1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Given an exploded icmp instruction, return true if the comparison only 73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 74 /// result of the comparison is true when the input value is signed. 75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 76 bool &TrueIfSigned) { 77 switch (Pred) { 78 case ICmpInst::ICMP_SLT: // True if LHS s< 0 79 TrueIfSigned = true; 80 return RHS.isNullValue(); 81 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 82 TrueIfSigned = true; 83 return RHS.isAllOnesValue(); 84 case ICmpInst::ICMP_SGT: // True if LHS s> -1 85 TrueIfSigned = false; 86 return RHS.isAllOnesValue(); 87 case ICmpInst::ICMP_UGT: 88 // True if LHS u> RHS and RHS == high-bit-mask - 1 89 TrueIfSigned = true; 90 return RHS.isMaxSignedValue(); 91 case ICmpInst::ICMP_UGE: 92 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 93 TrueIfSigned = true; 94 return RHS.isSignMask(); 95 default: 96 return false; 97 } 98 } 99 100 /// Returns true if the exploded icmp can be expressed as a signed comparison 101 /// to zero and updates the predicate accordingly. 102 /// The signedness of the comparison is preserved. 103 /// TODO: Refactor with decomposeBitTestICmp()? 104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 105 if (!ICmpInst::isSigned(Pred)) 106 return false; 107 108 if (C.isNullValue()) 109 return ICmpInst::isRelational(Pred); 110 111 if (C.isOneValue()) { 112 if (Pred == ICmpInst::ICMP_SLT) { 113 Pred = ICmpInst::ICMP_SLE; 114 return true; 115 } 116 } else if (C.isAllOnesValue()) { 117 if (Pred == ICmpInst::ICMP_SGT) { 118 Pred = ICmpInst::ICMP_SGE; 119 return true; 120 } 121 } 122 123 return false; 124 } 125 126 /// Given a signed integer type and a set of known zero and one bits, compute 127 /// the maximum and minimum values that could have the specified known zero and 128 /// known one bits, returning them in Min/Max. 129 /// TODO: Move to method on KnownBits struct? 130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 131 APInt &Min, APInt &Max) { 132 assert(Known.getBitWidth() == Min.getBitWidth() && 133 Known.getBitWidth() == Max.getBitWidth() && 134 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 135 APInt UnknownBits = ~(Known.Zero|Known.One); 136 137 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 138 // bit if it is unknown. 139 Min = Known.One; 140 Max = Known.One|UnknownBits; 141 142 if (UnknownBits.isNegative()) { // Sign bit is unknown 143 Min.setSignBit(); 144 Max.clearSignBit(); 145 } 146 } 147 148 /// Given an unsigned integer type and a set of known zero and one bits, compute 149 /// the maximum and minimum values that could have the specified known zero and 150 /// known one bits, returning them in Min/Max. 151 /// TODO: Move to method on KnownBits struct? 152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 153 APInt &Min, APInt &Max) { 154 assert(Known.getBitWidth() == Min.getBitWidth() && 155 Known.getBitWidth() == Max.getBitWidth() && 156 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 157 APInt UnknownBits = ~(Known.Zero|Known.One); 158 159 // The minimum value is when the unknown bits are all zeros. 160 Min = Known.One; 161 // The maximum value is when the unknown bits are all ones. 162 Max = Known.One|UnknownBits; 163 } 164 165 /// This is called when we see this pattern: 166 /// cmp pred (load (gep GV, ...)), cmpcst 167 /// where GV is a global variable with a constant initializer. Try to simplify 168 /// this into some simple computation that does not need the load. For example 169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 170 /// 171 /// If AndCst is non-null, then the loaded value is masked with that constant 172 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 174 GlobalVariable *GV, 175 CmpInst &ICI, 176 ConstantInt *AndCst) { 177 Constant *Init = GV->getInitializer(); 178 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 179 return nullptr; 180 181 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 182 // Don't blow up on huge arrays. 183 if (ArrayElementCount > MaxArraySizeForCombine) 184 return nullptr; 185 186 // There are many forms of this optimization we can handle, for now, just do 187 // the simple index into a single-dimensional array. 188 // 189 // Require: GEP GV, 0, i {{, constant indices}} 190 if (GEP->getNumOperands() < 3 || 191 !isa<ConstantInt>(GEP->getOperand(1)) || 192 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 193 isa<Constant>(GEP->getOperand(2))) 194 return nullptr; 195 196 // Check that indices after the variable are constants and in-range for the 197 // type they index. Collect the indices. This is typically for arrays of 198 // structs. 199 SmallVector<unsigned, 4> LaterIndices; 200 201 Type *EltTy = Init->getType()->getArrayElementType(); 202 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 203 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 204 if (!Idx) return nullptr; // Variable index. 205 206 uint64_t IdxVal = Idx->getZExtValue(); 207 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 208 209 if (StructType *STy = dyn_cast<StructType>(EltTy)) 210 EltTy = STy->getElementType(IdxVal); 211 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 212 if (IdxVal >= ATy->getNumElements()) return nullptr; 213 EltTy = ATy->getElementType(); 214 } else { 215 return nullptr; // Unknown type. 216 } 217 218 LaterIndices.push_back(IdxVal); 219 } 220 221 enum { Overdefined = -3, Undefined = -2 }; 222 223 // Variables for our state machines. 224 225 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 226 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 227 // and 87 is the second (and last) index. FirstTrueElement is -2 when 228 // undefined, otherwise set to the first true element. SecondTrueElement is 229 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 230 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 231 232 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 233 // form "i != 47 & i != 87". Same state transitions as for true elements. 234 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 235 236 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 237 /// define a state machine that triggers for ranges of values that the index 238 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 239 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 240 /// index in the range (inclusive). We use -2 for undefined here because we 241 /// use relative comparisons and don't want 0-1 to match -1. 242 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 243 244 // MagicBitvector - This is a magic bitvector where we set a bit if the 245 // comparison is true for element 'i'. If there are 64 elements or less in 246 // the array, this will fully represent all the comparison results. 247 uint64_t MagicBitvector = 0; 248 249 // Scan the array and see if one of our patterns matches. 250 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 251 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 252 Constant *Elt = Init->getAggregateElement(i); 253 if (!Elt) return nullptr; 254 255 // If this is indexing an array of structures, get the structure element. 256 if (!LaterIndices.empty()) 257 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 258 259 // If the element is masked, handle it. 260 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 261 262 // Find out if the comparison would be true or false for the i'th element. 263 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 264 CompareRHS, DL, &TLI); 265 // If the result is undef for this element, ignore it. 266 if (isa<UndefValue>(C)) { 267 // Extend range state machines to cover this element in case there is an 268 // undef in the middle of the range. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 if (FalseRangeEnd == (int)i-1) 272 FalseRangeEnd = i; 273 continue; 274 } 275 276 // If we can't compute the result for any of the elements, we have to give 277 // up evaluating the entire conditional. 278 if (!isa<ConstantInt>(C)) return nullptr; 279 280 // Otherwise, we know if the comparison is true or false for this element, 281 // update our state machines. 282 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 283 284 // State machine for single/double/range index comparison. 285 if (IsTrueForElt) { 286 // Update the TrueElement state machine. 287 if (FirstTrueElement == Undefined) 288 FirstTrueElement = TrueRangeEnd = i; // First true element. 289 else { 290 // Update double-compare state machine. 291 if (SecondTrueElement == Undefined) 292 SecondTrueElement = i; 293 else 294 SecondTrueElement = Overdefined; 295 296 // Update range state machine. 297 if (TrueRangeEnd == (int)i-1) 298 TrueRangeEnd = i; 299 else 300 TrueRangeEnd = Overdefined; 301 } 302 } else { 303 // Update the FalseElement state machine. 304 if (FirstFalseElement == Undefined) 305 FirstFalseElement = FalseRangeEnd = i; // First false element. 306 else { 307 // Update double-compare state machine. 308 if (SecondFalseElement == Undefined) 309 SecondFalseElement = i; 310 else 311 SecondFalseElement = Overdefined; 312 313 // Update range state machine. 314 if (FalseRangeEnd == (int)i-1) 315 FalseRangeEnd = i; 316 else 317 FalseRangeEnd = Overdefined; 318 } 319 } 320 321 // If this element is in range, update our magic bitvector. 322 if (i < 64 && IsTrueForElt) 323 MagicBitvector |= 1ULL << i; 324 325 // If all of our states become overdefined, bail out early. Since the 326 // predicate is expensive, only check it every 8 elements. This is only 327 // really useful for really huge arrays. 328 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 329 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 330 FalseRangeEnd == Overdefined) 331 return nullptr; 332 } 333 334 // Now that we've scanned the entire array, emit our new comparison(s). We 335 // order the state machines in complexity of the generated code. 336 Value *Idx = GEP->getOperand(2); 337 338 // If the index is larger than the pointer size of the target, truncate the 339 // index down like the GEP would do implicitly. We don't have to do this for 340 // an inbounds GEP because the index can't be out of range. 341 if (!GEP->isInBounds()) { 342 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 343 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 344 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 345 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 346 } 347 348 // If the comparison is only true for one or two elements, emit direct 349 // comparisons. 350 if (SecondTrueElement != Overdefined) { 351 // None true -> false. 352 if (FirstTrueElement == Undefined) 353 return replaceInstUsesWith(ICI, Builder.getFalse()); 354 355 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 356 357 // True for one element -> 'i == 47'. 358 if (SecondTrueElement == Undefined) 359 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 360 361 // True for two elements -> 'i == 47 | i == 72'. 362 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 363 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 364 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 365 return BinaryOperator::CreateOr(C1, C2); 366 } 367 368 // If the comparison is only false for one or two elements, emit direct 369 // comparisons. 370 if (SecondFalseElement != Overdefined) { 371 // None false -> true. 372 if (FirstFalseElement == Undefined) 373 return replaceInstUsesWith(ICI, Builder.getTrue()); 374 375 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 376 377 // False for one element -> 'i != 47'. 378 if (SecondFalseElement == Undefined) 379 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 380 381 // False for two elements -> 'i != 47 & i != 72'. 382 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 383 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 384 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 385 return BinaryOperator::CreateAnd(C1, C2); 386 } 387 388 // If the comparison can be replaced with a range comparison for the elements 389 // where it is true, emit the range check. 390 if (TrueRangeEnd != Overdefined) { 391 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 392 393 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 394 if (FirstTrueElement) { 395 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 396 Idx = Builder.CreateAdd(Idx, Offs); 397 } 398 399 Value *End = ConstantInt::get(Idx->getType(), 400 TrueRangeEnd-FirstTrueElement+1); 401 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 402 } 403 404 // False range check. 405 if (FalseRangeEnd != Overdefined) { 406 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 407 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 408 if (FirstFalseElement) { 409 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 410 Idx = Builder.CreateAdd(Idx, Offs); 411 } 412 413 Value *End = ConstantInt::get(Idx->getType(), 414 FalseRangeEnd-FirstFalseElement); 415 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 416 } 417 418 // If a magic bitvector captures the entire comparison state 419 // of this load, replace it with computation that does: 420 // ((magic_cst >> i) & 1) != 0 421 { 422 Type *Ty = nullptr; 423 424 // Look for an appropriate type: 425 // - The type of Idx if the magic fits 426 // - The smallest fitting legal type 427 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 428 Ty = Idx->getType(); 429 else 430 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 431 432 if (Ty) { 433 Value *V = Builder.CreateIntCast(Idx, Ty, false); 434 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 435 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 436 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 437 } 438 } 439 440 return nullptr; 441 } 442 443 /// Return a value that can be used to compare the *offset* implied by a GEP to 444 /// zero. For example, if we have &A[i], we want to return 'i' for 445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 446 /// are involved. The above expression would also be legal to codegen as 447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 448 /// This latter form is less amenable to optimization though, and we are allowed 449 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 450 /// 451 /// If we can't emit an optimized form for this expression, this returns null. 452 /// 453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 454 const DataLayout &DL) { 455 gep_type_iterator GTI = gep_type_begin(GEP); 456 457 // Check to see if this gep only has a single variable index. If so, and if 458 // any constant indices are a multiple of its scale, then we can compute this 459 // in terms of the scale of the variable index. For example, if the GEP 460 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 461 // because the expression will cross zero at the same point. 462 unsigned i, e = GEP->getNumOperands(); 463 int64_t Offset = 0; 464 for (i = 1; i != e; ++i, ++GTI) { 465 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 466 // Compute the aggregate offset of constant indices. 467 if (CI->isZero()) continue; 468 469 // Handle a struct index, which adds its field offset to the pointer. 470 if (StructType *STy = GTI.getStructTypeOrNull()) { 471 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 472 } else { 473 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 474 Offset += Size*CI->getSExtValue(); 475 } 476 } else { 477 // Found our variable index. 478 break; 479 } 480 } 481 482 // If there are no variable indices, we must have a constant offset, just 483 // evaluate it the general way. 484 if (i == e) return nullptr; 485 486 Value *VariableIdx = GEP->getOperand(i); 487 // Determine the scale factor of the variable element. For example, this is 488 // 4 if the variable index is into an array of i32. 489 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 490 491 // Verify that there are no other variable indices. If so, emit the hard way. 492 for (++i, ++GTI; i != e; ++i, ++GTI) { 493 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 494 if (!CI) return nullptr; 495 496 // Compute the aggregate offset of constant indices. 497 if (CI->isZero()) continue; 498 499 // Handle a struct index, which adds its field offset to the pointer. 500 if (StructType *STy = GTI.getStructTypeOrNull()) { 501 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 502 } else { 503 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 504 Offset += Size*CI->getSExtValue(); 505 } 506 } 507 508 // Okay, we know we have a single variable index, which must be a 509 // pointer/array/vector index. If there is no offset, life is simple, return 510 // the index. 