 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2990 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2991 2992 switch (BO->getOpcode()) { 2993 case Instruction::SRem: 2994 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2995 if (C.isNullValue() && BO->hasOneUse()) { 2996 const APInt *BOC; 2997 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2998 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2999 return new ICmpInst(Pred, NewRem, 3000 Constant::getNullValue(BO->getType())); 3001 } 3002 } 3003 break; 3004 case Instruction::Add: { 3005 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3006 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3007 if (BO->hasOneUse()) 3008 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3009 } else if (C.isNullValue()) { 3010 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3011 // efficiently invertible, or if the add has just this one use. 3012 if (Value *NegVal = dyn_castNegVal(BOp1)) 3013 return new ICmpInst(Pred, BOp0, NegVal); 3014 if (Value *NegVal = dyn_castNegVal(BOp0)) 3015 return new ICmpInst(Pred, NegVal, BOp1); 3016 if (BO->hasOneUse()) { 3017 Value *Neg = Builder.CreateNeg(BOp1); 3018 Neg->takeName(BO); 3019 return new ICmpInst(Pred, BOp0, Neg); 3020 } 3021 } 3022 break; 3023 } 3024 case Instruction::Xor: 3025 if (BO->hasOneUse()) { 3026 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3027 // For the xor case, we can xor two constants together, eliminating 3028 // the explicit xor. 3029 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3030 } else if (C.isNullValue()) { 3031 // Replace ((xor A, B) != 0) with (A != B) 3032 return new ICmpInst(Pred, BOp0, BOp1); 3033 } 3034 } 3035 break; 3036 case Instruction::Sub: 3037 if (BO->hasOneUse()) { 3038 // Only check for constant LHS here, as constant RHS will be canonicalized 3039 // to add and use the fold above. 3040 if (Constant *BOC = dyn_cast<Constant>(BOp0)) { 3041 // Replace ((sub BOC, B) != C) with (B != BOC-C). 3042 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); 3043 } else if (C.isNullValue()) { 3044 // Replace ((sub A, B) != 0) with (A != B). 3045 return new ICmpInst(Pred, BOp0, BOp1); 3046 } 3047 } 3048 break; 3049 case Instruction::Or: { 3050 const APInt *BOC; 3051 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3052 // Comparing if all bits outside of a constant mask are set? 3053 // Replace (X | C) == -1 with (X & ~C) == ~C. 3054 // This removes the -1 constant. 3055 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3056 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3057 return new ICmpInst(Pred, And, NotBOC); 3058 } 3059 break; 3060 } 3061 case Instruction::And: { 3062 const APInt *BOC; 3063 if (match(BOp1, m_APInt(BOC))) { 3064 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3065 if (C == *BOC && C.isPowerOf2()) 3066 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3067 BO, Constant::getNullValue(RHS->getType())); 3068 } 3069 break; 3070 } 3071 case Instruction::UDiv: 3072 if (C.isNullValue()) { 3073 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3074 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3075 return new ICmpInst(NewPred, BOp1, BOp0); 3076 } 3077 break; 3078 default: 3079 break; 3080 } 3081 return nullptr; 3082 } 3083 3084 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3085 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3086 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3087 Type *Ty = II->getType(); 3088 unsigned BitWidth = C.getBitWidth(); 3089 switch (II->getIntrinsicID()) { 3090 case Intrinsic::abs: 3091 // abs(A) == 0 -> A == 0 3092 // abs(A) == INT_MIN -> A == INT_MIN 3093 if (C.isNullValue() || C.isMinSignedValue()) 3094 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3095 ConstantInt::get(Ty, C)); 3096 break; 3097 3098 case Intrinsic::bswap: 3099 // bswap(A) == C -> A == bswap(C) 3100 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3101 ConstantInt::get(Ty, C.byteSwap())); 3102 3103 case Intrinsic::ctlz: 3104 case Intrinsic::cttz: { 3105 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3106 if (C == BitWidth) 3107 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3108 ConstantInt::getNullValue(Ty)); 3109 3110 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3111 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3112 // Limit to one use to ensure we don't increase instruction count. 3113 unsigned Num = C.getLimitedValue(BitWidth); 3114 if (Num != BitWidth && II->hasOneUse()) { 3115 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3116 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3117 : APInt::getHighBitsSet(BitWidth, Num + 1); 3118 APInt Mask2 = IsTrailing 3119 ? APInt::getOneBitSet(BitWidth, Num) 3120 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3121 return new ICmpInst(Cmp.getPredicate(), 3122 Builder.CreateAnd(II->getArgOperand(0), Mask1), 3123 ConstantInt::get(Ty, Mask2)); 3124 } 3125 break; 3126 } 3127 3128 case Intrinsic::ctpop: { 3129 // popcount(A) == 0 -> A == 0 and likewise for != 3130 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3131 bool IsZero = C.isNullValue(); 3132 if (IsZero || C == BitWidth) 3133 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3134 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); 3135 3136 break; 3137 } 3138 3139 case Intrinsic::uadd_sat: { 3140 // uadd.sat(a, b) == 0 -> (a | b) == 0 3141 if (C.isNullValue()) { 3142 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3143 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); 3144 } 3145 break; 3146 } 3147 3148 case Intrinsic::usub_sat: { 3149 // usub.sat(a, b) == 0 -> a <= b 3150 if (C.isNullValue()) { 3151 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ 3152 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3153 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3154 } 3155 break; 3156 } 3157 default: 3158 break; 3159 } 3160 3161 return nullptr; 3162 } 3163 3164 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3165 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3166 IntrinsicInst *II, 3167 const APInt &C) { 3168 if (Cmp.isEquality()) 3169 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3170 3171 Type *Ty = II->getType(); 3172 unsigned BitWidth = C.getBitWidth(); 3173 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3174 switch (II->getIntrinsicID()) { 3175 case Intrinsic::ctpop: { 3176 // (ctpop X > BitWidth - 1) --> X == -1 3177 Value *X = II->getArgOperand(0); 3178 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3179 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3180 ConstantInt::getAllOnesValue(Ty)); 3181 // (ctpop X < BitWidth) --> X != -1 3182 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3183 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3184 ConstantInt::getAllOnesValue(Ty)); 3185 break; 3186 } 3187 case Intrinsic::ctlz: { 3188 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3189 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3190 unsigned Num = C.getLimitedValue(); 3191 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3192 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3193 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3194 } 3195 3196 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3197 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3198 unsigned Num = C.getLimitedValue(); 3199 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3200 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3201 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3202 } 3203 break; 3204 } 3205 case Intrinsic::cttz: { 3206 // Limit to one use to ensure we don't increase instruction count. 3207 if (!II->hasOneUse()) 3208 return nullptr; 3209 3210 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3211 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3212 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3213 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3214 Builder.CreateAnd(II->getArgOperand(0), Mask), 3215 ConstantInt::getNullValue(Ty)); 3216 } 3217 3218 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3219 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3220 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3221 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3222 Builder.CreateAnd(II->getArgOperand(0), Mask), 3223 ConstantInt::getNullValue(Ty)); 3224 } 3225 break; 3226 } 3227 default: 3228 break; 3229 } 3230 3231 return nullptr; 3232 } 3233 3234 /// Handle icmp with constant (but not simple integer constant) RHS. 3235 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3236 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3237 Constant *RHSC = dyn_cast<Constant>(Op1); 3238 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3239 if (!RHSC || !LHSI) 3240 return nullptr; 3241 3242 switch (LHSI->getOpcode()) { 3243 case Instruction::GetElementPtr: 3244 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3245 if (RHSC->isNullValue() && 3246 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3247 return new ICmpInst( 3248 I.getPredicate(), LHSI->getOperand(0), 3249 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3250 break; 3251 case Instruction::PHI: 3252 // Only fold icmp into the PHI if the phi and icmp are in the same 3253 // block. If in the same block, we're encouraging jump threading. If 3254 // not, we are just pessimizing the code by making an i1 phi. 3255 if (LHSI->getParent() == I.getParent()) 3256 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3257 return NV; 3258 break; 3259 case Instruction::Select: { 3260 // If either operand of the select is a constant, we can fold the 3261 // comparison into the select arms, which will cause one to be 3262 // constant folded and the select turned into a bitwise or. 3263 Value *Op1 = nullptr, *Op2 = nullptr; 3264 ConstantInt *CI = nullptr; 3265 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3266 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3267 CI = dyn_cast<ConstantInt>(Op1); 3268 } 3269 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3270 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3271 CI = dyn_cast<ConstantInt>(Op2); 3272 } 3273 3274 // We only want to perform this transformation if it will not lead to 3275 // additional code. This is true if either both sides of the select 3276 // fold to a constant (in which case the icmp is replaced with a select 3277 // which will usually simplify) or this is the only user of the 3278 // select (in which case we are trading a select+icmp for a simpler 3279 // select+icmp) or all uses of the select can be replaced based on 3280 // dominance information ("Global cases"). 3281 bool Transform = false; 3282 if (Op1 && Op2) 3283 Transform = true; 3284 else if (Op1 || Op2) { 3285 // Local case 3286 if (LHSI->hasOneUse()) 3287 Transform = true; 3288 // Global cases 3289 else if (CI && !CI->isZero()) 3290 // When Op1 is constant try replacing select with second operand. 3291 // Otherwise Op2 is constant and try replacing select with first 3292 // operand. 3293 Transform = 3294 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3295 } 3296 if (Transform) { 3297 if (!Op1) 3298 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3299 I.getName()); 3300 if (!Op2) 3301 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3302 I.getName()); 3303 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3304 } 3305 break; 3306 } 3307 case Instruction::IntToPtr: 3308 // icmp pred inttoptr(X), null -> icmp pred X, 0 3309 if (RHSC->isNullValue() && 3310 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3311 return new ICmpInst( 3312 I.getPredicate(), LHSI->getOperand(0), 3313 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3314 break; 3315 3316 case Instruction::Load: 3317 // Try to optimize things like "A[i] > 4" to index computations. 3318 if (GetElementPtrInst *GEP = 3319 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3320 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3321 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3322 !cast<LoadInst>(LHSI)->isVolatile()) 3323 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3324 return Res; 3325 } 3326 break; 3327 } 3328 3329 return nullptr; 3330 } 3331 3332 /// Some comparisons can be simplified. 3333 /// In this case, we are looking for comparisons that look like 3334 /// a check for a lossy truncation. 3335 /// Folds: 3336 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3337 /// Where Mask is some pattern that produces all-ones in low bits: 3338 /// (-1 >> y) 3339 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3340 /// ~(-1 << y) 3341 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3342 /// The Mask can be a constant, too. 3343 /// For some predicates, the operands are commutative. 3344 /// For others, x can only be on a specific side. 3345 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3346 InstCombiner::BuilderTy &Builder) { 3347 ICmpInst::Predicate SrcPred; 3348 Value *X, *M, *Y; 3349 auto m_VariableMask = m_CombineOr( 3350 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3351 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3352 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3353 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3354 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3355 if (!match(&I, m_c_ICmp(SrcPred, 3356 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3357 m_Deferred(X)))) 3358 return nullptr; 3359 3360 ICmpInst::Predicate DstPred; 3361 switch (SrcPred) { 3362 case ICmpInst::Predicate::ICMP_EQ: 3363 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3364 DstPred = ICmpInst::Predicate::ICMP_ULE; 3365 break; 3366 case ICmpInst::Predicate::ICMP_NE: 3367 // x & (-1 >> y) != x -> x u> (-1 >> y) 3368 DstPred = ICmpInst::Predicate::ICMP_UGT; 3369 break; 3370 case ICmpInst::Predicate::ICMP_ULT: 3371 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3372 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3373 DstPred = ICmpInst::Predicate::ICMP_UGT; 3374 break; 3375 case ICmpInst::Predicate::ICMP_UGE: 3376 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3377 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3378 DstPred = ICmpInst::Predicate::ICMP_ULE; 3379 break; 3380 case ICmpInst::Predicate::ICMP_SLT: 3381 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3382 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3383 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3384 return nullptr; 3385 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3386 return nullptr; 3387 DstPred = ICmpInst::Predicate::ICMP_SGT; 3388 break; 3389 case ICmpInst::Predicate::ICMP_SGE: 3390 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3391 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3392 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3393 return nullptr; 3394 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3395 return nullptr; 3396 DstPred = ICmpInst::Predicate::ICMP_SLE; 3397 break; 3398 case ICmpInst::Predicate::ICMP_SGT: 3399 case ICmpInst::Predicate::ICMP_SLE: 3400 return nullptr; 3401 case ICmpInst::Predicate::ICMP_UGT: 3402 case ICmpInst::Predicate::ICMP_ULE: 3403 llvm_unreachable("Instsimplify took care of commut. variant"); 3404 break; 3405 default: 3406 llvm_unreachable("All possible folds are handled."); 3407 } 3408 3409 // The mask value may be a vector constant that has undefined elements. But it 3410 // may not be safe to propagate those undefs into the new compare, so replace 3411 // those elements by copying an existing, defined, and safe scalar constant. 