1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Given an exploded icmp instruction, return true if the comparison only
73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
74 /// result of the comparison is true when the input value is signed.
75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
76                            bool &TrueIfSigned) {
77   switch (Pred) {
78   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
79     TrueIfSigned = true;
80     return RHS.isNullValue();
81   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
82     TrueIfSigned = true;
83     return RHS.isAllOnesValue();
84   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
85     TrueIfSigned = false;
86     return RHS.isAllOnesValue();
87   case ICmpInst::ICMP_UGT:
88     // True if LHS u> RHS and RHS == high-bit-mask - 1
89     TrueIfSigned = true;
90     return RHS.isMaxSignedValue();
91   case ICmpInst::ICMP_UGE:
92     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
93     TrueIfSigned = true;
94     return RHS.isSignMask();
95   default:
96     return false;
97   }
98 }
99 
100 /// Returns true if the exploded icmp can be expressed as a signed comparison
101 /// to zero and updates the predicate accordingly.
102 /// The signedness of the comparison is preserved.
103 /// TODO: Refactor with decomposeBitTestICmp()?
104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
105   if (!ICmpInst::isSigned(Pred))
106     return false;
107 
108   if (C.isNullValue())
109     return ICmpInst::isRelational(Pred);
110 
111   if (C.isOneValue()) {
112     if (Pred == ICmpInst::ICMP_SLT) {
113       Pred = ICmpInst::ICMP_SLE;
114       return true;
115     }
116   } else if (C.isAllOnesValue()) {
117     if (Pred == ICmpInst::ICMP_SGT) {
118       Pred = ICmpInst::ICMP_SGE;
119       return true;
120     }
121   }
122 
123   return false;
124 }
125 
126 /// Given a signed integer type and a set of known zero and one bits, compute
127 /// the maximum and minimum values that could have the specified known zero and
128 /// known one bits, returning them in Min/Max.
129 /// TODO: Move to method on KnownBits struct?
130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
131                                                    APInt &Min, APInt &Max) {
132   assert(Known.getBitWidth() == Min.getBitWidth() &&
133          Known.getBitWidth() == Max.getBitWidth() &&
134          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
135   APInt UnknownBits = ~(Known.Zero|Known.One);
136 
137   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
138   // bit if it is unknown.
139   Min = Known.One;
140   Max = Known.One|UnknownBits;
141 
142   if (UnknownBits.isNegative()) { // Sign bit is unknown
143     Min.setSignBit();
144     Max.clearSignBit();
145   }
146 }
147 
148 /// Given an unsigned integer type and a set of known zero and one bits, compute
149 /// the maximum and minimum values that could have the specified known zero and
150 /// known one bits, returning them in Min/Max.
151 /// TODO: Move to method on KnownBits struct?
152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
153                                                      APInt &Min, APInt &Max) {
154   assert(Known.getBitWidth() == Min.getBitWidth() &&
155          Known.getBitWidth() == Max.getBitWidth() &&
156          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
157   APInt UnknownBits = ~(Known.Zero|Known.One);
158 
159   // The minimum value is when the unknown bits are all zeros.
160   Min = Known.One;
161   // The maximum value is when the unknown bits are all ones.
162   Max = Known.One|UnknownBits;
163 }
164 
165 /// This is called when we see this pattern:
166 ///   cmp pred (load (gep GV, ...)), cmpcst
167 /// where GV is a global variable with a constant initializer. Try to simplify
168 /// this into some simple computation that does not need the load. For example
169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
170 ///
171 /// If AndCst is non-null, then the loaded value is masked with that constant
172 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
174                                                         GlobalVariable *GV,
175                                                         CmpInst &ICI,
176                                                         ConstantInt *AndCst) {
177   Constant *Init = GV->getInitializer();
178   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
179     return nullptr;
180 
181   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
182   // Don't blow up on huge arrays.
183   if (ArrayElementCount > MaxArraySizeForCombine)
184     return nullptr;
185 
186   // There are many forms of this optimization we can handle, for now, just do
187   // the simple index into a single-dimensional array.
188   //
189   // Require: GEP GV, 0, i {{, constant indices}}
190   if (GEP->getNumOperands() < 3 ||
191       !isa<ConstantInt>(GEP->getOperand(1)) ||
192       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
193       isa<Constant>(GEP->getOperand(2)))
194     return nullptr;
195 
196   // Check that indices after the variable are constants and in-range for the
197   // type they index.  Collect the indices.  This is typically for arrays of
198   // structs.
199   SmallVector<unsigned, 4> LaterIndices;
200 
201   Type *EltTy = Init->getType()->getArrayElementType();
202   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
203     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
204     if (!Idx) return nullptr;  // Variable index.
205 
206     uint64_t IdxVal = Idx->getZExtValue();
207     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
208 
209     if (StructType *STy = dyn_cast<StructType>(EltTy))
210       EltTy = STy->getElementType(IdxVal);
211     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
212       if (IdxVal >= ATy->getNumElements()) return nullptr;
213       EltTy = ATy->getElementType();
214     } else {
215       return nullptr; // Unknown type.
216     }
217 
218     LaterIndices.push_back(IdxVal);
219   }
220 
221   enum { Overdefined = -3, Undefined = -2 };
222 
223   // Variables for our state machines.
224 
225   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
226   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
227   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
228   // undefined, otherwise set to the first true element.  SecondTrueElement is
229   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
230   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
231 
232   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
233   // form "i != 47 & i != 87".  Same state transitions as for true elements.
234   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
235 
236   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
237   /// define a state machine that triggers for ranges of values that the index
238   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
239   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
240   /// index in the range (inclusive).  We use -2 for undefined here because we
241   /// use relative comparisons and don't want 0-1 to match -1.
242   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
243 
244   // MagicBitvector - This is a magic bitvector where we set a bit if the
245   // comparison is true for element 'i'.  If there are 64 elements or less in
246   // the array, this will fully represent all the comparison results.
247   uint64_t MagicBitvector = 0;
248 
249   // Scan the array and see if one of our patterns matches.
250   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
251   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
252     Constant *Elt = Init->getAggregateElement(i);
253     if (!Elt) return nullptr;
254 
255     // If this is indexing an array of structures, get the structure element.
256     if (!LaterIndices.empty())
257       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
258 
259     // If the element is masked, handle it.
260     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
261 
262     // Find out if the comparison would be true or false for the i'th element.
263     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
264                                                   CompareRHS, DL, &TLI);
265     // If the result is undef for this element, ignore it.
266     if (isa<UndefValue>(C)) {
267       // Extend range state machines to cover this element in case there is an
268       // undef in the middle of the range.
269       if (TrueRangeEnd == (int)i-1)
270         TrueRangeEnd = i;
271       if (FalseRangeEnd == (int)i-1)
272         FalseRangeEnd = i;
273       continue;
274     }
275 
276     // If we can't compute the result for any of the elements, we have to give
277     // up evaluating the entire conditional.
278     if (!isa<ConstantInt>(C)) return nullptr;
279 
280     // Otherwise, we know if the comparison is true or false for this element,
281     // update our state machines.
282     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
283 
284     // State machine for single/double/range index comparison.
285     if (IsTrueForElt) {
286       // Update the TrueElement state machine.
287       if (FirstTrueElement == Undefined)
288         FirstTrueElement = TrueRangeEnd = i;  // First true element.
289       else {
290         // Update double-compare state machine.
291         if (SecondTrueElement == Undefined)
292           SecondTrueElement = i;
293         else
294           SecondTrueElement = Overdefined;
295 
296         // Update range state machine.
297         if (TrueRangeEnd == (int)i-1)
298           TrueRangeEnd = i;
299         else
300           TrueRangeEnd = Overdefined;
301       }
302     } else {
303       // Update the FalseElement state machine.
304       if (FirstFalseElement == Undefined)
305         FirstFalseElement = FalseRangeEnd = i; // First false element.
306       else {
307         // Update double-compare state machine.
308         if (SecondFalseElement == Undefined)
309           SecondFalseElement = i;
310         else
311           SecondFalseElement = Overdefined;
312 
313         // Update range state machine.
314         if (FalseRangeEnd == (int)i-1)
315           FalseRangeEnd = i;
316         else
317           FalseRangeEnd = Overdefined;
318       }
319     }
320 
321     // If this element is in range, update our magic bitvector.
322     if (i < 64 && IsTrueForElt)
323       MagicBitvector |= 1ULL << i;
324 
325     // If all of our states become overdefined, bail out early.  Since the
326     // predicate is expensive, only check it every 8 elements.  This is only
327     // really useful for really huge arrays.
328     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
329         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
330         FalseRangeEnd == Overdefined)
331       return nullptr;
332   }
333 
334   // Now that we've scanned the entire array, emit our new comparison(s).  We
335   // order the state machines in complexity of the generated code.
336   Value *Idx = GEP->getOperand(2);
337 
338   // If the index is larger than the pointer size of the target, truncate the
339   // index down like the GEP would do implicitly.  We don't have to do this for
340   // an inbounds GEP because the index can't be out of range.
341   if (!GEP->isInBounds()) {
342     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
343     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
344     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
345       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
346   }
347 
348   // If the comparison is only true for one or two elements, emit direct
349   // comparisons.
350   if (SecondTrueElement != Overdefined) {
351     // None true -> false.
352     if (FirstTrueElement == Undefined)
353       return replaceInstUsesWith(ICI, Builder.getFalse());
354 
355     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
356 
357     // True for one element -> 'i == 47'.
358     if (SecondTrueElement == Undefined)
359       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
360 
361     // True for two elements -> 'i == 47 | i == 72'.
362     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
363     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
364     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
365     return BinaryOperator::CreateOr(C1, C2);
366   }
367 
368   // If the comparison is only false for one or two elements, emit direct
369   // comparisons.
370   if (SecondFalseElement != Overdefined) {
371     // None false -> true.
372     if (FirstFalseElement == Undefined)
373       return replaceInstUsesWith(ICI, Builder.getTrue());
374 
375     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
376 
377     // False for one element -> 'i != 47'.
378     if (SecondFalseElement == Undefined)
379       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
380 
381     // False for two elements -> 'i != 47 & i != 72'.
382     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
383     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
384     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
385     return BinaryOperator::CreateAnd(C1, C2);
386   }
387 
388   // If the comparison can be replaced with a range comparison for the elements
389   // where it is true, emit the range check.
390   if (TrueRangeEnd != Overdefined) {
391     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
392 
393     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
394     if (FirstTrueElement) {
395       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
396       Idx = Builder.CreateAdd(Idx, Offs);
397     }
398 
399     Value *End = ConstantInt::get(Idx->getType(),
400                                   TrueRangeEnd-FirstTrueElement+1);
401     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
402   }
403 
404   // False range check.
405   if (FalseRangeEnd != Overdefined) {
406     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
407     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
408     if (FirstFalseElement) {
409       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
410       Idx = Builder.CreateAdd(Idx, Offs);
411     }
412 
413     Value *End = ConstantInt::get(Idx->getType(),
414                                   FalseRangeEnd-FirstFalseElement);
415     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
416   }
417 
418   // If a magic bitvector captures the entire comparison state
419   // of this load, replace it with computation that does:
420   //   ((magic_cst >> i) & 1) != 0
421   {
422     Type *Ty = nullptr;
423 
424     // Look for an appropriate type:
425     // - The type of Idx if the magic fits
426     // - The smallest fitting legal type
427     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
428       Ty = Idx->getType();
429     else
430       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
431 
432     if (Ty) {
433       Value *V = Builder.CreateIntCast(Idx, Ty, false);
434       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
435       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
436       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
437     }
438   }
439 
440   return nullptr;
441 }
442 
443 /// Return a value that can be used to compare the *offset* implied by a GEP to
444 /// zero. For example, if we have &A[i], we want to return 'i' for
445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
446 /// are involved. The above expression would also be legal to codegen as
447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
448 /// This latter form is less amenable to optimization though, and we are allowed
449 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
450 ///
451 /// If we can't emit an optimized form for this expression, this returns null.
452 ///
453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
454                                           const DataLayout &DL) {
455   gep_type_iterator GTI = gep_type_begin(GEP);
456 
457   // Check to see if this gep only has a single variable index.  If so, and if
458   // any constant indices are a multiple of its scale, then we can compute this
459   // in terms of the scale of the variable index.  For example, if the GEP
460   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
461   // because the expression will cross zero at the same point.
462   unsigned i, e = GEP->getNumOperands();
463   int64_t Offset = 0;
464   for (i = 1; i != e; ++i, ++GTI) {
465     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
466       // Compute the aggregate offset of constant indices.
467       if (CI->isZero()) continue;
468 
469       // Handle a struct index, which adds its field offset to the pointer.
470       if (StructType *STy = GTI.getStructTypeOrNull()) {
471         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
472       } else {
473         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
474         Offset += Size*CI->getSExtValue();
475       }
476     } else {
477       // Found our variable index.
478       break;
479     }
480   }
481 
482   // If there are no variable indices, we must have a constant offset, just
483   // evaluate it the general way.
484   if (i == e) return nullptr;
485 
486   Value *VariableIdx = GEP->getOperand(i);
487   // Determine the scale factor of the variable element.  For example, this is
488   // 4 if the variable index is into an array of i32.
489   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
490 
491   // Verify that there are no other variable indices.  If so, emit the hard way.
492   for (++i, ++GTI; i != e; ++i, ++GTI) {
493     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
494     if (!CI) return nullptr;
495 
496     // Compute the aggregate offset of constant indices.
497     if (CI->isZero()) continue;
498 
499     // Handle a struct index, which adds its field offset to the pointer.
500     if (StructType *STy = GTI.getStructTypeOrNull()) {
501       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
502     } else {
503       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
504       Offset += Size*CI->getSExtValue();
505     }
506   }
507 
508   // Okay, we know we have a single variable index, which must be a
509   // pointer/array/vector index.  If there is no offset, life is simple, return
510   // the index.
511   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
512   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
513   if (Offset == 0) {
514     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
515     // we don't need to bother extending: the extension won't affect where the
516     // computation crosses zero.
517     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
518       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
519     }
520     return VariableIdx;
521   }
522 
523   // Otherwise, there is an index.  The computation we will do will be modulo
524   // the pointer size.
525   Offset = SignExtend64(Offset, IntPtrWidth);
526   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
527 
528   // To do this transformation, any constant index must be a multiple of the
529   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
530   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
531   // multiple of the variable scale.
532   int64_t NewOffs = Offset / (int64_t)VariableScale;
533   if (Offset != NewOffs*(int64_t)VariableScale)
534     return nullptr;
535 
536   // Okay, we can do this evaluation.  Start by converting the index to intptr.
537   if (VariableIdx->getType() != IntPtrTy)
538     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
539                                             true /*Signed*/);
540   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
541   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
542 }
543 
544 /// Returns true if we can rewrite Start as a GEP with pointer Base
545 /// and some integer offset. The nodes that need to be re-written
546 /// for this transformation will be added to Explored.
547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
548                                   const DataLayout &DL,
549                                   SetVector<Value *> &Explored) {
550   SmallVector<Value *, 16> WorkList(1, Start);
551   Explored.insert(Base);
552 
553   // The following traversal gives us an order which can be used
554   // when doing the final transformation. Since in the final
555   // transformation we create the PHI replacement instructions first,
556   // we don't have to get them in any particular order.
557   //
558   // However, for other instructions we will have to traverse the
559   // operands of an instruction first, which means that we have to
560   // do a post-order traversal.
561   while (!WorkList.empty()) {
562     SetVector<PHINode *> PHIs;
563 
564     while (!WorkList.empty()) {
565       if (Explored.size() >= 100)
566         return false;
567 
568       Value *V = WorkList.back();
569 
570       if (Explored.count(V) != 0) {
571         WorkList.pop_back();
572         continue;
573       }
574 
575       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
576           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
577         // We've found some value that we can't explore which is different from
578         // the base. Therefore we can't do this transformation.
579         return false;
580 
581       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
582         auto *CI = dyn_cast<CastInst>(V);
583         if (!CI->isNoopCast(DL))
584           return false;
585 
586         if (Explored.count(CI->getOperand(0)) == 0)
587           WorkList.push_back(CI->getOperand(0));
588       }
589 
590       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
591         // We're limiting the GEP to having one index. This will preserve
592         // the original pointer type. We could handle more cases in the
593         // future.
594         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
595             GEP->getType() != Start->getType())
596           return false;
597 
598         if (Explored.count(GEP->getOperand(0)) == 0)
599           WorkList.push_back(GEP->getOperand(0));
600       }
601 
602       if (WorkList.back() == V) {
603         WorkList.pop_back();
604         // We've finished visiting this node, mark it as such.
605         Explored.insert(V);
606       }
607 
608       if (auto *PN = dyn_cast<PHINode>(V)) {
609         // We cannot transform PHIs on unsplittable basic blocks.
610         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
611           return false;
612         Explored.insert(PN);
613         PHIs.insert(PN);
614       }
615     }
616 
617     // Explore the PHI nodes further.
618     for (auto *PN : PHIs)
619       for (Value *Op : PN->incoming_values())
620         if (Explored.count(Op) == 0)
621           WorkList.push_back(Op);
622   }
623 
624   // Make sure that we can do this. Since we can't insert GEPs in a basic
625   // block before a PHI node, we can't easily do this transformation if
626   // we have PHI node users of transformed instructions.
627   for (Value *Val : Explored) {
628     for (Value *Use : Val->uses()) {
629 
630       auto *PHI = dyn_cast<PHINode>(Use);
631       auto *Inst = dyn_cast<Instruction>(Val);
632 
633       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
634           Explored.count(PHI) == 0)
635         continue;
636 
637       if (PHI->getParent() == Inst->getParent())
638         return false;
639     }
640   }
641   return true;
642 }
643 
644 // Sets the appropriate insert point on Builder where we can add
645 // a replacement Instruction for V (if that is possible).
646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
647                               bool Before = true) {
648   if (auto *PHI = dyn_cast<PHINode>(V)) {
649     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
650     return;
651   }
652   if (auto *I = dyn_cast<Instruction>(V)) {
653     if (!Before)
654       I = &*std::next(I->getIterator());
655     Builder.SetInsertPoint(I);
656     return;
657   }
658   if (auto *A = dyn_cast<Argument>(V)) {
659     // Set the insertion point in the entry block.
660     BasicBlock &Entry = A->getParent()->getEntryBlock();
661     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
662     return;
663   }
664   // Otherwise, this is a constant and we don't need to set a new
665   // insertion point.
666   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
667 }
668 
669 /// Returns a re-written value of Start as an indexed GEP using Base as a
670 /// pointer.
671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
672                                  const DataLayout &DL,
673                                  SetVector<Value *> &Explored) {
674   // Perform all the substitutions. This is a bit tricky because we can
675   // have cycles in our use-def chains.
676   // 1. Create the PHI nodes without any incoming values.
677   // 2. Create all the other values.
678   // 3. Add the edges for the PHI nodes.
679   // 4. Emit GEPs to get the original pointers.
680   // 5. Remove the original instructions.
681   Type *IndexType = IntegerType::get(
682       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
683 
684   DenseMap<Value *, Value *> NewInsts;
685   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
686 
687   // Create the new PHI nodes, without adding any incoming values.
688   for (Value *Val : Explored) {
689     if (Val == Base)
690       continue;
691     // Create empty phi nodes. This avoids cyclic dependencies when creating
692     // the remaining instructions.
693     if (auto *PHI = dyn_cast<PHINode>(Val))
694       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
695                                       PHI->getName() + ".idx", PHI);
696   }
697   IRBuilder<> Builder(Base->getContext());
698 
699   // Create all the other instructions.
700   for (Value *Val : Explored) {
701 
702     if (NewInsts.find(Val) != NewInsts.end())
703       continue;
704 
705     if (auto *CI = dyn_cast<CastInst>(Val)) {
706       // Don't get rid of the intermediate variable here; the store can grow
707       // the map which will invalidate the reference to the input value.
708       Value *V = NewInsts[CI->getOperand(0)];
709       NewInsts[CI] = V;
710       continue;
711     }
712     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
713       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
714                                                   : GEP->getOperand(1);
715       setInsertionPoint(Builder, GEP);
716       // Indices might need to be sign extended. GEPs will magically do
717       // this, but we need to do it ourselves here.
718       if (Index->getType()->getScalarSizeInBits() !=
719           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
720         Index = Builder.CreateSExtOrTrunc(
721             Index, NewInsts[GEP->getOperand(0)]->getType(),
722             GEP->getOperand(0)->getName() + ".sext");
723       }
724 
725       auto *Op = NewInsts[GEP->getOperand(0)];
726       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
727         NewInsts[GEP] = Index;
728       else
729         NewInsts[GEP] = Builder.CreateNSWAdd(
730             Op, Index, GEP->getOperand(0)->getName() + ".add");
731       continue;
732     }
733     if (isa<PHINode>(Val))
734       continue;
735 
736     llvm_unreachable("Unexpected instruction type");
737   }
738 
739   // Add the incoming values to the PHI nodes.
740   for (Value *Val : Explored) {
741     if (Val == Base)
742       continue;
743     // All the instructions have been created, we can now add edges to the
744     // phi nodes.
745     if (auto *PHI = dyn_cast<PHINode>(Val)) {
746       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
747       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
748         Value *NewIncoming = PHI->getIncomingValue(I);
749 
750         if (NewInsts.find(NewIncoming) != NewInsts.end())
751           NewIncoming = NewInsts[NewIncoming];
752 
753         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
754       }
755     }
756   }
757 
758   for (Value *Val : Explored) {
759     if (Val == Base)
760       continue;
761 
762     // Depending on the type, for external users we have to emit
763     // a GEP or a GEP + ptrtoint.