511 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 512 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 513 if (Offset == 0) { 514 // Cast to intptrty in case a truncation occurs. If an extension is needed, 515 // we don't need to bother extending: the extension won't affect where the 516 // computation crosses zero. 517 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 518 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 519 } 520 return VariableIdx; 521 } 522 523 // Otherwise, there is an index. The computation we will do will be modulo 524 // the pointer size. 525 Offset = SignExtend64(Offset, IntPtrWidth); 526 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 527 528 // To do this transformation, any constant index must be a multiple of the 529 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 530 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 531 // multiple of the variable scale. 532 int64_t NewOffs = Offset / (int64_t)VariableScale; 533 if (Offset != NewOffs*(int64_t)VariableScale) 534 return nullptr; 535 536 // Okay, we can do this evaluation. Start by converting the index to intptr. 537 if (VariableIdx->getType() != IntPtrTy) 538 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 539 true /*Signed*/); 540 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 541 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 542 } 543 544 /// Returns true if we can rewrite Start as a GEP with pointer Base 545 /// and some integer offset. The nodes that need to be re-written 546 /// for this transformation will be added to Explored. 547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 548 const DataLayout &DL, 549 SetVector<Value *> &Explored) { 550 SmallVector<Value *, 16> WorkList(1, Start); 551 Explored.insert(Base); 552 553 // The following traversal gives us an order which can be used 554 // when doing the final transformation. Since in the final 555 // transformation we create the PHI replacement instructions first, 556 // we don't have to get them in any particular order. 557 // 558 // However, for other instructions we will have to traverse the 559 // operands of an instruction first, which means that we have to 560 // do a post-order traversal. 561 while (!WorkList.empty()) { 562 SetVector<PHINode *> PHIs; 563 564 while (!WorkList.empty()) { 565 if (Explored.size() >= 100) 566 return false; 567 568 Value *V = WorkList.back(); 569 570 if (Explored.count(V) != 0) { 571 WorkList.pop_back(); 572 continue; 573 } 574 575 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 576 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 577 // We've found some value that we can't explore which is different from 578 // the base. Therefore we can't do this transformation. 579 return false; 580 581 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 582 auto *CI = dyn_cast<CastInst>(V); 583 if (!CI->isNoopCast(DL)) 584 return false; 585 586 if (Explored.count(CI->getOperand(0)) == 0) 587 WorkList.push_back(CI->getOperand(0)); 588 } 589 590 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 591 // We're limiting the GEP to having one index. This will preserve 592 // the original pointer type. We could handle more cases in the 593 // future. 594 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 595 GEP->getType() != Start->getType()) 596 return false; 597 598 if (Explored.count(GEP->getOperand(0)) == 0) 599 WorkList.push_back(GEP->getOperand(0)); 600 } 601 602 if (WorkList.back() == V) { 603 WorkList.pop_back(); 604 // We've finished visiting this node, mark it as such. 605 Explored.insert(V); 606 } 607 608 if (auto *PN = dyn_cast<PHINode>(V)) { 609 // We cannot transform PHIs on unsplittable basic blocks. 610 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 611 return false; 612 Explored.insert(PN); 613 PHIs.insert(PN); 614 } 615 } 616 617 // Explore the PHI nodes further. 618 for (auto *PN : PHIs) 619 for (Value *Op : PN->incoming_values()) 620 if (Explored.count(Op) == 0) 621 WorkList.push_back(Op); 622 } 623 624 // Make sure that we can do this. Since we can't insert GEPs in a basic 625 // block before a PHI node, we can't easily do this transformation if 626 // we have PHI node users of transformed instructions. 627 for (Value *Val : Explored) { 628 for (Value *Use : Val->uses()) { 629 630 auto *PHI = dyn_cast<PHINode>(Use); 631 auto *Inst = dyn_cast<Instruction>(Val); 632 633 if (Inst == Base || Inst == PHI || !Inst || !PHI || 634 Explored.count(PHI) == 0) 635 continue; 636 637 if (PHI->getParent() == Inst->getParent()) 638 return false; 639 } 640 } 641 return true; 642 } 643 644 // Sets the appropriate insert point on Builder where we can add 645 // a replacement Instruction for V (if that is possible). 646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 647 bool Before = true) { 648 if (auto *PHI = dyn_cast<PHINode>(V)) { 649 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 650 return; 651 } 652 if (auto *I = dyn_cast<Instruction>(V)) { 653 if (!Before) 654 I = &*std::next(I->getIterator()); 655 Builder.SetInsertPoint(I); 656 return; 657 } 658 if (auto *A = dyn_cast<Argument>(V)) { 659 // Set the insertion point in the entry block. 660 BasicBlock &Entry = A->getParent()->getEntryBlock(); 661 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 662 return; 663 } 664 // Otherwise, this is a constant and we don't need to set a new 665 // insertion point. 666 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 667 } 668 669 /// Returns a re-written value of Start as an indexed GEP using Base as a 670 /// pointer. 671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 672 const DataLayout &DL, 673 SetVector<Value *> &Explored) { 674 // Perform all the substitutions. This is a bit tricky because we can 675 // have cycles in our use-def chains. 676 // 1. Create the PHI nodes without any incoming values. 677 // 2. Create all the other values. 678 // 3. Add the edges for the PHI nodes. 679 // 4. Emit GEPs to get the original pointers. 680 // 5. Remove the original instructions. 681 Type *IndexType = IntegerType::get( 682 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 683 684 DenseMap<Value *, Value *> NewInsts; 685 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 686 687 // Create the new PHI nodes, without adding any incoming values. 688 for (Value *Val : Explored) { 689 if (Val == Base) 690 continue; 691 // Create empty phi nodes. This avoids cyclic dependencies when creating 692 // the remaining instructions. 693 if (auto *PHI = dyn_cast<PHINode>(Val)) 694 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 695 PHI->getName() + ".idx", PHI); 696 } 697 IRBuilder<> Builder(Base->getContext()); 698 699 // Create all the other instructions. 700 for (Value *Val : Explored) { 701 702 if (NewInsts.find(Val) != NewInsts.end()) 703 continue; 704 705 if (auto *CI = dyn_cast<CastInst>(Val)) { 706 // Don't get rid of the intermediate variable here; the store can grow 707 // the map which will invalidate the reference to the input value. 708 Value *V = NewInsts[CI->getOperand(0)]; 709 NewInsts[CI] = V; 710 continue; 711 } 712 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 713 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 714 : GEP->getOperand(1); 715 setInsertionPoint(Builder, GEP); 716 // Indices might need to be sign extended. GEPs will magically do 717 // this, but we need to do it ourselves here. 718 if (Index->getType()->getScalarSizeInBits() != 719 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 720 Index = Builder.CreateSExtOrTrunc( 721 Index, NewInsts[GEP->getOperand(0)]->getType(), 722 GEP->getOperand(0)->getName() + ".sext"); 723 } 724 725 auto *Op = NewInsts[GEP->getOperand(0)]; 726 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 727 NewInsts[GEP] = Index; 728 else 729 NewInsts[GEP] = Builder.CreateNSWAdd( 730 Op, Index, GEP->getOperand(0)->getName() + ".add"); 731 continue; 732 } 733 if (isa<PHINode>(Val)) 734 continue; 735 736 llvm_unreachable("Unexpected instruction type"); 737 } 738 739 // Add the incoming values to the PHI nodes. 740 for (Value *Val : Explored) { 741 if (Val == Base) 742 continue; 743 // All the instructions have been created, we can now add edges to the 744 // phi nodes. 745 if (auto *PHI = dyn_cast<PHINode>(Val)) { 746 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 747 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 748 Value *NewIncoming = PHI->getIncomingValue(I); 749 750 if (NewInsts.find(NewIncoming) != NewInsts.end()) 751 NewIncoming = NewInsts[NewIncoming]; 752 753 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 754 } 755 } 756 } 757 758 for (Value *Val : Explored) { 759 if (Val == Base) 760 continue; 761 762 // Depending on the type, for external users we have to emit 763 // a GEP or a GEP + ptrtoint. 764 setInsertionPoint(Builder, Val, false); 765 766 // If required, create an inttoptr instruction for Base. 767 Value *NewBase = Base; 768 if (!Base->getType()->isPointerTy()) 769 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 770 Start->getName() + "to.ptr"); 771 772 Value *GEP = Builder.CreateInBoundsGEP( 773 Start->getType()->getPointerElementType(), NewBase, 774 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 775 776 if (!Val->getType()->isPointerTy()) { 777 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 778 Val->getName() + ".conv"); 779 GEP = Cast; 780 } 781 Val->replaceAllUsesWith(GEP); 782 } 783 784 return NewInsts[Start]; 785 } 786 787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 788 /// the input Value as a constant indexed GEP. Returns a pair containing 789 /// the GEPs Pointer and Index. 790 static std::pair<Value *, Value *> 791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 792 Type *IndexType = IntegerType::get(V->getContext(), 793 DL.getIndexTypeSizeInBits(V->getType())); 794 795 Constant *Index = ConstantInt::getNullValue(IndexType); 796 while (true) { 797 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 798 // We accept only inbouds GEPs here to exclude the possibility of 799 // overflow. 800 if (!GEP->isInBounds()) 801 break; 802 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 803 GEP->getType() == V->getType()) { 804 V = GEP->getOperand(0); 805 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 806 Index = ConstantExpr::getAdd( 807 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 808 continue; 809 } 810 break; 811 } 812 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 813 if (!CI->isNoopCast(DL)) 814 break; 815 V = CI->getOperand(0); 816 continue; 817 } 818 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 819 if (!CI->isNoopCast(DL)) 820 break; 821 V = CI->getOperand(0); 822 continue; 823 } 824 break; 825 } 826 return {V, Index}; 827 } 828 829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 830 /// We can look through PHIs, GEPs and casts in order to determine a common base 831 /// between GEPLHS and RHS. 832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 833 ICmpInst::Predicate Cond, 834 const DataLayout &DL) { 835 if (!GEPLHS->hasAllConstantIndices()) 836 return nullptr; 837 838 // Make sure the pointers have the same type. 839 if (GEPLHS->getType() != RHS->getType()) 840 return nullptr; 841 842 Value *PtrBase, *Index; 843 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 844 845 // The set of nodes that will take part in this transformation. 846 SetVector<Value *> Nodes; 847 848 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 849 return nullptr; 850 851 // We know we can re-write this as 852 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 853 // Since we've only looked through inbouds GEPs we know that we 854 // can't have overflow on either side. We can therefore re-write 855 // this as: 856 // OFFSET1 cmp OFFSET2 857 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 858 859 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 860 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 861 // offset. Since Index is the offset of LHS to the base pointer, we will now 862 // compare the offsets instead of comparing the pointers. 863 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 864 } 865 866 /// Fold comparisons between a GEP instruction and something else. At this point 867 /// we know that the GEP is on the LHS of the comparison. 868 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 869 ICmpInst::Predicate Cond, 870 Instruction &I) { 871 // Don't transform signed compares of GEPs into index compares. Even if the 872 // GEP is inbounds, the final add of the base pointer can have signed overflow 873 // and would change the result of the icmp. 874 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 875 // the maximum signed value for the pointer type. 876 if (ICmpInst::isSigned(Cond)) 877 return nullptr; 878 879 // Look through bitcasts and addrspacecasts. We do not however want to remove 880 // 0 GEPs. 881 if (!isa<GetElementPtrInst>(RHS)) 882 RHS = RHS->stripPointerCasts(); 883 884 Value *PtrBase = GEPLHS->getOperand(0); 885 if (PtrBase == RHS && GEPLHS->isInBounds()) { 886 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 887 // This transformation (ignoring the base and scales) is valid because we 888 // know pointers can't overflow since the gep is inbounds. See if we can 889 // output an optimized form. 890 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 891 892 // If not, synthesize the offset the hard way. 893 if (!Offset) 894 Offset = EmitGEPOffset(GEPLHS); 895 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 896 Constant::getNullValue(Offset->getType())); 897 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 898 // If the base pointers are different, but the indices are the same, just 899 // compare the base pointer. 900 if (PtrBase != GEPRHS->getOperand(0)) { 901 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 902 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 903 GEPRHS->getOperand(0)->getType(); 904 if (IndicesTheSame) 905 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 906 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 907 IndicesTheSame = false; 908 break; 909 } 910 911 // If all indices are the same, just compare the base pointers. 912 Type *BaseType = GEPLHS->getOperand(0)->getType(); 913 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 914 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 915 916 // If we're comparing GEPs with two base pointers that only differ in type 917 // and both GEPs have only constant indices or just one use, then fold 918 // the compare with the adjusted indices. 919 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 920 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 921 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 922 PtrBase->stripPointerCasts() == 923 GEPRHS->getOperand(0)->stripPointerCasts()) { 924 Value *LOffset = EmitGEPOffset(GEPLHS); 925 Value *ROffset = EmitGEPOffset(GEPRHS); 926 927 // If we looked through an addrspacecast between different sized address 928 // spaces, the LHS and RHS pointers are different sized 929 // integers. Truncate to the smaller one. 930 Type *LHSIndexTy = LOffset->getType(); 931 Type *RHSIndexTy = ROffset->getType(); 932 if (LHSIndexTy != RHSIndexTy) { 933 if (LHSIndexTy->getPrimitiveSizeInBits() < 934 RHSIndexTy->getPrimitiveSizeInBits()) { 935 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 936 } else 937 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 938 } 939 940 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 941 LOffset, ROffset); 942 return replaceInstUsesWith(I, Cmp); 943 } 944 945 // Otherwise, the base pointers are different and the indices are 946 // different. Try convert this to an indexed compare by looking through 947 // PHIs/casts. 948 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 949 } 950 951 // If one of the GEPs has all zero indices, recurse. 952 if (GEPLHS->hasAllZeroIndices()) 953 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 954 ICmpInst::getSwappedPredicate(Cond), I); 955 956 // If the other GEP has all zero indices, recurse. 957 if (GEPRHS->hasAllZeroIndices()) 958 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 959 960 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 961 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 962 // If the GEPs only differ by one index, compare it. 963 unsigned NumDifferences = 0; // Keep track of # differences. 964 unsigned DiffOperand = 0; // The operand that differs. 965 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 966 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 967 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 968 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 969 // Irreconcilable differences. 970 NumDifferences = 2; 971 break; 972 } else { 973 if (NumDifferences++) break; 974 DiffOperand = i; 975 } 976 } 977 978 if (NumDifferences == 0) // SAME GEP? 979 return replaceInstUsesWith(I, // No comparison is needed here. 980 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 981 982 else if (NumDifferences == 1 && GEPsInBounds) { 983 Value *LHSV = GEPLHS->getOperand(DiffOperand); 984 Value *RHSV = GEPRHS->getOperand(DiffOperand); 985 // Make sure we do a signed comparison here. 986 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 987 } 988 } 989 990 // Only lower this if the icmp is the only user of the GEP or if we expect 991 // the result to fold to a constant! 