1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isZero()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOne()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnes()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// This is called when we see this pattern: 99 /// cmp pred (load (gep GV, ...)), cmpcst 100 /// where GV is a global variable with a constant initializer. Try to simplify 101 /// this into some simple computation that does not need the load. For example 102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 103 /// 104 /// If AndCst is non-null, then the loaded value is masked with that constant 105 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 107 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 108 ConstantInt *AndCst) { 109 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 110 GV->getValueType() != GEP->getSourceElementType() || 111 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 112 return nullptr; 113 114 Constant *Init = GV->getInitializer(); 115 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 116 return nullptr; 117 118 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 119 // Don't blow up on huge arrays. 120 if (ArrayElementCount > MaxArraySizeForCombine) 121 return nullptr; 122 123 // There are many forms of this optimization we can handle, for now, just do 124 // the simple index into a single-dimensional array. 125 // 126 // Require: GEP GV, 0, i {{, constant indices}} 127 if (GEP->getNumOperands() < 3 || 128 !isa<ConstantInt>(GEP->getOperand(1)) || 129 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 130 isa<Constant>(GEP->getOperand(2))) 131 return nullptr; 132 133 // Check that indices after the variable are constants and in-range for the 134 // type they index. Collect the indices. This is typically for arrays of 135 // structs. 136 SmallVector<unsigned, 4> LaterIndices; 137 138 Type *EltTy = Init->getType()->getArrayElementType(); 139 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 140 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 141 if (!Idx) return nullptr; // Variable index. 142 143 uint64_t IdxVal = Idx->getZExtValue(); 144 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 145 146 if (StructType *STy = dyn_cast<StructType>(EltTy)) 147 EltTy = STy->getElementType(IdxVal); 148 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 149 if (IdxVal >= ATy->getNumElements()) return nullptr; 150 EltTy = ATy->getElementType(); 151 } else { 152 return nullptr; // Unknown type. 153 } 154 155 LaterIndices.push_back(IdxVal); 156 } 157 158 enum { Overdefined = -3, Undefined = -2 }; 159 160 // Variables for our state machines. 161 162 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 163 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 164 // and 87 is the second (and last) index. FirstTrueElement is -2 when 165 // undefined, otherwise set to the first true element. SecondTrueElement is 166 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 167 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 168 169 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 170 // form "i != 47 & i != 87". Same state transitions as for true elements. 171 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 172 173 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 174 /// define a state machine that triggers for ranges of values that the index 175 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 176 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 177 /// index in the range (inclusive). We use -2 for undefined here because we 178 /// use relative comparisons and don't want 0-1 to match -1. 179 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 180 181 // MagicBitvector - This is a magic bitvector where we set a bit if the 182 // comparison is true for element 'i'. If there are 64 elements or less in 183 // the array, this will fully represent all the comparison results. 184 uint64_t MagicBitvector = 0; 185 186 // Scan the array and see if one of our patterns matches. 187 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 188 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 189 Constant *Elt = Init->getAggregateElement(i); 190 if (!Elt) return nullptr; 191 192 // If this is indexing an array of structures, get the structure element. 193 if (!LaterIndices.empty()) 194 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 195 196 // If the element is masked, handle it. 197 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 198 199 // Find out if the comparison would be true or false for the i'th element. 200 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 201 CompareRHS, DL, &TLI); 202 // If the result is undef for this element, ignore it. 203 if (isa<UndefValue>(C)) { 204 // Extend range state machines to cover this element in case there is an 205 // undef in the middle of the range. 206 if (TrueRangeEnd == (int)i-1) 207 TrueRangeEnd = i; 208 if (FalseRangeEnd == (int)i-1) 209 FalseRangeEnd = i; 210 continue; 211 } 212 213 // If we can't compute the result for any of the elements, we have to give 214 // up evaluating the entire conditional. 215 if (!isa<ConstantInt>(C)) return nullptr; 216 217 // Otherwise, we know if the comparison is true or false for this element, 218 // update our state machines. 219 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 220 221 // State machine for single/double/range index comparison. 222 if (IsTrueForElt) { 223 // Update the TrueElement state machine. 224 if (FirstTrueElement == Undefined) 225 FirstTrueElement = TrueRangeEnd = i; // First true element. 226 else { 227 // Update double-compare state machine. 228 if (SecondTrueElement == Undefined) 229 SecondTrueElement = i; 230 else 231 SecondTrueElement = Overdefined; 232 233 // Update range state machine. 234 if (TrueRangeEnd == (int)i-1) 235 TrueRangeEnd = i; 236 else 237 TrueRangeEnd = Overdefined; 238 } 239 } else { 240 // Update the FalseElement state machine. 241 if (FirstFalseElement == Undefined) 242 FirstFalseElement = FalseRangeEnd = i; // First false element. 243 else { 244 // Update double-compare state machine. 245 if (SecondFalseElement == Undefined) 246 SecondFalseElement = i; 247 else 248 SecondFalseElement = Overdefined; 249 250 // Update range state machine. 251 if (FalseRangeEnd == (int)i-1) 252 FalseRangeEnd = i; 253 else 254 FalseRangeEnd = Overdefined; 255 } 256 } 257 258 // If this element is in range, update our magic bitvector. 259 if (i < 64 && IsTrueForElt) 260 MagicBitvector |= 1ULL << i; 261 262 // If all of our states become overdefined, bail out early. Since the 263 // predicate is expensive, only check it every 8 elements. This is only 264 // really useful for really huge arrays. 265 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 266 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 267 FalseRangeEnd == Overdefined) 268 return nullptr; 269 } 270 271 // Now that we've scanned the entire array, emit our new comparison(s). We 272 // order the state machines in complexity of the generated code. 273 Value *Idx = GEP->getOperand(2); 274 275 // If the index is larger than the pointer size of the target, truncate the 276 // index down like the GEP would do implicitly. We don't have to do this for 277 // an inbounds GEP because the index can't be out of range. 278 if (!GEP->isInBounds()) { 279 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 280 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 281 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 282 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 283 } 284 285 // If inbounds keyword is not present, Idx * ElementSize can overflow. 286 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 287 // Then, there are two possible values for Idx to match offset 0: 288 // 0x00..00, 0x80..00. 289 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 290 // comparison is false if Idx was 0x80..00. 291 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 292 unsigned ElementSize = 293 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 294 auto MaskIdx = [&](Value* Idx){ 295 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 296 Value *Mask = ConstantInt::get(Idx->getType(), -1); 297 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 298 Idx = Builder.CreateAnd(Idx, Mask); 299 } 300 return Idx; 301 }; 302 303 // If the comparison is only true for one or two elements, emit direct 304 // comparisons. 305 if (SecondTrueElement != Overdefined) { 306 Idx = MaskIdx(Idx); 307 // None true -> false. 308 if (FirstTrueElement == Undefined) 309 return replaceInstUsesWith(ICI, Builder.getFalse()); 310 311 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 312 313 // True for one element -> 'i == 47'. 314 if (SecondTrueElement == Undefined) 315 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 316 317 // True for two elements -> 'i == 47 | i == 72'. 318 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 319 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 320 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 321 return BinaryOperator::CreateOr(C1, C2); 322 } 323 324 // If the comparison is only false for one or two elements, emit direct 325 // comparisons. 326 if (SecondFalseElement != Overdefined) { 327 Idx = MaskIdx(Idx); 328 // None false -> true. 329 if (FirstFalseElement == Undefined) 330 return replaceInstUsesWith(ICI, Builder.getTrue()); 331 332 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 333 334 // False for one element -> 'i != 47'. 335 if (SecondFalseElement == Undefined) 336 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 337 338 // False for two elements -> 'i != 47 & i != 72'. 339 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 340 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 341 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 342 return BinaryOperator::CreateAnd(C1, C2); 343 } 344 345 // If the comparison can be replaced with a range comparison for the elements 346 // where it is true, emit the range check. 347 if (TrueRangeEnd != Overdefined) { 348 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 349 Idx = MaskIdx(Idx); 350 351 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 352 if (FirstTrueElement) { 353 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 354 Idx = Builder.CreateAdd(Idx, Offs); 355 } 356 357 Value *End = ConstantInt::get(Idx->getType(), 358 TrueRangeEnd-FirstTrueElement+1); 359 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 360 } 361 362 // False range check. 363 if (FalseRangeEnd != Overdefined) { 364 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 365 Idx = MaskIdx(Idx); 366 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 367 if (FirstFalseElement) { 368 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 369 Idx = Builder.CreateAdd(Idx, Offs); 370 } 371 372 Value *End = ConstantInt::get(Idx->getType(), 373 FalseRangeEnd-FirstFalseElement); 374 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 375 } 376 377 // If a magic bitvector captures the entire comparison state 378 // of this load, replace it with computation that does: 379 // ((magic_cst >> i) & 1) != 0 380 { 381 Type *Ty = nullptr; 382 383 // Look for an appropriate type: 384 // - The type of Idx if the magic fits 385 // - The smallest fitting legal type 386 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 387 Ty = Idx->getType(); 388 else 389 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 390 391 if (Ty) { 392 Idx = MaskIdx(Idx); 393 Value *V = Builder.CreateIntCast(Idx, Ty, false); 394 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 395 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 396 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 397 } 398 } 399 400 return nullptr; 401 } 402 403 /// Return a value that can be used to compare the *offset* implied by a GEP to 404 /// zero. For example, if we have &A[i], we want to return 'i' for 405 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 406 /// are involved. The above expression would also be legal to codegen as 407 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 408 /// This latter form is less amenable to optimization though, and we are allowed 409 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 410 /// 411 /// If we can't emit an optimized form for this expression, this returns null. 412 /// 413 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 414 const DataLayout &DL) { 415 gep_type_iterator GTI = gep_type_begin(GEP); 416 417 // Check to see if this gep only has a single variable index. If so, and if 418 // any constant indices are a multiple of its scale, then we can compute this 419 // in terms of the scale of the variable index. For example, if the GEP 420 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 421 // because the expression will cross zero at the same point. 422 unsigned i, e = GEP->getNumOperands(); 423 int64_t Offset = 0; 424 for (i = 1; i != e; ++i, ++GTI) { 425 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 426 // Compute the aggregate offset of constant indices. 427 if (CI->isZero()) continue; 428 429 // Handle a struct index, which adds its field offset to the pointer. 430 if (StructType *STy = GTI.getStructTypeOrNull()) { 431 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 432 } else { 433 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 434 Offset += Size*CI->getSExtValue(); 435 } 436 } else { 437 // Found our variable index. 438 break; 439 } 440 } 441 442 // If there are no variable indices, we must have a constant offset, just 443 // evaluate it the general way. 444 if (i == e) return nullptr; 445 446 Value *VariableIdx = GEP->getOperand(i); 447 // Determine the scale factor of the variable element. For example, this is 448 // 4 if the variable index is into an array of i32. 449 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 450 451 // Verify that there are no other variable indices. If so, emit the hard way. 452 for (++i, ++GTI; i != e; ++i, ++GTI) { 453 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 454 if (!CI) return nullptr; 455 456 // Compute the aggregate offset of constant indices. 457 if (CI->isZero()) continue; 458 459 // Handle a struct index, which adds its field offset to the pointer. 460 if (StructType *STy = GTI.getStructTypeOrNull()) { 461 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 462 } else { 463 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 464 Offset += Size*CI->getSExtValue(); 465 } 466 } 467 468 // Okay, we know we have a single variable index, which must be a 469 // pointer/array/vector index. If there is no offset, life is simple, return 470 // the index. 471 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 472 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 473 if (Offset == 0) { 474 // Cast to intptrty in case a truncation occurs. If an extension is needed, 475 // we don't need to bother extending: the extension won't affect where the 476 // computation crosses zero. 477 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 478 IntPtrWidth) { 479 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 480 } 481 return VariableIdx; 482 } 483 484 // Otherwise, there is an index. The computation we will do will be modulo 485 // the pointer size. 486 Offset = SignExtend64(Offset, IntPtrWidth); 487 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 488 489 // To do this transformation, any constant index must be a multiple of the 490 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 491 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 492 // multiple of the variable scale. 493 int64_t NewOffs = Offset / (int64_t)VariableScale; 494 if (Offset != NewOffs*(int64_t)VariableScale) 495 return nullptr; 496 497 // Okay, we can do this evaluation. Start by converting the index to intptr. 498 if (VariableIdx->getType() != IntPtrTy) 499 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 500 true /*Signed*/); 501 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 502 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 503 } 504 505 /// Returns true if we can rewrite Start as a GEP with pointer Base 506 /// and some integer offset. The nodes that need to be re-written 507 /// for this transformation will be added to Explored. 508 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 509 const DataLayout &DL, 510 SetVector<Value *> &Explored) { 511 SmallVector<Value *, 16> WorkList(1, Start); 512 Explored.insert(Base); 513 514 // The following traversal gives us an order which can be used 515 // when doing the final transformation. Since in the final 516 // transformation we create the PHI replacement instructions first, 517 // we don't have to get them in any particular order. 518 // 519 // However, for other instructions we will have to traverse the 520 // operands of an instruction first, which means that we have to 521 // do a post-order traversal. 522 while (!WorkList.empty()) { 523 SetVector<PHINode *> PHIs; 524 525 while (!WorkList.empty()) { 526 if (Explored.size() >= 100) 527 return false; 528 529 Value *V = WorkList.back(); 530 531 if (Explored.contains(V)) { 532 WorkList.pop_back(); 533 continue; 534 } 535 536 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 537 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 538 // We've found some value that we can't explore which is different from 539 // the base. Therefore we can't do this transformation. 540 return false; 541 542 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 543 auto *CI = cast<CastInst>(V); 544 if (!CI->isNoopCast(DL)) 545 return false; 546 547 if (!Explored.contains(CI->getOperand(0))) 548 WorkList.push_back(CI->getOperand(0)); 549 } 550 551 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 552 // We're limiting the GEP to having one index. This will preserve 553 // the original pointer type. We could handle more cases in the 554 // future. 555 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 556 GEP->getSourceElementType() != ElemTy) 557 return false; 558 559 if (!Explored.contains(GEP->getOperand(0))) 560 WorkList.push_back(GEP->getOperand(0)); 561 } 562 563 if (WorkList.back() == V) { 564 WorkList.pop_back(); 565 // We've finished visiting this node, mark it as such. 566 Explored.insert(V); 567 } 568 569 if (auto *PN = dyn_cast<PHINode>(V)) { 570 // We cannot transform PHIs on unsplittable basic blocks. 571 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 572 return false; 573 Explored.insert(PN); 574 PHIs.insert(PN); 575 } 576 } 577 578 // Explore the PHI nodes further. 579 for (auto *PN : PHIs) 580 for (Value *Op : PN->incoming_values()) 581 if (!Explored.contains(Op)) 582 WorkList.push_back(Op); 583 } 584 585 // Make sure that we can do this. Since we can't insert GEPs in a basic 586 // block before a PHI node, we can't easily do this transformation if 587 // we have PHI node users of transformed instructions. 588 for (Value *Val : Explored) { 589 for (Value *Use : Val->uses()) { 590 591 auto *PHI = dyn_cast<PHINode>(Use); 592 auto *Inst = dyn_cast<Instruction>(Val); 593 594 if (Inst == Base || Inst == PHI || !Inst || !PHI || 595 !Explored.contains(PHI)) 596 continue; 597 598 if (PHI->getParent() == Inst->getParent()) 599 return false; 600 } 601 } 602 return true; 603 } 604 605 // Sets the appropriate insert point on Builder where we can add 606 // a replacement Instruction for V (if that is possible). 607 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 608 bool Before = true) { 609 if (auto *PHI = dyn_cast<PHINode>(V)) { 610 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 611 return; 612 } 613 if (auto *I = dyn_cast<Instruction>(V)) { 614 if (!Before) 615 I = &*std::next(I->getIterator()); 616 Builder.SetInsertPoint(I); 617 return; 618 } 619 if (auto *A = dyn_cast<Argument>(V)) { 620 // Set the insertion point in the entry block. 621 BasicBlock &Entry = A->getParent()->getEntryBlock(); 622 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 623 return; 624 } 625 // Otherwise, this is a constant and we don't need to set a new 626 // insertion point. 627 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 628 } 629 630 /// Returns a re-written value of Start as an indexed GEP using Base as a 631 /// pointer. 632 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 633 const DataLayout &DL, 634 SetVector<Value *> &Explored) { 635 // Perform all the substitutions. This is a bit tricky because we can 636 // have cycles in our use-def chains. 637 // 1. Create the PHI nodes without any incoming values. 638 // 2. Create all the other values. 639 // 3. Add the edges for the PHI nodes. 640 // 4. Emit GEPs to get the original pointers. 641 // 5. Remove the original instructions. 642 Type *IndexType = IntegerType::get( 643 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 644 645 DenseMap<Value *, Value *> NewInsts; 646 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 647 648 // Create the new PHI nodes, without adding any incoming values. 649 for (Value *Val : Explored) { 650 if (Val == Base) 651 continue; 652 // Create empty phi nodes. This avoids cyclic dependencies when creating 653 // the remaining instructions. 654 if (auto *PHI = dyn_cast<PHINode>(Val)) 655 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 656 PHI->getName() + ".idx", PHI); 657 } 658 IRBuilder<> Builder(Base->getContext()); 659 660 // Create all the other instructions. 661 for (Value *Val : Explored) { 662 663 if (NewInsts.find(Val) != NewInsts.end()) 664 continue; 665 666 if (auto *CI = dyn_cast<CastInst>(Val)) { 667 // Don't get rid of the intermediate variable here; the store can grow 668 // the map which will invalidate the reference to the input value. 669 Value *V = NewInsts[CI->getOperand(0)]; 670 NewInsts[CI] = V; 671 continue; 672 } 673 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 674 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 675 : GEP->getOperand(1); 676 setInsertionPoint(Builder, GEP); 677 // Indices might need to be sign extended. GEPs will magically do 678 // this, but we need to do it ourselves here. 679 if (Index->getType()->getScalarSizeInBits() != 680 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 681 Index = Builder.CreateSExtOrTrunc( 682 Index, NewInsts[GEP->getOperand(0)]->getType(), 683 GEP->getOperand(0)->getName() + ".sext"); 684 } 685 686 auto *Op = NewInsts[GEP->getOperand(0)]; 687 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 688 NewInsts[GEP] = Index; 689 else 690 NewInsts[GEP] = Builder.CreateNSWAdd( 691 Op, Index, GEP->getOperand(0)->getName() + ".add"); 692 continue; 693 } 694 if (isa<PHINode>(Val)) 695 continue; 696 697 llvm_unreachable("Unexpected instruction type"); 698 } 699 700 // Add the incoming values to the PHI nodes. 701 for (Value *Val : Explored) { 702 if (Val == Base) 703 continue; 704 // All the instructions have been created, we can now add edges to the 705 // phi nodes. 706 if (auto *PHI = dyn_cast<PHINode>(Val)) { 707 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 708 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 709 Value *NewIncoming = PHI->getIncomingValue(I); 710 711 if (NewInsts.find(NewIncoming) != NewInsts.end()) 712 NewIncoming = NewInsts[NewIncoming]; 713 714 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 715 } 716 } 717 } 718 719 PointerType *PtrTy = 720 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 721 for (Value *Val : Explored) { 722 if (Val == Base) 723 continue; 724 725 // Depending on the type, for external users we have to emit 726 // a GEP or a GEP + ptrtoint. 727 setInsertionPoint(Builder, Val, false); 728 729 // Cast base to the expected type. 730 Value *NewVal = Builder.CreateBitOrPointerCast( 731 Base, PtrTy, Start->getName() + "to.ptr"); 732 NewVal = Builder.CreateInBoundsGEP( 733 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 734 NewVal = Builder.CreateBitOrPointerCast( 735 NewVal, Val->getType(), Val->getName() + ".conv"); 736 Val->replaceAllUsesWith(NewVal); 737 } 738 739 return NewInsts[Start]; 740 } 741 742 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 743 /// the input Value as a constant indexed GEP. Returns a pair containing 744 /// the GEPs Pointer and Index. 745 static std::pair<Value *, Value *> 746 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 747 Type *IndexType = IntegerType::get(V->getContext(), 748 DL.getIndexTypeSizeInBits(V->getType())); 749 750 Constant *Index = ConstantInt::getNullValue(IndexType); 751 while (true) { 752 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 753 // We accept only inbouds GEPs here to exclude the possibility of 754 // overflow. 755 if (!GEP->isInBounds()) 756 break; 757 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 758 GEP->getSourceElementType() == ElemTy) { 759 V = GEP->getOperand(0); 760 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 761 Index = ConstantExpr::getAdd( 762 Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType)); 763 continue; 764 } 765 break; 766 } 767 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 768 if (!CI->isNoopCast(DL)) 769 break; 770 V = CI->getOperand(0); 771 continue; 772 } 773 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 774 if (!CI->isNoopCast(DL)) 775 break; 776 V = CI->getOperand(0); 777 continue; 778 } 779 break; 780 } 781 return {V, Index}; 782 } 783 784 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 785 /// We can look through PHIs, GEPs and casts in order to determine a common base 786 /// between GEPLHS and RHS. 787 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 788 ICmpInst::Predicate Cond, 789 const DataLayout &DL) { 790 // FIXME: Support vector of pointers. 791 if (GEPLHS->getType()->isVectorTy()) 792 return nullptr; 793 794 if (!GEPLHS->hasAllConstantIndices()) 795 return nullptr; 796 797 Type *ElemTy = GEPLHS->getSourceElementType(); 798 Value *PtrBase, *Index; 799 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 800 801 // The set of nodes that will take part in this transformation. 802 SetVector<Value *> Nodes; 803 804 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 805 return nullptr; 806 807 // We know we can re-write this as 808 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 809 // Since we've only looked through inbouds GEPs we know that we 810 // can't have overflow on either side. We can therefore re-write 811 // this as: 812 // OFFSET1 cmp OFFSET2 813 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 814 815 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 816 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 817 // offset. Since Index is the offset of LHS to the base pointer, we will now 818 // compare the offsets instead of comparing the pointers. 819 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 820 } 821 822 /// Fold comparisons between a GEP instruction and something else. At this point 823 /// we know that the GEP is on the LHS of the comparison. 824 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 825 ICmpInst::Predicate Cond, 826 Instruction &I) { 827 // Don't transform signed compares of GEPs into index compares. Even if the 828 // GEP is inbounds, the final add of the base pointer can have signed overflow 829 // and would change the result of the icmp. 830 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 831 // the maximum signed value for the pointer type. 832 if (ICmpInst::isSigned(Cond)) 833 return nullptr; 834 835 // Look through bitcasts and addrspacecasts. We do not however want to remove 836 // 0 GEPs. 837 if (!isa<GetElementPtrInst>(RHS)) 838 RHS = RHS->stripPointerCasts(); 839 840 Value *PtrBase = GEPLHS->getOperand(0); 841 // FIXME: Support vector pointer GEPs. 842 if (PtrBase == RHS && GEPLHS->isInBounds() && 843 !GEPLHS->getType()->isVectorTy()) { 844 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 845 // This transformation (ignoring the base and scales) is valid because we 846 // know pointers can't overflow since the gep is inbounds. See if we can 847 // output an optimized form. 848 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 849 850 // If not, synthesize the offset the hard way. 851 if (!Offset) 852 Offset = EmitGEPOffset(GEPLHS); 853 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 854 Constant::getNullValue(Offset->getType())); 855 } 856 857 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 858 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 859 !NullPointerIsDefined(I.getFunction(), 860 RHS->getType()->getPointerAddressSpace())) { 861 // For most address spaces, an allocation can't be placed at null, but null 862 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 863 // the only valid inbounds address derived from null, is null itself. 864 // Thus, we have four cases to consider: 865 // 1) Base == nullptr, Offset == 0 -> inbounds, null 866 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 867 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 868 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 869 // 870 // (Note if we're indexing a type of size 0, that simply collapses into one 871 // of the buckets above.) 872 // 873 // In general, we're allowed to make values less poison (i.e. remove 874 // sources of full UB), so in this case, we just select between the two 875 // non-poison cases (1 and 4 above). 876 // 877 // For vectors, we apply the same reasoning on a per-lane basis. 878 auto *Base = GEPLHS->getPointerOperand(); 879 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 880 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 881 Base = Builder.CreateVectorSplat(EC, Base); 882 } 883 return new ICmpInst(Cond, Base, 884 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 885 cast<Constant>(RHS), Base->getType())); 886 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 887 // If the base pointers are different, but the indices are the same, just 888 // compare the base pointer. 889 if (PtrBase != GEPRHS->getOperand(0)) { 890 bool IndicesTheSame = 891 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 892 GEPLHS->getType() == GEPRHS->getType() && 893 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 894 if (IndicesTheSame) 895 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 896 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 897 IndicesTheSame = false; 898 break; 899 } 900 901 // If all indices are the same, just compare the base pointers. 902 Type *BaseType = GEPLHS->getOperand(0)->getType(); 903 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 904 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 905 906 // If we're comparing GEPs with two base pointers that only differ in type 907 // and both GEPs have only constant indices or just one use, then fold 908 // the compare with the adjusted indices. 909 // FIXME: Support vector of pointers. 910 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 911 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 912 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 913 PtrBase->stripPointerCasts() == 914 GEPRHS->getOperand(0)->stripPointerCasts() && 915 !GEPLHS->getType()->isVectorTy()) { 916 Value *LOffset = EmitGEPOffset(GEPLHS); 917 Value *ROffset = EmitGEPOffset(GEPRHS); 918 919 // If we looked through an addrspacecast between different sized address 920 // spaces, the LHS and RHS pointers are different sized 921 // integers. Truncate to the smaller one. 922 Type *LHSIndexTy = LOffset->getType(); 923 Type *RHSIndexTy = ROffset->getType(); 924 if (LHSIndexTy != RHSIndexTy) { 925 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 926 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 927 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 928 } else 929 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 930 } 931 932 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 933 LOffset, ROffset); 934 return replaceInstUsesWith(I, Cmp); 935 } 936 937 // Otherwise, the base pointers are different and the indices are 938 // different. Try convert this to an indexed compare by looking through 939 // PHIs/casts. 