3412 Type *OpTy = M->getType(); 3413 auto *VecC = dyn_cast<Constant>(M); 3414 if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) { 3415 auto *OpVTy = cast<FixedVectorType>(OpTy); 3416 Constant *SafeReplacementConstant = nullptr; 3417 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3418 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3419 SafeReplacementConstant = VecC->getAggregateElement(i); 3420 break; 3421 } 3422 } 3423 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3424 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3425 } 3426 3427 return Builder.CreateICmp(DstPred, X, M); 3428 } 3429 3430 /// Some comparisons can be simplified. 3431 /// In this case, we are looking for comparisons that look like 3432 /// a check for a lossy signed truncation. 3433 /// Folds: (MaskedBits is a constant.) 3434 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3435 /// Into: 3436 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3437 /// Where KeptBits = bitwidth(%x) - MaskedBits 3438 static Value * 3439 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3440 InstCombiner::BuilderTy &Builder) { 3441 ICmpInst::Predicate SrcPred; 3442 Value *X; 3443 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3444 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3445 if (!match(&I, m_c_ICmp(SrcPred, 3446 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3447 m_APInt(C1))), 3448 m_Deferred(X)))) 3449 return nullptr; 3450 3451 // Potential handling of non-splats: for each element: 3452 // * if both are undef, replace with constant 0. 3453 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3454 // * if both are not undef, and are different, bailout. 3455 // * else, only one is undef, then pick the non-undef one. 3456 3457 // The shift amount must be equal. 3458 if (*C0 != *C1) 3459 return nullptr; 3460 const APInt &MaskedBits = *C0; 3461 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3462 3463 ICmpInst::Predicate DstPred; 3464 switch (SrcPred) { 3465 case ICmpInst::Predicate::ICMP_EQ: 3466 // ((%x << MaskedBits) a>> MaskedBits) == %x 3467 // => 3468 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3469 DstPred = ICmpInst::Predicate::ICMP_ULT; 3470 break; 3471 case ICmpInst::Predicate::ICMP_NE: 3472 // ((%x << MaskedBits) a>> MaskedBits) != %x 3473 // => 3474 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3475 DstPred = ICmpInst::Predicate::ICMP_UGE; 3476 break; 3477 // FIXME: are more folds possible? 3478 default: 3479 return nullptr; 3480 } 3481 3482 auto *XType = X->getType(); 3483 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3484 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3485 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3486 3487 // KeptBits = bitwidth(%x) - MaskedBits 3488 const APInt KeptBits = BitWidth - MaskedBits; 3489 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3490 // ICmpCst = (1 << KeptBits) 3491 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3492 assert(ICmpCst.isPowerOf2()); 3493 // AddCst = (1 << (KeptBits-1)) 3494 const APInt AddCst = ICmpCst.lshr(1); 3495 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3496 3497 // T0 = add %x, AddCst 3498 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3499 // T1 = T0 DstPred ICmpCst 3500 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3501 3502 return T1; 3503 } 3504 3505 // Given pattern: 3506 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3507 // we should move shifts to the same hand of 'and', i.e. rewrite as 3508 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3509 // We are only interested in opposite logical shifts here. 3510 // One of the shifts can be truncated. 3511 // If we can, we want to end up creating 'lshr' shift. 3512 static Value * 3513 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3514 InstCombiner::BuilderTy &Builder) { 3515 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3516 !I.getOperand(0)->hasOneUse()) 3517 return nullptr; 3518 3519 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3520 3521 // Look for an 'and' of two logical shifts, one of which may be truncated. 3522 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3523 Instruction *XShift, *MaybeTruncation, *YShift; 3524 if (!match( 3525 I.getOperand(0), 3526 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3527 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3528 m_AnyLogicalShift, m_Instruction(YShift))), 3529 m_Instruction(MaybeTruncation))))) 3530 return nullptr; 3531 3532 // We potentially looked past 'trunc', but only when matching YShift, 3533 // therefore YShift must have the widest type. 3534 Instruction *WidestShift = YShift; 3535 // Therefore XShift must have the shallowest type. 3536 // Or they both have identical types if there was no truncation. 3537 Instruction *NarrowestShift = XShift; 3538 3539 Type *WidestTy = WidestShift->getType(); 3540 Type *NarrowestTy = NarrowestShift->getType(); 3541 assert(NarrowestTy == I.getOperand(0)->getType() && 3542 "We did not look past any shifts while matching XShift though."); 3543 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3544 3545 // If YShift is a 'lshr', swap the shifts around. 3546 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3547 std::swap(XShift, YShift); 3548 3549 // The shifts must be in opposite directions. 3550 auto XShiftOpcode = XShift->getOpcode(); 3551 if (XShiftOpcode == YShift->getOpcode()) 3552 return nullptr; // Do not care about same-direction shifts here. 3553 3554 Value *X, *XShAmt, *Y, *YShAmt; 3555 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3556 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3557 3558 // If one of the values being shifted is a constant, then we will end with 3559 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3560 // however, we will need to ensure that we won't increase instruction count. 3561 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3562 // At least one of the hands of the 'and' should be one-use shift. 3563 if (!match(I.getOperand(0), 3564 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3565 return nullptr; 3566 if (HadTrunc) { 3567 // Due to the 'trunc', we will need to widen X. For that either the old 3568 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3569 if (!MaybeTruncation->hasOneUse() && 3570 !NarrowestShift->getOperand(1)->hasOneUse()) 3571 return nullptr; 3572 } 3573 } 3574 3575 // We have two shift amounts from two different shifts. The types of those 3576 // shift amounts may not match. If that's the case let's bailout now. 3577 if (XShAmt->getType() != YShAmt->getType()) 3578 return nullptr; 3579 3580 // As input, we have the following pattern: 3581 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3582 // We want to rewrite that as: 3583 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3584 // While we know that originally (Q+K) would not overflow 3585 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3586 // shift amounts. so it may now overflow in smaller bitwidth. 3587 // To ensure that does not happen, we need to ensure that the total maximal 3588 // shift amount is still representable in that smaller bit width. 3589 unsigned MaximalPossibleTotalShiftAmount = 3590 (WidestTy->getScalarSizeInBits() - 1) + 3591 (NarrowestTy->getScalarSizeInBits() - 1); 3592 APInt MaximalRepresentableShiftAmount = 3593 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); 3594 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3595 return nullptr; 3596 3597 // Can we fold (XShAmt+YShAmt) ? 3598 auto *NewShAmt = dyn_cast_or_null<Constant>( 3599 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3600 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3601 if (!NewShAmt) 3602 return nullptr; 3603 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3604 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3605 3606 // Is the new shift amount smaller than the bit width? 3607 // FIXME: could also rely on ConstantRange. 3608 if (!match(NewShAmt, 3609 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3610 APInt(WidestBitWidth, WidestBitWidth)))) 3611 return nullptr; 3612 3613 // An extra legality check is needed if we had trunc-of-lshr. 3614 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3615 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3616 WidestShift]() { 3617 // It isn't obvious whether it's worth it to analyze non-constants here. 3618 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3619 // If *any* of these preconditions matches we can perform the fold. 3620 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3621 ? NewShAmt->getSplatValue() 3622 : NewShAmt; 3623 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3624 if (NewShAmtSplat && 3625 (NewShAmtSplat->isNullValue() || 3626 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3627 return true; 3628 // We consider *min* leading zeros so a single outlier 3629 // blocks the transform as opposed to allowing it. 3630 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3631 KnownBits Known = computeKnownBits(C, SQ.DL); 3632 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3633 // If the value being shifted has at most lowest bit set we can fold. 3634 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3635 if (MaxActiveBits <= 1) 3636 return true; 3637 // Precondition: NewShAmt u<= countLeadingZeros(C) 3638 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3639 return true; 3640 } 3641 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3642 KnownBits Known = computeKnownBits(C, SQ.DL); 3643 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3644 // If the value being shifted has at most lowest bit set we can fold. 3645 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3646 if (MaxActiveBits <= 1) 3647 return true; 3648 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3649 if (NewShAmtSplat) { 3650 APInt AdjNewShAmt = 3651 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3652 if (AdjNewShAmt.ule(MinLeadZero)) 3653 return true; 3654 } 3655 } 3656 return false; // Can't tell if it's ok. 3657 }; 3658 if (!CanFold()) 3659 return nullptr; 3660 } 3661 3662 // All good, we can do this fold. 3663 X = Builder.CreateZExt(X, WidestTy); 3664 Y = Builder.CreateZExt(Y, WidestTy); 3665 // The shift is the same that was for X. 3666 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3667 ? Builder.CreateLShr(X, NewShAmt) 3668 : Builder.CreateShl(X, NewShAmt); 3669 Value *T1 = Builder.CreateAnd(T0, Y); 3670 return Builder.CreateICmp(I.getPredicate(), T1, 3671 Constant::getNullValue(WidestTy)); 3672 } 3673 3674 /// Fold 3675 /// (-1 u/ x) u< y 3676 /// ((x * y) u/ x) != y 3677 /// to 3678 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit 3679 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3680 /// will mean that we are looking for the opposite answer. 3681 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { 3682 ICmpInst::Predicate Pred; 3683 Value *X, *Y; 3684 Instruction *Mul; 3685 bool NeedNegation; 3686 // Look for: (-1 u/ x) u</u>= y 3687 if (!I.isEquality() && 3688 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3689 m_Value(Y)))) { 3690 Mul = nullptr; 3691 3692 // Are we checking that overflow does not happen, or does happen? 3693 switch (Pred) { 3694 case ICmpInst::Predicate::ICMP_ULT: 3695 NeedNegation = false; 3696 break; // OK 3697 case ICmpInst::Predicate::ICMP_UGE: 3698 NeedNegation = true; 3699 break; // OK 3700 default: 3701 return nullptr; // Wrong predicate. 3702 } 3703 } else // Look for: ((x * y) u/ x) !=/== y 3704 if (I.isEquality() && 3705 match(&I, m_c_ICmp(Pred, m_Value(Y), 3706 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3707 m_Value(X)), 3708 m_Instruction(Mul)), 3709 m_Deferred(X)))))) { 3710 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3711 } else 3712 return nullptr; 3713 3714 BuilderTy::InsertPointGuard Guard(Builder); 3715 // If the pattern included (x * y), we'll want to insert new instructions 3716 // right before that original multiplication so that we can replace it. 3717 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3718 if (MulHadOtherUses) 3719 Builder.SetInsertPoint(Mul); 3720 3721 Function *F = Intrinsic::getDeclaration( 3722 I.getModule(), Intrinsic::umul_with_overflow, X->getType()); 3723 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); 3724 3725 // If the multiplication was used elsewhere, to ensure that we don't leave 3726 // "duplicate" instructions, replace uses of that original multiplication 3727 // with the multiplication result from the with.overflow intrinsic. 3728 if (MulHadOtherUses) 3729 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); 3730 3731 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); 3732 if (NeedNegation) // This technically increases instruction count. 3733 Res = Builder.CreateNot(Res, "umul.not.ov"); 3734 3735 // If we replaced the mul, erase it. Do this after all uses of Builder, 3736 // as the mul is used as insertion point. 3737 if (MulHadOtherUses) 3738 eraseInstFromFunction(*Mul); 3739 3740 return Res; 3741 } 3742 3743 static Instruction *foldICmpXNegX(ICmpInst &I) { 3744 CmpInst::Predicate Pred; 3745 Value *X; 3746 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3747 return nullptr; 3748 3749 if (ICmpInst::isSigned(Pred)) 3750 Pred = ICmpInst::getSwappedPredicate(Pred); 3751 else if (ICmpInst::isUnsigned(Pred)) 3752 Pred = ICmpInst::getSignedPredicate(Pred); 3753 // else for equality-comparisons just keep the predicate. 3754 3755 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3756 Constant::getNullValue(X->getType()), I.getName()); 3757 } 3758 3759 /// Try to fold icmp (binop), X or icmp X, (binop). 3760 /// TODO: A large part of this logic is duplicated in InstSimplify's 3761 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3762 /// duplication. 3763 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3764 const SimplifyQuery &SQ) { 3765 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3766 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3767 3768 // Special logic for binary operators. 3769 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3770 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3771 if (!BO0 && !BO1) 3772 return nullptr; 3773 3774 if (Instruction *NewICmp = foldICmpXNegX(I)) 3775 return NewICmp; 3776 3777 const CmpInst::Predicate Pred = I.getPredicate(); 3778 Value *X; 3779 3780 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3781 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3782 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3783 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3784 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3785 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3786 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3787 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3788 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3789 3790 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3791 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3792 NoOp0WrapProblem = 3793 ICmpInst::isEquality(Pred) || 3794 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3795 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3796 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3797 NoOp1WrapProblem = 3798 ICmpInst::isEquality(Pred) || 3799 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3800 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3801 3802 // Analyze the case when either Op0 or Op1 is an add instruction. 