992 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 993 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 994 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 995 Value *L = EmitGEPOffset(GEPLHS); 996 Value *R = EmitGEPOffset(GEPRHS); 997 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 998 } 999 } 1000 1001 // Try convert this to an indexed compare by looking through PHIs/casts as a 1002 // last resort. 1003 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1004 } 1005 1006 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1007 const AllocaInst *Alloca, 1008 const Value *Other) { 1009 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1010 1011 // It would be tempting to fold away comparisons between allocas and any 1012 // pointer not based on that alloca (e.g. an argument). However, even 1013 // though such pointers cannot alias, they can still compare equal. 1014 // 1015 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1016 // doesn't escape we can argue that it's impossible to guess its value, and we 1017 // can therefore act as if any such guesses are wrong. 1018 // 1019 // The code below checks that the alloca doesn't escape, and that it's only 1020 // used in a comparison once (the current instruction). The 1021 // single-comparison-use condition ensures that we're trivially folding all 1022 // comparisons against the alloca consistently, and avoids the risk of 1023 // erroneously folding a comparison of the pointer with itself. 1024 1025 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1026 1027 SmallVector<const Use *, 32> Worklist; 1028 for (const Use &U : Alloca->uses()) { 1029 if (Worklist.size() >= MaxIter) 1030 return nullptr; 1031 Worklist.push_back(&U); 1032 } 1033 1034 unsigned NumCmps = 0; 1035 while (!Worklist.empty()) { 1036 assert(Worklist.size() <= MaxIter); 1037 const Use *U = Worklist.pop_back_val(); 1038 const Value *V = U->getUser(); 1039 --MaxIter; 1040 1041 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1042 isa<SelectInst>(V)) { 1043 // Track the uses. 1044 } else if (isa<LoadInst>(V)) { 1045 // Loading from the pointer doesn't escape it. 1046 continue; 1047 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1048 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1049 if (SI->getValueOperand() == U->get()) 1050 return nullptr; 1051 continue; 1052 } else if (isa<ICmpInst>(V)) { 1053 if (NumCmps++) 1054 return nullptr; // Found more than one cmp. 1055 continue; 1056 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1057 switch (Intrin->getIntrinsicID()) { 1058 // These intrinsics don't escape or compare the pointer. Memset is safe 1059 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1060 // we don't allow stores, so src cannot point to V. 1061 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1062 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1063 continue; 1064 default: 1065 return nullptr; 1066 } 1067 } else { 1068 return nullptr; 1069 } 1070 for (const Use &U : V->uses()) { 1071 if (Worklist.size() >= MaxIter) 1072 return nullptr; 1073 Worklist.push_back(&U); 1074 } 1075 } 1076 1077 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1078 return replaceInstUsesWith( 1079 ICI, 1080 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1081 } 1082 1083 /// Fold "icmp pred (X+C), X". 1084 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1085 ICmpInst::Predicate Pred) { 1086 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1087 // so the values can never be equal. Similarly for all other "or equals" 1088 // operators. 1089 assert(!!C && "C should not be zero!"); 1090 1091 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1092 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1093 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1094 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1095 Constant *R = ConstantInt::get(X->getType(), 1096 APInt::getMaxValue(C.getBitWidth()) - C); 1097 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1098 } 1099 1100 // (X+1) >u X --> X <u (0-1) --> X != 255 1101 // (X+2) >u X --> X <u (0-2) --> X <u 254 1102 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1103 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1104 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1105 ConstantInt::get(X->getType(), -C)); 1106 1107 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1108 1109 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1110 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1111 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1112 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1113 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1114 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1115 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1116 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1117 ConstantInt::get(X->getType(), SMax - C)); 1118 1119 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1120 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1121 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1122 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1123 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1124 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1125 1126 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1127 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1128 ConstantInt::get(X->getType(), SMax - (C - 1))); 1129 } 1130 1131 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1132 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1133 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1134 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1135 const APInt &AP1, 1136 const APInt &AP2) { 1137 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1138 1139 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1140 if (I.getPredicate() == I.ICMP_NE) 1141 Pred = CmpInst::getInversePredicate(Pred); 1142 return new ICmpInst(Pred, LHS, RHS); 1143 }; 1144 1145 // Don't bother doing any work for cases which InstSimplify handles. 1146 if (AP2.isNullValue()) 1147 return nullptr; 1148 1149 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1150 if (IsAShr) { 1151 if (AP2.isAllOnesValue()) 1152 return nullptr; 1153 if (AP2.isNegative() != AP1.isNegative()) 1154 return nullptr; 1155 if (AP2.sgt(AP1)) 1156 return nullptr; 1157 } 1158 1159 if (!AP1) 1160 // 'A' must be large enough to shift out the highest set bit. 1161 return getICmp(I.ICMP_UGT, A, 1162 ConstantInt::get(A->getType(), AP2.logBase2())); 1163 1164 if (AP1 == AP2) 1165 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1166 1167 int Shift; 1168 if (IsAShr && AP1.isNegative()) 1169 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1170 else 1171 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1172 1173 if (Shift > 0) { 1174 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1175 // There are multiple solutions if we are comparing against -1 and the LHS 1176 // of the ashr is not a power of two. 1177 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1178 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1179 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1180 } else if (AP1 == AP2.lshr(Shift)) { 1181 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1182 } 1183 } 1184 1185 // Shifting const2 will never be equal to const1. 1186 // FIXME: This should always be handled by InstSimplify? 1187 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1188 return replaceInstUsesWith(I, TorF); 1189 } 1190 1191 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1192 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1193 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1194 const APInt &AP1, 1195 const APInt &AP2) { 1196 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1197 1198 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1199 if (I.getPredicate() == I.ICMP_NE) 1200 Pred = CmpInst::getInversePredicate(Pred); 1201 return new ICmpInst(Pred, LHS, RHS); 1202 }; 1203 1204 // Don't bother doing any work for cases which InstSimplify handles. 1205 if (AP2.isNullValue()) 1206 return nullptr; 1207 1208 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1209 1210 if (!AP1 && AP2TrailingZeros != 0) 1211 return getICmp( 1212 I.ICMP_UGE, A, 1213 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1214 1215 if (AP1 == AP2) 1216 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1217 1218 // Get the distance between the lowest bits that are set. 1219 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1220 1221 if (Shift > 0 && AP2.shl(Shift) == AP1) 1222 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1223 1224 // Shifting const2 will never be equal to const1. 1225 // FIXME: This should always be handled by InstSimplify? 1226 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1227 return replaceInstUsesWith(I, TorF); 1228 } 1229 1230 /// The caller has matched a pattern of the form: 1231 /// I = icmp ugt (add (add A, B), CI2), CI1 1232 /// If this is of the form: 1233 /// sum = a + b 1234 /// if (sum+128 >u 255) 1235 /// Then replace it with llvm.sadd.with.overflow.i8. 1236 /// 1237 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1238 ConstantInt *CI2, ConstantInt *CI1, 1239 InstCombiner &IC) { 1240 // The transformation we're trying to do here is to transform this into an 1241 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1242 // with a narrower add, and discard the add-with-constant that is part of the 1243 // range check (if we can't eliminate it, this isn't profitable). 1244 1245 // In order to eliminate the add-with-constant, the compare can be its only 1246 // use. 1247 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1248 if (!AddWithCst->hasOneUse()) 1249 return nullptr; 1250 1251 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1252 if (!CI2->getValue().isPowerOf2()) 1253 return nullptr; 1254 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1255 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1256 return nullptr; 1257 1258 // The width of the new add formed is 1 more than the bias. 1259 ++NewWidth; 1260 1261 // Check to see that CI1 is an all-ones value with NewWidth bits. 1262 if (CI1->getBitWidth() == NewWidth || 1263 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1264 return nullptr; 1265 1266 // This is only really a signed overflow check if the inputs have been 1267 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1268 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1269 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1270 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1271 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1272 return nullptr; 1273 1274 // In order to replace the original add with a narrower 1275 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1276 // and truncates that discard the high bits of the add. Verify that this is 1277 // the case. 1278 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1279 for (User *U : OrigAdd->users()) { 1280 if (U == AddWithCst) 1281 continue; 1282 1283 // Only accept truncates for now. We would really like a nice recursive 1284 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1285 // chain to see which bits of a value are actually demanded. If the 1286 // original add had another add which was then immediately truncated, we 1287 // could still do the transformation. 1288 TruncInst *TI = dyn_cast<TruncInst>(U); 1289 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1290 return nullptr; 1291 } 1292 1293 // If the pattern matches, truncate the inputs to the narrower type and 1294 // use the sadd_with_overflow intrinsic to efficiently compute both the 1295 // result and the overflow bit. 1296 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1297 Function *F = Intrinsic::getDeclaration( 1298 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1299 1300 InstCombiner::BuilderTy &Builder = IC.Builder; 1301 1302 // Put the new code above the original add, in case there are any uses of the 1303 // add between the add and the compare. 1304 Builder.SetInsertPoint(OrigAdd); 1305 1306 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1307 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1308 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1309 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1310 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1311 1312 // The inner add was the result of the narrow add, zero extended to the 1313 // wider type. Replace it with the result computed by the intrinsic. 1314 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1315 1316 // The original icmp gets replaced with the overflow value. 1317 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1318 } 1319 1320 // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1321 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1322 CmpInst::Predicate Pred = Cmp.getPredicate(); 1323 Value *X = Cmp.getOperand(0); 1324 1325 if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) { 1326 Value *A, *B; 1327 SelectPatternResult SPR = matchSelectPattern(X, A, B); 1328 if (SPR.Flavor == SPF_SMIN) { 1329 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1330 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1331 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1332 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1333 } 1334 } 1335 return nullptr; 1336 } 1337 1338 /// Fold icmp Pred X, C. 1339 /// TODO: This code structure does not make sense. The saturating add fold 1340 /// should be moved to some other helper and extended as noted below (it is also 1341 /// possible that code has been made unnecessary - do we canonicalize IR to 1342 /// overflow/saturating intrinsics or not?). 1343 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1344 // Match the following pattern, which is a common idiom when writing 1345 // overflow-safe integer arithmetic functions. The source performs an addition 1346 // in wider type and explicitly checks for overflow using comparisons against 1347 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1348 // 1349 // TODO: This could probably be generalized to handle other overflow-safe 1350 // operations if we worked out the formulas to compute the appropriate magic 1351 // constants. 1352 // 1353 // sum = a + b 1354 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1355 CmpInst::Predicate Pred = Cmp.getPredicate(); 1356 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1357 Value *A, *B; 1358 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1359 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1360 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1361 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1362 return Res; 1363 1364 return nullptr; 1365 } 1366 1367 /// Canonicalize icmp instructions based on dominating conditions. 1368 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1369 // This is a cheap/incomplete check for dominance - just match a single 1370 // predecessor with a conditional branch. 1371 BasicBlock *CmpBB = Cmp.getParent(); 1372 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1373 if (!DomBB) 1374 return nullptr; 1375 1376 Value *DomCond; 1377 BasicBlock *TrueBB, *FalseBB; 1378 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1379 return nullptr; 1380 1381 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1382 "Predecessor block does not point to successor?"); 1383 1384 // The branch should get simplified. Don't bother simplifying this condition. 1385 if (TrueBB == FalseBB) 1386 return nullptr; 1387 1388 // Try to simplify this compare to T/F based on the dominating condition. 1389 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1390 if (Imp) 1391 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1392 1393 CmpInst::Predicate Pred = Cmp.getPredicate(); 1394 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1395 ICmpInst::Predicate DomPred; 1396 const APInt *C, *DomC; 1397 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1398 match(Y, m_APInt(C))) { 1399 // We have 2 compares of a variable with constants. Calculate the constant 1400 // ranges of those compares to see if we can transform the 2nd compare: 1401 // DomBB: 1402 // DomCond = icmp DomPred X, DomC 1403 // br DomCond, CmpBB, FalseBB 1404 // CmpBB: 1405 // Cmp = icmp Pred X, C 1406 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1407 ConstantRange DominatingCR = 1408 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1409 : ConstantRange::makeExactICmpRegion( 1410 CmpInst::getInversePredicate(DomPred), *DomC); 1411 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1412 ConstantRange Difference = DominatingCR.difference(CR); 1413 if (Intersection.isEmptySet()) 1414 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1415 if (Difference.isEmptySet()) 1416 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1417 1418 // Canonicalizing a sign bit comparison that gets used in a branch, 1419 // pessimizes codegen by generating branch on zero instruction instead 1420 // of a test and branch. So we avoid canonicalizing in such situations 1421 // because test and branch instruction has better branch displacement 1422 // than compare and branch instruction. 