940 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 941 } 942 943 // If one of the GEPs has all zero indices, recurse. 944 // FIXME: Handle vector of pointers. 945 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 946 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 947 ICmpInst::getSwappedPredicate(Cond), I); 948 949 // If the other GEP has all zero indices, recurse. 950 // FIXME: Handle vector of pointers. 951 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 952 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 953 954 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 955 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 956 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 957 // If the GEPs only differ by one index, compare it. 958 unsigned NumDifferences = 0; // Keep track of # differences. 959 unsigned DiffOperand = 0; // The operand that differs. 960 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 961 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 962 Type *LHSType = GEPLHS->getOperand(i)->getType(); 963 Type *RHSType = GEPRHS->getOperand(i)->getType(); 964 // FIXME: Better support for vector of pointers. 965 if (LHSType->getPrimitiveSizeInBits() != 966 RHSType->getPrimitiveSizeInBits() || 967 (GEPLHS->getType()->isVectorTy() && 968 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 969 // Irreconcilable differences. 970 NumDifferences = 2; 971 break; 972 } 973 974 if (NumDifferences++) break; 975 DiffOperand = i; 976 } 977 978 if (NumDifferences == 0) // SAME GEP? 979 return replaceInstUsesWith(I, // No comparison is needed here. 980 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 981 982 else if (NumDifferences == 1 && GEPsInBounds) { 983 Value *LHSV = GEPLHS->getOperand(DiffOperand); 984 Value *RHSV = GEPRHS->getOperand(DiffOperand); 985 // Make sure we do a signed comparison here. 986 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 987 } 988 } 989 990 // Only lower this if the icmp is the only user of the GEP or if we expect 991 // the result to fold to a constant! 992 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 993 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 994 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 995 Value *L = EmitGEPOffset(GEPLHS); 996 Value *R = EmitGEPOffset(GEPRHS); 997 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 998 } 999 } 1000 1001 // Try convert this to an indexed compare by looking through PHIs/casts as a 1002 // last resort. 1003 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1004 } 1005 1006 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1007 const AllocaInst *Alloca) { 1008 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1009 1010 // It would be tempting to fold away comparisons between allocas and any 1011 // pointer not based on that alloca (e.g. an argument). However, even 1012 // though such pointers cannot alias, they can still compare equal. 1013 // 1014 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1015 // doesn't escape we can argue that it's impossible to guess its value, and we 1016 // can therefore act as if any such guesses are wrong. 1017 // 1018 // The code below checks that the alloca doesn't escape, and that it's only 1019 // used in a comparison once (the current instruction). The 1020 // single-comparison-use condition ensures that we're trivially folding all 1021 // comparisons against the alloca consistently, and avoids the risk of 1022 // erroneously folding a comparison of the pointer with itself. 1023 1024 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1025 1026 SmallVector<const Use *, 32> Worklist; 1027 for (const Use &U : Alloca->uses()) { 1028 if (Worklist.size() >= MaxIter) 1029 return nullptr; 1030 Worklist.push_back(&U); 1031 } 1032 1033 unsigned NumCmps = 0; 1034 while (!Worklist.empty()) { 1035 assert(Worklist.size() <= MaxIter); 1036 const Use *U = Worklist.pop_back_val(); 1037 const Value *V = U->getUser(); 1038 --MaxIter; 1039 1040 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1041 isa<SelectInst>(V)) { 1042 // Track the uses. 1043 } else if (isa<LoadInst>(V)) { 1044 // Loading from the pointer doesn't escape it. 1045 continue; 1046 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1047 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1048 if (SI->getValueOperand() == U->get()) 1049 return nullptr; 1050 continue; 1051 } else if (isa<ICmpInst>(V)) { 1052 if (NumCmps++) 1053 return nullptr; // Found more than one cmp. 1054 continue; 1055 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1056 switch (Intrin->getIntrinsicID()) { 1057 // These intrinsics don't escape or compare the pointer. Memset is safe 1058 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1059 // we don't allow stores, so src cannot point to V. 1060 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1061 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1062 continue; 1063 default: 1064 return nullptr; 1065 } 1066 } else { 1067 return nullptr; 1068 } 1069 for (const Use &U : V->uses()) { 1070 if (Worklist.size() >= MaxIter) 1071 return nullptr; 1072 Worklist.push_back(&U); 1073 } 1074 } 1075 1076 auto *Res = ConstantInt::get(ICI.getType(), 1077 !CmpInst::isTrueWhenEqual(ICI.getPredicate())); 1078 return replaceInstUsesWith(ICI, Res); 1079 } 1080 1081 /// Fold "icmp pred (X+C), X". 1082 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1083 ICmpInst::Predicate Pred) { 1084 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1085 // so the values can never be equal. Similarly for all other "or equals" 1086 // operators. 1087 assert(!!C && "C should not be zero!"); 1088 1089 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1090 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1091 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1092 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1093 Constant *R = ConstantInt::get(X->getType(), 1094 APInt::getMaxValue(C.getBitWidth()) - C); 1095 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1096 } 1097 1098 // (X+1) >u X --> X <u (0-1) --> X != 255 1099 // (X+2) >u X --> X <u (0-2) --> X <u 254 1100 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1101 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1102 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1103 ConstantInt::get(X->getType(), -C)); 1104 1105 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1106 1107 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1108 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1109 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1110 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1111 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1112 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1113 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1114 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1115 ConstantInt::get(X->getType(), SMax - C)); 1116 1117 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1118 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1119 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1120 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1121 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1122 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1123 1124 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1125 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1126 ConstantInt::get(X->getType(), SMax - (C - 1))); 1127 } 1128 1129 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1130 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1131 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1132 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1133 const APInt &AP1, 1134 const APInt &AP2) { 1135 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1136 1137 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1138 if (I.getPredicate() == I.ICMP_NE) 1139 Pred = CmpInst::getInversePredicate(Pred); 1140 return new ICmpInst(Pred, LHS, RHS); 1141 }; 1142 1143 // Don't bother doing any work for cases which InstSimplify handles. 1144 if (AP2.isZero()) 1145 return nullptr; 1146 1147 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1148 if (IsAShr) { 1149 if (AP2.isAllOnes()) 1150 return nullptr; 1151 if (AP2.isNegative() != AP1.isNegative()) 1152 return nullptr; 1153 if (AP2.sgt(AP1)) 1154 return nullptr; 1155 } 1156 1157 if (!AP1) 1158 // 'A' must be large enough to shift out the highest set bit. 1159 return getICmp(I.ICMP_UGT, A, 1160 ConstantInt::get(A->getType(), AP2.logBase2())); 1161 1162 if (AP1 == AP2) 1163 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1164 1165 int Shift; 1166 if (IsAShr && AP1.isNegative()) 1167 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1168 else 1169 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1170 1171 if (Shift > 0) { 1172 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1173 // There are multiple solutions if we are comparing against -1 and the LHS 1174 // of the ashr is not a power of two. 1175 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1176 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1177 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1178 } else if (AP1 == AP2.lshr(Shift)) { 1179 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1180 } 1181 } 1182 1183 // Shifting const2 will never be equal to const1. 1184 // FIXME: This should always be handled by InstSimplify? 1185 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1186 return replaceInstUsesWith(I, TorF); 1187 } 1188 1189 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1190 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1191 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1192 const APInt &AP1, 1193 const APInt &AP2) { 1194 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1195 1196 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1197 if (I.getPredicate() == I.ICMP_NE) 1198 Pred = CmpInst::getInversePredicate(Pred); 1199 return new ICmpInst(Pred, LHS, RHS); 1200 }; 1201 1202 // Don't bother doing any work for cases which InstSimplify handles. 1203 if (AP2.isZero()) 1204 return nullptr; 1205 1206 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1207 1208 if (!AP1 && AP2TrailingZeros != 0) 1209 return getICmp( 1210 I.ICMP_UGE, A, 1211 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1212 1213 if (AP1 == AP2) 1214 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1215 1216 // Get the distance between the lowest bits that are set. 1217 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1218 1219 if (Shift > 0 && AP2.shl(Shift) == AP1) 1220 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1221 1222 // Shifting const2 will never be equal to const1. 1223 // FIXME: This should always be handled by InstSimplify? 1224 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1225 return replaceInstUsesWith(I, TorF); 1226 } 1227 1228 /// The caller has matched a pattern of the form: 1229 /// I = icmp ugt (add (add A, B), CI2), CI1 1230 /// If this is of the form: 1231 /// sum = a + b 1232 /// if (sum+128 >u 255) 1233 /// Then replace it with llvm.sadd.with.overflow.i8. 1234 /// 1235 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1236 ConstantInt *CI2, ConstantInt *CI1, 1237 InstCombinerImpl &IC) { 1238 // The transformation we're trying to do here is to transform this into an 1239 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1240 // with a narrower add, and discard the add-with-constant that is part of the 1241 // range check (if we can't eliminate it, this isn't profitable). 1242 1243 // In order to eliminate the add-with-constant, the compare can be its only 1244 // use. 1245 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1246 if (!AddWithCst->hasOneUse()) 1247 return nullptr; 1248 1249 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1250 if (!CI2->getValue().isPowerOf2()) 1251 return nullptr; 1252 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1253 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1254 return nullptr; 1255 1256 // The width of the new add formed is 1 more than the bias. 1257 ++NewWidth; 1258 1259 // Check to see that CI1 is an all-ones value with NewWidth bits. 1260 if (CI1->getBitWidth() == NewWidth || 1261 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1262 return nullptr; 1263 1264 // This is only really a signed overflow check if the inputs have been 1265 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1266 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1267 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1268 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1269 return nullptr; 1270 1271 // In order to replace the original add with a narrower 1272 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1273 // and truncates that discard the high bits of the add. Verify that this is 1274 // the case. 1275 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1276 for (User *U : OrigAdd->users()) { 1277 if (U == AddWithCst) 1278 continue; 1279 1280 // Only accept truncates for now. We would really like a nice recursive 1281 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1282 // chain to see which bits of a value are actually demanded. If the 1283 // original add had another add which was then immediately truncated, we 1284 // could still do the transformation. 1285 TruncInst *TI = dyn_cast<TruncInst>(U); 1286 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1287 return nullptr; 1288 } 1289 1290 // If the pattern matches, truncate the inputs to the narrower type and 1291 // use the sadd_with_overflow intrinsic to efficiently compute both the 1292 // result and the overflow bit. 1293 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1294 Function *F = Intrinsic::getDeclaration( 1295 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1296 1297 InstCombiner::BuilderTy &Builder = IC.Builder; 1298 1299 // Put the new code above the original add, in case there are any uses of the 1300 // add between the add and the compare. 1301 Builder.SetInsertPoint(OrigAdd); 1302 1303 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1304 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1305 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1306 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1307 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1308 1309 // The inner add was the result of the narrow add, zero extended to the 1310 // wider type. Replace it with the result computed by the intrinsic. 1311 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1312 IC.eraseInstFromFunction(*OrigAdd); 1313 1314 // The original icmp gets replaced with the overflow value. 1315 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1316 } 1317 1318 /// If we have: 1319 /// icmp eq/ne (urem/srem %x, %y), 0 1320 /// iff %y is a power-of-two, we can replace this with a bit test: 1321 /// icmp eq/ne (and %x, (add %y, -1)), 0 1322 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1323 // This fold is only valid for equality predicates. 1324 if (!I.isEquality()) 1325 return nullptr; 1326 ICmpInst::Predicate Pred; 1327 Value *X, *Y, *Zero; 1328 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1329 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1330 return nullptr; 1331 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1332 return nullptr; 1333 // This may increase instruction count, we don't enforce that Y is a constant. 1334 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1335 Value *Masked = Builder.CreateAnd(X, Mask); 1336 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1337 } 1338 1339 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1340 /// by one-less-than-bitwidth into a sign test on the original value. 1341 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1342 Instruction *Val; 1343 ICmpInst::Predicate Pred; 1344 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1345 return nullptr; 1346 1347 Value *X; 1348 Type *XTy; 1349 1350 Constant *C; 1351 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1352 XTy = X->getType(); 1353 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1354 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1355 APInt(XBitWidth, XBitWidth - 1)))) 1356 return nullptr; 1357 } else if (isa<BinaryOperator>(Val) && 1358 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1359 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1360 /*AnalyzeForSignBitExtraction=*/true))) { 1361 XTy = X->getType(); 1362 } else 1363 return nullptr; 1364 1365 return ICmpInst::Create(Instruction::ICmp, 1366 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1367 : ICmpInst::ICMP_SLT, 1368 X, ConstantInt::getNullValue(XTy)); 1369 } 1370 1371 // Handle icmp pred X, 0 1372 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1373 CmpInst::Predicate Pred = Cmp.getPredicate(); 1374 if (!match(Cmp.getOperand(1), m_Zero())) 1375 return nullptr; 1376 1377 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1378 if (Pred == ICmpInst::ICMP_SGT) { 1379 Value *A, *B; 1380 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1381 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1382 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1383 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1384 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1385 } 1386 } 1387 1388 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1389 return New; 1390 1391 // Given: 1392 // icmp eq/ne (urem %x, %y), 0 1393 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1394 // icmp eq/ne %x, 0 1395 Value *X, *Y; 1396 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1397 ICmpInst::isEquality(Pred)) { 1398 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1399 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1400 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1401 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1402 } 1403 1404 return nullptr; 1405 } 1406 1407 /// Fold icmp Pred X, C. 1408 /// TODO: This code structure does not make sense. The saturating add fold 1409 /// should be moved to some other helper and extended as noted below (it is also 1410 /// possible that code has been made unnecessary - do we canonicalize IR to 1411 /// overflow/saturating intrinsics or not?). 1412 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1413 // Match the following pattern, which is a common idiom when writing 1414 // overflow-safe integer arithmetic functions. The source performs an addition 1415 // in wider type and explicitly checks for overflow using comparisons against 1416 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1417 // 1418 // TODO: This could probably be generalized to handle other overflow-safe 1419 // operations if we worked out the formulas to compute the appropriate magic 1420 // constants. 1421 // 1422 // sum = a + b 1423 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1424 CmpInst::Predicate Pred = Cmp.getPredicate(); 1425 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1426 Value *A, *B; 1427 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1428 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1429 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1430 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1431 return Res; 1432 1433 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1434 Constant *C = dyn_cast<Constant>(Op1); 1435 if (!C || C->canTrap()) 1436 return nullptr; 1437 1438 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1439 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1440 Type *Ty = Cmp.getType(); 1441 Builder.SetInsertPoint(Phi); 1442 PHINode *NewPhi = 1443 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1444 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1445 auto *Input = 1446 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1447 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1448 NewPhi->addIncoming(BoolInput, Predecessor); 1449 } 1450 NewPhi->takeName(&Cmp); 1451 return replaceInstUsesWith(Cmp, NewPhi); 1452 } 1453 1454 return nullptr; 1455 } 1456 1457 /// Canonicalize icmp instructions based on dominating conditions. 1458 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1459 // This is a cheap/incomplete check for dominance - just match a single 1460 // predecessor with a conditional branch. 1461 BasicBlock *CmpBB = Cmp.getParent(); 1462 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1463 if (!DomBB) 1464 return nullptr; 1465 1466 Value *DomCond; 1467 BasicBlock *TrueBB, *FalseBB; 1468 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1469 return nullptr; 1470 1471 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1472 "Predecessor block does not point to successor?"); 1473 1474 // The branch should get simplified. Don't bother simplifying this condition. 1475 if (TrueBB == FalseBB) 1476 return nullptr; 1477 1478 // Try to simplify this compare to T/F based on the dominating condition. 1479 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1480 if (Imp) 1481 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1482 1483 CmpInst::Predicate Pred = Cmp.getPredicate(); 1484 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1485 ICmpInst::Predicate DomPred; 1486 const APInt *C, *DomC; 1487 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1488 match(Y, m_APInt(C))) { 1489 // We have 2 compares of a variable with constants. Calculate the constant 1490 // ranges of those compares to see if we can transform the 2nd compare: 1491 // DomBB: 1492 // DomCond = icmp DomPred X, DomC 1493 // br DomCond, CmpBB, FalseBB 1494 // CmpBB: 1495 // Cmp = icmp Pred X, C 1496 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1497 ConstantRange DominatingCR = 1498 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1499 : ConstantRange::makeExactICmpRegion( 1500 CmpInst::getInversePredicate(DomPred), *DomC); 1501 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1502 ConstantRange Difference = DominatingCR.difference(CR); 1503 if (Intersection.isEmptySet()) 1504 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1505 if (Difference.isEmptySet()) 1506 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1507 1508 // Canonicalizing a sign bit comparison that gets used in a branch, 1509 // pessimizes codegen by generating branch on zero instruction instead 1510 // of a test and branch. So we avoid canonicalizing in such situations 1511 // because test and branch instruction has better branch displacement 1512 // than compare and branch instruction. 1513 bool UnusedBit; 1514 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1515 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1516 return nullptr; 1517 1518 // Avoid an infinite loop with min/max canonicalization. 1519 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1520 if (Cmp.hasOneUse() && 1521 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1522 return nullptr; 1523 1524 if (const APInt *EqC = Intersection.getSingleElement()) 1525 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1526 if (const APInt *NeC = Difference.getSingleElement()) 1527 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1528 } 1529 1530 return nullptr; 1531 } 1532 1533 /// Fold icmp (trunc X, Y), C. 1534 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1535 TruncInst *Trunc, 1536 const APInt &C) { 1537 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1538 Value *X = Trunc->getOperand(0); 1539 if (C.isOne() && C.getBitWidth() > 1) { 1540 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1541 Value *V = nullptr; 1542 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1543 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1544 ConstantInt::get(V->getType(), 1)); 1545 } 1546 1547 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1548 SrcBits = X->getType()->getScalarSizeInBits(); 1549 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1550 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1551 // of the high bits truncated out of x are known. 1552 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1553 1554 // If all the high bits are known, we can do this xform. 1555 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1556 // Pull in the high bits from known-ones set. 1557 APInt NewRHS = C.zext(SrcBits); 1558 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1559 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1560 } 1561 } 1562 1563 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1564 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1565 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1566 Value *ShOp; 1567 const APInt *ShAmtC; 1568 bool TrueIfSigned; 1569 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1570 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1571 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1572 return TrueIfSigned 1573 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1574 ConstantInt::getNullValue(X->getType())) 1575 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1576 ConstantInt::getAllOnesValue(X->getType())); 1577 } 1578 1579 return nullptr; 1580 } 1581 1582 /// Fold icmp (xor X, Y), C. 1583 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1584 BinaryOperator *Xor, 1585 const APInt &C) { 1586 Value *X = Xor->getOperand(0); 1587 Value *Y = Xor->getOperand(1); 1588 const APInt *XorC; 1589 if (!match(Y, m_APInt(XorC))) 1590 return nullptr; 1591 1592 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1593 // fold the xor. 1594 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1595 bool TrueIfSigned = false; 1596 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1597 1598 // If the sign bit of the XorCst is not set, there is no change to 1599 // the operation, just stop using the Xor. 1600 if (!XorC->isNegative()) 1601 return replaceOperand(Cmp, 0, X); 1602 1603 // Emit the opposite comparison. 1604 if (TrueIfSigned) 1605 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1606 ConstantInt::getAllOnesValue(X->getType())); 1607 else 1608 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1609 ConstantInt::getNullValue(X->getType())); 1610 } 1611 1612 if (Xor->hasOneUse()) { 1613 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1614 if (!Cmp.isEquality() && XorC->isSignMask()) { 1615 Pred = Cmp.getFlippedSignednessPredicate(); 1616 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1617 } 1618 1619 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1620 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1621 Pred = Cmp.getFlippedSignednessPredicate(); 1622 Pred = Cmp.getSwappedPredicate(Pred); 1623 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1624 } 1625 } 1626 1627 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1628 if (Pred == ICmpInst::ICMP_UGT) { 1629 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1630 if (*XorC == ~C && (C + 1).isPowerOf2()) 1631 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1632 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1633 if (*XorC == C && (C + 1).isPowerOf2()) 1634 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1635 } 1636 if (Pred == ICmpInst::ICMP_ULT) { 1637 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1638 if (*XorC == -C && C.isPowerOf2()) 1639 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1640 ConstantInt::get(X->getType(), ~C)); 1641 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1642 if (*XorC == C && (-C).isPowerOf2()) 1643 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1644 ConstantInt::get(X->getType(), ~C)); 1645 } 1646 return nullptr; 1647 } 1648 1649 /// Fold icmp (and (sh X, Y), C2), C1. 1650 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1651 BinaryOperator *And, 1652 const APInt &C1, 1653 const APInt &C2) { 1654 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1655 if (!Shift || !Shift->isShift()) 1656 return nullptr; 1657 1658 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1659 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1660 // code produced by the clang front-end, for bitfield access. 1661 // This seemingly simple opportunity to fold away a shift turns out to be 1662 // rather complicated. See PR17827 for details. 1663 unsigned ShiftOpcode = Shift->getOpcode(); 1664 bool IsShl = ShiftOpcode == Instruction::Shl; 1665 const APInt *C3; 1666 if (match(Shift->getOperand(1), m_APInt(C3))) { 1667 APInt NewAndCst, NewCmpCst; 1668 bool AnyCmpCstBitsShiftedOut; 1669 if (ShiftOpcode == Instruction::Shl) { 1670 // For a left shift, we can fold if the comparison is not signed. We can 1671 // also fold a signed comparison if the mask value and comparison value 1672 // are not negative. These constraints may not be obvious, but we can 1673 // prove that they are correct using an SMT solver. 1674 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1675 return nullptr; 1676 1677 NewCmpCst = C1.lshr(*C3); 1678 NewAndCst = C2.lshr(*C3); 1679 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1680 } else if (ShiftOpcode == Instruction::LShr) { 1681 // For a logical right shift, we can fold if the comparison is not signed. 1682 // We can also fold a signed comparison if the shifted mask value and the 1683 // shifted comparison value are not negative. These constraints may not be 1684 // obvious, but we can prove that they are correct using an SMT solver. 1685 NewCmpCst = C1.shl(*C3); 1686 NewAndCst = C2.shl(*C3); 1687 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1688 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1689 return nullptr; 1690 } else { 1691 // For an arithmetic shift, check that both constants don't use (in a 1692 // signed sense) the top bits being shifted out. 1693 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1694 NewCmpCst = C1.shl(*C3); 1695 NewAndCst = C2.shl(*C3); 1696 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1697 if (NewAndCst.ashr(*C3) != C2) 1698 return nullptr; 1699 } 1700 1701 if (AnyCmpCstBitsShiftedOut) { 1702 // If we shifted bits out, the fold is not going to work out. As a 1703 // special case, check to see if this means that the result is always 1704 // true or false now. 1705 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1706 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1707 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1708 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1709 } else { 1710 Value *NewAnd = Builder.CreateAnd( 1711 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1712 return new ICmpInst(Cmp.getPredicate(), 1713 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1714 } 1715 } 1716 1717 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1718 // preferable because it allows the C2 << Y expression to be hoisted out of a 1719 // loop if Y is invariant and X is not. 1720 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1721 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1722 // Compute C2 << Y. 1723 Value *NewShift = 1724 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1725 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1726 1727 // Compute X & (C2 << Y). 1728 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1729 return replaceOperand(Cmp, 0, NewAnd); 1730 } 1731 1732 return nullptr; 1733 } 1734 1735 /// Fold icmp (and X, C2), C1. 