1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isZero())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOne()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnes()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// This is called when we see this pattern:
99 ///   cmp pred (load (gep GV, ...)), cmpcst
100 /// where GV is a global variable with a constant initializer. Try to simplify
101 /// this into some simple computation that does not need the load. For example
102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
103 ///
104 /// If AndCst is non-null, then the loaded value is masked with that constant
105 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
107     LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
108     ConstantInt *AndCst) {
109   if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
110       GV->getValueType() != GEP->getSourceElementType() ||
111       !GV->isConstant() || !GV->hasDefinitiveInitializer())
112     return nullptr;
113 
114   Constant *Init = GV->getInitializer();
115   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
116     return nullptr;
117 
118   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
119   // Don't blow up on huge arrays.
120   if (ArrayElementCount > MaxArraySizeForCombine)
121     return nullptr;
122 
123   // There are many forms of this optimization we can handle, for now, just do
124   // the simple index into a single-dimensional array.
125   //
126   // Require: GEP GV, 0, i {{, constant indices}}
127   if (GEP->getNumOperands() < 3 ||
128       !isa<ConstantInt>(GEP->getOperand(1)) ||
129       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
130       isa<Constant>(GEP->getOperand(2)))
131     return nullptr;
132 
133   // Check that indices after the variable are constants and in-range for the
134   // type they index.  Collect the indices.  This is typically for arrays of
135   // structs.
136   SmallVector<unsigned, 4> LaterIndices;
137 
138   Type *EltTy = Init->getType()->getArrayElementType();
139   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
140     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
141     if (!Idx) return nullptr;  // Variable index.
142 
143     uint64_t IdxVal = Idx->getZExtValue();
144     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
145 
146     if (StructType *STy = dyn_cast<StructType>(EltTy))
147       EltTy = STy->getElementType(IdxVal);
148     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
149       if (IdxVal >= ATy->getNumElements()) return nullptr;
150       EltTy = ATy->getElementType();
151     } else {
152       return nullptr; // Unknown type.
153     }
154 
155     LaterIndices.push_back(IdxVal);
156   }
157 
158   enum { Overdefined = -3, Undefined = -2 };
159 
160   // Variables for our state machines.
161 
162   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
163   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
164   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
165   // undefined, otherwise set to the first true element.  SecondTrueElement is
166   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
167   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
168 
169   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
170   // form "i != 47 & i != 87".  Same state transitions as for true elements.
171   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
172 
173   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
174   /// define a state machine that triggers for ranges of values that the index
175   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
176   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
177   /// index in the range (inclusive).  We use -2 for undefined here because we
178   /// use relative comparisons and don't want 0-1 to match -1.
179   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
180 
181   // MagicBitvector - This is a magic bitvector where we set a bit if the
182   // comparison is true for element 'i'.  If there are 64 elements or less in
183   // the array, this will fully represent all the comparison results.
184   uint64_t MagicBitvector = 0;
185 
186   // Scan the array and see if one of our patterns matches.
187   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
188   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
189     Constant *Elt = Init->getAggregateElement(i);
190     if (!Elt) return nullptr;
191 
192     // If this is indexing an array of structures, get the structure element.
193     if (!LaterIndices.empty())
194       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
195 
196     // If the element is masked, handle it.
197     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
198 
199     // Find out if the comparison would be true or false for the i'th element.
200     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
201                                                   CompareRHS, DL, &TLI);
202     // If the result is undef for this element, ignore it.
203     if (isa<UndefValue>(C)) {
204       // Extend range state machines to cover this element in case there is an
205       // undef in the middle of the range.
206       if (TrueRangeEnd == (int)i-1)
207         TrueRangeEnd = i;
208       if (FalseRangeEnd == (int)i-1)
209         FalseRangeEnd = i;
210       continue;
211     }
212 
213     // If we can't compute the result for any of the elements, we have to give
214     // up evaluating the entire conditional.
215     if (!isa<ConstantInt>(C)) return nullptr;
216 
217     // Otherwise, we know if the comparison is true or false for this element,
218     // update our state machines.
219     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
220 
221     // State machine for single/double/range index comparison.
222     if (IsTrueForElt) {
223       // Update the TrueElement state machine.
224       if (FirstTrueElement == Undefined)
225         FirstTrueElement = TrueRangeEnd = i;  // First true element.
226       else {
227         // Update double-compare state machine.
228         if (SecondTrueElement == Undefined)
229           SecondTrueElement = i;
230         else
231           SecondTrueElement = Overdefined;
232 
233         // Update range state machine.
234         if (TrueRangeEnd == (int)i-1)
235           TrueRangeEnd = i;
236         else
237           TrueRangeEnd = Overdefined;
238       }
239     } else {
240       // Update the FalseElement state machine.
241       if (FirstFalseElement == Undefined)
242         FirstFalseElement = FalseRangeEnd = i; // First false element.
243       else {
244         // Update double-compare state machine.
245         if (SecondFalseElement == Undefined)
246           SecondFalseElement = i;
247         else
248           SecondFalseElement = Overdefined;
249 
250         // Update range state machine.
251         if (FalseRangeEnd == (int)i-1)
252           FalseRangeEnd = i;
253         else
254           FalseRangeEnd = Overdefined;
255       }
256     }
257 
258     // If this element is in range, update our magic bitvector.
259     if (i < 64 && IsTrueForElt)
260       MagicBitvector |= 1ULL << i;
261 
262     // If all of our states become overdefined, bail out early.  Since the
263     // predicate is expensive, only check it every 8 elements.  This is only
264     // really useful for really huge arrays.
265     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
266         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
267         FalseRangeEnd == Overdefined)
268       return nullptr;
269   }
270 
271   // Now that we've scanned the entire array, emit our new comparison(s).  We
272   // order the state machines in complexity of the generated code.
273   Value *Idx = GEP->getOperand(2);
274 
275   // If the index is larger than the pointer size of the target, truncate the
276   // index down like the GEP would do implicitly.  We don't have to do this for
277   // an inbounds GEP because the index can't be out of range.
278   if (!GEP->isInBounds()) {
279     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
280     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
281     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
282       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
283   }
284 
285   // If inbounds keyword is not present, Idx * ElementSize can overflow.
286   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
287   // Then, there are two possible values for Idx to match offset 0:
288   // 0x00..00, 0x80..00.
289   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
290   // comparison is false if Idx was 0x80..00.
291   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
292   unsigned ElementSize =
293       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
294   auto MaskIdx = [&](Value* Idx){
295     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
296       Value *Mask = ConstantInt::get(Idx->getType(), -1);
297       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
298       Idx = Builder.CreateAnd(Idx, Mask);
299     }
300     return Idx;
301   };
302 
303   // If the comparison is only true for one or two elements, emit direct
304   // comparisons.
305   if (SecondTrueElement != Overdefined) {
306     Idx = MaskIdx(Idx);
307     // None true -> false.
308     if (FirstTrueElement == Undefined)
309       return replaceInstUsesWith(ICI, Builder.getFalse());
310 
311     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
312 
313     // True for one element -> 'i == 47'.
314     if (SecondTrueElement == Undefined)
315       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
316 
317     // True for two elements -> 'i == 47 | i == 72'.
318     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
319     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
320     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
321     return BinaryOperator::CreateOr(C1, C2);
322   }
323 
324   // If the comparison is only false for one or two elements, emit direct
325   // comparisons.
326   if (SecondFalseElement != Overdefined) {
327     Idx = MaskIdx(Idx);
328     // None false -> true.
329     if (FirstFalseElement == Undefined)
330       return replaceInstUsesWith(ICI, Builder.getTrue());
331 
332     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
333 
334     // False for one element -> 'i != 47'.
335     if (SecondFalseElement == Undefined)
336       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
337 
338     // False for two elements -> 'i != 47 & i != 72'.
339     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
340     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
341     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
342     return BinaryOperator::CreateAnd(C1, C2);
343   }
344 
345   // If the comparison can be replaced with a range comparison for the elements
346   // where it is true, emit the range check.
347   if (TrueRangeEnd != Overdefined) {
348     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
349     Idx = MaskIdx(Idx);
350 
351     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
352     if (FirstTrueElement) {
353       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
354       Idx = Builder.CreateAdd(Idx, Offs);
355     }
356 
357     Value *End = ConstantInt::get(Idx->getType(),
358                                   TrueRangeEnd-FirstTrueElement+1);
359     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
360   }
361 
362   // False range check.
363   if (FalseRangeEnd != Overdefined) {
364     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
365     Idx = MaskIdx(Idx);
366     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
367     if (FirstFalseElement) {
368       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
369       Idx = Builder.CreateAdd(Idx, Offs);
370     }
371 
372     Value *End = ConstantInt::get(Idx->getType(),
373                                   FalseRangeEnd-FirstFalseElement);
374     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
375   }
376 
377   // If a magic bitvector captures the entire comparison state
378   // of this load, replace it with computation that does:
379   //   ((magic_cst >> i) & 1) != 0
380   {
381     Type *Ty = nullptr;
382 
383     // Look for an appropriate type:
384     // - The type of Idx if the magic fits
385     // - The smallest fitting legal type
386     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
387       Ty = Idx->getType();
388     else
389       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
390 
391     if (Ty) {
392       Idx = MaskIdx(Idx);
393       Value *V = Builder.CreateIntCast(Idx, Ty, false);
394       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
395       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
396       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
397     }
398   }
399 
400   return nullptr;
401 }
402 
403 /// Return a value that can be used to compare the *offset* implied by a GEP to
404 /// zero. For example, if we have &A[i], we want to return 'i' for
405 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
406 /// are involved. The above expression would also be legal to codegen as
407 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
408 /// This latter form is less amenable to optimization though, and we are allowed
409 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
410 ///
411 /// If we can't emit an optimized form for this expression, this returns null.
412 ///
413 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
414                                           const DataLayout &DL) {
415   gep_type_iterator GTI = gep_type_begin(GEP);
416 
417   // Check to see if this gep only has a single variable index.  If so, and if
418   // any constant indices are a multiple of its scale, then we can compute this
419   // in terms of the scale of the variable index.  For example, if the GEP
420   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
421   // because the expression will cross zero at the same point.
422   unsigned i, e = GEP->getNumOperands();
423   int64_t Offset = 0;
424   for (i = 1; i != e; ++i, ++GTI) {
425     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
426       // Compute the aggregate offset of constant indices.
427       if (CI->isZero()) continue;
428 
429       // Handle a struct index, which adds its field offset to the pointer.
430       if (StructType *STy = GTI.getStructTypeOrNull()) {
431         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
432       } else {
433         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
434         Offset += Size*CI->getSExtValue();
435       }
436     } else {
437       // Found our variable index.
438       break;
439     }
440   }
441 
442   // If there are no variable indices, we must have a constant offset, just
443   // evaluate it the general way.
444   if (i == e) return nullptr;
445 
446   Value *VariableIdx = GEP->getOperand(i);
447   // Determine the scale factor of the variable element.  For example, this is
448   // 4 if the variable index is into an array of i32.
449   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
450 
451   // Verify that there are no other variable indices.  If so, emit the hard way.
452   for (++i, ++GTI; i != e; ++i, ++GTI) {
453     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
454     if (!CI) return nullptr;
455 
456     // Compute the aggregate offset of constant indices.
457     if (CI->isZero()) continue;
458 
459     // Handle a struct index, which adds its field offset to the pointer.
460     if (StructType *STy = GTI.getStructTypeOrNull()) {
461       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
462     } else {
463       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
464       Offset += Size*CI->getSExtValue();
465     }
466   }
467 
468   // Okay, we know we have a single variable index, which must be a
469   // pointer/array/vector index.  If there is no offset, life is simple, return
470   // the index.
471   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
472   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
473   if (Offset == 0) {
474     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
475     // we don't need to bother extending: the extension won't affect where the
476     // computation crosses zero.
477     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
478         IntPtrWidth) {
479       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
480     }
481     return VariableIdx;
482   }
483 
484   // Otherwise, there is an index.  The computation we will do will be modulo
485   // the pointer size.
486   Offset = SignExtend64(Offset, IntPtrWidth);
487   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
488 
489   // To do this transformation, any constant index must be a multiple of the
490   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
491   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
492   // multiple of the variable scale.
493   int64_t NewOffs = Offset / (int64_t)VariableScale;
494   if (Offset != NewOffs*(int64_t)VariableScale)
495     return nullptr;
496 
497   // Okay, we can do this evaluation.  Start by converting the index to intptr.
498   if (VariableIdx->getType() != IntPtrTy)
499     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
500                                             true /*Signed*/);
501   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
502   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
503 }
504 
505 /// Returns true if we can rewrite Start as a GEP with pointer Base
506 /// and some integer offset. The nodes that need to be re-written
507 /// for this transformation will be added to Explored.
508 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
509                                   const DataLayout &DL,
510                                   SetVector<Value *> &Explored) {
511   SmallVector<Value *, 16> WorkList(1, Start);
512   Explored.insert(Base);
513 
514   // The following traversal gives us an order which can be used
515   // when doing the final transformation. Since in the final
516   // transformation we create the PHI replacement instructions first,
517   // we don't have to get them in any particular order.
518   //
519   // However, for other instructions we will have to traverse the
520   // operands of an instruction first, which means that we have to
521   // do a post-order traversal.
522   while (!WorkList.empty()) {
523     SetVector<PHINode *> PHIs;
524 
525     while (!WorkList.empty()) {
526       if (Explored.size() >= 100)
527         return false;
528 
529       Value *V = WorkList.back();
530 
531       if (Explored.contains(V)) {
532         WorkList.pop_back();
533         continue;
534       }
535 
536       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
537           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
538         // We've found some value that we can't explore which is different from
539         // the base. Therefore we can't do this transformation.
540         return false;
541 
542       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
543         auto *CI = cast<CastInst>(V);
544         if (!CI->isNoopCast(DL))
545           return false;
546 
547         if (!Explored.contains(CI->getOperand(0)))
548           WorkList.push_back(CI->getOperand(0));
549       }
550 
551       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
552         // We're limiting the GEP to having one index. This will preserve
553         // the original pointer type. We could handle more cases in the
554         // future.
555         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
556             GEP->getSourceElementType() != ElemTy)
557           return false;
558 
559         if (!Explored.contains(GEP->getOperand(0)))
560           WorkList.push_back(GEP->getOperand(0));
561       }
562 
563       if (WorkList.back() == V) {
564         WorkList.pop_back();
565         // We've finished visiting this node, mark it as such.
566         Explored.insert(V);
567       }
568 
569       if (auto *PN = dyn_cast<PHINode>(V)) {
570         // We cannot transform PHIs on unsplittable basic blocks.
571         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
572           return false;
573         Explored.insert(PN);
574         PHIs.insert(PN);
575       }
576     }
577 
578     // Explore the PHI nodes further.
579     for (auto *PN : PHIs)
580       for (Value *Op : PN->incoming_values())
581         if (!Explored.contains(Op))
582           WorkList.push_back(Op);
583   }
584 
585   // Make sure that we can do this. Since we can't insert GEPs in a basic
586   // block before a PHI node, we can't easily do this transformation if
587   // we have PHI node users of transformed instructions.
588   for (Value *Val : Explored) {
589     for (Value *Use : Val->uses()) {
590 
591       auto *PHI = dyn_cast<PHINode>(Use);
592       auto *Inst = dyn_cast<Instruction>(Val);
593 
594       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
595           !Explored.contains(PHI))
596         continue;
597 
598       if (PHI->getParent() == Inst->getParent())
599         return false;
600     }
601   }
602   return true;
603 }
604 
605 // Sets the appropriate insert point on Builder where we can add
606 // a replacement Instruction for V (if that is possible).
607 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
608                               bool Before = true) {
609   if (auto *PHI = dyn_cast<PHINode>(V)) {
610     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
611     return;
612   }
613   if (auto *I = dyn_cast<Instruction>(V)) {
614     if (!Before)
615       I = &*std::next(I->getIterator());
616     Builder.SetInsertPoint(I);
617     return;
618   }
619   if (auto *A = dyn_cast<Argument>(V)) {
620     // Set the insertion point in the entry block.
621     BasicBlock &Entry = A->getParent()->getEntryBlock();
622     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
623     return;
624   }
625   // Otherwise, this is a constant and we don't need to set a new
626   // insertion point.
627   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
628 }
629 
630 /// Returns a re-written value of Start as an indexed GEP using Base as a
631 /// pointer.
632 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
633                                  const DataLayout &DL,
634                                  SetVector<Value *> &Explored) {
635   // Perform all the substitutions. This is a bit tricky because we can
636   // have cycles in our use-def chains.
637   // 1. Create the PHI nodes without any incoming values.
638   // 2. Create all the other values.
639   // 3. Add the edges for the PHI nodes.
640   // 4. Emit GEPs to get the original pointers.
641   // 5. Remove the original instructions.
642   Type *IndexType = IntegerType::get(
643       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
644 
645   DenseMap<Value *, Value *> NewInsts;
646   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
647 
648   // Create the new PHI nodes, without adding any incoming values.
649   for (Value *Val : Explored) {
650     if (Val == Base)
651       continue;
652     // Create empty phi nodes. This avoids cyclic dependencies when creating
653     // the remaining instructions.
654     if (auto *PHI = dyn_cast<PHINode>(Val))
655       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
656                                       PHI->getName() + ".idx", PHI);
657   }
658   IRBuilder<> Builder(Base->getContext());
659 
660   // Create all the other instructions.
661   for (Value *Val : Explored) {
662 
663     if (NewInsts.find(Val) != NewInsts.end())
664       continue;
665 
666     if (auto *CI = dyn_cast<CastInst>(Val)) {
667       // Don't get rid of the intermediate variable here; the store can grow
668       // the map which will invalidate the reference to the input value.
669       Value *V = NewInsts[CI->getOperand(0)];
670       NewInsts[CI] = V;
671       continue;
672     }
673     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
674       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
675                                                   : GEP->getOperand(1);
676       setInsertionPoint(Builder, GEP);
677       // Indices might need to be sign extended. GEPs will magically do
678       // this, but we need to do it ourselves here.
679       if (Index->getType()->getScalarSizeInBits() !=
680           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
681         Index = Builder.CreateSExtOrTrunc(
682             Index, NewInsts[GEP->getOperand(0)]->getType(),
683             GEP->getOperand(0)->getName() + ".sext");
684       }
685 
686       auto *Op = NewInsts[GEP->getOperand(0)];
687       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
688         NewInsts[GEP] = Index;
689       else
690         NewInsts[GEP] = Builder.CreateNSWAdd(
691             Op, Index, GEP->getOperand(0)->getName() + ".add");
692       continue;
693     }
694     if (isa<PHINode>(Val))
695       continue;
696 
697     llvm_unreachable("Unexpected instruction type");
698   }
699 
700   // Add the incoming values to the PHI nodes.
701   for (Value *Val : Explored) {
702     if (Val == Base)
703       continue;
704     // All the instructions have been created, we can now add edges to the
705     // phi nodes.
706     if (auto *PHI = dyn_cast<PHINode>(Val)) {
707       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
708       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
709         Value *NewIncoming = PHI->getIncomingValue(I);
710 
711         if (NewInsts.find(NewIncoming) != NewInsts.end())
712           NewIncoming = NewInsts[NewIncoming];
713 
714         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
715       }
716     }
717   }
718 
719   PointerType *PtrTy =
720       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
721   for (Value *Val : Explored) {
722     if (Val == Base)
723       continue;
724 
725     // Depending on the type, for external users we have to emit
726     // a GEP or a GEP + ptrtoint.
727     setInsertionPoint(Builder, Val, false);
728 
729     // Cast base to the expected type.
730     Value *NewVal = Builder.CreateBitOrPointerCast(
731         Base, PtrTy, Start->getName() + "to.ptr");
732     NewVal = Builder.CreateInBoundsGEP(
733         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
734     NewVal = Builder.CreateBitOrPointerCast(
735         NewVal, Val->getType(), Val->getName() + ".conv");
736     Val->replaceAllUsesWith(NewVal);
737   }
738 
739   return NewInsts[Start];
740 }
741 
742 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
743 /// the input Value as a constant indexed GEP. Returns a pair containing
744 /// the GEPs Pointer and Index.
745 static std::pair<Value *, Value *>
746 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
747   Type *IndexType = IntegerType::get(V->getContext(),
748                                      DL.getIndexTypeSizeInBits(V->getType()));
749 
750   Constant *Index = ConstantInt::getNullValue(IndexType);
751   while (true) {
752     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
753       // We accept only inbouds GEPs here to exclude the possibility of
754       // overflow.
755       if (!GEP->isInBounds())
756         break;
757       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
758           GEP->getSourceElementType() == ElemTy) {
759         V = GEP->getOperand(0);
760         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
761         Index = ConstantExpr::getAdd(
762             Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType));
763         continue;
764       }
765       break;
766     }
767     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
768       if (!CI->isNoopCast(DL))
769         break;
770       V = CI->getOperand(0);
771       continue;
772     }
773     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
774       if (!CI->isNoopCast(DL))
775         break;
776       V = CI->getOperand(0);
777       continue;
778     }
779     break;
780   }
781   return {V, Index};
782 }
783 
784 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
785 /// We can look through PHIs, GEPs and casts in order to determine a common base
786 /// between GEPLHS and RHS.
787 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
788                                               ICmpInst::Predicate Cond,
789                                               const DataLayout &DL) {
790   // FIXME: Support vector of pointers.
791   if (GEPLHS->getType()->isVectorTy())
792     return nullptr;
793 
794   if (!GEPLHS->hasAllConstantIndices())
795     return nullptr;
796 
797   Type *ElemTy = GEPLHS->getSourceElementType();
798   Value *PtrBase, *Index;
799   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
800 
801   // The set of nodes that will take part in this transformation.
802   SetVector<Value *> Nodes;
803 
804   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
805     return nullptr;
806 
807   // We know we can re-write this as
808   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
809   // Since we've only looked through inbouds GEPs we know that we
810   // can't have overflow on either side. We can therefore re-write
811   // this as:
812   //   OFFSET1 cmp OFFSET2
813   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
814 
815   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
816   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
817   // offset. Since Index is the offset of LHS to the base pointer, we will now
818   // compare the offsets instead of comparing the pointers.
819   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
820 }
821 
822 /// Fold comparisons between a GEP instruction and something else. At this point
823 /// we know that the GEP is on the LHS of the comparison.
824 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
825                                            ICmpInst::Predicate Cond,
826                                            Instruction &I) {
827   // Don't transform signed compares of GEPs into index compares. Even if the
828   // GEP is inbounds, the final add of the base pointer can have signed overflow
829   // and would change the result of the icmp.
830   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
831   // the maximum signed value for the pointer type.
832   if (ICmpInst::isSigned(Cond))
833     return nullptr;
834 
835   // Look through bitcasts and addrspacecasts. We do not however want to remove
836   // 0 GEPs.
837   if (!isa<GetElementPtrInst>(RHS))
838     RHS = RHS->stripPointerCasts();
839 
840   Value *PtrBase = GEPLHS->getOperand(0);
841   // FIXME: Support vector pointer GEPs.
842   if (PtrBase == RHS && GEPLHS->isInBounds() &&
843       !GEPLHS->getType()->isVectorTy()) {
844     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
845     // This transformation (ignoring the base and scales) is valid because we
846     // know pointers can't overflow since the gep is inbounds.  See if we can
847     // output an optimized form.
848     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
849 
850     // If not, synthesize the offset the hard way.
851     if (!Offset)
852       Offset = EmitGEPOffset(GEPLHS);
853     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
854                         Constant::getNullValue(Offset->getType()));
855   }
856 
857   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
858       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
859       !NullPointerIsDefined(I.getFunction(),
860                             RHS->getType()->getPointerAddressSpace())) {
861     // For most address spaces, an allocation can't be placed at null, but null
862     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
863     // the only valid inbounds address derived from null, is null itself.
864     // Thus, we have four cases to consider:
865     // 1) Base == nullptr, Offset == 0 -> inbounds, null
866     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
867     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
868     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
869     //
870     // (Note if we're indexing a type of size 0, that simply collapses into one
871     //  of the buckets above.)
872     //
873     // In general, we're allowed to make values less poison (i.e. remove
874     //   sources of full UB), so in this case, we just select between the two
875     //   non-poison cases (1 and 4 above).
876     //
877     // For vectors, we apply the same reasoning on a per-lane basis.
878     auto *Base = GEPLHS->getPointerOperand();
879     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
880       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
881       Base = Builder.CreateVectorSplat(EC, Base);
882     }
883     return new ICmpInst(Cond, Base,
884                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
885                             cast<Constant>(RHS), Base->getType()));
886   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
887     // If the base pointers are different, but the indices are the same, just
888     // compare the base pointer.
889     if (PtrBase != GEPRHS->getOperand(0)) {
890       bool IndicesTheSame =
891           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
892           GEPLHS->getType() == GEPRHS->getType() &&
893           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
894       if (IndicesTheSame)
895         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
896           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
897             IndicesTheSame = false;
898             break;
899           }
900 
901       // If all indices are the same, just compare the base pointers.
902       Type *BaseType = GEPLHS->getOperand(0)->getType();
903       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
904         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
905 
906       // If we're comparing GEPs with two base pointers that only differ in type
907       // and both GEPs have only constant indices or just one use, then fold
908       // the compare with the adjusted indices.
909       // FIXME: Support vector of pointers.