1423 bool UnusedBit; 1424 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1425 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1426 return nullptr; 1427 1428 if (const APInt *EqC = Intersection.getSingleElement()) 1429 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1430 if (const APInt *NeC = Difference.getSingleElement()) 1431 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1432 } 1433 1434 return nullptr; 1435 } 1436 1437 /// Fold icmp (trunc X, Y), C. 1438 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1439 TruncInst *Trunc, 1440 const APInt &C) { 1441 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1442 Value *X = Trunc->getOperand(0); 1443 if (C.isOneValue() && C.getBitWidth() > 1) { 1444 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1445 Value *V = nullptr; 1446 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1447 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1448 ConstantInt::get(V->getType(), 1)); 1449 } 1450 1451 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1452 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1453 // of the high bits truncated out of x are known. 1454 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1455 SrcBits = X->getType()->getScalarSizeInBits(); 1456 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1457 1458 // If all the high bits are known, we can do this xform. 1459 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1460 // Pull in the high bits from known-ones set. 1461 APInt NewRHS = C.zext(SrcBits); 1462 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1463 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1464 } 1465 } 1466 1467 return nullptr; 1468 } 1469 1470 /// Fold icmp (xor X, Y), C. 1471 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1472 BinaryOperator *Xor, 1473 const APInt &C) { 1474 Value *X = Xor->getOperand(0); 1475 Value *Y = Xor->getOperand(1); 1476 const APInt *XorC; 1477 if (!match(Y, m_APInt(XorC))) 1478 return nullptr; 1479 1480 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1481 // fold the xor. 1482 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1483 bool TrueIfSigned = false; 1484 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1485 1486 // If the sign bit of the XorCst is not set, there is no change to 1487 // the operation, just stop using the Xor. 1488 if (!XorC->isNegative()) { 1489 Cmp.setOperand(0, X); 1490 Worklist.Add(Xor); 1491 return &Cmp; 1492 } 1493 1494 // Emit the opposite comparison. 1495 if (TrueIfSigned) 1496 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1497 ConstantInt::getAllOnesValue(X->getType())); 1498 else 1499 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1500 ConstantInt::getNullValue(X->getType())); 1501 } 1502 1503 if (Xor->hasOneUse()) { 1504 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1505 if (!Cmp.isEquality() && XorC->isSignMask()) { 1506 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1507 : Cmp.getSignedPredicate(); 1508 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1509 } 1510 1511 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1512 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1513 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1514 : Cmp.getSignedPredicate(); 1515 Pred = Cmp.getSwappedPredicate(Pred); 1516 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1517 } 1518 } 1519 1520 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1521 if (Pred == ICmpInst::ICMP_UGT) { 1522 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1523 if (*XorC == ~C && (C + 1).isPowerOf2()) 1524 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1525 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1526 if (*XorC == C && (C + 1).isPowerOf2()) 1527 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1528 } 1529 if (Pred == ICmpInst::ICMP_ULT) { 1530 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1531 if (*XorC == -C && C.isPowerOf2()) 1532 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1533 ConstantInt::get(X->getType(), ~C)); 1534 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1535 if (*XorC == C && (-C).isPowerOf2()) 1536 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1537 ConstantInt::get(X->getType(), ~C)); 1538 } 1539 return nullptr; 1540 } 1541 1542 /// Fold icmp (and (sh X, Y), C2), C1. 1543 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1544 const APInt &C1, const APInt &C2) { 1545 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1546 if (!Shift || !Shift->isShift()) 1547 return nullptr; 1548 1549 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1550 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1551 // code produced by the clang front-end, for bitfield access. 1552 // This seemingly simple opportunity to fold away a shift turns out to be 1553 // rather complicated. See PR17827 for details. 1554 unsigned ShiftOpcode = Shift->getOpcode(); 1555 bool IsShl = ShiftOpcode == Instruction::Shl; 1556 const APInt *C3; 1557 if (match(Shift->getOperand(1), m_APInt(C3))) { 1558 bool CanFold = false; 1559 if (ShiftOpcode == Instruction::Shl) { 1560 // For a left shift, we can fold if the comparison is not signed. We can 1561 // also fold a signed comparison if the mask value and comparison value 1562 // are not negative. These constraints may not be obvious, but we can 1563 // prove that they are correct using an SMT solver. 1564 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) 1565 CanFold = true; 1566 } else { 1567 bool IsAshr = ShiftOpcode == Instruction::AShr; 1568 // For a logical right shift, we can fold if the comparison is not signed. 1569 // We can also fold a signed comparison if the shifted mask value and the 1570 // shifted comparison value are not negative. These constraints may not be 1571 // obvious, but we can prove that they are correct using an SMT solver. 1572 // For an arithmetic shift right we can do the same, if we ensure 1573 // the And doesn't use any bits being shifted in. Normally these would 1574 // be turned into lshr by SimplifyDemandedBits, but not if there is an 1575 // additional user. 1576 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { 1577 if (!Cmp.isSigned() || 1578 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) 1579 CanFold = true; 1580 } 1581 } 1582 1583 if (CanFold) { 1584 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); 1585 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1586 // Check to see if we are shifting out any of the bits being compared. 1587 if (SameAsC1 != C1) { 1588 // If we shifted bits out, the fold is not going to work out. As a 1589 // special case, check to see if this means that the result is always 1590 // true or false now. 1591 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1592 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1593 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1594 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1595 } else { 1596 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1597 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); 1598 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1599 And->setOperand(0, Shift->getOperand(0)); 1600 Worklist.Add(Shift); // Shift is dead. 1601 return &Cmp; 1602 } 1603 } 1604 } 1605 1606 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1607 // preferable because it allows the C2 << Y expression to be hoisted out of a 1608 // loop if Y is invariant and X is not. 1609 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1610 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1611 // Compute C2 << Y. 1612 Value *NewShift = 1613 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1614 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1615 1616 // Compute X & (C2 << Y). 1617 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1618 Cmp.setOperand(0, NewAnd); 1619 return &Cmp; 1620 } 1621 1622 return nullptr; 1623 } 1624 1625 /// Fold icmp (and X, C2), C1. 1626 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1627 BinaryOperator *And, 1628 const APInt &C1) { 1629 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1630 1631 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1632 // TODO: We canonicalize to the longer form for scalars because we have 1633 // better analysis/folds for icmp, and codegen may be better with icmp. 1634 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1635 match(And->getOperand(1), m_One())) 1636 return new TruncInst(And->getOperand(0), Cmp.getType()); 1637 1638 const APInt *C2; 1639 Value *X; 1640 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1641 return nullptr; 1642 1643 // Don't perform the following transforms if the AND has multiple uses 1644 if (!And->hasOneUse()) 1645 return nullptr; 1646 1647 if (Cmp.isEquality() && C1.isNullValue()) { 1648 // Restrict this fold to single-use 'and' (PR10267). 1649 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1650 if (C2->isSignMask()) { 1651 Constant *Zero = Constant::getNullValue(X->getType()); 1652 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1653 return new ICmpInst(NewPred, X, Zero); 1654 } 1655 } 1656 1657 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1658 // the input width without changing the value produced, eliminate the cast: 1659 // 1660 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1661 // 1662 // We can do this transformation if the constants do not have their sign bits 1663 // set or if it is an equality comparison. Extending a relational comparison 1664 // when we're checking the sign bit would not work. 1665 Value *W; 1666 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1667 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1668 // TODO: Is this a good transform for vectors? Wider types may reduce 1669 // throughput. Should this transform be limited (even for scalars) by using 1670 // shouldChangeType()? 1671 if (!Cmp.getType()->isVectorTy()) { 1672 Type *WideType = W->getType(); 1673 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1674 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1675 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1676 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1677 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1678 } 1679 } 1680 1681 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1682 return I; 1683 1684 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1685 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1686 // 1687 // iff pred isn't signed 1688 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1689 match(And->getOperand(1), m_One())) { 1690 Constant *One = cast<Constant>(And->getOperand(1)); 1691 Value *Or = And->getOperand(0); 1692 Value *A, *B, *LShr; 1693 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1694 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1695 unsigned UsesRemoved = 0; 1696 if (And->hasOneUse()) 1697 ++UsesRemoved; 1698 if (Or->hasOneUse()) 1699 ++UsesRemoved; 1700 if (LShr->hasOneUse()) 1701 ++UsesRemoved; 1702 1703 // Compute A & ((1 << B) | 1) 1704 Value *NewOr = nullptr; 1705 if (auto *C = dyn_cast<Constant>(B)) { 1706 if (UsesRemoved >= 1) 1707 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1708 } else { 1709 if (UsesRemoved >= 3) 1710 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1711 /*HasNUW=*/true), 1712 One, Or->getName()); 1713 } 1714 if (NewOr) { 1715 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1716 Cmp.setOperand(0, NewAnd); 1717 return &Cmp; 1718 } 1719 } 1720 } 1721 1722 return nullptr; 1723 } 1724 1725 /// Fold icmp (and X, Y), C. 1726 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1727 BinaryOperator *And, 1728 const APInt &C) { 1729 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1730 return I; 1731 1732 // TODO: These all require that Y is constant too, so refactor with the above. 1733 1734 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1735 Value *X = And->getOperand(0); 1736 Value *Y = And->getOperand(1); 1737 if (auto *LI = dyn_cast<LoadInst>(X)) 1738 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1739 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1740 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1741 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1742 ConstantInt *C2 = cast<ConstantInt>(Y); 1743 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1744 return Res; 1745 } 1746 1747 if (!Cmp.isEquality()) 1748 return nullptr; 1749 1750 // X & -C == -C -> X > u ~C 1751 // X & -C != -C -> X <= u ~C 1752 // iff C is a power of 2 1753 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1754 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1755 : CmpInst::ICMP_ULE; 1756 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1757 } 1758 1759 // (X & C2) == 0 -> (trunc X) >= 0 1760 // (X & C2) != 0 -> (trunc X) < 0 1761 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1762 const APInt *C2; 1763 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1764 int32_t ExactLogBase2 = C2->exactLogBase2(); 1765 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1766 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1767 if (And->getType()->isVectorTy()) 1768 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1769 Value *Trunc = Builder.CreateTrunc(X, NTy); 1770 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1771 : CmpInst::ICMP_SLT; 1772 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1773 } 1774 } 1775 1776 return nullptr; 1777 } 1778 1779 /// Fold icmp (or X, Y), C. 1780 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1781 const APInt &C) { 1782 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1783 if (C.isOneValue()) { 1784 // icmp slt signum(V) 1 --> icmp slt V, 1 1785 Value *V = nullptr; 1786 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1787 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1788 ConstantInt::get(V->getType(), 1)); 1789 } 1790 1791 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1792 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) { 1793 // X | C == C --> X <=u C 1794 // X | C != C --> X >u C 1795 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1796 if ((C + 1).isPowerOf2()) { 1797 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1798 return new ICmpInst(Pred, OrOp0, OrOp1); 1799 } 1800 // More general: are all bits outside of a mask constant set or not set? 1801 // X | C == C --> (X & ~C) == 0 1802 // X | C != C --> (X & ~C) != 0 1803 if (Or->hasOneUse()) { 1804 Value *A = Builder.CreateAnd(OrOp0, ~C); 1805 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType())); 1806 } 1807 } 1808 1809 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1810 return nullptr; 1811 1812 Value *P, *Q; 1813 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1814 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1815 // -> and (icmp eq P, null), (icmp eq Q, null). 1816 Value *CmpP = 1817 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1818 Value *CmpQ = 1819 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1820 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1821 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1822 } 1823 1824 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1825 // a shorter form that has more potential to be folded even further. 1826 Value *X1, *X2, *X3, *X4; 1827 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1828 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1829 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1830 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1831 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1832 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1833 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1834 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1835 } 1836 1837 return nullptr; 1838 } 1839 1840 /// Fold icmp (mul X, Y), C. 1841 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1842 BinaryOperator *Mul, 1843 const APInt &C) { 1844 const APInt *MulC; 1845 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1846 return nullptr; 1847 1848 // If this is a test of the sign bit and the multiply is sign-preserving with 1849 // a constant operand, use the multiply LHS operand instead. 