1736 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1737 BinaryOperator *And, 1738 const APInt &C1) { 1739 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1740 1741 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1742 // TODO: We canonicalize to the longer form for scalars because we have 1743 // better analysis/folds for icmp, and codegen may be better with icmp. 1744 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1745 match(And->getOperand(1), m_One())) 1746 return new TruncInst(And->getOperand(0), Cmp.getType()); 1747 1748 const APInt *C2; 1749 Value *X; 1750 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1751 return nullptr; 1752 1753 // Don't perform the following transforms if the AND has multiple uses 1754 if (!And->hasOneUse()) 1755 return nullptr; 1756 1757 if (Cmp.isEquality() && C1.isZero()) { 1758 // Restrict this fold to single-use 'and' (PR10267). 1759 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1760 if (C2->isSignMask()) { 1761 Constant *Zero = Constant::getNullValue(X->getType()); 1762 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1763 return new ICmpInst(NewPred, X, Zero); 1764 } 1765 1766 // Restrict this fold only for single-use 'and' (PR10267). 1767 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1768 if ((~(*C2) + 1).isPowerOf2()) { 1769 Constant *NegBOC = 1770 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1771 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1772 return new ICmpInst(NewPred, X, NegBOC); 1773 } 1774 } 1775 1776 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1777 // the input width without changing the value produced, eliminate the cast: 1778 // 1779 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1780 // 1781 // We can do this transformation if the constants do not have their sign bits 1782 // set or if it is an equality comparison. Extending a relational comparison 1783 // when we're checking the sign bit would not work. 1784 Value *W; 1785 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1786 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1787 // TODO: Is this a good transform for vectors? Wider types may reduce 1788 // throughput. Should this transform be limited (even for scalars) by using 1789 // shouldChangeType()? 1790 if (!Cmp.getType()->isVectorTy()) { 1791 Type *WideType = W->getType(); 1792 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1793 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1794 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1795 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1796 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1797 } 1798 } 1799 1800 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1801 return I; 1802 1803 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1804 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1805 // 1806 // iff pred isn't signed 1807 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1808 match(And->getOperand(1), m_One())) { 1809 Constant *One = cast<Constant>(And->getOperand(1)); 1810 Value *Or = And->getOperand(0); 1811 Value *A, *B, *LShr; 1812 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1813 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1814 unsigned UsesRemoved = 0; 1815 if (And->hasOneUse()) 1816 ++UsesRemoved; 1817 if (Or->hasOneUse()) 1818 ++UsesRemoved; 1819 if (LShr->hasOneUse()) 1820 ++UsesRemoved; 1821 1822 // Compute A & ((1 << B) | 1) 1823 Value *NewOr = nullptr; 1824 if (auto *C = dyn_cast<Constant>(B)) { 1825 if (UsesRemoved >= 1) 1826 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1827 } else { 1828 if (UsesRemoved >= 3) 1829 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1830 /*HasNUW=*/true), 1831 One, Or->getName()); 1832 } 1833 if (NewOr) { 1834 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1835 return replaceOperand(Cmp, 0, NewAnd); 1836 } 1837 } 1838 } 1839 1840 return nullptr; 1841 } 1842 1843 /// Fold icmp (and X, Y), C. 1844 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1845 BinaryOperator *And, 1846 const APInt &C) { 1847 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1848 return I; 1849 1850 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1851 bool TrueIfNeg; 1852 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1853 // ((X - 1) & ~X) < 0 --> X == 0 1854 // ((X - 1) & ~X) >= 0 --> X != 0 1855 Value *X; 1856 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1857 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1858 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1859 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1860 } 1861 } 1862 1863 // TODO: These all require that Y is constant too, so refactor with the above. 1864 1865 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1866 Value *X = And->getOperand(0); 1867 Value *Y = And->getOperand(1); 1868 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1869 if (auto *LI = dyn_cast<LoadInst>(X)) 1870 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1871 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1872 if (Instruction *Res = 1873 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1874 return Res; 1875 1876 if (!Cmp.isEquality()) 1877 return nullptr; 1878 1879 // X & -C == -C -> X > u ~C 1880 // X & -C != -C -> X <= u ~C 1881 // iff C is a power of 2 1882 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1883 auto NewPred = 1884 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1885 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1886 } 1887 1888 return nullptr; 1889 } 1890 1891 /// Fold icmp (or X, Y), C. 1892 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1893 BinaryOperator *Or, 1894 const APInt &C) { 1895 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1896 if (C.isOne()) { 1897 // icmp slt signum(V) 1 --> icmp slt V, 1 1898 Value *V = nullptr; 1899 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1900 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1901 ConstantInt::get(V->getType(), 1)); 1902 } 1903 1904 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1905 const APInt *MaskC; 1906 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1907 if (*MaskC == C && (C + 1).isPowerOf2()) { 1908 // X | C == C --> X <=u C 1909 // X | C != C --> X >u C 1910 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1911 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1912 return new ICmpInst(Pred, OrOp0, OrOp1); 1913 } 1914 1915 // More general: canonicalize 'equality with set bits mask' to 1916 // 'equality with clear bits mask'. 1917 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1918 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1919 if (Or->hasOneUse()) { 1920 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1921 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1922 return new ICmpInst(Pred, And, NewC); 1923 } 1924 } 1925 1926 // (X | (X-1)) s< 0 --> X s< 1 1927 // (X | (X-1)) s> -1 --> X s> 0 1928 Value *X; 1929 bool TrueIfSigned; 1930 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1931 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1932 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1933 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1934 return new ICmpInst(NewPred, X, NewC); 1935 } 1936 1937 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1938 return nullptr; 1939 1940 Value *P, *Q; 1941 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1942 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1943 // -> and (icmp eq P, null), (icmp eq Q, null). 1944 Value *CmpP = 1945 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1946 Value *CmpQ = 1947 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1948 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1949 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1950 } 1951 1952 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1953 // a shorter form that has more potential to be folded even further. 1954 Value *X1, *X2, *X3, *X4; 1955 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1956 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1957 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1958 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1959 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1960 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1961 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1962 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1963 } 1964 1965 return nullptr; 1966 } 1967 1968 /// Fold icmp (mul X, Y), C. 1969 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1970 BinaryOperator *Mul, 1971 const APInt &C) { 1972 const APInt *MulC; 1973 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1974 return nullptr; 1975 1976 // If this is a test of the sign bit and the multiply is sign-preserving with 1977 // a constant operand, use the multiply LHS operand instead. 1978 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1979 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1980 if (MulC->isNegative()) 1981 Pred = ICmpInst::getSwappedPredicate(Pred); 1982 return new ICmpInst(Pred, Mul->getOperand(0), 1983 Constant::getNullValue(Mul->getType())); 1984 } 1985 1986 // If the multiply does not wrap, try to divide the compare constant by the 1987 // multiplication factor. 1988 if (Cmp.isEquality() && !MulC->isZero()) { 1989 // (mul nsw X, MulC) == C --> X == C /s MulC 1990 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 1991 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1992 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1993 } 1994 // (mul nuw X, MulC) == C --> X == C /u MulC 1995 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 1996 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1997 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1998 } 1999 } 2000 2001 return nullptr; 2002 } 2003 2004 /// Fold icmp (shl 1, Y), C. 2005 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2006 const APInt &C) { 2007 Value *Y; 2008 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2009 return nullptr; 2010 2011 Type *ShiftType = Shl->getType(); 2012 unsigned TypeBits = C.getBitWidth(); 2013 bool CIsPowerOf2 = C.isPowerOf2(); 2014 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2015 if (Cmp.isUnsigned()) { 2016 // (1 << Y) pred C -> Y pred Log2(C) 2017 if (!CIsPowerOf2) { 2018 // (1 << Y) < 30 -> Y <= 4 2019 // (1 << Y) <= 30 -> Y <= 4 2020 // (1 << Y) >= 30 -> Y > 4 2021 // (1 << Y) > 30 -> Y > 4 2022 if (Pred == ICmpInst::ICMP_ULT) 2023 Pred = ICmpInst::ICMP_ULE; 2024 else if (Pred == ICmpInst::ICMP_UGE) 2025 Pred = ICmpInst::ICMP_UGT; 2026 } 2027 2028 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2029 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2030 unsigned CLog2 = C.logBase2(); 2031 if (CLog2 == TypeBits - 1) { 2032 if (Pred == ICmpInst::ICMP_UGE) 2033 Pred = ICmpInst::ICMP_EQ; 2034 else if (Pred == ICmpInst::ICMP_ULT) 2035 Pred = ICmpInst::ICMP_NE; 2036 } 2037 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2038 } else if (Cmp.isSigned()) { 2039 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2040 if (C.isAllOnes()) { 2041 // (1 << Y) <= -1 -> Y == 31 2042 if (Pred == ICmpInst::ICMP_SLE) 2043 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2044 2045 // (1 << Y) > -1 -> Y != 31 2046 if (Pred == ICmpInst::ICMP_SGT) 2047 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2048 } else if (!C) { 2049 // (1 << Y) < 0 -> Y == 31 2050 // (1 << Y) <= 0 -> Y == 31 2051 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2052 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2053 2054 // (1 << Y) >= 0 -> Y != 31 2055 // (1 << Y) > 0 -> Y != 31 2056 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2057 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2058 } 2059 } else if (Cmp.isEquality() && CIsPowerOf2) { 2060 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2061 } 2062 2063 return nullptr; 2064 } 2065 2066 /// Fold icmp (shl X, Y), C. 2067 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2068 BinaryOperator *Shl, 2069 const APInt &C) { 2070 const APInt *ShiftVal; 2071 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2072 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2073 2074 const APInt *ShiftAmt; 2075 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2076 return foldICmpShlOne(Cmp, Shl, C); 2077 2078 // Check that the shift amount is in range. If not, don't perform undefined 2079 // shifts. When the shift is visited, it will be simplified. 2080 unsigned TypeBits = C.getBitWidth(); 2081 if (ShiftAmt->uge(TypeBits)) 2082 return nullptr; 2083 2084 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2085 Value *X = Shl->getOperand(0); 2086 Type *ShType = Shl->getType(); 2087 2088 // NSW guarantees that we are only shifting out sign bits from the high bits, 2089 // so we can ASHR the compare constant without needing a mask and eliminate 2090 // the shift. 2091 if (Shl->hasNoSignedWrap()) { 2092 if (Pred == ICmpInst::ICMP_SGT) { 2093 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2094 APInt ShiftedC = C.ashr(*ShiftAmt); 2095 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2096 } 2097 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2098 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2099 APInt ShiftedC = C.ashr(*ShiftAmt); 2100 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2101 } 2102 if (Pred == ICmpInst::ICMP_SLT) { 2103 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2104 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2105 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2106 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2107 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2108 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2109 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2110 } 2111 // If this is a signed comparison to 0 and the shift is sign preserving, 2112 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2113 // do that if we're sure to not continue on in this function. 2114 if (isSignTest(Pred, C)) 2115 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2116 } 2117 2118 // NUW guarantees that we are only shifting out zero bits from the high bits, 2119 // so we can LSHR the compare constant without needing a mask and eliminate 2120 // the shift. 2121 if (Shl->hasNoUnsignedWrap()) { 2122 if (Pred == ICmpInst::ICMP_UGT) { 2123 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2124 APInt ShiftedC = C.lshr(*ShiftAmt); 2125 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2126 } 2127 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2128 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2129 APInt ShiftedC = C.lshr(*ShiftAmt); 2130 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2131 } 2132 if (Pred == ICmpInst::ICMP_ULT) { 2133 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2134 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2135 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2136 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2137 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2138 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2139 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2140 } 2141 } 2142 2143 if (Cmp.isEquality() && Shl->hasOneUse()) { 2144 // Strength-reduce the shift into an 'and'. 2145 Constant *Mask = ConstantInt::get( 2146 ShType, 2147 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2148 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2149 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2150 return new ICmpInst(Pred, And, LShrC); 2151 } 2152 2153 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2154 bool TrueIfSigned = false; 2155 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2156 // (X << 31) <s 0 --> (X & 1) != 0 2157 Constant *Mask = ConstantInt::get( 2158 ShType, 2159 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2160 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2161 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2162 And, Constant::getNullValue(ShType)); 2163 } 2164 2165 // Simplify 'shl' inequality test into 'and' equality test. 2166 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2167 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2168 if ((C + 1).isPowerOf2() && 2169 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2170 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2171 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2172 : ICmpInst::ICMP_NE, 2173 And, Constant::getNullValue(ShType)); 2174 } 2175 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2176 if (C.isPowerOf2() && 2177 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2178 Value *And = 2179 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2180 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2181 : ICmpInst::ICMP_NE, 2182 And, Constant::getNullValue(ShType)); 2183 } 2184 } 2185 2186 // Transform (icmp pred iM (shl iM %v, N), C) 2187 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2188 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2189 // This enables us to get rid of the shift in favor of a trunc that may be 2190 // free on the target. It has the additional benefit of comparing to a 2191 // smaller constant that may be more target-friendly. 2192 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2193 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2194 DL.isLegalInteger(TypeBits - Amt)) { 2195 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2196 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2197 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2198 Constant *NewC = 2199 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2200 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2201 } 2202 2203 return nullptr; 2204 } 2205 2206 /// Fold icmp ({al}shr X, Y), C. 2207 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2208 BinaryOperator *Shr, 2209 const APInt &C) { 2210 // An exact shr only shifts out zero bits, so: 2211 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2212 Value *X = Shr->getOperand(0); 2213 CmpInst::Predicate Pred = Cmp.getPredicate(); 2214 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2215 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2216 2217 const APInt *ShiftVal; 2218 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2219 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2220 2221 const APInt *ShiftAmt; 2222 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2223 return nullptr; 2224 2225 // Check that the shift amount is in range. If not, don't perform undefined 2226 // shifts. When the shift is visited it will be simplified. 2227 unsigned TypeBits = C.getBitWidth(); 2228 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2229 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2230 return nullptr; 2231 2232 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2233 bool IsExact = Shr->isExact(); 2234 Type *ShrTy = Shr->getType(); 2235 // TODO: If we could guarantee that InstSimplify would handle all of the 2236 // constant-value-based preconditions in the folds below, then we could assert 2237 // those conditions rather than checking them. This is difficult because of 2238 // undef/poison (PR34838). 2239 if (IsAShr) { 2240 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2241 // When ShAmtC can be shifted losslessly: 2242 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2243 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2244 APInt ShiftedC = C.shl(ShAmtVal); 2245 if (ShiftedC.ashr(ShAmtVal) == C) 2246 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2247 } 2248 if (Pred == CmpInst::ICMP_SGT) { 2249 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2250 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2251 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2252 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2253 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2254 } 2255 if (Pred == CmpInst::ICMP_UGT) { 2256 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2257 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2258 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2259 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2260 } 2261 2262 // If the compare constant has significant bits above the lowest sign-bit, 2263 // then convert an unsigned cmp to a test of the sign-bit: 2264 // (ashr X, ShiftC) u> C --> X s< 0 2265 // (ashr X, ShiftC) u< C --> X s> -1 2266 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2267 if (Pred == CmpInst::ICMP_UGT) { 2268 return new ICmpInst(CmpInst::ICMP_SLT, X, 2269 ConstantInt::getNullValue(ShrTy)); 2270 } 2271 if (Pred == CmpInst::ICMP_ULT) { 2272 return new ICmpInst(CmpInst::ICMP_SGT, X, 2273 ConstantInt::getAllOnesValue(ShrTy)); 2274 } 2275 } 2276 } else { 2277 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2278 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2279 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2280 APInt ShiftedC = C.shl(ShAmtVal); 2281 if (ShiftedC.lshr(ShAmtVal) == C) 2282 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2283 } 2284 if (Pred == CmpInst::ICMP_UGT) { 2285 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2286 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2287 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2288 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2289 } 2290 } 2291 2292 if (!Cmp.isEquality()) 2293 return nullptr; 2294 2295 // Handle equality comparisons of shift-by-constant. 2296 2297 // If the comparison constant changes with the shift, the comparison cannot 2298 // succeed (bits of the comparison constant cannot match the shifted value). 2299 // This should be known by InstSimplify and already be folded to true/false. 2300 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2301 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2302 "Expected icmp+shr simplify did not occur."); 2303 2304 // If the bits shifted out are known zero, compare the unshifted value: 2305 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2306 if (Shr->isExact()) 2307 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2308 2309 if (C.isZero()) { 2310 // == 0 is u< 1. 2311 if (Pred == CmpInst::ICMP_EQ) 2312 return new ICmpInst(CmpInst::ICMP_ULT, X, 2313 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2314 else 2315 return new ICmpInst(CmpInst::ICMP_UGT, X, 2316 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2317 } 2318 2319 if (Shr->hasOneUse()) { 2320 // Canonicalize the shift into an 'and': 2321 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2322 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2323 Constant *Mask = ConstantInt::get(ShrTy, Val); 2324 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2325 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2326 } 2327 2328 return nullptr; 2329 } 2330 2331 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2332 BinaryOperator *SRem, 2333 const APInt &C) { 2334 // Match an 'is positive' or 'is negative' comparison of remainder by a 2335 // constant power-of-2 value: 2336 // (X % pow2C) sgt/slt 0 2337 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2338 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2339 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2340 return nullptr; 2341 2342 // TODO: The one-use check is standard because we do not typically want to 2343 // create longer instruction sequences, but this might be a special-case 2344 // because srem is not good for analysis or codegen. 2345 if (!SRem->hasOneUse()) 2346 return nullptr; 2347 2348 const APInt *DivisorC; 2349 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2350 return nullptr; 2351 2352 // For cmp_sgt/cmp_slt only zero valued C is handled. 2353 // For cmp_eq/cmp_ne only positive valued C is handled. 2354 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2355 !C.isZero()) || 2356 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2357 !C.isStrictlyPositive())) 2358 return nullptr; 2359 2360 // Mask off the sign bit and the modulo bits (low-bits). 2361 Type *Ty = SRem->getType(); 2362 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2363 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2364 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2365 2366 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2367 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2368 2369 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2370 // bit is set. Example: 2371 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2372 if (Pred == ICmpInst::ICMP_SGT) 2373 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2374 2375 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2376 // bit is set. Example: 2377 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2378 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2379 } 2380 2381 /// Fold icmp (udiv X, Y), C. 2382 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2383 BinaryOperator *UDiv, 2384 const APInt &C) { 2385 const APInt *C2; 2386 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2387 return nullptr; 2388 2389 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2390 2391 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2392 Value *Y = UDiv->getOperand(1); 2393 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2394 assert(!C.isMaxValue() && 2395 "icmp ugt X, UINT_MAX should have been simplified already."); 2396 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2397 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2398 } 2399 2400 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2401 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2402 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2403 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2404 ConstantInt::get(Y->getType(), C2->udiv(C))); 2405 } 2406 2407 return nullptr; 2408 } 2409 2410 /// Fold icmp ({su}div X, Y), C. 2411 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2412 BinaryOperator *Div, 2413 const APInt &C) { 2414 // Fold: icmp pred ([us]div X, C2), C -> range test 2415 // Fold this div into the comparison, producing a range check. 2416 // Determine, based on the divide type, what the range is being 2417 // checked. If there is an overflow on the low or high side, remember 2418 // it, otherwise compute the range [low, hi) bounding the new value. 2419 // See: InsertRangeTest above for the kinds of replacements possible. 2420 const APInt *C2; 2421 if (!match(Div->getOperand(1), m_APInt(C2))) 2422 return nullptr; 2423 2424 // FIXME: If the operand types don't match the type of the divide 2425 // then don't attempt this transform. The code below doesn't have the 2426 // logic to deal with a signed divide and an unsigned compare (and 2427 // vice versa). This is because (x /s C2) <s C produces different 2428 // results than (x /s C2) <u C or (x /u C2) <s C or even 2429 // (x /u C2) <u C. Simply casting the operands and result won't 2430 // work. :( The if statement below tests that condition and bails 2431 // if it finds it. 2432 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2433 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2434 return nullptr; 2435 2436 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2437 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2438 // division-by-constant cases should be present, we can not assert that they 2439 // have happened before we reach this icmp instruction. 2440 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2441 return nullptr; 2442 2443 // Compute Prod = C * C2. We are essentially solving an equation of 2444 // form X / C2 = C. We solve for X by multiplying C2 and C. 2445 // By solving for X, we can turn this into a range check instead of computing 2446 // a divide. 2447 APInt Prod = C * *C2; 2448 2449 // Determine if the product overflows by seeing if the product is not equal to 2450 // the divide. Make sure we do the same kind of divide as in the LHS 2451 // instruction that we're folding. 2452 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2453 2454 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2455 2456 // If the division is known to be exact, then there is no remainder from the 2457 // divide, so the covered range size is unit, otherwise it is the divisor. 2458 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2459 2460 // Figure out the interval that is being checked. For example, a comparison 2461 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2462 // Compute this interval based on the constants involved and the signedness of 2463 // the compare/divide. This computes a half-open interval, keeping track of 2464 // whether either value in the interval overflows. After analysis each 2465 // overflow variable is set to 0 if it's corresponding bound variable is valid 2466 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2467 int LoOverflow = 0, HiOverflow = 0; 2468 APInt LoBound, HiBound; 2469 2470 if (!DivIsSigned) { // udiv 2471 // e.g. X/5 op 3 --> [15, 20) 2472 LoBound = Prod; 2473 HiOverflow = LoOverflow = ProdOV; 2474 if (!HiOverflow) { 2475 // If this is not an exact divide, then many values in the range collapse 2476 // to the same result value. 2477 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2478 } 2479 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2480 if (C.isZero()) { // (X / pos) op 0 2481 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2482 LoBound = -(RangeSize - 1); 2483 HiBound = RangeSize; 2484 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2485 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2486 HiOverflow = LoOverflow = ProdOV; 2487 if (!HiOverflow) 2488 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2489 } else { // (X / pos) op neg 2490 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2491 HiBound = Prod + 1; 2492 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2493 if (!LoOverflow) { 2494 APInt DivNeg = -RangeSize; 2495 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2496 } 2497 } 2498 } else if (C2->isNegative()) { // Divisor is < 0. 2499 if (Div->isExact()) 2500 RangeSize.negate(); 2501 if (C.isZero()) { // (X / neg) op 0 2502 // e.g. X/-5 op 0 --> [-4, 5) 2503 LoBound = RangeSize + 1; 2504 HiBound = -RangeSize; 2505 if (HiBound == *C2) { // -INTMIN = INTMIN 2506 HiOverflow = 1; // [INTMIN+1, overflow) 2507 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2508 } 2509 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2510 // e.g. X/-5 op 3 --> [-19, -14) 2511 HiBound = Prod + 1; 2512 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2513 if (!LoOverflow) 2514 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2515 } else { // (X / neg) op neg 2516 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2517 LoOverflow = HiOverflow = ProdOV; 2518 if (!HiOverflow) 2519 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2520 } 2521 2522 // Dividing by a negative swaps the condition. LT <-> GT 2523 Pred = ICmpInst::getSwappedPredicate(Pred); 2524 } 2525 2526 Value *X = Div->getOperand(0); 2527 switch (Pred) { 2528 default: llvm_unreachable("Unhandled icmp opcode!"); 2529 case ICmpInst::ICMP_EQ: 2530 if (LoOverflow && HiOverflow) 2531 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2532 if (HiOverflow) 2533 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2534 ICmpInst::ICMP_UGE, X, 2535 ConstantInt::get(Div->getType(), LoBound)); 2536 if (LoOverflow) 2537 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2538 ICmpInst::ICMP_ULT, X, 2539 ConstantInt::get(Div->getType(), HiBound)); 2540 return replaceInstUsesWith( 2541 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2542 case ICmpInst::ICMP_NE: 2543 if (LoOverflow && HiOverflow) 2544 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2545 if (HiOverflow) 2546 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2547 ICmpInst::ICMP_ULT, X, 2548 ConstantInt::get(Div->getType(), LoBound)); 2549 if (LoOverflow) 2550 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2551 ICmpInst::ICMP_UGE, X, 2552 ConstantInt::get(Div->getType(), HiBound)); 2553 return replaceInstUsesWith(Cmp, 2554 insertRangeTest(X, LoBound, HiBound, 2555 DivIsSigned, false)); 2556 case ICmpInst::ICMP_ULT: 2557 case ICmpInst::ICMP_SLT: 2558 if (LoOverflow == +1) // Low bound is greater than input range. 