3803 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3804 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3805 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3806 A = BO0->getOperand(0); 3807 B = BO0->getOperand(1); 3808 } 3809 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3810 C = BO1->getOperand(0); 3811 D = BO1->getOperand(1); 3812 } 3813 3814 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3815 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3816 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3817 return new ICmpInst(Pred, A == Op1 ? B : A, 3818 Constant::getNullValue(Op1->getType())); 3819 3820 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3821 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3822 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3823 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3824 C == Op0 ? D : C); 3825 3826 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3827 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3828 NoOp1WrapProblem) { 3829 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3830 Value *Y, *Z; 3831 if (A == C) { 3832 // C + B == C + D -> B == D 3833 Y = B; 3834 Z = D; 3835 } else if (A == D) { 3836 // D + B == C + D -> B == C 3837 Y = B; 3838 Z = C; 3839 } else if (B == C) { 3840 // A + C == C + D -> A == D 3841 Y = A; 3842 Z = D; 3843 } else { 3844 assert(B == D); 3845 // A + D == C + D -> A == C 3846 Y = A; 3847 Z = C; 3848 } 3849 return new ICmpInst(Pred, Y, Z); 3850 } 3851 3852 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 3853 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3854 match(B, m_AllOnes())) 3855 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3856 3857 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 3858 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3859 match(B, m_AllOnes())) 3860 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3861 3862 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 3863 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3864 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3865 3866 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 3867 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3868 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3869 3870 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 3871 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3872 match(D, m_AllOnes())) 3873 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3874 3875 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 3876 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3877 match(D, m_AllOnes())) 3878 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3879 3880 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 3881 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3882 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3883 3884 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 3885 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3886 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3887 3888 // TODO: The subtraction-related identities shown below also hold, but 3889 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3890 // wouldn't happen even if they were implemented. 3891 // 3892 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 3893 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 3894 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 3895 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 3896 3897 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 3898 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3899 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3900 3901 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 3902 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3903 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3904 3905 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 3906 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3907 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3908 3909 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 3910 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3911 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3912 3913 // if C1 has greater magnitude than C2: 3914 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 3915 // s.t. C3 = C1 - C2 3916 // 3917 // if C2 has greater magnitude than C1: 3918 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 3919 // s.t. C3 = C2 - C1 3920 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3921 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3922 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3923 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3924 const APInt &AP1 = C1->getValue(); 3925 const APInt &AP2 = C2->getValue(); 3926 if (AP1.isNegative() == AP2.isNegative()) { 3927 APInt AP1Abs = C1->getValue().abs(); 3928 APInt AP2Abs = C2->getValue().abs(); 3929 if (AP1Abs.uge(AP2Abs)) { 3930 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3931 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3932 return new ICmpInst(Pred, NewAdd, C); 3933 } else { 3934 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3935 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3936 return new ICmpInst(Pred, A, NewAdd); 3937 } 3938 } 3939 } 3940 3941 // Analyze the case when either Op0 or Op1 is a sub instruction. 3942 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3943 A = nullptr; 3944 B = nullptr; 3945 C = nullptr; 3946 D = nullptr; 3947 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3948 A = BO0->getOperand(0); 3949 B = BO0->getOperand(1); 3950 } 3951 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3952 C = BO1->getOperand(0); 3953 D = BO1->getOperand(1); 3954 } 3955 3956 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 3957 if (A == Op1 && NoOp0WrapProblem) 3958 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3959 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 3960 if (C == Op0 && NoOp1WrapProblem) 3961 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3962 3963 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 3964 // (A - B) u>/u<= A --> B u>/u<= A 3965 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3966 return new ICmpInst(Pred, B, A); 3967 // C u</u>= (C - D) --> C u</u>= D 3968 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3969 return new ICmpInst(Pred, C, D); 3970 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 3971 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 3972 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3973 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 3974 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 3975 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 3976 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3977 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 3978 3979 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 3980 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 3981 return new ICmpInst(Pred, A, C); 3982 3983 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 3984 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 3985 return new ICmpInst(Pred, D, B); 3986 3987 // icmp (0-X) < cst --> x > -cst 3988 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3989 Value *X; 3990 if (match(BO0, m_Neg(m_Value(X)))) 3991 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3992 if (RHSC->isNotMinSignedValue()) 3993 return new ICmpInst(I.getSwappedPredicate(), X, 3994 ConstantExpr::getNeg(RHSC)); 3995 } 3996 3997 { 3998 // Try to remove shared constant multiplier from equality comparison: 3999 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4000 Value *X, *Y; 4001 const APInt *C; 4002 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4003 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4004 if (!C->countTrailingZeros() || 4005 (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4006 (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4007 return new ICmpInst(Pred, X, Y); 4008 } 4009 4010 BinaryOperator *SRem = nullptr; 4011 // icmp (srem X, Y), Y 4012 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4013 SRem = BO0; 4014 // icmp Y, (srem X, Y) 4015 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4016 Op0 == BO1->getOperand(1)) 4017 SRem = BO1; 4018 if (SRem) { 4019 // We don't check hasOneUse to avoid increasing register pressure because 4020 // the value we use is the same value this instruction was already using. 4021 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4022 default: 4023 break; 4024 case ICmpInst::ICMP_EQ: 4025 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4026 case ICmpInst::ICMP_NE: 4027 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4028 case ICmpInst::ICMP_SGT: 4029 case ICmpInst::ICMP_SGE: 4030 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4031 Constant::getAllOnesValue(SRem->getType())); 4032 case ICmpInst::ICMP_SLT: 4033 case ICmpInst::ICMP_SLE: 4034 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4035 Constant::getNullValue(SRem->getType())); 4036 } 4037 } 4038 4039 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4040 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4041 switch (BO0->getOpcode()) { 4042 default: 4043 break; 4044 case Instruction::Add: 4045 case Instruction::Sub: 4046 case Instruction::Xor: { 4047 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4048 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4049 4050 const APInt *C; 4051 if (match(BO0->getOperand(1), m_APInt(C))) { 4052 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4053 if (C->isSignMask()) { 4054 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4055 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4056 } 4057 4058 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4059 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4060 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4061 NewPred = I.getSwappedPredicate(NewPred); 4062 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4063 } 4064 } 4065 break; 4066 } 4067 case Instruction::Mul: { 4068 if (!I.isEquality()) 4069 break; 4070 4071 const APInt *C; 4072 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 4073 !C->isOneValue()) { 4074 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4075 // Mask = -1 >> count-trailing-zeros(C). 4076 if (unsigned TZs = C->countTrailingZeros()) { 4077 Constant *Mask = ConstantInt::get( 4078 BO0->getType(), 4079 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4080 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4081 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4082 return new ICmpInst(Pred, And1, And2); 4083 } 4084 } 4085 break; 4086 } 4087 case Instruction::UDiv: 4088 case Instruction::LShr: 4089 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4090 break; 4091 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4092 4093 case Instruction::SDiv: 4094 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4095 break; 4096 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4097 4098 case Instruction::AShr: 4099 if (!BO0->isExact() || !BO1->isExact()) 4100 break; 4101 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4102 4103 case Instruction::Shl: { 4104 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4105 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4106 if (!NUW && !NSW) 4107 break; 4108 if (!NSW && I.isSigned()) 4109 break; 4110 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4111 } 4112 } 4113 } 4114 4115 if (BO0) { 4116 // Transform A & (L - 1) `ult` L --> L != 0 4117 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4118 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4119 4120 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4121 auto *Zero = Constant::getNullValue(BO0->getType()); 4122 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4123 } 4124 } 4125 4126 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) 4127 return replaceInstUsesWith(I, V); 4128 4129 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4130 return replaceInstUsesWith(I, V); 4131 4132 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4133 return replaceInstUsesWith(I, V); 4134 4135 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4136 return replaceInstUsesWith(I, V); 4137 4138 return nullptr; 4139 } 4140 4141 /// Fold icmp Pred min|max(X, Y), X. 4142 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4143 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4144 Value *Op0 = Cmp.getOperand(0); 4145 Value *X = Cmp.getOperand(1); 4146 4147 // Canonicalize minimum or maximum operand to LHS of the icmp. 4148 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4149 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4150 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4151 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4152 std::swap(Op0, X); 4153 Pred = Cmp.getSwappedPredicate(); 4154 } 4155 4156 Value *Y; 4157 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4158 // smin(X, Y) == X --> X s<= Y 4159 // smin(X, Y) s>= X --> X s<= Y 4160 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4161 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4162 4163 // smin(X, Y) != X --> X s> Y 4164 // smin(X, Y) s< X --> X s> Y 4165 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4166 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4167 4168 // These cases should be handled in InstSimplify: 4169 // smin(X, Y) s<= X --> true 4170 // smin(X, Y) s> X --> false 4171 return nullptr; 4172 } 4173 4174 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4175 // smax(X, Y) == X --> X s>= Y 4176 // smax(X, Y) s<= X --> X s>= Y 4177 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4178 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4179 4180 // smax(X, Y) != X --> X s< Y 4181 // smax(X, Y) s> X --> X s< Y 4182 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4183 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4184 4185 // These cases should be handled in InstSimplify: 4186 // smax(X, Y) s>= X --> true 4187 // smax(X, Y) s< X --> false 4188 return nullptr; 4189 } 4190 4191 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4192 // umin(X, Y) == X --> X u<= Y 4193 // umin(X, Y) u>= X --> X u<= Y 4194 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4195 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4196 4197 // umin(X, Y) != X --> X u> Y 4198 // umin(X, Y) u< X --> X u> Y 4199 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4200 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4201 4202 // These cases should be handled in InstSimplify: 4203 // umin(X, Y) u<= X --> true 4204 // umin(X, Y) u> X --> false 4205 return nullptr; 4206 } 4207 4208 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4209 // umax(X, Y) == X --> X u>= Y 4210 // umax(X, Y) u<= X --> X u>= Y 4211 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4212 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4213 4214 // umax(X, Y) != X --> X u< Y 4215 // umax(X, Y) u> X --> X u< Y 4216 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4217 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4218 4219 // These cases should be handled in InstSimplify: 4220 // umax(X, Y) u>= X --> true 4221 // umax(X, Y) u< X --> false 4222 return nullptr; 4223 } 4224 4225 return nullptr; 4226 } 4227 4228 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4229 if (!I.isEquality()) 4230 return nullptr; 4231 4232 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4233 const CmpInst::Predicate Pred = I.getPredicate(); 4234 Value *A, *B, *C, *D; 4235 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4236 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4237 Value *OtherVal = A == Op1 ? B : A; 4238 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4239 } 4240 4241 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4242 // A^c1 == C^c2 --> A == C^(c1^c2) 4243 ConstantInt *C1, *C2; 4244 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4245 Op1->hasOneUse()) { 4246 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4247 Value *Xor = Builder.CreateXor(C, NC); 4248 return new ICmpInst(Pred, A, Xor); 4249 } 4250 4251 // A^B == A^D -> B == D 4252 if (A == C) 4253 return new ICmpInst(Pred, B, D); 4254 if (A == D) 4255 return new ICmpInst(Pred, B, C); 4256 if (B == C) 4257 return new ICmpInst(Pred, A, D); 4258 if (B == D) 4259 return new ICmpInst(Pred, A, C); 4260 } 4261 } 4262 4263 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4264 // A == (A^B) -> B == 0 4265 Value *OtherVal = A == Op0 ? B : A; 4266 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4267 } 4268 4269 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4270 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4271 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4272 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4273 4274 if (A == C) { 4275 X = B; 4276 Y = D; 4277 Z = A; 4278 } else if (A == D) { 4279 X = B; 4280 Y = C; 4281 Z = A; 4282 } else if (B == C) { 4283 X = A; 4284 Y = D; 4285 Z = B; 4286 } else if (B == D) { 4287 X = A; 4288 Y = C; 4289 Z = B; 4290 } 4291 4292 if (X) { // Build (X^Y) & Z 4293 Op1 = Builder.CreateXor(X, Y); 4294 Op1 = Builder.CreateAnd(Op1, Z); 4295 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4296 } 4297 } 4298 4299 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4300 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4301 ConstantInt *Cst1; 4302 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4303 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4304 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4305 match(Op1, m_ZExt(m_Value(A))))) { 4306 APInt Pow2 = Cst1->getValue() + 1; 4307 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4308 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4309 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4310 } 4311 4312 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4313 // For lshr and ashr pairs. 4314 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4315 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4316 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4317 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4318 unsigned TypeBits = Cst1->getBitWidth(); 4319 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4320 if (ShAmt < TypeBits && ShAmt != 0) { 4321 ICmpInst::Predicate NewPred = 4322 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4323 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4324 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4325 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4326 } 4327 } 4328 4329 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4330 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4331 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4332 unsigned TypeBits = Cst1->getBitWidth(); 4333 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4334 if (ShAmt < TypeBits && ShAmt != 0) { 4335 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4336 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4337 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4338 I.getName() + ".mask"); 4339 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4340 } 4341 } 4342 4343 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4344 // "icmp (and X, mask), cst" 4345 uint64_t ShAmt = 0; 4346 if (Op0->hasOneUse() && 4347 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4348 match(Op1, m_ConstantInt(Cst1)) && 4349 // Only do this when A has multiple uses. This is most important to do 4350 // when it exposes other optimizations. 4351 !A->hasOneUse()) { 4352 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4353 4354 if (ShAmt < ASize) { 4355 APInt MaskV = 4356 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4357 MaskV <<= ShAmt; 4358 4359 APInt CmpV = Cst1->getValue().zext(ASize); 4360 CmpV <<= ShAmt; 4361 4362 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4363 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4364 } 4365 } 4366 4367 // If both operands are byte-swapped or bit-reversed, just compare the 4368 // original values. 4369 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 4370 // and handle more intrinsics. 4371 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 4372 (match(Op0, m_BitReverse(m_Value(A))) && 4373 match(Op1, m_BitReverse(m_Value(B))))) 4374 return new ICmpInst(Pred, A, B); 4375 4376 // Canonicalize checking for a power-of-2-or-zero value: 4377 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4378 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4379 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4380 m_Deferred(A)))) || 4381 !match(Op1, m_ZeroInt())) 4382 A = nullptr; 4383 4384 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4385 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4386 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4387 A = Op1; 4388 else if (match(Op1, 4389 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4390 A = Op0; 4391 4392 if (A) { 4393 Type *Ty = A->getType(); 4394 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4395 return Pred == ICmpInst::ICMP_EQ 4396 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4397 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4398 } 4399 4400 return nullptr; 4401 } 4402 4403 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4404 InstCombiner::BuilderTy &Builder) { 4405 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4406 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4407 Value *X; 4408 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4409 return nullptr; 4410 4411 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4412 bool IsSignedCmp = ICmp.isSigned(); 4413 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4414 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4415 // and the other is a zext), then we can't handle this. 4416 // TODO: This is too strict. We can handle some predicates (equality?). 4417 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4418 return nullptr; 4419 4420 // Not an extension from the same type? 4421 Value *Y = CastOp1->getOperand(0); 4422 Type *XTy = X->getType(), *YTy = Y->getType(); 4423 if (XTy != YTy) { 4424 // One of the casts must have one use because we are creating a new cast. 4425 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4426 return nullptr; 4427 // Extend the narrower operand to the type of the wider operand. 4428 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4429 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4430 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4431 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4432 else 4433 return nullptr; 4434 } 4435 4436 // (zext X) == (zext Y) --> X == Y 4437 // (sext X) == (sext Y) --> X == Y 4438 if (ICmp.isEquality()) 4439 return new ICmpInst(ICmp.getPredicate(), X, Y); 4440 4441 // A signed comparison of sign extended values simplifies into a 4442 // signed comparison. 4443 if (IsSignedCmp && IsSignedExt) 4444 return new ICmpInst(ICmp.getPredicate(), X, Y); 4445 4446 // The other three cases all fold into an unsigned comparison. 4447 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4448 } 4449 4450 // Below here, we are only folding a compare with constant. 4451 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4452 if (!C) 4453 return nullptr; 4454 4455 // Compute the constant that would happen if we truncated to SrcTy then 4456 // re-extended to DestTy. 4457 Type *SrcTy = CastOp0->getSrcTy(); 4458 Type *DestTy = CastOp0->getDestTy(); 4459 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4460 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4461 4462 // If the re-extended constant didn't change... 4463 if (Res2 == C) { 4464 if (ICmp.isEquality()) 4465 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4466 4467 // A signed comparison of sign extended values simplifies into a 4468 // signed comparison. 4469 if (IsSignedExt && IsSignedCmp) 4470 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4471 4472 // The other three cases all fold into an unsigned comparison. 4473 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4474 } 4475 4476 // The re-extended constant changed, partly changed (in the case of a vector), 4477 // or could not be determined to be equal (in the case of a constant 4478 // expression), so the constant cannot be represented in the shorter type. 4479 // All the cases that fold to true or false will have already been handled 4480 // by SimplifyICmpInst, so only deal with the tricky case. 4481 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4482 return nullptr; 4483 4484 // Is source op positive? 4485 // icmp ult (sext X), C --> icmp sgt X, -1 4486 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4487 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4488 4489 // Is source op negative? 4490 // icmp ugt (sext X), C --> icmp slt X, 0 4491 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4492 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4493 } 4494 4495 /// Handle icmp (cast x), (cast or constant). 4496 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4497 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4498 if (!CastOp0) 4499 return nullptr; 4500 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4501 return nullptr; 4502 4503 Value *Op0Src = CastOp0->getOperand(0); 4504 Type *SrcTy = CastOp0->getSrcTy(); 4505 Type *DestTy = CastOp0->getDestTy(); 4506 4507 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4508 // integer type is the same size as the pointer type. 4509 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4510 if (isa<VectorType>(SrcTy)) { 4511 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4512 DestTy = cast<VectorType>(DestTy)->getElementType(); 4513 } 4514 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4515 }; 4516 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4517 CompatibleSizes(SrcTy, DestTy)) { 4518 Value *NewOp1 = nullptr; 4519 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4520 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4521 if (PtrSrc->getType()->getPointerAddressSpace() == 4522 Op0Src->getType()->getPointerAddressSpace()) { 4523 NewOp1 = PtrToIntOp1->getOperand(0); 4524 // If the pointer types don't match, insert a bitcast. 4525 if (Op0Src->getType() != NewOp1->getType()) 4526 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4527 } 4528 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4529 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4530 } 4531 4532 if (NewOp1) 4533 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4534 } 4535 4536 return foldICmpWithZextOrSext(ICmp, Builder); 4537 } 4538 4539 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4540 switch (BinaryOp) { 4541 default: 4542 llvm_unreachable("Unsupported binary op"); 4543 case Instruction::Add: 4544 case Instruction::Sub: 4545 return match(RHS, m_Zero()); 4546 case Instruction::Mul: 4547 return match(RHS, m_One()); 4548 } 4549 } 4550 4551 OverflowResult 4552 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4553 bool IsSigned, Value *LHS, Value *RHS, 4554 Instruction *CxtI) const { 4555 switch (BinaryOp) { 4556 default: 4557 llvm_unreachable("Unsupported binary op"); 4558 case Instruction::Add: 4559 if (IsSigned) 4560 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4561 else 4562 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4563 case Instruction::Sub: 4564 if (IsSigned) 4565 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4566 else 4567 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4568 case Instruction::Mul: 4569 if (IsSigned) 4570 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4571 else 4572 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4573 } 4574 } 4575 4576 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4577 bool IsSigned, Value *LHS, 4578 Value *RHS, Instruction &OrigI, 4579 Value *&Result, 4580 Constant *&Overflow) { 4581 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4582 std::swap(LHS, RHS); 4583 4584 // If the overflow check was an add followed by a compare, the insertion point 4585 // may be pointing to the compare. We want to insert the new instructions 4586 // before the add in case there are uses of the add between the add and the 4587 // compare. 4588 Builder.SetInsertPoint(&OrigI); 4589 4590 if (isNeutralValue(BinaryOp, RHS)) { 4591 Result = LHS; 4592 Overflow = Builder.getFalse(); 4593 return true; 4594 } 4595 4596 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4597 case OverflowResult::MayOverflow: 4598 return false; 4599 case OverflowResult::AlwaysOverflowsLow: 4600 case OverflowResult::AlwaysOverflowsHigh: 4601 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4602 Result->takeName(&OrigI); 4603 Overflow = Builder.getTrue(); 4604 return true; 4605 case OverflowResult::NeverOverflows: 4606 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4607 Result->takeName(&OrigI); 4608 Overflow = Builder.getFalse(); 4609 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4610 if (IsSigned) 4611 Inst->setHasNoSignedWrap(); 4612 else 4613 Inst->setHasNoUnsignedWrap(); 4614 } 4615 return true; 4616 } 4617 4618 llvm_unreachable("Unexpected overflow result"); 4619 } 4620 4621 /// Recognize and process idiom involving test for multiplication 4622 /// overflow. 4623 /// 4624 /// The caller has matched a pattern of the form: 4625 /// I = cmp u (mul(zext A, zext B), V 4626 /// The function checks if this is a test for overflow and if so replaces 4627 /// multiplication with call to 'mul.with.overflow' intrinsic. 4628 /// 4629 /// \param I Compare instruction. 4630 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4631 /// the compare instruction. Must be of integer type. 4632 /// \param OtherVal The other argument of compare instruction. 4633 /// \returns Instruction which must replace the compare instruction, NULL if no 4634 /// replacement required. 4635 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4636 Value *OtherVal, 4637 InstCombinerImpl &IC) { 4638 // Don't bother doing this transformation for pointers, don't do it for 4639 // vectors. 