1850 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1851 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1852 if (MulC->isNegative()) 1853 Pred = ICmpInst::getSwappedPredicate(Pred); 1854 return new ICmpInst(Pred, Mul->getOperand(0), 1855 Constant::getNullValue(Mul->getType())); 1856 } 1857 1858 return nullptr; 1859 } 1860 1861 /// Fold icmp (shl 1, Y), C. 1862 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1863 const APInt &C) { 1864 Value *Y; 1865 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1866 return nullptr; 1867 1868 Type *ShiftType = Shl->getType(); 1869 unsigned TypeBits = C.getBitWidth(); 1870 bool CIsPowerOf2 = C.isPowerOf2(); 1871 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1872 if (Cmp.isUnsigned()) { 1873 // (1 << Y) pred C -> Y pred Log2(C) 1874 if (!CIsPowerOf2) { 1875 // (1 << Y) < 30 -> Y <= 4 1876 // (1 << Y) <= 30 -> Y <= 4 1877 // (1 << Y) >= 30 -> Y > 4 1878 // (1 << Y) > 30 -> Y > 4 1879 if (Pred == ICmpInst::ICMP_ULT) 1880 Pred = ICmpInst::ICMP_ULE; 1881 else if (Pred == ICmpInst::ICMP_UGE) 1882 Pred = ICmpInst::ICMP_UGT; 1883 } 1884 1885 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1886 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1887 unsigned CLog2 = C.logBase2(); 1888 if (CLog2 == TypeBits - 1) { 1889 if (Pred == ICmpInst::ICMP_UGE) 1890 Pred = ICmpInst::ICMP_EQ; 1891 else if (Pred == ICmpInst::ICMP_ULT) 1892 Pred = ICmpInst::ICMP_NE; 1893 } 1894 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1895 } else if (Cmp.isSigned()) { 1896 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1897 if (C.isAllOnesValue()) { 1898 // (1 << Y) <= -1 -> Y == 31 1899 if (Pred == ICmpInst::ICMP_SLE) 1900 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1901 1902 // (1 << Y) > -1 -> Y != 31 1903 if (Pred == ICmpInst::ICMP_SGT) 1904 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1905 } else if (!C) { 1906 // (1 << Y) < 0 -> Y == 31 1907 // (1 << Y) <= 0 -> Y == 31 1908 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1909 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1910 1911 // (1 << Y) >= 0 -> Y != 31 1912 // (1 << Y) > 0 -> Y != 31 1913 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1914 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1915 } 1916 } else if (Cmp.isEquality() && CIsPowerOf2) { 1917 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 1918 } 1919 1920 return nullptr; 1921 } 1922 1923 /// Fold icmp (shl X, Y), C. 1924 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 1925 BinaryOperator *Shl, 1926 const APInt &C) { 1927 const APInt *ShiftVal; 1928 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 1929 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 1930 1931 const APInt *ShiftAmt; 1932 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 1933 return foldICmpShlOne(Cmp, Shl, C); 1934 1935 // Check that the shift amount is in range. If not, don't perform undefined 1936 // shifts. When the shift is visited, it will be simplified. 1937 unsigned TypeBits = C.getBitWidth(); 1938 if (ShiftAmt->uge(TypeBits)) 1939 return nullptr; 1940 1941 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1942 Value *X = Shl->getOperand(0); 1943 Type *ShType = Shl->getType(); 1944 1945 // NSW guarantees that we are only shifting out sign bits from the high bits, 1946 // so we can ASHR the compare constant without needing a mask and eliminate 1947 // the shift. 1948 if (Shl->hasNoSignedWrap()) { 1949 if (Pred == ICmpInst::ICMP_SGT) { 1950 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 1951 APInt ShiftedC = C.ashr(*ShiftAmt); 1952 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1953 } 1954 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1955 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 1956 APInt ShiftedC = C.ashr(*ShiftAmt); 1957 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1958 } 1959 if (Pred == ICmpInst::ICMP_SLT) { 1960 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 1961 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 1962 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 1963 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 1964 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 1965 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 1966 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1967 } 1968 // If this is a signed comparison to 0 and the shift is sign preserving, 1969 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 1970 // do that if we're sure to not continue on in this function. 1971 if (isSignTest(Pred, C)) 1972 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 1973 } 1974 1975 // NUW guarantees that we are only shifting out zero bits from the high bits, 1976 // so we can LSHR the compare constant without needing a mask and eliminate 1977 // the shift. 1978 if (Shl->hasNoUnsignedWrap()) { 1979 if (Pred == ICmpInst::ICMP_UGT) { 1980 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 1981 APInt ShiftedC = C.lshr(*ShiftAmt); 1982 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1983 } 1984 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1985 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 1986 APInt ShiftedC = C.lshr(*ShiftAmt); 1987 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1988 } 1989 if (Pred == ICmpInst::ICMP_ULT) { 1990 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 1991 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 1992 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 1993 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 1994 assert(C.ugt(0) && "ult 0 should have been eliminated"); 1995 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 1996 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1997 } 1998 } 1999 2000 if (Cmp.isEquality() && Shl->hasOneUse()) { 2001 // Strength-reduce the shift into an 'and'. 2002 Constant *Mask = ConstantInt::get( 2003 ShType, 2004 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2005 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2006 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2007 return new ICmpInst(Pred, And, LShrC); 2008 } 2009 2010 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2011 bool TrueIfSigned = false; 2012 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2013 // (X << 31) <s 0 --> (X & 1) != 0 2014 Constant *Mask = ConstantInt::get( 2015 ShType, 2016 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2017 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2018 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2019 And, Constant::getNullValue(ShType)); 2020 } 2021 2022 // Transform (icmp pred iM (shl iM %v, N), C) 2023 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2024 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2025 // This enables us to get rid of the shift in favor of a trunc that may be 2026 // free on the target. It has the additional benefit of comparing to a 2027 // smaller constant that may be more target-friendly. 2028 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2029 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2030 DL.isLegalInteger(TypeBits - Amt)) { 2031 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2032 if (ShType->isVectorTy()) 2033 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2034 Constant *NewC = 2035 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2036 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2037 } 2038 2039 return nullptr; 2040 } 2041 2042 /// Fold icmp ({al}shr X, Y), C. 2043 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2044 BinaryOperator *Shr, 2045 const APInt &C) { 2046 // An exact shr only shifts out zero bits, so: 2047 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2048 Value *X = Shr->getOperand(0); 2049 CmpInst::Predicate Pred = Cmp.getPredicate(); 2050 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2051 C.isNullValue()) 2052 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2053 2054 const APInt *ShiftVal; 2055 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2056 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2057 2058 const APInt *ShiftAmt; 2059 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2060 return nullptr; 2061 2062 // Check that the shift amount is in range. If not, don't perform undefined 2063 // shifts. When the shift is visited it will be simplified. 2064 unsigned TypeBits = C.getBitWidth(); 2065 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2066 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2067 return nullptr; 2068 2069 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2070 bool IsExact = Shr->isExact(); 2071 Type *ShrTy = Shr->getType(); 2072 // TODO: If we could guarantee that InstSimplify would handle all of the 2073 // constant-value-based preconditions in the folds below, then we could assert 2074 // those conditions rather than checking them. This is difficult because of 2075 // undef/poison (PR34838). 2076 if (IsAShr) { 2077 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2078 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2079 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2080 APInt ShiftedC = C.shl(ShAmtVal); 2081 if (ShiftedC.ashr(ShAmtVal) == C) 2082 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2083 } 2084 if (Pred == CmpInst::ICMP_SGT) { 2085 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2086 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2087 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2088 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2089 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2090 } 2091 } else { 2092 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2093 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2094 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2095 APInt ShiftedC = C.shl(ShAmtVal); 2096 if (ShiftedC.lshr(ShAmtVal) == C) 2097 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2098 } 2099 if (Pred == CmpInst::ICMP_UGT) { 2100 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2101 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2102 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2103 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2104 } 2105 } 2106 2107 if (!Cmp.isEquality()) 2108 return nullptr; 2109 2110 // Handle equality comparisons of shift-by-constant. 2111 2112 // If the comparison constant changes with the shift, the comparison cannot 2113 // succeed (bits of the comparison constant cannot match the shifted value). 2114 // This should be known by InstSimplify and already be folded to true/false. 2115 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2116 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2117 "Expected icmp+shr simplify did not occur."); 2118 2119 // If the bits shifted out are known zero, compare the unshifted value: 2120 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2121 if (Shr->isExact()) 2122 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2123 2124 if (Shr->hasOneUse()) { 2125 // Canonicalize the shift into an 'and': 2126 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2127 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2128 Constant *Mask = ConstantInt::get(ShrTy, Val); 2129 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2130 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2131 } 2132 2133 return nullptr; 2134 } 2135 2136 /// Fold icmp (udiv X, Y), C. 2137 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2138 BinaryOperator *UDiv, 2139 const APInt &C) { 2140 const APInt *C2; 2141 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2142 return nullptr; 2143 2144 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2145 2146 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2147 Value *Y = UDiv->getOperand(1); 2148 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2149 assert(!C.isMaxValue() && 2150 "icmp ugt X, UINT_MAX should have been simplified already."); 2151 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2152 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2153 } 2154 2155 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2156 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2157 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2158 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2159 ConstantInt::get(Y->getType(), C2->udiv(C))); 2160 } 2161 2162 return nullptr; 2163 } 2164 2165 /// Fold icmp ({su}div X, Y), C. 2166 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2167 BinaryOperator *Div, 2168 const APInt &C) { 2169 // Fold: icmp pred ([us]div X, C2), C -> range test 2170 // Fold this div into the comparison, producing a range check. 2171 // Determine, based on the divide type, what the range is being 2172 // checked. If there is an overflow on the low or high side, remember 2173 // it, otherwise compute the range [low, hi) bounding the new value. 2174 // See: InsertRangeTest above for the kinds of replacements possible. 2175 const APInt *C2; 2176 if (!match(Div->getOperand(1), m_APInt(C2))) 2177 return nullptr; 2178 2179 // FIXME: If the operand types don't match the type of the divide 2180 // then don't attempt this transform. The code below doesn't have the 2181 // logic to deal with a signed divide and an unsigned compare (and 2182 // vice versa). This is because (x /s C2) <s C produces different 2183 // results than (x /s C2) <u C or (x /u C2) <s C or even 2184 // (x /u C2) <u C. Simply casting the operands and result won't 2185 // work. :( The if statement below tests that condition and bails 2186 // if it finds it. 2187 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2188 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2189 return nullptr; 2190 2191 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2192 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2193 // division-by-constant cases should be present, we can not assert that they 2194 // have happened before we reach this icmp instruction. 2195 if (C2->isNullValue() || C2->isOneValue() || 2196 (DivIsSigned && C2->isAllOnesValue())) 2197 return nullptr; 2198 2199 // Compute Prod = C * C2. We are essentially solving an equation of 2200 // form X / C2 = C. We solve for X by multiplying C2 and C. 2201 // By solving for X, we can turn this into a range check instead of computing 2202 // a divide. 2203 APInt Prod = C * *C2; 2204 2205 // Determine if the product overflows by seeing if the product is not equal to 2206 // the divide. Make sure we do the same kind of divide as in the LHS 2207 // instruction that we're folding. 2208 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2209 2210 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2211 2212 // If the division is known to be exact, then there is no remainder from the 2213 // divide, so the covered range size is unit, otherwise it is the divisor. 2214 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2215 2216 // Figure out the interval that is being checked. For example, a comparison 2217 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2218 // Compute this interval based on the constants involved and the signedness of 2219 // the compare/divide. This computes a half-open interval, keeping track of 2220 // whether either value in the interval overflows. After analysis each 2221 // overflow variable is set to 0 if it's corresponding bound variable is valid 2222 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2223 int LoOverflow = 0, HiOverflow = 0; 2224 APInt LoBound, HiBound; 2225 2226 if (!DivIsSigned) { // udiv 2227 // e.g. X/5 op 3 --> [15, 20) 2228 LoBound = Prod; 2229 HiOverflow = LoOverflow = ProdOV; 2230 if (!HiOverflow) { 2231 // If this is not an exact divide, then many values in the range collapse 2232 // to the same result value. 2233 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2234 } 2235 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2236 if (C.isNullValue()) { // (X / pos) op 0 2237 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2238 LoBound = -(RangeSize - 1); 2239 HiBound = RangeSize; 2240 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2241 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2242 HiOverflow = LoOverflow = ProdOV; 2243 if (!HiOverflow) 2244 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2245 } else { // (X / pos) op neg 2246 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2247 HiBound = Prod + 1; 2248 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2249 if (!LoOverflow) { 2250 APInt DivNeg = -RangeSize; 2251 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2252 } 2253 } 2254 } else if (C2->isNegative()) { // Divisor is < 0. 