2559 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2560 if (LoOverflow == -1) // Low bound is less than input range. 2561 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2562 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2563 case ICmpInst::ICMP_UGT: 2564 case ICmpInst::ICMP_SGT: 2565 if (HiOverflow == +1) // High bound greater than input range. 2566 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2567 if (HiOverflow == -1) // High bound less than input range. 2568 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2569 if (Pred == ICmpInst::ICMP_UGT) 2570 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2571 ConstantInt::get(Div->getType(), HiBound)); 2572 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2573 ConstantInt::get(Div->getType(), HiBound)); 2574 } 2575 2576 return nullptr; 2577 } 2578 2579 /// Fold icmp (sub X, Y), C. 2580 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2581 BinaryOperator *Sub, 2582 const APInt &C) { 2583 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2584 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2585 Type *Ty = Sub->getType(); 2586 2587 // (SubC - Y) == C) --> Y == (SubC - C) 2588 // (SubC - Y) != C) --> Y != (SubC - C) 2589 Constant *SubC; 2590 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2591 return new ICmpInst(Pred, Y, 2592 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2593 } 2594 2595 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2596 const APInt *C2; 2597 APInt SubResult; 2598 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2599 bool HasNSW = Sub->hasNoSignedWrap(); 2600 bool HasNUW = Sub->hasNoUnsignedWrap(); 2601 if (match(X, m_APInt(C2)) && 2602 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2603 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2604 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2605 2606 // X - Y == 0 --> X == Y. 2607 // X - Y != 0 --> X != Y. 2608 // TODO: We allow this with multiple uses as long as the other uses are not 2609 // in phis. The phi use check is guarding against a codegen regression 2610 // for a loop test. If the backend could undo this (and possibly 2611 // subsequent transforms), we would not need this hack. 2612 if (Cmp.isEquality() && C.isZero() && 2613 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2614 return new ICmpInst(Pred, X, Y); 2615 2616 // The following transforms are only worth it if the only user of the subtract 2617 // is the icmp. 2618 // TODO: This is an artificial restriction for all of the transforms below 2619 // that only need a single replacement icmp. Can these use the phi test 2620 // like the transform above here? 2621 if (!Sub->hasOneUse()) 2622 return nullptr; 2623 2624 if (Sub->hasNoSignedWrap()) { 2625 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2626 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2627 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2628 2629 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2630 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2631 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2632 2633 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2634 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2635 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2636 2637 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2638 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2639 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2640 } 2641 2642 if (!match(X, m_APInt(C2))) 2643 return nullptr; 2644 2645 // C2 - Y <u C -> (Y | (C - 1)) == C2 2646 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2647 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2648 (*C2 & (C - 1)) == (C - 1)) 2649 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2650 2651 // C2 - Y >u C -> (Y | C) != C2 2652 // iff C2 & C == C and C + 1 is a power of 2 2653 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2654 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2655 2656 // We have handled special cases that reduce. 2657 // Canonicalize any remaining sub to add as: 2658 // (C2 - Y) > C --> (Y + ~C2) < ~C 2659 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2660 HasNUW, HasNSW); 2661 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2662 } 2663 2664 /// Fold icmp (add X, Y), C. 2665 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2666 BinaryOperator *Add, 2667 const APInt &C) { 2668 Value *Y = Add->getOperand(1); 2669 const APInt *C2; 2670 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2671 return nullptr; 2672 2673 // Fold icmp pred (add X, C2), C. 2674 Value *X = Add->getOperand(0); 2675 Type *Ty = Add->getType(); 2676 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2677 2678 // If the add does not wrap, we can always adjust the compare by subtracting 2679 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2680 // are canonicalized to SGT/SLT/UGT/ULT. 2681 if ((Add->hasNoSignedWrap() && 2682 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2683 (Add->hasNoUnsignedWrap() && 2684 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2685 bool Overflow; 2686 APInt NewC = 2687 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2688 // If there is overflow, the result must be true or false. 2689 // TODO: Can we assert there is no overflow because InstSimplify always 2690 // handles those cases? 2691 if (!Overflow) 2692 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2693 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2694 } 2695 2696 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2697 const APInt &Upper = CR.getUpper(); 2698 const APInt &Lower = CR.getLower(); 2699 if (Cmp.isSigned()) { 2700 if (Lower.isSignMask()) 2701 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2702 if (Upper.isSignMask()) 2703 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2704 } else { 2705 if (Lower.isMinValue()) 2706 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2707 if (Upper.isMinValue()) 2708 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2709 } 2710 2711 // This set of folds is intentionally placed after folds that use no-wrapping 2712 // flags because those folds are likely better for later analysis/codegen. 2713 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2714 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2715 2716 // Fold compare with offset to opposite sign compare if it eliminates offset: 2717 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2718 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2719 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2720 2721 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2722 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2723 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2724 2725 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2726 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2727 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2728 2729 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2730 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2731 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2732 2733 if (!Add->hasOneUse()) 2734 return nullptr; 2735 2736 // X+C <u C2 -> (X & -C2) == C 2737 // iff C & (C2-1) == 0 2738 // C2 is a power of 2 2739 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2740 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2741 ConstantExpr::getNeg(cast<Constant>(Y))); 2742 2743 // X+C >u C2 -> (X & ~C2) != C 2744 // iff C & C2 == 0 2745 // C2+1 is a power of 2 2746 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2747 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2748 ConstantExpr::getNeg(cast<Constant>(Y))); 2749 2750 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2751 // to the ult form. 2752 // X+C2 >u C -> X+(C2-C-1) <u ~C 2753 if (Pred == ICmpInst::ICMP_UGT) 2754 return new ICmpInst(ICmpInst::ICMP_ULT, 2755 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2756 ConstantInt::get(Ty, ~C)); 2757 2758 return nullptr; 2759 } 2760 2761 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2762 Value *&RHS, ConstantInt *&Less, 2763 ConstantInt *&Equal, 2764 ConstantInt *&Greater) { 2765 // TODO: Generalize this to work with other comparison idioms or ensure 2766 // they get canonicalized into this form. 2767 2768 // select i1 (a == b), 2769 // i32 Equal, 2770 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2771 // where Equal, Less and Greater are placeholders for any three constants. 2772 ICmpInst::Predicate PredA; 2773 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2774 !ICmpInst::isEquality(PredA)) 2775 return false; 2776 Value *EqualVal = SI->getTrueValue(); 2777 Value *UnequalVal = SI->getFalseValue(); 2778 // We still can get non-canonical predicate here, so canonicalize. 2779 if (PredA == ICmpInst::ICMP_NE) 2780 std::swap(EqualVal, UnequalVal); 2781 if (!match(EqualVal, m_ConstantInt(Equal))) 2782 return false; 2783 ICmpInst::Predicate PredB; 2784 Value *LHS2, *RHS2; 2785 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2786 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2787 return false; 2788 // We can get predicate mismatch here, so canonicalize if possible: 2789 // First, ensure that 'LHS' match. 2790 if (LHS2 != LHS) { 2791 // x sgt y <--> y slt x 2792 std::swap(LHS2, RHS2); 2793 PredB = ICmpInst::getSwappedPredicate(PredB); 2794 } 2795 if (LHS2 != LHS) 2796 return false; 2797 // We also need to canonicalize 'RHS'. 2798 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2799 // x sgt C-1 <--> x sge C <--> not(x slt C) 2800 auto FlippedStrictness = 2801 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2802 PredB, cast<Constant>(RHS2)); 2803 if (!FlippedStrictness) 2804 return false; 2805 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2806 "basic correctness failure"); 2807 RHS2 = FlippedStrictness->second; 2808 // And kind-of perform the result swap. 2809 std::swap(Less, Greater); 2810 PredB = ICmpInst::ICMP_SLT; 2811 } 2812 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2813 } 2814 2815 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2816 SelectInst *Select, 2817 ConstantInt *C) { 2818 2819 assert(C && "Cmp RHS should be a constant int!"); 2820 // If we're testing a constant value against the result of a three way 2821 // comparison, the result can be expressed directly in terms of the 2822 // original values being compared. Note: We could possibly be more 2823 // aggressive here and remove the hasOneUse test. The original select is 2824 // really likely to simplify or sink when we remove a test of the result. 2825 Value *OrigLHS, *OrigRHS; 2826 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2827 if (Cmp.hasOneUse() && 2828 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2829 C3GreaterThan)) { 2830 assert(C1LessThan && C2Equal && C3GreaterThan); 2831 2832 bool TrueWhenLessThan = 2833 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2834 ->isAllOnesValue(); 2835 bool TrueWhenEqual = 2836 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2837 ->isAllOnesValue(); 2838 bool TrueWhenGreaterThan = 2839 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2840 ->isAllOnesValue(); 2841 2842 // This generates the new instruction that will replace the original Cmp 2843 // Instruction. Instead of enumerating the various combinations when 2844 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2845 // false, we rely on chaining of ORs and future passes of InstCombine to 2846 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2847 2848 // When none of the three constants satisfy the predicate for the RHS (C), 2849 // the entire original Cmp can be simplified to a false. 2850 Value *Cond = Builder.getFalse(); 2851 if (TrueWhenLessThan) 2852 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2853 OrigLHS, OrigRHS)); 2854 if (TrueWhenEqual) 2855 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2856 OrigLHS, OrigRHS)); 2857 if (TrueWhenGreaterThan) 2858 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2859 OrigLHS, OrigRHS)); 2860 2861 return replaceInstUsesWith(Cmp, Cond); 2862 } 2863 return nullptr; 2864 } 2865 2866 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2867 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2868 if (!Bitcast) 2869 return nullptr; 2870 2871 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2872 Value *Op1 = Cmp.getOperand(1); 2873 Value *BCSrcOp = Bitcast->getOperand(0); 2874 2875 // Make sure the bitcast doesn't change the number of vector elements. 2876 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2877 Bitcast->getDestTy()->getScalarSizeInBits()) { 2878 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2879 Value *X; 2880 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2881 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2882 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2883 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2884 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2885 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2886 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2887 match(Op1, m_Zero())) 2888 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2889 2890 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2891 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2892 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2893 2894 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2895 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2896 return new ICmpInst(Pred, X, 2897 ConstantInt::getAllOnesValue(X->getType())); 2898 } 2899 2900 // Zero-equality checks are preserved through unsigned floating-point casts: 2901 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2902 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2903 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2904 if (Cmp.isEquality() && match(Op1, m_Zero())) 2905 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2906 2907 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2908 // the FP extend/truncate because that cast does not change the sign-bit. 2909 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2910 // The sign-bit is always the most significant bit in those types. 2911 const APInt *C; 2912 bool TrueIfSigned; 2913 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2914 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2915 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2916 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2917 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2918 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2919 Type *XType = X->getType(); 2920 2921 // We can't currently handle Power style floating point operations here. 2922 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2923 2924 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2925 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2926 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2927 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2928 if (TrueIfSigned) 2929 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2930 ConstantInt::getNullValue(NewType)); 2931 else 2932 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2933 ConstantInt::getAllOnesValue(NewType)); 2934 } 2935 } 2936 } 2937 } 2938 2939 // Test to see if the operands of the icmp are casted versions of other 2940 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2941 if (Bitcast->getType()->isPointerTy() && 2942 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2943 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2944 // so eliminate it as well. 2945 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2946 Op1 = BC2->getOperand(0); 2947 2948 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2949 return new ICmpInst(Pred, BCSrcOp, Op1); 2950 } 2951 2952 const APInt *C; 2953 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2954 !Bitcast->getType()->isIntegerTy() || 2955 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2956 return nullptr; 2957 2958 // If this is checking if all elements of a vector compare are set or not, 2959 // invert the casted vector equality compare and test if all compare 2960 // elements are clear or not. Compare against zero is generally easier for 2961 // analysis and codegen. 2962 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2963 // Example: are all elements equal? --> are zero elements not equal? 2964 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2965 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2966 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2967 Type *ScalarTy = Bitcast->getType(); 2968 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy); 2969 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy)); 2970 } 2971 2972 // If this is checking if all elements of an extended vector are clear or not, 2973 // compare in a narrow type to eliminate the extend: 2974 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2975 Value *X; 2976 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2977 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2978 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2979 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2980 Value *NewCast = Builder.CreateBitCast(X, NewType); 2981 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2982 } 2983 } 2984 2985 // Folding: icmp <pred> iN X, C 2986 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2987 // and C is a splat of a K-bit pattern 2988 // and SC is a constant vector = <C', C', C', ..., C'> 2989 // Into: 2990 // %E = extractelement <M x iK> %vec, i32 C' 2991 // icmp <pred> iK %E, trunc(C) 2992 Value *Vec; 2993 ArrayRef<int> Mask; 2994 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2995 // Check whether every element of Mask is the same constant 2996 if (is_splat(Mask)) { 2997 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2998 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2999 if (C->isSplat(EltTy->getBitWidth())) { 3000 // Fold the icmp based on the value of C 3001 // If C is M copies of an iK sized bit pattern, 3002 // then: 3003 // => %E = extractelement <N x iK> %vec, i32 Elem 3004 // icmp <pred> iK %SplatVal, <pattern> 3005 Value *Elem = Builder.getInt32(Mask[0]); 3006 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3007 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3008 return new ICmpInst(Pred, Extract, NewC); 3009 } 3010 } 3011 } 3012 return nullptr; 3013 } 3014 3015 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3016 /// where X is some kind of instruction. 3017 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3018 const APInt *C; 3019 if (!match(Cmp.getOperand(1), m_APInt(C))) 3020 return nullptr; 3021 3022 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 3023 switch (BO->getOpcode()) { 3024 case Instruction::Xor: 3025 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 3026 return I; 3027 break; 3028 case Instruction::And: 3029 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 3030 return I; 3031 break; 3032 case Instruction::Or: 3033 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 3034 return I; 3035 break; 3036 case Instruction::Mul: 3037 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 3038 return I; 3039 break; 3040 case Instruction::Shl: 3041 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 3042 return I; 3043 break; 3044 case Instruction::LShr: 3045 case Instruction::AShr: 3046 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 3047 return I; 3048 break; 3049 case Instruction::SRem: 3050 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 3051 return I; 3052 break; 3053 case Instruction::UDiv: 3054 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 3055 return I; 3056 LLVM_FALLTHROUGH; 3057 case Instruction::SDiv: 3058 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 3059 return I; 3060 break; 3061 case Instruction::Sub: 3062 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 3063 return I; 3064 break; 3065 case Instruction::Add: 3066 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 3067 return I; 3068 break; 3069 default: 3070 break; 3071 } 3072 // TODO: These folds could be refactored to be part of the above calls. 3073 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 3074 return I; 3075 } 3076 3077 // Match against CmpInst LHS being instructions other than binary operators. 3078 3079 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 3080 // For now, we only support constant integers while folding the 3081 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3082 // similar to the cases handled by binary ops above. 3083 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3084 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3085 return I; 3086 } 3087 3088 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 3089 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3090 return I; 3091 } 3092 3093 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3094 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3095 return I; 3096 3097 return nullptr; 3098 } 3099 3100 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3101 /// icmp eq/ne BO, C. 3102 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3103 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3104 // TODO: Some of these folds could work with arbitrary constants, but this 3105 // function is limited to scalar and vector splat constants. 3106 if (!Cmp.isEquality()) 3107 return nullptr; 3108 3109 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3110 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3111 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3112 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3113 3114 switch (BO->getOpcode()) { 3115 case Instruction::SRem: 3116 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3117 if (C.isZero() && BO->hasOneUse()) { 3118 const APInt *BOC; 3119 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3120 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3121 return new ICmpInst(Pred, NewRem, 3122 Constant::getNullValue(BO->getType())); 3123 } 3124 } 3125 break; 3126 case Instruction::Add: { 3127 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3128 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3129 if (BO->hasOneUse()) 3130 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3131 } else if (C.isZero()) { 3132 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3133 // efficiently invertible, or if the add has just this one use. 3134 if (Value *NegVal = dyn_castNegVal(BOp1)) 3135 return new ICmpInst(Pred, BOp0, NegVal); 3136 if (Value *NegVal = dyn_castNegVal(BOp0)) 3137 return new ICmpInst(Pred, NegVal, BOp1); 3138 if (BO->hasOneUse()) { 3139 Value *Neg = Builder.CreateNeg(BOp1); 3140 Neg->takeName(BO); 3141 return new ICmpInst(Pred, BOp0, Neg); 3142 } 3143 } 3144 break; 3145 } 3146 case Instruction::Xor: 3147 if (BO->hasOneUse()) { 3148 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3149 // For the xor case, we can xor two constants together, eliminating 3150 // the explicit xor. 3151 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3152 } else if (C.isZero()) { 3153 // Replace ((xor A, B) != 0) with (A != B) 3154 return new ICmpInst(Pred, BOp0, BOp1); 3155 } 3156 } 3157 break; 3158 case Instruction::Or: { 3159 const APInt *BOC; 3160 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3161 // Comparing if all bits outside of a constant mask are set? 3162 // Replace (X | C) == -1 with (X & ~C) == ~C. 3163 // This removes the -1 constant. 3164 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3165 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3166 return new ICmpInst(Pred, And, NotBOC); 3167 } 3168 break; 3169 } 3170 case Instruction::And: { 3171 const APInt *BOC; 3172 if (match(BOp1, m_APInt(BOC))) { 3173 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3174 if (C == *BOC && C.isPowerOf2()) 3175 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3176 BO, Constant::getNullValue(RHS->getType())); 3177 } 3178 break; 3179 } 3180 case Instruction::UDiv: 3181 if (C.isZero()) { 3182 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3183 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3184 return new ICmpInst(NewPred, BOp1, BOp0); 3185 } 3186 break; 3187 default: 3188 break; 3189 } 3190 return nullptr; 3191 } 3192 3193 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3194 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3195 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3196 Type *Ty = II->getType(); 3197 unsigned BitWidth = C.getBitWidth(); 3198 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3199 3200 switch (II->getIntrinsicID()) { 3201 case Intrinsic::abs: 3202 // abs(A) == 0 -> A == 0 3203 // abs(A) == INT_MIN -> A == INT_MIN 3204 if (C.isZero() || C.isMinSignedValue()) 3205 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3206 break; 3207 3208 case Intrinsic::bswap: 3209 // bswap(A) == C -> A == bswap(C) 3210 return new ICmpInst(Pred, II->getArgOperand(0), 3211 ConstantInt::get(Ty, C.byteSwap())); 3212 3213 case Intrinsic::ctlz: 3214 case Intrinsic::cttz: { 3215 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3216 if (C == BitWidth) 3217 return new ICmpInst(Pred, II->getArgOperand(0), 3218 ConstantInt::getNullValue(Ty)); 3219 3220 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3221 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3222 // Limit to one use to ensure we don't increase instruction count. 3223 unsigned Num = C.getLimitedValue(BitWidth); 3224 if (Num != BitWidth && II->hasOneUse()) { 3225 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3226 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3227 : APInt::getHighBitsSet(BitWidth, Num + 1); 3228 APInt Mask2 = IsTrailing 3229 ? APInt::getOneBitSet(BitWidth, Num) 3230 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3231 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3232 ConstantInt::get(Ty, Mask2)); 3233 } 3234 break; 3235 } 3236 3237 case Intrinsic::ctpop: { 3238 // popcount(A) == 0 -> A == 0 and likewise for != 3239 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3240 bool IsZero = C.isZero(); 3241 if (IsZero || C == BitWidth) 3242 return new ICmpInst(Pred, II->getArgOperand(0), 3243 IsZero ? Constant::getNullValue(Ty) 3244 : Constant::getAllOnesValue(Ty)); 3245 3246 break; 3247 } 3248 3249 case Intrinsic::fshl: 3250 case Intrinsic::fshr: 3251 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3252 // (rot X, ?) == 0/-1 --> X == 0/-1 3253 // TODO: This transform is safe to re-use undef elts in a vector, but 3254 // the constant value passed in by the caller doesn't allow that. 3255 if (C.isZero() || C.isAllOnes()) 3256 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3257 3258 const APInt *RotAmtC; 3259 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3260 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3261 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3262 return new ICmpInst(Pred, II->getArgOperand(0), 3263 II->getIntrinsicID() == Intrinsic::fshl 3264 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3265 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3266 } 3267 break; 3268 3269 case Intrinsic::uadd_sat: { 3270 // uadd.sat(a, b) == 0 -> (a | b) == 0 3271 if (C.isZero()) { 3272 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3273 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3274 } 3275 break; 3276 } 3277 3278 case Intrinsic::usub_sat: { 3279 // usub.sat(a, b) == 0 -> a <= b 3280 if (C.isZero()) { 3281 ICmpInst::Predicate NewPred = 3282 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3283 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3284 } 3285 break; 3286 } 3287 default: 3288 break; 3289 } 3290 3291 return nullptr; 3292 } 3293 3294 /// Fold an icmp with LLVM intrinsics 3295 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3296 assert(Cmp.isEquality()); 3297 3298 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3299 Value *Op0 = Cmp.getOperand(0); 3300 Value *Op1 = Cmp.getOperand(1); 3301 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3302 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3303 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3304 return nullptr; 3305 3306 switch (IIOp0->getIntrinsicID()) { 3307 case Intrinsic::bswap: 3308 case Intrinsic::bitreverse: 3309 // If both operands are byte-swapped or bit-reversed, just compare the 3310 // original values. 3311 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3312 case Intrinsic::fshl: 3313 case Intrinsic::fshr: 3314 // If both operands are rotated by same amount, just compare the 3315 // original values. 3316 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3317 break; 3318 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3319 break; 3320 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3321 break; 3322 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3323 default: 3324 break; 3325 } 3326 3327 return nullptr; 3328 } 3329 3330 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3331 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3332 IntrinsicInst *II, 3333 const APInt &C) { 3334 if (Cmp.isEquality()) 3335 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3336 3337 Type *Ty = II->getType(); 3338 unsigned BitWidth = C.getBitWidth(); 3339 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3340 switch (II->getIntrinsicID()) { 3341 case Intrinsic::ctpop: { 3342 // (ctpop X > BitWidth - 1) --> X == -1 3343 Value *X = II->getArgOperand(0); 3344 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3345 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3346 ConstantInt::getAllOnesValue(Ty)); 3347 // (ctpop X < BitWidth) --> X != -1 3348 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3349 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3350 ConstantInt::getAllOnesValue(Ty)); 3351 break; 3352 } 3353 case Intrinsic::ctlz: { 3354 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3355 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3356 unsigned Num = C.getLimitedValue(); 3357 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3358 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3359 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3360 } 3361 3362 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3363 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3364 unsigned Num = C.getLimitedValue(); 3365 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3366 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3367 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3368 } 3369 break; 3370 } 3371 case Intrinsic::cttz: { 3372 // Limit to one use to ensure we don't increase instruction count. 