910       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
911           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
912           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
913           PtrBase->stripPointerCasts() ==
914               GEPRHS->getOperand(0)->stripPointerCasts() &&
915           !GEPLHS->getType()->isVectorTy()) {
916         Value *LOffset = EmitGEPOffset(GEPLHS);
917         Value *ROffset = EmitGEPOffset(GEPRHS);
918 
919         // If we looked through an addrspacecast between different sized address
920         // spaces, the LHS and RHS pointers are different sized
921         // integers. Truncate to the smaller one.
922         Type *LHSIndexTy = LOffset->getType();
923         Type *RHSIndexTy = ROffset->getType();
924         if (LHSIndexTy != RHSIndexTy) {
925           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
926               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
927             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
928           } else
929             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
930         }
931 
932         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
933                                         LOffset, ROffset);
934         return replaceInstUsesWith(I, Cmp);
935       }
936 
937       // Otherwise, the base pointers are different and the indices are
938       // different. Try convert this to an indexed compare by looking through
939       // PHIs/casts.
940       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
941     }
942 
943     // If one of the GEPs has all zero indices, recurse.
944     // FIXME: Handle vector of pointers.
945     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
946       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
947                          ICmpInst::getSwappedPredicate(Cond), I);
948 
949     // If the other GEP has all zero indices, recurse.
950     // FIXME: Handle vector of pointers.
951     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
952       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
953 
954     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
955     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
956         GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
957       // If the GEPs only differ by one index, compare it.
958       unsigned NumDifferences = 0;  // Keep track of # differences.
959       unsigned DiffOperand = 0;     // The operand that differs.
960       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
961         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
962           Type *LHSType = GEPLHS->getOperand(i)->getType();
963           Type *RHSType = GEPRHS->getOperand(i)->getType();
964           // FIXME: Better support for vector of pointers.
965           if (LHSType->getPrimitiveSizeInBits() !=
966                    RHSType->getPrimitiveSizeInBits() ||
967               (GEPLHS->getType()->isVectorTy() &&
968                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
969             // Irreconcilable differences.
970             NumDifferences = 2;
971             break;
972           }
973 
974           if (NumDifferences++) break;
975           DiffOperand = i;
976         }
977 
978       if (NumDifferences == 0)   // SAME GEP?
979         return replaceInstUsesWith(I, // No comparison is needed here.
980           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
981 
982       else if (NumDifferences == 1 && GEPsInBounds) {
983         Value *LHSV = GEPLHS->getOperand(DiffOperand);
984         Value *RHSV = GEPRHS->getOperand(DiffOperand);
985         // Make sure we do a signed comparison here.
986         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
987       }
988     }
989 
990     // Only lower this if the icmp is the only user of the GEP or if we expect
991     // the result to fold to a constant!
992     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
993         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
994       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
995       Value *L = EmitGEPOffset(GEPLHS);
996       Value *R = EmitGEPOffset(GEPRHS);
997       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
998     }
999   }
1000 
1001   // Try convert this to an indexed compare by looking through PHIs/casts as a
1002   // last resort.
1003   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1004 }
1005 
1006 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1007                                              const AllocaInst *Alloca) {
1008   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1009 
1010   // It would be tempting to fold away comparisons between allocas and any
1011   // pointer not based on that alloca (e.g. an argument). However, even
1012   // though such pointers cannot alias, they can still compare equal.
1013   //
1014   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1015   // doesn't escape we can argue that it's impossible to guess its value, and we
1016   // can therefore act as if any such guesses are wrong.
1017   //
1018   // The code below checks that the alloca doesn't escape, and that it's only
1019   // used in a comparison once (the current instruction). The
1020   // single-comparison-use condition ensures that we're trivially folding all
1021   // comparisons against the alloca consistently, and avoids the risk of
1022   // erroneously folding a comparison of the pointer with itself.
1023 
1024   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1025 
1026   SmallVector<const Use *, 32> Worklist;
1027   for (const Use &U : Alloca->uses()) {
1028     if (Worklist.size() >= MaxIter)
1029       return nullptr;
1030     Worklist.push_back(&U);
1031   }
1032 
1033   unsigned NumCmps = 0;
1034   while (!Worklist.empty()) {
1035     assert(Worklist.size() <= MaxIter);
1036     const Use *U = Worklist.pop_back_val();
1037     const Value *V = U->getUser();
1038     --MaxIter;
1039 
1040     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1041         isa<SelectInst>(V)) {
1042       // Track the uses.
1043     } else if (isa<LoadInst>(V)) {
1044       // Loading from the pointer doesn't escape it.
1045       continue;
1046     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1047       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1048       if (SI->getValueOperand() == U->get())
1049         return nullptr;
1050       continue;
1051     } else if (isa<ICmpInst>(V)) {
1052       if (NumCmps++)
1053         return nullptr; // Found more than one cmp.
1054       continue;
1055     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1056       switch (Intrin->getIntrinsicID()) {
1057         // These intrinsics don't escape or compare the pointer. Memset is safe
1058         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1059         // we don't allow stores, so src cannot point to V.
1060         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1061         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1062           continue;
1063         default:
1064           return nullptr;
1065       }
1066     } else {
1067       return nullptr;
1068     }
1069     for (const Use &U : V->uses()) {
1070       if (Worklist.size() >= MaxIter)
1071         return nullptr;
1072       Worklist.push_back(&U);
1073     }
1074   }
1075 
1076   auto *Res = ConstantInt::get(ICI.getType(),
1077                                !CmpInst::isTrueWhenEqual(ICI.getPredicate()));
1078   return replaceInstUsesWith(ICI, Res);
1079 }
1080 
1081 /// Fold "icmp pred (X+C), X".
1082 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1083                                                   ICmpInst::Predicate Pred) {
1084   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1085   // so the values can never be equal.  Similarly for all other "or equals"
1086   // operators.
1087   assert(!!C && "C should not be zero!");
1088 
1089   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1090   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1091   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1092   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1093     Constant *R = ConstantInt::get(X->getType(),
1094                                    APInt::getMaxValue(C.getBitWidth()) - C);
1095     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1096   }
1097 
1098   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1099   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1100   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1101   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1102     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1103                         ConstantInt::get(X->getType(), -C));
1104 
1105   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1106 
1107   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1108   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1109   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1110   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1111   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1112   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1113   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1114     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1115                         ConstantInt::get(X->getType(), SMax - C));
1116 
1117   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1118   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1119   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1120   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1121   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1122   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1123 
1124   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1125   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1126                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1127 }
1128 
1129 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1130 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1131 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1132 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1133                                                      const APInt &AP1,
1134                                                      const APInt &AP2) {
1135   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1136 
1137   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1138     if (I.getPredicate() == I.ICMP_NE)
1139       Pred = CmpInst::getInversePredicate(Pred);
1140     return new ICmpInst(Pred, LHS, RHS);
1141   };
1142 
1143   // Don't bother doing any work for cases which InstSimplify handles.
1144   if (AP2.isZero())
1145     return nullptr;
1146 
1147   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1148   if (IsAShr) {
1149     if (AP2.isAllOnes())
1150       return nullptr;
1151     if (AP2.isNegative() != AP1.isNegative())
1152       return nullptr;
1153     if (AP2.sgt(AP1))
1154       return nullptr;
1155   }
1156 
1157   if (!AP1)
1158     // 'A' must be large enough to shift out the highest set bit.
1159     return getICmp(I.ICMP_UGT, A,
1160                    ConstantInt::get(A->getType(), AP2.logBase2()));
1161 
1162   if (AP1 == AP2)
1163     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1164 
1165   int Shift;
1166   if (IsAShr && AP1.isNegative())
1167     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1168   else
1169     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1170 
1171   if (Shift > 0) {
1172     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1173       // There are multiple solutions if we are comparing against -1 and the LHS
1174       // of the ashr is not a power of two.
1175       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1176         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1177       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1178     } else if (AP1 == AP2.lshr(Shift)) {
1179       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1180     }
1181   }
1182 
1183   // Shifting const2 will never be equal to const1.
1184   // FIXME: This should always be handled by InstSimplify?
1185   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1186   return replaceInstUsesWith(I, TorF);
1187 }
1188 
1189 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1190 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1191 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1192                                                      const APInt &AP1,
1193                                                      const APInt &AP2) {
1194   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1195 
1196   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1197     if (I.getPredicate() == I.ICMP_NE)
1198       Pred = CmpInst::getInversePredicate(Pred);
1199     return new ICmpInst(Pred, LHS, RHS);
1200   };
1201 
1202   // Don't bother doing any work for cases which InstSimplify handles.
1203   if (AP2.isZero())
1204     return nullptr;
1205 
1206   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1207 
1208   if (!AP1 && AP2TrailingZeros != 0)
1209     return getICmp(
1210         I.ICMP_UGE, A,
1211         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1212 
1213   if (AP1 == AP2)
1214     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1215 
1216   // Get the distance between the lowest bits that are set.
1217   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1218 
1219   if (Shift > 0 && AP2.shl(Shift) == AP1)
1220     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1221 
1222   // Shifting const2 will never be equal to const1.
1223   // FIXME: This should always be handled by InstSimplify?
1224   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1225   return replaceInstUsesWith(I, TorF);
1226 }
1227 
1228 /// The caller has matched a pattern of the form:
1229 ///   I = icmp ugt (add (add A, B), CI2), CI1
1230 /// If this is of the form:
1231 ///   sum = a + b
1232 ///   if (sum+128 >u 255)
1233 /// Then replace it with llvm.sadd.with.overflow.i8.
1234 ///
1235 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1236                                           ConstantInt *CI2, ConstantInt *CI1,
1237                                           InstCombinerImpl &IC) {
1238   // The transformation we're trying to do here is to transform this into an
1239   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1240   // with a narrower add, and discard the add-with-constant that is part of the
1241   // range check (if we can't eliminate it, this isn't profitable).
1242 
1243   // In order to eliminate the add-with-constant, the compare can be its only
1244   // use.
1245   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1246   if (!AddWithCst->hasOneUse())
1247     return nullptr;
1248 
1249   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1250   if (!CI2->getValue().isPowerOf2())
1251     return nullptr;
1252   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1253   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1254     return nullptr;
1255 
1256   // The width of the new add formed is 1 more than the bias.
1257   ++NewWidth;
1258 
1259   // Check to see that CI1 is an all-ones value with NewWidth bits.
1260   if (CI1->getBitWidth() == NewWidth ||
1261       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1262     return nullptr;
1263 
1264   // This is only really a signed overflow check if the inputs have been
1265   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1266   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1267   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1268       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1269     return nullptr;
1270 
1271   // In order to replace the original add with a narrower
1272   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1273   // and truncates that discard the high bits of the add.  Verify that this is
1274   // the case.
1275   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1276   for (User *U : OrigAdd->users()) {
1277     if (U == AddWithCst)
1278       continue;
1279 
1280     // Only accept truncates for now.  We would really like a nice recursive
1281     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1282     // chain to see which bits of a value are actually demanded.  If the
1283     // original add had another add which was then immediately truncated, we
1284     // could still do the transformation.
1285     TruncInst *TI = dyn_cast<TruncInst>(U);
1286     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1287       return nullptr;
1288   }
1289 
1290   // If the pattern matches, truncate the inputs to the narrower type and
1291   // use the sadd_with_overflow intrinsic to efficiently compute both the
1292   // result and the overflow bit.
1293   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1294   Function *F = Intrinsic::getDeclaration(
1295       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1296 
1297   InstCombiner::BuilderTy &Builder = IC.Builder;
1298 
1299   // Put the new code above the original add, in case there are any uses of the
1300   // add between the add and the compare.
1301   Builder.SetInsertPoint(OrigAdd);
1302 
1303   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1304   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1305   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1306   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1307   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1308 
1309   // The inner add was the result of the narrow add, zero extended to the
1310   // wider type.  Replace it with the result computed by the intrinsic.
1311   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1312   IC.eraseInstFromFunction(*OrigAdd);
1313 
1314   // The original icmp gets replaced with the overflow value.
1315   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1316 }
1317 
1318 /// If we have:
1319 ///   icmp eq/ne (urem/srem %x, %y), 0
1320 /// iff %y is a power-of-two, we can replace this with a bit test:
1321 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1322 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1323   // This fold is only valid for equality predicates.
1324   if (!I.isEquality())
1325     return nullptr;
1326   ICmpInst::Predicate Pred;
1327   Value *X, *Y, *Zero;
1328   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1329                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1330     return nullptr;
1331   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1332     return nullptr;
1333   // This may increase instruction count, we don't enforce that Y is a constant.
1334   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1335   Value *Masked = Builder.CreateAnd(X, Mask);
1336   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1337 }
1338 
1339 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1340 /// by one-less-than-bitwidth into a sign test on the original value.
1341 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1342   Instruction *Val;
1343   ICmpInst::Predicate Pred;
1344   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1345     return nullptr;
1346 
1347   Value *X;
1348   Type *XTy;
1349 
1350   Constant *C;
1351   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1352     XTy = X->getType();
1353     unsigned XBitWidth = XTy->getScalarSizeInBits();
1354     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1355                                      APInt(XBitWidth, XBitWidth - 1))))
1356       return nullptr;
1357   } else if (isa<BinaryOperator>(Val) &&
1358              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1359                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1360                   /*AnalyzeForSignBitExtraction=*/true))) {
1361     XTy = X->getType();
1362   } else
1363     return nullptr;
1364 
1365   return ICmpInst::Create(Instruction::ICmp,
1366                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1367                                                     : ICmpInst::ICMP_SLT,
1368                           X, ConstantInt::getNullValue(XTy));
1369 }
1370 
1371 // Handle  icmp pred X, 0
1372 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1373   CmpInst::Predicate Pred = Cmp.getPredicate();
1374   if (!match(Cmp.getOperand(1), m_Zero()))
1375     return nullptr;
1376 
1377   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1378   if (Pred == ICmpInst::ICMP_SGT) {
1379     Value *A, *B;
1380     if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1381       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1382         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1383       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1384         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1385     }
1386   }
1387 
1388   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1389     return New;
1390 
1391   // Given:
1392   //   icmp eq/ne (urem %x, %y), 0
1393   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1394   //   icmp eq/ne %x, 0
1395   Value *X, *Y;
1396   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1397       ICmpInst::isEquality(Pred)) {
1398     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1399     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1400     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1401       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1402   }
1403 
1404   return nullptr;
1405 }
1406 
1407 /// Fold icmp Pred X, C.
1408 /// TODO: This code structure does not make sense. The saturating add fold
1409 /// should be moved to some other helper and extended as noted below (it is also
1410 /// possible that code has been made unnecessary - do we canonicalize IR to
1411 /// overflow/saturating intrinsics or not?).
1412 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1413   // Match the following pattern, which is a common idiom when writing
1414   // overflow-safe integer arithmetic functions. The source performs an addition
1415   // in wider type and explicitly checks for overflow using comparisons against
1416   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1417   //
1418   // TODO: This could probably be generalized to handle other overflow-safe
1419   // operations if we worked out the formulas to compute the appropriate magic
1420   // constants.
1421   //
1422   // sum = a + b
1423   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1424   CmpInst::Predicate Pred = Cmp.getPredicate();
1425   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1426   Value *A, *B;
1427   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1428   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1429       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1430     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1431       return Res;
1432 
1433   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1434   Constant *C = dyn_cast<Constant>(Op1);
1435   if (!C || C->canTrap())
1436     return nullptr;
1437 
1438   if (auto *Phi = dyn_cast<PHINode>(Op0))
1439     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1440       Type *Ty = Cmp.getType();
1441       Builder.SetInsertPoint(Phi);
1442       PHINode *NewPhi =
1443           Builder.CreatePHI(Ty, Phi->getNumOperands());
1444       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1445         auto *Input =
1446             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1447         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1448         NewPhi->addIncoming(BoolInput, Predecessor);
1449       }
1450       NewPhi->takeName(&Cmp);
1451       return replaceInstUsesWith(Cmp, NewPhi);
1452     }
1453 
1454   return nullptr;
1455 }
1456 
1457 /// Canonicalize icmp instructions based on dominating conditions.
1458 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1459   // This is a cheap/incomplete check for dominance - just match a single
1460   // predecessor with a conditional branch.
1461   BasicBlock *CmpBB = Cmp.getParent();
1462   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463   if (!DomBB)
1464     return nullptr;
1465 
1466   Value *DomCond;
1467   BasicBlock *TrueBB, *FalseBB;
1468   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1469     return nullptr;
1470 
1471   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1472          "Predecessor block does not point to successor?");
1473 
1474   // The branch should get simplified. Don't bother simplifying this condition.
1475   if (TrueBB == FalseBB)
1476     return nullptr;
1477 
1478   // Try to simplify this compare to T/F based on the dominating condition.
1479   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1480   if (Imp)
1481     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1482 
1483   CmpInst::Predicate Pred = Cmp.getPredicate();
1484   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1485   ICmpInst::Predicate DomPred;
1486   const APInt *C, *DomC;
1487   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1488       match(Y, m_APInt(C))) {
1489     // We have 2 compares of a variable with constants. Calculate the constant
1490     // ranges of those compares to see if we can transform the 2nd compare:
1491     // DomBB:
1492     //   DomCond = icmp DomPred X, DomC
1493     //   br DomCond, CmpBB, FalseBB
1494     // CmpBB:
1495     //   Cmp = icmp Pred X, C
1496     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1497     ConstantRange DominatingCR =
1498         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1499                           : ConstantRange::makeExactICmpRegion(
1500                                 CmpInst::getInversePredicate(DomPred), *DomC);
1501     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1502     ConstantRange Difference = DominatingCR.difference(CR);
1503     if (Intersection.isEmptySet())
1504       return replaceInstUsesWith(Cmp, Builder.getFalse());
1505     if (Difference.isEmptySet())
1506       return replaceInstUsesWith(Cmp, Builder.getTrue());
1507 
1508     // Canonicalizing a sign bit comparison that gets used in a branch,
1509     // pessimizes codegen by generating branch on zero instruction instead
1510     // of a test and branch. So we avoid canonicalizing in such situations
1511     // because test and branch instruction has better branch displacement
1512     // than compare and branch instruction.
1513     bool UnusedBit;
1514     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1515     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1516       return nullptr;
1517 
1518     // Avoid an infinite loop with min/max canonicalization.
1519     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1520     if (Cmp.hasOneUse() &&
1521         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1522       return nullptr;
1523 
1524     if (const APInt *EqC = Intersection.getSingleElement())
1525       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1526     if (const APInt *NeC = Difference.getSingleElement())
1527       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1528   }
1529 
1530   return nullptr;
1531 }
1532 
1533 /// Fold icmp (trunc X, Y), C.
1534 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1535                                                      TruncInst *Trunc,
1536                                                      const APInt &C) {
1537   ICmpInst::Predicate Pred = Cmp.getPredicate();
1538   Value *X = Trunc->getOperand(0);
1539   if (C.isOne() && C.getBitWidth() > 1) {
1540     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1541     Value *V = nullptr;
1542     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1543       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1544                           ConstantInt::get(V->getType(), 1));
1545   }
1546 
1547   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1548            SrcBits = X->getType()->getScalarSizeInBits();
1549   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1550     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1551     // of the high bits truncated out of x are known.
1552     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1553 
1554     // If all the high bits are known, we can do this xform.
1555     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1556       // Pull in the high bits from known-ones set.
1557       APInt NewRHS = C.zext(SrcBits);
1558       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1559       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1560     }
1561   }
1562 
1563   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1564   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1565   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1566   Value *ShOp;
1567   const APInt *ShAmtC;
1568   bool TrueIfSigned;
1569   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1570       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1571       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1572     return TrueIfSigned
1573                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1574                               ConstantInt::getNullValue(X->getType()))
1575                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1576                               ConstantInt::getAllOnesValue(X->getType()));
1577   }
1578 
1579   return nullptr;
1580 }
1581 
1582 /// Fold icmp (xor X, Y), C.
1583 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1584                                                    BinaryOperator *Xor,
1585                                                    const APInt &C) {
1586   Value *X = Xor->getOperand(0);
1587   Value *Y = Xor->getOperand(1);
1588   const APInt *XorC;
1589   if (!match(Y, m_APInt(XorC)))
1590     return nullptr;
1591 
1592   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1593   // fold the xor.
1594   ICmpInst::Predicate Pred = Cmp.getPredicate();
1595   bool TrueIfSigned = false;
1596   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1597 
1598     // If the sign bit of the XorCst is not set, there is no change to
1599     // the operation, just stop using the Xor.
1600     if (!XorC->isNegative())
1601       return replaceOperand(Cmp, 0, X);
1602 
1603     // Emit the opposite comparison.
1604     if (TrueIfSigned)
1605       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1606                           ConstantInt::getAllOnesValue(X->getType()));
1607     else
1608       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1609                           ConstantInt::getNullValue(X->getType()));
1610   }
1611 
1612   if (Xor->hasOneUse()) {
1613     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1614     if (!Cmp.isEquality() && XorC->isSignMask()) {
1615       Pred = Cmp.getFlippedSignednessPredicate();
1616       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1617     }
1618 
1619     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1620     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1621       Pred = Cmp.getFlippedSignednessPredicate();
1622       Pred = Cmp.getSwappedPredicate(Pred);
1623       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1624     }
1625   }
1626 
1627   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1628   if (Pred == ICmpInst::ICMP_UGT) {
1629     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1630     if (*XorC == ~C && (C + 1).isPowerOf2())
1631       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1632     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1633     if (*XorC == C && (C + 1).isPowerOf2())
1634       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1635   }
1636   if (Pred == ICmpInst::ICMP_ULT) {
1637     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1638     if (*XorC == -C && C.isPowerOf2())
1639       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1640                           ConstantInt::get(X->getType(), ~C));
1641     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1642     if (*XorC == C && (-C).isPowerOf2())
1643       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1644                           ConstantInt::get(X->getType(), ~C));
1645   }
1646   return nullptr;
1647 }
1648 
1649 /// Fold icmp (and (sh X, Y), C2), C1.
1650 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1651                                                 BinaryOperator *And,
1652                                                 const APInt &C1,
1653                                                 const APInt &C2) {
1654   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1655   if (!Shift || !Shift->isShift())
1656     return nullptr;
1657 
1658   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1659   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1660   // code produced by the clang front-end, for bitfield access.
1661   // This seemingly simple opportunity to fold away a shift turns out to be
1662   // rather complicated. See PR17827 for details.
1663   unsigned ShiftOpcode = Shift->getOpcode();
1664   bool IsShl = ShiftOpcode == Instruction::Shl;
1665   const APInt *C3;
1666   if (match(Shift->getOperand(1), m_APInt(C3))) {
1667     APInt NewAndCst, NewCmpCst;
1668     bool AnyCmpCstBitsShiftedOut;
1669     if (ShiftOpcode == Instruction::Shl) {
1670       // For a left shift, we can fold if the comparison is not signed. We can
1671       // also fold a signed comparison if the mask value and comparison value
1672       // are not negative. These constraints may not be obvious, but we can
1673       // prove that they are correct using an SMT solver.
1674       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1675         return nullptr;
1676 
1677       NewCmpCst = C1.lshr(*C3);
1678       NewAndCst = C2.lshr(*C3);
1679       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1680     } else if (ShiftOpcode == Instruction::LShr) {
1681       // For a logical right shift, we can fold if the comparison is not signed.
1682       // We can also fold a signed comparison if the shifted mask value and the
1683       // shifted comparison value are not negative. These constraints may not be
1684       // obvious, but we can prove that they are correct using an SMT solver.
1685       NewCmpCst = C1.shl(*C3);
1686       NewAndCst = C2.shl(*C3);
1687       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1688       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1689         return nullptr;
1690     } else {
1691       // For an arithmetic shift, check that both constants don't use (in a
1692       // signed sense) the top bits being shifted out.
1693       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1694       NewCmpCst = C1.shl(*C3);
1695       NewAndCst = C2.shl(*C3);
1696       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1697       if (NewAndCst.ashr(*C3) != C2)
1698         return nullptr;
1699     }
1700 
1701     if (AnyCmpCstBitsShiftedOut) {
1702       // If we shifted bits out, the fold is not going to work out. As a
1703       // special case, check to see if this means that the result is always
1704       // true or false now.
1705       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1706         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1707       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1708         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1709     } else {
1710       Value *NewAnd = Builder.CreateAnd(
1711           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1712       return new ICmpInst(Cmp.getPredicate(),
1713           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1714     }
1715   }
1716 
1717   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1718   // preferable because it allows the C2 << Y expression to be hoisted out of a
1719   // loop if Y is invariant and X is not.
1720   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1721       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1722     // Compute C2 << Y.
1723     Value *NewShift =
1724         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1725               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1726 
1727     // Compute X & (C2 << Y).
1728     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1729     return replaceOperand(Cmp, 0, NewAnd);
1730   }
1731 
1732   return nullptr;
1733 }
1734 
1735 /// Fold icmp (and X, C2), C1.
1736 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1737                                                      BinaryOperator *And,
1738                                                      const APInt &C1) {
1739   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1740 
1741   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1742   // TODO: We canonicalize to the longer form for scalars because we have
1743   // better analysis/folds for icmp, and codegen may be better with icmp.
1744   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1745       match(And->getOperand(1), m_One()))
1746     return new TruncInst(And->getOperand(0), Cmp.getType());
1747 
1748   const APInt *C2;
1749   Value *X;
1750   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1751     return nullptr;
1752 
1753   // Don't perform the following transforms if the AND has multiple uses
1754   if (!And->hasOneUse())
1755     return nullptr;
1756 
1757   if (Cmp.isEquality() && C1.isZero()) {
1758     // Restrict this fold to single-use 'and' (PR10267).