2255 if (Div->isExact()) 2256 RangeSize.negate(); 2257 if (C.isNullValue()) { // (X / neg) op 0 2258 // e.g. X/-5 op 0 --> [-4, 5) 2259 LoBound = RangeSize + 1; 2260 HiBound = -RangeSize; 2261 if (HiBound == *C2) { // -INTMIN = INTMIN 2262 HiOverflow = 1; // [INTMIN+1, overflow) 2263 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2264 } 2265 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2266 // e.g. X/-5 op 3 --> [-19, -14) 2267 HiBound = Prod + 1; 2268 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2269 if (!LoOverflow) 2270 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2271 } else { // (X / neg) op neg 2272 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2273 LoOverflow = HiOverflow = ProdOV; 2274 if (!HiOverflow) 2275 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2276 } 2277 2278 // Dividing by a negative swaps the condition. LT <-> GT 2279 Pred = ICmpInst::getSwappedPredicate(Pred); 2280 } 2281 2282 Value *X = Div->getOperand(0); 2283 switch (Pred) { 2284 default: llvm_unreachable("Unhandled icmp opcode!"); 2285 case ICmpInst::ICMP_EQ: 2286 if (LoOverflow && HiOverflow) 2287 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2288 if (HiOverflow) 2289 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2290 ICmpInst::ICMP_UGE, X, 2291 ConstantInt::get(Div->getType(), LoBound)); 2292 if (LoOverflow) 2293 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2294 ICmpInst::ICMP_ULT, X, 2295 ConstantInt::get(Div->getType(), HiBound)); 2296 return replaceInstUsesWith( 2297 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2298 case ICmpInst::ICMP_NE: 2299 if (LoOverflow && HiOverflow) 2300 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2301 if (HiOverflow) 2302 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2303 ICmpInst::ICMP_ULT, X, 2304 ConstantInt::get(Div->getType(), LoBound)); 2305 if (LoOverflow) 2306 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2307 ICmpInst::ICMP_UGE, X, 2308 ConstantInt::get(Div->getType(), HiBound)); 2309 return replaceInstUsesWith(Cmp, 2310 insertRangeTest(X, LoBound, HiBound, 2311 DivIsSigned, false)); 2312 case ICmpInst::ICMP_ULT: 2313 case ICmpInst::ICMP_SLT: 2314 if (LoOverflow == +1) // Low bound is greater than input range. 2315 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2316 if (LoOverflow == -1) // Low bound is less than input range. 2317 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2318 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2319 case ICmpInst::ICMP_UGT: 2320 case ICmpInst::ICMP_SGT: 2321 if (HiOverflow == +1) // High bound greater than input range. 2322 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2323 if (HiOverflow == -1) // High bound less than input range. 2324 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2325 if (Pred == ICmpInst::ICMP_UGT) 2326 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2327 ConstantInt::get(Div->getType(), HiBound)); 2328 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2329 ConstantInt::get(Div->getType(), HiBound)); 2330 } 2331 2332 return nullptr; 2333 } 2334 2335 /// Fold icmp (sub X, Y), C. 2336 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2337 BinaryOperator *Sub, 2338 const APInt &C) { 2339 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2340 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2341 const APInt *C2; 2342 APInt SubResult; 2343 2344 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2345 if (match(X, m_APInt(C2)) && 2346 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2347 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2348 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2349 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2350 ConstantInt::get(Y->getType(), SubResult)); 2351 2352 // The following transforms are only worth it if the only user of the subtract 2353 // is the icmp. 2354 if (!Sub->hasOneUse()) 2355 return nullptr; 2356 2357 if (Sub->hasNoSignedWrap()) { 2358 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2359 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2360 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2361 2362 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2363 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2364 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2365 2366 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2367 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2368 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2369 2370 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2371 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2372 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2373 } 2374 2375 if (!match(X, m_APInt(C2))) 2376 return nullptr; 2377 2378 // C2 - Y <u C -> (Y | (C - 1)) == C2 2379 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2380 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2381 (*C2 & (C - 1)) == (C - 1)) 2382 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2383 2384 // C2 - Y >u C -> (Y | C) != C2 2385 // iff C2 & C == C and C + 1 is a power of 2 2386 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2387 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2388 2389 return nullptr; 2390 } 2391 2392 /// Fold icmp (add X, Y), C. 2393 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2394 BinaryOperator *Add, 2395 const APInt &C) { 2396 Value *Y = Add->getOperand(1); 2397 const APInt *C2; 2398 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2399 return nullptr; 2400 2401 // Fold icmp pred (add X, C2), C. 2402 Value *X = Add->getOperand(0); 2403 Type *Ty = Add->getType(); 2404 CmpInst::Predicate Pred = Cmp.getPredicate(); 2405 2406 if (!Add->hasOneUse()) 2407 return nullptr; 2408 2409 // If the add does not wrap, we can always adjust the compare by subtracting 2410 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2411 // are canonicalized to SGT/SLT/UGT/ULT. 2412 if ((Add->hasNoSignedWrap() && 2413 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2414 (Add->hasNoUnsignedWrap() && 2415 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2416 bool Overflow; 2417 APInt NewC = 2418 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2419 // If there is overflow, the result must be true or false. 2420 // TODO: Can we assert there is no overflow because InstSimplify always 2421 // handles those cases? 2422 if (!Overflow) 2423 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2424 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2425 } 2426 2427 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2428 const APInt &Upper = CR.getUpper(); 2429 const APInt &Lower = CR.getLower(); 2430 if (Cmp.isSigned()) { 2431 if (Lower.isSignMask()) 2432 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2433 if (Upper.isSignMask()) 2434 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2435 } else { 2436 if (Lower.isMinValue()) 2437 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2438 if (Upper.isMinValue()) 2439 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2440 } 2441 2442 // X+C <u C2 -> (X & -C2) == C 2443 // iff C & (C2-1) == 0 2444 // C2 is a power of 2 2445 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2446 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2447 ConstantExpr::getNeg(cast<Constant>(Y))); 2448 2449 // X+C >u C2 -> (X & ~C2) != C 2450 // iff C & C2 == 0 2451 // C2+1 is a power of 2 2452 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2453 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2454 ConstantExpr::getNeg(cast<Constant>(Y))); 2455 2456 return nullptr; 2457 } 2458 2459 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2460 Value *&RHS, ConstantInt *&Less, 2461 ConstantInt *&Equal, 2462 ConstantInt *&Greater) { 2463 // TODO: Generalize this to work with other comparison idioms or ensure 2464 // they get canonicalized into this form. 2465 2466 // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32 2467 // Greater), where Equal, Less and Greater are placeholders for any three 2468 // constants. 2469 ICmpInst::Predicate PredA, PredB; 2470 if (match(SI->getTrueValue(), m_ConstantInt(Equal)) && 2471 match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) && 2472 PredA == ICmpInst::ICMP_EQ && 2473 match(SI->getFalseValue(), 2474 m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)), 2475 m_ConstantInt(Less), m_ConstantInt(Greater))) && 2476 PredB == ICmpInst::ICMP_SLT) { 2477 return true; 2478 } 2479 return false; 2480 } 2481 2482 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2483 SelectInst *Select, 2484 ConstantInt *C) { 2485 2486 assert(C && "Cmp RHS should be a constant int!"); 2487 // If we're testing a constant value against the result of a three way 2488 // comparison, the result can be expressed directly in terms of the 2489 // original values being compared. Note: We could possibly be more 2490 // aggressive here and remove the hasOneUse test. The original select is 2491 // really likely to simplify or sink when we remove a test of the result. 2492 Value *OrigLHS, *OrigRHS; 2493 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2494 if (Cmp.hasOneUse() && 2495 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2496 C3GreaterThan)) { 2497 assert(C1LessThan && C2Equal && C3GreaterThan); 2498 2499 bool TrueWhenLessThan = 2500 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2501 ->isAllOnesValue(); 2502 bool TrueWhenEqual = 2503 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2504 ->isAllOnesValue(); 2505 bool TrueWhenGreaterThan = 2506 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2507 ->isAllOnesValue(); 2508 2509 // This generates the new instruction that will replace the original Cmp 2510 // Instruction. Instead of enumerating the various combinations when 2511 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2512 // false, we rely on chaining of ORs and future passes of InstCombine to 2513 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2514 2515 // When none of the three constants satisfy the predicate for the RHS (C), 2516 // the entire original Cmp can be simplified to a false. 2517 Value *Cond = Builder.getFalse(); 2518 if (TrueWhenLessThan) 2519 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2520 OrigLHS, OrigRHS)); 2521 if (TrueWhenEqual) 2522 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2523 OrigLHS, OrigRHS)); 2524 if (TrueWhenGreaterThan) 2525 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2526 OrigLHS, OrigRHS)); 2527 2528 return replaceInstUsesWith(Cmp, Cond); 2529 } 2530 return nullptr; 2531 } 2532 2533 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2534 InstCombiner::BuilderTy &Builder) { 2535 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2536 if (!Bitcast) 2537 return nullptr; 2538 2539 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2540 Value *Op1 = Cmp.getOperand(1); 2541 Value *BCSrcOp = Bitcast->getOperand(0); 2542 2543 // Make sure the bitcast doesn't change the number of vector elements. 2544 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2545 Bitcast->getDestTy()->getScalarSizeInBits()) { 2546 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2547 Value *X; 2548 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2549 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2550 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2551 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2552 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2553 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2554 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2555 match(Op1, m_Zero())) 2556 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2557 2558 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2559 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2560 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2561 2562 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2563 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2564 return new ICmpInst(Pred, X, 2565 ConstantInt::getAllOnesValue(X->getType())); 2566 } 2567 2568 // Zero-equality checks are preserved through unsigned floating-point casts: 2569 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2570 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2571 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2572 if (Cmp.isEquality() && match(Op1, m_Zero())) 2573 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2574 } 2575 2576 // Test to see if the operands of the icmp are casted versions of other 2577 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2578 if (Bitcast->getType()->isPointerTy() && 2579 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2580 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2581 // so eliminate it as well. 2582 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2583 Op1 = BC2->getOperand(0); 2584 2585 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2586 return new ICmpInst(Pred, BCSrcOp, Op1); 2587 } 2588 2589 // Folding: icmp <pred> iN X, C 2590 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2591 // and C is a splat of a K-bit pattern 2592 // and SC is a constant vector = <C', C', C', ..., C'> 2593 // Into: 2594 // %E = extractelement <M x iK> %vec, i32 C' 2595 // icmp <pred> iK %E, trunc(C) 2596 const APInt *C; 2597 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2598 !Bitcast->getType()->isIntegerTy() || 2599 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2600 return nullptr; 2601 2602 Value *Vec; 2603 Constant *Mask; 2604 if (match(BCSrcOp, 2605 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { 2606 // Check whether every element of Mask is the same constant 2607 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { 2608 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2609 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2610 if (C->isSplat(EltTy->getBitWidth())) { 2611 // Fold the icmp based on the value of C 2612 // If C is M copies of an iK sized bit pattern, 2613 // then: 2614 // => %E = extractelement <N x iK> %vec, i32 Elem 2615 // icmp <pred> iK %SplatVal, <pattern> 2616 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2617 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2618 return new ICmpInst(Pred, Extract, NewC); 2619 } 2620 } 2621 } 2622 return nullptr; 2623 } 2624 2625 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2626 /// where X is some kind of instruction. 2627 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2628 const APInt *C; 2629 if (!match(Cmp.getOperand(1), m_APInt(C))) 2630 return nullptr; 2631 2632 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2633 switch (BO->getOpcode()) { 2634 case Instruction::Xor: 2635 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2636 return I; 2637 break; 2638 case Instruction::And: 2639 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2640 return I; 2641 break; 2642 case Instruction::Or: 2643 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2644 return I; 2645 break; 2646 case Instruction::Mul: 2647 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2648 return I; 2649 break; 2650 case Instruction::Shl: 2651 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2652 return I; 2653 break; 2654 case Instruction::LShr: 2655 case Instruction::AShr: 2656 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2657 return I; 2658 break; 2659 case Instruction::UDiv: 2660 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2661 return I; 2662 LLVM_FALLTHROUGH; 2663 case Instruction::SDiv: 2664 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2665 return I; 2666 break; 2667 case Instruction::Sub: 2668 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2669 return I; 2670 break; 2671 case Instruction::Add: 2672 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2673 return I; 2674 break; 2675 default: 2676 break; 2677 } 2678 // TODO: These folds could be refactored to be part of the above calls. 2679 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2680 return I; 2681 } 2682 2683 // Match against CmpInst LHS being instructions other than binary operators. 2684 2685 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2686 // For now, we only support constant integers while folding the 2687 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2688 // similar to the cases handled by binary ops above. 2689 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2690 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2691 return I; 2692 } 2693 2694 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2695 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2696 return I; 2697 } 2698 2699 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2700 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2701 return I; 2702 2703 return nullptr; 2704 } 2705 2706 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2707 /// icmp eq/ne BO, C. 2708 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2709 BinaryOperator *BO, 2710 const APInt &C) { 2711 // TODO: Some of these folds could work with arbitrary constants, but this 2712 // function is limited to scalar and vector splat constants. 