764     setInsertionPoint(Builder, Val, false);
765 
766     // If required, create an inttoptr instruction for Base.
767     Value *NewBase = Base;
768     if (!Base->getType()->isPointerTy())
769       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
770                                                Start->getName() + "to.ptr");
771 
772     Value *GEP = Builder.CreateInBoundsGEP(
773         Start->getType()->getPointerElementType(), NewBase,
774         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
775 
776     if (!Val->getType()->isPointerTy()) {
777       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
778                                               Val->getName() + ".conv");
779       GEP = Cast;
780     }
781     Val->replaceAllUsesWith(GEP);
782   }
783 
784   return NewInsts[Start];
785 }
786 
787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
788 /// the input Value as a constant indexed GEP. Returns a pair containing
789 /// the GEPs Pointer and Index.
790 static std::pair<Value *, Value *>
791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
792   Type *IndexType = IntegerType::get(V->getContext(),
793                                      DL.getIndexTypeSizeInBits(V->getType()));
794 
795   Constant *Index = ConstantInt::getNullValue(IndexType);
796   while (true) {
797     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
798       // We accept only inbouds GEPs here to exclude the possibility of
799       // overflow.
800       if (!GEP->isInBounds())
801         break;
802       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
803           GEP->getType() == V->getType()) {
804         V = GEP->getOperand(0);
805         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
806         Index = ConstantExpr::getAdd(
807             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
808         continue;
809       }
810       break;
811     }
812     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
813       if (!CI->isNoopCast(DL))
814         break;
815       V = CI->getOperand(0);
816       continue;
817     }
818     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
819       if (!CI->isNoopCast(DL))
820         break;
821       V = CI->getOperand(0);
822       continue;
823     }
824     break;
825   }
826   return {V, Index};
827 }
828 
829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
830 /// We can look through PHIs, GEPs and casts in order to determine a common base
831 /// between GEPLHS and RHS.
832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
833                                               ICmpInst::Predicate Cond,
834                                               const DataLayout &DL) {
835   if (!GEPLHS->hasAllConstantIndices())
836     return nullptr;
837 
838   // Make sure the pointers have the same type.
839   if (GEPLHS->getType() != RHS->getType())
840     return nullptr;
841 
842   Value *PtrBase, *Index;
843   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
844 
845   // The set of nodes that will take part in this transformation.
846   SetVector<Value *> Nodes;
847 
848   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
849     return nullptr;
850 
851   // We know we can re-write this as
852   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
853   // Since we've only looked through inbouds GEPs we know that we
854   // can't have overflow on either side. We can therefore re-write
855   // this as:
856   //   OFFSET1 cmp OFFSET2
857   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
858 
859   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
860   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
861   // offset. Since Index is the offset of LHS to the base pointer, we will now
862   // compare the offsets instead of comparing the pointers.
863   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
864 }
865 
866 /// Fold comparisons between a GEP instruction and something else. At this point
867 /// we know that the GEP is on the LHS of the comparison.
868 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
869                                        ICmpInst::Predicate Cond,
870                                        Instruction &I) {
871   // Don't transform signed compares of GEPs into index compares. Even if the
872   // GEP is inbounds, the final add of the base pointer can have signed overflow
873   // and would change the result of the icmp.
874   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
875   // the maximum signed value for the pointer type.
876   if (ICmpInst::isSigned(Cond))
877     return nullptr;
878 
879   // Look through bitcasts and addrspacecasts. We do not however want to remove
880   // 0 GEPs.
881   if (!isa<GetElementPtrInst>(RHS))
882     RHS = RHS->stripPointerCasts();
883 
884   Value *PtrBase = GEPLHS->getOperand(0);
885   if (PtrBase == RHS && GEPLHS->isInBounds()) {
886     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
887     // This transformation (ignoring the base and scales) is valid because we
888     // know pointers can't overflow since the gep is inbounds.  See if we can
889     // output an optimized form.
890     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
891 
892     // If not, synthesize the offset the hard way.
893     if (!Offset)
894       Offset = EmitGEPOffset(GEPLHS);
895     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
896                         Constant::getNullValue(Offset->getType()));
897   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
898     // If the base pointers are different, but the indices are the same, just
899     // compare the base pointer.
900     if (PtrBase != GEPRHS->getOperand(0)) {
901       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
902       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
903                         GEPRHS->getOperand(0)->getType();
904       if (IndicesTheSame)
905         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
906           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
907             IndicesTheSame = false;
908             break;
909           }
910 
911       // If all indices are the same, just compare the base pointers.
912       Type *BaseType = GEPLHS->getOperand(0)->getType();
913       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
914         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
915 
916       // If we're comparing GEPs with two base pointers that only differ in type
917       // and both GEPs have only constant indices or just one use, then fold
918       // the compare with the adjusted indices.
919       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
920           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
921           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
922           PtrBase->stripPointerCasts() ==
923               GEPRHS->getOperand(0)->stripPointerCasts()) {
924         Value *LOffset = EmitGEPOffset(GEPLHS);
925         Value *ROffset = EmitGEPOffset(GEPRHS);
926 
927         // If we looked through an addrspacecast between different sized address
928         // spaces, the LHS and RHS pointers are different sized
929         // integers. Truncate to the smaller one.
930         Type *LHSIndexTy = LOffset->getType();
931         Type *RHSIndexTy = ROffset->getType();
932         if (LHSIndexTy != RHSIndexTy) {
933           if (LHSIndexTy->getPrimitiveSizeInBits() <
934               RHSIndexTy->getPrimitiveSizeInBits()) {
935             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
936           } else
937             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
938         }
939 
940         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
941                                         LOffset, ROffset);
942         return replaceInstUsesWith(I, Cmp);
943       }
944 
945       // Otherwise, the base pointers are different and the indices are
946       // different. Try convert this to an indexed compare by looking through
947       // PHIs/casts.
948       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
949     }
950 
951     // If one of the GEPs has all zero indices, recurse.
952     if (GEPLHS->hasAllZeroIndices())
953       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
954                          ICmpInst::getSwappedPredicate(Cond), I);
955 
956     // If the other GEP has all zero indices, recurse.
957     if (GEPRHS->hasAllZeroIndices())
958       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
959 
960     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
961     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
962       // If the GEPs only differ by one index, compare it.
963       unsigned NumDifferences = 0;  // Keep track of # differences.
964       unsigned DiffOperand = 0;     // The operand that differs.
965       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
966         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
967           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
968                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
969             // Irreconcilable differences.
970             NumDifferences = 2;
971             break;
972           } else {
973             if (NumDifferences++) break;
974             DiffOperand = i;
975           }
976         }
977 
978       if (NumDifferences == 0)   // SAME GEP?
979         return replaceInstUsesWith(I, // No comparison is needed here.
980           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
981 
982       else if (NumDifferences == 1 && GEPsInBounds) {
983         Value *LHSV = GEPLHS->getOperand(DiffOperand);
984         Value *RHSV = GEPRHS->getOperand(DiffOperand);
985         // Make sure we do a signed comparison here.
986         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
987       }
988     }
989 
990     // Only lower this if the icmp is the only user of the GEP or if we expect
991     // the result to fold to a constant!
992     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
993         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
994       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
995       Value *L = EmitGEPOffset(GEPLHS);
996       Value *R = EmitGEPOffset(GEPRHS);
997       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
998     }
999   }
1000 
1001   // Try convert this to an indexed compare by looking through PHIs/casts as a
1002   // last resort.
1003   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1004 }
1005 
1006 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1007                                          const AllocaInst *Alloca,
1008                                          const Value *Other) {
1009   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1010 
1011   // It would be tempting to fold away comparisons between allocas and any
1012   // pointer not based on that alloca (e.g. an argument). However, even
1013   // though such pointers cannot alias, they can still compare equal.
1014   //
1015   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1016   // doesn't escape we can argue that it's impossible to guess its value, and we
1017   // can therefore act as if any such guesses are wrong.
1018   //
1019   // The code below checks that the alloca doesn't escape, and that it's only
1020   // used in a comparison once (the current instruction). The
1021   // single-comparison-use condition ensures that we're trivially folding all
1022   // comparisons against the alloca consistently, and avoids the risk of
1023   // erroneously folding a comparison of the pointer with itself.
1024 
1025   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1026 
1027   SmallVector<const Use *, 32> Worklist;
1028   for (const Use &U : Alloca->uses()) {
1029     if (Worklist.size() >= MaxIter)
1030       return nullptr;
1031     Worklist.push_back(&U);
1032   }
1033 
1034   unsigned NumCmps = 0;
1035   while (!Worklist.empty()) {
1036     assert(Worklist.size() <= MaxIter);
1037     const Use *U = Worklist.pop_back_val();
1038     const Value *V = U->getUser();
1039     --MaxIter;
1040 
1041     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1042         isa<SelectInst>(V)) {
1043       // Track the uses.
1044     } else if (isa<LoadInst>(V)) {
1045       // Loading from the pointer doesn't escape it.
1046       continue;
1047     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1048       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1049       if (SI->getValueOperand() == U->get())
1050         return nullptr;
1051       continue;
1052     } else if (isa<ICmpInst>(V)) {
1053       if (NumCmps++)
1054         return nullptr; // Found more than one cmp.
1055       continue;
1056     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1057       switch (Intrin->getIntrinsicID()) {
1058         // These intrinsics don't escape or compare the pointer. Memset is safe
1059         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1060         // we don't allow stores, so src cannot point to V.
1061         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1062         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1063           continue;
1064         default:
1065           return nullptr;
1066       }
1067     } else {
1068       return nullptr;
1069     }
1070     for (const Use &U : V->uses()) {
1071       if (Worklist.size() >= MaxIter)
1072         return nullptr;
1073       Worklist.push_back(&U);
1074     }
1075   }
1076 
1077   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1078   return replaceInstUsesWith(
1079       ICI,
1080       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1081 }
1082 
1083 /// Fold "icmp pred (X+C), X".
1084 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1085                                               ICmpInst::Predicate Pred) {
1086   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1087   // so the values can never be equal.  Similarly for all other "or equals"
1088   // operators.
1089   assert(!!C && "C should not be zero!");
1090 
1091   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1092   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1093   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1094   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1095     Constant *R = ConstantInt::get(X->getType(),
1096                                    APInt::getMaxValue(C.getBitWidth()) - C);
1097     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1098   }
1099 
1100   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1101   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1102   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1103   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1104     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1105                         ConstantInt::get(X->getType(), -C));
1106 
1107   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1108 
1109   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1110   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1111   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1112   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1113   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1114   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1115   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1116     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1117                         ConstantInt::get(X->getType(), SMax - C));
1118 
1119   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1120   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1121   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1122   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1123   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1124   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1125 
1126   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1127   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1128                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1129 }
1130 
1131 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1132 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1133 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1134 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1135                                                  const APInt &AP1,
1136                                                  const APInt &AP2) {
1137   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1138 
1139   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1140     if (I.getPredicate() == I.ICMP_NE)
1141       Pred = CmpInst::getInversePredicate(Pred);
1142     return new ICmpInst(Pred, LHS, RHS);
1143   };
1144 
1145   // Don't bother doing any work for cases which InstSimplify handles.
1146   if (AP2.isNullValue())
1147     return nullptr;
1148 
1149   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1150   if (IsAShr) {
1151     if (AP2.isAllOnesValue())
1152       return nullptr;
1153     if (AP2.isNegative() != AP1.isNegative())
1154       return nullptr;
1155     if (AP2.sgt(AP1))
1156       return nullptr;
1157   }
1158 
1159   if (!AP1)
1160     // 'A' must be large enough to shift out the highest set bit.
1161     return getICmp(I.ICMP_UGT, A,
1162                    ConstantInt::get(A->getType(), AP2.logBase2()));
1163 
1164   if (AP1 == AP2)
1165     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1166 
1167   int Shift;
1168   if (IsAShr && AP1.isNegative())
1169     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1170   else
1171     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1172 
1173   if (Shift > 0) {
1174     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1175       // There are multiple solutions if we are comparing against -1 and the LHS
1176       // of the ashr is not a power of two.
1177       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1178         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1179       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1180     } else if (AP1 == AP2.lshr(Shift)) {
1181       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1182     }
1183   }
1184 
1185   // Shifting const2 will never be equal to const1.
1186   // FIXME: This should always be handled by InstSimplify?
1187   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1188   return replaceInstUsesWith(I, TorF);
1189 }
1190 
1191 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1192 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1193 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1194                                                  const APInt &AP1,
1195                                                  const APInt &AP2) {
1196   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1197 
1198   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1199     if (I.getPredicate() == I.ICMP_NE)
1200       Pred = CmpInst::getInversePredicate(Pred);
1201     return new ICmpInst(Pred, LHS, RHS);
1202   };
1203 
1204   // Don't bother doing any work for cases which InstSimplify handles.
1205   if (AP2.isNullValue())
1206     return nullptr;
1207 
1208   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1209 
1210   if (!AP1 && AP2TrailingZeros != 0)
1211     return getICmp(
1212         I.ICMP_UGE, A,
1213         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1214 
1215   if (AP1 == AP2)
1216     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1217 
1218   // Get the distance between the lowest bits that are set.
1219   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1220 
1221   if (Shift > 0 && AP2.shl(Shift) == AP1)
1222     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1223 
1224   // Shifting const2 will never be equal to const1.
1225   // FIXME: This should always be handled by InstSimplify?
1226   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1227   return replaceInstUsesWith(I, TorF);
1228 }
1229 
1230 /// The caller has matched a pattern of the form:
1231 ///   I = icmp ugt (add (add A, B), CI2), CI1
1232 /// If this is of the form:
1233 ///   sum = a + b
1234 ///   if (sum+128 >u 255)
1235 /// Then replace it with llvm.sadd.with.overflow.i8.
1236 ///
1237 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1238                                           ConstantInt *CI2, ConstantInt *CI1,
1239                                           InstCombiner &IC) {
1240   // The transformation we're trying to do here is to transform this into an
1241   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1242   // with a narrower add, and discard the add-with-constant that is part of the
1243   // range check (if we can't eliminate it, this isn't profitable).
1244 
1245   // In order to eliminate the add-with-constant, the compare can be its only
1246   // use.
1247   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1248   if (!AddWithCst->hasOneUse())
1249     return nullptr;
1250 
1251   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1252   if (!CI2->getValue().isPowerOf2())
1253     return nullptr;
1254   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1255   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1256     return nullptr;
1257 
1258   // The width of the new add formed is 1 more than the bias.
1259   ++NewWidth;
1260 
1261   // Check to see that CI1 is an all-ones value with NewWidth bits.
1262   if (CI1->getBitWidth() == NewWidth ||
1263       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1264     return nullptr;
1265 
1266   // This is only really a signed overflow check if the inputs have been
1267   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1268   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1269   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1270   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1271       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1272     return nullptr;
1273 
1274   // In order to replace the original add with a narrower
1275   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1276   // and truncates that discard the high bits of the add.  Verify that this is
1277   // the case.
1278   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1279   for (User *U : OrigAdd->users()) {
1280     if (U == AddWithCst)
1281       continue;
1282 
1283     // Only accept truncates for now.  We would really like a nice recursive
1284     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1285     // chain to see which bits of a value are actually demanded.  If the
1286     // original add had another add which was then immediately truncated, we
1287     // could still do the transformation.
1288     TruncInst *TI = dyn_cast<TruncInst>(U);
1289     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1290       return nullptr;
1291   }
1292 
1293   // If the pattern matches, truncate the inputs to the narrower type and
1294   // use the sadd_with_overflow intrinsic to efficiently compute both the
1295   // result and the overflow bit.
1296   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1297   Function *F = Intrinsic::getDeclaration(
1298       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1299 
1300   InstCombiner::BuilderTy &Builder = IC.Builder;
1301 
1302   // Put the new code above the original add, in case there are any uses of the
1303   // add between the add and the compare.
1304   Builder.SetInsertPoint(OrigAdd);
1305 
1306   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1307   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1308   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1309   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1310   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1311 
1312   // The inner add was the result of the narrow add, zero extended to the
1313   // wider type.  Replace it with the result computed by the intrinsic.
1314   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1315 
1316   // The original icmp gets replaced with the overflow value.
1317   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1318 }
1319 
1320 // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1321 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1322   CmpInst::Predicate Pred = Cmp.getPredicate();
1323   Value *X = Cmp.getOperand(0);
1324 
1325   if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) {
1326     Value *A, *B;
1327     SelectPatternResult SPR = matchSelectPattern(X, A, B);
1328     if (SPR.Flavor == SPF_SMIN) {
1329       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1330         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1331       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1332         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1333     }
1334   }
1335   return nullptr;
1336 }
1337 
1338 /// Fold icmp Pred X, C.
1339 /// TODO: This code structure does not make sense. The saturating add fold
1340 /// should be moved to some other helper and extended as noted below (it is also
1341 /// possible that code has been made unnecessary - do we canonicalize IR to
1342 /// overflow/saturating intrinsics or not?).
1343 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1344   // Match the following pattern, which is a common idiom when writing
1345   // overflow-safe integer arithmetic functions. The source performs an addition
1346   // in wider type and explicitly checks for overflow using comparisons against
1347   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1348   //
1349   // TODO: This could probably be generalized to handle other overflow-safe
1350   // operations if we worked out the formulas to compute the appropriate magic
1351   // constants.
1352   //
1353   // sum = a + b
1354   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1355   CmpInst::Predicate Pred = Cmp.getPredicate();
1356   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1357   Value *A, *B;
1358   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1359   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1360       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1361     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1362       return Res;
1363 
1364   return nullptr;
1365 }
1366 
1367 /// Canonicalize icmp instructions based on dominating conditions.
1368 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1369   // This is a cheap/incomplete check for dominance - just match a single
1370   // predecessor with a conditional branch.
1371   BasicBlock *CmpBB = Cmp.getParent();
1372   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1373   if (!DomBB)
1374     return nullptr;
1375 
1376   Value *DomCond;
1377   BasicBlock *TrueBB, *FalseBB;
1378   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1379     return nullptr;
1380 
1381   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1382          "Predecessor block does not point to successor?");
1383 
1384   // The branch should get simplified. Don't bother simplifying this condition.
1385   if (TrueBB == FalseBB)
1386     return nullptr;
1387 
1388   // Try to simplify this compare to T/F based on the dominating condition.
1389   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1390   if (Imp)
1391     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1392 
1393   CmpInst::Predicate Pred = Cmp.getPredicate();
1394   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1395   ICmpInst::Predicate DomPred;
1396   const APInt *C, *DomC;
1397   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1398       match(Y, m_APInt(C))) {
1399     // We have 2 compares of a variable with constants. Calculate the constant
1400     // ranges of those compares to see if we can transform the 2nd compare:
1401     // DomBB:
1402     //   DomCond = icmp DomPred X, DomC
1403     //   br DomCond, CmpBB, FalseBB
1404     // CmpBB:
1405     //   Cmp = icmp Pred X, C
1406     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1407     ConstantRange DominatingCR =
1408         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1409                           : ConstantRange::makeExactICmpRegion(
1410                                 CmpInst::getInversePredicate(DomPred), *DomC);
1411     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1412     ConstantRange Difference = DominatingCR.difference(CR);
1413     if (Intersection.isEmptySet())
1414       return replaceInstUsesWith(Cmp, Builder.getFalse());
1415     if (Difference.isEmptySet())
1416       return replaceInstUsesWith(Cmp, Builder.getTrue());
1417 
1418     // Canonicalizing a sign bit comparison that gets used in a branch,
1419     // pessimizes codegen by generating branch on zero instruction instead
1420     // of a test and branch. So we avoid canonicalizing in such situations
1421     // because test and branch instruction has better branch displacement
1422     // than compare and branch instruction.
1423     bool UnusedBit;
1424     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1425     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1426       return nullptr;
1427 
1428     if (const APInt *EqC = Intersection.getSingleElement())
1429       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1430     if (const APInt *NeC = Difference.getSingleElement())
1431       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1432   }
1433 
1434   return nullptr;
1435 }
1436 
1437 /// Fold icmp (trunc X, Y), C.
1438 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1439                                                  TruncInst *Trunc,
1440                                                  const APInt &C) {
1441   ICmpInst::Predicate Pred = Cmp.getPredicate();
1442   Value *X = Trunc->getOperand(0);
1443   if (C.isOneValue() && C.getBitWidth() > 1) {
1444     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1445     Value *V = nullptr;
1446     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1447       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1448                           ConstantInt::get(V->getType(), 1));
1449   }
1450 
1451   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1452     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1453     // of the high bits truncated out of x are known.
1454     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1455              SrcBits = X->getType()->getScalarSizeInBits();
1456     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1457 
1458     // If all the high bits are known, we can do this xform.
1459     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1460       // Pull in the high bits from known-ones set.
1461       APInt NewRHS = C.zext(SrcBits);
1462       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1463       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1464     }
1465   }
1466 
1467   return nullptr;
1468 }
1469 
1470 /// Fold icmp (xor X, Y), C.
1471 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1472                                                BinaryOperator *Xor,
1473                                                const APInt &C) {
1474   Value *X = Xor->getOperand(0);
1475   Value *Y = Xor->getOperand(1);
1476   const APInt *XorC;
1477   if (!match(Y, m_APInt(XorC)))
1478     return nullptr;
1479 
1480   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1481   // fold the xor.
1482   ICmpInst::Predicate Pred = Cmp.getPredicate();
1483   bool TrueIfSigned = false;
1484   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1485 
1486     // If the sign bit of the XorCst is not set, there is no change to
1487     // the operation, just stop using the Xor.
1488     if (!XorC->isNegative()) {
1489       Cmp.setOperand(0, X);
1490       Worklist.Add(Xor);
1491       return &Cmp;
1492     }
1493 
1494     // Emit the opposite comparison.