1759     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1760     if (C2->isSignMask()) {
1761       Constant *Zero = Constant::getNullValue(X->getType());
1762       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1763       return new ICmpInst(NewPred, X, Zero);
1764     }
1765 
1766     // Restrict this fold only for single-use 'and' (PR10267).
1767     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1768     if ((~(*C2) + 1).isPowerOf2()) {
1769       Constant *NegBOC =
1770           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1771       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1772       return new ICmpInst(NewPred, X, NegBOC);
1773     }
1774   }
1775 
1776   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1777   // the input width without changing the value produced, eliminate the cast:
1778   //
1779   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1780   //
1781   // We can do this transformation if the constants do not have their sign bits
1782   // set or if it is an equality comparison. Extending a relational comparison
1783   // when we're checking the sign bit would not work.
1784   Value *W;
1785   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1786       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1787     // TODO: Is this a good transform for vectors? Wider types may reduce
1788     // throughput. Should this transform be limited (even for scalars) by using
1789     // shouldChangeType()?
1790     if (!Cmp.getType()->isVectorTy()) {
1791       Type *WideType = W->getType();
1792       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1793       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1794       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1795       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1796       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1797     }
1798   }
1799 
1800   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1801     return I;
1802 
1803   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1804   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1805   //
1806   // iff pred isn't signed
1807   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1808       match(And->getOperand(1), m_One())) {
1809     Constant *One = cast<Constant>(And->getOperand(1));
1810     Value *Or = And->getOperand(0);
1811     Value *A, *B, *LShr;
1812     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1813         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1814       unsigned UsesRemoved = 0;
1815       if (And->hasOneUse())
1816         ++UsesRemoved;
1817       if (Or->hasOneUse())
1818         ++UsesRemoved;
1819       if (LShr->hasOneUse())
1820         ++UsesRemoved;
1821 
1822       // Compute A & ((1 << B) | 1)
1823       Value *NewOr = nullptr;
1824       if (auto *C = dyn_cast<Constant>(B)) {
1825         if (UsesRemoved >= 1)
1826           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1827       } else {
1828         if (UsesRemoved >= 3)
1829           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1830                                                      /*HasNUW=*/true),
1831                                    One, Or->getName());
1832       }
1833       if (NewOr) {
1834         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1835         return replaceOperand(Cmp, 0, NewAnd);
1836       }
1837     }
1838   }
1839 
1840   return nullptr;
1841 }
1842 
1843 /// Fold icmp (and X, Y), C.
1844 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1845                                                    BinaryOperator *And,
1846                                                    const APInt &C) {
1847   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1848     return I;
1849 
1850   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1851   bool TrueIfNeg;
1852   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1853     // ((X - 1) & ~X) <  0 --> X == 0
1854     // ((X - 1) & ~X) >= 0 --> X != 0
1855     Value *X;
1856     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1857         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1858       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1859       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1860     }
1861   }
1862 
1863   // TODO: These all require that Y is constant too, so refactor with the above.
1864 
1865   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1866   Value *X = And->getOperand(0);
1867   Value *Y = And->getOperand(1);
1868   if (auto *C2 = dyn_cast<ConstantInt>(Y))
1869     if (auto *LI = dyn_cast<LoadInst>(X))
1870       if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1871         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1872           if (Instruction *Res =
1873                   foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1874             return Res;
1875 
1876   if (!Cmp.isEquality())
1877     return nullptr;
1878 
1879   // X & -C == -C -> X >  u ~C
1880   // X & -C != -C -> X <= u ~C
1881   //   iff C is a power of 2
1882   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1883     auto NewPred =
1884         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1885     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1886   }
1887 
1888   return nullptr;
1889 }
1890 
1891 /// Fold icmp (or X, Y), C.
1892 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1893                                                   BinaryOperator *Or,
1894                                                   const APInt &C) {
1895   ICmpInst::Predicate Pred = Cmp.getPredicate();
1896   if (C.isOne()) {
1897     // icmp slt signum(V) 1 --> icmp slt V, 1
1898     Value *V = nullptr;
1899     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1900       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1901                           ConstantInt::get(V->getType(), 1));
1902   }
1903 
1904   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1905   const APInt *MaskC;
1906   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1907     if (*MaskC == C && (C + 1).isPowerOf2()) {
1908       // X | C == C --> X <=u C
1909       // X | C != C --> X  >u C
1910       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1911       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1912       return new ICmpInst(Pred, OrOp0, OrOp1);
1913     }
1914 
1915     // More general: canonicalize 'equality with set bits mask' to
1916     // 'equality with clear bits mask'.
1917     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1918     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1919     if (Or->hasOneUse()) {
1920       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1921       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1922       return new ICmpInst(Pred, And, NewC);
1923     }
1924   }
1925 
1926   // (X | (X-1)) s<  0 --> X s< 1
1927   // (X | (X-1)) s> -1 --> X s> 0
1928   Value *X;
1929   bool TrueIfSigned;
1930   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1931       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1932     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1933     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1934     return new ICmpInst(NewPred, X, NewC);
1935   }
1936 
1937   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1938     return nullptr;
1939 
1940   Value *P, *Q;
1941   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1942     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1943     // -> and (icmp eq P, null), (icmp eq Q, null).
1944     Value *CmpP =
1945         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1946     Value *CmpQ =
1947         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1948     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1949     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1950   }
1951 
1952   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1953   // a shorter form that has more potential to be folded even further.
1954   Value *X1, *X2, *X3, *X4;
1955   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1956       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1957     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1958     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1959     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1960     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1961     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1962     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1963   }
1964 
1965   return nullptr;
1966 }
1967 
1968 /// Fold icmp (mul X, Y), C.
1969 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1970                                                    BinaryOperator *Mul,
1971                                                    const APInt &C) {
1972   const APInt *MulC;
1973   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1974     return nullptr;
1975 
1976   // If this is a test of the sign bit and the multiply is sign-preserving with
1977   // a constant operand, use the multiply LHS operand instead.
1978   ICmpInst::Predicate Pred = Cmp.getPredicate();
1979   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1980     if (MulC->isNegative())
1981       Pred = ICmpInst::getSwappedPredicate(Pred);
1982     return new ICmpInst(Pred, Mul->getOperand(0),
1983                         Constant::getNullValue(Mul->getType()));
1984   }
1985 
1986   // If the multiply does not wrap, try to divide the compare constant by the
1987   // multiplication factor.
1988   if (Cmp.isEquality() && !MulC->isZero()) {
1989     // (mul nsw X, MulC) == C --> X == C /s MulC
1990     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
1991       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1992       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1993     }
1994     // (mul nuw X, MulC) == C --> X == C /u MulC
1995     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
1996       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1997       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1998     }
1999   }
2000 
2001   return nullptr;
2002 }
2003 
2004 /// Fold icmp (shl 1, Y), C.
2005 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2006                                    const APInt &C) {
2007   Value *Y;
2008   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2009     return nullptr;
2010 
2011   Type *ShiftType = Shl->getType();
2012   unsigned TypeBits = C.getBitWidth();
2013   bool CIsPowerOf2 = C.isPowerOf2();
2014   ICmpInst::Predicate Pred = Cmp.getPredicate();
2015   if (Cmp.isUnsigned()) {
2016     // (1 << Y) pred C -> Y pred Log2(C)
2017     if (!CIsPowerOf2) {
2018       // (1 << Y) <  30 -> Y <= 4
2019       // (1 << Y) <= 30 -> Y <= 4
2020       // (1 << Y) >= 30 -> Y >  4
2021       // (1 << Y) >  30 -> Y >  4
2022       if (Pred == ICmpInst::ICMP_ULT)
2023         Pred = ICmpInst::ICMP_ULE;
2024       else if (Pred == ICmpInst::ICMP_UGE)
2025         Pred = ICmpInst::ICMP_UGT;
2026     }
2027 
2028     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2029     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2030     unsigned CLog2 = C.logBase2();
2031     if (CLog2 == TypeBits - 1) {
2032       if (Pred == ICmpInst::ICMP_UGE)
2033         Pred = ICmpInst::ICMP_EQ;
2034       else if (Pred == ICmpInst::ICMP_ULT)
2035         Pred = ICmpInst::ICMP_NE;
2036     }
2037     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2038   } else if (Cmp.isSigned()) {
2039     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2040     if (C.isAllOnes()) {
2041       // (1 << Y) <= -1 -> Y == 31
2042       if (Pred == ICmpInst::ICMP_SLE)
2043         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2044 
2045       // (1 << Y) >  -1 -> Y != 31
2046       if (Pred == ICmpInst::ICMP_SGT)
2047         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2048     } else if (!C) {
2049       // (1 << Y) <  0 -> Y == 31
2050       // (1 << Y) <= 0 -> Y == 31
2051       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2052         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2053 
2054       // (1 << Y) >= 0 -> Y != 31
2055       // (1 << Y) >  0 -> Y != 31
2056       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2057         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2058     }
2059   } else if (Cmp.isEquality() && CIsPowerOf2) {
2060     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2061   }
2062 
2063   return nullptr;
2064 }
2065 
2066 /// Fold icmp (shl X, Y), C.
2067 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2068                                                    BinaryOperator *Shl,
2069                                                    const APInt &C) {
2070   const APInt *ShiftVal;
2071   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2072     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2073 
2074   const APInt *ShiftAmt;
2075   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2076     return foldICmpShlOne(Cmp, Shl, C);
2077 
2078   // Check that the shift amount is in range. If not, don't perform undefined
2079   // shifts. When the shift is visited, it will be simplified.
2080   unsigned TypeBits = C.getBitWidth();
2081   if (ShiftAmt->uge(TypeBits))
2082     return nullptr;
2083 
2084   ICmpInst::Predicate Pred = Cmp.getPredicate();
2085   Value *X = Shl->getOperand(0);
2086   Type *ShType = Shl->getType();
2087 
2088   // NSW guarantees that we are only shifting out sign bits from the high bits,
2089   // so we can ASHR the compare constant without needing a mask and eliminate
2090   // the shift.
2091   if (Shl->hasNoSignedWrap()) {
2092     if (Pred == ICmpInst::ICMP_SGT) {
2093       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2094       APInt ShiftedC = C.ashr(*ShiftAmt);
2095       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2096     }
2097     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2098         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2099       APInt ShiftedC = C.ashr(*ShiftAmt);
2100       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2101     }
2102     if (Pred == ICmpInst::ICMP_SLT) {
2103       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2104       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2105       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2106       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2107       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2108       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2109       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2110     }
2111     // If this is a signed comparison to 0 and the shift is sign preserving,
2112     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2113     // do that if we're sure to not continue on in this function.
2114     if (isSignTest(Pred, C))
2115       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2116   }
2117 
2118   // NUW guarantees that we are only shifting out zero bits from the high bits,
2119   // so we can LSHR the compare constant without needing a mask and eliminate
2120   // the shift.
2121   if (Shl->hasNoUnsignedWrap()) {
2122     if (Pred == ICmpInst::ICMP_UGT) {
2123       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2124       APInt ShiftedC = C.lshr(*ShiftAmt);
2125       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2126     }
2127     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2128         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2129       APInt ShiftedC = C.lshr(*ShiftAmt);
2130       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2131     }
2132     if (Pred == ICmpInst::ICMP_ULT) {
2133       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2134       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2135       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2136       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2137       assert(C.ugt(0) && "ult 0 should have been eliminated");
2138       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2139       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2140     }
2141   }
2142 
2143   if (Cmp.isEquality() && Shl->hasOneUse()) {
2144     // Strength-reduce the shift into an 'and'.
2145     Constant *Mask = ConstantInt::get(
2146         ShType,
2147         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2148     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2149     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2150     return new ICmpInst(Pred, And, LShrC);
2151   }
2152 
2153   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2154   bool TrueIfSigned = false;
2155   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2156     // (X << 31) <s 0  --> (X & 1) != 0
2157     Constant *Mask = ConstantInt::get(
2158         ShType,
2159         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2160     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2161     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2162                         And, Constant::getNullValue(ShType));
2163   }
2164 
2165   // Simplify 'shl' inequality test into 'and' equality test.
2166   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2167     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2168     if ((C + 1).isPowerOf2() &&
2169         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2170       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2171       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2172                                                      : ICmpInst::ICMP_NE,
2173                           And, Constant::getNullValue(ShType));
2174     }
2175     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2176     if (C.isPowerOf2() &&
2177         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2178       Value *And =
2179           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2180       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2181                                                      : ICmpInst::ICMP_NE,
2182                           And, Constant::getNullValue(ShType));
2183     }
2184   }
2185 
2186   // Transform (icmp pred iM (shl iM %v, N), C)
2187   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2188   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2189   // This enables us to get rid of the shift in favor of a trunc that may be
2190   // free on the target. It has the additional benefit of comparing to a
2191   // smaller constant that may be more target-friendly.
2192   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2193   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2194       DL.isLegalInteger(TypeBits - Amt)) {
2195     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2196     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2197       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2198     Constant *NewC =
2199         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2200     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2201   }
2202 
2203   return nullptr;
2204 }
2205 
2206 /// Fold icmp ({al}shr X, Y), C.
2207 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2208                                                    BinaryOperator *Shr,
2209                                                    const APInt &C) {
2210   // An exact shr only shifts out zero bits, so:
2211   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2212   Value *X = Shr->getOperand(0);
2213   CmpInst::Predicate Pred = Cmp.getPredicate();
2214   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2215     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2216 
2217   const APInt *ShiftVal;
2218   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2219     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2220 
2221   const APInt *ShiftAmt;
2222   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2223     return nullptr;
2224 
2225   // Check that the shift amount is in range. If not, don't perform undefined
2226   // shifts. When the shift is visited it will be simplified.
2227   unsigned TypeBits = C.getBitWidth();
2228   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2229   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2230     return nullptr;
2231 
2232   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2233   bool IsExact = Shr->isExact();
2234   Type *ShrTy = Shr->getType();
2235   // TODO: If we could guarantee that InstSimplify would handle all of the
2236   // constant-value-based preconditions in the folds below, then we could assert
2237   // those conditions rather than checking them. This is difficult because of
2238   // undef/poison (PR34838).
2239   if (IsAShr) {
2240     if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2241       // When ShAmtC can be shifted losslessly:
2242       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2243       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2244       APInt ShiftedC = C.shl(ShAmtVal);
2245       if (ShiftedC.ashr(ShAmtVal) == C)
2246         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2247     }
2248     if (Pred == CmpInst::ICMP_SGT) {
2249       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2250       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2251       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2252           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2253         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2254     }
2255     if (Pred == CmpInst::ICMP_UGT) {
2256       // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2257       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2258       if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2259         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2260     }
2261 
2262     // If the compare constant has significant bits above the lowest sign-bit,
2263     // then convert an unsigned cmp to a test of the sign-bit:
2264     // (ashr X, ShiftC) u> C --> X s< 0
2265     // (ashr X, ShiftC) u< C --> X s> -1
2266     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2267       if (Pred == CmpInst::ICMP_UGT) {
2268         return new ICmpInst(CmpInst::ICMP_SLT, X,
2269                             ConstantInt::getNullValue(ShrTy));
2270       }
2271       if (Pred == CmpInst::ICMP_ULT) {
2272         return new ICmpInst(CmpInst::ICMP_SGT, X,
2273                             ConstantInt::getAllOnesValue(ShrTy));
2274       }
2275     }
2276   } else {
2277     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2278       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2279       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2280       APInt ShiftedC = C.shl(ShAmtVal);
2281       if (ShiftedC.lshr(ShAmtVal) == C)
2282         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2283     }
2284     if (Pred == CmpInst::ICMP_UGT) {
2285       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2286       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2287       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2288         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2289     }
2290   }
2291 
2292   if (!Cmp.isEquality())
2293     return nullptr;
2294 
2295   // Handle equality comparisons of shift-by-constant.
2296 
2297   // If the comparison constant changes with the shift, the comparison cannot
2298   // succeed (bits of the comparison constant cannot match the shifted value).
2299   // This should be known by InstSimplify and already be folded to true/false.
2300   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2301           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2302          "Expected icmp+shr simplify did not occur.");
2303 
2304   // If the bits shifted out are known zero, compare the unshifted value:
2305   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2306   if (Shr->isExact())
2307     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2308 
2309   if (C.isZero()) {
2310     // == 0 is u< 1.
2311     if (Pred == CmpInst::ICMP_EQ)
2312       return new ICmpInst(CmpInst::ICMP_ULT, X,
2313                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2314     else
2315       return new ICmpInst(CmpInst::ICMP_UGT, X,
2316                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2317   }
2318 
2319   if (Shr->hasOneUse()) {
2320     // Canonicalize the shift into an 'and':
2321     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2322     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2323     Constant *Mask = ConstantInt::get(ShrTy, Val);
2324     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2325     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2326   }
2327 
2328   return nullptr;
2329 }
2330 
2331 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2332                                                     BinaryOperator *SRem,
2333                                                     const APInt &C) {
2334   // Match an 'is positive' or 'is negative' comparison of remainder by a
2335   // constant power-of-2 value:
2336   // (X % pow2C) sgt/slt 0
2337   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2338   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
2339       Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2340     return nullptr;
2341 
2342   // TODO: The one-use check is standard because we do not typically want to
2343   //       create longer instruction sequences, but this might be a special-case
2344   //       because srem is not good for analysis or codegen.
2345   if (!SRem->hasOneUse())
2346     return nullptr;
2347 
2348   const APInt *DivisorC;
2349   if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
2350     return nullptr;
2351 
2352   // For cmp_sgt/cmp_slt only zero valued C is handled.
2353   // For cmp_eq/cmp_ne only positive valued C is handled.
2354   if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
2355        !C.isZero()) ||
2356       ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2357        !C.isStrictlyPositive()))
2358     return nullptr;
2359 
2360   // Mask off the sign bit and the modulo bits (low-bits).
2361   Type *Ty = SRem->getType();
2362   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2363   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2364   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2365 
2366   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
2367     return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
2368 
2369   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2370   // bit is set. Example:
2371   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2372   if (Pred == ICmpInst::ICMP_SGT)
2373     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2374 
2375   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2376   // bit is set. Example:
2377   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2378   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2379 }
2380 
2381 /// Fold icmp (udiv X, Y), C.
2382 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2383                                                     BinaryOperator *UDiv,
2384                                                     const APInt &C) {
2385   const APInt *C2;
2386   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2387     return nullptr;
2388 
2389   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2390 
2391   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2392   Value *Y = UDiv->getOperand(1);
2393   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2394     assert(!C.isMaxValue() &&
2395            "icmp ugt X, UINT_MAX should have been simplified already.");
2396     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2397                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2398   }
2399 
2400   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2401   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2402     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2403     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2404                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2405   }
2406 
2407   return nullptr;
2408 }
2409 
2410 /// Fold icmp ({su}div X, Y), C.
2411 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2412                                                    BinaryOperator *Div,
2413                                                    const APInt &C) {
2414   // Fold: icmp pred ([us]div X, C2), C -> range test
2415   // Fold this div into the comparison, producing a range check.
2416   // Determine, based on the divide type, what the range is being
2417   // checked.  If there is an overflow on the low or high side, remember
2418   // it, otherwise compute the range [low, hi) bounding the new value.
2419   // See: InsertRangeTest above for the kinds of replacements possible.
2420   const APInt *C2;
2421   if (!match(Div->getOperand(1), m_APInt(C2)))
2422     return nullptr;
2423 
2424   // FIXME: If the operand types don't match the type of the divide
2425   // then don't attempt this transform. The code below doesn't have the
2426   // logic to deal with a signed divide and an unsigned compare (and
2427   // vice versa). This is because (x /s C2) <s C  produces different
2428   // results than (x /s C2) <u C or (x /u C2) <s C or even
2429   // (x /u C2) <u C.  Simply casting the operands and result won't
2430   // work. :(  The if statement below tests that condition and bails
2431   // if it finds it.
2432   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2433   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2434     return nullptr;
2435 
2436   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2437   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2438   // division-by-constant cases should be present, we can not assert that they
2439   // have happened before we reach this icmp instruction.
2440   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2441     return nullptr;
2442 
2443   // Compute Prod = C * C2. We are essentially solving an equation of
2444   // form X / C2 = C. We solve for X by multiplying C2 and C.
2445   // By solving for X, we can turn this into a range check instead of computing
2446   // a divide.
2447   APInt Prod = C * *C2;
2448 
2449   // Determine if the product overflows by seeing if the product is not equal to
2450   // the divide. Make sure we do the same kind of divide as in the LHS
2451   // instruction that we're folding.
2452   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2453 
2454   ICmpInst::Predicate Pred = Cmp.getPredicate();
2455 
2456   // If the division is known to be exact, then there is no remainder from the
2457   // divide, so the covered range size is unit, otherwise it is the divisor.
2458   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2459 
2460   // Figure out the interval that is being checked.  For example, a comparison
2461   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2462   // Compute this interval based on the constants involved and the signedness of
2463   // the compare/divide.  This computes a half-open interval, keeping track of
2464   // whether either value in the interval overflows.  After analysis each
2465   // overflow variable is set to 0 if it's corresponding bound variable is valid
2466   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2467   int LoOverflow = 0, HiOverflow = 0;
2468   APInt LoBound, HiBound;
2469 
2470   if (!DivIsSigned) {  // udiv
2471     // e.g. X/5 op 3  --> [15, 20)
2472     LoBound = Prod;
2473     HiOverflow = LoOverflow = ProdOV;
2474     if (!HiOverflow) {
2475       // If this is not an exact divide, then many values in the range collapse
2476       // to the same result value.
2477       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2478     }
2479   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2480     if (C.isZero()) {                    // (X / pos) op 0
2481       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2482       LoBound = -(RangeSize - 1);
2483       HiBound = RangeSize;
2484     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2485       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2486       HiOverflow = LoOverflow = ProdOV;
2487       if (!HiOverflow)
2488         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2489     } else { // (X / pos) op neg
2490       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2491       HiBound = Prod + 1;
2492       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2493       if (!LoOverflow) {
2494         APInt DivNeg = -RangeSize;
2495         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2496       }
2497     }
2498   } else if (C2->isNegative()) { // Divisor is < 0.
2499     if (Div->isExact())
2500       RangeSize.negate();
2501     if (C.isZero()) { // (X / neg) op 0
2502       // e.g. X/-5 op 0  --> [-4, 5)
2503       LoBound = RangeSize + 1;
2504       HiBound = -RangeSize;
2505       if (HiBound == *C2) {        // -INTMIN = INTMIN
2506         HiOverflow = 1;            // [INTMIN+1, overflow)
2507         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2508       }
2509     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2510       // e.g. X/-5 op 3  --> [-19, -14)
2511       HiBound = Prod + 1;
2512       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2513       if (!LoOverflow)
2514         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2515     } else {                // (X / neg) op neg
2516       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2517       LoOverflow = HiOverflow = ProdOV;
2518       if (!HiOverflow)
2519         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2520     }
2521 
2522     // Dividing by a negative swaps the condition.  LT <-> GT
2523     Pred = ICmpInst::getSwappedPredicate(Pred);
2524   }
2525 
2526   Value *X = Div->getOperand(0);
2527   switch (Pred) {
2528     default: llvm_unreachable("Unhandled icmp opcode!");
2529     case ICmpInst::ICMP_EQ:
2530       if (LoOverflow && HiOverflow)
2531         return replaceInstUsesWith(Cmp, Builder.getFalse());
2532       if (HiOverflow)
2533         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2534                             ICmpInst::ICMP_UGE, X,
2535                             ConstantInt::get(Div->getType(), LoBound));
2536       if (LoOverflow)
2537         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2538                             ICmpInst::ICMP_ULT, X,
2539                             ConstantInt::get(Div->getType(), HiBound));
2540       return replaceInstUsesWith(
2541           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2542     case ICmpInst::ICMP_NE:
2543       if (LoOverflow && HiOverflow)
2544         return replaceInstUsesWith(Cmp, Builder.getTrue());
2545       if (HiOverflow)
2546         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2547                             ICmpInst::ICMP_ULT, X,
2548                             ConstantInt::get(Div->getType(), LoBound));
2549       if (LoOverflow)
2550         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2551                             ICmpInst::ICMP_UGE, X,
2552                             ConstantInt::get(Div->getType(), HiBound));
2553       return replaceInstUsesWith(Cmp,
2554                                  insertRangeTest(X, LoBound, HiBound,
2555                                                  DivIsSigned, false));
2556     case ICmpInst::ICMP_ULT:
2557     case ICmpInst::ICMP_SLT:
2558       if (LoOverflow == +1)   // Low bound is greater than input range.
2559         return replaceInstUsesWith(Cmp, Builder.getTrue());
2560       if (LoOverflow == -1)   // Low bound is less than input range.
2561         return replaceInstUsesWith(Cmp, Builder.getFalse());
2562       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2563     case ICmpInst::ICMP_UGT:
2564     case ICmpInst::ICMP_SGT:
2565       if (HiOverflow == +1)       // High bound greater than input range.
2566         return replaceInstUsesWith(Cmp, Builder.getFalse());
2567       if (HiOverflow == -1)       // High bound less than input range.
2568         return replaceInstUsesWith(Cmp, Builder.getTrue());
2569       if (Pred == ICmpInst::ICMP_UGT)
2570         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2571                             ConstantInt::get(Div->getType(), HiBound));
2572       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2573                           ConstantInt::get(Div->getType(), HiBound));
2574   }
2575 
2576   return nullptr;
2577 }
2578 
2579 /// Fold icmp (sub X, Y), C.