2713 if (!Cmp.isEquality()) 2714 return nullptr; 2715 2716 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2717 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2718 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2719 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2720 2721 switch (BO->getOpcode()) { 2722 case Instruction::SRem: 2723 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2724 if (C.isNullValue() && BO->hasOneUse()) { 2725 const APInt *BOC; 2726 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2727 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2728 return new ICmpInst(Pred, NewRem, 2729 Constant::getNullValue(BO->getType())); 2730 } 2731 } 2732 break; 2733 case Instruction::Add: { 2734 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2735 const APInt *BOC; 2736 if (match(BOp1, m_APInt(BOC))) { 2737 if (BO->hasOneUse()) { 2738 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2739 return new ICmpInst(Pred, BOp0, SubC); 2740 } 2741 } else if (C.isNullValue()) { 2742 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2743 // efficiently invertible, or if the add has just this one use. 2744 if (Value *NegVal = dyn_castNegVal(BOp1)) 2745 return new ICmpInst(Pred, BOp0, NegVal); 2746 if (Value *NegVal = dyn_castNegVal(BOp0)) 2747 return new ICmpInst(Pred, NegVal, BOp1); 2748 if (BO->hasOneUse()) { 2749 Value *Neg = Builder.CreateNeg(BOp1); 2750 Neg->takeName(BO); 2751 return new ICmpInst(Pred, BOp0, Neg); 2752 } 2753 } 2754 break; 2755 } 2756 case Instruction::Xor: 2757 if (BO->hasOneUse()) { 2758 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2759 // For the xor case, we can xor two constants together, eliminating 2760 // the explicit xor. 2761 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2762 } else if (C.isNullValue()) { 2763 // Replace ((xor A, B) != 0) with (A != B) 2764 return new ICmpInst(Pred, BOp0, BOp1); 2765 } 2766 } 2767 break; 2768 case Instruction::Sub: 2769 if (BO->hasOneUse()) { 2770 const APInt *BOC; 2771 if (match(BOp0, m_APInt(BOC))) { 2772 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2773 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2774 return new ICmpInst(Pred, BOp1, SubC); 2775 } else if (C.isNullValue()) { 2776 // Replace ((sub A, B) != 0) with (A != B). 2777 return new ICmpInst(Pred, BOp0, BOp1); 2778 } 2779 } 2780 break; 2781 case Instruction::Or: { 2782 const APInt *BOC; 2783 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2784 // Comparing if all bits outside of a constant mask are set? 2785 // Replace (X | C) == -1 with (X & ~C) == ~C. 2786 // This removes the -1 constant. 2787 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2788 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2789 return new ICmpInst(Pred, And, NotBOC); 2790 } 2791 break; 2792 } 2793 case Instruction::And: { 2794 const APInt *BOC; 2795 if (match(BOp1, m_APInt(BOC))) { 2796 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2797 if (C == *BOC && C.isPowerOf2()) 2798 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2799 BO, Constant::getNullValue(RHS->getType())); 2800 2801 // Don't perform the following transforms if the AND has multiple uses 2802 if (!BO->hasOneUse()) 2803 break; 2804 2805 // ((X & ~7) == 0) --> X < 8 2806 if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) { 2807 Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1)); 2808 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2809 return new ICmpInst(NewPred, BOp0, NegBOC); 2810 } 2811 } 2812 break; 2813 } 2814 case Instruction::Mul: 2815 if (C.isNullValue() && BO->hasNoSignedWrap()) { 2816 const APInt *BOC; 2817 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 2818 // The trivial case (mul X, 0) is handled by InstSimplify. 2819 // General case : (mul X, C) != 0 iff X != 0 2820 // (mul X, C) == 0 iff X == 0 2821 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 2822 } 2823 } 2824 break; 2825 case Instruction::UDiv: 2826 if (C.isNullValue()) { 2827 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 2828 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 2829 return new ICmpInst(NewPred, BOp1, BOp0); 2830 } 2831 break; 2832 default: 2833 break; 2834 } 2835 return nullptr; 2836 } 2837 2838 /// Fold an equality icmp with LLVM intrinsic and constant operand. 2839 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 2840 IntrinsicInst *II, 2841 const APInt &C) { 2842 Type *Ty = II->getType(); 2843 unsigned BitWidth = C.getBitWidth(); 2844 switch (II->getIntrinsicID()) { 2845 case Intrinsic::bswap: 2846 Worklist.Add(II); 2847 Cmp.setOperand(0, II->getArgOperand(0)); 2848 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); 2849 return &Cmp; 2850 2851 case Intrinsic::ctlz: 2852 case Intrinsic::cttz: { 2853 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 2854 if (C == BitWidth) { 2855 Worklist.Add(II); 2856 Cmp.setOperand(0, II->getArgOperand(0)); 2857 Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); 2858 return &Cmp; 2859 } 2860 2861 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 2862 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 2863 // Limit to one use to ensure we don't increase instruction count. 2864 unsigned Num = C.getLimitedValue(BitWidth); 2865 if (Num != BitWidth && II->hasOneUse()) { 2866 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 2867 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 2868 : APInt::getHighBitsSet(BitWidth, Num + 1); 2869 APInt Mask2 = IsTrailing 2870 ? APInt::getOneBitSet(BitWidth, Num) 2871 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2872 Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); 2873 Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); 2874 Worklist.Add(II); 2875 return &Cmp; 2876 } 2877 break; 2878 } 2879 2880 case Intrinsic::ctpop: { 2881 // popcount(A) == 0 -> A == 0 and likewise for != 2882 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 2883 bool IsZero = C.isNullValue(); 2884 if (IsZero || C == BitWidth) { 2885 Worklist.Add(II); 2886 Cmp.setOperand(0, II->getArgOperand(0)); 2887 auto *NewOp = 2888 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); 2889 Cmp.setOperand(1, NewOp); 2890 return &Cmp; 2891 } 2892 break; 2893 } 2894 default: 2895 break; 2896 } 2897 2898 return nullptr; 2899 } 2900 2901 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 2902 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 2903 IntrinsicInst *II, 2904 const APInt &C) { 2905 if (Cmp.isEquality()) 2906 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 2907 2908 Type *Ty = II->getType(); 2909 unsigned BitWidth = C.getBitWidth(); 2910 switch (II->getIntrinsicID()) { 2911 case Intrinsic::ctlz: { 2912 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 2913 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2914 unsigned Num = C.getLimitedValue(); 2915 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2916 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 2917 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2918 } 2919 2920 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 2921 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2922 C.uge(1) && C.ule(BitWidth)) { 2923 unsigned Num = C.getLimitedValue(); 2924 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 2925 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 2926 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2927 } 2928 break; 2929 } 2930 case Intrinsic::cttz: { 2931 // Limit to one use to ensure we don't increase instruction count. 2932 if (!II->hasOneUse()) 2933 return nullptr; 2934 2935 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 2936 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2937 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 2938 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 2939 Builder.CreateAnd(II->getArgOperand(0), Mask), 2940 ConstantInt::getNullValue(Ty)); 2941 } 2942 2943 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 2944 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2945 C.uge(1) && C.ule(BitWidth)) { 2946 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 2947 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 2948 Builder.CreateAnd(II->getArgOperand(0), Mask), 2949 ConstantInt::getNullValue(Ty)); 2950 } 2951 break; 2952 } 2953 default: 2954 break; 2955 } 2956 2957 return nullptr; 2958 } 2959 2960 /// Handle icmp with constant (but not simple integer constant) RHS. 2961 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 2962 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2963 Constant *RHSC = dyn_cast<Constant>(Op1); 2964 Instruction *LHSI = dyn_cast<Instruction>(Op0); 2965 if (!RHSC || !LHSI) 2966 return nullptr; 2967 2968 switch (LHSI->getOpcode()) { 2969 case Instruction::GetElementPtr: 2970 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2971 if (RHSC->isNullValue() && 2972 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2973 return new ICmpInst( 2974 I.getPredicate(), LHSI->getOperand(0), 2975 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2976 break; 2977 case Instruction::PHI: 2978 // Only fold icmp into the PHI if the phi and icmp are in the same 2979 // block. If in the same block, we're encouraging jump threading. If 2980 // not, we are just pessimizing the code by making an i1 phi. 2981 if (LHSI->getParent() == I.getParent()) 2982 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 2983 return NV; 2984 break; 2985 case Instruction::Select: { 2986 // If either operand of the select is a constant, we can fold the 2987 // comparison into the select arms, which will cause one to be 2988 // constant folded and the select turned into a bitwise or. 2989 Value *Op1 = nullptr, *Op2 = nullptr; 2990 ConstantInt *CI = nullptr; 2991 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 2992 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2993 CI = dyn_cast<ConstantInt>(Op1); 2994 } 2995 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 2996 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2997 CI = dyn_cast<ConstantInt>(Op2); 2998 } 2999 3000 // We only want to perform this transformation if it will not lead to 3001 // additional code. This is true if either both sides of the select 3002 // fold to a constant (in which case the icmp is replaced with a select 3003 // which will usually simplify) or this is the only user of the 3004 // select (in which case we are trading a select+icmp for a simpler 3005 // select+icmp) or all uses of the select can be replaced based on 3006 // dominance information ("Global cases"). 3007 bool Transform = false; 3008 if (Op1 && Op2) 3009 Transform = true; 3010 else if (Op1 || Op2) { 3011 // Local case 3012 if (LHSI->hasOneUse()) 3013 Transform = true; 3014 // Global cases 3015 else if (CI && !CI->isZero()) 3016 // When Op1 is constant try replacing select with second operand. 3017 // Otherwise Op2 is constant and try replacing select with first 3018 // operand. 3019 Transform = 3020 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3021 } 3022 if (Transform) { 3023 if (!Op1) 3024 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3025 I.getName()); 3026 if (!Op2) 3027 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3028 I.getName()); 3029 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3030 } 3031 break; 3032 } 3033 case Instruction::IntToPtr: 3034 // icmp pred inttoptr(X), null -> icmp pred X, 0 3035 if (RHSC->isNullValue() && 3036 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3037 return new ICmpInst( 3038 I.getPredicate(), LHSI->getOperand(0), 3039 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3040 break; 3041 3042 case Instruction::Load: 3043 // Try to optimize things like "A[i] > 4" to index computations. 3044 if (GetElementPtrInst *GEP = 3045 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3046 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3047 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3048 !cast<LoadInst>(LHSI)->isVolatile()) 3049 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3050 return Res; 3051 } 3052 break; 3053 } 3054 3055 return nullptr; 3056 } 3057 3058 /// Some comparisons can be simplified. 3059 /// In this case, we are looking for comparisons that look like 3060 /// a check for a lossy truncation. 3061 /// Folds: 3062 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3063 /// Where Mask is some pattern that produces all-ones in low bits: 3064 /// (-1 >> y) 3065 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3066 /// ~(-1 << y) 3067 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3068 /// The Mask can be a constant, too. 3069 /// For some predicates, the operands are commutative. 3070 /// For others, x can only be on a specific side. 3071 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3072 InstCombiner::BuilderTy &Builder) { 3073 ICmpInst::Predicate SrcPred; 3074 Value *X, *M, *Y; 3075 auto m_VariableMask = m_CombineOr( 3076 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3077 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3078 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3079 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3080 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3081 if (!match(&I, m_c_ICmp(SrcPred, 3082 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3083 m_Deferred(X)))) 3084 return nullptr; 3085 3086 ICmpInst::Predicate DstPred; 3087 switch (SrcPred) { 3088 case ICmpInst::Predicate::ICMP_EQ: 3089 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3090 DstPred = ICmpInst::Predicate::ICMP_ULE; 3091 break; 3092 case ICmpInst::Predicate::ICMP_NE: 3093 // x & (-1 >> y) != x -> x u> (-1 >> y) 3094 DstPred = ICmpInst::Predicate::ICMP_UGT; 3095 break; 3096 case ICmpInst::Predicate::ICMP_UGT: 3097 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3098 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3099 DstPred = ICmpInst::Predicate::ICMP_UGT; 3100 break; 3101 case ICmpInst::Predicate::ICMP_UGE: 3102 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3103 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3104 DstPred = ICmpInst::Predicate::ICMP_ULE; 3105 break; 3106 case ICmpInst::Predicate::ICMP_ULT: 3107 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3108 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3109 DstPred = ICmpInst::Predicate::ICMP_UGT; 3110 break; 3111 case ICmpInst::Predicate::ICMP_ULE: 3112 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3113 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3114 DstPred = ICmpInst::Predicate::ICMP_ULE; 3115 break; 3116 case ICmpInst::Predicate::ICMP_SGT: 3117 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3118 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3119 return nullptr; // Ignore the other case. 3120 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3121 return nullptr; 3122 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3123 return nullptr; 3124 DstPred = ICmpInst::Predicate::ICMP_SGT; 3125 break; 3126 case ICmpInst::Predicate::ICMP_SGE: 3127 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3128 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3129 return nullptr; // Ignore the other case. 3130 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3131 return nullptr; 3132 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3133 return nullptr; 3134 DstPred = ICmpInst::Predicate::ICMP_SLE; 3135 break; 3136 case ICmpInst::Predicate::ICMP_SLT: 3137 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3138 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3139 return nullptr; // Ignore the other case. 3140 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3141 return nullptr; 3142 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3143 return nullptr; 3144 DstPred = ICmpInst::Predicate::ICMP_SGT; 3145 break; 3146 case ICmpInst::Predicate::ICMP_SLE: 3147 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3148 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3149 return nullptr; // Ignore the other case. 3150 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3151 return nullptr; 3152 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3153 return nullptr; 3154 DstPred = ICmpInst::Predicate::ICMP_SLE; 3155 break; 3156 default: 3157 llvm_unreachable("All possible folds are handled."); 3158 } 3159 3160 return Builder.CreateICmp(DstPred, X, M); 3161 } 3162 3163 /// Some comparisons can be simplified. 3164 /// In this case, we are looking for comparisons that look like 3165 /// a check for a lossy signed truncation. 3166 /// Folds: (MaskedBits is a constant.) 3167 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3168 /// Into: 3169 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3170 /// Where KeptBits = bitwidth(%x) - MaskedBits 3171 static Value * 3172 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3173 InstCombiner::BuilderTy &Builder) { 3174 ICmpInst::Predicate SrcPred; 3175 Value *X; 3176 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3177 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3178 if (!match(&I, m_c_ICmp(SrcPred, 3179 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3180 m_APInt(C1))), 3181 m_Deferred(X)))) 3182 return nullptr; 3183 3184 // Potential handling of non-splats: for each element: 3185 // * if both are undef, replace with constant 0. 3186 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3187 // * if both are not undef, and are different, bailout. 3188 // * else, only one is undef, then pick the non-undef one. 3189 3190 // The shift amount must be equal. 3191 if (*C0 != *C1) 3192 return nullptr; 3193 const APInt &MaskedBits = *C0; 3194 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3195 3196 ICmpInst::Predicate DstPred; 3197 switch (SrcPred) { 3198 case ICmpInst::Predicate::ICMP_EQ: 3199 // ((%x << MaskedBits) a>> MaskedBits) == %x 3200 // => 3201 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3202 DstPred = ICmpInst::Predicate::ICMP_ULT; 3203 break; 3204 case ICmpInst::Predicate::ICMP_NE: 3205 // ((%x << MaskedBits) a>> MaskedBits) != %x 3206 // => 3207 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3208 DstPred = ICmpInst::Predicate::ICMP_UGE; 3209 break; 3210 // FIXME: are more folds possible? 