1495     if (TrueIfSigned)
1496       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1497                           ConstantInt::getAllOnesValue(X->getType()));
1498     else
1499       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1500                           ConstantInt::getNullValue(X->getType()));
1501   }
1502 
1503   if (Xor->hasOneUse()) {
1504     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1505     if (!Cmp.isEquality() && XorC->isSignMask()) {
1506       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1507                             : Cmp.getSignedPredicate();
1508       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1509     }
1510 
1511     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1512     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1513       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1514                             : Cmp.getSignedPredicate();
1515       Pred = Cmp.getSwappedPredicate(Pred);
1516       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1517     }
1518   }
1519 
1520   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1521   if (Pred == ICmpInst::ICMP_UGT) {
1522     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1523     if (*XorC == ~C && (C + 1).isPowerOf2())
1524       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1525     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1526     if (*XorC == C && (C + 1).isPowerOf2())
1527       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1528   }
1529   if (Pred == ICmpInst::ICMP_ULT) {
1530     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1531     if (*XorC == -C && C.isPowerOf2())
1532       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1533                           ConstantInt::get(X->getType(), ~C));
1534     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1535     if (*XorC == C && (-C).isPowerOf2())
1536       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1537                           ConstantInt::get(X->getType(), ~C));
1538   }
1539   return nullptr;
1540 }
1541 
1542 /// Fold icmp (and (sh X, Y), C2), C1.
1543 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1544                                             const APInt &C1, const APInt &C2) {
1545   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1546   if (!Shift || !Shift->isShift())
1547     return nullptr;
1548 
1549   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1550   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1551   // code produced by the clang front-end, for bitfield access.
1552   // This seemingly simple opportunity to fold away a shift turns out to be
1553   // rather complicated. See PR17827 for details.
1554   unsigned ShiftOpcode = Shift->getOpcode();
1555   bool IsShl = ShiftOpcode == Instruction::Shl;
1556   const APInt *C3;
1557   if (match(Shift->getOperand(1), m_APInt(C3))) {
1558     bool CanFold = false;
1559     if (ShiftOpcode == Instruction::Shl) {
1560       // For a left shift, we can fold if the comparison is not signed. We can
1561       // also fold a signed comparison if the mask value and comparison value
1562       // are not negative. These constraints may not be obvious, but we can
1563       // prove that they are correct using an SMT solver.
1564       if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative()))
1565         CanFold = true;
1566     } else {
1567       bool IsAshr = ShiftOpcode == Instruction::AShr;
1568       // For a logical right shift, we can fold if the comparison is not signed.
1569       // We can also fold a signed comparison if the shifted mask value and the
1570       // shifted comparison value are not negative. These constraints may not be
1571       // obvious, but we can prove that they are correct using an SMT solver.
1572       // For an arithmetic shift right we can do the same, if we ensure
1573       // the And doesn't use any bits being shifted in. Normally these would
1574       // be turned into lshr by SimplifyDemandedBits, but not if there is an
1575       // additional user.
1576       if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) {
1577         if (!Cmp.isSigned() ||
1578             (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative()))
1579           CanFold = true;
1580       }
1581     }
1582 
1583     if (CanFold) {
1584       APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3);
1585       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1586       // Check to see if we are shifting out any of the bits being compared.
1587       if (SameAsC1 != C1) {
1588         // If we shifted bits out, the fold is not going to work out. As a
1589         // special case, check to see if this means that the result is always
1590         // true or false now.
1591         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1592           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1593         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1594           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1595       } else {
1596         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1597         APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3);
1598         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1599         And->setOperand(0, Shift->getOperand(0));
1600         Worklist.Add(Shift); // Shift is dead.
1601         return &Cmp;
1602       }
1603     }
1604   }
1605 
1606   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1607   // preferable because it allows the C2 << Y expression to be hoisted out of a
1608   // loop if Y is invariant and X is not.
1609   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1610       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1611     // Compute C2 << Y.
1612     Value *NewShift =
1613         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1614               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1615 
1616     // Compute X & (C2 << Y).
1617     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1618     Cmp.setOperand(0, NewAnd);
1619     return &Cmp;
1620   }
1621 
1622   return nullptr;
1623 }
1624 
1625 /// Fold icmp (and X, C2), C1.
1626 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1627                                                  BinaryOperator *And,
1628                                                  const APInt &C1) {
1629   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1630 
1631   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1632   // TODO: We canonicalize to the longer form for scalars because we have
1633   // better analysis/folds for icmp, and codegen may be better with icmp.
1634   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1635       match(And->getOperand(1), m_One()))
1636     return new TruncInst(And->getOperand(0), Cmp.getType());
1637 
1638   const APInt *C2;
1639   Value *X;
1640   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1641     return nullptr;
1642 
1643   // Don't perform the following transforms if the AND has multiple uses
1644   if (!And->hasOneUse())
1645     return nullptr;
1646 
1647   if (Cmp.isEquality() && C1.isNullValue()) {
1648     // Restrict this fold to single-use 'and' (PR10267).
1649     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1650     if (C2->isSignMask()) {
1651       Constant *Zero = Constant::getNullValue(X->getType());
1652       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1653       return new ICmpInst(NewPred, X, Zero);
1654     }
1655   }
1656 
1657   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1658   // the input width without changing the value produced, eliminate the cast:
1659   //
1660   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1661   //
1662   // We can do this transformation if the constants do not have their sign bits
1663   // set or if it is an equality comparison. Extending a relational comparison
1664   // when we're checking the sign bit would not work.
1665   Value *W;
1666   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1667       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1668     // TODO: Is this a good transform for vectors? Wider types may reduce
1669     // throughput. Should this transform be limited (even for scalars) by using
1670     // shouldChangeType()?
1671     if (!Cmp.getType()->isVectorTy()) {
1672       Type *WideType = W->getType();
1673       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1674       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1675       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1676       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1677       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1678     }
1679   }
1680 
1681   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1682     return I;
1683 
1684   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1685   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1686   //
1687   // iff pred isn't signed
1688   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1689       match(And->getOperand(1), m_One())) {
1690     Constant *One = cast<Constant>(And->getOperand(1));
1691     Value *Or = And->getOperand(0);
1692     Value *A, *B, *LShr;
1693     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1694         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1695       unsigned UsesRemoved = 0;
1696       if (And->hasOneUse())
1697         ++UsesRemoved;
1698       if (Or->hasOneUse())
1699         ++UsesRemoved;
1700       if (LShr->hasOneUse())
1701         ++UsesRemoved;
1702 
1703       // Compute A & ((1 << B) | 1)
1704       Value *NewOr = nullptr;
1705       if (auto *C = dyn_cast<Constant>(B)) {
1706         if (UsesRemoved >= 1)
1707           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1708       } else {
1709         if (UsesRemoved >= 3)
1710           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1711                                                      /*HasNUW=*/true),
1712                                    One, Or->getName());
1713       }
1714       if (NewOr) {
1715         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1716         Cmp.setOperand(0, NewAnd);
1717         return &Cmp;
1718       }
1719     }
1720   }
1721 
1722   return nullptr;
1723 }
1724 
1725 /// Fold icmp (and X, Y), C.
1726 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1727                                                BinaryOperator *And,
1728                                                const APInt &C) {
1729   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1730     return I;
1731 
1732   // TODO: These all require that Y is constant too, so refactor with the above.
1733 
1734   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1735   Value *X = And->getOperand(0);
1736   Value *Y = And->getOperand(1);
1737   if (auto *LI = dyn_cast<LoadInst>(X))
1738     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1739       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1740         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1741             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1742           ConstantInt *C2 = cast<ConstantInt>(Y);
1743           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1744             return Res;
1745         }
1746 
1747   if (!Cmp.isEquality())
1748     return nullptr;
1749 
1750   // X & -C == -C -> X >  u ~C
1751   // X & -C != -C -> X <= u ~C
1752   //   iff C is a power of 2
1753   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1754     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1755                                                           : CmpInst::ICMP_ULE;
1756     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1757   }
1758 
1759   // (X & C2) == 0 -> (trunc X) >= 0
1760   // (X & C2) != 0 -> (trunc X) <  0
1761   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1762   const APInt *C2;
1763   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1764     int32_t ExactLogBase2 = C2->exactLogBase2();
1765     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1766       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1767       if (And->getType()->isVectorTy())
1768         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1769       Value *Trunc = Builder.CreateTrunc(X, NTy);
1770       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1771                                                             : CmpInst::ICMP_SLT;
1772       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1773     }
1774   }
1775 
1776   return nullptr;
1777 }
1778 
1779 /// Fold icmp (or X, Y), C.
1780 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1781                                               const APInt &C) {
1782   ICmpInst::Predicate Pred = Cmp.getPredicate();
1783   if (C.isOneValue()) {
1784     // icmp slt signum(V) 1 --> icmp slt V, 1
1785     Value *V = nullptr;
1786     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1787       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1788                           ConstantInt::get(V->getType(), 1));
1789   }
1790 
1791   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1792   if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) {
1793     // X | C == C --> X <=u C
1794     // X | C != C --> X  >u C
1795     //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1796     if ((C + 1).isPowerOf2()) {
1797       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1798       return new ICmpInst(Pred, OrOp0, OrOp1);
1799     }
1800     // More general: are all bits outside of a mask constant set or not set?
1801     // X | C == C --> (X & ~C) == 0
1802     // X | C != C --> (X & ~C) != 0
1803     if (Or->hasOneUse()) {
1804       Value *A = Builder.CreateAnd(OrOp0, ~C);
1805       return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType()));
1806     }
1807   }
1808 
1809   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1810     return nullptr;
1811 
1812   Value *P, *Q;
1813   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1814     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1815     // -> and (icmp eq P, null), (icmp eq Q, null).
1816     Value *CmpP =
1817         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1818     Value *CmpQ =
1819         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1820     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1821     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1822   }
1823 
1824   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1825   // a shorter form that has more potential to be folded even further.
1826   Value *X1, *X2, *X3, *X4;
1827   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1828       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1829     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1830     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1831     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1832     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1833     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1834     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1835   }
1836 
1837   return nullptr;
1838 }
1839 
1840 /// Fold icmp (mul X, Y), C.
1841 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1842                                                BinaryOperator *Mul,
1843                                                const APInt &C) {
1844   const APInt *MulC;
1845   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1846     return nullptr;
1847 
1848   // If this is a test of the sign bit and the multiply is sign-preserving with
1849   // a constant operand, use the multiply LHS operand instead.
1850   ICmpInst::Predicate Pred = Cmp.getPredicate();
1851   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1852     if (MulC->isNegative())
1853       Pred = ICmpInst::getSwappedPredicate(Pred);
1854     return new ICmpInst(Pred, Mul->getOperand(0),
1855                         Constant::getNullValue(Mul->getType()));
1856   }
1857 
1858   return nullptr;
1859 }
1860 
1861 /// Fold icmp (shl 1, Y), C.
1862 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1863                                    const APInt &C) {
1864   Value *Y;
1865   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1866     return nullptr;
1867 
1868   Type *ShiftType = Shl->getType();
1869   unsigned TypeBits = C.getBitWidth();
1870   bool CIsPowerOf2 = C.isPowerOf2();
1871   ICmpInst::Predicate Pred = Cmp.getPredicate();
1872   if (Cmp.isUnsigned()) {
1873     // (1 << Y) pred C -> Y pred Log2(C)
1874     if (!CIsPowerOf2) {
1875       // (1 << Y) <  30 -> Y <= 4
1876       // (1 << Y) <= 30 -> Y <= 4
1877       // (1 << Y) >= 30 -> Y >  4
1878       // (1 << Y) >  30 -> Y >  4
1879       if (Pred == ICmpInst::ICMP_ULT)
1880         Pred = ICmpInst::ICMP_ULE;
1881       else if (Pred == ICmpInst::ICMP_UGE)
1882         Pred = ICmpInst::ICMP_UGT;
1883     }
1884 
1885     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1886     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1887     unsigned CLog2 = C.logBase2();
1888     if (CLog2 == TypeBits - 1) {
1889       if (Pred == ICmpInst::ICMP_UGE)
1890         Pred = ICmpInst::ICMP_EQ;
1891       else if (Pred == ICmpInst::ICMP_ULT)
1892         Pred = ICmpInst::ICMP_NE;
1893     }
1894     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1895   } else if (Cmp.isSigned()) {
1896     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1897     if (C.isAllOnesValue()) {
1898       // (1 << Y) <= -1 -> Y == 31
1899       if (Pred == ICmpInst::ICMP_SLE)
1900         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1901 
1902       // (1 << Y) >  -1 -> Y != 31
1903       if (Pred == ICmpInst::ICMP_SGT)
1904         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1905     } else if (!C) {
1906       // (1 << Y) <  0 -> Y == 31
1907       // (1 << Y) <= 0 -> Y == 31
1908       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1909         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1910 
1911       // (1 << Y) >= 0 -> Y != 31
1912       // (1 << Y) >  0 -> Y != 31
1913       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1914         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1915     }
1916   } else if (Cmp.isEquality() && CIsPowerOf2) {
1917     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
1918   }
1919 
1920   return nullptr;
1921 }
1922 
1923 /// Fold icmp (shl X, Y), C.
1924 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
1925                                                BinaryOperator *Shl,
1926                                                const APInt &C) {
1927   const APInt *ShiftVal;
1928   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
1929     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
1930 
1931   const APInt *ShiftAmt;
1932   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
1933     return foldICmpShlOne(Cmp, Shl, C);
1934 
1935   // Check that the shift amount is in range. If not, don't perform undefined
1936   // shifts. When the shift is visited, it will be simplified.
1937   unsigned TypeBits = C.getBitWidth();
1938   if (ShiftAmt->uge(TypeBits))
1939     return nullptr;
1940 
1941   ICmpInst::Predicate Pred = Cmp.getPredicate();
1942   Value *X = Shl->getOperand(0);
1943   Type *ShType = Shl->getType();
1944 
1945   // NSW guarantees that we are only shifting out sign bits from the high bits,
1946   // so we can ASHR the compare constant without needing a mask and eliminate
1947   // the shift.
1948   if (Shl->hasNoSignedWrap()) {
1949     if (Pred == ICmpInst::ICMP_SGT) {
1950       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
1951       APInt ShiftedC = C.ashr(*ShiftAmt);
1952       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1953     }
1954     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
1955         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
1956       APInt ShiftedC = C.ashr(*ShiftAmt);
1957       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1958     }
1959     if (Pred == ICmpInst::ICMP_SLT) {
1960       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
1961       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
1962       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
1963       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
1964       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
1965       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
1966       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1967     }
1968     // If this is a signed comparison to 0 and the shift is sign preserving,
1969     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
1970     // do that if we're sure to not continue on in this function.
1971     if (isSignTest(Pred, C))
1972       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
1973   }
1974 
1975   // NUW guarantees that we are only shifting out zero bits from the high bits,
1976   // so we can LSHR the compare constant without needing a mask and eliminate
1977   // the shift.
1978   if (Shl->hasNoUnsignedWrap()) {
1979     if (Pred == ICmpInst::ICMP_UGT) {
1980       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
1981       APInt ShiftedC = C.lshr(*ShiftAmt);
1982       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1983     }
1984     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
1985         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
1986       APInt ShiftedC = C.lshr(*ShiftAmt);
1987       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1988     }
1989     if (Pred == ICmpInst::ICMP_ULT) {
1990       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
1991       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
1992       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
1993       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
1994       assert(C.ugt(0) && "ult 0 should have been eliminated");
1995       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
1996       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1997     }
1998   }
1999 
2000   if (Cmp.isEquality() && Shl->hasOneUse()) {
2001     // Strength-reduce the shift into an 'and'.
2002     Constant *Mask = ConstantInt::get(
2003         ShType,
2004         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2005     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2006     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2007     return new ICmpInst(Pred, And, LShrC);
2008   }
2009 
2010   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2011   bool TrueIfSigned = false;
2012   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2013     // (X << 31) <s 0  --> (X & 1) != 0
2014     Constant *Mask = ConstantInt::get(
2015         ShType,
2016         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2017     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2018     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2019                         And, Constant::getNullValue(ShType));
2020   }
2021 
2022   // Transform (icmp pred iM (shl iM %v, N), C)
2023   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2024   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2025   // This enables us to get rid of the shift in favor of a trunc that may be
2026   // free on the target. It has the additional benefit of comparing to a
2027   // smaller constant that may be more target-friendly.
2028   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2029   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2030       DL.isLegalInteger(TypeBits - Amt)) {
2031     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2032     if (ShType->isVectorTy())
2033       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2034     Constant *NewC =
2035         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2036     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2037   }
2038 
2039   return nullptr;
2040 }
2041 
2042 /// Fold icmp ({al}shr X, Y), C.
2043 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2044                                                BinaryOperator *Shr,
2045                                                const APInt &C) {
2046   // An exact shr only shifts out zero bits, so:
2047   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2048   Value *X = Shr->getOperand(0);
2049   CmpInst::Predicate Pred = Cmp.getPredicate();
2050   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2051       C.isNullValue())
2052     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2053 
2054   const APInt *ShiftVal;
2055   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2056     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2057 
2058   const APInt *ShiftAmt;
2059   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2060     return nullptr;
2061 
2062   // Check that the shift amount is in range. If not, don't perform undefined
2063   // shifts. When the shift is visited it will be simplified.
2064   unsigned TypeBits = C.getBitWidth();
2065   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2066   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2067     return nullptr;
2068 
2069   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2070   bool IsExact = Shr->isExact();
2071   Type *ShrTy = Shr->getType();
2072   // TODO: If we could guarantee that InstSimplify would handle all of the
2073   // constant-value-based preconditions in the folds below, then we could assert
2074   // those conditions rather than checking them. This is difficult because of
2075   // undef/poison (PR34838).
2076   if (IsAShr) {
2077     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2078       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2079       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2080       APInt ShiftedC = C.shl(ShAmtVal);
2081       if (ShiftedC.ashr(ShAmtVal) == C)
2082         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2083     }
2084     if (Pred == CmpInst::ICMP_SGT) {
2085       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2086       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2087       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2088           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2089         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2090     }
2091   } else {
2092     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2093       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2094       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2095       APInt ShiftedC = C.shl(ShAmtVal);
2096       if (ShiftedC.lshr(ShAmtVal) == C)
2097         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2098     }
2099     if (Pred == CmpInst::ICMP_UGT) {
2100       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2101       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2102       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2103         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2104     }
2105   }
2106 
2107   if (!Cmp.isEquality())
2108     return nullptr;
2109 
2110   // Handle equality comparisons of shift-by-constant.
2111 
2112   // If the comparison constant changes with the shift, the comparison cannot
2113   // succeed (bits of the comparison constant cannot match the shifted value).
2114   // This should be known by InstSimplify and already be folded to true/false.
2115   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2116           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2117          "Expected icmp+shr simplify did not occur.");
2118 
2119   // If the bits shifted out are known zero, compare the unshifted value:
2120   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2121   if (Shr->isExact())
2122     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2123 
2124   if (Shr->hasOneUse()) {
2125     // Canonicalize the shift into an 'and':
2126     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2127     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2128     Constant *Mask = ConstantInt::get(ShrTy, Val);
2129     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2130     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2131   }
2132 
2133   return nullptr;
2134 }
2135 
2136 /// Fold icmp (udiv X, Y), C.
2137 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2138                                                 BinaryOperator *UDiv,
2139                                                 const APInt &C) {
2140   const APInt *C2;
2141   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2142     return nullptr;
2143 
2144   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2145 
2146   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2147   Value *Y = UDiv->getOperand(1);
2148   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2149     assert(!C.isMaxValue() &&
2150            "icmp ugt X, UINT_MAX should have been simplified already.");
2151     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2152                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2153   }
2154 
2155   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2156   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2157     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2158     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2159                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2160   }
2161 
2162   return nullptr;
2163 }
2164 
2165 /// Fold icmp ({su}div X, Y), C.
2166 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2167                                                BinaryOperator *Div,
2168                                                const APInt &C) {
2169   // Fold: icmp pred ([us]div X, C2), C -> range test
2170   // Fold this div into the comparison, producing a range check.
2171   // Determine, based on the divide type, what the range is being
2172   // checked.  If there is an overflow on the low or high side, remember
2173   // it, otherwise compute the range [low, hi) bounding the new value.
2174   // See: InsertRangeTest above for the kinds of replacements possible.
2175   const APInt *C2;
2176   if (!match(Div->getOperand(1), m_APInt(C2)))
2177     return nullptr;
2178 
2179   // FIXME: If the operand types don't match the type of the divide
2180   // then don't attempt this transform. The code below doesn't have the
2181   // logic to deal with a signed divide and an unsigned compare (and
2182   // vice versa). This is because (x /s C2) <s C  produces different
2183   // results than (x /s C2) <u C or (x /u C2) <s C or even
2184   // (x /u C2) <u C.  Simply casting the operands and result won't
2185   // work. :(  The if statement below tests that condition and bails
2186   // if it finds it.
2187   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2188   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2189     return nullptr;
2190 
2191   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2192   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2193   // division-by-constant cases should be present, we can not assert that they
2194   // have happened before we reach this icmp instruction.
2195   if (C2->isNullValue() || C2->isOneValue() ||
2196       (DivIsSigned && C2->isAllOnesValue()))
2197     return nullptr;
2198 
2199   // Compute Prod = C * C2. We are essentially solving an equation of
2200   // form X / C2 = C. We solve for X by multiplying C2 and C.
2201   // By solving for X, we can turn this into a range check instead of computing
2202   // a divide.