2580 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2581                                                    BinaryOperator *Sub,
2582                                                    const APInt &C) {
2583   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2584   ICmpInst::Predicate Pred = Cmp.getPredicate();
2585   Type *Ty = Sub->getType();
2586 
2587   // (SubC - Y) == C) --> Y == (SubC - C)
2588   // (SubC - Y) != C) --> Y != (SubC - C)
2589   Constant *SubC;
2590   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2591     return new ICmpInst(Pred, Y,
2592                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2593   }
2594 
2595   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2596   const APInt *C2;
2597   APInt SubResult;
2598   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2599   bool HasNSW = Sub->hasNoSignedWrap();
2600   bool HasNUW = Sub->hasNoUnsignedWrap();
2601   if (match(X, m_APInt(C2)) &&
2602       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2603       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2604     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2605 
2606   // X - Y == 0 --> X == Y.
2607   // X - Y != 0 --> X != Y.
2608   // TODO: We allow this with multiple uses as long as the other uses are not
2609   //       in phis. The phi use check is guarding against a codegen regression
2610   //       for a loop test. If the backend could undo this (and possibly
2611   //       subsequent transforms), we would not need this hack.
2612   if (Cmp.isEquality() && C.isZero() &&
2613       none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
2614     return new ICmpInst(Pred, X, Y);
2615 
2616   // The following transforms are only worth it if the only user of the subtract
2617   // is the icmp.
2618   // TODO: This is an artificial restriction for all of the transforms below
2619   //       that only need a single replacement icmp. Can these use the phi test
2620   //       like the transform above here?
2621   if (!Sub->hasOneUse())
2622     return nullptr;
2623 
2624   if (Sub->hasNoSignedWrap()) {
2625     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2626     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2627       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2628 
2629     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2630     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2631       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2632 
2633     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2634     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2635       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2636 
2637     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2638     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2639       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2640   }
2641 
2642   if (!match(X, m_APInt(C2)))
2643     return nullptr;
2644 
2645   // C2 - Y <u C -> (Y | (C - 1)) == C2
2646   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2647   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2648       (*C2 & (C - 1)) == (C - 1))
2649     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2650 
2651   // C2 - Y >u C -> (Y | C) != C2
2652   //   iff C2 & C == C and C + 1 is a power of 2
2653   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2654     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2655 
2656   // We have handled special cases that reduce.
2657   // Canonicalize any remaining sub to add as:
2658   // (C2 - Y) > C --> (Y + ~C2) < ~C
2659   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2660                                  HasNUW, HasNSW);
2661   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2662 }
2663 
2664 /// Fold icmp (add X, Y), C.
2665 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2666                                                    BinaryOperator *Add,
2667                                                    const APInt &C) {
2668   Value *Y = Add->getOperand(1);
2669   const APInt *C2;
2670   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2671     return nullptr;
2672 
2673   // Fold icmp pred (add X, C2), C.
2674   Value *X = Add->getOperand(0);
2675   Type *Ty = Add->getType();
2676   const CmpInst::Predicate Pred = Cmp.getPredicate();
2677 
2678   // If the add does not wrap, we can always adjust the compare by subtracting
2679   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2680   // are canonicalized to SGT/SLT/UGT/ULT.
2681   if ((Add->hasNoSignedWrap() &&
2682        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2683       (Add->hasNoUnsignedWrap() &&
2684        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2685     bool Overflow;
2686     APInt NewC =
2687         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2688     // If there is overflow, the result must be true or false.
2689     // TODO: Can we assert there is no overflow because InstSimplify always
2690     // handles those cases?
2691     if (!Overflow)
2692       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2693       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2694   }
2695 
2696   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2697   const APInt &Upper = CR.getUpper();
2698   const APInt &Lower = CR.getLower();
2699   if (Cmp.isSigned()) {
2700     if (Lower.isSignMask())
2701       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2702     if (Upper.isSignMask())
2703       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2704   } else {
2705     if (Lower.isMinValue())
2706       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2707     if (Upper.isMinValue())
2708       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2709   }
2710 
2711   // This set of folds is intentionally placed after folds that use no-wrapping
2712   // flags because those folds are likely better for later analysis/codegen.
2713   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2714   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2715 
2716   // Fold compare with offset to opposite sign compare if it eliminates offset:
2717   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2718   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2719     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2720 
2721   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2722   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2723     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2724 
2725   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2726   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2727     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2728 
2729   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2730   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2731     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2732 
2733   if (!Add->hasOneUse())
2734     return nullptr;
2735 
2736   // X+C <u C2 -> (X & -C2) == C
2737   //   iff C & (C2-1) == 0
2738   //       C2 is a power of 2
2739   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2740     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2741                         ConstantExpr::getNeg(cast<Constant>(Y)));
2742 
2743   // X+C >u C2 -> (X & ~C2) != C
2744   //   iff C & C2 == 0
2745   //       C2+1 is a power of 2
2746   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2747     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2748                         ConstantExpr::getNeg(cast<Constant>(Y)));
2749 
2750   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2751   // to the ult form.
2752   // X+C2 >u C -> X+(C2-C-1) <u ~C
2753   if (Pred == ICmpInst::ICMP_UGT)
2754     return new ICmpInst(ICmpInst::ICMP_ULT,
2755                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2756                         ConstantInt::get(Ty, ~C));
2757 
2758   return nullptr;
2759 }
2760 
2761 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2762                                                Value *&RHS, ConstantInt *&Less,
2763                                                ConstantInt *&Equal,
2764                                                ConstantInt *&Greater) {
2765   // TODO: Generalize this to work with other comparison idioms or ensure
2766   // they get canonicalized into this form.
2767 
2768   // select i1 (a == b),
2769   //        i32 Equal,
2770   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2771   // where Equal, Less and Greater are placeholders for any three constants.
2772   ICmpInst::Predicate PredA;
2773   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2774       !ICmpInst::isEquality(PredA))
2775     return false;
2776   Value *EqualVal = SI->getTrueValue();
2777   Value *UnequalVal = SI->getFalseValue();
2778   // We still can get non-canonical predicate here, so canonicalize.
2779   if (PredA == ICmpInst::ICMP_NE)
2780     std::swap(EqualVal, UnequalVal);
2781   if (!match(EqualVal, m_ConstantInt(Equal)))
2782     return false;
2783   ICmpInst::Predicate PredB;
2784   Value *LHS2, *RHS2;
2785   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2786                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2787     return false;
2788   // We can get predicate mismatch here, so canonicalize if possible:
2789   // First, ensure that 'LHS' match.
2790   if (LHS2 != LHS) {
2791     // x sgt y <--> y slt x
2792     std::swap(LHS2, RHS2);
2793     PredB = ICmpInst::getSwappedPredicate(PredB);
2794   }
2795   if (LHS2 != LHS)
2796     return false;
2797   // We also need to canonicalize 'RHS'.
2798   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2799     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2800     auto FlippedStrictness =
2801         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2802             PredB, cast<Constant>(RHS2));
2803     if (!FlippedStrictness)
2804       return false;
2805     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2806            "basic correctness failure");
2807     RHS2 = FlippedStrictness->second;
2808     // And kind-of perform the result swap.
2809     std::swap(Less, Greater);
2810     PredB = ICmpInst::ICMP_SLT;
2811   }
2812   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2813 }
2814 
2815 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2816                                                       SelectInst *Select,
2817                                                       ConstantInt *C) {
2818 
2819   assert(C && "Cmp RHS should be a constant int!");
2820   // If we're testing a constant value against the result of a three way
2821   // comparison, the result can be expressed directly in terms of the
2822   // original values being compared.  Note: We could possibly be more
2823   // aggressive here and remove the hasOneUse test. The original select is
2824   // really likely to simplify or sink when we remove a test of the result.
2825   Value *OrigLHS, *OrigRHS;
2826   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2827   if (Cmp.hasOneUse() &&
2828       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2829                               C3GreaterThan)) {
2830     assert(C1LessThan && C2Equal && C3GreaterThan);
2831 
2832     bool TrueWhenLessThan =
2833         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2834             ->isAllOnesValue();
2835     bool TrueWhenEqual =
2836         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2837             ->isAllOnesValue();
2838     bool TrueWhenGreaterThan =
2839         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2840             ->isAllOnesValue();
2841 
2842     // This generates the new instruction that will replace the original Cmp
2843     // Instruction. Instead of enumerating the various combinations when
2844     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2845     // false, we rely on chaining of ORs and future passes of InstCombine to
2846     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2847 
2848     // When none of the three constants satisfy the predicate for the RHS (C),
2849     // the entire original Cmp can be simplified to a false.
2850     Value *Cond = Builder.getFalse();
2851     if (TrueWhenLessThan)
2852       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2853                                                        OrigLHS, OrigRHS));
2854     if (TrueWhenEqual)
2855       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2856                                                        OrigLHS, OrigRHS));
2857     if (TrueWhenGreaterThan)
2858       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2859                                                        OrigLHS, OrigRHS));
2860 
2861     return replaceInstUsesWith(Cmp, Cond);
2862   }
2863   return nullptr;
2864 }
2865 
2866 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2867   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2868   if (!Bitcast)
2869     return nullptr;
2870 
2871   ICmpInst::Predicate Pred = Cmp.getPredicate();
2872   Value *Op1 = Cmp.getOperand(1);
2873   Value *BCSrcOp = Bitcast->getOperand(0);
2874 
2875   // Make sure the bitcast doesn't change the number of vector elements.
2876   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2877           Bitcast->getDestTy()->getScalarSizeInBits()) {
2878     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2879     Value *X;
2880     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2881       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2882       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2883       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2884       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2885       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2886            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2887           match(Op1, m_Zero()))
2888         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2889 
2890       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2891       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2892         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2893 
2894       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2895       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2896         return new ICmpInst(Pred, X,
2897                             ConstantInt::getAllOnesValue(X->getType()));
2898     }
2899 
2900     // Zero-equality checks are preserved through unsigned floating-point casts:
2901     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2902     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2903     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2904       if (Cmp.isEquality() && match(Op1, m_Zero()))
2905         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2906 
2907     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2908     // the FP extend/truncate because that cast does not change the sign-bit.
2909     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2910     // The sign-bit is always the most significant bit in those types.
2911     const APInt *C;
2912     bool TrueIfSigned;
2913     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2914         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2915       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2916           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2917         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2918         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2919         Type *XType = X->getType();
2920 
2921         // We can't currently handle Power style floating point operations here.
2922         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2923 
2924           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2925           if (auto *XVTy = dyn_cast<VectorType>(XType))
2926             NewType = VectorType::get(NewType, XVTy->getElementCount());
2927           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2928           if (TrueIfSigned)
2929             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2930                                 ConstantInt::getNullValue(NewType));
2931           else
2932             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2933                                 ConstantInt::getAllOnesValue(NewType));
2934         }
2935       }
2936     }
2937   }
2938 
2939   // Test to see if the operands of the icmp are casted versions of other
2940   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2941   if (Bitcast->getType()->isPointerTy() &&
2942       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2943     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2944     // so eliminate it as well.
2945     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2946       Op1 = BC2->getOperand(0);
2947 
2948     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2949     return new ICmpInst(Pred, BCSrcOp, Op1);
2950   }
2951 
2952   const APInt *C;
2953   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2954       !Bitcast->getType()->isIntegerTy() ||
2955       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2956     return nullptr;
2957 
2958   // If this is checking if all elements of a vector compare are set or not,
2959   // invert the casted vector equality compare and test if all compare
2960   // elements are clear or not. Compare against zero is generally easier for
2961   // analysis and codegen.
2962   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2963   // Example: are all elements equal? --> are zero elements not equal?
2964   // TODO: Try harder to reduce compare of 2 freely invertible operands?
2965   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
2966       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
2967     Type *ScalarTy = Bitcast->getType();
2968     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy);
2969     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy));
2970   }
2971 
2972   // If this is checking if all elements of an extended vector are clear or not,
2973   // compare in a narrow type to eliminate the extend:
2974   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
2975   Value *X;
2976   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
2977       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
2978     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
2979       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
2980       Value *NewCast = Builder.CreateBitCast(X, NewType);
2981       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
2982     }
2983   }
2984 
2985   // Folding: icmp <pred> iN X, C
2986   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2987   //    and C is a splat of a K-bit pattern
2988   //    and SC is a constant vector = <C', C', C', ..., C'>
2989   // Into:
2990   //   %E = extractelement <M x iK> %vec, i32 C'
2991   //   icmp <pred> iK %E, trunc(C)
2992   Value *Vec;
2993   ArrayRef<int> Mask;
2994   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2995     // Check whether every element of Mask is the same constant
2996     if (is_splat(Mask)) {
2997       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2998       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2999       if (C->isSplat(EltTy->getBitWidth())) {
3000         // Fold the icmp based on the value of C
3001         // If C is M copies of an iK sized bit pattern,
3002         // then:
3003         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
3004         //       icmp <pred> iK %SplatVal, <pattern>
3005         Value *Elem = Builder.getInt32(Mask[0]);
3006         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3007         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3008         return new ICmpInst(Pred, Extract, NewC);
3009       }
3010     }
3011   }
3012   return nullptr;
3013 }
3014 
3015 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3016 /// where X is some kind of instruction.
3017 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3018   const APInt *C;
3019   if (!match(Cmp.getOperand(1), m_APInt(C)))
3020     return nullptr;
3021 
3022   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
3023     switch (BO->getOpcode()) {
3024     case Instruction::Xor:
3025       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
3026         return I;
3027       break;
3028     case Instruction::And:
3029       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
3030         return I;
3031       break;
3032     case Instruction::Or:
3033       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
3034         return I;
3035       break;
3036     case Instruction::Mul:
3037       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
3038         return I;
3039       break;
3040     case Instruction::Shl:
3041       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
3042         return I;
3043       break;
3044     case Instruction::LShr:
3045     case Instruction::AShr:
3046       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
3047         return I;
3048       break;
3049     case Instruction::SRem:
3050       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
3051         return I;
3052       break;
3053     case Instruction::UDiv:
3054       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
3055         return I;
3056       LLVM_FALLTHROUGH;
3057     case Instruction::SDiv:
3058       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
3059         return I;
3060       break;
3061     case Instruction::Sub:
3062       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
3063         return I;
3064       break;
3065     case Instruction::Add:
3066       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
3067         return I;
3068       break;
3069     default:
3070       break;
3071     }
3072     // TODO: These folds could be refactored to be part of the above calls.
3073     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
3074       return I;
3075   }
3076 
3077   // Match against CmpInst LHS being instructions other than binary operators.
3078 
3079   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
3080     // For now, we only support constant integers while folding the
3081     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3082     // similar to the cases handled by binary ops above.
3083     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3084       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3085         return I;
3086   }
3087 
3088   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
3089     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3090       return I;
3091   }
3092 
3093   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3094     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3095       return I;
3096 
3097   return nullptr;
3098 }
3099 
3100 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3101 /// icmp eq/ne BO, C.
3102 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3103     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3104   // TODO: Some of these folds could work with arbitrary constants, but this
3105   // function is limited to scalar and vector splat constants.
3106   if (!Cmp.isEquality())
3107     return nullptr;
3108 
3109   ICmpInst::Predicate Pred = Cmp.getPredicate();
3110   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3111   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3112   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3113 
3114   switch (BO->getOpcode()) {
3115   case Instruction::SRem:
3116     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3117     if (C.isZero() && BO->hasOneUse()) {
3118       const APInt *BOC;
3119       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3120         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3121         return new ICmpInst(Pred, NewRem,
3122                             Constant::getNullValue(BO->getType()));
3123       }
3124     }
3125     break;
3126   case Instruction::Add: {
3127     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3128     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3129       if (BO->hasOneUse())
3130         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3131     } else if (C.isZero()) {
3132       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3133       // efficiently invertible, or if the add has just this one use.
3134       if (Value *NegVal = dyn_castNegVal(BOp1))
3135         return new ICmpInst(Pred, BOp0, NegVal);
3136       if (Value *NegVal = dyn_castNegVal(BOp0))
3137         return new ICmpInst(Pred, NegVal, BOp1);
3138       if (BO->hasOneUse()) {
3139         Value *Neg = Builder.CreateNeg(BOp1);
3140         Neg->takeName(BO);
3141         return new ICmpInst(Pred, BOp0, Neg);
3142       }
3143     }
3144     break;
3145   }
3146   case Instruction::Xor:
3147     if (BO->hasOneUse()) {
3148       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3149         // For the xor case, we can xor two constants together, eliminating
3150         // the explicit xor.
3151         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3152       } else if (C.isZero()) {
3153         // Replace ((xor A, B) != 0) with (A != B)
3154         return new ICmpInst(Pred, BOp0, BOp1);
3155       }
3156     }
3157     break;
3158   case Instruction::Or: {
3159     const APInt *BOC;
3160     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3161       // Comparing if all bits outside of a constant mask are set?
3162       // Replace (X | C) == -1 with (X & ~C) == ~C.
3163       // This removes the -1 constant.
3164       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3165       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3166       return new ICmpInst(Pred, And, NotBOC);
3167     }
3168     break;
3169   }
3170   case Instruction::And: {
3171     const APInt *BOC;
3172     if (match(BOp1, m_APInt(BOC))) {
3173       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3174       if (C == *BOC && C.isPowerOf2())
3175         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3176                             BO, Constant::getNullValue(RHS->getType()));
3177     }
3178     break;
3179   }
3180   case Instruction::UDiv:
3181     if (C.isZero()) {
3182       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3183       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3184       return new ICmpInst(NewPred, BOp1, BOp0);
3185     }
3186     break;
3187   default:
3188     break;
3189   }
3190   return nullptr;
3191 }
3192 
3193 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3194 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3195     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3196   Type *Ty = II->getType();
3197   unsigned BitWidth = C.getBitWidth();
3198   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3199 
3200   switch (II->getIntrinsicID()) {
3201   case Intrinsic::abs:
3202     // abs(A) == 0  ->  A == 0
3203     // abs(A) == INT_MIN  ->  A == INT_MIN
3204     if (C.isZero() || C.isMinSignedValue())
3205       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3206     break;
3207 
3208   case Intrinsic::bswap:
3209     // bswap(A) == C  ->  A == bswap(C)
3210     return new ICmpInst(Pred, II->getArgOperand(0),
3211                         ConstantInt::get(Ty, C.byteSwap()));
3212 
3213   case Intrinsic::ctlz:
3214   case Intrinsic::cttz: {
3215     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3216     if (C == BitWidth)
3217       return new ICmpInst(Pred, II->getArgOperand(0),
3218                           ConstantInt::getNullValue(Ty));
3219 
3220     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3221     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3222     // Limit to one use to ensure we don't increase instruction count.
3223     unsigned Num = C.getLimitedValue(BitWidth);
3224     if (Num != BitWidth && II->hasOneUse()) {
3225       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3226       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3227                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3228       APInt Mask2 = IsTrailing
3229         ? APInt::getOneBitSet(BitWidth, Num)
3230         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3231       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3232                           ConstantInt::get(Ty, Mask2));
3233     }
3234     break;
3235   }
3236 
3237   case Intrinsic::ctpop: {
3238     // popcount(A) == 0  ->  A == 0 and likewise for !=
3239     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3240     bool IsZero = C.isZero();
3241     if (IsZero || C == BitWidth)
3242       return new ICmpInst(Pred, II->getArgOperand(0),
3243                           IsZero ? Constant::getNullValue(Ty)
3244                                  : Constant::getAllOnesValue(Ty));
3245 
3246     break;
3247   }
3248 
3249   case Intrinsic::fshl:
3250   case Intrinsic::fshr:
3251     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3252       // (rot X, ?) == 0/-1 --> X == 0/-1
3253       // TODO: This transform is safe to re-use undef elts in a vector, but
3254       //       the constant value passed in by the caller doesn't allow that.
3255       if (C.isZero() || C.isAllOnes())
3256         return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3257 
3258       const APInt *RotAmtC;
3259       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3260       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3261       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3262         return new ICmpInst(Pred, II->getArgOperand(0),
3263                             II->getIntrinsicID() == Intrinsic::fshl
3264                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3265                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3266     }
3267     break;
3268 
3269   case Intrinsic::uadd_sat: {
3270     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3271     if (C.isZero()) {
3272       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3273       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3274     }
3275     break;
3276   }
3277 
3278   case Intrinsic::usub_sat: {
3279     // usub.sat(a, b) == 0  ->  a <= b
3280     if (C.isZero()) {
3281       ICmpInst::Predicate NewPred =
3282           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3283       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3284     }
3285     break;
3286   }
3287   default:
3288     break;
3289   }
3290 
3291   return nullptr;
3292 }
3293 
3294 /// Fold an icmp with LLVM intrinsics
3295 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3296   assert(Cmp.isEquality());
3297 
3298   ICmpInst::Predicate Pred = Cmp.getPredicate();
3299   Value *Op0 = Cmp.getOperand(0);
3300   Value *Op1 = Cmp.getOperand(1);
3301   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3302   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3303   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3304     return nullptr;
3305 
3306   switch (IIOp0->getIntrinsicID()) {
3307   case Intrinsic::bswap:
3308   case Intrinsic::bitreverse:
3309     // If both operands are byte-swapped or bit-reversed, just compare the
3310     // original values.
3311     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3312   case Intrinsic::fshl:
3313   case Intrinsic::fshr:
3314     // If both operands are rotated by same amount, just compare the
3315     // original values.
3316     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3317       break;
3318     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3319       break;
3320     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3321       break;
3322     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3323   default:
3324     break;
3325   }
3326 
3327   return nullptr;
3328 }
3329 
3330 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3331 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3332                                                              IntrinsicInst *II,
3333                                                              const APInt &C) {
3334   if (Cmp.isEquality())
3335     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3336 
3337   Type *Ty = II->getType();
3338   unsigned BitWidth = C.getBitWidth();
3339   ICmpInst::Predicate Pred = Cmp.getPredicate();
3340   switch (II->getIntrinsicID()) {
3341   case Intrinsic::ctpop: {
3342     // (ctpop X > BitWidth - 1) --> X == -1
3343     Value *X = II->getArgOperand(0);
3344     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3345       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3346                              ConstantInt::getAllOnesValue(Ty));
3347     // (ctpop X < BitWidth) --> X != -1
3348     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3349       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3350                              ConstantInt::getAllOnesValue(Ty));
3351     break;
3352   }
3353   case Intrinsic::ctlz: {
3354     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3355     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3356       unsigned Num = C.getLimitedValue();
3357       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3358       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3359                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3360     }
3361 
3362     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3363     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3364       unsigned Num = C.getLimitedValue();
3365       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3366       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3367                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3368     }
3369     break;
3370   }
3371   case Intrinsic::cttz: {
3372     // Limit to one use to ensure we don't increase instruction count.
3373     if (!II->hasOneUse())
3374       return nullptr;
3375 
3376     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3377     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3378       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3379       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3380                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3381                              ConstantInt::getNullValue(Ty));
3382     }
3383 
3384     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3385     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3386       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3387       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3388                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3389                              ConstantInt::getNullValue(Ty));
3390     }
3391     break;
3392   }
3393   default:
3394     break;
3395   }
3396 
3397   return nullptr;
3398 }
3399 
3400 /// Handle icmp with constant (but not simple integer constant) RHS.
3401 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3402   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3403   Constant *RHSC = dyn_cast<Constant>(Op1);
3404   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3405   if (!RHSC || !LHSI)
3406     return nullptr;
3407 
3408   switch (LHSI->getOpcode()) {
3409   case Instruction::GetElementPtr:
3410     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3411     if (RHSC->isNullValue() &&
3412         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3413       return new ICmpInst(
3414           I.getPredicate(), LHSI->getOperand(0),
3415           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3416     break;
3417   case Instruction::PHI:
3418     // Only fold icmp into the PHI if the phi and icmp are in the same
3419     // block.  If in the same block, we're encouraging jump threading.  If
3420     // not, we are just pessimizing the code by making an i1 phi.
3421     if (LHSI->getParent() == I.getParent())
3422       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3423         return NV;
3424     break;
3425   case Instruction::IntToPtr:
3426     // icmp pred inttoptr(X), null -> icmp pred X, 0
3427     if (RHSC->isNullValue() &&
3428         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3429       return new ICmpInst(
3430           I.getPredicate(), LHSI->getOperand(0),
3431           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3432     break;
3433 
3434   case Instruction::Load:
3435     // Try to optimize things like "A[i] > 4" to index computations.
3436     if (GetElementPtrInst *GEP =
3437             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
3438       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3439         if (Instruction *Res =
3440                 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
3441           return Res;
3442     break;
3443   }
3444 
3445   return nullptr;
3446 }
3447 
3448 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred,
3449                                               SelectInst *SI, Value *RHS,
3450                                               const ICmpInst &I) {
3451   // Try to fold the comparison into the select arms, which will cause the
3452   // select to be converted into a logical and/or.
3453   auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
3454     if (Value *Res = SimplifyICmpInst(Pred, Op, RHS, SQ))
3455       return Res;
3456     if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op,
3457                                                  RHS, DL, SelectCondIsTrue))
3458       return ConstantInt::get(I.getType(), *Impl);
3459     return nullptr;
3460   };
3461 
3462   ConstantInt *CI = nullptr;
3463   Value *Op1 = SimplifyOp(SI->getOperand(1), true);
3464   if (Op1)
3465     CI = dyn_cast<ConstantInt>(Op1);
3466 
3467   Value *Op2 = SimplifyOp(SI->getOperand(2), false);
3468   if (Op2)
3469     CI = dyn_cast<ConstantInt>(Op2);
3470 
3471   // We only want to perform this transformation if it will not lead to
3472   // additional code. This is true if either both sides of the select
3473   // fold to a constant (in which case the icmp is replaced with a select
3474   // which will usually simplify) or this is the only user of the
3475   // select (in which case we are trading a select+icmp for a simpler
3476   // select+icmp) or all uses of the select can be replaced based on
3477   // dominance information ("Global cases").