3373 if (!II->hasOneUse()) 3374 return nullptr; 3375 3376 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3377 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3378 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3379 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3380 Builder.CreateAnd(II->getArgOperand(0), Mask), 3381 ConstantInt::getNullValue(Ty)); 3382 } 3383 3384 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3385 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3386 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3387 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3388 Builder.CreateAnd(II->getArgOperand(0), Mask), 3389 ConstantInt::getNullValue(Ty)); 3390 } 3391 break; 3392 } 3393 default: 3394 break; 3395 } 3396 3397 return nullptr; 3398 } 3399 3400 /// Handle icmp with constant (but not simple integer constant) RHS. 3401 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3402 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3403 Constant *RHSC = dyn_cast<Constant>(Op1); 3404 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3405 if (!RHSC || !LHSI) 3406 return nullptr; 3407 3408 switch (LHSI->getOpcode()) { 3409 case Instruction::GetElementPtr: 3410 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3411 if (RHSC->isNullValue() && 3412 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3413 return new ICmpInst( 3414 I.getPredicate(), LHSI->getOperand(0), 3415 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3416 break; 3417 case Instruction::PHI: 3418 // Only fold icmp into the PHI if the phi and icmp are in the same 3419 // block. If in the same block, we're encouraging jump threading. If 3420 // not, we are just pessimizing the code by making an i1 phi. 3421 if (LHSI->getParent() == I.getParent()) 3422 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3423 return NV; 3424 break; 3425 case Instruction::IntToPtr: 3426 // icmp pred inttoptr(X), null -> icmp pred X, 0 3427 if (RHSC->isNullValue() && 3428 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3429 return new ICmpInst( 3430 I.getPredicate(), LHSI->getOperand(0), 3431 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3432 break; 3433 3434 case Instruction::Load: 3435 // Try to optimize things like "A[i] > 4" to index computations. 3436 if (GetElementPtrInst *GEP = 3437 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3438 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3439 if (Instruction *Res = 3440 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3441 return Res; 3442 break; 3443 } 3444 3445 return nullptr; 3446 } 3447 3448 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 3449 SelectInst *SI, Value *RHS, 3450 const ICmpInst &I) { 3451 // Try to fold the comparison into the select arms, which will cause the 3452 // select to be converted into a logical and/or. 3453 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 3454 if (Value *Res = SimplifyICmpInst(Pred, Op, RHS, SQ)) 3455 return Res; 3456 if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op, 3457 RHS, DL, SelectCondIsTrue)) 3458 return ConstantInt::get(I.getType(), *Impl); 3459 return nullptr; 3460 }; 3461 3462 ConstantInt *CI = nullptr; 3463 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 3464 if (Op1) 3465 CI = dyn_cast<ConstantInt>(Op1); 3466 3467 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 3468 if (Op2) 3469 CI = dyn_cast<ConstantInt>(Op2); 3470 3471 // We only want to perform this transformation if it will not lead to 3472 // additional code. This is true if either both sides of the select 3473 // fold to a constant (in which case the icmp is replaced with a select 3474 // which will usually simplify) or this is the only user of the 3475 // select (in which case we are trading a select+icmp for a simpler 3476 // select+icmp) or all uses of the select can be replaced based on 3477 // dominance information ("Global cases"). 3478 bool Transform = false; 3479 if (Op1 && Op2) 3480 Transform = true; 3481 else if (Op1 || Op2) { 3482 // Local case 3483 if (SI->hasOneUse()) 3484 Transform = true; 3485 // Global cases 3486 else if (CI && !CI->isZero()) 3487 // When Op1 is constant try replacing select with second operand. 3488 // Otherwise Op2 is constant and try replacing select with first 3489 // operand. 3490 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 3491 } 3492 if (Transform) { 3493 if (!Op1) 3494 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 3495 if (!Op2) 3496 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 3497 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 3498 } 3499 3500 return nullptr; 3501 } 3502 3503 /// Some comparisons can be simplified. 3504 /// In this case, we are looking for comparisons that look like 3505 /// a check for a lossy truncation. 3506 /// Folds: 3507 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3508 /// Where Mask is some pattern that produces all-ones in low bits: 3509 /// (-1 >> y) 3510 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3511 /// ~(-1 << y) 3512 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3513 /// The Mask can be a constant, too. 3514 /// For some predicates, the operands are commutative. 3515 /// For others, x can only be on a specific side. 3516 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3517 InstCombiner::BuilderTy &Builder) { 3518 ICmpInst::Predicate SrcPred; 3519 Value *X, *M, *Y; 3520 auto m_VariableMask = m_CombineOr( 3521 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3522 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3523 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3524 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3525 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3526 if (!match(&I, m_c_ICmp(SrcPred, 3527 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3528 m_Deferred(X)))) 3529 return nullptr; 3530 3531 ICmpInst::Predicate DstPred; 3532 switch (SrcPred) { 3533 case ICmpInst::Predicate::ICMP_EQ: 3534 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3535 DstPred = ICmpInst::Predicate::ICMP_ULE; 3536 break; 3537 case ICmpInst::Predicate::ICMP_NE: 3538 // x & (-1 >> y) != x -> x u> (-1 >> y) 3539 DstPred = ICmpInst::Predicate::ICMP_UGT; 3540 break; 3541 case ICmpInst::Predicate::ICMP_ULT: 3542 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3543 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3544 DstPred = ICmpInst::Predicate::ICMP_UGT; 3545 break; 3546 case ICmpInst::Predicate::ICMP_UGE: 3547 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3548 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3549 DstPred = ICmpInst::Predicate::ICMP_ULE; 3550 break; 3551 case ICmpInst::Predicate::ICMP_SLT: 3552 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3553 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3554 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3555 return nullptr; 3556 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3557 return nullptr; 3558 DstPred = ICmpInst::Predicate::ICMP_SGT; 3559 break; 3560 case ICmpInst::Predicate::ICMP_SGE: 3561 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3562 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3563 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3564 return nullptr; 3565 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3566 return nullptr; 3567 DstPred = ICmpInst::Predicate::ICMP_SLE; 3568 break; 3569 case ICmpInst::Predicate::ICMP_SGT: 3570 case ICmpInst::Predicate::ICMP_SLE: 3571 return nullptr; 3572 case ICmpInst::Predicate::ICMP_UGT: 3573 case ICmpInst::Predicate::ICMP_ULE: 3574 llvm_unreachable("Instsimplify took care of commut. variant"); 3575 break; 3576 default: 3577 llvm_unreachable("All possible folds are handled."); 3578 } 3579 3580 // The mask value may be a vector constant that has undefined elements. But it 3581 // may not be safe to propagate those undefs into the new compare, so replace 3582 // those elements by copying an existing, defined, and safe scalar constant. 3583 Type *OpTy = M->getType(); 3584 auto *VecC = dyn_cast<Constant>(M); 3585 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3586 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3587 Constant *SafeReplacementConstant = nullptr; 3588 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3589 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3590 SafeReplacementConstant = VecC->getAggregateElement(i); 3591 break; 3592 } 3593 } 3594 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3595 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3596 } 3597 3598 return Builder.CreateICmp(DstPred, X, M); 3599 } 3600 3601 /// Some comparisons can be simplified. 3602 /// In this case, we are looking for comparisons that look like 3603 /// a check for a lossy signed truncation. 3604 /// Folds: (MaskedBits is a constant.) 3605 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3606 /// Into: 3607 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3608 /// Where KeptBits = bitwidth(%x) - MaskedBits 3609 static Value * 3610 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3611 InstCombiner::BuilderTy &Builder) { 3612 ICmpInst::Predicate SrcPred; 3613 Value *X; 3614 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3615 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3616 if (!match(&I, m_c_ICmp(SrcPred, 3617 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3618 m_APInt(C1))), 3619 m_Deferred(X)))) 3620 return nullptr; 3621 3622 // Potential handling of non-splats: for each element: 3623 // * if both are undef, replace with constant 0. 3624 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3625 // * if both are not undef, and are different, bailout. 3626 // * else, only one is undef, then pick the non-undef one. 3627 3628 // The shift amount must be equal. 3629 if (*C0 != *C1) 3630 return nullptr; 3631 const APInt &MaskedBits = *C0; 3632 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3633 3634 ICmpInst::Predicate DstPred; 3635 switch (SrcPred) { 3636 case ICmpInst::Predicate::ICMP_EQ: 3637 // ((%x << MaskedBits) a>> MaskedBits) == %x 3638 // => 3639 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3640 DstPred = ICmpInst::Predicate::ICMP_ULT; 3641 break; 3642 case ICmpInst::Predicate::ICMP_NE: 3643 // ((%x << MaskedBits) a>> MaskedBits) != %x 3644 // => 3645 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3646 DstPred = ICmpInst::Predicate::ICMP_UGE; 3647 break; 3648 // FIXME: are more folds possible? 3649 default: 3650 return nullptr; 3651 } 3652 3653 auto *XType = X->getType(); 3654 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3655 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3656 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3657 3658 // KeptBits = bitwidth(%x) - MaskedBits 3659 const APInt KeptBits = BitWidth - MaskedBits; 3660 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3661 // ICmpCst = (1 << KeptBits) 3662 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3663 assert(ICmpCst.isPowerOf2()); 3664 // AddCst = (1 << (KeptBits-1)) 3665 const APInt AddCst = ICmpCst.lshr(1); 3666 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3667 3668 // T0 = add %x, AddCst 3669 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3670 // T1 = T0 DstPred ICmpCst 3671 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3672 3673 return T1; 3674 } 3675 3676 // Given pattern: 3677 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3678 // we should move shifts to the same hand of 'and', i.e. rewrite as 3679 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3680 // We are only interested in opposite logical shifts here. 3681 // One of the shifts can be truncated. 3682 // If we can, we want to end up creating 'lshr' shift. 3683 static Value * 3684 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3685 InstCombiner::BuilderTy &Builder) { 3686 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3687 !I.getOperand(0)->hasOneUse()) 3688 return nullptr; 3689 3690 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3691 3692 // Look for an 'and' of two logical shifts, one of which may be truncated. 3693 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3694 Instruction *XShift, *MaybeTruncation, *YShift; 3695 if (!match( 3696 I.getOperand(0), 3697 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3698 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3699 m_AnyLogicalShift, m_Instruction(YShift))), 3700 m_Instruction(MaybeTruncation))))) 3701 return nullptr; 3702 3703 // We potentially looked past 'trunc', but only when matching YShift, 3704 // therefore YShift must have the widest type. 3705 Instruction *WidestShift = YShift; 3706 // Therefore XShift must have the shallowest type. 3707 // Or they both have identical types if there was no truncation. 3708 Instruction *NarrowestShift = XShift; 3709 3710 Type *WidestTy = WidestShift->getType(); 3711 Type *NarrowestTy = NarrowestShift->getType(); 3712 assert(NarrowestTy == I.getOperand(0)->getType() && 3713 "We did not look past any shifts while matching XShift though."); 3714 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3715 3716 // If YShift is a 'lshr', swap the shifts around. 3717 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3718 std::swap(XShift, YShift); 3719 3720 // The shifts must be in opposite directions. 3721 auto XShiftOpcode = XShift->getOpcode(); 3722 if (XShiftOpcode == YShift->getOpcode()) 3723 return nullptr; // Do not care about same-direction shifts here. 3724 3725 Value *X, *XShAmt, *Y, *YShAmt; 3726 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3727 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3728 3729 // If one of the values being shifted is a constant, then we will end with 3730 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3731 // however, we will need to ensure that we won't increase instruction count. 3732 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3733 // At least one of the hands of the 'and' should be one-use shift. 3734 if (!match(I.getOperand(0), 3735 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3736 return nullptr; 3737 if (HadTrunc) { 3738 // Due to the 'trunc', we will need to widen X. For that either the old 3739 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3740 if (!MaybeTruncation->hasOneUse() && 3741 !NarrowestShift->getOperand(1)->hasOneUse()) 3742 return nullptr; 3743 } 3744 } 3745 3746 // We have two shift amounts from two different shifts. The types of those 3747 // shift amounts may not match. If that's the case let's bailout now. 3748 if (XShAmt->getType() != YShAmt->getType()) 3749 return nullptr; 3750 3751 // As input, we have the following pattern: 3752 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3753 // We want to rewrite that as: 3754 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3755 // While we know that originally (Q+K) would not overflow 3756 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3757 // shift amounts. so it may now overflow in smaller bitwidth. 3758 // To ensure that does not happen, we need to ensure that the total maximal 3759 // shift amount is still representable in that smaller bit width. 3760 unsigned MaximalPossibleTotalShiftAmount = 3761 (WidestTy->getScalarSizeInBits() - 1) + 3762 (NarrowestTy->getScalarSizeInBits() - 1); 3763 APInt MaximalRepresentableShiftAmount = 3764 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3765 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3766 return nullptr; 3767 3768 // Can we fold (XShAmt+YShAmt) ? 3769 auto *NewShAmt = dyn_cast_or_null<Constant>( 3770 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3771 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3772 if (!NewShAmt) 3773 return nullptr; 3774 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3775 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3776 3777 // Is the new shift amount smaller than the bit width? 3778 // FIXME: could also rely on ConstantRange. 3779 if (!match(NewShAmt, 3780 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3781 APInt(WidestBitWidth, WidestBitWidth)))) 3782 return nullptr; 3783 3784 // An extra legality check is needed if we had trunc-of-lshr. 3785 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3786 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3787 WidestShift]() { 3788 // It isn't obvious whether it's worth it to analyze non-constants here. 3789 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3790 // If *any* of these preconditions matches we can perform the fold. 3791 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3792 ? NewShAmt->getSplatValue() 3793 : NewShAmt; 3794 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3795 if (NewShAmtSplat && 3796 (NewShAmtSplat->isNullValue() || 3797 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3798 return true; 3799 // We consider *min* leading zeros so a single outlier 3800 // blocks the transform as opposed to allowing it. 3801 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3802 KnownBits Known = computeKnownBits(C, SQ.DL); 3803 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3804 // If the value being shifted has at most lowest bit set we can fold. 3805 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3806 if (MaxActiveBits <= 1) 3807 return true; 3808 // Precondition: NewShAmt u<= countLeadingZeros(C) 3809 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3810 return true; 3811 } 3812 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3813 KnownBits Known = computeKnownBits(C, SQ.DL); 3814 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3815 // If the value being shifted has at most lowest bit set we can fold. 3816 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3817 if (MaxActiveBits <= 1) 3818 return true; 3819 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3820 if (NewShAmtSplat) { 3821 APInt AdjNewShAmt = 3822 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3823 if (AdjNewShAmt.ule(MinLeadZero)) 3824 return true; 3825 } 3826 } 3827 return false; // Can't tell if it's ok. 3828 }; 3829 if (!CanFold()) 3830 return nullptr; 3831 } 3832 3833 // All good, we can do this fold. 3834 X = Builder.CreateZExt(X, WidestTy); 3835 Y = Builder.CreateZExt(Y, WidestTy); 3836 // The shift is the same that was for X. 3837 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3838 ? Builder.CreateLShr(X, NewShAmt) 3839 : Builder.CreateShl(X, NewShAmt); 3840 Value *T1 = Builder.CreateAnd(T0, Y); 3841 return Builder.CreateICmp(I.getPredicate(), T1, 3842 Constant::getNullValue(WidestTy)); 3843 } 3844 3845 /// Fold 3846 /// (-1 u/ x) u< y 3847 /// ((x * y) ?/ x) != y 3848 /// to 3849 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3850 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3851 /// will mean that we are looking for the opposite answer. 3852 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3853 ICmpInst::Predicate Pred; 3854 Value *X, *Y; 3855 Instruction *Mul; 3856 Instruction *Div; 3857 bool NeedNegation; 3858 // Look for: (-1 u/ x) u</u>= y 3859 if (!I.isEquality() && 3860 match(&I, m_c_ICmp(Pred, 3861 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3862 m_Instruction(Div)), 3863 m_Value(Y)))) { 3864 Mul = nullptr; 3865 3866 // Are we checking that overflow does not happen, or does happen? 3867 switch (Pred) { 3868 case ICmpInst::Predicate::ICMP_ULT: 3869 NeedNegation = false; 3870 break; // OK 3871 case ICmpInst::Predicate::ICMP_UGE: 3872 NeedNegation = true; 3873 break; // OK 3874 default: 3875 return nullptr; // Wrong predicate. 3876 } 3877 } else // Look for: ((x * y) / x) !=/== y 3878 if (I.isEquality() && 3879 match(&I, 3880 m_c_ICmp(Pred, m_Value(Y), 3881 m_CombineAnd( 3882 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3883 m_Value(X)), 3884 m_Instruction(Mul)), 3885 m_Deferred(X))), 3886 m_Instruction(Div))))) { 3887 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3888 } else 3889 return nullptr; 3890 3891 BuilderTy::InsertPointGuard Guard(Builder); 3892 // If the pattern included (x * y), we'll want to insert new instructions 3893 // right before that original multiplication so that we can replace it. 3894 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3895 if (MulHadOtherUses) 3896 Builder.SetInsertPoint(Mul); 3897 3898 Function *F = Intrinsic::getDeclaration(I.getModule(), 3899 Div->getOpcode() == Instruction::UDiv 3900 ? Intrinsic::umul_with_overflow 3901 : Intrinsic::smul_with_overflow, 3902 X->getType()); 3903 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3904 3905 // If the multiplication was used elsewhere, to ensure that we don't leave 3906 // "duplicate" instructions, replace uses of that original multiplication 3907 // with the multiplication result from the with.overflow intrinsic. 3908 if (MulHadOtherUses) 3909 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3910 3911 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3912 if (NeedNegation) // This technically increases instruction count. 3913 Res = Builder.CreateNot(Res, "mul.not.ov"); 3914 3915 // If we replaced the mul, erase it. Do this after all uses of Builder, 3916 // as the mul is used as insertion point. 3917 if (MulHadOtherUses) 3918 eraseInstFromFunction(*Mul); 3919 3920 return Res; 3921 } 3922 3923 static Instruction *foldICmpXNegX(ICmpInst &I) { 3924 CmpInst::Predicate Pred; 3925 Value *X; 3926 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3927 return nullptr; 3928 3929 if (ICmpInst::isSigned(Pred)) 3930 Pred = ICmpInst::getSwappedPredicate(Pred); 3931 else if (ICmpInst::isUnsigned(Pred)) 3932 Pred = ICmpInst::getSignedPredicate(Pred); 3933 // else for equality-comparisons just keep the predicate. 3934 3935 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3936 Constant::getNullValue(X->getType()), I.getName()); 3937 } 3938 3939 /// Try to fold icmp (binop), X or icmp X, (binop). 3940 /// TODO: A large part of this logic is duplicated in InstSimplify's 3941 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3942 /// duplication. 3943 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3944 const SimplifyQuery &SQ) { 3945 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3946 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3947 3948 // Special logic for binary operators. 3949 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3950 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3951 if (!BO0 && !BO1) 3952 return nullptr; 3953 3954 if (Instruction *NewICmp = foldICmpXNegX(I)) 3955 return NewICmp; 3956 3957 const CmpInst::Predicate Pred = I.getPredicate(); 3958 Value *X; 3959 3960 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3961 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3962 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3963 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3964 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3965 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3966 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3967 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3968 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3969 3970 { 3971 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 3972 Constant *C; 3973 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 3974 m_ImmConstant(C)))) && 3975 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 3976 Constant *C2 = ConstantExpr::getNot(C); 3977 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 3978 } 3979 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 3980 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 3981 m_ImmConstant(C)))) && 3982 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 3983 Constant *C2 = ConstantExpr::getNot(C); 3984 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 3985 } 3986 } 3987 3988 { 3989 // Similar to above: an unsigned overflow comparison may use offset + mask: 3990 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 3991 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 3992 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 3993 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 3994 BinaryOperator *BO; 3995 const APInt *C; 3996 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 3997 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3998 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 3999 CmpInst::Predicate NewPred = 4000 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4001 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4002 return new ICmpInst(NewPred, Op1, Zero); 4003 } 4004 4005 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4006 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4007 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 4008 CmpInst::Predicate NewPred = 4009 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4010 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4011 return new ICmpInst(NewPred, Op0, Zero); 4012 } 4013 } 4014 4015 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4016 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 4017 NoOp0WrapProblem = 4018 ICmpInst::isEquality(Pred) || 4019 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 4020 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 4021 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 4022 NoOp1WrapProblem = 4023 ICmpInst::isEquality(Pred) || 4024 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 4025 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 4026 4027 // Analyze the case when either Op0 or Op1 is an add instruction. 4028 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4029 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4030 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4031 A = BO0->getOperand(0); 4032 B = BO0->getOperand(1); 4033 } 4034 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4035 C = BO1->getOperand(0); 4036 D = BO1->getOperand(1); 4037 } 4038 4039 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4040 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4041 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4042 return new ICmpInst(Pred, A == Op1 ? B : A, 4043 Constant::getNullValue(Op1->getType())); 4044 4045 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4046 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4047 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4048 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4049 C == Op0 ? D : C); 4050 4051 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4052 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4053 NoOp1WrapProblem) { 4054 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4055 Value *Y, *Z; 4056 if (A == C) { 4057 // C + B == C + D -> B == D 4058 Y = B; 4059 Z = D; 4060 } else if (A == D) { 4061 // D + B == C + D -> B == C 4062 Y = B; 4063 Z = C; 4064 } else if (B == C) { 4065 // A + C == C + D -> A == D 4066 Y = A; 4067 Z = D; 4068 } else { 4069 assert(B == D); 4070 // A + D == C + D -> A == C 4071 Y = A; 4072 Z = C; 4073 } 4074 return new ICmpInst(Pred, Y, Z); 4075 } 4076 4077 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4078 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4079 match(B, m_AllOnes())) 4080 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4081 4082 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4083 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4084 match(B, m_AllOnes())) 4085 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4086 4087 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4088 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4089 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4090 4091 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4092 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4093 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4094 4095 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4096 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4097 match(D, m_AllOnes())) 4098 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4099 4100 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4101 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4102 match(D, m_AllOnes())) 4103 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4104 4105 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4106 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4107 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4108 4109 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4110 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4111 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4112 4113 // TODO: The subtraction-related identities shown below also hold, but 4114 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4115 // wouldn't happen even if they were implemented. 4116 // 4117 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4118 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4119 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4120 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4121 4122 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4123 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4124 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4125 4126 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4127 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4128 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4129 4130 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4131 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4132 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4133 4134 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4135 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4136 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4137 4138 // if C1 has greater magnitude than C2: 4139 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4140 // s.t. C3 = C1 - C2 4141 // 4142 // if C2 has greater magnitude than C1: 4143 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4144 // s.t. C3 = C2 - C1 4145 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4146 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4147 const APInt *AP1, *AP2; 4148 // TODO: Support non-uniform vectors. 4149 // TODO: Allow undef passthrough if B AND D's element is undef. 4150 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4151 AP1->isNegative() == AP2->isNegative()) { 4152 APInt AP1Abs = AP1->abs(); 4153 APInt AP2Abs = AP2->abs(); 4154 if (AP1Abs.uge(AP2Abs)) { 4155 APInt Diff = *AP1 - *AP2; 4156 bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1); 4157 bool HasNSW = BO0->hasNoSignedWrap(); 4158 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4159 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4160 return new ICmpInst(Pred, NewAdd, C); 4161 } else { 4162 APInt Diff = *AP2 - *AP1; 4163 bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2); 4164 bool HasNSW = BO1->hasNoSignedWrap(); 4165 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4166 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4167 return new ICmpInst(Pred, A, NewAdd); 4168 } 4169 } 4170 Constant *Cst1, *Cst2; 4171 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4172 ICmpInst::isEquality(Pred)) { 4173 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4174 Value *NewAdd = Builder.CreateAdd(C, Diff); 4175 return new ICmpInst(Pred, A, NewAdd); 4176 } 4177 } 4178 4179 // Analyze the case when either Op0 or Op1 is a sub instruction. 