4640 if (!isa<IntegerType>(MulVal->getType())) 4641 return nullptr; 4642 4643 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4644 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4645 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4646 if (!MulInstr) 4647 return nullptr; 4648 assert(MulInstr->getOpcode() == Instruction::Mul); 4649 4650 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4651 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4652 assert(LHS->getOpcode() == Instruction::ZExt); 4653 assert(RHS->getOpcode() == Instruction::ZExt); 4654 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4655 4656 // Calculate type and width of the result produced by mul.with.overflow. 4657 Type *TyA = A->getType(), *TyB = B->getType(); 4658 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4659 WidthB = TyB->getPrimitiveSizeInBits(); 4660 unsigned MulWidth; 4661 Type *MulType; 4662 if (WidthB > WidthA) { 4663 MulWidth = WidthB; 4664 MulType = TyB; 4665 } else { 4666 MulWidth = WidthA; 4667 MulType = TyA; 4668 } 4669 4670 // In order to replace the original mul with a narrower mul.with.overflow, 4671 // all uses must ignore upper bits of the product. The number of used low 4672 // bits must be not greater than the width of mul.with.overflow. 4673 if (MulVal->hasNUsesOrMore(2)) 4674 for (User *U : MulVal->users()) { 4675 if (U == &I) 4676 continue; 4677 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4678 // Check if truncation ignores bits above MulWidth. 4679 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4680 if (TruncWidth > MulWidth) 4681 return nullptr; 4682 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4683 // Check if AND ignores bits above MulWidth. 4684 if (BO->getOpcode() != Instruction::And) 4685 return nullptr; 4686 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4687 const APInt &CVal = CI->getValue(); 4688 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4689 return nullptr; 4690 } else { 4691 // In this case we could have the operand of the binary operation 4692 // being defined in another block, and performing the replacement 4693 // could break the dominance relation. 4694 return nullptr; 4695 } 4696 } else { 4697 // Other uses prohibit this transformation. 4698 return nullptr; 4699 } 4700 } 4701 4702 // Recognize patterns 4703 switch (I.getPredicate()) { 4704 case ICmpInst::ICMP_EQ: 4705 case ICmpInst::ICMP_NE: 4706 // Recognize pattern: 4707 // mulval = mul(zext A, zext B) 4708 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4709 ConstantInt *CI; 4710 Value *ValToMask; 4711 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4712 if (ValToMask != MulVal) 4713 return nullptr; 4714 const APInt &CVal = CI->getValue() + 1; 4715 if (CVal.isPowerOf2()) { 4716 unsigned MaskWidth = CVal.logBase2(); 4717 if (MaskWidth == MulWidth) 4718 break; // Recognized 4719 } 4720 } 4721 return nullptr; 4722 4723 case ICmpInst::ICMP_UGT: 4724 // Recognize pattern: 4725 // mulval = mul(zext A, zext B) 4726 // cmp ugt mulval, max 4727 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4728 APInt MaxVal = APInt::getMaxValue(MulWidth); 4729 MaxVal = MaxVal.zext(CI->getBitWidth()); 4730 if (MaxVal.eq(CI->getValue())) 4731 break; // Recognized 4732 } 4733 return nullptr; 4734 4735 case ICmpInst::ICMP_UGE: 4736 // Recognize pattern: 4737 // mulval = mul(zext A, zext B) 4738 // cmp uge mulval, max+1 4739 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4740 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4741 if (MaxVal.eq(CI->getValue())) 4742 break; // Recognized 4743 } 4744 return nullptr; 4745 4746 case ICmpInst::ICMP_ULE: 4747 // Recognize pattern: 4748 // mulval = mul(zext A, zext B) 4749 // cmp ule mulval, max 4750 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4751 APInt MaxVal = APInt::getMaxValue(MulWidth); 4752 MaxVal = MaxVal.zext(CI->getBitWidth()); 4753 if (MaxVal.eq(CI->getValue())) 4754 break; // Recognized 4755 } 4756 return nullptr; 4757 4758 case ICmpInst::ICMP_ULT: 4759 // Recognize pattern: 4760 // mulval = mul(zext A, zext B) 4761 // cmp ule mulval, max + 1 4762 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4763 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4764 if (MaxVal.eq(CI->getValue())) 4765 break; // Recognized 4766 } 4767 return nullptr; 4768 4769 default: 4770 return nullptr; 4771 } 4772 4773 InstCombiner::BuilderTy &Builder = IC.Builder; 4774 Builder.SetInsertPoint(MulInstr); 4775 4776 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4777 Value *MulA = A, *MulB = B; 4778 if (WidthA < MulWidth) 4779 MulA = Builder.CreateZExt(A, MulType); 4780 if (WidthB < MulWidth) 4781 MulB = Builder.CreateZExt(B, MulType); 4782 Function *F = Intrinsic::getDeclaration( 4783 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4784 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4785 IC.addToWorklist(MulInstr); 4786 4787 // If there are uses of mul result other than the comparison, we know that 4788 // they are truncation or binary AND. Change them to use result of 4789 // mul.with.overflow and adjust properly mask/size. 4790 if (MulVal->hasNUsesOrMore(2)) { 4791 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4792 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4793 User *U = *UI++; 4794 if (U == &I || U == OtherVal) 4795 continue; 4796 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4797 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4798 IC.replaceInstUsesWith(*TI, Mul); 4799 else 4800 TI->setOperand(0, Mul); 4801 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4802 assert(BO->getOpcode() == Instruction::And); 4803 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4804 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4805 APInt ShortMask = CI->getValue().trunc(MulWidth); 4806 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4807 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 4808 IC.replaceInstUsesWith(*BO, Zext); 4809 } else { 4810 llvm_unreachable("Unexpected Binary operation"); 4811 } 4812 IC.addToWorklist(cast<Instruction>(U)); 4813 } 4814 } 4815 if (isa<Instruction>(OtherVal)) 4816 IC.addToWorklist(cast<Instruction>(OtherVal)); 4817 4818 // The original icmp gets replaced with the overflow value, maybe inverted 4819 // depending on predicate. 4820 bool Inverse = false; 4821 switch (I.getPredicate()) { 4822 case ICmpInst::ICMP_NE: 4823 break; 4824 case ICmpInst::ICMP_EQ: 4825 Inverse = true; 4826 break; 4827 case ICmpInst::ICMP_UGT: 4828 case ICmpInst::ICMP_UGE: 4829 if (I.getOperand(0) == MulVal) 4830 break; 4831 Inverse = true; 4832 break; 4833 case ICmpInst::ICMP_ULT: 4834 case ICmpInst::ICMP_ULE: 4835 if (I.getOperand(1) == MulVal) 4836 break; 4837 Inverse = true; 4838 break; 4839 default: 4840 llvm_unreachable("Unexpected predicate"); 4841 } 4842 if (Inverse) { 4843 Value *Res = Builder.CreateExtractValue(Call, 1); 4844 return BinaryOperator::CreateNot(Res); 4845 } 4846 4847 return ExtractValueInst::Create(Call, 1); 4848 } 4849 4850 /// When performing a comparison against a constant, it is possible that not all 4851 /// the bits in the LHS are demanded. This helper method computes the mask that 4852 /// IS demanded. 4853 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4854 const APInt *RHS; 4855 if (!match(I.getOperand(1), m_APInt(RHS))) 4856 return APInt::getAllOnesValue(BitWidth); 4857 4858 // If this is a normal comparison, it demands all bits. If it is a sign bit 4859 // comparison, it only demands the sign bit. 4860 bool UnusedBit; 4861 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4862 return APInt::getSignMask(BitWidth); 4863 4864 switch (I.getPredicate()) { 4865 // For a UGT comparison, we don't care about any bits that 4866 // correspond to the trailing ones of the comparand. The value of these 4867 // bits doesn't impact the outcome of the comparison, because any value 4868 // greater than the RHS must differ in a bit higher than these due to carry. 4869 case ICmpInst::ICMP_UGT: 4870 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4871 4872 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4873 // Any value less than the RHS must differ in a higher bit because of carries. 4874 case ICmpInst::ICMP_ULT: 4875 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4876 4877 default: 4878 return APInt::getAllOnesValue(BitWidth); 4879 } 4880 } 4881 4882 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4883 /// should be swapped. 4884 /// The decision is based on how many times these two operands are reused 4885 /// as subtract operands and their positions in those instructions. 4886 /// The rationale is that several architectures use the same instruction for 4887 /// both subtract and cmp. Thus, it is better if the order of those operands 4888 /// match. 4889 /// \return true if Op0 and Op1 should be swapped. 4890 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4891 // Filter out pointer values as those cannot appear directly in subtract. 4892 // FIXME: we may want to go through inttoptrs or bitcasts. 4893 if (Op0->getType()->isPointerTy()) 4894 return false; 4895 // If a subtract already has the same operands as a compare, swapping would be 4896 // bad. If a subtract has the same operands as a compare but in reverse order, 4897 // then swapping is good. 4898 int GoodToSwap = 0; 4899 for (const User *U : Op0->users()) { 4900 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4901 GoodToSwap++; 4902 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4903 GoodToSwap--; 4904 } 4905 return GoodToSwap > 0; 4906 } 4907 4908 /// Check that one use is in the same block as the definition and all 4909 /// other uses are in blocks dominated by a given block. 4910 /// 4911 /// \param DI Definition 4912 /// \param UI Use 4913 /// \param DB Block that must dominate all uses of \p DI outside 4914 /// the parent block 4915 /// \return true when \p UI is the only use of \p DI in the parent block 4916 /// and all other uses of \p DI are in blocks dominated by \p DB. 4917 /// 4918 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 4919 const Instruction *UI, 4920 const BasicBlock *DB) const { 4921 assert(DI && UI && "Instruction not defined\n"); 4922 // Ignore incomplete definitions. 4923 if (!DI->getParent()) 4924 return false; 4925 // DI and UI must be in the same block. 4926 if (DI->getParent() != UI->getParent()) 4927 return false; 4928 // Protect from self-referencing blocks. 4929 if (DI->getParent() == DB) 4930 return false; 4931 for (const User *U : DI->users()) { 4932 auto *Usr = cast<Instruction>(U); 4933 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4934 return false; 4935 } 4936 return true; 4937 } 4938 4939 /// Return true when the instruction sequence within a block is select-cmp-br. 4940 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4941 const BasicBlock *BB = SI->getParent(); 4942 if (!BB) 4943 return false; 4944 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4945 if (!BI || BI->getNumSuccessors() != 2) 4946 return false; 4947 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4948 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4949 return false; 4950 return true; 4951 } 4952 4953 /// True when a select result is replaced by one of its operands 4954 /// in select-icmp sequence. This will eventually result in the elimination 4955 /// of the select. 4956 /// 4957 /// \param SI Select instruction 4958 /// \param Icmp Compare instruction 4959 /// \param SIOpd Operand that replaces the select 4960 /// 4961 /// Notes: 4962 /// - The replacement is global and requires dominator information 4963 /// - The caller is responsible for the actual replacement 4964 /// 4965 /// Example: 4966 /// 4967 /// entry: 4968 /// %4 = select i1 %3, %C* %0, %C* null 4969 /// %5 = icmp eq %C* %4, null 4970 /// br i1 %5, label %9, label %7 4971 /// ... 4972 /// ; <label>:7 ; preds = %entry 4973 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4974 /// ... 4975 /// 4976 /// can be transformed to 4977 /// 4978 /// %5 = icmp eq %C* %0, null 4979 /// %6 = select i1 %3, i1 %5, i1 true 4980 /// br i1 %6, label %9, label %7 4981 /// ... 4982 /// ; <label>:7 ; preds = %entry 4983 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4984 /// 4985 /// Similar when the first operand of the select is a constant or/and 4986 /// the compare is for not equal rather than equal. 4987 /// 4988 /// NOTE: The function is only called when the select and compare constants 4989 /// are equal, the optimization can work only for EQ predicates. This is not a 4990 /// major restriction since a NE compare should be 'normalized' to an equal 4991 /// compare, which usually happens in the combiner and test case 4992 /// select-cmp-br.ll checks for it. 4993 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 4994 const ICmpInst *Icmp, 4995 const unsigned SIOpd) { 4996 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4997 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4998 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4999 // The check for the single predecessor is not the best that can be 5000 // done. But it protects efficiently against cases like when SI's 5001 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5002 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5003 // replaced can be reached on either path. So the uniqueness check 5004 // guarantees that the path all uses of SI (outside SI's parent) are on 5005 // is disjoint from all other paths out of SI. But that information 5006 // is more expensive to compute, and the trade-off here is in favor 5007 // of compile-time. It should also be noticed that we check for a single 5008 // predecessor and not only uniqueness. This to handle the situation when 5009 // Succ and Succ1 points to the same basic block. 5010 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5011 NumSel++; 5012 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5013 return true; 5014 } 5015 } 5016 return false; 5017 } 5018 5019 /// Try to fold the comparison based on range information we can get by checking 5020 /// whether bits are known to be zero or one in the inputs. 5021 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5022 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5023 Type *Ty = Op0->getType(); 5024 ICmpInst::Predicate Pred = I.getPredicate(); 5025 5026 // Get scalar or pointer size. 5027 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5028 ? Ty->getScalarSizeInBits() 5029 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5030 5031 if (!BitWidth) 5032 return nullptr; 5033 5034 KnownBits Op0Known(BitWidth); 5035 KnownBits Op1Known(BitWidth); 5036 5037 if (SimplifyDemandedBits(&I, 0, 5038 getDemandedBitsLHSMask(I, BitWidth), 5039 Op0Known, 0)) 5040 return &I; 5041 5042 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 5043 Op1Known, 0)) 5044 return &I; 5045 5046 // Given the known and unknown bits, compute a range that the LHS could be 5047 // in. Compute the Min, Max and RHS values based on the known bits. For the 5048 // EQ and NE we use unsigned values. 