3478   bool Transform = false;
3479   if (Op1 && Op2)
3480     Transform = true;
3481   else if (Op1 || Op2) {
3482     // Local case
3483     if (SI->hasOneUse())
3484       Transform = true;
3485     // Global cases
3486     else if (CI && !CI->isZero())
3487       // When Op1 is constant try replacing select with second operand.
3488       // Otherwise Op2 is constant and try replacing select with first
3489       // operand.
3490       Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1);
3491   }
3492   if (Transform) {
3493     if (!Op1)
3494       Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName());
3495     if (!Op2)
3496       Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName());
3497     return SelectInst::Create(SI->getOperand(0), Op1, Op2);
3498   }
3499 
3500   return nullptr;
3501 }
3502 
3503 /// Some comparisons can be simplified.
3504 /// In this case, we are looking for comparisons that look like
3505 /// a check for a lossy truncation.
3506 /// Folds:
3507 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3508 /// Where Mask is some pattern that produces all-ones in low bits:
3509 ///    (-1 >> y)
3510 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3511 ///   ~(-1 << y)
3512 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3513 /// The Mask can be a constant, too.
3514 /// For some predicates, the operands are commutative.
3515 /// For others, x can only be on a specific side.
3516 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3517                                           InstCombiner::BuilderTy &Builder) {
3518   ICmpInst::Predicate SrcPred;
3519   Value *X, *M, *Y;
3520   auto m_VariableMask = m_CombineOr(
3521       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3522                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3523       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3524                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3525   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3526   if (!match(&I, m_c_ICmp(SrcPred,
3527                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3528                           m_Deferred(X))))
3529     return nullptr;
3530 
3531   ICmpInst::Predicate DstPred;
3532   switch (SrcPred) {
3533   case ICmpInst::Predicate::ICMP_EQ:
3534     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3535     DstPred = ICmpInst::Predicate::ICMP_ULE;
3536     break;
3537   case ICmpInst::Predicate::ICMP_NE:
3538     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3539     DstPred = ICmpInst::Predicate::ICMP_UGT;
3540     break;
3541   case ICmpInst::Predicate::ICMP_ULT:
3542     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3543     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3544     DstPred = ICmpInst::Predicate::ICMP_UGT;
3545     break;
3546   case ICmpInst::Predicate::ICMP_UGE:
3547     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3548     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3549     DstPred = ICmpInst::Predicate::ICMP_ULE;
3550     break;
3551   case ICmpInst::Predicate::ICMP_SLT:
3552     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3553     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3554     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3555       return nullptr;
3556     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3557       return nullptr;
3558     DstPred = ICmpInst::Predicate::ICMP_SGT;
3559     break;
3560   case ICmpInst::Predicate::ICMP_SGE:
3561     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3562     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3563     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3564       return nullptr;
3565     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3566       return nullptr;
3567     DstPred = ICmpInst::Predicate::ICMP_SLE;
3568     break;
3569   case ICmpInst::Predicate::ICMP_SGT:
3570   case ICmpInst::Predicate::ICMP_SLE:
3571     return nullptr;
3572   case ICmpInst::Predicate::ICMP_UGT:
3573   case ICmpInst::Predicate::ICMP_ULE:
3574     llvm_unreachable("Instsimplify took care of commut. variant");
3575     break;
3576   default:
3577     llvm_unreachable("All possible folds are handled.");
3578   }
3579 
3580   // The mask value may be a vector constant that has undefined elements. But it
3581   // may not be safe to propagate those undefs into the new compare, so replace
3582   // those elements by copying an existing, defined, and safe scalar constant.
3583   Type *OpTy = M->getType();
3584   auto *VecC = dyn_cast<Constant>(M);
3585   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3586   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3587     Constant *SafeReplacementConstant = nullptr;
3588     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3589       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3590         SafeReplacementConstant = VecC->getAggregateElement(i);
3591         break;
3592       }
3593     }
3594     assert(SafeReplacementConstant && "Failed to find undef replacement");
3595     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3596   }
3597 
3598   return Builder.CreateICmp(DstPred, X, M);
3599 }
3600 
3601 /// Some comparisons can be simplified.
3602 /// In this case, we are looking for comparisons that look like
3603 /// a check for a lossy signed truncation.
3604 /// Folds:   (MaskedBits is a constant.)
3605 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3606 /// Into:
3607 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3608 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3609 static Value *
3610 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3611                                  InstCombiner::BuilderTy &Builder) {
3612   ICmpInst::Predicate SrcPred;
3613   Value *X;
3614   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3615   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3616   if (!match(&I, m_c_ICmp(SrcPred,
3617                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3618                                           m_APInt(C1))),
3619                           m_Deferred(X))))
3620     return nullptr;
3621 
3622   // Potential handling of non-splats: for each element:
3623   //  * if both are undef, replace with constant 0.
3624   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3625   //  * if both are not undef, and are different, bailout.
3626   //  * else, only one is undef, then pick the non-undef one.
3627 
3628   // The shift amount must be equal.
3629   if (*C0 != *C1)
3630     return nullptr;
3631   const APInt &MaskedBits = *C0;
3632   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3633 
3634   ICmpInst::Predicate DstPred;
3635   switch (SrcPred) {
3636   case ICmpInst::Predicate::ICMP_EQ:
3637     // ((%x << MaskedBits) a>> MaskedBits) == %x
3638     //   =>
3639     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3640     DstPred = ICmpInst::Predicate::ICMP_ULT;
3641     break;
3642   case ICmpInst::Predicate::ICMP_NE:
3643     // ((%x << MaskedBits) a>> MaskedBits) != %x
3644     //   =>
3645     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3646     DstPred = ICmpInst::Predicate::ICMP_UGE;
3647     break;
3648   // FIXME: are more folds possible?
3649   default:
3650     return nullptr;
3651   }
3652 
3653   auto *XType = X->getType();
3654   const unsigned XBitWidth = XType->getScalarSizeInBits();
3655   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3656   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3657 
3658   // KeptBits = bitwidth(%x) - MaskedBits
3659   const APInt KeptBits = BitWidth - MaskedBits;
3660   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3661   // ICmpCst = (1 << KeptBits)
3662   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3663   assert(ICmpCst.isPowerOf2());
3664   // AddCst = (1 << (KeptBits-1))
3665   const APInt AddCst = ICmpCst.lshr(1);
3666   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3667 
3668   // T0 = add %x, AddCst
3669   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3670   // T1 = T0 DstPred ICmpCst
3671   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3672 
3673   return T1;
3674 }
3675 
3676 // Given pattern:
3677 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3678 // we should move shifts to the same hand of 'and', i.e. rewrite as
3679 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3680 // We are only interested in opposite logical shifts here.
3681 // One of the shifts can be truncated.
3682 // If we can, we want to end up creating 'lshr' shift.
3683 static Value *
3684 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3685                                            InstCombiner::BuilderTy &Builder) {
3686   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3687       !I.getOperand(0)->hasOneUse())
3688     return nullptr;
3689 
3690   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3691 
3692   // Look for an 'and' of two logical shifts, one of which may be truncated.
3693   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3694   Instruction *XShift, *MaybeTruncation, *YShift;
3695   if (!match(
3696           I.getOperand(0),
3697           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3698                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3699                                    m_AnyLogicalShift, m_Instruction(YShift))),
3700                                m_Instruction(MaybeTruncation)))))
3701     return nullptr;
3702 
3703   // We potentially looked past 'trunc', but only when matching YShift,
3704   // therefore YShift must have the widest type.
3705   Instruction *WidestShift = YShift;
3706   // Therefore XShift must have the shallowest type.
3707   // Or they both have identical types if there was no truncation.
3708   Instruction *NarrowestShift = XShift;
3709 
3710   Type *WidestTy = WidestShift->getType();
3711   Type *NarrowestTy = NarrowestShift->getType();
3712   assert(NarrowestTy == I.getOperand(0)->getType() &&
3713          "We did not look past any shifts while matching XShift though.");
3714   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3715 
3716   // If YShift is a 'lshr', swap the shifts around.
3717   if (match(YShift, m_LShr(m_Value(), m_Value())))
3718     std::swap(XShift, YShift);
3719 
3720   // The shifts must be in opposite directions.
3721   auto XShiftOpcode = XShift->getOpcode();
3722   if (XShiftOpcode == YShift->getOpcode())
3723     return nullptr; // Do not care about same-direction shifts here.
3724 
3725   Value *X, *XShAmt, *Y, *YShAmt;
3726   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3727   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3728 
3729   // If one of the values being shifted is a constant, then we will end with
3730   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3731   // however, we will need to ensure that we won't increase instruction count.
3732   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3733     // At least one of the hands of the 'and' should be one-use shift.
3734     if (!match(I.getOperand(0),
3735                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3736       return nullptr;
3737     if (HadTrunc) {
3738       // Due to the 'trunc', we will need to widen X. For that either the old
3739       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3740       if (!MaybeTruncation->hasOneUse() &&
3741           !NarrowestShift->getOperand(1)->hasOneUse())
3742         return nullptr;
3743     }
3744   }
3745 
3746   // We have two shift amounts from two different shifts. The types of those
3747   // shift amounts may not match. If that's the case let's bailout now.
3748   if (XShAmt->getType() != YShAmt->getType())
3749     return nullptr;
3750 
3751   // As input, we have the following pattern:
3752   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3753   // We want to rewrite that as:
3754   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3755   // While we know that originally (Q+K) would not overflow
3756   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3757   // shift amounts. so it may now overflow in smaller bitwidth.
3758   // To ensure that does not happen, we need to ensure that the total maximal
3759   // shift amount is still representable in that smaller bit width.
3760   unsigned MaximalPossibleTotalShiftAmount =
3761       (WidestTy->getScalarSizeInBits() - 1) +
3762       (NarrowestTy->getScalarSizeInBits() - 1);
3763   APInt MaximalRepresentableShiftAmount =
3764       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3765   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3766     return nullptr;
3767 
3768   // Can we fold (XShAmt+YShAmt) ?
3769   auto *NewShAmt = dyn_cast_or_null<Constant>(
3770       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3771                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3772   if (!NewShAmt)
3773     return nullptr;
3774   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3775   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3776 
3777   // Is the new shift amount smaller than the bit width?
3778   // FIXME: could also rely on ConstantRange.
3779   if (!match(NewShAmt,
3780              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3781                                 APInt(WidestBitWidth, WidestBitWidth))))
3782     return nullptr;
3783 
3784   // An extra legality check is needed if we had trunc-of-lshr.
3785   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3786     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3787                     WidestShift]() {
3788       // It isn't obvious whether it's worth it to analyze non-constants here.
3789       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3790       // If *any* of these preconditions matches we can perform the fold.
3791       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3792                                     ? NewShAmt->getSplatValue()
3793                                     : NewShAmt;
3794       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3795       if (NewShAmtSplat &&
3796           (NewShAmtSplat->isNullValue() ||
3797            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3798         return true;
3799       // We consider *min* leading zeros so a single outlier
3800       // blocks the transform as opposed to allowing it.
3801       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3802         KnownBits Known = computeKnownBits(C, SQ.DL);
3803         unsigned MinLeadZero = Known.countMinLeadingZeros();
3804         // If the value being shifted has at most lowest bit set we can fold.
3805         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3806         if (MaxActiveBits <= 1)
3807           return true;
3808         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3809         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3810           return true;
3811       }
3812       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3813         KnownBits Known = computeKnownBits(C, SQ.DL);
3814         unsigned MinLeadZero = Known.countMinLeadingZeros();
3815         // If the value being shifted has at most lowest bit set we can fold.
3816         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3817         if (MaxActiveBits <= 1)
3818           return true;
3819         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3820         if (NewShAmtSplat) {
3821           APInt AdjNewShAmt =
3822               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3823           if (AdjNewShAmt.ule(MinLeadZero))
3824             return true;
3825         }
3826       }
3827       return false; // Can't tell if it's ok.
3828     };
3829     if (!CanFold())
3830       return nullptr;
3831   }
3832 
3833   // All good, we can do this fold.
3834   X = Builder.CreateZExt(X, WidestTy);
3835   Y = Builder.CreateZExt(Y, WidestTy);
3836   // The shift is the same that was for X.
3837   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3838                   ? Builder.CreateLShr(X, NewShAmt)
3839                   : Builder.CreateShl(X, NewShAmt);
3840   Value *T1 = Builder.CreateAnd(T0, Y);
3841   return Builder.CreateICmp(I.getPredicate(), T1,
3842                             Constant::getNullValue(WidestTy));
3843 }
3844 
3845 /// Fold
3846 ///   (-1 u/ x) u< y
3847 ///   ((x * y) ?/ x) != y
3848 /// to
3849 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3850 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3851 /// will mean that we are looking for the opposite answer.
3852 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3853   ICmpInst::Predicate Pred;
3854   Value *X, *Y;
3855   Instruction *Mul;
3856   Instruction *Div;
3857   bool NeedNegation;
3858   // Look for: (-1 u/ x) u</u>= y
3859   if (!I.isEquality() &&
3860       match(&I, m_c_ICmp(Pred,
3861                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3862                                       m_Instruction(Div)),
3863                          m_Value(Y)))) {
3864     Mul = nullptr;
3865 
3866     // Are we checking that overflow does not happen, or does happen?
3867     switch (Pred) {
3868     case ICmpInst::Predicate::ICMP_ULT:
3869       NeedNegation = false;
3870       break; // OK
3871     case ICmpInst::Predicate::ICMP_UGE:
3872       NeedNegation = true;
3873       break; // OK
3874     default:
3875       return nullptr; // Wrong predicate.
3876     }
3877   } else // Look for: ((x * y) / x) !=/== y
3878       if (I.isEquality() &&
3879           match(&I,
3880                 m_c_ICmp(Pred, m_Value(Y),
3881                          m_CombineAnd(
3882                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3883                                                                   m_Value(X)),
3884                                                           m_Instruction(Mul)),
3885                                              m_Deferred(X))),
3886                              m_Instruction(Div))))) {
3887     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3888   } else
3889     return nullptr;
3890 
3891   BuilderTy::InsertPointGuard Guard(Builder);
3892   // If the pattern included (x * y), we'll want to insert new instructions
3893   // right before that original multiplication so that we can replace it.
3894   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3895   if (MulHadOtherUses)
3896     Builder.SetInsertPoint(Mul);
3897 
3898   Function *F = Intrinsic::getDeclaration(I.getModule(),
3899                                           Div->getOpcode() == Instruction::UDiv
3900                                               ? Intrinsic::umul_with_overflow
3901                                               : Intrinsic::smul_with_overflow,
3902                                           X->getType());
3903   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3904 
3905   // If the multiplication was used elsewhere, to ensure that we don't leave
3906   // "duplicate" instructions, replace uses of that original multiplication
3907   // with the multiplication result from the with.overflow intrinsic.
3908   if (MulHadOtherUses)
3909     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3910 
3911   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3912   if (NeedNegation) // This technically increases instruction count.
3913     Res = Builder.CreateNot(Res, "mul.not.ov");
3914 
3915   // If we replaced the mul, erase it. Do this after all uses of Builder,
3916   // as the mul is used as insertion point.
3917   if (MulHadOtherUses)
3918     eraseInstFromFunction(*Mul);
3919 
3920   return Res;
3921 }
3922 
3923 static Instruction *foldICmpXNegX(ICmpInst &I) {
3924   CmpInst::Predicate Pred;
3925   Value *X;
3926   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3927     return nullptr;
3928 
3929   if (ICmpInst::isSigned(Pred))
3930     Pred = ICmpInst::getSwappedPredicate(Pred);
3931   else if (ICmpInst::isUnsigned(Pred))
3932     Pred = ICmpInst::getSignedPredicate(Pred);
3933   // else for equality-comparisons just keep the predicate.
3934 
3935   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3936                           Constant::getNullValue(X->getType()), I.getName());
3937 }
3938 
3939 /// Try to fold icmp (binop), X or icmp X, (binop).
3940 /// TODO: A large part of this logic is duplicated in InstSimplify's
3941 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3942 /// duplication.
3943 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3944                                              const SimplifyQuery &SQ) {
3945   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3946   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3947 
3948   // Special logic for binary operators.
3949   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3950   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3951   if (!BO0 && !BO1)
3952     return nullptr;
3953 
3954   if (Instruction *NewICmp = foldICmpXNegX(I))
3955     return NewICmp;
3956 
3957   const CmpInst::Predicate Pred = I.getPredicate();
3958   Value *X;
3959 
3960   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3961   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3962   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3963       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3964     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3965   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3966   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3967       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3968     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3969 
3970   {
3971     // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
3972     Constant *C;
3973     if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)),
3974                                   m_ImmConstant(C)))) &&
3975         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
3976       Constant *C2 = ConstantExpr::getNot(C);
3977       return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1);
3978     }
3979     // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
3980     if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)),
3981                                   m_ImmConstant(C)))) &&
3982         (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) {
3983       Constant *C2 = ConstantExpr::getNot(C);
3984       return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X));
3985     }
3986   }
3987 
3988   {
3989     // Similar to above: an unsigned overflow comparison may use offset + mask:
3990     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
3991     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
3992     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
3993     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
3994     BinaryOperator *BO;
3995     const APInt *C;
3996     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
3997         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3998         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
3999       CmpInst::Predicate NewPred =
4000           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4001       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4002       return new ICmpInst(NewPred, Op1, Zero);
4003     }
4004 
4005     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
4006         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4007         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
4008       CmpInst::Predicate NewPred =
4009           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4010       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4011       return new ICmpInst(NewPred, Op0, Zero);
4012     }
4013   }
4014 
4015   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
4016   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
4017     NoOp0WrapProblem =
4018         ICmpInst::isEquality(Pred) ||
4019         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
4020         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
4021   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
4022     NoOp1WrapProblem =
4023         ICmpInst::isEquality(Pred) ||
4024         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
4025         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
4026 
4027   // Analyze the case when either Op0 or Op1 is an add instruction.
4028   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4029   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4030   if (BO0 && BO0->getOpcode() == Instruction::Add) {
4031     A = BO0->getOperand(0);
4032     B = BO0->getOperand(1);
4033   }
4034   if (BO1 && BO1->getOpcode() == Instruction::Add) {
4035     C = BO1->getOperand(0);
4036     D = BO1->getOperand(1);
4037   }
4038 
4039   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4040   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4041   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4042     return new ICmpInst(Pred, A == Op1 ? B : A,
4043                         Constant::getNullValue(Op1->getType()));
4044 
4045   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4046   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4047   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4048     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4049                         C == Op0 ? D : C);
4050 
4051   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4052   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4053       NoOp1WrapProblem) {
4054     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4055     Value *Y, *Z;
4056     if (A == C) {
4057       // C + B == C + D  ->  B == D
4058       Y = B;
4059       Z = D;
4060     } else if (A == D) {
4061       // D + B == C + D  ->  B == C
4062       Y = B;
4063       Z = C;
4064     } else if (B == C) {
4065       // A + C == C + D  ->  A == D
4066       Y = A;
4067       Z = D;
4068     } else {
4069       assert(B == D);
4070       // A + D == C + D  ->  A == C
4071       Y = A;
4072       Z = C;
4073     }
4074     return new ICmpInst(Pred, Y, Z);
4075   }
4076 
4077   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4078   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4079       match(B, m_AllOnes()))
4080     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4081 
4082   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4083   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4084       match(B, m_AllOnes()))
4085     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4086 
4087   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4088   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4089     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4090 
4091   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4092   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4093     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4094 
4095   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4096   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4097       match(D, m_AllOnes()))
4098     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4099 
4100   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4101   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4102       match(D, m_AllOnes()))
4103     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4104 
4105   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4106   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4107     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4108 
4109   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4110   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4111     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4112 
4113   // TODO: The subtraction-related identities shown below also hold, but
4114   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4115   // wouldn't happen even if they were implemented.
4116   //
4117   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4118   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4119   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4120   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4121 
4122   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4123   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4124     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4125 
4126   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4127   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4128     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4129 
4130   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4131   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4132     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4133 
4134   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4135   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4136     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4137 
4138   // if C1 has greater magnitude than C2:
4139   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4140   //  s.t. C3 = C1 - C2
4141   //
4142   // if C2 has greater magnitude than C1:
4143   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4144   //  s.t. C3 = C2 - C1
4145   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4146       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) {
4147     const APInt *AP1, *AP2;
4148     // TODO: Support non-uniform vectors.
4149     // TODO: Allow undef passthrough if B AND D's element is undef.
4150     if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) &&
4151         AP1->isNegative() == AP2->isNegative()) {
4152       APInt AP1Abs = AP1->abs();
4153       APInt AP2Abs = AP2->abs();
4154       if (AP1Abs.uge(AP2Abs)) {
4155         APInt Diff = *AP1 - *AP2;
4156         bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1);
4157         bool HasNSW = BO0->hasNoSignedWrap();
4158         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4159         Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4160         return new ICmpInst(Pred, NewAdd, C);
4161       } else {
4162         APInt Diff = *AP2 - *AP1;
4163         bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2);
4164         bool HasNSW = BO1->hasNoSignedWrap();
4165         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4166         Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4167         return new ICmpInst(Pred, A, NewAdd);
4168       }
4169     }
4170     Constant *Cst1, *Cst2;
4171     if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) &&
4172         ICmpInst::isEquality(Pred)) {
4173       Constant *Diff = ConstantExpr::getSub(Cst2, Cst1);
4174       Value *NewAdd = Builder.CreateAdd(C, Diff);
4175       return new ICmpInst(Pred, A, NewAdd);
4176     }
4177   }
4178 
4179   // Analyze the case when either Op0 or Op1 is a sub instruction.
4180   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4181   A = nullptr;
4182   B = nullptr;
4183   C = nullptr;
4184   D = nullptr;
4185   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4186     A = BO0->getOperand(0);
4187     B = BO0->getOperand(1);
4188   }
4189   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4190     C = BO1->getOperand(0);
4191     D = BO1->getOperand(1);
4192   }
4193 
4194   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4195   if (A == Op1 && NoOp0WrapProblem)
4196     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4197   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4198   if (C == Op0 && NoOp1WrapProblem)
4199     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4200 
4201   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4202   // (A - B) u>/u<= A --> B u>/u<= A
4203   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4204     return new ICmpInst(Pred, B, A);
4205   // C u</u>= (C - D) --> C u</u>= D
4206   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4207     return new ICmpInst(Pred, C, D);
4208   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4209   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4210       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4211     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4212   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4213   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4214       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4215     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4216 
4217   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4218   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4219     return new ICmpInst(Pred, A, C);
4220 
4221   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4222   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4223     return new ICmpInst(Pred, D, B);
4224 
4225   // icmp (0-X) < cst --> x > -cst
4226   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4227     Value *X;
4228     if (match(BO0, m_Neg(m_Value(X))))
4229       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4230         if (RHSC->isNotMinSignedValue())
4231           return new ICmpInst(I.getSwappedPredicate(), X,
4232                               ConstantExpr::getNeg(RHSC));
4233   }
4234 
4235   {
4236     // Try to remove shared constant multiplier from equality comparison:
4237     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4238     Value *X, *Y;
4239     const APInt *C;
4240     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4241         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4242       if (!C->countTrailingZeros() ||
4243           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4244           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4245       return new ICmpInst(Pred, X, Y);
4246   }
4247 
4248   BinaryOperator *SRem = nullptr;
4249   // icmp (srem X, Y), Y
4250   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4251     SRem = BO0;
4252   // icmp Y, (srem X, Y)
4253   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4254            Op0 == BO1->getOperand(1))
4255     SRem = BO1;
4256   if (SRem) {
4257     // We don't check hasOneUse to avoid increasing register pressure because
4258     // the value we use is the same value this instruction was already using.
4259     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4260     default:
4261       break;
4262     case ICmpInst::ICMP_EQ:
4263       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4264     case ICmpInst::ICMP_NE:
4265       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4266     case ICmpInst::ICMP_SGT:
4267     case ICmpInst::ICMP_SGE:
4268       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4269                           Constant::getAllOnesValue(SRem->getType()));
4270     case ICmpInst::ICMP_SLT:
4271     case ICmpInst::ICMP_SLE:
4272       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4273                           Constant::getNullValue(SRem->getType()));
4274     }
4275   }
4276 
4277   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4278       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4279     switch (BO0->getOpcode()) {
4280     default:
4281       break;
4282     case Instruction::Add:
4283     case Instruction::Sub:
4284     case Instruction::Xor: {
4285       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4286         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4287 
4288       const APInt *C;
4289       if (match(BO0->getOperand(1), m_APInt(C))) {
4290         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4291         if (C->isSignMask()) {
4292           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4293           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4294         }
4295 
4296         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4297         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4298           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4299           NewPred = I.getSwappedPredicate(NewPred);
4300           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4301         }
4302       }
4303       break;
4304     }
4305     case Instruction::Mul: {
4306       if (!I.isEquality())
4307         break;
4308 
4309       const APInt *C;
4310       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4311           !C->isOne()) {
4312         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4313         // Mask = -1 >> count-trailing-zeros(C).