2203   APInt Prod = C * *C2;
2204 
2205   // Determine if the product overflows by seeing if the product is not equal to
2206   // the divide. Make sure we do the same kind of divide as in the LHS
2207   // instruction that we're folding.
2208   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2209 
2210   ICmpInst::Predicate Pred = Cmp.getPredicate();
2211 
2212   // If the division is known to be exact, then there is no remainder from the
2213   // divide, so the covered range size is unit, otherwise it is the divisor.
2214   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2215 
2216   // Figure out the interval that is being checked.  For example, a comparison
2217   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2218   // Compute this interval based on the constants involved and the signedness of
2219   // the compare/divide.  This computes a half-open interval, keeping track of
2220   // whether either value in the interval overflows.  After analysis each
2221   // overflow variable is set to 0 if it's corresponding bound variable is valid
2222   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2223   int LoOverflow = 0, HiOverflow = 0;
2224   APInt LoBound, HiBound;
2225 
2226   if (!DivIsSigned) {  // udiv
2227     // e.g. X/5 op 3  --> [15, 20)
2228     LoBound = Prod;
2229     HiOverflow = LoOverflow = ProdOV;
2230     if (!HiOverflow) {
2231       // If this is not an exact divide, then many values in the range collapse
2232       // to the same result value.
2233       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2234     }
2235   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2236     if (C.isNullValue()) {       // (X / pos) op 0
2237       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2238       LoBound = -(RangeSize - 1);
2239       HiBound = RangeSize;
2240     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2241       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2242       HiOverflow = LoOverflow = ProdOV;
2243       if (!HiOverflow)
2244         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2245     } else {                       // (X / pos) op neg
2246       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2247       HiBound = Prod + 1;
2248       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2249       if (!LoOverflow) {
2250         APInt DivNeg = -RangeSize;
2251         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2252       }
2253     }
2254   } else if (C2->isNegative()) { // Divisor is < 0.
2255     if (Div->isExact())
2256       RangeSize.negate();
2257     if (C.isNullValue()) { // (X / neg) op 0
2258       // e.g. X/-5 op 0  --> [-4, 5)
2259       LoBound = RangeSize + 1;
2260       HiBound = -RangeSize;
2261       if (HiBound == *C2) {        // -INTMIN = INTMIN
2262         HiOverflow = 1;            // [INTMIN+1, overflow)
2263         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2264       }
2265     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2266       // e.g. X/-5 op 3  --> [-19, -14)
2267       HiBound = Prod + 1;
2268       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2269       if (!LoOverflow)
2270         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2271     } else {                       // (X / neg) op neg
2272       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2273       LoOverflow = HiOverflow = ProdOV;
2274       if (!HiOverflow)
2275         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2276     }
2277 
2278     // Dividing by a negative swaps the condition.  LT <-> GT
2279     Pred = ICmpInst::getSwappedPredicate(Pred);
2280   }
2281 
2282   Value *X = Div->getOperand(0);
2283   switch (Pred) {
2284     default: llvm_unreachable("Unhandled icmp opcode!");
2285     case ICmpInst::ICMP_EQ:
2286       if (LoOverflow && HiOverflow)
2287         return replaceInstUsesWith(Cmp, Builder.getFalse());
2288       if (HiOverflow)
2289         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2290                             ICmpInst::ICMP_UGE, X,
2291                             ConstantInt::get(Div->getType(), LoBound));
2292       if (LoOverflow)
2293         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2294                             ICmpInst::ICMP_ULT, X,
2295                             ConstantInt::get(Div->getType(), HiBound));
2296       return replaceInstUsesWith(
2297           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2298     case ICmpInst::ICMP_NE:
2299       if (LoOverflow && HiOverflow)
2300         return replaceInstUsesWith(Cmp, Builder.getTrue());
2301       if (HiOverflow)
2302         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2303                             ICmpInst::ICMP_ULT, X,
2304                             ConstantInt::get(Div->getType(), LoBound));
2305       if (LoOverflow)
2306         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2307                             ICmpInst::ICMP_UGE, X,
2308                             ConstantInt::get(Div->getType(), HiBound));
2309       return replaceInstUsesWith(Cmp,
2310                                  insertRangeTest(X, LoBound, HiBound,
2311                                                  DivIsSigned, false));
2312     case ICmpInst::ICMP_ULT:
2313     case ICmpInst::ICMP_SLT:
2314       if (LoOverflow == +1)   // Low bound is greater than input range.
2315         return replaceInstUsesWith(Cmp, Builder.getTrue());
2316       if (LoOverflow == -1)   // Low bound is less than input range.
2317         return replaceInstUsesWith(Cmp, Builder.getFalse());
2318       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2319     case ICmpInst::ICMP_UGT:
2320     case ICmpInst::ICMP_SGT:
2321       if (HiOverflow == +1)       // High bound greater than input range.
2322         return replaceInstUsesWith(Cmp, Builder.getFalse());
2323       if (HiOverflow == -1)       // High bound less than input range.
2324         return replaceInstUsesWith(Cmp, Builder.getTrue());
2325       if (Pred == ICmpInst::ICMP_UGT)
2326         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2327                             ConstantInt::get(Div->getType(), HiBound));
2328       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2329                           ConstantInt::get(Div->getType(), HiBound));
2330   }
2331 
2332   return nullptr;
2333 }
2334 
2335 /// Fold icmp (sub X, Y), C.
2336 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2337                                                BinaryOperator *Sub,
2338                                                const APInt &C) {
2339   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2340   ICmpInst::Predicate Pred = Cmp.getPredicate();
2341   const APInt *C2;
2342   APInt SubResult;
2343 
2344   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2345   if (match(X, m_APInt(C2)) &&
2346       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2347        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2348       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2349     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2350                         ConstantInt::get(Y->getType(), SubResult));
2351 
2352   // The following transforms are only worth it if the only user of the subtract
2353   // is the icmp.
2354   if (!Sub->hasOneUse())
2355     return nullptr;
2356 
2357   if (Sub->hasNoSignedWrap()) {
2358     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2359     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2360       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2361 
2362     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2363     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2364       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2365 
2366     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2367     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2368       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2369 
2370     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2371     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2372       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2373   }
2374 
2375   if (!match(X, m_APInt(C2)))
2376     return nullptr;
2377 
2378   // C2 - Y <u C -> (Y | (C - 1)) == C2
2379   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2380   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2381       (*C2 & (C - 1)) == (C - 1))
2382     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2383 
2384   // C2 - Y >u C -> (Y | C) != C2
2385   //   iff C2 & C == C and C + 1 is a power of 2
2386   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2387     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2388 
2389   return nullptr;
2390 }
2391 
2392 /// Fold icmp (add X, Y), C.
2393 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2394                                                BinaryOperator *Add,
2395                                                const APInt &C) {
2396   Value *Y = Add->getOperand(1);
2397   const APInt *C2;
2398   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2399     return nullptr;
2400 
2401   // Fold icmp pred (add X, C2), C.
2402   Value *X = Add->getOperand(0);
2403   Type *Ty = Add->getType();
2404   CmpInst::Predicate Pred = Cmp.getPredicate();
2405 
2406   if (!Add->hasOneUse())
2407     return nullptr;
2408 
2409   // If the add does not wrap, we can always adjust the compare by subtracting
2410   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2411   // are canonicalized to SGT/SLT/UGT/ULT.
2412   if ((Add->hasNoSignedWrap() &&
2413        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2414       (Add->hasNoUnsignedWrap() &&
2415        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2416     bool Overflow;
2417     APInt NewC =
2418         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2419     // If there is overflow, the result must be true or false.
2420     // TODO: Can we assert there is no overflow because InstSimplify always
2421     // handles those cases?
2422     if (!Overflow)
2423       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2424       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2425   }
2426 
2427   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2428   const APInt &Upper = CR.getUpper();
2429   const APInt &Lower = CR.getLower();
2430   if (Cmp.isSigned()) {
2431     if (Lower.isSignMask())
2432       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2433     if (Upper.isSignMask())
2434       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2435   } else {
2436     if (Lower.isMinValue())
2437       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2438     if (Upper.isMinValue())
2439       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2440   }
2441 
2442   // X+C <u C2 -> (X & -C2) == C
2443   //   iff C & (C2-1) == 0
2444   //       C2 is a power of 2
2445   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2446     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2447                         ConstantExpr::getNeg(cast<Constant>(Y)));
2448 
2449   // X+C >u C2 -> (X & ~C2) != C
2450   //   iff C & C2 == 0
2451   //       C2+1 is a power of 2
2452   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2453     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2454                         ConstantExpr::getNeg(cast<Constant>(Y)));
2455 
2456   return nullptr;
2457 }
2458 
2459 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2460                                            Value *&RHS, ConstantInt *&Less,
2461                                            ConstantInt *&Equal,
2462                                            ConstantInt *&Greater) {
2463   // TODO: Generalize this to work with other comparison idioms or ensure
2464   // they get canonicalized into this form.
2465 
2466   // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32
2467   // Greater), where Equal, Less and Greater are placeholders for any three
2468   // constants.
2469   ICmpInst::Predicate PredA, PredB;
2470   if (match(SI->getTrueValue(), m_ConstantInt(Equal)) &&
2471       match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) &&
2472       PredA == ICmpInst::ICMP_EQ &&
2473       match(SI->getFalseValue(),
2474             m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)),
2475                      m_ConstantInt(Less), m_ConstantInt(Greater))) &&
2476       PredB == ICmpInst::ICMP_SLT) {
2477     return true;
2478   }
2479   return false;
2480 }
2481 
2482 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2483                                                   SelectInst *Select,
2484                                                   ConstantInt *C) {
2485 
2486   assert(C && "Cmp RHS should be a constant int!");
2487   // If we're testing a constant value against the result of a three way
2488   // comparison, the result can be expressed directly in terms of the
2489   // original values being compared.  Note: We could possibly be more
2490   // aggressive here and remove the hasOneUse test. The original select is
2491   // really likely to simplify or sink when we remove a test of the result.
2492   Value *OrigLHS, *OrigRHS;
2493   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2494   if (Cmp.hasOneUse() &&
2495       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2496                               C3GreaterThan)) {
2497     assert(C1LessThan && C2Equal && C3GreaterThan);
2498 
2499     bool TrueWhenLessThan =
2500         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2501             ->isAllOnesValue();
2502     bool TrueWhenEqual =
2503         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2504             ->isAllOnesValue();
2505     bool TrueWhenGreaterThan =
2506         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2507             ->isAllOnesValue();
2508 
2509     // This generates the new instruction that will replace the original Cmp
2510     // Instruction. Instead of enumerating the various combinations when
2511     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2512     // false, we rely on chaining of ORs and future passes of InstCombine to
2513     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2514 
2515     // When none of the three constants satisfy the predicate for the RHS (C),
2516     // the entire original Cmp can be simplified to a false.
2517     Value *Cond = Builder.getFalse();
2518     if (TrueWhenLessThan)
2519       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2520                                                        OrigLHS, OrigRHS));
2521     if (TrueWhenEqual)
2522       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2523                                                        OrigLHS, OrigRHS));
2524     if (TrueWhenGreaterThan)
2525       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2526                                                        OrigLHS, OrigRHS));
2527 
2528     return replaceInstUsesWith(Cmp, Cond);
2529   }
2530   return nullptr;
2531 }
2532 
2533 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2534                                     InstCombiner::BuilderTy &Builder) {
2535   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2536   if (!Bitcast)
2537     return nullptr;
2538 
2539   ICmpInst::Predicate Pred = Cmp.getPredicate();
2540   Value *Op1 = Cmp.getOperand(1);
2541   Value *BCSrcOp = Bitcast->getOperand(0);
2542 
2543   // Make sure the bitcast doesn't change the number of vector elements.
2544   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2545           Bitcast->getDestTy()->getScalarSizeInBits()) {
2546     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2547     Value *X;
2548     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2549       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2550       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2551       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2552       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2553       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2554            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2555           match(Op1, m_Zero()))
2556         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2557 
2558       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2559       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2560         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2561 
2562       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2563       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2564         return new ICmpInst(Pred, X,
2565                             ConstantInt::getAllOnesValue(X->getType()));
2566     }
2567 
2568     // Zero-equality checks are preserved through unsigned floating-point casts:
2569     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2570     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2571     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2572       if (Cmp.isEquality() && match(Op1, m_Zero()))
2573         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2574   }
2575 
2576   // Test to see if the operands of the icmp are casted versions of other
2577   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2578   if (Bitcast->getType()->isPointerTy() &&
2579       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2580     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2581     // so eliminate it as well.
2582     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2583       Op1 = BC2->getOperand(0);
2584 
2585     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2586     return new ICmpInst(Pred, BCSrcOp, Op1);
2587   }
2588 
2589   // Folding: icmp <pred> iN X, C
2590   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2591   //    and C is a splat of a K-bit pattern
2592   //    and SC is a constant vector = <C', C', C', ..., C'>
2593   // Into:
2594   //   %E = extractelement <M x iK> %vec, i32 C'
2595   //   icmp <pred> iK %E, trunc(C)
2596   const APInt *C;
2597   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2598       !Bitcast->getType()->isIntegerTy() ||
2599       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2600     return nullptr;
2601 
2602   Value *Vec;
2603   Constant *Mask;
2604   if (match(BCSrcOp,
2605             m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2606     // Check whether every element of Mask is the same constant
2607     if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2608       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2609       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2610       if (C->isSplat(EltTy->getBitWidth())) {
2611         // Fold the icmp based on the value of C
2612         // If C is M copies of an iK sized bit pattern,
2613         // then:
2614         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2615         //       icmp <pred> iK %SplatVal, <pattern>
2616         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2617         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2618         return new ICmpInst(Pred, Extract, NewC);
2619       }
2620     }
2621   }
2622   return nullptr;
2623 }
2624 
2625 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2626 /// where X is some kind of instruction.
2627 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2628   const APInt *C;
2629   if (!match(Cmp.getOperand(1), m_APInt(C)))
2630     return nullptr;
2631 
2632   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2633     switch (BO->getOpcode()) {
2634     case Instruction::Xor:
2635       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2636         return I;
2637       break;
2638     case Instruction::And:
2639       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2640         return I;
2641       break;
2642     case Instruction::Or:
2643       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2644         return I;
2645       break;
2646     case Instruction::Mul:
2647       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2648         return I;
2649       break;
2650     case Instruction::Shl:
2651       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2652         return I;
2653       break;
2654     case Instruction::LShr:
2655     case Instruction::AShr:
2656       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2657         return I;
2658       break;
2659     case Instruction::UDiv:
2660       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2661         return I;
2662       LLVM_FALLTHROUGH;
2663     case Instruction::SDiv:
2664       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2665         return I;
2666       break;
2667     case Instruction::Sub:
2668       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2669         return I;
2670       break;
2671     case Instruction::Add:
2672       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2673         return I;
2674       break;
2675     default:
2676       break;
2677     }
2678     // TODO: These folds could be refactored to be part of the above calls.
2679     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2680       return I;
2681   }
2682 
2683   // Match against CmpInst LHS being instructions other than binary operators.
2684 
2685   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2686     // For now, we only support constant integers while folding the
2687     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2688     // similar to the cases handled by binary ops above.
2689     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2690       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2691         return I;
2692   }
2693 
2694   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2695     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2696       return I;
2697   }
2698 
2699   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2700     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2701       return I;
2702 
2703   return nullptr;
2704 }
2705 
2706 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2707 /// icmp eq/ne BO, C.
2708 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2709                                                              BinaryOperator *BO,
2710                                                              const APInt &C) {
2711   // TODO: Some of these folds could work with arbitrary constants, but this
2712   // function is limited to scalar and vector splat constants.
2713   if (!Cmp.isEquality())
2714     return nullptr;
2715 
2716   ICmpInst::Predicate Pred = Cmp.getPredicate();
2717   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2718   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2719   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2720 
2721   switch (BO->getOpcode()) {
2722   case Instruction::SRem:
2723     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2724     if (C.isNullValue() && BO->hasOneUse()) {
2725       const APInt *BOC;
2726       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2727         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2728         return new ICmpInst(Pred, NewRem,
2729                             Constant::getNullValue(BO->getType()));
2730       }
2731     }
2732     break;
2733   case Instruction::Add: {
2734     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2735     const APInt *BOC;
2736     if (match(BOp1, m_APInt(BOC))) {
2737       if (BO->hasOneUse()) {
2738         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2739         return new ICmpInst(Pred, BOp0, SubC);
2740       }
2741     } else if (C.isNullValue()) {
2742       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2743       // efficiently invertible, or if the add has just this one use.
2744       if (Value *NegVal = dyn_castNegVal(BOp1))
2745         return new ICmpInst(Pred, BOp0, NegVal);
2746       if (Value *NegVal = dyn_castNegVal(BOp0))
2747         return new ICmpInst(Pred, NegVal, BOp1);
2748       if (BO->hasOneUse()) {
2749         Value *Neg = Builder.CreateNeg(BOp1);
2750         Neg->takeName(BO);
2751         return new ICmpInst(Pred, BOp0, Neg);
2752       }
2753     }
2754     break;
2755   }
2756   case Instruction::Xor:
2757     if (BO->hasOneUse()) {
2758       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2759         // For the xor case, we can xor two constants together, eliminating
2760         // the explicit xor.
2761         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2762       } else if (C.isNullValue()) {
2763         // Replace ((xor A, B) != 0) with (A != B)
2764         return new ICmpInst(Pred, BOp0, BOp1);
2765       }
2766     }
2767     break;
2768   case Instruction::Sub:
2769     if (BO->hasOneUse()) {
2770       const APInt *BOC;
2771       if (match(BOp0, m_APInt(BOC))) {
2772         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2773         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2774         return new ICmpInst(Pred, BOp1, SubC);
2775       } else if (C.isNullValue()) {
2776         // Replace ((sub A, B) != 0) with (A != B).
2777         return new ICmpInst(Pred, BOp0, BOp1);
2778       }
2779     }
2780     break;
2781   case Instruction::Or: {
2782     const APInt *BOC;
2783     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2784       // Comparing if all bits outside of a constant mask are set?
2785       // Replace (X | C) == -1 with (X & ~C) == ~C.
2786       // This removes the -1 constant.
2787       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2788       Value *And = Builder.CreateAnd(BOp0, NotBOC);
2789       return new ICmpInst(Pred, And, NotBOC);
2790     }
2791     break;
2792   }
2793   case Instruction::And: {
2794     const APInt *BOC;
2795     if (match(BOp1, m_APInt(BOC))) {
2796       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2797       if (C == *BOC && C.isPowerOf2())
2798         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2799                             BO, Constant::getNullValue(RHS->getType()));
2800 
2801       // Don't perform the following transforms if the AND has multiple uses
2802       if (!BO->hasOneUse())
2803         break;
2804 
2805       // ((X & ~7) == 0) --> X < 8
2806       if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) {
2807         Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
2808         auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
2809         return new ICmpInst(NewPred, BOp0, NegBOC);
2810       }
2811     }
2812     break;
2813   }
2814   case Instruction::Mul:
2815     if (C.isNullValue() && BO->hasNoSignedWrap()) {
2816       const APInt *BOC;
2817       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
2818         // The trivial case (mul X, 0) is handled by InstSimplify.
2819         // General case : (mul X, C) != 0 iff X != 0
2820         //                (mul X, C) == 0 iff X == 0
2821         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
2822       }
2823     }
2824     break;
2825   case Instruction::UDiv:
2826     if (C.isNullValue()) {
2827       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2828       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
2829       return new ICmpInst(NewPred, BOp1, BOp0);
2830     }
2831     break;
2832   default:
2833     break;
2834   }
2835   return nullptr;
2836 }
2837 
2838 /// Fold an equality icmp with LLVM intrinsic and constant operand.
2839 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
2840                                                            IntrinsicInst *II,
2841                                                            const APInt &C) {
2842   Type *Ty = II->getType();
2843   unsigned BitWidth = C.getBitWidth();
2844   switch (II->getIntrinsicID()) {
2845   case Intrinsic::bswap:
2846     Worklist.Add(II);
2847     Cmp.setOperand(0, II->getArgOperand(0));
2848     Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap()));
2849     return &Cmp;
2850 
2851   case Intrinsic::ctlz:
2852   case Intrinsic::cttz: {
2853     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
2854     if (C == BitWidth) {
2855       Worklist.Add(II);
2856       Cmp.setOperand(0, II->getArgOperand(0));
2857       Cmp.setOperand(1, ConstantInt::getNullValue(Ty));
2858       return &Cmp;
2859     }
2860 
2861     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
2862     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
2863     // Limit to one use to ensure we don't increase instruction count.
2864     unsigned Num = C.getLimitedValue(BitWidth);
2865     if (Num != BitWidth && II->hasOneUse()) {
2866       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
2867       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
2868                                : APInt::getHighBitsSet(BitWidth, Num + 1);
2869       APInt Mask2 = IsTrailing
2870         ? APInt::getOneBitSet(BitWidth, Num)
2871         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
2872       Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1));
2873       Cmp.setOperand(1, ConstantInt::get(Ty, Mask2));
2874       Worklist.Add(II);
2875       return &Cmp;
2876     }
2877     break;
2878   }
2879 
2880   case Intrinsic::ctpop: {
2881     // popcount(A) == 0  ->  A == 0 and likewise for !=
2882     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
2883     bool IsZero = C.isNullValue();
2884     if (IsZero || C == BitWidth) {
2885       Worklist.Add(II);
2886       Cmp.setOperand(0, II->getArgOperand(0));
2887       auto *NewOp =
2888           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty);
2889       Cmp.setOperand(1, NewOp);
2890       return &Cmp;
2891     }
2892     break;
2893   }
2894   default:
2895     break;
2896   }
2897 
2898   return nullptr;
2899 }
2900 
2901 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
2902 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
2903                                                          IntrinsicInst *II,
2904                                                          const APInt &C) {
2905   if (Cmp.isEquality())
2906     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
2907 
2908   Type *Ty = II->getType();
2909   unsigned BitWidth = C.getBitWidth();
2910   switch (II->getIntrinsicID()) {
2911   case Intrinsic::ctlz: {
2912     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
2913     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
2914       unsigned Num = C.getLimitedValue();
2915       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
2916       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
2917                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
2918     }
2919 
2920     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
2921     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
2922         C.uge(1) && C.ule(BitWidth)) {
2923       unsigned Num = C.getLimitedValue();
2924       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
2925       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
2926                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
2927     }
2928     break;
2929   }
2930   case Intrinsic::cttz: {
2931     // Limit to one use to ensure we don't increase instruction count.