5049 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5050 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5051 if (I.isSigned()) { 5052 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 5053 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 5054 } else { 5055 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 5056 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 5057 } 5058 5059 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5060 // out that the LHS or RHS is a constant. Constant fold this now, so that 5061 // code below can assume that Min != Max. 5062 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5063 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5064 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5065 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5066 5067 // Based on the range information we know about the LHS, see if we can 5068 // simplify this comparison. For example, (x&4) < 8 is always true. 5069 switch (Pred) { 5070 default: 5071 llvm_unreachable("Unknown icmp opcode!"); 5072 case ICmpInst::ICMP_EQ: 5073 case ICmpInst::ICMP_NE: { 5074 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 5075 return Pred == CmpInst::ICMP_EQ 5076 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 5077 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5078 } 5079 5080 // If all bits are known zero except for one, then we know at most one bit 5081 // is set. If the comparison is against zero, then this is a check to see if 5082 // *that* bit is set. 5083 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5084 if (Op1Known.isZero()) { 5085 // If the LHS is an AND with the same constant, look through it. 5086 Value *LHS = nullptr; 5087 const APInt *LHSC; 5088 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5089 *LHSC != Op0KnownZeroInverted) 5090 LHS = Op0; 5091 5092 Value *X; 5093 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5094 APInt ValToCheck = Op0KnownZeroInverted; 5095 Type *XTy = X->getType(); 5096 if (ValToCheck.isPowerOf2()) { 5097 // ((1 << X) & 8) == 0 -> X != 3 5098 // ((1 << X) & 8) != 0 -> X == 3 5099 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5100 auto NewPred = ICmpInst::getInversePredicate(Pred); 5101 return new ICmpInst(NewPred, X, CmpC); 5102 } else if ((++ValToCheck).isPowerOf2()) { 5103 // ((1 << X) & 7) == 0 -> X >= 3 5104 // ((1 << X) & 7) != 0 -> X < 3 5105 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5106 auto NewPred = 5107 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5108 return new ICmpInst(NewPred, X, CmpC); 5109 } 5110 } 5111 5112 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5113 const APInt *CI; 5114 if (Op0KnownZeroInverted.isOneValue() && 5115 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5116 // ((8 >>u X) & 1) == 0 -> X != 3 5117 // ((8 >>u X) & 1) != 0 -> X == 3 5118 unsigned CmpVal = CI->countTrailingZeros(); 5119 auto NewPred = ICmpInst::getInversePredicate(Pred); 5120 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5121 } 5122 } 5123 break; 5124 } 5125 case ICmpInst::ICMP_ULT: { 5126 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5127 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5128 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5129 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5130 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5131 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5132 5133 const APInt *CmpC; 5134 if (match(Op1, m_APInt(CmpC))) { 5135 // A <u C -> A == C-1 if min(A)+1 == C 5136 if (*CmpC == Op0Min + 1) 5137 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5138 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5139 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5140 // exceeds the log2 of C. 5141 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5142 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5143 Constant::getNullValue(Op1->getType())); 5144 } 5145 break; 5146 } 5147 case ICmpInst::ICMP_UGT: { 5148 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5149 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5150 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5151 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5152 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5153 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5154 5155 const APInt *CmpC; 5156 if (match(Op1, m_APInt(CmpC))) { 5157 // A >u C -> A == C+1 if max(a)-1 == C 5158 if (*CmpC == Op0Max - 1) 5159 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5160 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5161 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5162 // exceeds the log2 of C. 5163 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5164 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5165 Constant::getNullValue(Op1->getType())); 5166 } 5167 break; 5168 } 5169 case ICmpInst::ICMP_SLT: { 5170 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5171 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5172 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5173 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5174 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5175 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5176 const APInt *CmpC; 5177 if (match(Op1, m_APInt(CmpC))) { 5178 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5179 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5180 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5181 } 5182 break; 5183 } 5184 case ICmpInst::ICMP_SGT: { 5185 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5186 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5187 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5188 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5189 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5190 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5191 const APInt *CmpC; 5192 if (match(Op1, m_APInt(CmpC))) { 5193 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5194 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5195 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5196 } 5197 break; 5198 } 5199 case ICmpInst::ICMP_SGE: 5200 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5201 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5202 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5203 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5204 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5205 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5206 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5207 break; 5208 case ICmpInst::ICMP_SLE: 5209 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5210 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5211 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5212 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5213 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5214 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5215 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5216 break; 5217 case ICmpInst::ICMP_UGE: 5218 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5219 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5220 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5221 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5222 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5223 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5224 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5225 break; 5226 case ICmpInst::ICMP_ULE: 5227 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5228 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5229 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5230 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5231 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5232 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5233 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5234 break; 5235 } 5236 5237 // Turn a signed comparison into an unsigned one if both operands are known to 5238 // have the same sign. 5239 if (I.isSigned() && 5240 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5241 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5242 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5243 5244 return nullptr; 5245 } 5246 5247 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5248 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5249 Constant *C) { 5250 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5251 "Only for relational integer predicates."); 5252 5253 Type *Type = C->getType(); 5254 bool IsSigned = ICmpInst::isSigned(Pred); 5255 5256 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5257 bool WillIncrement = 5258 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5259 5260 // Check if the constant operand can be safely incremented/decremented 5261 // without overflowing/underflowing. 5262 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5263 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5264 }; 5265 5266 Constant *SafeReplacementConstant = nullptr; 5267 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5268 // Bail out if the constant can't be safely incremented/decremented. 5269 if (!ConstantIsOk(CI)) 5270 return llvm::None; 5271 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5272 unsigned NumElts = FVTy->getNumElements(); 5273 for (unsigned i = 0; i != NumElts; ++i) { 5274 Constant *Elt = C->getAggregateElement(i); 5275 if (!Elt) 5276 return llvm::None; 5277 5278 if (isa<UndefValue>(Elt)) 5279 continue; 5280 5281 // Bail out if we can't determine if this constant is min/max or if we 5282 // know that this constant is min/max. 5283 auto *CI = dyn_cast<ConstantInt>(Elt); 5284 if (!CI || !ConstantIsOk(CI)) 5285 return llvm::None; 5286 5287 if (!SafeReplacementConstant) 5288 SafeReplacementConstant = CI; 5289 } 5290 } else { 5291 // ConstantExpr? 5292 return llvm::None; 5293 } 5294 5295 // It may not be safe to change a compare predicate in the presence of 5296 // undefined elements, so replace those elements with the first safe constant 5297 // that we found. 5298 if (C->containsUndefElement()) { 5299 assert(SafeReplacementConstant && "Replacement constant not set"); 5300 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5301 } 5302 5303 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5304 5305 // Increment or decrement the constant. 5306 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5307 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5308 5309 return std::make_pair(NewPred, NewC); 5310 } 5311 5312 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5313 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5314 /// allows them to be folded in visitICmpInst. 5315 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5316 ICmpInst::Predicate Pred = I.getPredicate(); 5317 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5318 InstCombiner::isCanonicalPredicate(Pred)) 5319 return nullptr; 5320 5321 Value *Op0 = I.getOperand(0); 5322 Value *Op1 = I.getOperand(1); 5323 auto *Op1C = dyn_cast<Constant>(Op1); 5324 if (!Op1C) 5325 return nullptr; 5326 5327 auto FlippedStrictness = 5328 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5329 if (!FlippedStrictness) 5330 return nullptr; 5331 5332 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5333 } 5334 5335 /// If we have a comparison with a non-canonical predicate, if we can update 5336 /// all the users, invert the predicate and adjust all the users. 5337 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5338 // Is the predicate already canonical? 5339 CmpInst::Predicate Pred = I.getPredicate(); 5340 if (InstCombiner::isCanonicalPredicate(Pred)) 5341 return nullptr; 5342 5343 // Can all users be adjusted to predicate inversion? 5344 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5345 return nullptr; 5346 5347 // Ok, we can canonicalize comparison! 5348 // Let's first invert the comparison's predicate. 5349 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5350 I.setName(I.getName() + ".not"); 5351 5352 // And now let's adjust every user. 5353 for (User *U : I.users()) { 5354 switch (cast<Instruction>(U)->getOpcode()) { 5355 case Instruction::Select: { 5356 auto *SI = cast<SelectInst>(U); 5357 SI->swapValues(); 5358 SI->swapProfMetadata(); 5359 break; 5360 } 5361 case Instruction::Br: 5362 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 5363 break; 5364 case Instruction::Xor: 5365 replaceInstUsesWith(cast<Instruction>(*U), &I); 5366 break; 5367 default: 5368 llvm_unreachable("Got unexpected user - out of sync with " 5369 "canFreelyInvertAllUsersOf() ?"); 5370 } 5371 } 5372 5373 return &I; 5374 } 5375 5376 /// Integer compare with boolean values can always be turned into bitwise ops. 5377 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5378 InstCombiner::BuilderTy &Builder) { 5379 Value *A = I.getOperand(0), *B = I.getOperand(1); 5380 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5381 5382 // A boolean compared to true/false can be simplified to Op0/true/false in 5383 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5384 // Cases not handled by InstSimplify are always 'not' of Op0. 5385 if (match(B, m_Zero())) { 5386 switch (I.getPredicate()) { 5387 case CmpInst::ICMP_EQ: // A == 0 -> !A 5388 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5389 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5390 return BinaryOperator::CreateNot(A); 5391 default: 5392 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5393 } 5394 } else if (match(B, m_One())) { 5395 switch (I.getPredicate()) { 5396 case CmpInst::ICMP_NE: // A != 1 -> !A 5397 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5398 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5399 return BinaryOperator::CreateNot(A); 5400 default: 5401 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5402 } 5403 } 5404 5405 switch (I.getPredicate()) { 5406 default: 5407 llvm_unreachable("Invalid icmp instruction!"); 5408 case ICmpInst::ICMP_EQ: 5409 // icmp eq i1 A, B -> ~(A ^ B) 5410 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5411 5412 case ICmpInst::ICMP_NE: 5413 // icmp ne i1 A, B -> A ^ B 5414 return BinaryOperator::CreateXor(A, B); 5415 5416 case ICmpInst::ICMP_UGT: 5417 // icmp ugt -> icmp ult 5418 std::swap(A, B); 5419 LLVM_FALLTHROUGH; 5420 case ICmpInst::ICMP_ULT: 5421 // icmp ult i1 A, B -> ~A & B 5422 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5423 5424 case ICmpInst::ICMP_SGT: 5425 // icmp sgt -> icmp slt 5426 std::swap(A, B); 5427 LLVM_FALLTHROUGH; 5428 case ICmpInst::ICMP_SLT: 5429 // icmp slt i1 A, B -> A & ~B 5430 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5431 5432 case ICmpInst::ICMP_UGE: 5433 // icmp uge -> icmp ule 5434 std::swap(A, B); 5435 LLVM_FALLTHROUGH; 5436 case ICmpInst::ICMP_ULE: 5437 // icmp ule i1 A, B -> ~A | B 5438 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5439 5440 case ICmpInst::ICMP_SGE: 5441 // icmp sge -> icmp sle 5442 std::swap(A, B); 5443 LLVM_FALLTHROUGH; 5444 case ICmpInst::ICMP_SLE: 5445 // icmp sle i1 A, B -> A | ~B 5446 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5447 } 5448 } 5449 5450 // Transform pattern like: 5451 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5452 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5453 // Into: 5454 // (X l>> Y) != 0 5455 // (X l>> Y) == 0 5456 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5457 InstCombiner::BuilderTy &Builder) { 5458 ICmpInst::Predicate Pred, NewPred; 5459 Value *X, *Y; 5460 if (match(&Cmp, 5461 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5462 switch (Pred) { 5463 case ICmpInst::ICMP_ULE: 5464 NewPred = ICmpInst::ICMP_NE; 5465 break; 5466 case ICmpInst::ICMP_UGT: 5467 NewPred = ICmpInst::ICMP_EQ; 5468 break; 5469 default: 5470 return nullptr; 5471 } 5472 } else if (match(&Cmp, m_c_ICmp(Pred, 5473 m_OneUse(m_CombineOr( 5474 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5475 m_Add(m_Shl(m_One(), m_Value(Y)), 5476 m_AllOnes()))), 5477 m_Value(X)))) { 5478 // The variant with 'add' is not canonical, (the variant with 'not' is) 5479 // we only get it because it has extra uses, and can't be canonicalized, 5480 5481 switch (Pred) { 5482 case ICmpInst::ICMP_ULT: 5483 NewPred = ICmpInst::ICMP_NE; 5484 break; 5485 case ICmpInst::ICMP_UGE: 5486 NewPred = ICmpInst::ICMP_EQ; 5487 break; 5488 default: 5489 return nullptr; 5490 } 5491 } else 5492 return nullptr; 5493 5494 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5495 Constant *Zero = Constant::getNullValue(NewX->getType()); 5496 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5497 } 5498 5499 static Instruction *foldVectorCmp(CmpInst &Cmp, 5500 InstCombiner::BuilderTy &Builder) { 5501 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5502 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5503 Value *V1, *V2; 5504 ArrayRef<int> M; 5505 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5506 return nullptr; 5507 5508 // If both arguments of the cmp are shuffles that use the same mask and 5509 // shuffle within a single vector, move the shuffle after the cmp: 5510 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5511 Type *V1Ty = V1->getType(); 5512 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5513 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5514 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5515 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5516 } 5517 5518 // Try to canonicalize compare with splatted operand and splat constant. 