4314         if (unsigned TZs = C->countTrailingZeros()) {
4315           Constant *Mask = ConstantInt::get(
4316               BO0->getType(),
4317               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4318           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4319           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4320           return new ICmpInst(Pred, And1, And2);
4321         }
4322       }
4323       break;
4324     }
4325     case Instruction::UDiv:
4326     case Instruction::LShr:
4327       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4328         break;
4329       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4330 
4331     case Instruction::SDiv:
4332       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4333         break;
4334       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4335 
4336     case Instruction::AShr:
4337       if (!BO0->isExact() || !BO1->isExact())
4338         break;
4339       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4340 
4341     case Instruction::Shl: {
4342       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4343       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4344       if (!NUW && !NSW)
4345         break;
4346       if (!NSW && I.isSigned())
4347         break;
4348       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4349     }
4350     }
4351   }
4352 
4353   if (BO0) {
4354     // Transform  A & (L - 1) `ult` L --> L != 0
4355     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4356     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4357 
4358     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4359       auto *Zero = Constant::getNullValue(BO0->getType());
4360       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4361     }
4362   }
4363 
4364   if (Value *V = foldMultiplicationOverflowCheck(I))
4365     return replaceInstUsesWith(I, V);
4366 
4367   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4368     return replaceInstUsesWith(I, V);
4369 
4370   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4371     return replaceInstUsesWith(I, V);
4372 
4373   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4374     return replaceInstUsesWith(I, V);
4375 
4376   return nullptr;
4377 }
4378 
4379 /// Fold icmp Pred min|max(X, Y), X.
4380 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4381   ICmpInst::Predicate Pred = Cmp.getPredicate();
4382   Value *Op0 = Cmp.getOperand(0);
4383   Value *X = Cmp.getOperand(1);
4384 
4385   // Canonicalize minimum or maximum operand to LHS of the icmp.
4386   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4387       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4388       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4389       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4390     std::swap(Op0, X);
4391     Pred = Cmp.getSwappedPredicate();
4392   }
4393 
4394   Value *Y;
4395   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4396     // smin(X, Y)  == X --> X s<= Y
4397     // smin(X, Y) s>= X --> X s<= Y
4398     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4399       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4400 
4401     // smin(X, Y) != X --> X s> Y
4402     // smin(X, Y) s< X --> X s> Y
4403     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4404       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4405 
4406     // These cases should be handled in InstSimplify:
4407     // smin(X, Y) s<= X --> true
4408     // smin(X, Y) s> X --> false
4409     return nullptr;
4410   }
4411 
4412   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4413     // smax(X, Y)  == X --> X s>= Y
4414     // smax(X, Y) s<= X --> X s>= Y
4415     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4416       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4417 
4418     // smax(X, Y) != X --> X s< Y
4419     // smax(X, Y) s> X --> X s< Y
4420     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4421       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4422 
4423     // These cases should be handled in InstSimplify:
4424     // smax(X, Y) s>= X --> true
4425     // smax(X, Y) s< X --> false
4426     return nullptr;
4427   }
4428 
4429   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4430     // umin(X, Y)  == X --> X u<= Y
4431     // umin(X, Y) u>= X --> X u<= Y
4432     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4433       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4434 
4435     // umin(X, Y) != X --> X u> Y
4436     // umin(X, Y) u< X --> X u> Y
4437     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4438       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4439 
4440     // These cases should be handled in InstSimplify:
4441     // umin(X, Y) u<= X --> true
4442     // umin(X, Y) u> X --> false
4443     return nullptr;
4444   }
4445 
4446   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4447     // umax(X, Y)  == X --> X u>= Y
4448     // umax(X, Y) u<= X --> X u>= Y
4449     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4450       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4451 
4452     // umax(X, Y) != X --> X u< Y
4453     // umax(X, Y) u> X --> X u< Y
4454     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4455       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4456 
4457     // These cases should be handled in InstSimplify:
4458     // umax(X, Y) u>= X --> true
4459     // umax(X, Y) u< X --> false
4460     return nullptr;
4461   }
4462 
4463   return nullptr;
4464 }
4465 
4466 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4467   if (!I.isEquality())
4468     return nullptr;
4469 
4470   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4471   const CmpInst::Predicate Pred = I.getPredicate();
4472   Value *A, *B, *C, *D;
4473   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4474     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4475       Value *OtherVal = A == Op1 ? B : A;
4476       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4477     }
4478 
4479     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4480       // A^c1 == C^c2 --> A == C^(c1^c2)
4481       ConstantInt *C1, *C2;
4482       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4483           Op1->hasOneUse()) {
4484         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4485         Value *Xor = Builder.CreateXor(C, NC);
4486         return new ICmpInst(Pred, A, Xor);
4487       }
4488 
4489       // A^B == A^D -> B == D
4490       if (A == C)
4491         return new ICmpInst(Pred, B, D);
4492       if (A == D)
4493         return new ICmpInst(Pred, B, C);
4494       if (B == C)
4495         return new ICmpInst(Pred, A, D);
4496       if (B == D)
4497         return new ICmpInst(Pred, A, C);
4498     }
4499   }
4500 
4501   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4502     // A == (A^B)  ->  B == 0
4503     Value *OtherVal = A == Op0 ? B : A;
4504     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4505   }
4506 
4507   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4508   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4509       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4510     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4511 
4512     if (A == C) {
4513       X = B;
4514       Y = D;
4515       Z = A;
4516     } else if (A == D) {
4517       X = B;
4518       Y = C;
4519       Z = A;
4520     } else if (B == C) {
4521       X = A;
4522       Y = D;
4523       Z = B;
4524     } else if (B == D) {
4525       X = A;
4526       Y = C;
4527       Z = B;
4528     }
4529 
4530     if (X) { // Build (X^Y) & Z
4531       Op1 = Builder.CreateXor(X, Y);
4532       Op1 = Builder.CreateAnd(Op1, Z);
4533       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4534     }
4535   }
4536 
4537   {
4538     // Similar to above, but specialized for constant because invert is needed:
4539     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4540     Value *X, *Y;
4541     Constant *C;
4542     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4543         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4544       Value *Xor = Builder.CreateXor(X, Y);
4545       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4546       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4547     }
4548   }
4549 
4550   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4551   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4552   ConstantInt *Cst1;
4553   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4554        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4555       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4556        match(Op1, m_ZExt(m_Value(A))))) {
4557     APInt Pow2 = Cst1->getValue() + 1;
4558     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4559         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4560       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4561   }
4562 
4563   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4564   // For lshr and ashr pairs.
4565   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4566        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4567       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4568        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4569     unsigned TypeBits = Cst1->getBitWidth();
4570     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4571     if (ShAmt < TypeBits && ShAmt != 0) {
4572       ICmpInst::Predicate NewPred =
4573           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4574       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4575       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4576       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4577     }
4578   }
4579 
4580   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4581   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4582       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4583     unsigned TypeBits = Cst1->getBitWidth();
4584     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4585     if (ShAmt < TypeBits && ShAmt != 0) {
4586       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4587       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4588       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4589                                       I.getName() + ".mask");
4590       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4591     }
4592   }
4593 
4594   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4595   // "icmp (and X, mask), cst"
4596   uint64_t ShAmt = 0;
4597   if (Op0->hasOneUse() &&
4598       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4599       match(Op1, m_ConstantInt(Cst1)) &&
4600       // Only do this when A has multiple uses.  This is most important to do
4601       // when it exposes other optimizations.
4602       !A->hasOneUse()) {
4603     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4604 
4605     if (ShAmt < ASize) {
4606       APInt MaskV =
4607           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4608       MaskV <<= ShAmt;
4609 
4610       APInt CmpV = Cst1->getValue().zext(ASize);
4611       CmpV <<= ShAmt;
4612 
4613       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4614       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4615     }
4616   }
4617 
4618   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4619     return ICmp;
4620 
4621   // Canonicalize checking for a power-of-2-or-zero value:
4622   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4623   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4624   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4625                                    m_Deferred(A)))) ||
4626       !match(Op1, m_ZeroInt()))
4627     A = nullptr;
4628 
4629   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4630   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4631   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4632     A = Op1;
4633   else if (match(Op1,
4634                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4635     A = Op0;
4636 
4637   if (A) {
4638     Type *Ty = A->getType();
4639     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4640     return Pred == ICmpInst::ICMP_EQ
4641         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4642         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4643   }
4644 
4645   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4646   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4647   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4648   // of instcombine.
4649   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4650   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4651       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4652       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4653       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4654     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4655     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4656     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4657                                                   : ICmpInst::ICMP_UGE,
4658                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4659   }
4660 
4661   return nullptr;
4662 }
4663 
4664 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4665                                       InstCombiner::BuilderTy &Builder) {
4666   ICmpInst::Predicate Pred = ICmp.getPredicate();
4667   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4668 
4669   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4670   // The trunc masks high bits while the compare may effectively mask low bits.
4671   Value *X;
4672   const APInt *C;
4673   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4674     return nullptr;
4675 
4676   // This matches patterns corresponding to tests of the signbit as well as:
4677   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4678   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4679   APInt Mask;
4680   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4681     Value *And = Builder.CreateAnd(X, Mask);
4682     Constant *Zero = ConstantInt::getNullValue(X->getType());
4683     return new ICmpInst(Pred, And, Zero);
4684   }
4685 
4686   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4687   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4688     // If C is a negative power-of-2 (high-bit mask):
4689     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4690     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4691     Value *And = Builder.CreateAnd(X, MaskC);
4692     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4693   }
4694 
4695   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4696     // If C is not-of-power-of-2 (one clear bit):
4697     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4698     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4699     Value *And = Builder.CreateAnd(X, MaskC);
4700     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4701   }
4702 
4703   return nullptr;
4704 }
4705 
4706 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) {
4707   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4708   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4709   Value *X;
4710   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4711     return nullptr;
4712 
4713   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4714   bool IsSignedCmp = ICmp.isSigned();
4715 
4716   // icmp Pred (ext X), (ext Y)
4717   Value *Y;
4718   if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) {
4719     bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0));
4720     bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1));
4721 
4722     // If we have mismatched casts, treat the zext of a non-negative source as
4723     // a sext to simulate matching casts. Otherwise, we are done.
4724     // TODO: Can we handle some predicates (equality) without non-negative?
4725     if (IsZext0 != IsZext1) {
4726       if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) ||
4727           (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT)))
4728         IsSignedExt = true;
4729       else
4730         return nullptr;
4731     }
4732 
4733     // Not an extension from the same type?
4734     Type *XTy = X->getType(), *YTy = Y->getType();
4735     if (XTy != YTy) {
4736       // One of the casts must have one use because we are creating a new cast.
4737       if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse())
4738         return nullptr;
4739       // Extend the narrower operand to the type of the wider operand.
4740       CastInst::CastOps CastOpcode =
4741           IsSignedExt ? Instruction::SExt : Instruction::ZExt;
4742       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4743         X = Builder.CreateCast(CastOpcode, X, YTy);
4744       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4745         Y = Builder.CreateCast(CastOpcode, Y, XTy);
4746       else
4747         return nullptr;
4748     }
4749 
4750     // (zext X) == (zext Y) --> X == Y
4751     // (sext X) == (sext Y) --> X == Y
4752     if (ICmp.isEquality())
4753       return new ICmpInst(ICmp.getPredicate(), X, Y);
4754 
4755     // A signed comparison of sign extended values simplifies into a
4756     // signed comparison.
4757     if (IsSignedCmp && IsSignedExt)
4758       return new ICmpInst(ICmp.getPredicate(), X, Y);
4759 
4760     // The other three cases all fold into an unsigned comparison.
4761     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4762   }
4763 
4764   // Below here, we are only folding a compare with constant.
4765   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4766   if (!C)
4767     return nullptr;
4768 
4769   // Compute the constant that would happen if we truncated to SrcTy then
4770   // re-extended to DestTy.
4771   Type *SrcTy = CastOp0->getSrcTy();
4772   Type *DestTy = CastOp0->getDestTy();
4773   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4774   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4775 
4776   // If the re-extended constant didn't change...
4777   if (Res2 == C) {
4778     if (ICmp.isEquality())
4779       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4780 
4781     // A signed comparison of sign extended values simplifies into a
4782     // signed comparison.
4783     if (IsSignedExt && IsSignedCmp)
4784       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4785 
4786     // The other three cases all fold into an unsigned comparison.
4787     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4788   }
4789 
4790   // The re-extended constant changed, partly changed (in the case of a vector),
4791   // or could not be determined to be equal (in the case of a constant
4792   // expression), so the constant cannot be represented in the shorter type.
4793   // All the cases that fold to true or false will have already been handled
4794   // by SimplifyICmpInst, so only deal with the tricky case.
4795   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4796     return nullptr;
4797 
4798   // Is source op positive?
4799   // icmp ult (sext X), C --> icmp sgt X, -1
4800   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4801     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4802 
4803   // Is source op negative?
4804   // icmp ugt (sext X), C --> icmp slt X, 0
4805   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4806   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4807 }
4808 
4809 /// Handle icmp (cast x), (cast or constant).
4810 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4811   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4812   // icmp compares only pointer's value.
4813   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4814   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4815   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4816   if (SimplifiedOp0 || SimplifiedOp1)
4817     return new ICmpInst(ICmp.getPredicate(),
4818                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4819                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4820 
4821   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4822   if (!CastOp0)
4823     return nullptr;
4824   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4825     return nullptr;
4826 
4827   Value *Op0Src = CastOp0->getOperand(0);
4828   Type *SrcTy = CastOp0->getSrcTy();
4829   Type *DestTy = CastOp0->getDestTy();
4830 
4831   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4832   // integer type is the same size as the pointer type.
4833   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4834     if (isa<VectorType>(SrcTy)) {
4835       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4836       DestTy = cast<VectorType>(DestTy)->getElementType();
4837     }
4838     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4839   };
4840   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4841       CompatibleSizes(SrcTy, DestTy)) {
4842     Value *NewOp1 = nullptr;
4843     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4844       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4845       if (PtrSrc->getType()->getPointerAddressSpace() ==
4846           Op0Src->getType()->getPointerAddressSpace()) {
4847         NewOp1 = PtrToIntOp1->getOperand(0);
4848         // If the pointer types don't match, insert a bitcast.
4849         if (Op0Src->getType() != NewOp1->getType())
4850           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4851       }
4852     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4853       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4854     }
4855 
4856     if (NewOp1)
4857       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4858   }
4859 
4860   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4861     return R;
4862 
4863   return foldICmpWithZextOrSext(ICmp);
4864 }
4865 
4866 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4867   switch (BinaryOp) {
4868     default:
4869       llvm_unreachable("Unsupported binary op");
4870     case Instruction::Add:
4871     case Instruction::Sub:
4872       return match(RHS, m_Zero());
4873     case Instruction::Mul:
4874       return match(RHS, m_One());
4875   }
4876 }
4877 
4878 OverflowResult
4879 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4880                                   bool IsSigned, Value *LHS, Value *RHS,
4881                                   Instruction *CxtI) const {
4882   switch (BinaryOp) {
4883     default:
4884       llvm_unreachable("Unsupported binary op");
4885     case Instruction::Add:
4886       if (IsSigned)
4887         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4888       else
4889         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4890     case Instruction::Sub:
4891       if (IsSigned)
4892         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4893       else
4894         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4895     case Instruction::Mul:
4896       if (IsSigned)
4897         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4898       else
4899         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4900   }
4901 }
4902 
4903 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4904                                              bool IsSigned, Value *LHS,
4905                                              Value *RHS, Instruction &OrigI,
4906                                              Value *&Result,
4907                                              Constant *&Overflow) {
4908   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4909     std::swap(LHS, RHS);
4910 
4911   // If the overflow check was an add followed by a compare, the insertion point
4912   // may be pointing to the compare.  We want to insert the new instructions
4913   // before the add in case there are uses of the add between the add and the
4914   // compare.
4915   Builder.SetInsertPoint(&OrigI);
4916 
4917   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4918   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4919     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4920 
4921   if (isNeutralValue(BinaryOp, RHS)) {
4922     Result = LHS;
4923     Overflow = ConstantInt::getFalse(OverflowTy);
4924     return true;
4925   }
4926 
4927   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4928     case OverflowResult::MayOverflow:
4929       return false;
4930     case OverflowResult::AlwaysOverflowsLow:
4931     case OverflowResult::AlwaysOverflowsHigh:
4932       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4933       Result->takeName(&OrigI);
4934       Overflow = ConstantInt::getTrue(OverflowTy);
4935       return true;
4936     case OverflowResult::NeverOverflows:
4937       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4938       Result->takeName(&OrigI);
4939       Overflow = ConstantInt::getFalse(OverflowTy);
4940       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4941         if (IsSigned)
4942           Inst->setHasNoSignedWrap();
4943         else
4944           Inst->setHasNoUnsignedWrap();
4945       }
4946       return true;
4947   }
4948 
4949   llvm_unreachable("Unexpected overflow result");
4950 }
4951 
4952 /// Recognize and process idiom involving test for multiplication
4953 /// overflow.
4954 ///
4955 /// The caller has matched a pattern of the form:
4956 ///   I = cmp u (mul(zext A, zext B), V
4957 /// The function checks if this is a test for overflow and if so replaces
4958 /// multiplication with call to 'mul.with.overflow' intrinsic.
4959 ///
4960 /// \param I Compare instruction.
4961 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4962 ///               the compare instruction.  Must be of integer type.
4963 /// \param OtherVal The other argument of compare instruction.
4964 /// \returns Instruction which must replace the compare instruction, NULL if no
4965 ///          replacement required.
4966 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4967                                          Value *OtherVal,
4968                                          InstCombinerImpl &IC) {
4969   // Don't bother doing this transformation for pointers, don't do it for
4970   // vectors.
4971   if (!isa<IntegerType>(MulVal->getType()))
4972     return nullptr;
4973 
4974   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4975   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4976   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4977   if (!MulInstr)
4978     return nullptr;
4979   assert(MulInstr->getOpcode() == Instruction::Mul);
4980 
4981   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4982        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4983   assert(LHS->getOpcode() == Instruction::ZExt);
4984   assert(RHS->getOpcode() == Instruction::ZExt);
4985   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4986 
4987   // Calculate type and width of the result produced by mul.with.overflow.
4988   Type *TyA = A->getType(), *TyB = B->getType();
4989   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4990            WidthB = TyB->getPrimitiveSizeInBits();
4991   unsigned MulWidth;
4992   Type *MulType;
4993   if (WidthB > WidthA) {
4994     MulWidth = WidthB;
4995     MulType = TyB;
4996   } else {
4997     MulWidth = WidthA;
4998     MulType = TyA;
4999   }
5000 
5001   // In order to replace the original mul with a narrower mul.with.overflow,
5002   // all uses must ignore upper bits of the product.  The number of used low
5003   // bits must be not greater than the width of mul.with.overflow.
5004   if (MulVal->hasNUsesOrMore(2))
5005     for (User *U : MulVal->users()) {
5006       if (U == &I)
5007         continue;
5008       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5009         // Check if truncation ignores bits above MulWidth.
5010         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
5011         if (TruncWidth > MulWidth)
5012           return nullptr;
5013       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5014         // Check if AND ignores bits above MulWidth.
5015         if (BO->getOpcode() != Instruction::And)
5016           return nullptr;
5017         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5018           const APInt &CVal = CI->getValue();
5019           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
5020             return nullptr;
5021         } else {
5022           // In this case we could have the operand of the binary operation
5023           // being defined in another block, and performing the replacement
5024           // could break the dominance relation.
5025           return nullptr;
5026         }
5027       } else {
5028         // Other uses prohibit this transformation.
5029         return nullptr;
5030       }
5031     }
5032 
5033   // Recognize patterns
5034   switch (I.getPredicate()) {
5035   case ICmpInst::ICMP_EQ:
5036   case ICmpInst::ICMP_NE:
5037     // Recognize pattern:
5038     //   mulval = mul(zext A, zext B)
5039     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
5040     ConstantInt *CI;
5041     Value *ValToMask;
5042     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
5043       if (ValToMask != MulVal)
5044         return nullptr;
5045       const APInt &CVal = CI->getValue() + 1;
5046       if (CVal.isPowerOf2()) {
5047         unsigned MaskWidth = CVal.logBase2();
5048         if (MaskWidth == MulWidth)
5049           break; // Recognized
5050       }
5051     }
5052     return nullptr;
5053 
5054   case ICmpInst::ICMP_UGT:
5055     // Recognize pattern:
5056     //   mulval = mul(zext A, zext B)
5057     //   cmp ugt mulval, max
5058     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5059       APInt MaxVal = APInt::getMaxValue(MulWidth);
5060       MaxVal = MaxVal.zext(CI->getBitWidth());
5061       if (MaxVal.eq(CI->getValue()))
5062         break; // Recognized
5063     }
5064     return nullptr;
5065 
5066   case ICmpInst::ICMP_UGE:
5067     // Recognize pattern:
5068     //   mulval = mul(zext A, zext B)
5069     //   cmp uge mulval, max+1
5070     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5071       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5072       if (MaxVal.eq(CI->getValue()))
5073         break; // Recognized
5074     }
5075     return nullptr;
5076 
5077   case ICmpInst::ICMP_ULE:
5078     // Recognize pattern:
5079     //   mulval = mul(zext A, zext B)
5080     //   cmp ule mulval, max
5081     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5082       APInt MaxVal = APInt::getMaxValue(MulWidth);
5083       MaxVal = MaxVal.zext(CI->getBitWidth());
5084       if (MaxVal.eq(CI->getValue()))
5085         break; // Recognized
5086     }
5087     return nullptr;
5088 
5089   case ICmpInst::ICMP_ULT:
5090     // Recognize pattern:
5091     //   mulval = mul(zext A, zext B)
5092     //   cmp ule mulval, max + 1
5093     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5094       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5095       if (MaxVal.eq(CI->getValue()))
5096         break; // Recognized
5097     }
5098     return nullptr;
5099 
5100   default:
5101     return nullptr;
5102   }
5103 
5104   InstCombiner::BuilderTy &Builder = IC.Builder;
5105   Builder.SetInsertPoint(MulInstr);
5106 
5107   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5108   Value *MulA = A, *MulB = B;
5109   if (WidthA < MulWidth)
5110     MulA = Builder.CreateZExt(A, MulType);
5111   if (WidthB < MulWidth)
5112     MulB = Builder.CreateZExt(B, MulType);
5113   Function *F = Intrinsic::getDeclaration(
5114       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5115   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5116   IC.addToWorklist(MulInstr);
5117 
5118   // If there are uses of mul result other than the comparison, we know that
5119   // they are truncation or binary AND. Change them to use result of
5120   // mul.with.overflow and adjust properly mask/size.
5121   if (MulVal->hasNUsesOrMore(2)) {
5122     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5123     for (User *U : make_early_inc_range(MulVal->users())) {
5124       if (U == &I || U == OtherVal)
5125         continue;
5126       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5127         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5128           IC.replaceInstUsesWith(*TI, Mul);
5129         else
5130           TI->setOperand(0, Mul);
5131       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5132         assert(BO->getOpcode() == Instruction::And);
5133         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5134         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5135         APInt ShortMask = CI->getValue().trunc(MulWidth);
5136         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5137         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5138         IC.replaceInstUsesWith(*BO, Zext);
5139       } else {
5140         llvm_unreachable("Unexpected Binary operation");
5141       }
5142       IC.addToWorklist(cast<Instruction>(U));
5143     }
5144   }
5145   if (isa<Instruction>(OtherVal))
5146     IC.addToWorklist(cast<Instruction>(OtherVal));
5147 
5148   // The original icmp gets replaced with the overflow value, maybe inverted
5149   // depending on predicate.
5150   bool Inverse = false;
5151   switch (I.getPredicate()) {
5152   case ICmpInst::ICMP_NE:
5153     break;
5154   case ICmpInst::ICMP_EQ:
5155     Inverse = true;
5156     break;
5157   case ICmpInst::ICMP_UGT:
5158   case ICmpInst::ICMP_UGE:
5159     if (I.getOperand(0) == MulVal)
5160       break;
5161     Inverse = true;
5162     break;
5163   case ICmpInst::ICMP_ULT:
5164   case ICmpInst::ICMP_ULE:
5165     if (I.getOperand(1) == MulVal)
5166       break;
5167     Inverse = true;
5168     break;
5169   default:
5170     llvm_unreachable("Unexpected predicate");
5171   }
5172   if (Inverse) {
5173     Value *Res = Builder.CreateExtractValue(Call, 1);
5174     return BinaryOperator::CreateNot(Res);
5175   }
5176 
5177   return ExtractValueInst::Create(Call, 1);
5178 }
5179 
5180 /// When performing a comparison against a constant, it is possible that not all
5181 /// the bits in the LHS are demanded. This helper method computes the mask that
5182 /// IS demanded.
5183 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5184   const APInt *RHS;
5185   if (!match(I.getOperand(1), m_APInt(RHS)))
5186     return APInt::getAllOnes(BitWidth);
5187 
5188   // If this is a normal comparison, it demands all bits. If it is a sign bit
5189   // comparison, it only demands the sign bit.
5190   bool UnusedBit;
5191   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5192     return APInt::getSignMask(BitWidth);
5193 
5194   switch (I.getPredicate()) {
5195   // For a UGT comparison, we don't care about any bits that
5196   // correspond to the trailing ones of the comparand.  The value of these
5197   // bits doesn't impact the outcome of the comparison, because any value
5198   // greater than the RHS must differ in a bit higher than these due to carry.
5199   case ICmpInst::ICMP_UGT:
5200     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5201 
5202   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5203   // Any value less than the RHS must differ in a higher bit because of carries.