2932     if (!II->hasOneUse())
2933       return nullptr;
2934 
2935     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
2936     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
2937       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
2938       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
2939                              Builder.CreateAnd(II->getArgOperand(0), Mask),
2940                              ConstantInt::getNullValue(Ty));
2941     }
2942 
2943     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
2944     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
2945         C.uge(1) && C.ule(BitWidth)) {
2946       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
2947       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
2948                              Builder.CreateAnd(II->getArgOperand(0), Mask),
2949                              ConstantInt::getNullValue(Ty));
2950     }
2951     break;
2952   }
2953   default:
2954     break;
2955   }
2956 
2957   return nullptr;
2958 }
2959 
2960 /// Handle icmp with constant (but not simple integer constant) RHS.
2961 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
2962   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2963   Constant *RHSC = dyn_cast<Constant>(Op1);
2964   Instruction *LHSI = dyn_cast<Instruction>(Op0);
2965   if (!RHSC || !LHSI)
2966     return nullptr;
2967 
2968   switch (LHSI->getOpcode()) {
2969   case Instruction::GetElementPtr:
2970     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2971     if (RHSC->isNullValue() &&
2972         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2973       return new ICmpInst(
2974           I.getPredicate(), LHSI->getOperand(0),
2975           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2976     break;
2977   case Instruction::PHI:
2978     // Only fold icmp into the PHI if the phi and icmp are in the same
2979     // block.  If in the same block, we're encouraging jump threading.  If
2980     // not, we are just pessimizing the code by making an i1 phi.
2981     if (LHSI->getParent() == I.getParent())
2982       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
2983         return NV;
2984     break;
2985   case Instruction::Select: {
2986     // If either operand of the select is a constant, we can fold the
2987     // comparison into the select arms, which will cause one to be
2988     // constant folded and the select turned into a bitwise or.
2989     Value *Op1 = nullptr, *Op2 = nullptr;
2990     ConstantInt *CI = nullptr;
2991     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2992       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2993       CI = dyn_cast<ConstantInt>(Op1);
2994     }
2995     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2996       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2997       CI = dyn_cast<ConstantInt>(Op2);
2998     }
2999 
3000     // We only want to perform this transformation if it will not lead to
3001     // additional code. This is true if either both sides of the select
3002     // fold to a constant (in which case the icmp is replaced with a select
3003     // which will usually simplify) or this is the only user of the
3004     // select (in which case we are trading a select+icmp for a simpler
3005     // select+icmp) or all uses of the select can be replaced based on
3006     // dominance information ("Global cases").
3007     bool Transform = false;
3008     if (Op1 && Op2)
3009       Transform = true;
3010     else if (Op1 || Op2) {
3011       // Local case
3012       if (LHSI->hasOneUse())
3013         Transform = true;
3014       // Global cases
3015       else if (CI && !CI->isZero())
3016         // When Op1 is constant try replacing select with second operand.
3017         // Otherwise Op2 is constant and try replacing select with first
3018         // operand.
3019         Transform =
3020             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3021     }
3022     if (Transform) {
3023       if (!Op1)
3024         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3025                                  I.getName());
3026       if (!Op2)
3027         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3028                                  I.getName());
3029       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3030     }
3031     break;
3032   }
3033   case Instruction::IntToPtr:
3034     // icmp pred inttoptr(X), null -> icmp pred X, 0
3035     if (RHSC->isNullValue() &&
3036         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3037       return new ICmpInst(
3038           I.getPredicate(), LHSI->getOperand(0),
3039           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3040     break;
3041 
3042   case Instruction::Load:
3043     // Try to optimize things like "A[i] > 4" to index computations.
3044     if (GetElementPtrInst *GEP =
3045             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3046       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3047         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3048             !cast<LoadInst>(LHSI)->isVolatile())
3049           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3050             return Res;
3051     }
3052     break;
3053   }
3054 
3055   return nullptr;
3056 }
3057 
3058 /// Some comparisons can be simplified.
3059 /// In this case, we are looking for comparisons that look like
3060 /// a check for a lossy truncation.
3061 /// Folds:
3062 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3063 /// Where Mask is some pattern that produces all-ones in low bits:
3064 ///    (-1 >> y)
3065 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3066 ///   ~(-1 << y)
3067 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3068 /// The Mask can be a constant, too.
3069 /// For some predicates, the operands are commutative.
3070 /// For others, x can only be on a specific side.
3071 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3072                                           InstCombiner::BuilderTy &Builder) {
3073   ICmpInst::Predicate SrcPred;
3074   Value *X, *M, *Y;
3075   auto m_VariableMask = m_CombineOr(
3076       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3077                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3078       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3079                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3080   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3081   if (!match(&I, m_c_ICmp(SrcPred,
3082                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3083                           m_Deferred(X))))
3084     return nullptr;
3085 
3086   ICmpInst::Predicate DstPred;
3087   switch (SrcPred) {
3088   case ICmpInst::Predicate::ICMP_EQ:
3089     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3090     DstPred = ICmpInst::Predicate::ICMP_ULE;
3091     break;
3092   case ICmpInst::Predicate::ICMP_NE:
3093     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3094     DstPred = ICmpInst::Predicate::ICMP_UGT;
3095     break;
3096   case ICmpInst::Predicate::ICMP_UGT:
3097     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3098     assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3099     DstPred = ICmpInst::Predicate::ICMP_UGT;
3100     break;
3101   case ICmpInst::Predicate::ICMP_UGE:
3102     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3103     assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3104     DstPred = ICmpInst::Predicate::ICMP_ULE;
3105     break;
3106   case ICmpInst::Predicate::ICMP_ULT:
3107     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3108     assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3109     DstPred = ICmpInst::Predicate::ICMP_UGT;
3110     break;
3111   case ICmpInst::Predicate::ICMP_ULE:
3112     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3113     assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3114     DstPred = ICmpInst::Predicate::ICMP_ULE;
3115     break;
3116   case ICmpInst::Predicate::ICMP_SGT:
3117     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3118     if (X != I.getOperand(0)) // X must be on LHS of comparison!
3119       return nullptr;         // Ignore the other case.
3120     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3121       return nullptr;
3122     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3123       return nullptr;
3124     DstPred = ICmpInst::Predicate::ICMP_SGT;
3125     break;
3126   case ICmpInst::Predicate::ICMP_SGE:
3127     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3128     if (X != I.getOperand(1)) // X must be on RHS of comparison!
3129       return nullptr;         // Ignore the other case.
3130     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3131       return nullptr;
3132     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3133       return nullptr;
3134     DstPred = ICmpInst::Predicate::ICMP_SLE;
3135     break;
3136   case ICmpInst::Predicate::ICMP_SLT:
3137     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3138     if (X != I.getOperand(1)) // X must be on RHS of comparison!
3139       return nullptr;         // Ignore the other case.
3140     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3141       return nullptr;
3142     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3143       return nullptr;
3144     DstPred = ICmpInst::Predicate::ICMP_SGT;
3145     break;
3146   case ICmpInst::Predicate::ICMP_SLE:
3147     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3148     if (X != I.getOperand(0)) // X must be on LHS of comparison!
3149       return nullptr;         // Ignore the other case.
3150     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3151       return nullptr;
3152     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3153       return nullptr;
3154     DstPred = ICmpInst::Predicate::ICMP_SLE;
3155     break;
3156   default:
3157     llvm_unreachable("All possible folds are handled.");
3158   }
3159 
3160   return Builder.CreateICmp(DstPred, X, M);
3161 }
3162 
3163 /// Some comparisons can be simplified.
3164 /// In this case, we are looking for comparisons that look like
3165 /// a check for a lossy signed truncation.
3166 /// Folds:   (MaskedBits is a constant.)
3167 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3168 /// Into:
3169 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3170 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3171 static Value *
3172 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3173                                  InstCombiner::BuilderTy &Builder) {
3174   ICmpInst::Predicate SrcPred;
3175   Value *X;
3176   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3177   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3178   if (!match(&I, m_c_ICmp(SrcPred,
3179                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3180                                           m_APInt(C1))),
3181                           m_Deferred(X))))
3182     return nullptr;
3183 
3184   // Potential handling of non-splats: for each element:
3185   //  * if both are undef, replace with constant 0.
3186   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3187   //  * if both are not undef, and are different, bailout.
3188   //  * else, only one is undef, then pick the non-undef one.
3189 
3190   // The shift amount must be equal.
3191   if (*C0 != *C1)
3192     return nullptr;
3193   const APInt &MaskedBits = *C0;
3194   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3195 
3196   ICmpInst::Predicate DstPred;
3197   switch (SrcPred) {
3198   case ICmpInst::Predicate::ICMP_EQ:
3199     // ((%x << MaskedBits) a>> MaskedBits) == %x
3200     //   =>
3201     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3202     DstPred = ICmpInst::Predicate::ICMP_ULT;
3203     break;
3204   case ICmpInst::Predicate::ICMP_NE:
3205     // ((%x << MaskedBits) a>> MaskedBits) != %x
3206     //   =>
3207     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3208     DstPred = ICmpInst::Predicate::ICMP_UGE;
3209     break;
3210   // FIXME: are more folds possible?
3211   default:
3212     return nullptr;
3213   }
3214 
3215   auto *XType = X->getType();
3216   const unsigned XBitWidth = XType->getScalarSizeInBits();
3217   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3218   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3219 
3220   // KeptBits = bitwidth(%x) - MaskedBits
3221   const APInt KeptBits = BitWidth - MaskedBits;
3222   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3223   // ICmpCst = (1 << KeptBits)
3224   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3225   assert(ICmpCst.isPowerOf2());
3226   // AddCst = (1 << (KeptBits-1))
3227   const APInt AddCst = ICmpCst.lshr(1);
3228   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3229 
3230   // T0 = add %x, AddCst
3231   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3232   // T1 = T0 DstPred ICmpCst
3233   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3234 
3235   return T1;
3236 }
3237 
3238 /// Try to fold icmp (binop), X or icmp X, (binop).
3239 /// TODO: A large part of this logic is duplicated in InstSimplify's
3240 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3241 /// duplication.
3242 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
3243   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3244 
3245   // Special logic for binary operators.
3246   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3247   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3248   if (!BO0 && !BO1)
3249     return nullptr;
3250 
3251   const CmpInst::Predicate Pred = I.getPredicate();
3252   Value *X;
3253 
3254   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3255   // (Op1 + X) <u Op1 --> ~Op1 <u X
3256   // Op0 >u (Op0 + X) --> X >u ~Op0
3257   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3258       Pred == ICmpInst::ICMP_ULT)
3259     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3260   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3261       Pred == ICmpInst::ICMP_UGT)
3262     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3263 
3264   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3265   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3266     NoOp0WrapProblem =
3267         ICmpInst::isEquality(Pred) ||
3268         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3269         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3270   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3271     NoOp1WrapProblem =
3272         ICmpInst::isEquality(Pred) ||
3273         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3274         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3275 
3276   // Analyze the case when either Op0 or Op1 is an add instruction.
3277   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3278   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3279   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3280     A = BO0->getOperand(0);
3281     B = BO0->getOperand(1);
3282   }
3283   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3284     C = BO1->getOperand(0);
3285     D = BO1->getOperand(1);
3286   }
3287 
3288   // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3289   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3290     return new ICmpInst(Pred, A == Op1 ? B : A,
3291                         Constant::getNullValue(Op1->getType()));
3292 
3293   // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3294   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3295     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3296                         C == Op0 ? D : C);
3297 
3298   // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3299   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3300       NoOp1WrapProblem &&
3301       // Try not to increase register pressure.
3302       BO0->hasOneUse() && BO1->hasOneUse()) {
3303     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3304     Value *Y, *Z;
3305     if (A == C) {
3306       // C + B == C + D  ->  B == D
3307       Y = B;
3308       Z = D;
3309     } else if (A == D) {
3310       // D + B == C + D  ->  B == C
3311       Y = B;
3312       Z = C;
3313     } else if (B == C) {
3314       // A + C == C + D  ->  A == D
3315       Y = A;
3316       Z = D;
3317     } else {
3318       assert(B == D);
3319       // A + D == C + D  ->  A == C
3320       Y = A;
3321       Z = C;
3322     }
3323     return new ICmpInst(Pred, Y, Z);
3324   }
3325 
3326   // icmp slt (X + -1), Y -> icmp sle X, Y
3327   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3328       match(B, m_AllOnes()))
3329     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3330 
3331   // icmp sge (X + -1), Y -> icmp sgt X, Y
3332   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3333       match(B, m_AllOnes()))
3334     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3335 
3336   // icmp sle (X + 1), Y -> icmp slt X, Y
3337   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3338     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3339 
3340   // icmp sgt (X + 1), Y -> icmp sge X, Y
3341   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3342     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3343 
3344   // icmp sgt X, (Y + -1) -> icmp sge X, Y
3345   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3346       match(D, m_AllOnes()))
3347     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3348 
3349   // icmp sle X, (Y + -1) -> icmp slt X, Y
3350   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3351       match(D, m_AllOnes()))
3352     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3353 
3354   // icmp sge X, (Y + 1) -> icmp sgt X, Y
3355   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3356     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3357 
3358   // icmp slt X, (Y + 1) -> icmp sle X, Y
3359   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3360     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3361 
3362   // TODO: The subtraction-related identities shown below also hold, but
3363   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3364   // wouldn't happen even if they were implemented.
3365   //
3366   // icmp ult (X - 1), Y -> icmp ule X, Y
3367   // icmp uge (X - 1), Y -> icmp ugt X, Y
3368   // icmp ugt X, (Y - 1) -> icmp uge X, Y
3369   // icmp ule X, (Y - 1) -> icmp ult X, Y
3370 
3371   // icmp ule (X + 1), Y -> icmp ult X, Y
3372   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3373     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3374 
3375   // icmp ugt (X + 1), Y -> icmp uge X, Y
3376   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3377     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3378 
3379   // icmp uge X, (Y + 1) -> icmp ugt X, Y
3380   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3381     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3382 
3383   // icmp ult X, (Y + 1) -> icmp ule X, Y
3384   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3385     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3386 
3387   // if C1 has greater magnitude than C2:
3388   //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3389   //  s.t. C3 = C1 - C2
3390   //
3391   // if C2 has greater magnitude than C1:
3392   //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3393   //  s.t. C3 = C2 - C1
3394   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3395       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3396     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3397       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3398         const APInt &AP1 = C1->getValue();
3399         const APInt &AP2 = C2->getValue();
3400         if (AP1.isNegative() == AP2.isNegative()) {
3401           APInt AP1Abs = C1->getValue().abs();
3402           APInt AP2Abs = C2->getValue().abs();
3403           if (AP1Abs.uge(AP2Abs)) {
3404             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3405             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3406             return new ICmpInst(Pred, NewAdd, C);
3407           } else {
3408             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3409             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3410             return new ICmpInst(Pred, A, NewAdd);
3411           }
3412         }
3413       }
3414 
3415   // Analyze the case when either Op0 or Op1 is a sub instruction.
3416   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3417   A = nullptr;
3418   B = nullptr;
3419   C = nullptr;
3420   D = nullptr;
3421   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3422     A = BO0->getOperand(0);
3423     B = BO0->getOperand(1);
3424   }
3425   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3426     C = BO1->getOperand(0);
3427     D = BO1->getOperand(1);
3428   }
3429 
3430   // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3431   if (A == Op1 && NoOp0WrapProblem)
3432     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3433   // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3434   if (C == Op0 && NoOp1WrapProblem)
3435     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3436 
3437   // (A - B) >u A --> A <u B
3438   if (A == Op1 && Pred == ICmpInst::ICMP_UGT)
3439     return new ICmpInst(ICmpInst::ICMP_ULT, A, B);
3440   // C <u (C - D) --> C <u D
3441   if (C == Op0 && Pred == ICmpInst::ICMP_ULT)
3442     return new ICmpInst(ICmpInst::ICMP_ULT, C, D);
3443 
3444   // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3445   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3446       // Try not to increase register pressure.
3447       BO0->hasOneUse() && BO1->hasOneUse())
3448     return new ICmpInst(Pred, A, C);
3449   // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3450   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3451       // Try not to increase register pressure.
3452       BO0->hasOneUse() && BO1->hasOneUse())
3453     return new ICmpInst(Pred, D, B);
3454 
3455   // icmp (0-X) < cst --> x > -cst
3456   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3457     Value *X;
3458     if (match(BO0, m_Neg(m_Value(X))))
3459       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3460         if (RHSC->isNotMinSignedValue())
3461           return new ICmpInst(I.getSwappedPredicate(), X,
3462                               ConstantExpr::getNeg(RHSC));
3463   }
3464 
3465   BinaryOperator *SRem = nullptr;
3466   // icmp (srem X, Y), Y
3467   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3468     SRem = BO0;
3469   // icmp Y, (srem X, Y)
3470   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3471            Op0 == BO1->getOperand(1))
3472     SRem = BO1;
3473   if (SRem) {
3474     // We don't check hasOneUse to avoid increasing register pressure because
3475     // the value we use is the same value this instruction was already using.
3476     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3477     default:
3478       break;
3479     case ICmpInst::ICMP_EQ:
3480       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3481     case ICmpInst::ICMP_NE:
3482       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3483     case ICmpInst::ICMP_SGT:
3484     case ICmpInst::ICMP_SGE:
3485       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3486                           Constant::getAllOnesValue(SRem->getType()));
3487     case ICmpInst::ICMP_SLT:
3488     case ICmpInst::ICMP_SLE:
3489       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3490                           Constant::getNullValue(SRem->getType()));
3491     }
3492   }
3493 
3494   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3495       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3496     switch (BO0->getOpcode()) {
3497     default:
3498       break;
3499     case Instruction::Add:
3500     case Instruction::Sub:
3501     case Instruction::Xor: {
3502       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3503         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3504 
3505       const APInt *C;
3506       if (match(BO0->getOperand(1), m_APInt(C))) {
3507         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3508         if (C->isSignMask()) {
3509           ICmpInst::Predicate NewPred =
3510               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3511           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3512         }
3513 
3514         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3515         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3516           ICmpInst::Predicate NewPred =
3517               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3518           NewPred = I.getSwappedPredicate(NewPred);
3519           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3520         }
3521       }
3522       break;
3523     }
3524     case Instruction::Mul: {
3525       if (!I.isEquality())
3526         break;
3527 
3528       const APInt *C;
3529       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3530           !C->isOneValue()) {
3531         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3532         // Mask = -1 >> count-trailing-zeros(C).
3533         if (unsigned TZs = C->countTrailingZeros()) {
3534           Constant *Mask = ConstantInt::get(
3535               BO0->getType(),
3536               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3537           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
3538           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
3539           return new ICmpInst(Pred, And1, And2);
3540         }
3541         // If there are no trailing zeros in the multiplier, just eliminate
3542         // the multiplies (no masking is needed):
3543         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3544         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3545       }
3546       break;
3547     }
3548     case Instruction::UDiv:
3549     case Instruction::LShr:
3550       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3551         break;
3552       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3553 
3554     case Instruction::SDiv:
3555       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3556         break;
3557       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3558 
3559     case Instruction::AShr:
3560       if (!BO0->isExact() || !BO1->isExact())
3561         break;
3562       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3563 
3564     case Instruction::Shl: {
3565       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3566       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3567       if (!NUW && !NSW)
3568         break;
3569       if (!NSW && I.isSigned())
3570         break;
3571       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3572     }
3573     }
3574   }
3575 
3576   if (BO0) {
3577     // Transform  A & (L - 1) `ult` L --> L != 0
3578     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3579     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
3580 
3581     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
3582       auto *Zero = Constant::getNullValue(BO0->getType());
3583       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3584     }
3585   }
3586 
3587   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
3588     return replaceInstUsesWith(I, V);
3589 
3590   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
3591     return replaceInstUsesWith(I, V);
3592 
3593   return nullptr;
3594 }
3595 
3596 /// Fold icmp Pred min|max(X, Y), X.
3597 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
3598   ICmpInst::Predicate Pred = Cmp.getPredicate();
3599   Value *Op0 = Cmp.getOperand(0);
3600   Value *X = Cmp.getOperand(1);
3601 
3602   // Canonicalize minimum or maximum operand to LHS of the icmp.