4180 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4181 A = nullptr; 4182 B = nullptr; 4183 C = nullptr; 4184 D = nullptr; 4185 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4186 A = BO0->getOperand(0); 4187 B = BO0->getOperand(1); 4188 } 4189 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4190 C = BO1->getOperand(0); 4191 D = BO1->getOperand(1); 4192 } 4193 4194 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4195 if (A == Op1 && NoOp0WrapProblem) 4196 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4197 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4198 if (C == Op0 && NoOp1WrapProblem) 4199 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4200 4201 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4202 // (A - B) u>/u<= A --> B u>/u<= A 4203 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4204 return new ICmpInst(Pred, B, A); 4205 // C u</u>= (C - D) --> C u</u>= D 4206 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4207 return new ICmpInst(Pred, C, D); 4208 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4209 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4210 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4211 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4212 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4213 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4214 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4215 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4216 4217 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4218 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4219 return new ICmpInst(Pred, A, C); 4220 4221 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4222 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4223 return new ICmpInst(Pred, D, B); 4224 4225 // icmp (0-X) < cst --> x > -cst 4226 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4227 Value *X; 4228 if (match(BO0, m_Neg(m_Value(X)))) 4229 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4230 if (RHSC->isNotMinSignedValue()) 4231 return new ICmpInst(I.getSwappedPredicate(), X, 4232 ConstantExpr::getNeg(RHSC)); 4233 } 4234 4235 { 4236 // Try to remove shared constant multiplier from equality comparison: 4237 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4238 Value *X, *Y; 4239 const APInt *C; 4240 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4241 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4242 if (!C->countTrailingZeros() || 4243 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4244 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4245 return new ICmpInst(Pred, X, Y); 4246 } 4247 4248 BinaryOperator *SRem = nullptr; 4249 // icmp (srem X, Y), Y 4250 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4251 SRem = BO0; 4252 // icmp Y, (srem X, Y) 4253 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4254 Op0 == BO1->getOperand(1)) 4255 SRem = BO1; 4256 if (SRem) { 4257 // We don't check hasOneUse to avoid increasing register pressure because 4258 // the value we use is the same value this instruction was already using. 4259 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4260 default: 4261 break; 4262 case ICmpInst::ICMP_EQ: 4263 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4264 case ICmpInst::ICMP_NE: 4265 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4266 case ICmpInst::ICMP_SGT: 4267 case ICmpInst::ICMP_SGE: 4268 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4269 Constant::getAllOnesValue(SRem->getType())); 4270 case ICmpInst::ICMP_SLT: 4271 case ICmpInst::ICMP_SLE: 4272 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4273 Constant::getNullValue(SRem->getType())); 4274 } 4275 } 4276 4277 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4278 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4279 switch (BO0->getOpcode()) { 4280 default: 4281 break; 4282 case Instruction::Add: 4283 case Instruction::Sub: 4284 case Instruction::Xor: { 4285 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4286 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4287 4288 const APInt *C; 4289 if (match(BO0->getOperand(1), m_APInt(C))) { 4290 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4291 if (C->isSignMask()) { 4292 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4293 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4294 } 4295 4296 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4297 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4298 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4299 NewPred = I.getSwappedPredicate(NewPred); 4300 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4301 } 4302 } 4303 break; 4304 } 4305 case Instruction::Mul: { 4306 if (!I.isEquality()) 4307 break; 4308 4309 const APInt *C; 4310 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4311 !C->isOne()) { 4312 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4313 // Mask = -1 >> count-trailing-zeros(C). 4314 if (unsigned TZs = C->countTrailingZeros()) { 4315 Constant *Mask = ConstantInt::get( 4316 BO0->getType(), 4317 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4318 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4319 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4320 return new ICmpInst(Pred, And1, And2); 4321 } 4322 } 4323 break; 4324 } 4325 case Instruction::UDiv: 4326 case Instruction::LShr: 4327 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4328 break; 4329 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4330 4331 case Instruction::SDiv: 4332 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4333 break; 4334 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4335 4336 case Instruction::AShr: 4337 if (!BO0->isExact() || !BO1->isExact()) 4338 break; 4339 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4340 4341 case Instruction::Shl: { 4342 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4343 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4344 if (!NUW && !NSW) 4345 break; 4346 if (!NSW && I.isSigned()) 4347 break; 4348 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4349 } 4350 } 4351 } 4352 4353 if (BO0) { 4354 // Transform A & (L - 1) `ult` L --> L != 0 4355 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4356 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4357 4358 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4359 auto *Zero = Constant::getNullValue(BO0->getType()); 4360 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4361 } 4362 } 4363 4364 if (Value *V = foldMultiplicationOverflowCheck(I)) 4365 return replaceInstUsesWith(I, V); 4366 4367 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4368 return replaceInstUsesWith(I, V); 4369 4370 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4371 return replaceInstUsesWith(I, V); 4372 4373 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4374 return replaceInstUsesWith(I, V); 4375 4376 return nullptr; 4377 } 4378 4379 /// Fold icmp Pred min|max(X, Y), X. 4380 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4381 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4382 Value *Op0 = Cmp.getOperand(0); 4383 Value *X = Cmp.getOperand(1); 4384 4385 // Canonicalize minimum or maximum operand to LHS of the icmp. 4386 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4387 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4388 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4389 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4390 std::swap(Op0, X); 4391 Pred = Cmp.getSwappedPredicate(); 4392 } 4393 4394 Value *Y; 4395 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4396 // smin(X, Y) == X --> X s<= Y 4397 // smin(X, Y) s>= X --> X s<= Y 4398 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4399 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4400 4401 // smin(X, Y) != X --> X s> Y 4402 // smin(X, Y) s< X --> X s> Y 4403 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4404 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4405 4406 // These cases should be handled in InstSimplify: 4407 // smin(X, Y) s<= X --> true 4408 // smin(X, Y) s> X --> false 4409 return nullptr; 4410 } 4411 4412 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4413 // smax(X, Y) == X --> X s>= Y 4414 // smax(X, Y) s<= X --> X s>= Y 4415 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4416 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4417 4418 // smax(X, Y) != X --> X s< Y 4419 // smax(X, Y) s> X --> X s< Y 4420 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4421 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4422 4423 // These cases should be handled in InstSimplify: 4424 // smax(X, Y) s>= X --> true 4425 // smax(X, Y) s< X --> false 4426 return nullptr; 4427 } 4428 4429 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4430 // umin(X, Y) == X --> X u<= Y 4431 // umin(X, Y) u>= X --> X u<= Y 4432 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4433 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4434 4435 // umin(X, Y) != X --> X u> Y 4436 // umin(X, Y) u< X --> X u> Y 4437 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4438 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4439 4440 // These cases should be handled in InstSimplify: 4441 // umin(X, Y) u<= X --> true 4442 // umin(X, Y) u> X --> false 4443 return nullptr; 4444 } 4445 4446 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4447 // umax(X, Y) == X --> X u>= Y 4448 // umax(X, Y) u<= X --> X u>= Y 4449 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4450 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4451 4452 // umax(X, Y) != X --> X u< Y 4453 // umax(X, Y) u> X --> X u< Y 4454 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4455 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4456 4457 // These cases should be handled in InstSimplify: 4458 // umax(X, Y) u>= X --> true 4459 // umax(X, Y) u< X --> false 4460 return nullptr; 4461 } 4462 4463 return nullptr; 4464 } 4465 4466 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4467 if (!I.isEquality()) 4468 return nullptr; 4469 4470 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4471 const CmpInst::Predicate Pred = I.getPredicate(); 4472 Value *A, *B, *C, *D; 4473 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4474 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4475 Value *OtherVal = A == Op1 ? B : A; 4476 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4477 } 4478 4479 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4480 // A^c1 == C^c2 --> A == C^(c1^c2) 4481 ConstantInt *C1, *C2; 4482 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4483 Op1->hasOneUse()) { 4484 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4485 Value *Xor = Builder.CreateXor(C, NC); 4486 return new ICmpInst(Pred, A, Xor); 4487 } 4488 4489 // A^B == A^D -> B == D 4490 if (A == C) 4491 return new ICmpInst(Pred, B, D); 4492 if (A == D) 4493 return new ICmpInst(Pred, B, C); 4494 if (B == C) 4495 return new ICmpInst(Pred, A, D); 4496 if (B == D) 4497 return new ICmpInst(Pred, A, C); 4498 } 4499 } 4500 4501 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4502 // A == (A^B) -> B == 0 4503 Value *OtherVal = A == Op0 ? B : A; 4504 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4505 } 4506 4507 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4508 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4509 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4510 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4511 4512 if (A == C) { 4513 X = B; 4514 Y = D; 4515 Z = A; 4516 } else if (A == D) { 4517 X = B; 4518 Y = C; 4519 Z = A; 4520 } else if (B == C) { 4521 X = A; 4522 Y = D; 4523 Z = B; 4524 } else if (B == D) { 4525 X = A; 4526 Y = C; 4527 Z = B; 4528 } 4529 4530 if (X) { // Build (X^Y) & Z 4531 Op1 = Builder.CreateXor(X, Y); 4532 Op1 = Builder.CreateAnd(Op1, Z); 4533 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4534 } 4535 } 4536 4537 { 4538 // Similar to above, but specialized for constant because invert is needed: 4539 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4540 Value *X, *Y; 4541 Constant *C; 4542 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4543 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4544 Value *Xor = Builder.CreateXor(X, Y); 4545 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4546 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4547 } 4548 } 4549 4550 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4551 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4552 ConstantInt *Cst1; 4553 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4554 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4555 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4556 match(Op1, m_ZExt(m_Value(A))))) { 4557 APInt Pow2 = Cst1->getValue() + 1; 4558 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4559 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4560 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4561 } 4562 4563 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4564 // For lshr and ashr pairs. 4565 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4566 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4567 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4568 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4569 unsigned TypeBits = Cst1->getBitWidth(); 4570 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4571 if (ShAmt < TypeBits && ShAmt != 0) { 4572 ICmpInst::Predicate NewPred = 4573 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4574 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4575 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4576 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4577 } 4578 } 4579 4580 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4581 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4582 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4583 unsigned TypeBits = Cst1->getBitWidth(); 4584 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4585 if (ShAmt < TypeBits && ShAmt != 0) { 4586 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4587 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4588 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4589 I.getName() + ".mask"); 4590 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4591 } 4592 } 4593 4594 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4595 // "icmp (and X, mask), cst" 4596 uint64_t ShAmt = 0; 4597 if (Op0->hasOneUse() && 4598 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4599 match(Op1, m_ConstantInt(Cst1)) && 4600 // Only do this when A has multiple uses. This is most important to do 4601 // when it exposes other optimizations. 4602 !A->hasOneUse()) { 4603 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4604 4605 if (ShAmt < ASize) { 4606 APInt MaskV = 4607 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4608 MaskV <<= ShAmt; 4609 4610 APInt CmpV = Cst1->getValue().zext(ASize); 4611 CmpV <<= ShAmt; 4612 4613 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4614 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4615 } 4616 } 4617 4618 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4619 return ICmp; 4620 4621 // Canonicalize checking for a power-of-2-or-zero value: 4622 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4623 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4624 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4625 m_Deferred(A)))) || 4626 !match(Op1, m_ZeroInt())) 4627 A = nullptr; 4628 4629 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4630 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4631 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4632 A = Op1; 4633 else if (match(Op1, 4634 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4635 A = Op0; 4636 4637 if (A) { 4638 Type *Ty = A->getType(); 4639 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4640 return Pred == ICmpInst::ICMP_EQ 4641 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4642 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4643 } 4644 4645 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4646 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4647 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4648 // of instcombine. 4649 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4650 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4651 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4652 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4653 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4654 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4655 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4656 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4657 : ICmpInst::ICMP_UGE, 4658 Add, ConstantInt::get(A->getType(), C.shl(1))); 4659 } 4660 4661 return nullptr; 4662 } 4663 4664 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4665 InstCombiner::BuilderTy &Builder) { 4666 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4667 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4668 4669 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4670 // The trunc masks high bits while the compare may effectively mask low bits. 4671 Value *X; 4672 const APInt *C; 4673 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4674 return nullptr; 4675 4676 // This matches patterns corresponding to tests of the signbit as well as: 4677 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4678 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4679 APInt Mask; 4680 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4681 Value *And = Builder.CreateAnd(X, Mask); 4682 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4683 return new ICmpInst(Pred, And, Zero); 4684 } 4685 4686 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4687 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4688 // If C is a negative power-of-2 (high-bit mask): 4689 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4690 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4691 Value *And = Builder.CreateAnd(X, MaskC); 4692 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4693 } 4694 4695 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4696 // If C is not-of-power-of-2 (one clear bit): 4697 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4698 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4699 Value *And = Builder.CreateAnd(X, MaskC); 4700 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4701 } 4702 4703 return nullptr; 4704 } 4705 4706 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 4707 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4708 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4709 Value *X; 4710 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4711 return nullptr; 4712 4713 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4714 bool IsSignedCmp = ICmp.isSigned(); 4715 4716 // icmp Pred (ext X), (ext Y) 4717 Value *Y; 4718 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 4719 bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0)); 4720 bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1)); 4721 4722 // If we have mismatched casts, treat the zext of a non-negative source as 4723 // a sext to simulate matching casts. Otherwise, we are done. 4724 // TODO: Can we handle some predicates (equality) without non-negative? 4725 if (IsZext0 != IsZext1) { 4726 if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) || 4727 (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT))) 4728 IsSignedExt = true; 4729 else 4730 return nullptr; 4731 } 4732 4733 // Not an extension from the same type? 4734 Type *XTy = X->getType(), *YTy = Y->getType(); 4735 if (XTy != YTy) { 4736 // One of the casts must have one use because we are creating a new cast. 4737 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 4738 return nullptr; 4739 // Extend the narrower operand to the type of the wider operand. 4740 CastInst::CastOps CastOpcode = 4741 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 4742 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4743 X = Builder.CreateCast(CastOpcode, X, YTy); 4744 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4745 Y = Builder.CreateCast(CastOpcode, Y, XTy); 4746 else 4747 return nullptr; 4748 } 4749 4750 // (zext X) == (zext Y) --> X == Y 4751 // (sext X) == (sext Y) --> X == Y 4752 if (ICmp.isEquality()) 4753 return new ICmpInst(ICmp.getPredicate(), X, Y); 4754 4755 // A signed comparison of sign extended values simplifies into a 4756 // signed comparison. 4757 if (IsSignedCmp && IsSignedExt) 4758 return new ICmpInst(ICmp.getPredicate(), X, Y); 4759 4760 // The other three cases all fold into an unsigned comparison. 4761 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4762 } 4763 4764 // Below here, we are only folding a compare with constant. 4765 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4766 if (!C) 4767 return nullptr; 4768 4769 // Compute the constant that would happen if we truncated to SrcTy then 4770 // re-extended to DestTy. 4771 Type *SrcTy = CastOp0->getSrcTy(); 4772 Type *DestTy = CastOp0->getDestTy(); 4773 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4774 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4775 4776 // If the re-extended constant didn't change... 4777 if (Res2 == C) { 4778 if (ICmp.isEquality()) 4779 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4780 4781 // A signed comparison of sign extended values simplifies into a 4782 // signed comparison. 4783 if (IsSignedExt && IsSignedCmp) 4784 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4785 4786 // The other three cases all fold into an unsigned comparison. 4787 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4788 } 4789 4790 // The re-extended constant changed, partly changed (in the case of a vector), 4791 // or could not be determined to be equal (in the case of a constant 4792 // expression), so the constant cannot be represented in the shorter type. 4793 // All the cases that fold to true or false will have already been handled 4794 // by SimplifyICmpInst, so only deal with the tricky case. 4795 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4796 return nullptr; 4797 4798 // Is source op positive? 4799 // icmp ult (sext X), C --> icmp sgt X, -1 4800 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4801 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4802 4803 // Is source op negative? 4804 // icmp ugt (sext X), C --> icmp slt X, 0 4805 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4806 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4807 } 4808 4809 /// Handle icmp (cast x), (cast or constant). 4810 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4811 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4812 // icmp compares only pointer's value. 4813 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4814 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4815 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4816 if (SimplifiedOp0 || SimplifiedOp1) 4817 return new ICmpInst(ICmp.getPredicate(), 4818 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4819 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4820 4821 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4822 if (!CastOp0) 4823 return nullptr; 4824 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4825 return nullptr; 4826 4827 Value *Op0Src = CastOp0->getOperand(0); 4828 Type *SrcTy = CastOp0->getSrcTy(); 4829 Type *DestTy = CastOp0->getDestTy(); 4830 4831 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4832 // integer type is the same size as the pointer type. 4833 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4834 if (isa<VectorType>(SrcTy)) { 4835 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4836 DestTy = cast<VectorType>(DestTy)->getElementType(); 4837 } 4838 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4839 }; 4840 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4841 CompatibleSizes(SrcTy, DestTy)) { 4842 Value *NewOp1 = nullptr; 4843 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4844 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4845 if (PtrSrc->getType()->getPointerAddressSpace() == 4846 Op0Src->getType()->getPointerAddressSpace()) { 4847 NewOp1 = PtrToIntOp1->getOperand(0); 4848 // If the pointer types don't match, insert a bitcast. 4849 if (Op0Src->getType() != NewOp1->getType()) 4850 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4851 } 4852 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4853 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4854 } 4855 4856 if (NewOp1) 4857 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4858 } 4859 4860 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4861 return R; 4862 4863 return foldICmpWithZextOrSext(ICmp); 4864 } 4865 4866 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4867 switch (BinaryOp) { 4868 default: 4869 llvm_unreachable("Unsupported binary op"); 4870 case Instruction::Add: 4871 case Instruction::Sub: 4872 return match(RHS, m_Zero()); 4873 case Instruction::Mul: 4874 return match(RHS, m_One()); 4875 } 4876 } 4877 4878 OverflowResult 4879 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4880 bool IsSigned, Value *LHS, Value *RHS, 4881 Instruction *CxtI) const { 4882 switch (BinaryOp) { 4883 default: 4884 llvm_unreachable("Unsupported binary op"); 4885 case Instruction::Add: 4886 if (IsSigned) 4887 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4888 else 4889 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4890 case Instruction::Sub: 4891 if (IsSigned) 4892 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4893 else 4894 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4895 case Instruction::Mul: 4896 if (IsSigned) 4897 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4898 else 4899 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4900 } 4901 } 4902 4903 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4904 bool IsSigned, Value *LHS, 4905 Value *RHS, Instruction &OrigI, 4906 Value *&Result, 4907 Constant *&Overflow) { 4908 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4909 std::swap(LHS, RHS); 4910 4911 // If the overflow check was an add followed by a compare, the insertion point 4912 // may be pointing to the compare. We want to insert the new instructions 4913 // before the add in case there are uses of the add between the add and the 4914 // compare. 4915 Builder.SetInsertPoint(&OrigI); 4916 4917 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4918 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4919 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4920 4921 if (isNeutralValue(BinaryOp, RHS)) { 4922 Result = LHS; 4923 Overflow = ConstantInt::getFalse(OverflowTy); 4924 return true; 4925 } 4926 4927 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4928 case OverflowResult::MayOverflow: 4929 return false; 4930 case OverflowResult::AlwaysOverflowsLow: 4931 case OverflowResult::AlwaysOverflowsHigh: 4932 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4933 Result->takeName(&OrigI); 4934 Overflow = ConstantInt::getTrue(OverflowTy); 4935 return true; 4936 case OverflowResult::NeverOverflows: 4937 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4938 Result->takeName(&OrigI); 4939 Overflow = ConstantInt::getFalse(OverflowTy); 4940 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4941 if (IsSigned) 4942 Inst->setHasNoSignedWrap(); 4943 else 4944 Inst->setHasNoUnsignedWrap(); 4945 } 4946 return true; 4947 } 4948 4949 llvm_unreachable("Unexpected overflow result"); 4950 } 4951 4952 /// Recognize and process idiom involving test for multiplication 4953 /// overflow. 4954 /// 4955 /// The caller has matched a pattern of the form: 4956 /// I = cmp u (mul(zext A, zext B), V 4957 /// The function checks if this is a test for overflow and if so replaces 4958 /// multiplication with call to 'mul.with.overflow' intrinsic. 4959 /// 4960 /// \param I Compare instruction. 4961 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4962 /// the compare instruction. Must be of integer type. 4963 /// \param OtherVal The other argument of compare instruction. 4964 /// \returns Instruction which must replace the compare instruction, NULL if no 4965 /// replacement required. 4966 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4967 Value *OtherVal, 4968 InstCombinerImpl &IC) { 4969 // Don't bother doing this transformation for pointers, don't do it for 4970 // vectors. 4971 if (!isa<IntegerType>(MulVal->getType())) 4972 return nullptr; 4973 4974 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4975 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4976 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4977 if (!MulInstr) 4978 return nullptr; 4979 assert(MulInstr->getOpcode() == Instruction::Mul); 4980 4981 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4982 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4983 assert(LHS->getOpcode() == Instruction::ZExt); 4984 assert(RHS->getOpcode() == Instruction::ZExt); 4985 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4986 4987 // Calculate type and width of the result produced by mul.with.overflow. 4988 Type *TyA = A->getType(), *TyB = B->getType(); 4989 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4990 WidthB = TyB->getPrimitiveSizeInBits(); 4991 unsigned MulWidth; 4992 Type *MulType; 4993 if (WidthB > WidthA) { 4994 MulWidth = WidthB; 4995 MulType = TyB; 4996 } else { 4997 MulWidth = WidthA; 4998 MulType = TyA; 4999 } 5000 5001 // In order to replace the original mul with a narrower mul.with.overflow, 5002 // all uses must ignore upper bits of the product. The number of used low 5003 // bits must be not greater than the width of mul.with.overflow. 5004 if (MulVal->hasNUsesOrMore(2)) 5005 for (User *U : MulVal->users()) { 5006 if (U == &I) 5007 continue; 5008 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5009 // Check if truncation ignores bits above MulWidth. 5010 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 5011 if (TruncWidth > MulWidth) 5012 return nullptr; 5013 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5014 // Check if AND ignores bits above MulWidth. 5015 if (BO->getOpcode() != Instruction::And) 5016 return nullptr; 5017 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 5018 const APInt &CVal = CI->getValue(); 5019 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 5020 return nullptr; 5021 } else { 5022 // In this case we could have the operand of the binary operation 5023 // being defined in another block, and performing the replacement 5024 // could break the dominance relation. 5025 return nullptr; 5026 } 5027 } else { 5028 // Other uses prohibit this transformation. 