5519 // TODO: We could generalize this for more than splats. See/use the code in 5520 // InstCombiner::foldVectorBinop(). 5521 Constant *C; 5522 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5523 return nullptr; 5524 5525 // Length-changing splats are ok, so adjust the constants as needed: 5526 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5527 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5528 int MaskSplatIndex; 5529 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5530 // We allow undefs in matching, but this transform removes those for safety. 5531 // Demanded elements analysis should be able to recover some/all of that. 5532 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5533 ScalarC); 5534 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5535 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5536 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), 5537 NewM); 5538 } 5539 5540 return nullptr; 5541 } 5542 5543 // extract(uadd.with.overflow(A, B), 0) ult A 5544 // -> extract(uadd.with.overflow(A, B), 1) 5545 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5546 CmpInst::Predicate Pred = I.getPredicate(); 5547 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5548 5549 Value *UAddOv; 5550 Value *A, *B; 5551 auto UAddOvResultPat = m_ExtractValue<0>( 5552 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5553 if (match(Op0, UAddOvResultPat) && 5554 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5555 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5556 (match(A, m_One()) || match(B, m_One()))) || 5557 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5558 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5559 // extract(uadd.with.overflow(A, B), 0) < A 5560 // extract(uadd.with.overflow(A, 1), 0) == 0 5561 // extract(uadd.with.overflow(A, -1), 0) != -1 5562 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5563 else if (match(Op1, UAddOvResultPat) && 5564 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5565 // A > extract(uadd.with.overflow(A, B), 0) 5566 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5567 else 5568 return nullptr; 5569 5570 return ExtractValueInst::Create(UAddOv, 1); 5571 } 5572 5573 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5574 bool Changed = false; 5575 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5576 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5577 unsigned Op0Cplxity = getComplexity(Op0); 5578 unsigned Op1Cplxity = getComplexity(Op1); 5579 5580 /// Orders the operands of the compare so that they are listed from most 5581 /// complex to least complex. This puts constants before unary operators, 5582 /// before binary operators. 5583 if (Op0Cplxity < Op1Cplxity || 5584 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5585 I.swapOperands(); 5586 std::swap(Op0, Op1); 5587 Changed = true; 5588 } 5589 5590 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5591 return replaceInstUsesWith(I, V); 5592 5593 // Comparing -val or val with non-zero is the same as just comparing val 5594 // ie, abs(val) != 0 -> val != 0 5595 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5596 Value *Cond, *SelectTrue, *SelectFalse; 5597 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5598 m_Value(SelectFalse)))) { 5599 if (Value *V = dyn_castNegVal(SelectTrue)) { 5600 if (V == SelectFalse) 5601 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5602 } 5603 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5604 if (V == SelectTrue) 5605 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5606 } 5607 } 5608 } 5609 5610 if (Op0->getType()->isIntOrIntVectorTy(1)) 5611 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5612 return Res; 5613 5614 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5615 return Res; 5616 5617 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5618 return Res; 5619 5620 if (Instruction *Res = foldICmpWithConstant(I)) 5621 return Res; 5622 5623 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5624 return Res; 5625 5626 if (Instruction *Res = foldICmpBinOp(I, Q)) 5627 return Res; 5628 5629 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5630 return Res; 5631 5632 // Test if the ICmpInst instruction is used exclusively by a select as 5633 // part of a minimum or maximum operation. If so, refrain from doing 5634 // any other folding. This helps out other analyses which understand 5635 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5636 // and CodeGen. And in this case, at least one of the comparison 5637 // operands has at least one user besides the compare (the select), 5638 // which would often largely negate the benefit of folding anyway. 5639 // 5640 // Do the same for the other patterns recognized by matchSelectPattern. 5641 if (I.hasOneUse()) 5642 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5643 Value *A, *B; 5644 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5645 if (SPR.Flavor != SPF_UNKNOWN) 5646 return nullptr; 5647 } 5648 5649 // Do this after checking for min/max to prevent infinite looping. 5650 if (Instruction *Res = foldICmpWithZero(I)) 5651 return Res; 5652 5653 // FIXME: We only do this after checking for min/max to prevent infinite 5654 // looping caused by a reverse canonicalization of these patterns for min/max. 5655 // FIXME: The organization of folds is a mess. These would naturally go into 5656 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5657 // down here after the min/max restriction. 5658 ICmpInst::Predicate Pred = I.getPredicate(); 5659 const APInt *C; 5660 if (match(Op1, m_APInt(C))) { 5661 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5662 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5663 Constant *Zero = Constant::getNullValue(Op0->getType()); 5664 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5665 } 5666 5667 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5668 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5669 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5670 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5671 } 5672 } 5673 5674 if (Instruction *Res = foldICmpInstWithConstant(I)) 5675 return Res; 5676 5677 // Try to match comparison as a sign bit test. Intentionally do this after 5678 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5679 if (Instruction *New = foldSignBitTest(I)) 5680 return New; 5681 5682 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5683 return Res; 5684 5685 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5686 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5687 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5688 return NI; 5689 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5690 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5691 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5692 return NI; 5693 5694 // Try to optimize equality comparisons against alloca-based pointers. 5695 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5696 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5697 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 5698 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5699 return New; 5700 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 5701 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5702 return New; 5703 } 5704 5705 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5706 return Res; 5707 5708 // TODO: Hoist this above the min/max bailout. 5709 if (Instruction *R = foldICmpWithCastOp(I)) 5710 return R; 5711 5712 if (Instruction *Res = foldICmpWithMinMax(I)) 5713 return Res; 5714 5715 { 5716 Value *A, *B; 5717 // Transform (A & ~B) == 0 --> (A & B) != 0 5718 // and (A & ~B) != 0 --> (A & B) == 0 5719 // if A is a power of 2. 5720 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5721 match(Op1, m_Zero()) && 5722 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5723 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5724 Op1); 5725 5726 // ~X < ~Y --> Y < X 5727 // ~X < C --> X > ~C 5728 if (match(Op0, m_Not(m_Value(A)))) { 5729 if (match(Op1, m_Not(m_Value(B)))) 5730 return new ICmpInst(I.getPredicate(), B, A); 5731 5732 const APInt *C; 5733 if (match(Op1, m_APInt(C))) 5734 return new ICmpInst(I.getSwappedPredicate(), A, 5735 ConstantInt::get(Op1->getType(), ~(*C))); 5736 } 5737 5738 Instruction *AddI = nullptr; 5739 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5740 m_Instruction(AddI))) && 5741 isa<IntegerType>(A->getType())) { 5742 Value *Result; 5743 Constant *Overflow; 5744 // m_UAddWithOverflow can match patterns that do not include an explicit 5745 // "add" instruction, so check the opcode of the matched op. 5746 if (AddI->getOpcode() == Instruction::Add && 5747 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 5748 Result, Overflow)) { 5749 replaceInstUsesWith(*AddI, Result); 5750 eraseInstFromFunction(*AddI); 5751 return replaceInstUsesWith(I, Overflow); 5752 } 5753 } 5754 5755 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5756 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5757 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5758 return R; 5759 } 5760 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5761 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5762 return R; 5763 } 5764 } 5765 5766 if (Instruction *Res = foldICmpEquality(I)) 5767 return Res; 5768 5769 if (Instruction *Res = foldICmpOfUAddOv(I)) 5770 return Res; 5771 5772 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5773 // an i1 which indicates whether or not we successfully did the swap. 5774 // 5775 // Replace comparisons between the old value and the expected value with the 5776 // indicator that 'cmpxchg' returns. 5777 // 5778 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5779 // spuriously fail. In those cases, the old value may equal the expected 5780 // value but it is possible for the swap to not occur. 5781 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5782 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5783 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5784 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5785 !ACXI->isWeak()) 5786 return ExtractValueInst::Create(ACXI, 1); 5787 5788 { 5789 Value *X; 5790 const APInt *C; 5791 // icmp X+Cst, X 5792 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5793 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5794 5795 // icmp X, X+Cst 5796 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5797 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5798 } 5799 5800 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5801 return Res; 5802 5803 if (I.getType()->isVectorTy()) 5804 if (Instruction *Res = foldVectorCmp(I, Builder)) 5805 return Res; 5806 5807 return Changed ? &I : nullptr; 5808 } 5809 5810 /// Fold fcmp ([us]itofp x, cst) if possible. 5811 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 5812 Instruction *LHSI, 5813 Constant *RHSC) { 5814 if (!isa<ConstantFP>(RHSC)) return nullptr; 5815 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5816 5817 // Get the width of the mantissa. We don't want to hack on conversions that 5818 // might lose information from the integer, e.g. "i64 -> float" 5819 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5820 if (MantissaWidth == -1) return nullptr; // Unknown. 5821 5822 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5823 5824 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5825 5826 if (I.isEquality()) { 5827 FCmpInst::Predicate P = I.getPredicate(); 5828 bool IsExact = false; 5829 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5830 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5831 5832 // If the floating point constant isn't an integer value, we know if we will 5833 // ever compare equal / not equal to it. 5834 if (!IsExact) { 5835 // TODO: Can never be -0.0 and other non-representable values 5836 APFloat RHSRoundInt(RHS); 5837 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5838 if (RHS != RHSRoundInt) { 5839 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5840 return replaceInstUsesWith(I, Builder.getFalse()); 5841 5842 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5843 return replaceInstUsesWith(I, Builder.getTrue()); 5844 } 5845 } 5846 5847 // TODO: If the constant is exactly representable, is it always OK to do 5848 // equality compares as integer? 5849 } 5850 5851 // Check to see that the input is converted from an integer type that is small 5852 // enough that preserves all bits. TODO: check here for "known" sign bits. 5853 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5854 unsigned InputSize = IntTy->getScalarSizeInBits(); 5855 5856 // Following test does NOT adjust InputSize downwards for signed inputs, 5857 // because the most negative value still requires all the mantissa bits 5858 // to distinguish it from one less than that value. 5859 if ((int)InputSize > MantissaWidth) { 5860 // Conversion would lose accuracy. Check if loss can impact comparison. 5861 int Exp = ilogb(RHS); 5862 if (Exp == APFloat::IEK_Inf) { 5863 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5864 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5865 // Conversion could create infinity. 5866 return nullptr; 5867 } else { 5868 // Note that if RHS is zero or NaN, then Exp is negative 5869 // and first condition is trivially false. 5870 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5871 // Conversion could affect comparison. 5872 return nullptr; 5873 } 5874 } 5875 5876 // Otherwise, we can potentially simplify the comparison. We know that it 5877 // will always come through as an integer value and we know the constant is 5878 // not a NAN (it would have been previously simplified). 