3603   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
3604       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
3605       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
3606       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
3607     std::swap(Op0, X);
3608     Pred = Cmp.getSwappedPredicate();
3609   }
3610 
3611   Value *Y;
3612   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
3613     // smin(X, Y)  == X --> X s<= Y
3614     // smin(X, Y) s>= X --> X s<= Y
3615     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
3616       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
3617 
3618     // smin(X, Y) != X --> X s> Y
3619     // smin(X, Y) s< X --> X s> Y
3620     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
3621       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
3622 
3623     // These cases should be handled in InstSimplify:
3624     // smin(X, Y) s<= X --> true
3625     // smin(X, Y) s> X --> false
3626     return nullptr;
3627   }
3628 
3629   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
3630     // smax(X, Y)  == X --> X s>= Y
3631     // smax(X, Y) s<= X --> X s>= Y
3632     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
3633       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
3634 
3635     // smax(X, Y) != X --> X s< Y
3636     // smax(X, Y) s> X --> X s< Y
3637     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
3638       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
3639 
3640     // These cases should be handled in InstSimplify:
3641     // smax(X, Y) s>= X --> true
3642     // smax(X, Y) s< X --> false
3643     return nullptr;
3644   }
3645 
3646   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
3647     // umin(X, Y)  == X --> X u<= Y
3648     // umin(X, Y) u>= X --> X u<= Y
3649     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
3650       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
3651 
3652     // umin(X, Y) != X --> X u> Y
3653     // umin(X, Y) u< X --> X u> Y
3654     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
3655       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
3656 
3657     // These cases should be handled in InstSimplify:
3658     // umin(X, Y) u<= X --> true
3659     // umin(X, Y) u> X --> false
3660     return nullptr;
3661   }
3662 
3663   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
3664     // umax(X, Y)  == X --> X u>= Y
3665     // umax(X, Y) u<= X --> X u>= Y
3666     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
3667       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
3668 
3669     // umax(X, Y) != X --> X u< Y
3670     // umax(X, Y) u> X --> X u< Y
3671     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
3672       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
3673 
3674     // These cases should be handled in InstSimplify:
3675     // umax(X, Y) u>= X --> true
3676     // umax(X, Y) u< X --> false
3677     return nullptr;
3678   }
3679 
3680   return nullptr;
3681 }
3682 
3683 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
3684   if (!I.isEquality())
3685     return nullptr;
3686 
3687   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3688   const CmpInst::Predicate Pred = I.getPredicate();
3689   Value *A, *B, *C, *D;
3690   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3691     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
3692       Value *OtherVal = A == Op1 ? B : A;
3693       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
3694     }
3695 
3696     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3697       // A^c1 == C^c2 --> A == C^(c1^c2)
3698       ConstantInt *C1, *C2;
3699       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
3700           Op1->hasOneUse()) {
3701         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
3702         Value *Xor = Builder.CreateXor(C, NC);
3703         return new ICmpInst(Pred, A, Xor);
3704       }
3705 
3706       // A^B == A^D -> B == D
3707       if (A == C)
3708         return new ICmpInst(Pred, B, D);
3709       if (A == D)
3710         return new ICmpInst(Pred, B, C);
3711       if (B == C)
3712         return new ICmpInst(Pred, A, D);
3713       if (B == D)
3714         return new ICmpInst(Pred, A, C);
3715     }
3716   }
3717 
3718   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
3719     // A == (A^B)  ->  B == 0
3720     Value *OtherVal = A == Op0 ? B : A;
3721     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
3722   }
3723 
3724   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3725   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3726       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3727     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3728 
3729     if (A == C) {
3730       X = B;
3731       Y = D;
3732       Z = A;
3733     } else if (A == D) {
3734       X = B;
3735       Y = C;
3736       Z = A;
3737     } else if (B == C) {
3738       X = A;
3739       Y = D;
3740       Z = B;
3741     } else if (B == D) {
3742       X = A;
3743       Y = C;
3744       Z = B;
3745     }
3746 
3747     if (X) { // Build (X^Y) & Z
3748       Op1 = Builder.CreateXor(X, Y);
3749       Op1 = Builder.CreateAnd(Op1, Z);
3750       I.setOperand(0, Op1);
3751       I.setOperand(1, Constant::getNullValue(Op1->getType()));
3752       return &I;
3753     }
3754   }
3755 
3756   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3757   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3758   ConstantInt *Cst1;
3759   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
3760        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3761       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3762        match(Op1, m_ZExt(m_Value(A))))) {
3763     APInt Pow2 = Cst1->getValue() + 1;
3764     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3765         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3766       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
3767   }
3768 
3769   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3770   // For lshr and ashr pairs.
3771   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3772        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3773       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3774        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3775     unsigned TypeBits = Cst1->getBitWidth();
3776     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3777     if (ShAmt < TypeBits && ShAmt != 0) {
3778       ICmpInst::Predicate NewPred =
3779           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
3780       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
3781       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3782       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
3783     }
3784   }
3785 
3786   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3787   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3788       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3789     unsigned TypeBits = Cst1->getBitWidth();
3790     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3791     if (ShAmt < TypeBits && ShAmt != 0) {
3792       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
3793       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3794       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
3795                                       I.getName() + ".mask");
3796       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
3797     }
3798   }
3799 
3800   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3801   // "icmp (and X, mask), cst"
3802   uint64_t ShAmt = 0;
3803   if (Op0->hasOneUse() &&
3804       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
3805       match(Op1, m_ConstantInt(Cst1)) &&
3806       // Only do this when A has multiple uses.  This is most important to do
3807       // when it exposes other optimizations.
3808       !A->hasOneUse()) {
3809     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3810 
3811     if (ShAmt < ASize) {
3812       APInt MaskV =
3813           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3814       MaskV <<= ShAmt;
3815 
3816       APInt CmpV = Cst1->getValue().zext(ASize);
3817       CmpV <<= ShAmt;
3818 
3819       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
3820       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
3821     }
3822   }
3823 
3824   // If both operands are byte-swapped or bit-reversed, just compare the
3825   // original values.
3826   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
3827   // and handle more intrinsics.
3828   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
3829       (match(Op0, m_BitReverse(m_Value(A))) &&
3830        match(Op1, m_BitReverse(m_Value(B)))))
3831     return new ICmpInst(Pred, A, B);
3832 
3833   // Canonicalize checking for a power-of-2-or-zero value:
3834   // (A & -A) == A --> (A & (A - 1)) == 0
3835   // (-A & A) == A --> (A & (A - 1)) == 0
3836   // A == (A & -A) --> (A & (A - 1)) == 0
3837   // A == (-A & A) --> (A & (A - 1)) == 0
3838   // TODO: This could be reduced by using the ctpop intrinsic.
3839   A = nullptr;
3840   if (match(Op0, m_OneUse(m_c_And(m_OneUse(m_Neg(m_Specific(Op1))),
3841                                   m_Specific(Op1)))))
3842     A = Op1;
3843   else if (match(Op1, m_OneUse(m_c_And(m_OneUse(m_Neg(m_Specific(Op0))),
3844                                        m_Specific(Op0)))))
3845     A = Op0;
3846   if (A) {
3847     Type *Ty = A->getType();
3848     Value *Dec = Builder.CreateAdd(A, ConstantInt::getAllOnesValue(Ty));
3849     Value *And = Builder.CreateAnd(A, Dec);
3850     return new ICmpInst(Pred, And, ConstantInt::getNullValue(Ty));
3851   }
3852 
3853   return nullptr;
3854 }
3855 
3856 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
3857 /// far.
3858 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
3859   const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
3860   Value *LHSCIOp        = LHSCI->getOperand(0);
3861   Type *SrcTy     = LHSCIOp->getType();
3862   Type *DestTy    = LHSCI->getType();
3863 
3864   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
3865   // integer type is the same size as the pointer type.
3866   const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool {
3867     if (isa<VectorType>(SrcTy)) {
3868       SrcTy = cast<VectorType>(SrcTy)->getElementType();
3869       DestTy = cast<VectorType>(DestTy)->getElementType();
3870     }
3871     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
3872   };
3873   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
3874       CompatibleSizes(SrcTy, DestTy)) {
3875     Value *RHSOp = nullptr;
3876     if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
3877       Value *RHSCIOp = RHSC->getOperand(0);
3878       if (RHSCIOp->getType()->getPointerAddressSpace() ==
3879           LHSCIOp->getType()->getPointerAddressSpace()) {
3880         RHSOp = RHSC->getOperand(0);
3881         // If the pointer types don't match, insert a bitcast.
3882         if (LHSCIOp->getType() != RHSOp->getType())
3883           RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType());
3884       }
3885     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
3886       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
3887     }
3888 
3889     if (RHSOp)
3890       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
3891   }
3892 
3893   // The code below only handles extension cast instructions, so far.
3894   // Enforce this.
3895   if (LHSCI->getOpcode() != Instruction::ZExt &&
3896       LHSCI->getOpcode() != Instruction::SExt)
3897     return nullptr;
3898 
3899   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
3900   bool isSignedCmp = ICmp.isSigned();
3901 
3902   if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
3903     // Not an extension from the same type?
3904     Value *RHSCIOp = CI->getOperand(0);
3905     if (RHSCIOp->getType() != LHSCIOp->getType())
3906       return nullptr;
3907 
3908     // If the signedness of the two casts doesn't agree (i.e. one is a sext
3909     // and the other is a zext), then we can't handle this.
3910     if (CI->getOpcode() != LHSCI->getOpcode())
3911       return nullptr;
3912 
3913     // Deal with equality cases early.
3914     if (ICmp.isEquality())
3915       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3916 
3917     // A signed comparison of sign extended values simplifies into a
3918     // signed comparison.
3919     if (isSignedCmp && isSignedExt)
3920       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3921 
3922     // The other three cases all fold into an unsigned comparison.
3923     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
3924   }
3925 
3926   // If we aren't dealing with a constant on the RHS, exit early.
3927   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
3928   if (!C)
3929     return nullptr;
3930 
3931   // Compute the constant that would happen if we truncated to SrcTy then
3932   // re-extended to DestTy.
3933   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
3934   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
3935 
3936   // If the re-extended constant didn't change...
3937   if (Res2 == C) {
3938     // Deal with equality cases early.
3939     if (ICmp.isEquality())
3940       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3941 
3942     // A signed comparison of sign extended values simplifies into a
3943     // signed comparison.
3944     if (isSignedExt && isSignedCmp)
3945       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3946 
3947     // The other three cases all fold into an unsigned comparison.
3948     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
3949   }
3950 
3951   // The re-extended constant changed, partly changed (in the case of a vector),
3952   // or could not be determined to be equal (in the case of a constant
3953   // expression), so the constant cannot be represented in the shorter type.
3954   // Consequently, we cannot emit a simple comparison.
3955   // All the cases that fold to true or false will have already been handled
3956   // by SimplifyICmpInst, so only deal with the tricky case.
3957 
3958   if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
3959     return nullptr;
3960 
3961   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
3962   // should have been folded away previously and not enter in here.
3963 
3964   // We're performing an unsigned comp with a sign extended value.
3965   // This is true if the input is >= 0. [aka >s -1]
3966   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
3967   Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
3968 
3969   // Finally, return the value computed.
3970   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
3971     return replaceInstUsesWith(ICmp, Result);
3972 
3973   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
3974   return BinaryOperator::CreateNot(Result);
3975 }
3976 
3977 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
3978   switch (BinaryOp) {
3979     default:
3980       llvm_unreachable("Unsupported binary op");
3981     case Instruction::Add:
3982     case Instruction::Sub:
3983       return match(RHS, m_Zero());
3984     case Instruction::Mul:
3985       return match(RHS, m_One());
3986   }
3987 }
3988 
3989 OverflowResult InstCombiner::computeOverflow(
3990     Instruction::BinaryOps BinaryOp, bool IsSigned,
3991     Value *LHS, Value *RHS, Instruction *CxtI) const {
3992   switch (BinaryOp) {
3993     default:
3994       llvm_unreachable("Unsupported binary op");
3995     case Instruction::Add:
3996       if (IsSigned)
3997         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
3998       else
3999         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4000     case Instruction::Sub:
4001       if (IsSigned)
4002         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4003       else
4004         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4005     case Instruction::Mul:
4006       if (IsSigned)
4007         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4008       else
4009         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4010   }
4011 }
4012 
4013 bool InstCombiner::OptimizeOverflowCheck(
4014     Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4015     Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4016   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4017     std::swap(LHS, RHS);
4018 
4019   // If the overflow check was an add followed by a compare, the insertion point
4020   // may be pointing to the compare.  We want to insert the new instructions
4021   // before the add in case there are uses of the add between the add and the
4022   // compare.
4023   Builder.SetInsertPoint(&OrigI);
4024 
4025   if (isNeutralValue(BinaryOp, RHS)) {
4026     Result = LHS;
4027     Overflow = Builder.getFalse();
4028     return true;
4029   }
4030 
4031   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4032     case OverflowResult::MayOverflow:
4033       return false;
4034     case OverflowResult::AlwaysOverflowsLow:
4035     case OverflowResult::AlwaysOverflowsHigh:
4036       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4037       Result->takeName(&OrigI);
4038       Overflow = Builder.getTrue();
4039       return true;
4040     case OverflowResult::NeverOverflows:
4041       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4042       Result->takeName(&OrigI);
4043       Overflow = Builder.getFalse();
4044       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4045         if (IsSigned)
4046           Inst->setHasNoSignedWrap();
4047         else
4048           Inst->setHasNoUnsignedWrap();
4049       }
4050       return true;
4051   }
4052 
4053   llvm_unreachable("Unexpected overflow result");
4054 }
4055 
4056 /// Recognize and process idiom involving test for multiplication
4057 /// overflow.
4058 ///
4059 /// The caller has matched a pattern of the form:
4060 ///   I = cmp u (mul(zext A, zext B), V
4061 /// The function checks if this is a test for overflow and if so replaces
4062 /// multiplication with call to 'mul.with.overflow' intrinsic.
4063 ///
4064 /// \param I Compare instruction.
4065 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4066 ///               the compare instruction.  Must be of integer type.
4067 /// \param OtherVal The other argument of compare instruction.
4068 /// \returns Instruction which must replace the compare instruction, NULL if no
4069 ///          replacement required.
4070 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4071                                          Value *OtherVal, InstCombiner &IC) {
4072   // Don't bother doing this transformation for pointers, don't do it for
4073   // vectors.
4074   if (!isa<IntegerType>(MulVal->getType()))
4075     return nullptr;
4076 
4077   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4078   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4079   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4080   if (!MulInstr)
4081     return nullptr;
4082   assert(MulInstr->getOpcode() == Instruction::Mul);
4083 
4084   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4085        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4086   assert(LHS->getOpcode() == Instruction::ZExt);
4087   assert(RHS->getOpcode() == Instruction::ZExt);
4088   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4089 
4090   // Calculate type and width of the result produced by mul.with.overflow.
4091   Type *TyA = A->getType(), *TyB = B->getType();
4092   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4093            WidthB = TyB->getPrimitiveSizeInBits();
4094   unsigned MulWidth;
4095   Type *MulType;
4096   if (WidthB > WidthA) {
4097     MulWidth = WidthB;
4098     MulType = TyB;
4099   } else {
4100     MulWidth = WidthA;
4101     MulType = TyA;
4102   }
4103 
4104   // In order to replace the original mul with a narrower mul.with.overflow,
4105   // all uses must ignore upper bits of the product.  The number of used low
4106   // bits must be not greater than the width of mul.with.overflow.
4107   if (MulVal->hasNUsesOrMore(2))
4108     for (User *U : MulVal->users()) {
4109       if (U == &I)
4110         continue;
4111       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4112         // Check if truncation ignores bits above MulWidth.
4113         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4114         if (TruncWidth > MulWidth)
4115           return nullptr;
4116       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4117         // Check if AND ignores bits above MulWidth.
4118         if (BO->getOpcode() != Instruction::And)
4119           return nullptr;
4120         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4121           const APInt &CVal = CI->getValue();
4122           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4123             return nullptr;
4124         } else {
4125           // In this case we could have the operand of the binary operation
4126           // being defined in another block, and performing the replacement
4127           // could break the dominance relation.
4128           return nullptr;
4129         }
4130       } else {
4131         // Other uses prohibit this transformation.
4132         return nullptr;
4133       }
4134     }
4135 
4136   // Recognize patterns
4137   switch (I.getPredicate()) {
4138   case ICmpInst::ICMP_EQ:
4139   case ICmpInst::ICMP_NE:
4140     // Recognize pattern:
4141     //   mulval = mul(zext A, zext B)
4142     //   cmp eq/neq mulval, zext trunc mulval
4143     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4144       if (Zext->hasOneUse()) {
4145         Value *ZextArg = Zext->getOperand(0);
4146         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4147           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4148             break; //Recognized
4149       }
4150 
4151     // Recognize pattern:
4152     //   mulval = mul(zext A, zext B)
4153     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4154     ConstantInt *CI;
4155     Value *ValToMask;
4156     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4157       if (ValToMask != MulVal)
4158         return nullptr;
4159       const APInt &CVal = CI->getValue() + 1;
4160       if (CVal.isPowerOf2()) {
4161         unsigned MaskWidth = CVal.logBase2();
4162         if (MaskWidth == MulWidth)
4163           break; // Recognized
4164       }
4165     }
4166     return nullptr;
4167 
4168   case ICmpInst::ICMP_UGT:
4169     // Recognize pattern:
4170     //   mulval = mul(zext A, zext B)
4171     //   cmp ugt mulval, max
4172     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4173       APInt MaxVal = APInt::getMaxValue(MulWidth);
4174       MaxVal = MaxVal.zext(CI->getBitWidth());
4175       if (MaxVal.eq(CI->getValue()))
4176         break; // Recognized
4177     }
4178     return nullptr;
4179 
4180   case ICmpInst::ICMP_UGE:
4181     // Recognize pattern:
4182     //   mulval = mul(zext A, zext B)
4183     //   cmp uge mulval, max+1
4184     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4185       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4186       if (MaxVal.eq(CI->getValue()))
4187         break; // Recognized
4188     }
4189     return nullptr;
4190 
4191   case ICmpInst::ICMP_ULE:
4192     // Recognize pattern:
4193     //   mulval = mul(zext A, zext B)
4194     //   cmp ule mulval, max
4195     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4196       APInt MaxVal = APInt::getMaxValue(MulWidth);
4197       MaxVal = MaxVal.zext(CI->getBitWidth());
4198       if (MaxVal.eq(CI->getValue()))
4199         break; // Recognized
4200     }
4201     return nullptr;
4202 
4203   case ICmpInst::ICMP_ULT:
4204     // Recognize pattern:
4205     //   mulval = mul(zext A, zext B)
4206     //   cmp ule mulval, max + 1
4207     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4208       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4209       if (MaxVal.eq(CI->getValue()))
4210         break; // Recognized
4211     }
4212     return nullptr;
4213 
4214   default:
4215     return nullptr;
4216   }
4217 
4218   InstCombiner::BuilderTy &Builder = IC.Builder;
4219   Builder.SetInsertPoint(MulInstr);
4220 
4221   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4222   Value *MulA = A, *MulB = B;
4223   if (WidthA < MulWidth)
4224     MulA = Builder.CreateZExt(A, MulType);
4225   if (WidthB < MulWidth)
4226     MulB = Builder.CreateZExt(B, MulType);
4227   Function *F = Intrinsic::getDeclaration(
4228       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4229   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4230   IC.Worklist.Add(MulInstr);
4231 
4232   // If there are uses of mul result other than the comparison, we know that
4233   // they are truncation or binary AND. Change them to use result of
4234   // mul.with.overflow and adjust properly mask/size.
4235   if (MulVal->hasNUsesOrMore(2)) {
4236     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4237     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4238       User *U = *UI++;
4239       if (U == &I || U == OtherVal)
4240         continue;
4241       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4242         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4243           IC.replaceInstUsesWith(*TI, Mul);
4244         else
4245           TI->setOperand(0, Mul);
4246       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4247         assert(BO->getOpcode() == Instruction::And);
4248         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4249         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4250         APInt ShortMask = CI->getValue().trunc(MulWidth);
4251         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4252         Instruction *Zext =
4253             cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType()));
4254         IC.Worklist.Add(Zext);
4255         IC.replaceInstUsesWith(*BO, Zext);
4256       } else {
4257         llvm_unreachable("Unexpected Binary operation");
4258       }
4259       IC.Worklist.Add(cast<Instruction>(U));
4260     }
4261   }
4262   if (isa<Instruction>(OtherVal))
4263     IC.Worklist.Add(cast<Instruction>(OtherVal));
4264 
4265   // The original icmp gets replaced with the overflow value, maybe inverted
4266   // depending on predicate.
4267   bool Inverse = false;
4268   switch (I.getPredicate()) {
4269   case ICmpInst::ICMP_NE:
4270     break;
4271   case ICmpInst::ICMP_EQ:
4272     Inverse = true;
4273     break;
4274   case ICmpInst::ICMP_UGT:
4275   case ICmpInst::ICMP_UGE:
4276     if (I.getOperand(0) == MulVal)
4277       break;
4278     Inverse = true;
4279     break;
4280   case ICmpInst::ICMP_ULT:
4281   case ICmpInst::ICMP_ULE:
4282     if (I.getOperand(1) == MulVal)
4283       break;
4284     Inverse = true;
4285     break;
4286   default:
4287     llvm_unreachable("Unexpected predicate");
4288   }
4289   if (Inverse) {
4290     Value *Res = Builder.CreateExtractValue(Call, 1);
4291     return BinaryOperator::CreateNot(Res);
4292   }
4293 
4294   return ExtractValueInst::Create(Call, 1);
4295 }
4296 
4297 /// When performing a comparison against a constant, it is possible that not all
4298 /// the bits in the LHS are demanded. This helper method computes the mask that
4299 /// IS demanded.
4300 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4301   const APInt *RHS;
4302   if (!match(I.getOperand(1), m_APInt(RHS)))
4303     return APInt::getAllOnesValue(BitWidth);
4304 
4305   // If this is a normal comparison, it demands all bits. If it is a sign bit
4306   // comparison, it only demands the sign bit.