5029 return nullptr; 5030 } 5031 } 5032 5033 // Recognize patterns 5034 switch (I.getPredicate()) { 5035 case ICmpInst::ICMP_EQ: 5036 case ICmpInst::ICMP_NE: 5037 // Recognize pattern: 5038 // mulval = mul(zext A, zext B) 5039 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 5040 ConstantInt *CI; 5041 Value *ValToMask; 5042 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 5043 if (ValToMask != MulVal) 5044 return nullptr; 5045 const APInt &CVal = CI->getValue() + 1; 5046 if (CVal.isPowerOf2()) { 5047 unsigned MaskWidth = CVal.logBase2(); 5048 if (MaskWidth == MulWidth) 5049 break; // Recognized 5050 } 5051 } 5052 return nullptr; 5053 5054 case ICmpInst::ICMP_UGT: 5055 // Recognize pattern: 5056 // mulval = mul(zext A, zext B) 5057 // cmp ugt mulval, max 5058 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5059 APInt MaxVal = APInt::getMaxValue(MulWidth); 5060 MaxVal = MaxVal.zext(CI->getBitWidth()); 5061 if (MaxVal.eq(CI->getValue())) 5062 break; // Recognized 5063 } 5064 return nullptr; 5065 5066 case ICmpInst::ICMP_UGE: 5067 // Recognize pattern: 5068 // mulval = mul(zext A, zext B) 5069 // cmp uge mulval, max+1 5070 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5071 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5072 if (MaxVal.eq(CI->getValue())) 5073 break; // Recognized 5074 } 5075 return nullptr; 5076 5077 case ICmpInst::ICMP_ULE: 5078 // Recognize pattern: 5079 // mulval = mul(zext A, zext B) 5080 // cmp ule mulval, max 5081 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5082 APInt MaxVal = APInt::getMaxValue(MulWidth); 5083 MaxVal = MaxVal.zext(CI->getBitWidth()); 5084 if (MaxVal.eq(CI->getValue())) 5085 break; // Recognized 5086 } 5087 return nullptr; 5088 5089 case ICmpInst::ICMP_ULT: 5090 // Recognize pattern: 5091 // mulval = mul(zext A, zext B) 5092 // cmp ule mulval, max + 1 5093 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5094 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5095 if (MaxVal.eq(CI->getValue())) 5096 break; // Recognized 5097 } 5098 return nullptr; 5099 5100 default: 5101 return nullptr; 5102 } 5103 5104 InstCombiner::BuilderTy &Builder = IC.Builder; 5105 Builder.SetInsertPoint(MulInstr); 5106 5107 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5108 Value *MulA = A, *MulB = B; 5109 if (WidthA < MulWidth) 5110 MulA = Builder.CreateZExt(A, MulType); 5111 if (WidthB < MulWidth) 5112 MulB = Builder.CreateZExt(B, MulType); 5113 Function *F = Intrinsic::getDeclaration( 5114 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5115 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5116 IC.addToWorklist(MulInstr); 5117 5118 // If there are uses of mul result other than the comparison, we know that 5119 // they are truncation or binary AND. Change them to use result of 5120 // mul.with.overflow and adjust properly mask/size. 5121 if (MulVal->hasNUsesOrMore(2)) { 5122 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5123 for (User *U : make_early_inc_range(MulVal->users())) { 5124 if (U == &I || U == OtherVal) 5125 continue; 5126 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5127 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5128 IC.replaceInstUsesWith(*TI, Mul); 5129 else 5130 TI->setOperand(0, Mul); 5131 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5132 assert(BO->getOpcode() == Instruction::And); 5133 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5134 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5135 APInt ShortMask = CI->getValue().trunc(MulWidth); 5136 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5137 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5138 IC.replaceInstUsesWith(*BO, Zext); 5139 } else { 5140 llvm_unreachable("Unexpected Binary operation"); 5141 } 5142 IC.addToWorklist(cast<Instruction>(U)); 5143 } 5144 } 5145 if (isa<Instruction>(OtherVal)) 5146 IC.addToWorklist(cast<Instruction>(OtherVal)); 5147 5148 // The original icmp gets replaced with the overflow value, maybe inverted 5149 // depending on predicate. 5150 bool Inverse = false; 5151 switch (I.getPredicate()) { 5152 case ICmpInst::ICMP_NE: 5153 break; 5154 case ICmpInst::ICMP_EQ: 5155 Inverse = true; 5156 break; 5157 case ICmpInst::ICMP_UGT: 5158 case ICmpInst::ICMP_UGE: 5159 if (I.getOperand(0) == MulVal) 5160 break; 5161 Inverse = true; 5162 break; 5163 case ICmpInst::ICMP_ULT: 5164 case ICmpInst::ICMP_ULE: 5165 if (I.getOperand(1) == MulVal) 5166 break; 5167 Inverse = true; 5168 break; 5169 default: 5170 llvm_unreachable("Unexpected predicate"); 5171 } 5172 if (Inverse) { 5173 Value *Res = Builder.CreateExtractValue(Call, 1); 5174 return BinaryOperator::CreateNot(Res); 5175 } 5176 5177 return ExtractValueInst::Create(Call, 1); 5178 } 5179 5180 /// When performing a comparison against a constant, it is possible that not all 5181 /// the bits in the LHS are demanded. This helper method computes the mask that 5182 /// IS demanded. 5183 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5184 const APInt *RHS; 5185 if (!match(I.getOperand(1), m_APInt(RHS))) 5186 return APInt::getAllOnes(BitWidth); 5187 5188 // If this is a normal comparison, it demands all bits. If it is a sign bit 5189 // comparison, it only demands the sign bit. 5190 bool UnusedBit; 5191 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5192 return APInt::getSignMask(BitWidth); 5193 5194 switch (I.getPredicate()) { 5195 // For a UGT comparison, we don't care about any bits that 5196 // correspond to the trailing ones of the comparand. The value of these 5197 // bits doesn't impact the outcome of the comparison, because any value 5198 // greater than the RHS must differ in a bit higher than these due to carry. 5199 case ICmpInst::ICMP_UGT: 5200 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5201 5202 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5203 // Any value less than the RHS must differ in a higher bit because of carries. 5204 case ICmpInst::ICMP_ULT: 5205 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5206 5207 default: 5208 return APInt::getAllOnes(BitWidth); 5209 } 5210 } 5211 5212 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5213 /// should be swapped. 5214 /// The decision is based on how many times these two operands are reused 5215 /// as subtract operands and their positions in those instructions. 5216 /// The rationale is that several architectures use the same instruction for 5217 /// both subtract and cmp. Thus, it is better if the order of those operands 5218 /// match. 5219 /// \return true if Op0 and Op1 should be swapped. 5220 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5221 // Filter out pointer values as those cannot appear directly in subtract. 5222 // FIXME: we may want to go through inttoptrs or bitcasts. 5223 if (Op0->getType()->isPointerTy()) 5224 return false; 5225 // If a subtract already has the same operands as a compare, swapping would be 5226 // bad. If a subtract has the same operands as a compare but in reverse order, 5227 // then swapping is good. 5228 int GoodToSwap = 0; 5229 for (const User *U : Op0->users()) { 5230 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5231 GoodToSwap++; 5232 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5233 GoodToSwap--; 5234 } 5235 return GoodToSwap > 0; 5236 } 5237 5238 /// Check that one use is in the same block as the definition and all 5239 /// other uses are in blocks dominated by a given block. 5240 /// 5241 /// \param DI Definition 5242 /// \param UI Use 5243 /// \param DB Block that must dominate all uses of \p DI outside 5244 /// the parent block 5245 /// \return true when \p UI is the only use of \p DI in the parent block 5246 /// and all other uses of \p DI are in blocks dominated by \p DB. 5247 /// 5248 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5249 const Instruction *UI, 5250 const BasicBlock *DB) const { 5251 assert(DI && UI && "Instruction not defined\n"); 5252 // Ignore incomplete definitions. 5253 if (!DI->getParent()) 5254 return false; 5255 // DI and UI must be in the same block. 5256 if (DI->getParent() != UI->getParent()) 5257 return false; 5258 // Protect from self-referencing blocks. 5259 if (DI->getParent() == DB) 5260 return false; 5261 for (const User *U : DI->users()) { 5262 auto *Usr = cast<Instruction>(U); 5263 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5264 return false; 5265 } 5266 return true; 5267 } 5268 5269 /// Return true when the instruction sequence within a block is select-cmp-br. 5270 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5271 const BasicBlock *BB = SI->getParent(); 5272 if (!BB) 5273 return false; 5274 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5275 if (!BI || BI->getNumSuccessors() != 2) 5276 return false; 5277 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5278 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5279 return false; 5280 return true; 5281 } 5282 5283 /// True when a select result is replaced by one of its operands 5284 /// in select-icmp sequence. This will eventually result in the elimination 5285 /// of the select. 5286 /// 5287 /// \param SI Select instruction 5288 /// \param Icmp Compare instruction 5289 /// \param SIOpd Operand that replaces the select 5290 /// 5291 /// Notes: 5292 /// - The replacement is global and requires dominator information 5293 /// - The caller is responsible for the actual replacement 5294 /// 5295 /// Example: 5296 /// 5297 /// entry: 5298 /// %4 = select i1 %3, %C* %0, %C* null 5299 /// %5 = icmp eq %C* %4, null 5300 /// br i1 %5, label %9, label %7 5301 /// ... 5302 /// ; <label>:7 ; preds = %entry 5303 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5304 /// ... 5305 /// 5306 /// can be transformed to 5307 /// 5308 /// %5 = icmp eq %C* %0, null 5309 /// %6 = select i1 %3, i1 %5, i1 true 5310 /// br i1 %6, label %9, label %7 5311 /// ... 5312 /// ; <label>:7 ; preds = %entry 5313 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5314 /// 5315 /// Similar when the first operand of the select is a constant or/and 5316 /// the compare is for not equal rather than equal. 5317 /// 5318 /// NOTE: The function is only called when the select and compare constants 5319 /// are equal, the optimization can work only for EQ predicates. This is not a 5320 /// major restriction since a NE compare should be 'normalized' to an equal 5321 /// compare, which usually happens in the combiner and test case 5322 /// select-cmp-br.ll checks for it. 5323 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5324 const ICmpInst *Icmp, 5325 const unsigned SIOpd) { 5326 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5327 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5328 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5329 // The check for the single predecessor is not the best that can be 5330 // done. But it protects efficiently against cases like when SI's 5331 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5332 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5333 // replaced can be reached on either path. So the uniqueness check 5334 // guarantees that the path all uses of SI (outside SI's parent) are on 5335 // is disjoint from all other paths out of SI. But that information 5336 // is more expensive to compute, and the trade-off here is in favor 5337 // of compile-time. It should also be noticed that we check for a single 5338 // predecessor and not only uniqueness. This to handle the situation when 5339 // Succ and Succ1 points to the same basic block. 5340 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5341 NumSel++; 5342 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5343 return true; 5344 } 5345 } 5346 return false; 5347 } 5348 5349 /// Try to fold the comparison based on range information we can get by checking 5350 /// whether bits are known to be zero or one in the inputs. 5351 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5352 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5353 Type *Ty = Op0->getType(); 5354 ICmpInst::Predicate Pred = I.getPredicate(); 5355 5356 // Get scalar or pointer size. 5357 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5358 ? Ty->getScalarSizeInBits() 5359 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5360 5361 if (!BitWidth) 5362 return nullptr; 5363 5364 KnownBits Op0Known(BitWidth); 5365 KnownBits Op1Known(BitWidth); 5366 5367 if (SimplifyDemandedBits(&I, 0, 5368 getDemandedBitsLHSMask(I, BitWidth), 5369 Op0Known, 0)) 5370 return &I; 5371 5372 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5373 return &I; 5374 5375 // Given the known and unknown bits, compute a range that the LHS could be 5376 // in. Compute the Min, Max and RHS values based on the known bits. For the 5377 // EQ and NE we use unsigned values. 5378 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5379 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5380 if (I.isSigned()) { 5381 Op0Min = Op0Known.getSignedMinValue(); 5382 Op0Max = Op0Known.getSignedMaxValue(); 5383 Op1Min = Op1Known.getSignedMinValue(); 5384 Op1Max = Op1Known.getSignedMaxValue(); 5385 } else { 5386 Op0Min = Op0Known.getMinValue(); 5387 Op0Max = Op0Known.getMaxValue(); 5388 Op1Min = Op1Known.getMinValue(); 5389 Op1Max = Op1Known.getMaxValue(); 5390 } 5391 5392 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5393 // out that the LHS or RHS is a constant. Constant fold this now, so that 5394 // code below can assume that Min != Max. 5395 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5396 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5397 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5398 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5399 5400 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5401 // min/max canonical compare with some other compare. That could lead to 5402 // conflict with select canonicalization and infinite looping. 5403 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5404 auto isMinMaxCmp = [&](Instruction &Cmp) { 5405 if (!Cmp.hasOneUse()) 5406 return false; 5407 Value *A, *B; 5408 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5409 if (!SelectPatternResult::isMinOrMax(SPF)) 5410 return false; 5411 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5412 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5413 }; 5414 if (!isMinMaxCmp(I)) { 5415 switch (Pred) { 5416 default: 5417 break; 5418 case ICmpInst::ICMP_ULT: { 5419 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5420 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5421 const APInt *CmpC; 5422 if (match(Op1, m_APInt(CmpC))) { 5423 // A <u C -> A == C-1 if min(A)+1 == C 5424 if (*CmpC == Op0Min + 1) 5425 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5426 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5427 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5428 // exceeds the log2 of C. 5429 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5430 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5431 Constant::getNullValue(Op1->getType())); 5432 } 5433 break; 5434 } 5435 case ICmpInst::ICMP_UGT: { 5436 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5437 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5438 const APInt *CmpC; 5439 if (match(Op1, m_APInt(CmpC))) { 5440 // A >u C -> A == C+1 if max(a)-1 == C 5441 if (*CmpC == Op0Max - 1) 5442 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5443 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5444 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5445 // exceeds the log2 of C. 5446 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5447 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5448 Constant::getNullValue(Op1->getType())); 5449 } 5450 break; 5451 } 5452 case ICmpInst::ICMP_SLT: { 5453 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5454 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5455 const APInt *CmpC; 5456 if (match(Op1, m_APInt(CmpC))) { 5457 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5458 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5459 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5460 } 5461 break; 5462 } 5463 case ICmpInst::ICMP_SGT: { 5464 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5465 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5466 const APInt *CmpC; 5467 if (match(Op1, m_APInt(CmpC))) { 5468 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5469 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5470 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5471 } 5472 break; 5473 } 5474 } 5475 } 5476 5477 // Based on the range information we know about the LHS, see if we can 5478 // simplify this comparison. For example, (x&4) < 8 is always true. 5479 switch (Pred) { 5480 default: 5481 llvm_unreachable("Unknown icmp opcode!"); 5482 case ICmpInst::ICMP_EQ: 5483 case ICmpInst::ICMP_NE: { 5484 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5485 return replaceInstUsesWith( 5486 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5487 5488 // If all bits are known zero except for one, then we know at most one bit 5489 // is set. If the comparison is against zero, then this is a check to see if 5490 // *that* bit is set. 5491 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5492 if (Op1Known.isZero()) { 5493 // If the LHS is an AND with the same constant, look through it. 5494 Value *LHS = nullptr; 5495 const APInt *LHSC; 5496 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5497 *LHSC != Op0KnownZeroInverted) 5498 LHS = Op0; 5499 5500 Value *X; 5501 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5502 APInt ValToCheck = Op0KnownZeroInverted; 5503 Type *XTy = X->getType(); 5504 if (ValToCheck.isPowerOf2()) { 5505 // ((1 << X) & 8) == 0 -> X != 3 5506 // ((1 << X) & 8) != 0 -> X == 3 5507 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5508 auto NewPred = ICmpInst::getInversePredicate(Pred); 5509 return new ICmpInst(NewPred, X, CmpC); 5510 } else if ((++ValToCheck).isPowerOf2()) { 5511 // ((1 << X) & 7) == 0 -> X >= 3 5512 // ((1 << X) & 7) != 0 -> X < 3 5513 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5514 auto NewPred = 5515 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5516 return new ICmpInst(NewPred, X, CmpC); 5517 } 5518 } 5519 5520 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5521 const APInt *CI; 5522 if (Op0KnownZeroInverted.isOne() && 5523 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5524 // ((8 >>u X) & 1) == 0 -> X != 3 5525 // ((8 >>u X) & 1) != 0 -> X == 3 5526 unsigned CmpVal = CI->countTrailingZeros(); 5527 auto NewPred = ICmpInst::getInversePredicate(Pred); 5528 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5529 } 5530 } 5531 break; 5532 } 5533 case ICmpInst::ICMP_ULT: { 5534 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5535 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5536 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5537 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5538 break; 5539 } 5540 case ICmpInst::ICMP_UGT: { 5541 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5542 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5543 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5544 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5545 break; 5546 } 5547 case ICmpInst::ICMP_SLT: { 5548 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5549 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5550 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5551 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5552 break; 5553 } 5554 case ICmpInst::ICMP_SGT: { 5555 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5556 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5557 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5558 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5559 break; 5560 } 5561 case ICmpInst::ICMP_SGE: 5562 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5563 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5564 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5565 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5566 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5567 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5568 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5569 break; 5570 case ICmpInst::ICMP_SLE: 5571 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5572 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5573 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5574 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5575 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5576 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5577 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5578 break; 5579 case ICmpInst::ICMP_UGE: 5580 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5581 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5582 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5583 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5584 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5585 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5586 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5587 break; 5588 case ICmpInst::ICMP_ULE: 5589 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5590 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5591 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5592 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5593 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5594 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5595 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5596 break; 5597 } 5598 5599 // Turn a signed comparison into an unsigned one if both operands are known to 5600 // have the same sign. 5601 if (I.isSigned() && 5602 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5603 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5604 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5605 5606 return nullptr; 5607 } 5608 5609 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5610 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5611 Constant *C) { 5612 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5613 "Only for relational integer predicates."); 5614 5615 Type *Type = C->getType(); 5616 bool IsSigned = ICmpInst::isSigned(Pred); 5617 5618 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5619 bool WillIncrement = 5620 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5621 5622 // Check if the constant operand can be safely incremented/decremented 5623 // without overflowing/underflowing. 5624 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5625 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5626 }; 5627 5628 Constant *SafeReplacementConstant = nullptr; 5629 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5630 // Bail out if the constant can't be safely incremented/decremented. 5631 if (!ConstantIsOk(CI)) 5632 return llvm::None; 5633 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5634 unsigned NumElts = FVTy->getNumElements(); 5635 for (unsigned i = 0; i != NumElts; ++i) { 5636 Constant *Elt = C->getAggregateElement(i); 5637 if (!Elt) 5638 return llvm::None; 5639 5640 if (isa<UndefValue>(Elt)) 5641 continue; 5642 5643 // Bail out if we can't determine if this constant is min/max or if we 5644 // know that this constant is min/max. 5645 auto *CI = dyn_cast<ConstantInt>(Elt); 5646 if (!CI || !ConstantIsOk(CI)) 5647 return llvm::None; 5648 5649 if (!SafeReplacementConstant) 5650 SafeReplacementConstant = CI; 5651 } 5652 } else { 5653 // ConstantExpr? 5654 return llvm::None; 5655 } 5656 5657 // It may not be safe to change a compare predicate in the presence of 5658 // undefined elements, so replace those elements with the first safe constant 5659 // that we found. 5660 // TODO: in case of poison, it is safe; let's replace undefs only. 5661 if (C->containsUndefOrPoisonElement()) { 5662 assert(SafeReplacementConstant && "Replacement constant not set"); 5663 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5664 } 5665 5666 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5667 5668 // Increment or decrement the constant. 5669 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5670 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5671 5672 return std::make_pair(NewPred, NewC); 5673 } 5674 5675 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5676 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5677 /// allows them to be folded in visitICmpInst. 5678 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5679 ICmpInst::Predicate Pred = I.getPredicate(); 5680 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5681 InstCombiner::isCanonicalPredicate(Pred)) 5682 return nullptr; 5683 5684 Value *Op0 = I.getOperand(0); 5685 Value *Op1 = I.getOperand(1); 5686 auto *Op1C = dyn_cast<Constant>(Op1); 5687 if (!Op1C) 5688 return nullptr; 5689 5690 auto FlippedStrictness = 5691 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5692 if (!FlippedStrictness) 5693 return nullptr; 5694 5695 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5696 } 5697 5698 /// If we have a comparison with a non-canonical predicate, if we can update 5699 /// all the users, invert the predicate and adjust all the users. 5700 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5701 // Is the predicate already canonical? 5702 CmpInst::Predicate Pred = I.getPredicate(); 5703 if (InstCombiner::isCanonicalPredicate(Pred)) 5704 return nullptr; 5705 5706 // Can all users be adjusted to predicate inversion? 5707 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5708 return nullptr; 5709 5710 // Ok, we can canonicalize comparison! 5711 // Let's first invert the comparison's predicate. 5712 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5713 I.setName(I.getName() + ".not"); 5714 5715 // And, adapt users. 5716 freelyInvertAllUsersOf(&I); 5717 5718 return &I; 5719 } 5720 5721 /// Integer compare with boolean values can always be turned into bitwise ops. 5722 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5723 InstCombiner::BuilderTy &Builder) { 5724 Value *A = I.getOperand(0), *B = I.getOperand(1); 5725 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5726 5727 // A boolean compared to true/false can be simplified to Op0/true/false in 5728 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5729 // Cases not handled by InstSimplify are always 'not' of Op0. 5730 if (match(B, m_Zero())) { 5731 switch (I.getPredicate()) { 5732 case CmpInst::ICMP_EQ: // A == 0 -> !A 5733 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5734 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5735 return BinaryOperator::CreateNot(A); 5736 default: 5737 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5738 } 5739 } else if (match(B, m_One())) { 5740 switch (I.getPredicate()) { 5741 case CmpInst::ICMP_NE: // A != 1 -> !A 5742 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5743 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5744 return BinaryOperator::CreateNot(A); 5745 default: 5746 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5747 } 5748 } 5749 5750 switch (I.getPredicate()) { 5751 default: 5752 llvm_unreachable("Invalid icmp instruction!"); 5753 case ICmpInst::ICMP_EQ: 5754 // icmp eq i1 A, B -> ~(A ^ B) 5755 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5756 5757 case ICmpInst::ICMP_NE: 5758 // icmp ne i1 A, B -> A ^ B 5759 return BinaryOperator::CreateXor(A, B); 5760 5761 case ICmpInst::ICMP_UGT: 5762 // icmp ugt -> icmp ult 5763 std::swap(A, B); 5764 LLVM_FALLTHROUGH; 5765 case ICmpInst::ICMP_ULT: 5766 // icmp ult i1 A, B -> ~A & B 5767 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5768 5769 case ICmpInst::ICMP_SGT: 5770 // icmp sgt -> icmp slt 5771 std::swap(A, B); 5772 LLVM_FALLTHROUGH; 5773 case ICmpInst::ICMP_SLT: 5774 // icmp slt i1 A, B -> A & ~B 5775 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5776 5777 case ICmpInst::ICMP_UGE: 5778 // icmp uge -> icmp ule 5779 std::swap(A, B); 5780 LLVM_FALLTHROUGH; 5781 case ICmpInst::ICMP_ULE: 5782 // icmp ule i1 A, B -> ~A | B 5783 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5784 5785 case ICmpInst::ICMP_SGE: 5786 // icmp sge -> icmp sle 5787 std::swap(A, B); 5788 LLVM_FALLTHROUGH; 5789 case ICmpInst::ICMP_SLE: 5790 // icmp sle i1 A, B -> A | ~B 5791 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5792 } 5793 } 5794 5795 // Transform pattern like: 5796 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5797 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5798 // Into: 5799 // (X l>> Y) != 0 5800 // (X l>> Y) == 0 5801 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5802 InstCombiner::BuilderTy &Builder) { 5803 ICmpInst::Predicate Pred, NewPred; 5804 Value *X, *Y; 5805 if (match(&Cmp, 5806 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5807 switch (Pred) { 5808 case ICmpInst::ICMP_ULE: 5809 NewPred = ICmpInst::ICMP_NE; 5810 break; 5811 case ICmpInst::ICMP_UGT: 5812 NewPred = ICmpInst::ICMP_EQ; 5813 break; 5814 default: 5815 return nullptr; 5816 } 5817 } else if (match(&Cmp, m_c_ICmp(Pred, 5818 m_OneUse(m_CombineOr( 5819 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5820 m_Add(m_Shl(m_One(), m_Value(Y)), 5821 m_AllOnes()))), 5822 m_Value(X)))) { 5823 // The variant with 'add' is not canonical, (the variant with 'not' is) 5824 // we only get it because it has extra uses, and can't be canonicalized, 5825 5826 switch (Pred) { 5827 case ICmpInst::ICMP_ULT: 5828 NewPred = ICmpInst::ICMP_NE; 5829 break; 5830 case ICmpInst::ICMP_UGE: 5831 NewPred = ICmpInst::ICMP_EQ; 5832 break; 5833 default: 5834 return nullptr; 5835 } 5836 } else 5837 return nullptr; 5838 5839 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5840 Constant *Zero = Constant::getNullValue(NewX->getType()); 5841 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5842 } 5843 5844 static Instruction *foldVectorCmp(CmpInst &Cmp, 5845 InstCombiner::BuilderTy &Builder) { 5846 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5847 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5848 Value *V1, *V2; 5849 ArrayRef<int> M; 5850 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5851 return nullptr; 5852 5853 // If both arguments of the cmp are shuffles that use the same mask and 5854 // shuffle within a single vector, move the shuffle after the cmp: 5855 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5856 Type *V1Ty = V1->getType(); 5857 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5858 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5859 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5860 return new ShuffleVectorInst(NewCmp, M); 5861 } 5862 5863 // Try to canonicalize compare with splatted operand and splat constant. 5864 // TODO: We could generalize this for more than splats. See/use the code in 5865 // InstCombiner::foldVectorBinop(). 5866 Constant *C; 5867 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5868 return nullptr; 5869 5870 // Length-changing splats are ok, so adjust the constants as needed: 5871 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5872 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5873 int MaskSplatIndex; 5874 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5875 // We allow undefs in matching, but this transform removes those for safety. 5876 // Demanded elements analysis should be able to recover some/all of that. 5877 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5878 ScalarC); 5879 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5880 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5881 return new ShuffleVectorInst(NewCmp, NewM); 5882 } 5883 5884 return nullptr; 5885 } 5886 5887 // extract(uadd.with.overflow(A, B), 0) ult A 5888 // -> extract(uadd.with.overflow(A, B), 1) 5889 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5890 CmpInst::Predicate Pred = I.getPredicate(); 5891 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5892 5893 Value *UAddOv; 5894 Value *A, *B; 5895 auto UAddOvResultPat = m_ExtractValue<0>( 5896 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5897 if (match(Op0, UAddOvResultPat) && 5898 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5899 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5900 (match(A, m_One()) || match(B, m_One()))) || 5901 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5902 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5903 // extract(uadd.with.overflow(A, B), 0) < A 5904 // extract(uadd.with.overflow(A, 1), 0) == 0 5905 // extract(uadd.with.overflow(A, -1), 0) != -1 5906 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5907 else if (match(Op1, UAddOvResultPat) && 5908 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5909 // A > extract(uadd.with.overflow(A, B), 0) 5910 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5911 else 5912 return nullptr; 5913 5914 return ExtractValueInst::Create(UAddOv, 1); 5915 } 5916 5917 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5918 if (!I.getOperand(0)->getType()->isPointerTy() || 5919 NullPointerIsDefined( 5920 I.getParent()->getParent(), 5921 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5922 return nullptr; 5923 } 5924 Instruction *Op; 5925 if (match(I.getOperand(0), m_Instruction(Op)) && 5926 match(I.getOperand(1), m_Zero()) && 5927 Op->isLaunderOrStripInvariantGroup()) { 5928 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5929 Op->getOperand(0), I.getOperand(1)); 5930 } 5931 return nullptr; 5932 } 5933 5934 /// This function folds patterns produced by lowering of reduce idioms, such as 5935 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 5936 /// attempts to generate fewer number of scalar comparisons instead of vector 5937 /// comparisons when possible. 