5879 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5880 5881 ICmpInst::Predicate Pred; 5882 switch (I.getPredicate()) { 5883 default: llvm_unreachable("Unexpected predicate!"); 5884 case FCmpInst::FCMP_UEQ: 5885 case FCmpInst::FCMP_OEQ: 5886 Pred = ICmpInst::ICMP_EQ; 5887 break; 5888 case FCmpInst::FCMP_UGT: 5889 case FCmpInst::FCMP_OGT: 5890 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5891 break; 5892 case FCmpInst::FCMP_UGE: 5893 case FCmpInst::FCMP_OGE: 5894 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5895 break; 5896 case FCmpInst::FCMP_ULT: 5897 case FCmpInst::FCMP_OLT: 5898 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5899 break; 5900 case FCmpInst::FCMP_ULE: 5901 case FCmpInst::FCMP_OLE: 5902 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5903 break; 5904 case FCmpInst::FCMP_UNE: 5905 case FCmpInst::FCMP_ONE: 5906 Pred = ICmpInst::ICMP_NE; 5907 break; 5908 case FCmpInst::FCMP_ORD: 5909 return replaceInstUsesWith(I, Builder.getTrue()); 5910 case FCmpInst::FCMP_UNO: 5911 return replaceInstUsesWith(I, Builder.getFalse()); 5912 } 5913 5914 // Now we know that the APFloat is a normal number, zero or inf. 5915 5916 // See if the FP constant is too large for the integer. For example, 5917 // comparing an i8 to 300.0. 5918 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5919 5920 if (!LHSUnsigned) { 5921 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5922 // and large values. 5923 APFloat SMax(RHS.getSemantics()); 5924 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5925 APFloat::rmNearestTiesToEven); 5926 if (SMax < RHS) { // smax < 13123.0 5927 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5928 Pred == ICmpInst::ICMP_SLE) 5929 return replaceInstUsesWith(I, Builder.getTrue()); 5930 return replaceInstUsesWith(I, Builder.getFalse()); 5931 } 5932 } else { 5933 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5934 // +INF and large values. 5935 APFloat UMax(RHS.getSemantics()); 5936 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5937 APFloat::rmNearestTiesToEven); 5938 if (UMax < RHS) { // umax < 13123.0 5939 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5940 Pred == ICmpInst::ICMP_ULE) 5941 return replaceInstUsesWith(I, Builder.getTrue()); 5942 return replaceInstUsesWith(I, Builder.getFalse()); 5943 } 5944 } 5945 5946 if (!LHSUnsigned) { 5947 // See if the RHS value is < SignedMin. 5948 APFloat SMin(RHS.getSemantics()); 5949 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5950 APFloat::rmNearestTiesToEven); 5951 if (SMin > RHS) { // smin > 12312.0 5952 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5953 Pred == ICmpInst::ICMP_SGE) 5954 return replaceInstUsesWith(I, Builder.getTrue()); 5955 return replaceInstUsesWith(I, Builder.getFalse()); 5956 } 5957 } else { 5958 // See if the RHS value is < UnsignedMin. 5959 APFloat UMin(RHS.getSemantics()); 5960 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 5961 APFloat::rmNearestTiesToEven); 5962 if (UMin > RHS) { // umin > 12312.0 5963 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5964 Pred == ICmpInst::ICMP_UGE) 5965 return replaceInstUsesWith(I, Builder.getTrue()); 5966 return replaceInstUsesWith(I, Builder.getFalse()); 5967 } 5968 } 5969 5970 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5971 // [0, UMAX], but it may still be fractional. See if it is fractional by 5972 // casting the FP value to the integer value and back, checking for equality. 5973 // Don't do this for zero, because -0.0 is not fractional. 5974 Constant *RHSInt = LHSUnsigned 5975 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5976 : ConstantExpr::getFPToSI(RHSC, IntTy); 5977 if (!RHS.isZero()) { 5978 bool Equal = LHSUnsigned 5979 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5980 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5981 if (!Equal) { 5982 // If we had a comparison against a fractional value, we have to adjust 5983 // the compare predicate and sometimes the value. RHSC is rounded towards 5984 // zero at this point. 5985 switch (Pred) { 5986 default: llvm_unreachable("Unexpected integer comparison!"); 5987 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5988 return replaceInstUsesWith(I, Builder.getTrue()); 5989 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5990 return replaceInstUsesWith(I, Builder.getFalse()); 5991 case ICmpInst::ICMP_ULE: 5992 // (float)int <= 4.4 --> int <= 4 5993 // (float)int <= -4.4 --> false 5994 if (RHS.isNegative()) 5995 return replaceInstUsesWith(I, Builder.getFalse()); 5996 break; 5997 case ICmpInst::ICMP_SLE: 5998 // (float)int <= 4.4 --> int <= 4 5999 // (float)int <= -4.4 --> int < -4 6000 if (RHS.isNegative()) 6001 Pred = ICmpInst::ICMP_SLT; 6002 break; 6003 case ICmpInst::ICMP_ULT: 6004 // (float)int < -4.4 --> false 6005 // (float)int < 4.4 --> int <= 4 6006 if (RHS.isNegative()) 6007 return replaceInstUsesWith(I, Builder.getFalse()); 6008 Pred = ICmpInst::ICMP_ULE; 6009 break; 6010 case ICmpInst::ICMP_SLT: 6011 // (float)int < -4.4 --> int < -4 6012 // (float)int < 4.4 --> int <= 4 6013 if (!RHS.isNegative()) 6014 Pred = ICmpInst::ICMP_SLE; 6015 break; 6016 case ICmpInst::ICMP_UGT: 6017 // (float)int > 4.4 --> int > 4 6018 // (float)int > -4.4 --> true 6019 if (RHS.isNegative()) 6020 return replaceInstUsesWith(I, Builder.getTrue()); 6021 break; 6022 case ICmpInst::ICMP_SGT: 6023 // (float)int > 4.4 --> int > 4 6024 // (float)int > -4.4 --> int >= -4 6025 if (RHS.isNegative()) 6026 Pred = ICmpInst::ICMP_SGE; 6027 break; 6028 case ICmpInst::ICMP_UGE: 6029 // (float)int >= -4.4 --> true 6030 // (float)int >= 4.4 --> int > 4 6031 if (RHS.isNegative()) 6032 return replaceInstUsesWith(I, Builder.getTrue()); 6033 Pred = ICmpInst::ICMP_UGT; 6034 break; 6035 case ICmpInst::ICMP_SGE: 6036 // (float)int >= -4.4 --> int >= -4 6037 // (float)int >= 4.4 --> int > 4 6038 if (!RHS.isNegative()) 6039 Pred = ICmpInst::ICMP_SGT; 6040 break; 6041 } 6042 } 6043 } 6044 6045 // Lower this FP comparison into an appropriate integer version of the 6046 // comparison. 6047 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6048 } 6049 6050 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6051 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6052 Constant *RHSC) { 6053 // When C is not 0.0 and infinities are not allowed: 6054 // (C / X) < 0.0 is a sign-bit test of X 6055 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6056 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6057 // 6058 // Proof: 6059 // Multiply (C / X) < 0.0 by X * X / C. 6060 // - X is non zero, if it is the flag 'ninf' is violated. 6061 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6062 // the predicate. C is also non zero by definition. 6063 // 6064 // Thus X * X / C is non zero and the transformation is valid. [qed] 6065 6066 FCmpInst::Predicate Pred = I.getPredicate(); 6067 6068 // Check that predicates are valid. 6069 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6070 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6071 return nullptr; 6072 6073 // Check that RHS operand is zero. 6074 if (!match(RHSC, m_AnyZeroFP())) 6075 return nullptr; 6076 6077 // Check fastmath flags ('ninf'). 6078 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6079 return nullptr; 6080 6081 // Check the properties of the dividend. It must not be zero to avoid a 6082 // division by zero (see Proof). 6083 const APFloat *C; 6084 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6085 return nullptr; 6086 6087 if (C->isZero()) 6088 return nullptr; 6089 6090 // Get swapped predicate if necessary. 6091 if (C->isNegative()) 6092 Pred = I.getSwappedPredicate(); 6093 6094 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6095 } 6096 6097 /// Optimize fabs(X) compared with zero. 6098 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6099 Value *X; 6100 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6101 !match(I.getOperand(1), m_PosZeroFP())) 6102 return nullptr; 6103 6104 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6105 I->setPredicate(P); 6106 return IC.replaceOperand(*I, 0, X); 6107 }; 6108 6109 switch (I.getPredicate()) { 6110 case FCmpInst::FCMP_UGE: 6111 case FCmpInst::FCMP_OLT: 6112 // fabs(X) >= 0.0 --> true 6113 // fabs(X) < 0.0 --> false 6114 llvm_unreachable("fcmp should have simplified"); 6115 6116 case FCmpInst::FCMP_OGT: 6117 // fabs(X) > 0.0 --> X != 0.0 6118 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6119 6120 case FCmpInst::FCMP_UGT: 6121 // fabs(X) u> 0.0 --> X u!= 0.0 6122 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6123 6124 case FCmpInst::FCMP_OLE: 6125 // fabs(X) <= 0.0 --> X == 0.0 6126 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6127 6128 case FCmpInst::FCMP_ULE: 6129 // fabs(X) u<= 0.0 --> X u== 0.0 6130 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6131 6132 case FCmpInst::FCMP_OGE: 6133 // fabs(X) >= 0.0 --> !isnan(X) 6134 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6135 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6136 6137 case FCmpInst::FCMP_ULT: 6138 // fabs(X) u< 0.0 --> isnan(X) 6139 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6140 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6141 6142 case FCmpInst::FCMP_OEQ: 6143 case FCmpInst::FCMP_UEQ: 6144 case FCmpInst::FCMP_ONE: 6145 case FCmpInst::FCMP_UNE: 6146 case FCmpInst::FCMP_ORD: 6147 case FCmpInst::FCMP_UNO: 6148 // Look through the fabs() because it doesn't change anything but the sign. 6149 // fabs(X) == 0.0 --> X == 0.0, 6150 // fabs(X) != 0.0 --> X != 0.0 6151 // isnan(fabs(X)) --> isnan(X) 6152 // !isnan(fabs(X) --> !isnan(X) 6153 return replacePredAndOp0(&I, I.getPredicate(), X); 6154 6155 default: 6156 return nullptr; 6157 } 6158 } 6159 6160 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6161 bool Changed = false; 6162 6163 /// Orders the operands of the compare so that they are listed from most 6164 /// complex to least complex. This puts constants before unary operators, 6165 /// before binary operators. 6166 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6167 I.swapOperands(); 6168 Changed = true; 6169 } 6170 6171 const CmpInst::Predicate Pred = I.getPredicate(); 6172 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6173 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6174 SQ.getWithInstruction(&I))) 6175 return replaceInstUsesWith(I, V); 6176 6177 // Simplify 'fcmp pred X, X' 6178 Type *OpType = Op0->getType(); 6179 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6180 if (Op0 == Op1) { 6181 switch (Pred) { 6182 default: break; 6183 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6184 case FCmpInst::FCMP_ULT: // True if unordered or less than 6185 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6186 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6187 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6188 I.setPredicate(FCmpInst::FCMP_UNO); 6189 I.setOperand(1, Constant::getNullValue(OpType)); 6190 return &I; 6191 6192 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6193 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6194 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6195 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6196 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6197 I.setPredicate(FCmpInst::FCMP_ORD); 6198 I.setOperand(1, Constant::getNullValue(OpType)); 6199 return &I; 6200 } 6201 } 6202 6203 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6204 // then canonicalize the operand to 0.0. 6205 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6206 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6207 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6208 6209 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6210 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6211 } 6212 6213 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6214 Value *X, *Y; 6215 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6216 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6217 6218 // Test if the FCmpInst instruction is used exclusively by a select as 6219 // part of a minimum or maximum operation. If so, refrain from doing 6220 // any other folding. This helps out other analyses which understand 6221 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6222 // and CodeGen. And in this case, at least one of the comparison 6223 // operands has at least one user besides the compare (the select), 6224 // which would often largely negate the benefit of folding anyway. 6225 if (I.hasOneUse()) 6226 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6227 Value *A, *B; 6228 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6229 if (SPR.Flavor != SPF_UNKNOWN) 6230 return nullptr; 6231 } 6232 6233 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6234 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6235 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6236 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6237 6238 // Handle fcmp with instruction LHS and constant RHS. 6239 Instruction *LHSI; 6240 Constant *RHSC; 6241 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6242 switch (LHSI->getOpcode()) { 6243 case Instruction::PHI: 6244 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6245 // block. If in the same block, we're encouraging jump threading. If 6246 // not, we are just pessimizing the code by making an i1 phi. 6247 if (LHSI->getParent() == I.getParent()) 6248 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6249 return NV; 6250 break; 6251 case Instruction::SIToFP: 6252 case Instruction::UIToFP: 6253 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6254 return NV; 6255 break; 6256 case Instruction::FDiv: 6257 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6258 return NV; 6259 break; 6260 case Instruction::Load: 6261 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6262 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6263 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6264 !cast<LoadInst>(LHSI)->isVolatile()) 6265 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6266 return Res; 6267 break; 6268 } 6269 } 6270 6271 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6272 return R; 6273 6274 if (match(Op0, m_FNeg(m_Value(X)))) { 6275 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6276 Constant *C; 6277 if (match(Op1, m_Constant(C))) { 6278 Constant *NegC = ConstantExpr::getFNeg(C); 6279 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6280 } 6281 } 6282 6283 if (match(Op0, m_FPExt(m_Value(X)))) { 6284 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6285 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6286 return new FCmpInst(Pred, X, Y, "", &I); 6287 6288 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6289 const APFloat *C; 6290 if (match(Op1, m_APFloat(C))) { 6291 const fltSemantics &FPSem = 6292 X->getType()->getScalarType()->getFltSemantics(); 6293 bool Lossy; 6294 APFloat TruncC = *C; 6295 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6296 6297 // Avoid lossy conversions and denormals. 6298 // Zero is a special case that's OK to convert. 6299 APFloat Fabs = TruncC; 6300 Fabs.clearSign(); 6301 if (!Lossy && 6302 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6303 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6304 return new FCmpInst(Pred, X, NewC, "", &I); 6305 } 6306 } 6307 } 6308 6309 if (I.getType()->isVectorTy()) 6310 if (Instruction *Res = foldVectorCmp(I, Builder)) 6311 return Res; 6312 6313 return Changed ? &I : nullptr; 6314 } 6315