4307   bool UnusedBit;
4308   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4309     return APInt::getSignMask(BitWidth);
4310 
4311   switch (I.getPredicate()) {
4312   // For a UGT comparison, we don't care about any bits that
4313   // correspond to the trailing ones of the comparand.  The value of these
4314   // bits doesn't impact the outcome of the comparison, because any value
4315   // greater than the RHS must differ in a bit higher than these due to carry.
4316   case ICmpInst::ICMP_UGT:
4317     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4318 
4319   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4320   // Any value less than the RHS must differ in a higher bit because of carries.
4321   case ICmpInst::ICMP_ULT:
4322     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4323 
4324   default:
4325     return APInt::getAllOnesValue(BitWidth);
4326   }
4327 }
4328 
4329 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4330 /// should be swapped.
4331 /// The decision is based on how many times these two operands are reused
4332 /// as subtract operands and their positions in those instructions.
4333 /// The rationale is that several architectures use the same instruction for
4334 /// both subtract and cmp. Thus, it is better if the order of those operands
4335 /// match.
4336 /// \return true if Op0 and Op1 should be swapped.
4337 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4338   // Filter out pointer values as those cannot appear directly in subtract.
4339   // FIXME: we may want to go through inttoptrs or bitcasts.
4340   if (Op0->getType()->isPointerTy())
4341     return false;
4342   // If a subtract already has the same operands as a compare, swapping would be
4343   // bad. If a subtract has the same operands as a compare but in reverse order,
4344   // then swapping is good.
4345   int GoodToSwap = 0;
4346   for (const User *U : Op0->users()) {
4347     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4348       GoodToSwap++;
4349     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4350       GoodToSwap--;
4351   }
4352   return GoodToSwap > 0;
4353 }
4354 
4355 /// Check that one use is in the same block as the definition and all
4356 /// other uses are in blocks dominated by a given block.
4357 ///
4358 /// \param DI Definition
4359 /// \param UI Use
4360 /// \param DB Block that must dominate all uses of \p DI outside
4361 ///           the parent block
4362 /// \return true when \p UI is the only use of \p DI in the parent block
4363 /// and all other uses of \p DI are in blocks dominated by \p DB.
4364 ///
4365 bool InstCombiner::dominatesAllUses(const Instruction *DI,
4366                                     const Instruction *UI,
4367                                     const BasicBlock *DB) const {
4368   assert(DI && UI && "Instruction not defined\n");
4369   // Ignore incomplete definitions.
4370   if (!DI->getParent())
4371     return false;
4372   // DI and UI must be in the same block.
4373   if (DI->getParent() != UI->getParent())
4374     return false;
4375   // Protect from self-referencing blocks.
4376   if (DI->getParent() == DB)
4377     return false;
4378   for (const User *U : DI->users()) {
4379     auto *Usr = cast<Instruction>(U);
4380     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4381       return false;
4382   }
4383   return true;
4384 }
4385 
4386 /// Return true when the instruction sequence within a block is select-cmp-br.
4387 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4388   const BasicBlock *BB = SI->getParent();
4389   if (!BB)
4390     return false;
4391   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4392   if (!BI || BI->getNumSuccessors() != 2)
4393     return false;
4394   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4395   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4396     return false;
4397   return true;
4398 }
4399 
4400 /// True when a select result is replaced by one of its operands
4401 /// in select-icmp sequence. This will eventually result in the elimination
4402 /// of the select.
4403 ///
4404 /// \param SI    Select instruction
4405 /// \param Icmp  Compare instruction
4406 /// \param SIOpd Operand that replaces the select
4407 ///
4408 /// Notes:
4409 /// - The replacement is global and requires dominator information
4410 /// - The caller is responsible for the actual replacement
4411 ///
4412 /// Example:
4413 ///
4414 /// entry:
4415 ///  %4 = select i1 %3, %C* %0, %C* null
4416 ///  %5 = icmp eq %C* %4, null
4417 ///  br i1 %5, label %9, label %7
4418 ///  ...
4419 ///  ; <label>:7                                       ; preds = %entry
4420 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4421 ///  ...
4422 ///
4423 /// can be transformed to
4424 ///
4425 ///  %5 = icmp eq %C* %0, null
4426 ///  %6 = select i1 %3, i1 %5, i1 true
4427 ///  br i1 %6, label %9, label %7
4428 ///  ...
4429 ///  ; <label>:7                                       ; preds = %entry
4430 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4431 ///
4432 /// Similar when the first operand of the select is a constant or/and
4433 /// the compare is for not equal rather than equal.
4434 ///
4435 /// NOTE: The function is only called when the select and compare constants
4436 /// are equal, the optimization can work only for EQ predicates. This is not a
4437 /// major restriction since a NE compare should be 'normalized' to an equal
4438 /// compare, which usually happens in the combiner and test case
4439 /// select-cmp-br.ll checks for it.
4440 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4441                                              const ICmpInst *Icmp,
4442                                              const unsigned SIOpd) {
4443   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4444   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4445     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4446     // The check for the single predecessor is not the best that can be
4447     // done. But it protects efficiently against cases like when SI's
4448     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4449     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4450     // replaced can be reached on either path. So the uniqueness check
4451     // guarantees that the path all uses of SI (outside SI's parent) are on
4452     // is disjoint from all other paths out of SI. But that information
4453     // is more expensive to compute, and the trade-off here is in favor
4454     // of compile-time. It should also be noticed that we check for a single
4455     // predecessor and not only uniqueness. This to handle the situation when
4456     // Succ and Succ1 points to the same basic block.
4457     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4458       NumSel++;
4459       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4460       return true;
4461     }
4462   }
4463   return false;
4464 }
4465 
4466 /// Try to fold the comparison based on range information we can get by checking
4467 /// whether bits are known to be zero or one in the inputs.
4468 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4469   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4470   Type *Ty = Op0->getType();
4471   ICmpInst::Predicate Pred = I.getPredicate();
4472 
4473   // Get scalar or pointer size.
4474   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4475                           ? Ty->getScalarSizeInBits()
4476                           : DL.getIndexTypeSizeInBits(Ty->getScalarType());
4477 
4478   if (!BitWidth)
4479     return nullptr;
4480 
4481   KnownBits Op0Known(BitWidth);
4482   KnownBits Op1Known(BitWidth);
4483 
4484   if (SimplifyDemandedBits(&I, 0,
4485                            getDemandedBitsLHSMask(I, BitWidth),
4486                            Op0Known, 0))
4487     return &I;
4488 
4489   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4490                            Op1Known, 0))
4491     return &I;
4492 
4493   // Given the known and unknown bits, compute a range that the LHS could be
4494   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4495   // EQ and NE we use unsigned values.
4496   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4497   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4498   if (I.isSigned()) {
4499     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4500     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4501   } else {
4502     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4503     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4504   }
4505 
4506   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4507   // out that the LHS or RHS is a constant. Constant fold this now, so that
4508   // code below can assume that Min != Max.
4509   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4510     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4511   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4512     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4513 
4514   // Based on the range information we know about the LHS, see if we can
4515   // simplify this comparison.  For example, (x&4) < 8 is always true.
4516   switch (Pred) {
4517   default:
4518     llvm_unreachable("Unknown icmp opcode!");
4519   case ICmpInst::ICMP_EQ:
4520   case ICmpInst::ICMP_NE: {
4521     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4522       return Pred == CmpInst::ICMP_EQ
4523                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4524                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4525     }
4526 
4527     // If all bits are known zero except for one, then we know at most one bit
4528     // is set. If the comparison is against zero, then this is a check to see if
4529     // *that* bit is set.
4530     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4531     if (Op1Known.isZero()) {
4532       // If the LHS is an AND with the same constant, look through it.
4533       Value *LHS = nullptr;
4534       const APInt *LHSC;
4535       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4536           *LHSC != Op0KnownZeroInverted)
4537         LHS = Op0;
4538 
4539       Value *X;
4540       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4541         APInt ValToCheck = Op0KnownZeroInverted;
4542         Type *XTy = X->getType();
4543         if (ValToCheck.isPowerOf2()) {
4544           // ((1 << X) & 8) == 0 -> X != 3
4545           // ((1 << X) & 8) != 0 -> X == 3
4546           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4547           auto NewPred = ICmpInst::getInversePredicate(Pred);
4548           return new ICmpInst(NewPred, X, CmpC);
4549         } else if ((++ValToCheck).isPowerOf2()) {
4550           // ((1 << X) & 7) == 0 -> X >= 3
4551           // ((1 << X) & 7) != 0 -> X  < 3
4552           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4553           auto NewPred =
4554               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4555           return new ICmpInst(NewPred, X, CmpC);
4556         }
4557       }
4558 
4559       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4560       const APInt *CI;
4561       if (Op0KnownZeroInverted.isOneValue() &&
4562           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4563         // ((8 >>u X) & 1) == 0 -> X != 3
4564         // ((8 >>u X) & 1) != 0 -> X == 3
4565         unsigned CmpVal = CI->countTrailingZeros();
4566         auto NewPred = ICmpInst::getInversePredicate(Pred);
4567         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4568       }
4569     }
4570     break;
4571   }
4572   case ICmpInst::ICMP_ULT: {
4573     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4574       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4575     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
4576       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4577     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
4578       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4579 
4580     const APInt *CmpC;
4581     if (match(Op1, m_APInt(CmpC))) {
4582       // A <u C -> A == C-1 if min(A)+1 == C
4583       if (*CmpC == Op0Min + 1)
4584         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4585                             ConstantInt::get(Op1->getType(), *CmpC - 1));
4586       // X <u C --> X == 0, if the number of zero bits in the bottom of X
4587       // exceeds the log2 of C.
4588       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
4589         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4590                             Constant::getNullValue(Op1->getType()));
4591     }
4592     break;
4593   }
4594   case ICmpInst::ICMP_UGT: {
4595     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
4596       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4597     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
4598       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4599     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
4600       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4601 
4602     const APInt *CmpC;
4603     if (match(Op1, m_APInt(CmpC))) {
4604       // A >u C -> A == C+1 if max(a)-1 == C
4605       if (*CmpC == Op0Max - 1)
4606         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4607                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4608       // X >u C --> X != 0, if the number of zero bits in the bottom of X
4609       // exceeds the log2 of C.
4610       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
4611         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
4612                             Constant::getNullValue(Op1->getType()));
4613     }
4614     break;
4615   }
4616   case ICmpInst::ICMP_SLT: {
4617     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
4618       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4619     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
4620       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4621     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
4622       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4623     const APInt *CmpC;
4624     if (match(Op1, m_APInt(CmpC))) {
4625       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
4626         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4627                             ConstantInt::get(Op1->getType(), *CmpC - 1));
4628     }
4629     break;
4630   }
4631   case ICmpInst::ICMP_SGT: {
4632     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
4633       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4634     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
4635       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4636     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
4637       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4638     const APInt *CmpC;
4639     if (match(Op1, m_APInt(CmpC))) {
4640       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
4641         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4642                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4643     }
4644     break;
4645   }
4646   case ICmpInst::ICMP_SGE:
4647     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
4648     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
4649       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4650     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
4651       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4652     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
4653       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4654     break;
4655   case ICmpInst::ICMP_SLE:
4656     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
4657     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
4658       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4659     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
4660       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4661     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
4662       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4663     break;
4664   case ICmpInst::ICMP_UGE:
4665     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
4666     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
4667       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4668     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
4669       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4670     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
4671       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4672     break;
4673   case ICmpInst::ICMP_ULE:
4674     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
4675     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
4676       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4677     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
4678       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4679     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
4680       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4681     break;
4682   }
4683 
4684   // Turn a signed comparison into an unsigned one if both operands are known to
4685   // have the same sign.
4686   if (I.isSigned() &&
4687       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
4688        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
4689     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
4690 
4691   return nullptr;
4692 }
4693 
4694 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
4695 /// it into the appropriate icmp lt or icmp gt instruction. This transform
4696 /// allows them to be folded in visitICmpInst.
4697 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
4698   ICmpInst::Predicate Pred = I.getPredicate();
4699   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
4700       Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
4701     return nullptr;
4702 
4703   Value *Op0 = I.getOperand(0);
4704   Value *Op1 = I.getOperand(1);
4705   auto *Op1C = dyn_cast<Constant>(Op1);
4706   if (!Op1C)
4707     return nullptr;
4708 
4709   // Check if the constant operand can be safely incremented/decremented without
4710   // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
4711   // the edge cases for us, so we just assert on them. For vectors, we must
4712   // handle the edge cases.
4713   Type *Op1Type = Op1->getType();
4714   bool IsSigned = I.isSigned();
4715   bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
4716   auto *CI = dyn_cast<ConstantInt>(Op1C);
4717   if (CI) {
4718     // A <= MAX -> TRUE ; A >= MIN -> TRUE
4719     assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
4720   } else if (Op1Type->isVectorTy()) {
4721     // TODO? If the edge cases for vectors were guaranteed to be handled as they
4722     // are for scalar, we could remove the min/max checks. However, to do that,
4723     // we would have to use insertelement/shufflevector to replace edge values.
4724     unsigned NumElts = Op1Type->getVectorNumElements();
4725     for (unsigned i = 0; i != NumElts; ++i) {
4726       Constant *Elt = Op1C->getAggregateElement(i);
4727       if (!Elt)
4728         return nullptr;
4729 
4730       if (isa<UndefValue>(Elt))
4731         continue;
4732 
4733       // Bail out if we can't determine if this constant is min/max or if we
4734       // know that this constant is min/max.
4735       auto *CI = dyn_cast<ConstantInt>(Elt);
4736       if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
4737         return nullptr;
4738     }
4739   } else {
4740     // ConstantExpr?
4741     return nullptr;
4742   }
4743 
4744   // Increment or decrement the constant and set the new comparison predicate:
4745   // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
4746   Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
4747   CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
4748   NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
4749   return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
4750 }
4751 
4752 /// Integer compare with boolean values can always be turned into bitwise ops.
4753 static Instruction *canonicalizeICmpBool(ICmpInst &I,
4754                                          InstCombiner::BuilderTy &Builder) {
4755   Value *A = I.getOperand(0), *B = I.getOperand(1);
4756   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
4757 
4758   // A boolean compared to true/false can be simplified to Op0/true/false in
4759   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
4760   // Cases not handled by InstSimplify are always 'not' of Op0.
4761   if (match(B, m_Zero())) {
4762     switch (I.getPredicate()) {
4763       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
4764       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
4765       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
4766         return BinaryOperator::CreateNot(A);
4767       default:
4768         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4769     }
4770   } else if (match(B, m_One())) {
4771     switch (I.getPredicate()) {
4772       case CmpInst::ICMP_NE:  // A !=  1 -> !A
4773       case CmpInst::ICMP_ULT: // A <u  1 -> !A
4774       case CmpInst::ICMP_SGT: // A >s -1 -> !A
4775         return BinaryOperator::CreateNot(A);
4776       default:
4777         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4778     }
4779   }
4780 
4781   switch (I.getPredicate()) {
4782   default:
4783     llvm_unreachable("Invalid icmp instruction!");
4784   case ICmpInst::ICMP_EQ:
4785     // icmp eq i1 A, B -> ~(A ^ B)
4786     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
4787 
4788   case ICmpInst::ICMP_NE:
4789     // icmp ne i1 A, B -> A ^ B
4790     return BinaryOperator::CreateXor(A, B);
4791 
4792   case ICmpInst::ICMP_UGT:
4793     // icmp ugt -> icmp ult
4794     std::swap(A, B);
4795     LLVM_FALLTHROUGH;
4796   case ICmpInst::ICMP_ULT:
4797     // icmp ult i1 A, B -> ~A & B
4798     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
4799 
4800   case ICmpInst::ICMP_SGT:
4801     // icmp sgt -> icmp slt
4802     std::swap(A, B);
4803     LLVM_FALLTHROUGH;
4804   case ICmpInst::ICMP_SLT:
4805     // icmp slt i1 A, B -> A & ~B
4806     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
4807 
4808   case ICmpInst::ICMP_UGE:
4809     // icmp uge -> icmp ule
4810     std::swap(A, B);
4811     LLVM_FALLTHROUGH;
4812   case ICmpInst::ICMP_ULE:
4813     // icmp ule i1 A, B -> ~A | B
4814     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
4815 
4816   case ICmpInst::ICMP_SGE:
4817     // icmp sge -> icmp sle
4818     std::swap(A, B);
4819     LLVM_FALLTHROUGH;
4820   case ICmpInst::ICMP_SLE:
4821     // icmp sle i1 A, B -> A | ~B
4822     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
4823   }
4824 }
4825 
4826 // Transform pattern like:
4827 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
4828 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
4829 // Into:
4830 //   (X l>> Y) != 0
4831 //   (X l>> Y) == 0
4832 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
4833                                             InstCombiner::BuilderTy &Builder) {
4834   ICmpInst::Predicate Pred, NewPred;
4835   Value *X, *Y;
4836   if (match(&Cmp,
4837             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
4838     // We want X to be the icmp's second operand, so swap predicate if it isn't.
4839     if (Cmp.getOperand(0) == X)
4840       Pred = Cmp.getSwappedPredicate();
4841 
4842     switch (Pred) {
4843     case ICmpInst::ICMP_ULE:
4844       NewPred = ICmpInst::ICMP_NE;
4845       break;
4846     case ICmpInst::ICMP_UGT:
4847       NewPred = ICmpInst::ICMP_EQ;
4848       break;
4849     default:
4850       return nullptr;
4851     }
4852   } else if (match(&Cmp, m_c_ICmp(Pred,
4853                                   m_OneUse(m_CombineOr(
4854                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
4855                                       m_Add(m_Shl(m_One(), m_Value(Y)),
4856                                             m_AllOnes()))),
4857                                   m_Value(X)))) {
4858     // The variant with 'add' is not canonical, (the variant with 'not' is)
4859     // we only get it because it has extra uses, and can't be canonicalized,
4860 
4861     // We want X to be the icmp's second operand, so swap predicate if it isn't.
4862     if (Cmp.getOperand(0) == X)
4863       Pred = Cmp.getSwappedPredicate();
4864 
4865     switch (Pred) {
4866     case ICmpInst::ICMP_ULT:
4867       NewPred = ICmpInst::ICMP_NE;
4868       break;
4869     case ICmpInst::ICMP_UGE:
4870       NewPred = ICmpInst::ICMP_EQ;
4871       break;
4872     default:
4873       return nullptr;
4874     }
4875   } else
4876     return nullptr;
4877 
4878   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
4879   Constant *Zero = Constant::getNullValue(NewX->getType());
4880   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
4881 }
4882 
4883 static Instruction *foldVectorCmp(CmpInst &Cmp,
4884                                   InstCombiner::BuilderTy &Builder) {
4885   // If both arguments of the cmp are shuffles that use the same mask and
4886   // shuffle within a single vector, move the shuffle after the cmp.
4887   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
4888   Value *V1, *V2;
4889   Constant *M;
4890   if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) &&
4891       match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
4892       V1->getType() == V2->getType() &&
4893       (LHS->hasOneUse() || RHS->hasOneUse())) {
4894     // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
4895     CmpInst::Predicate P = Cmp.getPredicate();
4896     Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2)
4897                                        : Builder.CreateFCmp(P, V1, V2);
4898     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
4899   }
4900   return nullptr;
4901 }
4902 
4903 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4904   bool Changed = false;
4905   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4906   unsigned Op0Cplxity = getComplexity(Op0);
4907   unsigned Op1Cplxity = getComplexity(Op1);
4908 
4909   /// Orders the operands of the compare so that they are listed from most
4910   /// complex to least complex.  This puts constants before unary operators,
4911   /// before binary operators.
4912   if (Op0Cplxity < Op1Cplxity ||
4913       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
4914     I.swapOperands();
4915     std::swap(Op0, Op1);
4916     Changed = true;
4917   }
4918 
4919   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1,
4920                                   SQ.getWithInstruction(&I)))
4921     return replaceInstUsesWith(I, V);
4922 
4923   // Comparing -val or val with non-zero is the same as just comparing val
4924   // ie, abs(val) != 0 -> val != 0
4925   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
4926     Value *Cond, *SelectTrue, *SelectFalse;
4927     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
4928                             m_Value(SelectFalse)))) {
4929       if (Value *V = dyn_castNegVal(SelectTrue)) {
4930         if (V == SelectFalse)
4931           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4932       }
4933       else if (Value *V = dyn_castNegVal(SelectFalse)) {
4934         if (V == SelectTrue)
4935           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4936       }
4937     }
4938   }
4939 
4940   if (Op0->getType()->isIntOrIntVectorTy(1))
4941     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
4942       return Res;
4943 
4944   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
4945     return NewICmp;
4946 
4947   if (Instruction *Res = foldICmpWithConstant(I))
4948     return Res;
4949 
4950   if (Instruction *Res = foldICmpWithDominatingICmp(I))
4951     return Res;
4952 
4953   if (Instruction *Res = foldICmpUsingKnownBits(I))
4954     return Res;
4955 
4956   // Test if the ICmpInst instruction is used exclusively by a select as
4957   // part of a minimum or maximum operation. If so, refrain from doing
4958   // any other folding. This helps out other analyses which understand
4959   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4960   // and CodeGen. And in this case, at least one of the comparison
4961   // operands has at least one user besides the compare (the select),
4962   // which would often largely negate the benefit of folding anyway.
4963   //
4964   // Do the same for the other patterns recognized by matchSelectPattern.
4965   if (I.hasOneUse())
4966     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
4967       Value *A, *B;
4968       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
4969       if (SPR.Flavor != SPF_UNKNOWN)
4970         return nullptr;
4971     }
4972 
4973   // Do this after checking for min/max to prevent infinite looping.