5938 static Instruction *foldReductionIdiom(ICmpInst &I, 5939 InstCombiner::BuilderTy &Builder, 5940 const DataLayout &DL) { 5941 if (I.getType()->isVectorTy()) 5942 return nullptr; 5943 ICmpInst::Predicate OuterPred, InnerPred; 5944 Value *LHS, *RHS; 5945 5946 // Match lowering of @llvm.vector.reduce.and. Turn 5947 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 5948 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 5949 /// %res = icmp <pred> i8 %scalar_ne, 0 5950 /// 5951 /// into 5952 /// 5953 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 5954 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 5955 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 5956 /// 5957 /// for <pred> in {ne, eq}. 5958 if (!match(&I, m_ICmp(OuterPred, 5959 m_OneUse(m_BitCast(m_OneUse( 5960 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 5961 m_Zero()))) 5962 return nullptr; 5963 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 5964 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 5965 return nullptr; 5966 unsigned NumBits = 5967 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 5968 // TODO: Relax this to "not wider than max legal integer type"? 5969 if (!DL.isLegalInteger(NumBits)) 5970 return nullptr; 5971 5972 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 5973 auto *ScalarTy = Builder.getIntNTy(NumBits); 5974 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 5975 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 5976 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 5977 I.getName()); 5978 } 5979 5980 return nullptr; 5981 } 5982 5983 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5984 bool Changed = false; 5985 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5986 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5987 unsigned Op0Cplxity = getComplexity(Op0); 5988 unsigned Op1Cplxity = getComplexity(Op1); 5989 5990 /// Orders the operands of the compare so that they are listed from most 5991 /// complex to least complex. This puts constants before unary operators, 5992 /// before binary operators. 5993 if (Op0Cplxity < Op1Cplxity || 5994 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5995 I.swapOperands(); 5996 std::swap(Op0, Op1); 5997 Changed = true; 5998 } 5999 6000 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 6001 return replaceInstUsesWith(I, V); 6002 6003 // Comparing -val or val with non-zero is the same as just comparing val 6004 // ie, abs(val) != 0 -> val != 0 6005 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 6006 Value *Cond, *SelectTrue, *SelectFalse; 6007 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 6008 m_Value(SelectFalse)))) { 6009 if (Value *V = dyn_castNegVal(SelectTrue)) { 6010 if (V == SelectFalse) 6011 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6012 } 6013 else if (Value *V = dyn_castNegVal(SelectFalse)) { 6014 if (V == SelectTrue) 6015 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6016 } 6017 } 6018 } 6019 6020 if (Op0->getType()->isIntOrIntVectorTy(1)) 6021 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 6022 return Res; 6023 6024 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 6025 return Res; 6026 6027 if (Instruction *Res = canonicalizeICmpPredicate(I)) 6028 return Res; 6029 6030 if (Instruction *Res = foldICmpWithConstant(I)) 6031 return Res; 6032 6033 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 6034 return Res; 6035 6036 if (Instruction *Res = foldICmpUsingKnownBits(I)) 6037 return Res; 6038 6039 // Test if the ICmpInst instruction is used exclusively by a select as 6040 // part of a minimum or maximum operation. If so, refrain from doing 6041 // any other folding. This helps out other analyses which understand 6042 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6043 // and CodeGen. And in this case, at least one of the comparison 6044 // operands has at least one user besides the compare (the select), 6045 // which would often largely negate the benefit of folding anyway. 6046 // 6047 // Do the same for the other patterns recognized by matchSelectPattern. 6048 if (I.hasOneUse()) 6049 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6050 Value *A, *B; 6051 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6052 if (SPR.Flavor != SPF_UNKNOWN) 6053 return nullptr; 6054 } 6055 6056 // Do this after checking for min/max to prevent infinite looping. 6057 if (Instruction *Res = foldICmpWithZero(I)) 6058 return Res; 6059 6060 // FIXME: We only do this after checking for min/max to prevent infinite 6061 // looping caused by a reverse canonicalization of these patterns for min/max. 6062 // FIXME: The organization of folds is a mess. These would naturally go into 6063 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6064 // down here after the min/max restriction. 6065 ICmpInst::Predicate Pred = I.getPredicate(); 6066 const APInt *C; 6067 if (match(Op1, m_APInt(C))) { 6068 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6069 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6070 Constant *Zero = Constant::getNullValue(Op0->getType()); 6071 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6072 } 6073 6074 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6075 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6076 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6077 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6078 } 6079 } 6080 6081 // The folds in here may rely on wrapping flags and special constants, so 6082 // they can break up min/max idioms in some cases but not seemingly similar 6083 // patterns. 6084 // FIXME: It may be possible to enhance select folding to make this 6085 // unnecessary. It may also be moot if we canonicalize to min/max 6086 // intrinsics. 6087 if (Instruction *Res = foldICmpBinOp(I, Q)) 6088 return Res; 6089 6090 if (Instruction *Res = foldICmpInstWithConstant(I)) 6091 return Res; 6092 6093 // Try to match comparison as a sign bit test. Intentionally do this after 6094 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6095 if (Instruction *New = foldSignBitTest(I)) 6096 return New; 6097 6098 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6099 return Res; 6100 6101 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6102 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6103 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6104 return NI; 6105 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6106 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6107 return NI; 6108 6109 if (auto *SI = dyn_cast<SelectInst>(Op0)) 6110 if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I)) 6111 return NI; 6112 if (auto *SI = dyn_cast<SelectInst>(Op1)) 6113 if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I)) 6114 return NI; 6115 6116 // Try to optimize equality comparisons against alloca-based pointers. 6117 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6118 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6119 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6120 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6121 return New; 6122 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6123 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6124 return New; 6125 } 6126 6127 if (Instruction *Res = foldICmpBitCast(I)) 6128 return Res; 6129 6130 // TODO: Hoist this above the min/max bailout. 6131 if (Instruction *R = foldICmpWithCastOp(I)) 6132 return R; 6133 6134 if (Instruction *Res = foldICmpWithMinMax(I)) 6135 return Res; 6136 6137 { 6138 Value *A, *B; 6139 // Transform (A & ~B) == 0 --> (A & B) != 0 6140 // and (A & ~B) != 0 --> (A & B) == 0 6141 // if A is a power of 2. 6142 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6143 match(Op1, m_Zero()) && 6144 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6145 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6146 Op1); 6147 6148 // ~X < ~Y --> Y < X 6149 // ~X < C --> X > ~C 6150 if (match(Op0, m_Not(m_Value(A)))) { 6151 if (match(Op1, m_Not(m_Value(B)))) 6152 return new ICmpInst(I.getPredicate(), B, A); 6153 6154 const APInt *C; 6155 if (match(Op1, m_APInt(C))) 6156 return new ICmpInst(I.getSwappedPredicate(), A, 6157 ConstantInt::get(Op1->getType(), ~(*C))); 6158 } 6159 6160 Instruction *AddI = nullptr; 6161 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6162 m_Instruction(AddI))) && 6163 isa<IntegerType>(A->getType())) { 6164 Value *Result; 6165 Constant *Overflow; 6166 // m_UAddWithOverflow can match patterns that do not include an explicit 6167 // "add" instruction, so check the opcode of the matched op. 6168 if (AddI->getOpcode() == Instruction::Add && 6169 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6170 Result, Overflow)) { 6171 replaceInstUsesWith(*AddI, Result); 6172 eraseInstFromFunction(*AddI); 6173 return replaceInstUsesWith(I, Overflow); 6174 } 6175 } 6176 6177 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6178 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6179 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6180 return R; 6181 } 6182 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6183 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6184 return R; 6185 } 6186 } 6187 6188 if (Instruction *Res = foldICmpEquality(I)) 6189 return Res; 6190 6191 if (Instruction *Res = foldICmpOfUAddOv(I)) 6192 return Res; 6193 6194 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6195 // an i1 which indicates whether or not we successfully did the swap. 6196 // 6197 // Replace comparisons between the old value and the expected value with the 6198 // indicator that 'cmpxchg' returns. 6199 // 6200 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6201 // spuriously fail. In those cases, the old value may equal the expected 6202 // value but it is possible for the swap to not occur. 6203 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6204 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6205 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6206 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6207 !ACXI->isWeak()) 6208 return ExtractValueInst::Create(ACXI, 1); 6209 6210 { 6211 Value *X; 6212 const APInt *C; 6213 // icmp X+Cst, X 6214 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6215 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6216 6217 // icmp X, X+Cst 6218 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6219 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6220 } 6221 6222 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6223 return Res; 6224 6225 if (I.getType()->isVectorTy()) 6226 if (Instruction *Res = foldVectorCmp(I, Builder)) 6227 return Res; 6228 6229 if (Instruction *Res = foldICmpInvariantGroup(I)) 6230 return Res; 6231 6232 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 6233 return Res; 6234 6235 return Changed ? &I : nullptr; 6236 } 6237 6238 /// Fold fcmp ([us]itofp x, cst) if possible. 6239 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6240 Instruction *LHSI, 6241 Constant *RHSC) { 6242 if (!isa<ConstantFP>(RHSC)) return nullptr; 6243 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6244 6245 // Get the width of the mantissa. We don't want to hack on conversions that 6246 // might lose information from the integer, e.g. "i64 -> float" 6247 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6248 if (MantissaWidth == -1) return nullptr; // Unknown. 6249 6250 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6251 6252 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6253 6254 if (I.isEquality()) { 6255 FCmpInst::Predicate P = I.getPredicate(); 6256 bool IsExact = false; 6257 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6258 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6259 6260 // If the floating point constant isn't an integer value, we know if we will 6261 // ever compare equal / not equal to it. 6262 if (!IsExact) { 6263 // TODO: Can never be -0.0 and other non-representable values 6264 APFloat RHSRoundInt(RHS); 6265 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6266 if (RHS != RHSRoundInt) { 6267 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6268 return replaceInstUsesWith(I, Builder.getFalse()); 6269 6270 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6271 return replaceInstUsesWith(I, Builder.getTrue()); 6272 } 6273 } 6274 6275 // TODO: If the constant is exactly representable, is it always OK to do 6276 // equality compares as integer? 6277 } 6278 6279 // Check to see that the input is converted from an integer type that is small 6280 // enough that preserves all bits. TODO: check here for "known" sign bits. 6281 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6282 unsigned InputSize = IntTy->getScalarSizeInBits(); 6283 6284 // Following test does NOT adjust InputSize downwards for signed inputs, 6285 // because the most negative value still requires all the mantissa bits 6286 // to distinguish it from one less than that value. 6287 if ((int)InputSize > MantissaWidth) { 6288 // Conversion would lose accuracy. Check if loss can impact comparison. 6289 int Exp = ilogb(RHS); 6290 if (Exp == APFloat::IEK_Inf) { 6291 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6292 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6293 // Conversion could create infinity. 6294 return nullptr; 6295 } else { 6296 // Note that if RHS is zero or NaN, then Exp is negative 6297 // and first condition is trivially false. 6298 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6299 // Conversion could affect comparison. 6300 return nullptr; 6301 } 6302 } 6303 6304 // Otherwise, we can potentially simplify the comparison. We know that it 6305 // will always come through as an integer value and we know the constant is 6306 // not a NAN (it would have been previously simplified). 6307 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6308 6309 ICmpInst::Predicate Pred; 6310 switch (I.getPredicate()) { 6311 default: llvm_unreachable("Unexpected predicate!"); 6312 case FCmpInst::FCMP_UEQ: 6313 case FCmpInst::FCMP_OEQ: 6314 Pred = ICmpInst::ICMP_EQ; 6315 break; 6316 case FCmpInst::FCMP_UGT: 6317 case FCmpInst::FCMP_OGT: 6318 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6319 break; 6320 case FCmpInst::FCMP_UGE: 6321 case FCmpInst::FCMP_OGE: 6322 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6323 break; 6324 case FCmpInst::FCMP_ULT: 6325 case FCmpInst::FCMP_OLT: 6326 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6327 break; 6328 case FCmpInst::FCMP_ULE: 6329 case FCmpInst::FCMP_OLE: 6330 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6331 break; 6332 case FCmpInst::FCMP_UNE: 6333 case FCmpInst::FCMP_ONE: 6334 Pred = ICmpInst::ICMP_NE; 6335 break; 6336 case FCmpInst::FCMP_ORD: 6337 return replaceInstUsesWith(I, Builder.getTrue()); 6338 case FCmpInst::FCMP_UNO: 6339 return replaceInstUsesWith(I, Builder.getFalse()); 6340 } 6341 6342 // Now we know that the APFloat is a normal number, zero or inf. 6343 6344 // See if the FP constant is too large for the integer. For example, 6345 // comparing an i8 to 300.0. 6346 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6347 6348 if (!LHSUnsigned) { 6349 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6350 // and large values. 6351 APFloat SMax(RHS.getSemantics()); 6352 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6353 APFloat::rmNearestTiesToEven); 6354 if (SMax < RHS) { // smax < 13123.0 6355 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6356 Pred == ICmpInst::ICMP_SLE) 6357 return replaceInstUsesWith(I, Builder.getTrue()); 6358 return replaceInstUsesWith(I, Builder.getFalse()); 6359 } 6360 } else { 6361 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6362 // +INF and large values. 6363 APFloat UMax(RHS.getSemantics()); 6364 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6365 APFloat::rmNearestTiesToEven); 6366 if (UMax < RHS) { // umax < 13123.0 6367 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6368 Pred == ICmpInst::ICMP_ULE) 6369 return replaceInstUsesWith(I, Builder.getTrue()); 6370 return replaceInstUsesWith(I, Builder.getFalse()); 6371 } 6372 } 6373 6374 if (!LHSUnsigned) { 6375 // See if the RHS value is < SignedMin. 6376 APFloat SMin(RHS.getSemantics()); 6377 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6378 APFloat::rmNearestTiesToEven); 6379 if (SMin > RHS) { // smin > 12312.0 6380 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6381 Pred == ICmpInst::ICMP_SGE) 6382 return replaceInstUsesWith(I, Builder.getTrue()); 6383 return replaceInstUsesWith(I, Builder.getFalse()); 6384 } 6385 } else { 6386 // See if the RHS value is < UnsignedMin. 6387 APFloat UMin(RHS.getSemantics()); 6388 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6389 APFloat::rmNearestTiesToEven); 6390 if (UMin > RHS) { // umin > 12312.0 6391 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6392 Pred == ICmpInst::ICMP_UGE) 6393 return replaceInstUsesWith(I, Builder.getTrue()); 6394 return replaceInstUsesWith(I, Builder.getFalse()); 6395 } 6396 } 6397 6398 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6399 // [0, UMAX], but it may still be fractional. See if it is fractional by 6400 // casting the FP value to the integer value and back, checking for equality. 6401 // Don't do this for zero, because -0.0 is not fractional. 6402 Constant *RHSInt = LHSUnsigned 6403 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6404 : ConstantExpr::getFPToSI(RHSC, IntTy); 6405 if (!RHS.isZero()) { 6406 bool Equal = LHSUnsigned 6407 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6408 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6409 if (!Equal) { 6410 // If we had a comparison against a fractional value, we have to adjust 6411 // the compare predicate and sometimes the value. RHSC is rounded towards 6412 // zero at this point. 6413 switch (Pred) { 6414 default: llvm_unreachable("Unexpected integer comparison!"); 6415 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6416 return replaceInstUsesWith(I, Builder.getTrue()); 6417 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6418 return replaceInstUsesWith(I, Builder.getFalse()); 6419 case ICmpInst::ICMP_ULE: 6420 // (float)int <= 4.4 --> int <= 4 6421 // (float)int <= -4.4 --> false 6422 if (RHS.isNegative()) 6423 return replaceInstUsesWith(I, Builder.getFalse()); 6424 break; 6425 case ICmpInst::ICMP_SLE: 6426 // (float)int <= 4.4 --> int <= 4 6427 // (float)int <= -4.4 --> int < -4 6428 if (RHS.isNegative()) 6429 Pred = ICmpInst::ICMP_SLT; 6430 break; 6431 case ICmpInst::ICMP_ULT: 6432 // (float)int < -4.4 --> false 6433 // (float)int < 4.4 --> int <= 4 6434 if (RHS.isNegative()) 6435 return replaceInstUsesWith(I, Builder.getFalse()); 6436 Pred = ICmpInst::ICMP_ULE; 6437 break; 6438 case ICmpInst::ICMP_SLT: 6439 // (float)int < -4.4 --> int < -4 6440 // (float)int < 4.4 --> int <= 4 6441 if (!RHS.isNegative()) 6442 Pred = ICmpInst::ICMP_SLE; 6443 break; 6444 case ICmpInst::ICMP_UGT: 6445 // (float)int > 4.4 --> int > 4 6446 // (float)int > -4.4 --> true 6447 if (RHS.isNegative()) 6448 return replaceInstUsesWith(I, Builder.getTrue()); 6449 break; 6450 case ICmpInst::ICMP_SGT: 6451 // (float)int > 4.4 --> int > 4 6452 // (float)int > -4.4 --> int >= -4 6453 if (RHS.isNegative()) 6454 Pred = ICmpInst::ICMP_SGE; 6455 break; 6456 case ICmpInst::ICMP_UGE: 6457 // (float)int >= -4.4 --> true 6458 // (float)int >= 4.4 --> int > 4 6459 if (RHS.isNegative()) 6460 return replaceInstUsesWith(I, Builder.getTrue()); 6461 Pred = ICmpInst::ICMP_UGT; 6462 break; 6463 case ICmpInst::ICMP_SGE: 6464 // (float)int >= -4.4 --> int >= -4 6465 // (float)int >= 4.4 --> int > 4 6466 if (!RHS.isNegative()) 6467 Pred = ICmpInst::ICMP_SGT; 6468 break; 6469 } 6470 } 6471 } 6472 6473 // Lower this FP comparison into an appropriate integer version of the 6474 // comparison. 6475 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6476 } 6477 6478 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6479 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6480 Constant *RHSC) { 6481 // When C is not 0.0 and infinities are not allowed: 6482 // (C / X) < 0.0 is a sign-bit test of X 6483 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6484 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6485 // 6486 // Proof: 6487 // Multiply (C / X) < 0.0 by X * X / C. 6488 // - X is non zero, if it is the flag 'ninf' is violated. 6489 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6490 // the predicate. C is also non zero by definition. 6491 // 6492 // Thus X * X / C is non zero and the transformation is valid. [qed] 6493 6494 FCmpInst::Predicate Pred = I.getPredicate(); 6495 6496 // Check that predicates are valid. 6497 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6498 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6499 return nullptr; 6500 6501 // Check that RHS operand is zero. 6502 if (!match(RHSC, m_AnyZeroFP())) 6503 return nullptr; 6504 6505 // Check fastmath flags ('ninf'). 6506 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6507 return nullptr; 6508 6509 // Check the properties of the dividend. It must not be zero to avoid a 6510 // division by zero (see Proof). 6511 const APFloat *C; 6512 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6513 return nullptr; 6514 6515 if (C->isZero()) 6516 return nullptr; 6517 6518 // Get swapped predicate if necessary. 6519 if (C->isNegative()) 6520 Pred = I.getSwappedPredicate(); 6521 6522 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6523 } 6524 6525 /// Optimize fabs(X) compared with zero. 6526 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6527 Value *X; 6528 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6529 !match(I.getOperand(1), m_PosZeroFP())) 6530 return nullptr; 6531 6532 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6533 I->setPredicate(P); 6534 return IC.replaceOperand(*I, 0, X); 6535 }; 6536 6537 switch (I.getPredicate()) { 6538 case FCmpInst::FCMP_UGE: 6539 case FCmpInst::FCMP_OLT: 6540 // fabs(X) >= 0.0 --> true 6541 // fabs(X) < 0.0 --> false 6542 llvm_unreachable("fcmp should have simplified"); 6543 6544 case FCmpInst::FCMP_OGT: 6545 // fabs(X) > 0.0 --> X != 0.0 6546 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6547 6548 case FCmpInst::FCMP_UGT: 6549 // fabs(X) u> 0.0 --> X u!= 0.0 6550 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6551 6552 case FCmpInst::FCMP_OLE: 6553 // fabs(X) <= 0.0 --> X == 0.0 6554 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6555 6556 case FCmpInst::FCMP_ULE: 6557 // fabs(X) u<= 0.0 --> X u== 0.0 6558 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6559 6560 case FCmpInst::FCMP_OGE: 6561 // fabs(X) >= 0.0 --> !isnan(X) 6562 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6563 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6564 6565 case FCmpInst::FCMP_ULT: 6566 // fabs(X) u< 0.0 --> isnan(X) 6567 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6568 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6569 6570 case FCmpInst::FCMP_OEQ: 6571 case FCmpInst::FCMP_UEQ: 6572 case FCmpInst::FCMP_ONE: 6573 case FCmpInst::FCMP_UNE: 6574 case FCmpInst::FCMP_ORD: 6575 case FCmpInst::FCMP_UNO: 6576 // Look through the fabs() because it doesn't change anything but the sign. 6577 // fabs(X) == 0.0 --> X == 0.0, 6578 // fabs(X) != 0.0 --> X != 0.0 6579 // isnan(fabs(X)) --> isnan(X) 6580 // !isnan(fabs(X) --> !isnan(X) 6581 return replacePredAndOp0(&I, I.getPredicate(), X); 6582 6583 default: 6584 return nullptr; 6585 } 6586 } 6587 6588 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 6589 CmpInst::Predicate Pred = I.getPredicate(); 6590 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6591 6592 // Canonicalize fneg as Op1. 6593 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 6594 std::swap(Op0, Op1); 6595 Pred = I.getSwappedPredicate(); 6596 } 6597 6598 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 6599 return nullptr; 6600 6601 // Replace the negated operand with 0.0: 6602 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 6603 Constant *Zero = ConstantFP::getNullValue(Op0->getType()); 6604 return new FCmpInst(Pred, Op0, Zero, "", &I); 6605 } 6606 6607 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6608 bool Changed = false; 6609 6610 /// Orders the operands of the compare so that they are listed from most 6611 /// complex to least complex. This puts constants before unary operators, 6612 /// before binary operators. 6613 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6614 I.swapOperands(); 6615 Changed = true; 6616 } 6617 6618 const CmpInst::Predicate Pred = I.getPredicate(); 6619 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6620 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6621 SQ.getWithInstruction(&I))) 6622 return replaceInstUsesWith(I, V); 6623 6624 // Simplify 'fcmp pred X, X' 6625 Type *OpType = Op0->getType(); 6626 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6627 if (Op0 == Op1) { 6628 switch (Pred) { 6629 default: break; 6630 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6631 case FCmpInst::FCMP_ULT: // True if unordered or less than 6632 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6633 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6634 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6635 I.setPredicate(FCmpInst::FCMP_UNO); 6636 I.setOperand(1, Constant::getNullValue(OpType)); 6637 return &I; 6638 6639 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6640 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6641 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6642 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6643 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6644 I.setPredicate(FCmpInst::FCMP_ORD); 6645 I.setOperand(1, Constant::getNullValue(OpType)); 6646 return &I; 6647 } 6648 } 6649 6650 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6651 // then canonicalize the operand to 0.0. 6652 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6653 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6654 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6655 6656 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6657 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6658 } 6659 6660 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6661 Value *X, *Y; 6662 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6663 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6664 6665 if (Instruction *R = foldFCmpFNegCommonOp(I)) 6666 return R; 6667 6668 // Test if the FCmpInst instruction is used exclusively by a select as 6669 // part of a minimum or maximum operation. If so, refrain from doing 6670 // any other folding. This helps out other analyses which understand 6671 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6672 // and CodeGen. And in this case, at least one of the comparison 6673 // operands has at least one user besides the compare (the select), 6674 // which would often largely negate the benefit of folding anyway. 6675 if (I.hasOneUse()) 6676 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6677 Value *A, *B; 6678 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6679 if (SPR.Flavor != SPF_UNKNOWN) 6680 return nullptr; 6681 } 6682 6683 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6684 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6685 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6686 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6687 6688 // Handle fcmp with instruction LHS and constant RHS. 6689 Instruction *LHSI; 6690 Constant *RHSC; 6691 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6692 switch (LHSI->getOpcode()) { 6693 case Instruction::PHI: 6694 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6695 // block. If in the same block, we're encouraging jump threading. If 6696 // not, we are just pessimizing the code by making an i1 phi. 6697 if (LHSI->getParent() == I.getParent()) 6698 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6699 return NV; 6700 break; 6701 case Instruction::SIToFP: 6702 case Instruction::UIToFP: 6703 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6704 return NV; 6705 break; 6706 case Instruction::FDiv: 6707 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6708 return NV; 6709 break; 6710 case Instruction::Load: 6711 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6712 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6713 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 6714 cast<LoadInst>(LHSI), GEP, GV, I)) 6715 return Res; 6716 break; 6717 } 6718 } 6719 6720 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6721 return R; 6722 6723 if (match(Op0, m_FNeg(m_Value(X)))) { 6724 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6725 Constant *C; 6726 if (match(Op1, m_Constant(C))) { 6727 Constant *NegC = ConstantExpr::getFNeg(C); 6728 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6729 } 6730 } 6731 6732 if (match(Op0, m_FPExt(m_Value(X)))) { 6733 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6734 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6735 return new FCmpInst(Pred, X, Y, "", &I); 6736 6737 const APFloat *C; 6738 if (match(Op1, m_APFloat(C))) { 6739 const fltSemantics &FPSem = 6740 X->getType()->getScalarType()->getFltSemantics(); 6741 bool Lossy; 6742 APFloat TruncC = *C; 6743 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6744 6745 if (Lossy) { 6746 // X can't possibly equal the higher-precision constant, so reduce any 6747 // equality comparison. 6748 // TODO: Other predicates can be handled via getFCmpCode(). 6749 switch (Pred) { 6750 case FCmpInst::FCMP_OEQ: 6751 // X is ordered and equal to an impossible constant --> false 6752 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6753 case FCmpInst::FCMP_ONE: 6754 // X is ordered and not equal to an impossible constant --> ordered 6755 return new FCmpInst(FCmpInst::FCMP_ORD, X, 6756 ConstantFP::getNullValue(X->getType())); 6757 case FCmpInst::FCMP_UEQ: 6758 // X is unordered or equal to an impossible constant --> unordered 6759 return new FCmpInst(FCmpInst::FCMP_UNO, X, 6760 ConstantFP::getNullValue(X->getType())); 6761 case FCmpInst::FCMP_UNE: 6762 // X is unordered or not equal to an impossible constant --> true 6763 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6764 default: 6765 break; 6766 } 6767 } 6768 6769 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6770 // Avoid lossy conversions and denormals. 6771 // Zero is a special case that's OK to convert. 6772 APFloat Fabs = TruncC; 6773 Fabs.clearSign(); 6774 if (!Lossy && 6775 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6776 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6777 return new FCmpInst(Pred, X, NewC, "", &I); 6778 } 6779 } 6780 } 6781 6782 // Convert a sign-bit test of an FP value into a cast and integer compare. 6783 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6784 // TODO: Handle non-zero compare constants. 6785 // TODO: Handle other predicates. 6786 const APFloat *C; 6787 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6788 m_Value(X)))) && 6789 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6790 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6791 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6792 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6793 6794 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6795 if (Pred == FCmpInst::FCMP_OLT) { 6796 Value *IntX = Builder.CreateBitCast(X, IntType); 6797 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6798 ConstantInt::getNullValue(IntType)); 6799 } 6800 } 6801 6802 if (I.getType()->isVectorTy()) 6803 if (Instruction *Res = foldVectorCmp(I, Builder)) 6804 return Res; 6805 6806 return Changed ? &I : nullptr; 6807 } 6808