5204   case ICmpInst::ICMP_ULT:
5205     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5206 
5207   default:
5208     return APInt::getAllOnes(BitWidth);
5209   }
5210 }
5211 
5212 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5213 /// should be swapped.
5214 /// The decision is based on how many times these two operands are reused
5215 /// as subtract operands and their positions in those instructions.
5216 /// The rationale is that several architectures use the same instruction for
5217 /// both subtract and cmp. Thus, it is better if the order of those operands
5218 /// match.
5219 /// \return true if Op0 and Op1 should be swapped.
5220 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5221   // Filter out pointer values as those cannot appear directly in subtract.
5222   // FIXME: we may want to go through inttoptrs or bitcasts.
5223   if (Op0->getType()->isPointerTy())
5224     return false;
5225   // If a subtract already has the same operands as a compare, swapping would be
5226   // bad. If a subtract has the same operands as a compare but in reverse order,
5227   // then swapping is good.
5228   int GoodToSwap = 0;
5229   for (const User *U : Op0->users()) {
5230     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5231       GoodToSwap++;
5232     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5233       GoodToSwap--;
5234   }
5235   return GoodToSwap > 0;
5236 }
5237 
5238 /// Check that one use is in the same block as the definition and all
5239 /// other uses are in blocks dominated by a given block.
5240 ///
5241 /// \param DI Definition
5242 /// \param UI Use
5243 /// \param DB Block that must dominate all uses of \p DI outside
5244 ///           the parent block
5245 /// \return true when \p UI is the only use of \p DI in the parent block
5246 /// and all other uses of \p DI are in blocks dominated by \p DB.
5247 ///
5248 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5249                                         const Instruction *UI,
5250                                         const BasicBlock *DB) const {
5251   assert(DI && UI && "Instruction not defined\n");
5252   // Ignore incomplete definitions.
5253   if (!DI->getParent())
5254     return false;
5255   // DI and UI must be in the same block.
5256   if (DI->getParent() != UI->getParent())
5257     return false;
5258   // Protect from self-referencing blocks.
5259   if (DI->getParent() == DB)
5260     return false;
5261   for (const User *U : DI->users()) {
5262     auto *Usr = cast<Instruction>(U);
5263     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5264       return false;
5265   }
5266   return true;
5267 }
5268 
5269 /// Return true when the instruction sequence within a block is select-cmp-br.
5270 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5271   const BasicBlock *BB = SI->getParent();
5272   if (!BB)
5273     return false;
5274   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5275   if (!BI || BI->getNumSuccessors() != 2)
5276     return false;
5277   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5278   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5279     return false;
5280   return true;
5281 }
5282 
5283 /// True when a select result is replaced by one of its operands
5284 /// in select-icmp sequence. This will eventually result in the elimination
5285 /// of the select.
5286 ///
5287 /// \param SI    Select instruction
5288 /// \param Icmp  Compare instruction
5289 /// \param SIOpd Operand that replaces the select
5290 ///
5291 /// Notes:
5292 /// - The replacement is global and requires dominator information
5293 /// - The caller is responsible for the actual replacement
5294 ///
5295 /// Example:
5296 ///
5297 /// entry:
5298 ///  %4 = select i1 %3, %C* %0, %C* null
5299 ///  %5 = icmp eq %C* %4, null
5300 ///  br i1 %5, label %9, label %7
5301 ///  ...
5302 ///  ; <label>:7                                       ; preds = %entry
5303 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5304 ///  ...
5305 ///
5306 /// can be transformed to
5307 ///
5308 ///  %5 = icmp eq %C* %0, null
5309 ///  %6 = select i1 %3, i1 %5, i1 true
5310 ///  br i1 %6, label %9, label %7
5311 ///  ...
5312 ///  ; <label>:7                                       ; preds = %entry
5313 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5314 ///
5315 /// Similar when the first operand of the select is a constant or/and
5316 /// the compare is for not equal rather than equal.
5317 ///
5318 /// NOTE: The function is only called when the select and compare constants
5319 /// are equal, the optimization can work only for EQ predicates. This is not a
5320 /// major restriction since a NE compare should be 'normalized' to an equal
5321 /// compare, which usually happens in the combiner and test case
5322 /// select-cmp-br.ll checks for it.
5323 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5324                                                  const ICmpInst *Icmp,
5325                                                  const unsigned SIOpd) {
5326   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5327   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5328     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5329     // The check for the single predecessor is not the best that can be
5330     // done. But it protects efficiently against cases like when SI's
5331     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5332     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5333     // replaced can be reached on either path. So the uniqueness check
5334     // guarantees that the path all uses of SI (outside SI's parent) are on
5335     // is disjoint from all other paths out of SI. But that information
5336     // is more expensive to compute, and the trade-off here is in favor
5337     // of compile-time. It should also be noticed that we check for a single
5338     // predecessor and not only uniqueness. This to handle the situation when
5339     // Succ and Succ1 points to the same basic block.
5340     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5341       NumSel++;
5342       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5343       return true;
5344     }
5345   }
5346   return false;
5347 }
5348 
5349 /// Try to fold the comparison based on range information we can get by checking
5350 /// whether bits are known to be zero or one in the inputs.
5351 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5352   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5353   Type *Ty = Op0->getType();
5354   ICmpInst::Predicate Pred = I.getPredicate();
5355 
5356   // Get scalar or pointer size.
5357   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5358                           ? Ty->getScalarSizeInBits()
5359                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5360 
5361   if (!BitWidth)
5362     return nullptr;
5363 
5364   KnownBits Op0Known(BitWidth);
5365   KnownBits Op1Known(BitWidth);
5366 
5367   if (SimplifyDemandedBits(&I, 0,
5368                            getDemandedBitsLHSMask(I, BitWidth),
5369                            Op0Known, 0))
5370     return &I;
5371 
5372   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5373     return &I;
5374 
5375   // Given the known and unknown bits, compute a range that the LHS could be
5376   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5377   // EQ and NE we use unsigned values.
5378   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5379   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5380   if (I.isSigned()) {
5381     Op0Min = Op0Known.getSignedMinValue();
5382     Op0Max = Op0Known.getSignedMaxValue();
5383     Op1Min = Op1Known.getSignedMinValue();
5384     Op1Max = Op1Known.getSignedMaxValue();
5385   } else {
5386     Op0Min = Op0Known.getMinValue();
5387     Op0Max = Op0Known.getMaxValue();
5388     Op1Min = Op1Known.getMinValue();
5389     Op1Max = Op1Known.getMaxValue();
5390   }
5391 
5392   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5393   // out that the LHS or RHS is a constant. Constant fold this now, so that
5394   // code below can assume that Min != Max.
5395   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5396     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5397   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5398     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5399 
5400   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5401   // min/max canonical compare with some other compare. That could lead to
5402   // conflict with select canonicalization and infinite looping.
5403   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5404   auto isMinMaxCmp = [&](Instruction &Cmp) {
5405     if (!Cmp.hasOneUse())
5406       return false;
5407     Value *A, *B;
5408     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5409     if (!SelectPatternResult::isMinOrMax(SPF))
5410       return false;
5411     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5412            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5413   };
5414   if (!isMinMaxCmp(I)) {
5415     switch (Pred) {
5416     default:
5417       break;
5418     case ICmpInst::ICMP_ULT: {
5419       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5420         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5421       const APInt *CmpC;
5422       if (match(Op1, m_APInt(CmpC))) {
5423         // A <u C -> A == C-1 if min(A)+1 == C
5424         if (*CmpC == Op0Min + 1)
5425           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5426                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5427         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5428         // exceeds the log2 of C.
5429         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5430           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5431                               Constant::getNullValue(Op1->getType()));
5432       }
5433       break;
5434     }
5435     case ICmpInst::ICMP_UGT: {
5436       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5437         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5438       const APInt *CmpC;
5439       if (match(Op1, m_APInt(CmpC))) {
5440         // A >u C -> A == C+1 if max(a)-1 == C
5441         if (*CmpC == Op0Max - 1)
5442           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5443                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5444         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5445         // exceeds the log2 of C.
5446         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5447           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5448                               Constant::getNullValue(Op1->getType()));
5449       }
5450       break;
5451     }
5452     case ICmpInst::ICMP_SLT: {
5453       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5454         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5455       const APInt *CmpC;
5456       if (match(Op1, m_APInt(CmpC))) {
5457         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5458           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5459                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5460       }
5461       break;
5462     }
5463     case ICmpInst::ICMP_SGT: {
5464       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5465         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5466       const APInt *CmpC;
5467       if (match(Op1, m_APInt(CmpC))) {
5468         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5469           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5470                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5471       }
5472       break;
5473     }
5474     }
5475   }
5476 
5477   // Based on the range information we know about the LHS, see if we can
5478   // simplify this comparison.  For example, (x&4) < 8 is always true.
5479   switch (Pred) {
5480   default:
5481     llvm_unreachable("Unknown icmp opcode!");
5482   case ICmpInst::ICMP_EQ:
5483   case ICmpInst::ICMP_NE: {
5484     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5485       return replaceInstUsesWith(
5486           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5487 
5488     // If all bits are known zero except for one, then we know at most one bit
5489     // is set. If the comparison is against zero, then this is a check to see if
5490     // *that* bit is set.
5491     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5492     if (Op1Known.isZero()) {
5493       // If the LHS is an AND with the same constant, look through it.
5494       Value *LHS = nullptr;
5495       const APInt *LHSC;
5496       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5497           *LHSC != Op0KnownZeroInverted)
5498         LHS = Op0;
5499 
5500       Value *X;
5501       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5502         APInt ValToCheck = Op0KnownZeroInverted;
5503         Type *XTy = X->getType();
5504         if (ValToCheck.isPowerOf2()) {
5505           // ((1 << X) & 8) == 0 -> X != 3
5506           // ((1 << X) & 8) != 0 -> X == 3
5507           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5508           auto NewPred = ICmpInst::getInversePredicate(Pred);
5509           return new ICmpInst(NewPred, X, CmpC);
5510         } else if ((++ValToCheck).isPowerOf2()) {
5511           // ((1 << X) & 7) == 0 -> X >= 3
5512           // ((1 << X) & 7) != 0 -> X  < 3
5513           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5514           auto NewPred =
5515               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5516           return new ICmpInst(NewPred, X, CmpC);
5517         }
5518       }
5519 
5520       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5521       const APInt *CI;
5522       if (Op0KnownZeroInverted.isOne() &&
5523           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5524         // ((8 >>u X) & 1) == 0 -> X != 3
5525         // ((8 >>u X) & 1) != 0 -> X == 3
5526         unsigned CmpVal = CI->countTrailingZeros();
5527         auto NewPred = ICmpInst::getInversePredicate(Pred);
5528         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5529       }
5530     }
5531     break;
5532   }
5533   case ICmpInst::ICMP_ULT: {
5534     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5535       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5536     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5537       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5538     break;
5539   }
5540   case ICmpInst::ICMP_UGT: {
5541     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5542       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5543     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5544       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5545     break;
5546   }
5547   case ICmpInst::ICMP_SLT: {
5548     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5549       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5550     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5551       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5552     break;
5553   }
5554   case ICmpInst::ICMP_SGT: {
5555     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5556       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5557     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5558       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5559     break;
5560   }
5561   case ICmpInst::ICMP_SGE:
5562     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5563     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5564       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5565     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5566       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5567     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5568       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5569     break;
5570   case ICmpInst::ICMP_SLE:
5571     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5572     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5573       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5574     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5575       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5576     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5577       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5578     break;
5579   case ICmpInst::ICMP_UGE:
5580     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5581     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5582       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5583     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5584       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5585     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5586       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5587     break;
5588   case ICmpInst::ICMP_ULE:
5589     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5590     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5591       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5592     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5593       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5594     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5595       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5596     break;
5597   }
5598 
5599   // Turn a signed comparison into an unsigned one if both operands are known to
5600   // have the same sign.
5601   if (I.isSigned() &&
5602       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5603        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5604     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5605 
5606   return nullptr;
5607 }
5608 
5609 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5610 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5611                                                        Constant *C) {
5612   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5613          "Only for relational integer predicates.");
5614 
5615   Type *Type = C->getType();
5616   bool IsSigned = ICmpInst::isSigned(Pred);
5617 
5618   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5619   bool WillIncrement =
5620       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5621 
5622   // Check if the constant operand can be safely incremented/decremented
5623   // without overflowing/underflowing.
5624   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5625     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5626   };
5627 
5628   Constant *SafeReplacementConstant = nullptr;
5629   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5630     // Bail out if the constant can't be safely incremented/decremented.
5631     if (!ConstantIsOk(CI))
5632       return llvm::None;
5633   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5634     unsigned NumElts = FVTy->getNumElements();
5635     for (unsigned i = 0; i != NumElts; ++i) {
5636       Constant *Elt = C->getAggregateElement(i);
5637       if (!Elt)
5638         return llvm::None;
5639 
5640       if (isa<UndefValue>(Elt))
5641         continue;
5642 
5643       // Bail out if we can't determine if this constant is min/max or if we
5644       // know that this constant is min/max.
5645       auto *CI = dyn_cast<ConstantInt>(Elt);
5646       if (!CI || !ConstantIsOk(CI))
5647         return llvm::None;
5648 
5649       if (!SafeReplacementConstant)
5650         SafeReplacementConstant = CI;
5651     }
5652   } else {
5653     // ConstantExpr?
5654     return llvm::None;
5655   }
5656 
5657   // It may not be safe to change a compare predicate in the presence of
5658   // undefined elements, so replace those elements with the first safe constant
5659   // that we found.
5660   // TODO: in case of poison, it is safe; let's replace undefs only.
5661   if (C->containsUndefOrPoisonElement()) {
5662     assert(SafeReplacementConstant && "Replacement constant not set");
5663     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5664   }
5665 
5666   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5667 
5668   // Increment or decrement the constant.
5669   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5670   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5671 
5672   return std::make_pair(NewPred, NewC);
5673 }
5674 
5675 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5676 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5677 /// allows them to be folded in visitICmpInst.
5678 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5679   ICmpInst::Predicate Pred = I.getPredicate();
5680   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5681       InstCombiner::isCanonicalPredicate(Pred))
5682     return nullptr;
5683 
5684   Value *Op0 = I.getOperand(0);
5685   Value *Op1 = I.getOperand(1);
5686   auto *Op1C = dyn_cast<Constant>(Op1);
5687   if (!Op1C)
5688     return nullptr;
5689 
5690   auto FlippedStrictness =
5691       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5692   if (!FlippedStrictness)
5693     return nullptr;
5694 
5695   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5696 }
5697 
5698 /// If we have a comparison with a non-canonical predicate, if we can update
5699 /// all the users, invert the predicate and adjust all the users.
5700 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5701   // Is the predicate already canonical?
5702   CmpInst::Predicate Pred = I.getPredicate();
5703   if (InstCombiner::isCanonicalPredicate(Pred))
5704     return nullptr;
5705 
5706   // Can all users be adjusted to predicate inversion?
5707   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5708     return nullptr;
5709 
5710   // Ok, we can canonicalize comparison!
5711   // Let's first invert the comparison's predicate.
5712   I.setPredicate(CmpInst::getInversePredicate(Pred));
5713   I.setName(I.getName() + ".not");
5714 
5715   // And, adapt users.
5716   freelyInvertAllUsersOf(&I);
5717 
5718   return &I;
5719 }
5720 
5721 /// Integer compare with boolean values can always be turned into bitwise ops.
5722 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5723                                          InstCombiner::BuilderTy &Builder) {
5724   Value *A = I.getOperand(0), *B = I.getOperand(1);
5725   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5726 
5727   // A boolean compared to true/false can be simplified to Op0/true/false in
5728   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5729   // Cases not handled by InstSimplify are always 'not' of Op0.
5730   if (match(B, m_Zero())) {
5731     switch (I.getPredicate()) {
5732       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5733       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5734       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5735         return BinaryOperator::CreateNot(A);
5736       default:
5737         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5738     }
5739   } else if (match(B, m_One())) {
5740     switch (I.getPredicate()) {
5741       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5742       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5743       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5744         return BinaryOperator::CreateNot(A);
5745       default:
5746         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5747     }
5748   }
5749 
5750   switch (I.getPredicate()) {
5751   default:
5752     llvm_unreachable("Invalid icmp instruction!");
5753   case ICmpInst::ICMP_EQ:
5754     // icmp eq i1 A, B -> ~(A ^ B)
5755     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5756 
5757   case ICmpInst::ICMP_NE:
5758     // icmp ne i1 A, B -> A ^ B
5759     return BinaryOperator::CreateXor(A, B);
5760 
5761   case ICmpInst::ICMP_UGT:
5762     // icmp ugt -> icmp ult
5763     std::swap(A, B);
5764     LLVM_FALLTHROUGH;
5765   case ICmpInst::ICMP_ULT:
5766     // icmp ult i1 A, B -> ~A & B
5767     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5768 
5769   case ICmpInst::ICMP_SGT:
5770     // icmp sgt -> icmp slt
5771     std::swap(A, B);
5772     LLVM_FALLTHROUGH;
5773   case ICmpInst::ICMP_SLT:
5774     // icmp slt i1 A, B -> A & ~B
5775     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5776 
5777   case ICmpInst::ICMP_UGE:
5778     // icmp uge -> icmp ule
5779     std::swap(A, B);
5780     LLVM_FALLTHROUGH;
5781   case ICmpInst::ICMP_ULE:
5782     // icmp ule i1 A, B -> ~A | B
5783     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5784 
5785   case ICmpInst::ICMP_SGE:
5786     // icmp sge -> icmp sle
5787     std::swap(A, B);
5788     LLVM_FALLTHROUGH;
5789   case ICmpInst::ICMP_SLE:
5790     // icmp sle i1 A, B -> A | ~B
5791     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5792   }
5793 }
5794 
5795 // Transform pattern like:
5796 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5797 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5798 // Into:
5799 //   (X l>> Y) != 0
5800 //   (X l>> Y) == 0
5801 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5802                                             InstCombiner::BuilderTy &Builder) {
5803   ICmpInst::Predicate Pred, NewPred;
5804   Value *X, *Y;
5805   if (match(&Cmp,
5806             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5807     switch (Pred) {
5808     case ICmpInst::ICMP_ULE:
5809       NewPred = ICmpInst::ICMP_NE;
5810       break;
5811     case ICmpInst::ICMP_UGT:
5812       NewPred = ICmpInst::ICMP_EQ;
5813       break;
5814     default:
5815       return nullptr;
5816     }
5817   } else if (match(&Cmp, m_c_ICmp(Pred,
5818                                   m_OneUse(m_CombineOr(
5819                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5820                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5821                                             m_AllOnes()))),
5822                                   m_Value(X)))) {
5823     // The variant with 'add' is not canonical, (the variant with 'not' is)
5824     // we only get it because it has extra uses, and can't be canonicalized,
5825 
5826     switch (Pred) {
5827     case ICmpInst::ICMP_ULT:
5828       NewPred = ICmpInst::ICMP_NE;
5829       break;
5830     case ICmpInst::ICMP_UGE:
5831       NewPred = ICmpInst::ICMP_EQ;
5832       break;
5833     default:
5834       return nullptr;
5835     }
5836   } else
5837     return nullptr;
5838 
5839   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5840   Constant *Zero = Constant::getNullValue(NewX->getType());
5841   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5842 }
5843 
5844 static Instruction *foldVectorCmp(CmpInst &Cmp,
5845                                   InstCombiner::BuilderTy &Builder) {
5846   const CmpInst::Predicate Pred = Cmp.getPredicate();
5847   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5848   Value *V1, *V2;
5849   ArrayRef<int> M;
5850   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5851     return nullptr;
5852 
5853   // If both arguments of the cmp are shuffles that use the same mask and
5854   // shuffle within a single vector, move the shuffle after the cmp:
5855   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5856   Type *V1Ty = V1->getType();
5857   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5858       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5859     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5860     return new ShuffleVectorInst(NewCmp, M);
5861   }
5862 
5863   // Try to canonicalize compare with splatted operand and splat constant.
5864   // TODO: We could generalize this for more than splats. See/use the code in
5865   //       InstCombiner::foldVectorBinop().
5866   Constant *C;
5867   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5868     return nullptr;
5869 
5870   // Length-changing splats are ok, so adjust the constants as needed:
5871   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5872   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5873   int MaskSplatIndex;
5874   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5875     // We allow undefs in matching, but this transform removes those for safety.
5876     // Demanded elements analysis should be able to recover some/all of that.
5877     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5878                                  ScalarC);
5879     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5880     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5881     return new ShuffleVectorInst(NewCmp, NewM);
5882   }
5883 
5884   return nullptr;
5885 }
5886 
5887 // extract(uadd.with.overflow(A, B), 0) ult A
5888 //  -> extract(uadd.with.overflow(A, B), 1)
5889 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5890   CmpInst::Predicate Pred = I.getPredicate();
5891   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5892 
5893   Value *UAddOv;
5894   Value *A, *B;
5895   auto UAddOvResultPat = m_ExtractValue<0>(
5896       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5897   if (match(Op0, UAddOvResultPat) &&
5898       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5899        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5900         (match(A, m_One()) || match(B, m_One()))) ||
5901        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5902         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5903     // extract(uadd.with.overflow(A, B), 0) < A
5904     // extract(uadd.with.overflow(A, 1), 0) == 0
5905     // extract(uadd.with.overflow(A, -1), 0) != -1
5906     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5907   else if (match(Op1, UAddOvResultPat) &&
5908            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5909     // A > extract(uadd.with.overflow(A, B), 0)
5910     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5911   else
5912     return nullptr;
5913 
5914   return ExtractValueInst::Create(UAddOv, 1);
5915 }
5916 
5917 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5918   if (!I.getOperand(0)->getType()->isPointerTy() ||
5919       NullPointerIsDefined(
5920           I.getParent()->getParent(),
5921           I.getOperand(0)->getType()->getPointerAddressSpace())) {
5922     return nullptr;
5923   }
5924   Instruction *Op;
5925   if (match(I.getOperand(0), m_Instruction(Op)) &&
5926       match(I.getOperand(1), m_Zero()) &&
5927       Op->isLaunderOrStripInvariantGroup()) {
5928     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
5929                             Op->getOperand(0), I.getOperand(1));
5930   }
5931   return nullptr;
5932 }
5933 
5934 /// This function folds patterns produced by lowering of reduce idioms, such as
5935 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
5936 /// attempts to generate fewer number of scalar comparisons instead of vector
5937 /// comparisons when possible.
5938 static Instruction *foldReductionIdiom(ICmpInst &I,
5939                                        InstCombiner::BuilderTy &Builder,
5940                                        const DataLayout &DL) {
5941   if (I.getType()->isVectorTy())
5942     return nullptr;
5943   ICmpInst::Predicate OuterPred, InnerPred;
5944   Value *LHS, *RHS;
5945 
5946   // Match lowering of @llvm.vector.reduce.and. Turn
5947   ///   %vec_ne = icmp ne <8 x i8> %lhs, %rhs
5948   ///   %scalar_ne = bitcast <8 x i1> %vec_ne to i8
5949   ///   %res = icmp <pred> i8 %scalar_ne, 0
5950   ///
5951   /// into
5952   ///
5953   ///   %lhs.scalar = bitcast <8 x i8> %lhs to i64
5954   ///   %rhs.scalar = bitcast <8 x i8> %rhs to i64
5955   ///   %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
5956   ///
5957   /// for <pred> in {ne, eq}.
5958   if (!match(&I, m_ICmp(OuterPred,
5959                         m_OneUse(m_BitCast(m_OneUse(
5960                             m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
5961                         m_Zero())))
5962     return nullptr;
5963   auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
5964   if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
5965     return nullptr;
5966   unsigned NumBits =
5967       LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
5968   // TODO: Relax this to "not wider than max legal integer type"?
5969   if (!DL.isLegalInteger(NumBits))
5970     return nullptr;
5971 
5972   if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
5973     auto *ScalarTy = Builder.getIntNTy(NumBits);
5974     LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
5975     RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
5976     return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
5977                             I.getName());
5978   }
5979 
5980   return nullptr;
5981 }
5982 
5983 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5984   bool Changed = false;
5985   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5986   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5987   unsigned Op0Cplxity = getComplexity(Op0);
5988   unsigned Op1Cplxity = getComplexity(Op1);
5989 
5990   /// Orders the operands of the compare so that they are listed from most
5991   /// complex to least complex.  This puts constants before unary operators,
5992   /// before binary operators.
5993   if (Op0Cplxity < Op1Cplxity ||
5994       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5995     I.swapOperands();
5996     std::swap(Op0, Op1);
5997     Changed = true;
5998   }
5999 
6000   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
6001     return replaceInstUsesWith(I, V);
6002 
6003   // Comparing -val or val with non-zero is the same as just comparing val
6004   // ie, abs(val) != 0 -> val != 0
6005   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
6006     Value *Cond, *SelectTrue, *SelectFalse;
6007     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
6008                             m_Value(SelectFalse)))) {
6009       if (Value *V = dyn_castNegVal(SelectTrue)) {
6010         if (V == SelectFalse)
6011           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6012       }
6013       else if (Value *V = dyn_castNegVal(SelectFalse)) {
6014         if (V == SelectTrue)
6015           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6016       }
6017     }
6018   }
6019 
6020   if (Op0->getType()->isIntOrIntVectorTy(1))
6021     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
6022       return Res;
6023 
6024   if (Instruction *Res = canonicalizeCmpWithConstant(I))
6025     return Res;
6026 
6027   if (Instruction *Res = canonicalizeICmpPredicate(I))
6028     return Res;
6029 
6030   if (Instruction *Res = foldICmpWithConstant(I))
6031     return Res;
6032 
6033   if (Instruction *Res = foldICmpWithDominatingICmp(I))
6034     return Res;
6035 
6036   if (Instruction *Res = foldICmpUsingKnownBits(I))
6037     return Res;
6038 
6039   // Test if the ICmpInst instruction is used exclusively by a select as
6040   // part of a minimum or maximum operation. If so, refrain from doing
6041   // any other folding. This helps out other analyses which understand
6042   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6043   // and CodeGen. And in this case, at least one of the comparison
6044   // operands has at least one user besides the compare (the select),
6045   // which would often largely negate the benefit of folding anyway.