4974   if (Instruction *Res = foldICmpWithZero(I))
4975     return Res;
4976 
4977   // FIXME: We only do this after checking for min/max to prevent infinite
4978   // looping caused by a reverse canonicalization of these patterns for min/max.
4979   // FIXME: The organization of folds is a mess. These would naturally go into
4980   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
4981   // down here after the min/max restriction.
4982   ICmpInst::Predicate Pred = I.getPredicate();
4983   const APInt *C;
4984   if (match(Op1, m_APInt(C))) {
4985     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
4986     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
4987       Constant *Zero = Constant::getNullValue(Op0->getType());
4988       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
4989     }
4990 
4991     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
4992     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
4993       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
4994       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
4995     }
4996   }
4997 
4998   if (Instruction *Res = foldICmpInstWithConstant(I))
4999     return Res;
5000 
5001   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5002     return Res;
5003 
5004   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5005   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5006     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5007       return NI;
5008   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5009     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5010                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5011       return NI;
5012 
5013   // Try to optimize equality comparisons against alloca-based pointers.
5014   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5015     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5016     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5017       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5018         return New;
5019     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5020       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5021         return New;
5022   }
5023 
5024   if (Instruction *Res = foldICmpBitCast(I, Builder))
5025     return Res;
5026 
5027   if (isa<CastInst>(Op0)) {
5028     // Handle the special case of: icmp (cast bool to X), <cst>
5029     // This comes up when you have code like
5030     //   int X = A < B;
5031     //   if (X) ...
5032     // For generality, we handle any zero-extension of any operand comparison
5033     // with a constant or another cast from the same type.
5034     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
5035       if (Instruction *R = foldICmpWithCastAndCast(I))
5036         return R;
5037   }
5038 
5039   if (Instruction *Res = foldICmpBinOp(I))
5040     return Res;
5041 
5042   if (Instruction *Res = foldICmpWithMinMax(I))
5043     return Res;
5044 
5045   {
5046     Value *A, *B;
5047     // Transform (A & ~B) == 0 --> (A & B) != 0
5048     // and       (A & ~B) != 0 --> (A & B) == 0
5049     // if A is a power of 2.
5050     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5051         match(Op1, m_Zero()) &&
5052         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5053       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5054                           Op1);
5055 
5056     // ~X < ~Y --> Y < X
5057     // ~X < C -->  X > ~C
5058     if (match(Op0, m_Not(m_Value(A)))) {
5059       if (match(Op1, m_Not(m_Value(B))))
5060         return new ICmpInst(I.getPredicate(), B, A);
5061 
5062       const APInt *C;
5063       if (match(Op1, m_APInt(C)))
5064         return new ICmpInst(I.getSwappedPredicate(), A,
5065                             ConstantInt::get(Op1->getType(), ~(*C)));
5066     }
5067 
5068     Instruction *AddI = nullptr;
5069     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5070                                      m_Instruction(AddI))) &&
5071         isa<IntegerType>(A->getType())) {
5072       Value *Result;
5073       Constant *Overflow;
5074       if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B,
5075                                 *AddI, Result, Overflow)) {
5076         replaceInstUsesWith(*AddI, Result);
5077         return replaceInstUsesWith(I, Overflow);
5078       }
5079     }
5080 
5081     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5082     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5083       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5084         return R;
5085     }
5086     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5087       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5088         return R;
5089     }
5090   }
5091 
5092   if (Instruction *Res = foldICmpEquality(I))
5093     return Res;
5094 
5095   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5096   // an i1 which indicates whether or not we successfully did the swap.
5097   //
5098   // Replace comparisons between the old value and the expected value with the
5099   // indicator that 'cmpxchg' returns.
5100   //
5101   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5102   // spuriously fail.  In those cases, the old value may equal the expected
5103   // value but it is possible for the swap to not occur.
5104   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5105     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5106       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5107         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5108             !ACXI->isWeak())
5109           return ExtractValueInst::Create(ACXI, 1);
5110 
5111   {
5112     Value *X;
5113     const APInt *C;
5114     // icmp X+Cst, X
5115     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5116       return foldICmpAddOpConst(X, *C, I.getPredicate());
5117 
5118     // icmp X, X+Cst
5119     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5120       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5121   }
5122 
5123   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5124     return Res;
5125 
5126   if (I.getType()->isVectorTy())
5127     if (Instruction *Res = foldVectorCmp(I, Builder))
5128       return Res;
5129 
5130   return Changed ? &I : nullptr;
5131 }
5132 
5133 /// Fold fcmp ([us]itofp x, cst) if possible.
5134 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5135                                                 Constant *RHSC) {
5136   if (!isa<ConstantFP>(RHSC)) return nullptr;
5137   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5138 
5139   // Get the width of the mantissa.  We don't want to hack on conversions that
5140   // might lose information from the integer, e.g. "i64 -> float"
5141   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5142   if (MantissaWidth == -1) return nullptr;  // Unknown.
5143 
5144   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5145 
5146   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5147 
5148   if (I.isEquality()) {
5149     FCmpInst::Predicate P = I.getPredicate();
5150     bool IsExact = false;
5151     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5152     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5153 
5154     // If the floating point constant isn't an integer value, we know if we will
5155     // ever compare equal / not equal to it.
5156     if (!IsExact) {
5157       // TODO: Can never be -0.0 and other non-representable values
5158       APFloat RHSRoundInt(RHS);
5159       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5160       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
5161         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5162           return replaceInstUsesWith(I, Builder.getFalse());
5163 
5164         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5165         return replaceInstUsesWith(I, Builder.getTrue());
5166       }
5167     }
5168 
5169     // TODO: If the constant is exactly representable, is it always OK to do
5170     // equality compares as integer?
5171   }
5172 
5173   // Check to see that the input is converted from an integer type that is small
5174   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5175   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5176   unsigned InputSize = IntTy->getScalarSizeInBits();
5177 
5178   // Following test does NOT adjust InputSize downwards for signed inputs,
5179   // because the most negative value still requires all the mantissa bits
5180   // to distinguish it from one less than that value.
5181   if ((int)InputSize > MantissaWidth) {
5182     // Conversion would lose accuracy. Check if loss can impact comparison.
5183     int Exp = ilogb(RHS);
5184     if (Exp == APFloat::IEK_Inf) {
5185       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5186       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5187         // Conversion could create infinity.
5188         return nullptr;
5189     } else {
5190       // Note that if RHS is zero or NaN, then Exp is negative
5191       // and first condition is trivially false.
5192       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5193         // Conversion could affect comparison.
5194         return nullptr;
5195     }
5196   }
5197 
5198   // Otherwise, we can potentially simplify the comparison.  We know that it
5199   // will always come through as an integer value and we know the constant is
5200   // not a NAN (it would have been previously simplified).
5201   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5202 
5203   ICmpInst::Predicate Pred;
5204   switch (I.getPredicate()) {
5205   default: llvm_unreachable("Unexpected predicate!");
5206   case FCmpInst::FCMP_UEQ:
5207   case FCmpInst::FCMP_OEQ:
5208     Pred = ICmpInst::ICMP_EQ;
5209     break;
5210   case FCmpInst::FCMP_UGT:
5211   case FCmpInst::FCMP_OGT:
5212     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5213     break;
5214   case FCmpInst::FCMP_UGE:
5215   case FCmpInst::FCMP_OGE:
5216     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5217     break;
5218   case FCmpInst::FCMP_ULT:
5219   case FCmpInst::FCMP_OLT:
5220     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5221     break;
5222   case FCmpInst::FCMP_ULE:
5223   case FCmpInst::FCMP_OLE:
5224     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5225     break;
5226   case FCmpInst::FCMP_UNE:
5227   case FCmpInst::FCMP_ONE:
5228     Pred = ICmpInst::ICMP_NE;
5229     break;
5230   case FCmpInst::FCMP_ORD:
5231     return replaceInstUsesWith(I, Builder.getTrue());
5232   case FCmpInst::FCMP_UNO:
5233     return replaceInstUsesWith(I, Builder.getFalse());
5234   }
5235 
5236   // Now we know that the APFloat is a normal number, zero or inf.
5237 
5238   // See if the FP constant is too large for the integer.  For example,
5239   // comparing an i8 to 300.0.
5240   unsigned IntWidth = IntTy->getScalarSizeInBits();
5241 
5242   if (!LHSUnsigned) {
5243     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5244     // and large values.
5245     APFloat SMax(RHS.getSemantics());
5246     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5247                           APFloat::rmNearestTiesToEven);
5248     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
5249       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5250           Pred == ICmpInst::ICMP_SLE)
5251         return replaceInstUsesWith(I, Builder.getTrue());
5252       return replaceInstUsesWith(I, Builder.getFalse());
5253     }
5254   } else {
5255     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5256     // +INF and large values.
5257     APFloat UMax(RHS.getSemantics());
5258     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5259                           APFloat::rmNearestTiesToEven);
5260     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
5261       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5262           Pred == ICmpInst::ICMP_ULE)
5263         return replaceInstUsesWith(I, Builder.getTrue());
5264       return replaceInstUsesWith(I, Builder.getFalse());
5265     }
5266   }
5267 
5268   if (!LHSUnsigned) {
5269     // See if the RHS value is < SignedMin.
5270     APFloat SMin(RHS.getSemantics());
5271     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5272                           APFloat::rmNearestTiesToEven);
5273     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5274       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5275           Pred == ICmpInst::ICMP_SGE)
5276         return replaceInstUsesWith(I, Builder.getTrue());
5277       return replaceInstUsesWith(I, Builder.getFalse());
5278     }
5279   } else {
5280     // See if the RHS value is < UnsignedMin.
5281     APFloat SMin(RHS.getSemantics());
5282     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
5283                           APFloat::rmNearestTiesToEven);
5284     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
5285       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5286           Pred == ICmpInst::ICMP_UGE)
5287         return replaceInstUsesWith(I, Builder.getTrue());
5288       return replaceInstUsesWith(I, Builder.getFalse());
5289     }
5290   }
5291 
5292   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5293   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5294   // casting the FP value to the integer value and back, checking for equality.
5295   // Don't do this for zero, because -0.0 is not fractional.
5296   Constant *RHSInt = LHSUnsigned
5297     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5298     : ConstantExpr::getFPToSI(RHSC, IntTy);
5299   if (!RHS.isZero()) {
5300     bool Equal = LHSUnsigned
5301       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5302       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5303     if (!Equal) {
5304       // If we had a comparison against a fractional value, we have to adjust
5305       // the compare predicate and sometimes the value.  RHSC is rounded towards
5306       // zero at this point.
5307       switch (Pred) {
5308       default: llvm_unreachable("Unexpected integer comparison!");
5309       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5310         return replaceInstUsesWith(I, Builder.getTrue());
5311       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5312         return replaceInstUsesWith(I, Builder.getFalse());
5313       case ICmpInst::ICMP_ULE:
5314         // (float)int <= 4.4   --> int <= 4
5315         // (float)int <= -4.4  --> false
5316         if (RHS.isNegative())
5317           return replaceInstUsesWith(I, Builder.getFalse());
5318         break;
5319       case ICmpInst::ICMP_SLE:
5320         // (float)int <= 4.4   --> int <= 4
5321         // (float)int <= -4.4  --> int < -4
5322         if (RHS.isNegative())
5323           Pred = ICmpInst::ICMP_SLT;
5324         break;
5325       case ICmpInst::ICMP_ULT:
5326         // (float)int < -4.4   --> false
5327         // (float)int < 4.4    --> int <= 4
5328         if (RHS.isNegative())
5329           return replaceInstUsesWith(I, Builder.getFalse());
5330         Pred = ICmpInst::ICMP_ULE;
5331         break;
5332       case ICmpInst::ICMP_SLT:
5333         // (float)int < -4.4   --> int < -4
5334         // (float)int < 4.4    --> int <= 4
5335         if (!RHS.isNegative())
5336           Pred = ICmpInst::ICMP_SLE;
5337         break;
5338       case ICmpInst::ICMP_UGT:
5339         // (float)int > 4.4    --> int > 4
5340         // (float)int > -4.4   --> true
5341         if (RHS.isNegative())
5342           return replaceInstUsesWith(I, Builder.getTrue());
5343         break;
5344       case ICmpInst::ICMP_SGT:
5345         // (float)int > 4.4    --> int > 4
5346         // (float)int > -4.4   --> int >= -4
5347         if (RHS.isNegative())
5348           Pred = ICmpInst::ICMP_SGE;
5349         break;
5350       case ICmpInst::ICMP_UGE:
5351         // (float)int >= -4.4   --> true
5352         // (float)int >= 4.4    --> int > 4
5353         if (RHS.isNegative())
5354           return replaceInstUsesWith(I, Builder.getTrue());
5355         Pred = ICmpInst::ICMP_UGT;
5356         break;
5357       case ICmpInst::ICMP_SGE:
5358         // (float)int >= -4.4   --> int >= -4
5359         // (float)int >= 4.4    --> int > 4
5360         if (!RHS.isNegative())
5361           Pred = ICmpInst::ICMP_SGT;
5362         break;
5363       }
5364     }
5365   }
5366 
5367   // Lower this FP comparison into an appropriate integer version of the
5368   // comparison.
5369   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5370 }
5371 
5372 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5373 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5374                                               Constant *RHSC) {
5375   // When C is not 0.0 and infinities are not allowed:
5376   // (C / X) < 0.0 is a sign-bit test of X
5377   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5378   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5379   //
5380   // Proof:
5381   // Multiply (C / X) < 0.0 by X * X / C.
5382   // - X is non zero, if it is the flag 'ninf' is violated.
5383   // - C defines the sign of X * X * C. Thus it also defines whether to swap
5384   //   the predicate. C is also non zero by definition.
5385   //
5386   // Thus X * X / C is non zero and the transformation is valid. [qed]
5387 
5388   FCmpInst::Predicate Pred = I.getPredicate();
5389 
5390   // Check that predicates are valid.
5391   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5392       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5393     return nullptr;
5394 
5395   // Check that RHS operand is zero.
5396   if (!match(RHSC, m_AnyZeroFP()))
5397     return nullptr;
5398 
5399   // Check fastmath flags ('ninf').
5400   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5401     return nullptr;
5402 
5403   // Check the properties of the dividend. It must not be zero to avoid a
5404   // division by zero (see Proof).
5405   const APFloat *C;
5406   if (!match(LHSI->getOperand(0), m_APFloat(C)))
5407     return nullptr;
5408 
5409   if (C->isZero())
5410     return nullptr;
5411 
5412   // Get swapped predicate if necessary.
5413   if (C->isNegative())
5414     Pred = I.getSwappedPredicate();
5415 
5416   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5417 }
5418 
5419 /// Optimize fabs(X) compared with zero.
5420 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) {
5421   Value *X;
5422   if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5423       !match(I.getOperand(1), m_PosZeroFP()))
5424     return nullptr;
5425 
5426   auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5427     I->setPredicate(P);
5428     I->setOperand(0, X);
5429     return I;
5430   };
5431 
5432   switch (I.getPredicate()) {
5433   case FCmpInst::FCMP_UGE:
5434   case FCmpInst::FCMP_OLT:
5435     // fabs(X) >= 0.0 --> true
5436     // fabs(X) <  0.0 --> false
5437     llvm_unreachable("fcmp should have simplified");
5438 
5439   case FCmpInst::FCMP_OGT:
5440     // fabs(X) > 0.0 --> X != 0.0
5441     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
5442 
5443   case FCmpInst::FCMP_UGT:
5444     // fabs(X) u> 0.0 --> X u!= 0.0
5445     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
5446 
5447   case FCmpInst::FCMP_OLE:
5448     // fabs(X) <= 0.0 --> X == 0.0
5449     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
5450 
5451   case FCmpInst::FCMP_ULE:
5452     // fabs(X) u<= 0.0 --> X u== 0.0
5453     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
5454 
5455   case FCmpInst::FCMP_OGE:
5456     // fabs(X) >= 0.0 --> !isnan(X)
5457     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5458     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
5459 
5460   case FCmpInst::FCMP_ULT:
5461     // fabs(X) u< 0.0 --> isnan(X)
5462     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5463     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
5464 
5465   case FCmpInst::FCMP_OEQ:
5466   case FCmpInst::FCMP_UEQ:
5467   case FCmpInst::FCMP_ONE:
5468   case FCmpInst::FCMP_UNE:
5469   case FCmpInst::FCMP_ORD:
5470   case FCmpInst::FCMP_UNO:
5471     // Look through the fabs() because it doesn't change anything but the sign.
5472     // fabs(X) == 0.0 --> X == 0.0,
5473     // fabs(X) != 0.0 --> X != 0.0
5474     // isnan(fabs(X)) --> isnan(X)
5475     // !isnan(fabs(X) --> !isnan(X)
5476     return replacePredAndOp0(&I, I.getPredicate(), X);
5477 
5478   default:
5479     return nullptr;
5480   }
5481 }
5482 
5483 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5484   bool Changed = false;
5485 
5486   /// Orders the operands of the compare so that they are listed from most
5487   /// complex to least complex.  This puts constants before unary operators,
5488   /// before binary operators.
5489   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
5490     I.swapOperands();
5491     Changed = true;
5492   }
5493 
5494   const CmpInst::Predicate Pred = I.getPredicate();
5495   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5496   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
5497                                   SQ.getWithInstruction(&I)))
5498     return replaceInstUsesWith(I, V);
5499 
5500   // Simplify 'fcmp pred X, X'
5501   Type *OpType = Op0->getType();
5502   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
5503   if (Op0 == Op1) {
5504     switch (Pred) {
5505       default: break;
5506     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
5507     case FCmpInst::FCMP_ULT:    // True if unordered or less than
5508     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
5509     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
5510       // Canonicalize these to be 'fcmp uno %X, 0.0'.
5511       I.setPredicate(FCmpInst::FCMP_UNO);
5512       I.setOperand(1, Constant::getNullValue(OpType));
5513       return &I;
5514 
5515     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
5516     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
5517     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
5518     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
5519       // Canonicalize these to be 'fcmp ord %X, 0.0'.
5520       I.setPredicate(FCmpInst::FCMP_ORD);
5521       I.setOperand(1, Constant::getNullValue(OpType));
5522       return &I;
5523     }
5524   }
5525 
5526   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
5527   // then canonicalize the operand to 0.0.
5528   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
5529     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) {
5530       I.setOperand(0, ConstantFP::getNullValue(OpType));
5531       return &I;
5532     }
5533     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) {
5534       I.setOperand(1, ConstantFP::getNullValue(OpType));
5535       return &I;
5536     }
5537   }
5538 
5539   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
5540   Value *X, *Y;
5541   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
5542     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
5543 
5544   // Test if the FCmpInst instruction is used exclusively by a select as
5545   // part of a minimum or maximum operation. If so, refrain from doing
5546   // any other folding. This helps out other analyses which understand
5547   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5548   // and CodeGen. And in this case, at least one of the comparison
5549   // operands has at least one user besides the compare (the select),
5550   // which would often largely negate the benefit of folding anyway.
5551   if (I.hasOneUse())
5552     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5553       Value *A, *B;
5554       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5555       if (SPR.Flavor != SPF_UNKNOWN)
5556         return nullptr;
5557     }
5558 
5559   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
5560   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
5561   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) {
5562     I.setOperand(1, ConstantFP::getNullValue(OpType));
5563     return &I;
5564   }
5565 
5566   // Handle fcmp with instruction LHS and constant RHS.
5567   Instruction *LHSI;
5568   Constant *RHSC;
5569   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
5570     switch (LHSI->getOpcode()) {
5571     case Instruction::PHI:
5572       // Only fold fcmp into the PHI if the phi and fcmp are in the same
5573       // block.  If in the same block, we're encouraging jump threading.  If
5574       // not, we are just pessimizing the code by making an i1 phi.
5575       if (LHSI->getParent() == I.getParent())
5576         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
5577           return NV;
5578       break;
5579     case Instruction::SIToFP:
5580     case Instruction::UIToFP:
5581       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
5582         return NV;
5583       break;
5584     case Instruction::FDiv:
5585       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
5586         return NV;
5587       break;
5588     case Instruction::Load:
5589       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
5590         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
5591           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
5592               !cast<LoadInst>(LHSI)->isVolatile())
5593             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
5594               return Res;
5595       break;
5596   }
5597   }
5598 
5599   if (Instruction *R = foldFabsWithFcmpZero(I))
5600     return R;
5601 
5602   if (match(Op0, m_FNeg(m_Value(X)))) {
5603     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
5604     Constant *C;
5605     if (match(Op1, m_Constant(C))) {
5606       Constant *NegC = ConstantExpr::getFNeg(C);
5607       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
5608     }
5609   }
5610 
5611   if (match(Op0, m_FPExt(m_Value(X)))) {
5612     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
5613     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
5614       return new FCmpInst(Pred, X, Y, "", &I);
5615 
5616     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
5617     const APFloat *C;
5618     if (match(Op1, m_APFloat(C))) {
5619       const fltSemantics &FPSem =
5620           X->getType()->getScalarType()->getFltSemantics();
5621       bool Lossy;
5622       APFloat TruncC = *C;
5623       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
5624 
5625       // Avoid lossy conversions and denormals.
5626       // Zero is a special case that's OK to convert.
5627       APFloat Fabs = TruncC;
5628       Fabs.clearSign();
5629       if (!Lossy &&
5630           ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) !=
5631             APFloat::cmpLessThan) || Fabs.isZero())) {
5632         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
5633         return new FCmpInst(Pred, X, NewC, "", &I);
5634       }
5635     }
5636   }
5637 
5638   if (I.getType()->isVectorTy())
5639     if (Instruction *Res = foldVectorCmp(I, Builder))
5640       return Res;
5641 
5642   return Changed ? &I : nullptr;
5643 }
5644