6046   //
6047   // Do the same for the other patterns recognized by matchSelectPattern.
6048   if (I.hasOneUse())
6049     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6050       Value *A, *B;
6051       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6052       if (SPR.Flavor != SPF_UNKNOWN)
6053         return nullptr;
6054     }
6055 
6056   // Do this after checking for min/max to prevent infinite looping.
6057   if (Instruction *Res = foldICmpWithZero(I))
6058     return Res;
6059 
6060   // FIXME: We only do this after checking for min/max to prevent infinite
6061   // looping caused by a reverse canonicalization of these patterns for min/max.
6062   // FIXME: The organization of folds is a mess. These would naturally go into
6063   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
6064   // down here after the min/max restriction.
6065   ICmpInst::Predicate Pred = I.getPredicate();
6066   const APInt *C;
6067   if (match(Op1, m_APInt(C))) {
6068     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
6069     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
6070       Constant *Zero = Constant::getNullValue(Op0->getType());
6071       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
6072     }
6073 
6074     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
6075     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
6076       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
6077       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
6078     }
6079   }
6080 
6081   // The folds in here may rely on wrapping flags and special constants, so
6082   // they can break up min/max idioms in some cases but not seemingly similar
6083   // patterns.
6084   // FIXME: It may be possible to enhance select folding to make this
6085   //        unnecessary. It may also be moot if we canonicalize to min/max
6086   //        intrinsics.
6087   if (Instruction *Res = foldICmpBinOp(I, Q))
6088     return Res;
6089 
6090   if (Instruction *Res = foldICmpInstWithConstant(I))
6091     return Res;
6092 
6093   // Try to match comparison as a sign bit test. Intentionally do this after
6094   // foldICmpInstWithConstant() to potentially let other folds to happen first.
6095   if (Instruction *New = foldSignBitTest(I))
6096     return New;
6097 
6098   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
6099     return Res;
6100 
6101   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6102   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6103     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6104       return NI;
6105   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6106     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6107       return NI;
6108 
6109   if (auto *SI = dyn_cast<SelectInst>(Op0))
6110     if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I))
6111       return NI;
6112   if (auto *SI = dyn_cast<SelectInst>(Op1))
6113     if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I))
6114       return NI;
6115 
6116   // Try to optimize equality comparisons against alloca-based pointers.
6117   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6118     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6119     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6120       if (Instruction *New = foldAllocaCmp(I, Alloca))
6121         return New;
6122     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6123       if (Instruction *New = foldAllocaCmp(I, Alloca))
6124         return New;
6125   }
6126 
6127   if (Instruction *Res = foldICmpBitCast(I))
6128     return Res;
6129 
6130   // TODO: Hoist this above the min/max bailout.
6131   if (Instruction *R = foldICmpWithCastOp(I))
6132     return R;
6133 
6134   if (Instruction *Res = foldICmpWithMinMax(I))
6135     return Res;
6136 
6137   {
6138     Value *A, *B;
6139     // Transform (A & ~B) == 0 --> (A & B) != 0
6140     // and       (A & ~B) != 0 --> (A & B) == 0
6141     // if A is a power of 2.
6142     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6143         match(Op1, m_Zero()) &&
6144         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6145       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6146                           Op1);
6147 
6148     // ~X < ~Y --> Y < X
6149     // ~X < C -->  X > ~C
6150     if (match(Op0, m_Not(m_Value(A)))) {
6151       if (match(Op1, m_Not(m_Value(B))))
6152         return new ICmpInst(I.getPredicate(), B, A);
6153 
6154       const APInt *C;
6155       if (match(Op1, m_APInt(C)))
6156         return new ICmpInst(I.getSwappedPredicate(), A,
6157                             ConstantInt::get(Op1->getType(), ~(*C)));
6158     }
6159 
6160     Instruction *AddI = nullptr;
6161     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6162                                      m_Instruction(AddI))) &&
6163         isa<IntegerType>(A->getType())) {
6164       Value *Result;
6165       Constant *Overflow;
6166       // m_UAddWithOverflow can match patterns that do not include  an explicit
6167       // "add" instruction, so check the opcode of the matched op.
6168       if (AddI->getOpcode() == Instruction::Add &&
6169           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6170                                 Result, Overflow)) {
6171         replaceInstUsesWith(*AddI, Result);
6172         eraseInstFromFunction(*AddI);
6173         return replaceInstUsesWith(I, Overflow);
6174       }
6175     }
6176 
6177     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6178     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6179       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6180         return R;
6181     }
6182     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6183       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6184         return R;
6185     }
6186   }
6187 
6188   if (Instruction *Res = foldICmpEquality(I))
6189     return Res;
6190 
6191   if (Instruction *Res = foldICmpOfUAddOv(I))
6192     return Res;
6193 
6194   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6195   // an i1 which indicates whether or not we successfully did the swap.
6196   //
6197   // Replace comparisons between the old value and the expected value with the
6198   // indicator that 'cmpxchg' returns.
6199   //
6200   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6201   // spuriously fail.  In those cases, the old value may equal the expected
6202   // value but it is possible for the swap to not occur.
6203   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6204     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6205       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6206         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6207             !ACXI->isWeak())
6208           return ExtractValueInst::Create(ACXI, 1);
6209 
6210   {
6211     Value *X;
6212     const APInt *C;
6213     // icmp X+Cst, X
6214     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6215       return foldICmpAddOpConst(X, *C, I.getPredicate());
6216 
6217     // icmp X, X+Cst
6218     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6219       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6220   }
6221 
6222   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6223     return Res;
6224 
6225   if (I.getType()->isVectorTy())
6226     if (Instruction *Res = foldVectorCmp(I, Builder))
6227       return Res;
6228 
6229   if (Instruction *Res = foldICmpInvariantGroup(I))
6230     return Res;
6231 
6232   if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
6233     return Res;
6234 
6235   return Changed ? &I : nullptr;
6236 }
6237 
6238 /// Fold fcmp ([us]itofp x, cst) if possible.
6239 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6240                                                     Instruction *LHSI,
6241                                                     Constant *RHSC) {
6242   if (!isa<ConstantFP>(RHSC)) return nullptr;
6243   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6244 
6245   // Get the width of the mantissa.  We don't want to hack on conversions that
6246   // might lose information from the integer, e.g. "i64 -> float"
6247   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6248   if (MantissaWidth == -1) return nullptr;  // Unknown.
6249 
6250   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6251 
6252   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6253 
6254   if (I.isEquality()) {
6255     FCmpInst::Predicate P = I.getPredicate();
6256     bool IsExact = false;
6257     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6258     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6259 
6260     // If the floating point constant isn't an integer value, we know if we will
6261     // ever compare equal / not equal to it.
6262     if (!IsExact) {
6263       // TODO: Can never be -0.0 and other non-representable values
6264       APFloat RHSRoundInt(RHS);
6265       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6266       if (RHS != RHSRoundInt) {
6267         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6268           return replaceInstUsesWith(I, Builder.getFalse());
6269 
6270         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6271         return replaceInstUsesWith(I, Builder.getTrue());
6272       }
6273     }
6274 
6275     // TODO: If the constant is exactly representable, is it always OK to do
6276     // equality compares as integer?
6277   }
6278 
6279   // Check to see that the input is converted from an integer type that is small
6280   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6281   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6282   unsigned InputSize = IntTy->getScalarSizeInBits();
6283 
6284   // Following test does NOT adjust InputSize downwards for signed inputs,
6285   // because the most negative value still requires all the mantissa bits
6286   // to distinguish it from one less than that value.
6287   if ((int)InputSize > MantissaWidth) {
6288     // Conversion would lose accuracy. Check if loss can impact comparison.
6289     int Exp = ilogb(RHS);
6290     if (Exp == APFloat::IEK_Inf) {
6291       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6292       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6293         // Conversion could create infinity.
6294         return nullptr;
6295     } else {
6296       // Note that if RHS is zero or NaN, then Exp is negative
6297       // and first condition is trivially false.
6298       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6299         // Conversion could affect comparison.
6300         return nullptr;
6301     }
6302   }
6303 
6304   // Otherwise, we can potentially simplify the comparison.  We know that it
6305   // will always come through as an integer value and we know the constant is
6306   // not a NAN (it would have been previously simplified).
6307   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6308 
6309   ICmpInst::Predicate Pred;
6310   switch (I.getPredicate()) {
6311   default: llvm_unreachable("Unexpected predicate!");
6312   case FCmpInst::FCMP_UEQ:
6313   case FCmpInst::FCMP_OEQ:
6314     Pred = ICmpInst::ICMP_EQ;
6315     break;
6316   case FCmpInst::FCMP_UGT:
6317   case FCmpInst::FCMP_OGT:
6318     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6319     break;
6320   case FCmpInst::FCMP_UGE:
6321   case FCmpInst::FCMP_OGE:
6322     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6323     break;
6324   case FCmpInst::FCMP_ULT:
6325   case FCmpInst::FCMP_OLT:
6326     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6327     break;
6328   case FCmpInst::FCMP_ULE:
6329   case FCmpInst::FCMP_OLE:
6330     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6331     break;
6332   case FCmpInst::FCMP_UNE:
6333   case FCmpInst::FCMP_ONE:
6334     Pred = ICmpInst::ICMP_NE;
6335     break;
6336   case FCmpInst::FCMP_ORD:
6337     return replaceInstUsesWith(I, Builder.getTrue());
6338   case FCmpInst::FCMP_UNO:
6339     return replaceInstUsesWith(I, Builder.getFalse());
6340   }
6341 
6342   // Now we know that the APFloat is a normal number, zero or inf.
6343 
6344   // See if the FP constant is too large for the integer.  For example,
6345   // comparing an i8 to 300.0.
6346   unsigned IntWidth = IntTy->getScalarSizeInBits();
6347 
6348   if (!LHSUnsigned) {
6349     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6350     // and large values.
6351     APFloat SMax(RHS.getSemantics());
6352     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6353                           APFloat::rmNearestTiesToEven);
6354     if (SMax < RHS) { // smax < 13123.0
6355       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6356           Pred == ICmpInst::ICMP_SLE)
6357         return replaceInstUsesWith(I, Builder.getTrue());
6358       return replaceInstUsesWith(I, Builder.getFalse());
6359     }
6360   } else {
6361     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6362     // +INF and large values.
6363     APFloat UMax(RHS.getSemantics());
6364     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6365                           APFloat::rmNearestTiesToEven);
6366     if (UMax < RHS) { // umax < 13123.0
6367       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6368           Pred == ICmpInst::ICMP_ULE)
6369         return replaceInstUsesWith(I, Builder.getTrue());
6370       return replaceInstUsesWith(I, Builder.getFalse());
6371     }
6372   }
6373 
6374   if (!LHSUnsigned) {
6375     // See if the RHS value is < SignedMin.
6376     APFloat SMin(RHS.getSemantics());
6377     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6378                           APFloat::rmNearestTiesToEven);
6379     if (SMin > RHS) { // smin > 12312.0
6380       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6381           Pred == ICmpInst::ICMP_SGE)
6382         return replaceInstUsesWith(I, Builder.getTrue());
6383       return replaceInstUsesWith(I, Builder.getFalse());
6384     }
6385   } else {
6386     // See if the RHS value is < UnsignedMin.
6387     APFloat UMin(RHS.getSemantics());
6388     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6389                           APFloat::rmNearestTiesToEven);
6390     if (UMin > RHS) { // umin > 12312.0
6391       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6392           Pred == ICmpInst::ICMP_UGE)
6393         return replaceInstUsesWith(I, Builder.getTrue());
6394       return replaceInstUsesWith(I, Builder.getFalse());
6395     }
6396   }
6397 
6398   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6399   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6400   // casting the FP value to the integer value and back, checking for equality.
6401   // Don't do this for zero, because -0.0 is not fractional.
6402   Constant *RHSInt = LHSUnsigned
6403     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6404     : ConstantExpr::getFPToSI(RHSC, IntTy);
6405   if (!RHS.isZero()) {
6406     bool Equal = LHSUnsigned
6407       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6408       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6409     if (!Equal) {
6410       // If we had a comparison against a fractional value, we have to adjust
6411       // the compare predicate and sometimes the value.  RHSC is rounded towards
6412       // zero at this point.
6413       switch (Pred) {
6414       default: llvm_unreachable("Unexpected integer comparison!");
6415       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6416         return replaceInstUsesWith(I, Builder.getTrue());
6417       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6418         return replaceInstUsesWith(I, Builder.getFalse());
6419       case ICmpInst::ICMP_ULE:
6420         // (float)int <= 4.4   --> int <= 4
6421         // (float)int <= -4.4  --> false
6422         if (RHS.isNegative())
6423           return replaceInstUsesWith(I, Builder.getFalse());
6424         break;
6425       case ICmpInst::ICMP_SLE:
6426         // (float)int <= 4.4   --> int <= 4
6427         // (float)int <= -4.4  --> int < -4
6428         if (RHS.isNegative())
6429           Pred = ICmpInst::ICMP_SLT;
6430         break;
6431       case ICmpInst::ICMP_ULT:
6432         // (float)int < -4.4   --> false
6433         // (float)int < 4.4    --> int <= 4
6434         if (RHS.isNegative())
6435           return replaceInstUsesWith(I, Builder.getFalse());
6436         Pred = ICmpInst::ICMP_ULE;
6437         break;
6438       case ICmpInst::ICMP_SLT:
6439         // (float)int < -4.4   --> int < -4
6440         // (float)int < 4.4    --> int <= 4
6441         if (!RHS.isNegative())
6442           Pred = ICmpInst::ICMP_SLE;
6443         break;
6444       case ICmpInst::ICMP_UGT:
6445         // (float)int > 4.4    --> int > 4
6446         // (float)int > -4.4   --> true
6447         if (RHS.isNegative())
6448           return replaceInstUsesWith(I, Builder.getTrue());
6449         break;
6450       case ICmpInst::ICMP_SGT:
6451         // (float)int > 4.4    --> int > 4
6452         // (float)int > -4.4   --> int >= -4
6453         if (RHS.isNegative())
6454           Pred = ICmpInst::ICMP_SGE;
6455         break;
6456       case ICmpInst::ICMP_UGE:
6457         // (float)int >= -4.4   --> true
6458         // (float)int >= 4.4    --> int > 4
6459         if (RHS.isNegative())
6460           return replaceInstUsesWith(I, Builder.getTrue());
6461         Pred = ICmpInst::ICMP_UGT;
6462         break;
6463       case ICmpInst::ICMP_SGE:
6464         // (float)int >= -4.4   --> int >= -4
6465         // (float)int >= 4.4    --> int > 4
6466         if (!RHS.isNegative())
6467           Pred = ICmpInst::ICMP_SGT;
6468         break;
6469       }
6470     }
6471   }
6472 
6473   // Lower this FP comparison into an appropriate integer version of the
6474   // comparison.
6475   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6476 }
6477 
6478 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6479 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6480                                               Constant *RHSC) {
6481   // When C is not 0.0 and infinities are not allowed:
6482   // (C / X) < 0.0 is a sign-bit test of X
6483   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6484   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6485   //
6486   // Proof:
6487   // Multiply (C / X) < 0.0 by X * X / C.
6488   // - X is non zero, if it is the flag 'ninf' is violated.
6489   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6490   //   the predicate. C is also non zero by definition.
6491   //
6492   // Thus X * X / C is non zero and the transformation is valid. [qed]
6493 
6494   FCmpInst::Predicate Pred = I.getPredicate();
6495 
6496   // Check that predicates are valid.
6497   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6498       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6499     return nullptr;
6500 
6501   // Check that RHS operand is zero.
6502   if (!match(RHSC, m_AnyZeroFP()))
6503     return nullptr;
6504 
6505   // Check fastmath flags ('ninf').
6506   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6507     return nullptr;
6508 
6509   // Check the properties of the dividend. It must not be zero to avoid a
6510   // division by zero (see Proof).
6511   const APFloat *C;
6512   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6513     return nullptr;
6514 
6515   if (C->isZero())
6516     return nullptr;
6517 
6518   // Get swapped predicate if necessary.
6519   if (C->isNegative())
6520     Pred = I.getSwappedPredicate();
6521 
6522   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6523 }
6524 
6525 /// Optimize fabs(X) compared with zero.
6526 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6527   Value *X;
6528   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6529       !match(I.getOperand(1), m_PosZeroFP()))
6530     return nullptr;
6531 
6532   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6533     I->setPredicate(P);
6534     return IC.replaceOperand(*I, 0, X);
6535   };
6536 
6537   switch (I.getPredicate()) {
6538   case FCmpInst::FCMP_UGE:
6539   case FCmpInst::FCMP_OLT:
6540     // fabs(X) >= 0.0 --> true
6541     // fabs(X) <  0.0 --> false
6542     llvm_unreachable("fcmp should have simplified");
6543 
6544   case FCmpInst::FCMP_OGT:
6545     // fabs(X) > 0.0 --> X != 0.0
6546     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6547 
6548   case FCmpInst::FCMP_UGT:
6549     // fabs(X) u> 0.0 --> X u!= 0.0
6550     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6551 
6552   case FCmpInst::FCMP_OLE:
6553     // fabs(X) <= 0.0 --> X == 0.0
6554     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6555 
6556   case FCmpInst::FCMP_ULE:
6557     // fabs(X) u<= 0.0 --> X u== 0.0
6558     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6559 
6560   case FCmpInst::FCMP_OGE:
6561     // fabs(X) >= 0.0 --> !isnan(X)
6562     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6563     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6564 
6565   case FCmpInst::FCMP_ULT:
6566     // fabs(X) u< 0.0 --> isnan(X)
6567     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6568     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6569 
6570   case FCmpInst::FCMP_OEQ:
6571   case FCmpInst::FCMP_UEQ:
6572   case FCmpInst::FCMP_ONE:
6573   case FCmpInst::FCMP_UNE:
6574   case FCmpInst::FCMP_ORD:
6575   case FCmpInst::FCMP_UNO:
6576     // Look through the fabs() because it doesn't change anything but the sign.
6577     // fabs(X) == 0.0 --> X == 0.0,
6578     // fabs(X) != 0.0 --> X != 0.0
6579     // isnan(fabs(X)) --> isnan(X)
6580     // !isnan(fabs(X) --> !isnan(X)
6581     return replacePredAndOp0(&I, I.getPredicate(), X);
6582 
6583   default:
6584     return nullptr;
6585   }
6586 }
6587 
6588 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) {
6589   CmpInst::Predicate Pred = I.getPredicate();
6590   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6591 
6592   // Canonicalize fneg as Op1.
6593   if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) {
6594     std::swap(Op0, Op1);
6595     Pred = I.getSwappedPredicate();
6596   }
6597 
6598   if (!match(Op1, m_FNeg(m_Specific(Op0))))
6599     return nullptr;
6600 
6601   // Replace the negated operand with 0.0:
6602   // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
6603   Constant *Zero = ConstantFP::getNullValue(Op0->getType());
6604   return new FCmpInst(Pred, Op0, Zero, "", &I);
6605 }
6606 
6607 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6608   bool Changed = false;
6609 
6610   /// Orders the operands of the compare so that they are listed from most
6611   /// complex to least complex.  This puts constants before unary operators,
6612   /// before binary operators.
6613   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6614     I.swapOperands();
6615     Changed = true;
6616   }
6617 
6618   const CmpInst::Predicate Pred = I.getPredicate();
6619   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6620   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6621                                   SQ.getWithInstruction(&I)))
6622     return replaceInstUsesWith(I, V);
6623 
6624   // Simplify 'fcmp pred X, X'
6625   Type *OpType = Op0->getType();
6626   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6627   if (Op0 == Op1) {
6628     switch (Pred) {
6629       default: break;
6630     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6631     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6632     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6633     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6634       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6635       I.setPredicate(FCmpInst::FCMP_UNO);
6636       I.setOperand(1, Constant::getNullValue(OpType));
6637       return &I;
6638 
6639     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6640     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6641     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6642     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6643       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6644       I.setPredicate(FCmpInst::FCMP_ORD);
6645       I.setOperand(1, Constant::getNullValue(OpType));
6646       return &I;
6647     }
6648   }
6649 
6650   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6651   // then canonicalize the operand to 0.0.
6652   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6653     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6654       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6655 
6656     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6657       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6658   }
6659 
6660   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6661   Value *X, *Y;
6662   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6663     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6664 
6665   if (Instruction *R = foldFCmpFNegCommonOp(I))
6666     return R;
6667 
6668   // Test if the FCmpInst instruction is used exclusively by a select as
6669   // part of a minimum or maximum operation. If so, refrain from doing
6670   // any other folding. This helps out other analyses which understand
6671   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6672   // and CodeGen. And in this case, at least one of the comparison
6673   // operands has at least one user besides the compare (the select),
6674   // which would often largely negate the benefit of folding anyway.
6675   if (I.hasOneUse())
6676     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6677       Value *A, *B;
6678       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6679       if (SPR.Flavor != SPF_UNKNOWN)
6680         return nullptr;
6681     }
6682 
6683   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6684   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6685   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6686     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6687 
6688   // Handle fcmp with instruction LHS and constant RHS.
6689   Instruction *LHSI;
6690   Constant *RHSC;
6691   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6692     switch (LHSI->getOpcode()) {
6693     case Instruction::PHI:
6694       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6695       // block.  If in the same block, we're encouraging jump threading.  If
6696       // not, we are just pessimizing the code by making an i1 phi.
6697       if (LHSI->getParent() == I.getParent())
6698         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6699           return NV;
6700       break;
6701     case Instruction::SIToFP:
6702     case Instruction::UIToFP:
6703       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6704         return NV;
6705       break;
6706     case Instruction::FDiv:
6707       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6708         return NV;
6709       break;
6710     case Instruction::Load:
6711       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6712         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6713           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
6714                   cast<LoadInst>(LHSI), GEP, GV, I))
6715             return Res;
6716       break;
6717   }
6718   }
6719 
6720   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6721     return R;
6722 
6723   if (match(Op0, m_FNeg(m_Value(X)))) {
6724     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6725     Constant *C;
6726     if (match(Op1, m_Constant(C))) {
6727       Constant *NegC = ConstantExpr::getFNeg(C);
6728       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6729     }
6730   }
6731 
6732   if (match(Op0, m_FPExt(m_Value(X)))) {
6733     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6734     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6735       return new FCmpInst(Pred, X, Y, "", &I);
6736 
6737     const APFloat *C;
6738     if (match(Op1, m_APFloat(C))) {
6739       const fltSemantics &FPSem =
6740           X->getType()->getScalarType()->getFltSemantics();
6741       bool Lossy;
6742       APFloat TruncC = *C;
6743       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6744 
6745       if (Lossy) {
6746         // X can't possibly equal the higher-precision constant, so reduce any
6747         // equality comparison.
6748         // TODO: Other predicates can be handled via getFCmpCode().
6749         switch (Pred) {
6750         case FCmpInst::FCMP_OEQ:
6751           // X is ordered and equal to an impossible constant --> false
6752           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6753         case FCmpInst::FCMP_ONE:
6754           // X is ordered and not equal to an impossible constant --> ordered
6755           return new FCmpInst(FCmpInst::FCMP_ORD, X,
6756                               ConstantFP::getNullValue(X->getType()));
6757         case FCmpInst::FCMP_UEQ:
6758           // X is unordered or equal to an impossible constant --> unordered
6759           return new FCmpInst(FCmpInst::FCMP_UNO, X,
6760                               ConstantFP::getNullValue(X->getType()));
6761         case FCmpInst::FCMP_UNE:
6762           // X is unordered or not equal to an impossible constant --> true
6763           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6764         default:
6765           break;
6766         }
6767       }
6768 
6769       // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6770       // Avoid lossy conversions and denormals.
6771       // Zero is a special case that's OK to convert.
6772       APFloat Fabs = TruncC;
6773       Fabs.clearSign();
6774       if (!Lossy &&
6775           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6776         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6777         return new FCmpInst(Pred, X, NewC, "", &I);
6778       }
6779     }
6780   }
6781 
6782   // Convert a sign-bit test of an FP value into a cast and integer compare.
6783   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6784   // TODO: Handle non-zero compare constants.
6785   // TODO: Handle other predicates.
6786   const APFloat *C;
6787   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6788                                                            m_Value(X)))) &&
6789       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6790     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6791     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6792       IntType = VectorType::get(IntType, VecTy->getElementCount());
6793 
6794     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6795     if (Pred == FCmpInst::FCMP_OLT) {
6796       Value *IntX = Builder.CreateBitCast(X, IntType);
6797       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6798                           ConstantInt::getNullValue(IntType));
6799     }
6800   }
6801 
6802   if (I.getType()->isVectorTy())
6803     if (Instruction *Res = foldVectorCmp(I, Builder))
6804       return Res;
6805 
6806   return Changed ? &I : nullptr;
6807 }
6808