3211 default: 3212 return nullptr; 3213 } 3214 3215 auto *XType = X->getType(); 3216 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3217 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3218 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3219 3220 // KeptBits = bitwidth(%x) - MaskedBits 3221 const APInt KeptBits = BitWidth - MaskedBits; 3222 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3223 // ICmpCst = (1 << KeptBits) 3224 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3225 assert(ICmpCst.isPowerOf2()); 3226 // AddCst = (1 << (KeptBits-1)) 3227 const APInt AddCst = ICmpCst.lshr(1); 3228 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3229 3230 // T0 = add %x, AddCst 3231 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3232 // T1 = T0 DstPred ICmpCst 3233 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3234 3235 return T1; 3236 } 3237 3238 /// Try to fold icmp (binop), X or icmp X, (binop). 3239 /// TODO: A large part of this logic is duplicated in InstSimplify's 3240 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3241 /// duplication. 3242 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 3243 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3244 3245 // Special logic for binary operators. 3246 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3247 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3248 if (!BO0 && !BO1) 3249 return nullptr; 3250 3251 const CmpInst::Predicate Pred = I.getPredicate(); 3252 Value *X; 3253 3254 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3255 // (Op1 + X) <u Op1 --> ~Op1 <u X 3256 // Op0 >u (Op0 + X) --> X >u ~Op0 3257 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3258 Pred == ICmpInst::ICMP_ULT) 3259 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3260 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3261 Pred == ICmpInst::ICMP_UGT) 3262 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3263 3264 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3265 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3266 NoOp0WrapProblem = 3267 ICmpInst::isEquality(Pred) || 3268 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3269 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3270 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3271 NoOp1WrapProblem = 3272 ICmpInst::isEquality(Pred) || 3273 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3274 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3275 3276 // Analyze the case when either Op0 or Op1 is an add instruction. 3277 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3278 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3279 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3280 A = BO0->getOperand(0); 3281 B = BO0->getOperand(1); 3282 } 3283 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3284 C = BO1->getOperand(0); 3285 D = BO1->getOperand(1); 3286 } 3287 3288 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3289 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3290 return new ICmpInst(Pred, A == Op1 ? B : A, 3291 Constant::getNullValue(Op1->getType())); 3292 3293 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3294 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3295 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3296 C == Op0 ? D : C); 3297 3298 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3299 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3300 NoOp1WrapProblem && 3301 // Try not to increase register pressure. 3302 BO0->hasOneUse() && BO1->hasOneUse()) { 3303 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3304 Value *Y, *Z; 3305 if (A == C) { 3306 // C + B == C + D -> B == D 3307 Y = B; 3308 Z = D; 3309 } else if (A == D) { 3310 // D + B == C + D -> B == C 3311 Y = B; 3312 Z = C; 3313 } else if (B == C) { 3314 // A + C == C + D -> A == D 3315 Y = A; 3316 Z = D; 3317 } else { 3318 assert(B == D); 3319 // A + D == C + D -> A == C 3320 Y = A; 3321 Z = C; 3322 } 3323 return new ICmpInst(Pred, Y, Z); 3324 } 3325 3326 // icmp slt (X + -1), Y -> icmp sle X, Y 3327 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3328 match(B, m_AllOnes())) 3329 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3330 3331 // icmp sge (X + -1), Y -> icmp sgt X, Y 3332 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3333 match(B, m_AllOnes())) 3334 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3335 3336 // icmp sle (X + 1), Y -> icmp slt X, Y 3337 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3338 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3339 3340 // icmp sgt (X + 1), Y -> icmp sge X, Y 3341 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3342 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3343 3344 // icmp sgt X, (Y + -1) -> icmp sge X, Y 3345 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3346 match(D, m_AllOnes())) 3347 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3348 3349 // icmp sle X, (Y + -1) -> icmp slt X, Y 3350 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3351 match(D, m_AllOnes())) 3352 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3353 3354 // icmp sge X, (Y + 1) -> icmp sgt X, Y 3355 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3356 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3357 3358 // icmp slt X, (Y + 1) -> icmp sle X, Y 3359 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3360 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3361 3362 // TODO: The subtraction-related identities shown below also hold, but 3363 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3364 // wouldn't happen even if they were implemented. 3365 // 3366 // icmp ult (X - 1), Y -> icmp ule X, Y 3367 // icmp uge (X - 1), Y -> icmp ugt X, Y 3368 // icmp ugt X, (Y - 1) -> icmp uge X, Y 3369 // icmp ule X, (Y - 1) -> icmp ult X, Y 3370 3371 // icmp ule (X + 1), Y -> icmp ult X, Y 3372 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3373 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3374 3375 // icmp ugt (X + 1), Y -> icmp uge X, Y 3376 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3377 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3378 3379 // icmp uge X, (Y + 1) -> icmp ugt X, Y 3380 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3381 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3382 3383 // icmp ult X, (Y + 1) -> icmp ule X, Y 3384 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3385 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3386 3387 // if C1 has greater magnitude than C2: 3388 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3389 // s.t. C3 = C1 - C2 3390 // 3391 // if C2 has greater magnitude than C1: 3392 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3393 // s.t. C3 = C2 - C1 3394 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3395 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3396 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3397 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3398 const APInt &AP1 = C1->getValue(); 3399 const APInt &AP2 = C2->getValue(); 3400 if (AP1.isNegative() == AP2.isNegative()) { 3401 APInt AP1Abs = C1->getValue().abs(); 3402 APInt AP2Abs = C2->getValue().abs(); 3403 if (AP1Abs.uge(AP2Abs)) { 3404 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3405 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3406 return new ICmpInst(Pred, NewAdd, C); 3407 } else { 3408 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3409 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3410 return new ICmpInst(Pred, A, NewAdd); 3411 } 3412 } 3413 } 3414 3415 // Analyze the case when either Op0 or Op1 is a sub instruction. 3416 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3417 A = nullptr; 3418 B = nullptr; 3419 C = nullptr; 3420 D = nullptr; 3421 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3422 A = BO0->getOperand(0); 3423 B = BO0->getOperand(1); 3424 } 3425 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3426 C = BO1->getOperand(0); 3427 D = BO1->getOperand(1); 3428 } 3429 3430 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3431 if (A == Op1 && NoOp0WrapProblem) 3432 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3433 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3434 if (C == Op0 && NoOp1WrapProblem) 3435 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3436 3437 // (A - B) >u A --> A <u B 3438 if (A == Op1 && Pred == ICmpInst::ICMP_UGT) 3439 return new ICmpInst(ICmpInst::ICMP_ULT, A, B); 3440 // C <u (C - D) --> C <u D 3441 if (C == Op0 && Pred == ICmpInst::ICMP_ULT) 3442 return new ICmpInst(ICmpInst::ICMP_ULT, C, D); 3443 3444 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3445 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3446 // Try not to increase register pressure. 3447 BO0->hasOneUse() && BO1->hasOneUse()) 3448 return new ICmpInst(Pred, A, C); 3449 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3450 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3451 // Try not to increase register pressure. 3452 BO0->hasOneUse() && BO1->hasOneUse()) 3453 return new ICmpInst(Pred, D, B); 3454 3455 // icmp (0-X) < cst --> x > -cst 3456 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3457 Value *X; 3458 if (match(BO0, m_Neg(m_Value(X)))) 3459 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3460 if (RHSC->isNotMinSignedValue()) 3461 return new ICmpInst(I.getSwappedPredicate(), X, 3462 ConstantExpr::getNeg(RHSC)); 3463 } 3464 3465 BinaryOperator *SRem = nullptr; 3466 // icmp (srem X, Y), Y 3467 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3468 SRem = BO0; 3469 // icmp Y, (srem X, Y) 3470 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3471 Op0 == BO1->getOperand(1)) 3472 SRem = BO1; 3473 if (SRem) { 3474 // We don't check hasOneUse to avoid increasing register pressure because 3475 // the value we use is the same value this instruction was already using. 3476 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3477 default: 3478 break; 3479 case ICmpInst::ICMP_EQ: 3480 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3481 case ICmpInst::ICMP_NE: 3482 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3483 case ICmpInst::ICMP_SGT: 3484 case ICmpInst::ICMP_SGE: 3485 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3486 Constant::getAllOnesValue(SRem->getType())); 3487 case ICmpInst::ICMP_SLT: 3488 case ICmpInst::ICMP_SLE: 3489 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3490 Constant::getNullValue(SRem->getType())); 3491 } 3492 } 3493 3494 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3495 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3496 switch (BO0->getOpcode()) { 3497 default: 3498 break; 3499 case Instruction::Add: 3500 case Instruction::Sub: 3501 case Instruction::Xor: { 3502 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3503 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3504 3505 const APInt *C; 3506 if (match(BO0->getOperand(1), m_APInt(C))) { 3507 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3508 if (C->isSignMask()) { 3509 ICmpInst::Predicate NewPred = 3510 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3511 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3512 } 3513 3514 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3515 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3516 ICmpInst::Predicate NewPred = 3517 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3518 NewPred = I.getSwappedPredicate(NewPred); 3519 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3520 } 3521 } 3522 break; 3523 } 3524 case Instruction::Mul: { 3525 if (!I.isEquality()) 3526 break; 3527 3528 const APInt *C; 3529 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3530 !C->isOneValue()) { 3531 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3532 // Mask = -1 >> count-trailing-zeros(C). 3533 if (unsigned TZs = C->countTrailingZeros()) { 3534 Constant *Mask = ConstantInt::get( 3535 BO0->getType(), 3536 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 3537 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 3538 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 3539 return new ICmpInst(Pred, And1, And2); 3540 } 3541 // If there are no trailing zeros in the multiplier, just eliminate 3542 // the multiplies (no masking is needed): 3543 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 3544 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3545 } 3546 break; 3547 } 3548 case Instruction::UDiv: 3549 case Instruction::LShr: 3550 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 3551 break; 3552 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3553 3554 case Instruction::SDiv: 3555 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 3556 break; 3557 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3558 3559 case Instruction::AShr: 3560 if (!BO0->isExact() || !BO1->isExact()) 3561 break; 3562 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3563 3564 case Instruction::Shl: { 3565 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3566 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3567 if (!NUW && !NSW) 3568 break; 3569 if (!NSW && I.isSigned()) 3570 break; 3571 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3572 } 3573 } 3574 } 3575 3576 if (BO0) { 3577 // Transform A & (L - 1) `ult` L --> L != 0 3578 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3579 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 3580 3581 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 3582 auto *Zero = Constant::getNullValue(BO0->getType()); 3583 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3584 } 3585 } 3586 3587 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 3588 return replaceInstUsesWith(I, V); 3589 3590 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 3591 return replaceInstUsesWith(I, V); 3592 3593 return nullptr; 3594 } 3595 3596 /// Fold icmp Pred min|max(X, Y), X. 3597 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 3598 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3599 Value *Op0 = Cmp.getOperand(0); 3600 Value *X = Cmp.getOperand(1); 3601 3602 // Canonicalize minimum or maximum operand to LHS of the icmp. 3603 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 3604 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 3605 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 3606 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 3607 std::swap(Op0, X); 3608 Pred = Cmp.getSwappedPredicate(); 3609 } 3610 3611 Value *Y; 3612 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 3613 // smin(X, Y) == X --> X s<= Y 3614 // smin(X, Y) s>= X --> X s<= Y 3615 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 3616 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 3617 3618 // smin(X, Y) != X --> X s> Y 3619 // smin(X, Y) s< X --> X s> Y 3620 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 3621 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 3622 3623 // These cases should be handled in InstSimplify: 3624 // smin(X, Y) s<= X --> true 3625 // smin(X, Y) s> X --> false 3626 return nullptr; 3627 } 3628 3629 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 3630 // smax(X, Y) == X --> X s>= Y 3631 // smax(X, Y) s<= X --> X s>= Y 3632 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 3633 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 3634 3635 // smax(X, Y) != X --> X s< Y 3636 // smax(X, Y) s> X --> X s< Y 3637 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 3638 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 3639 3640 // These cases should be handled in InstSimplify: 3641 // smax(X, Y) s>= X --> true 3642 // smax(X, Y) s< X --> false 3643 return nullptr; 3644 } 3645 3646 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 3647 // umin(X, Y) == X --> X u<= Y 3648 // umin(X, Y) u>= X --> X u<= Y 3649 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 3650 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 3651 3652 // umin(X, Y) != X --> X u> Y 3653 // umin(X, Y) u< X --> X u> Y 3654 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 3655 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 3656 3657 // These cases should be handled in InstSimplify: 3658 // umin(X, Y) u<= X --> true 3659 // umin(X, Y) u> X --> false 3660 return nullptr; 3661 } 3662 3663 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 3664 // umax(X, Y) == X --> X u>= Y 3665 // umax(X, Y) u<= X --> X u>= Y 3666 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 3667 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 3668 3669 // umax(X, Y) != X --> X u< Y 3670 // umax(X, Y) u> X --> X u< Y 3671 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 3672 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 3673 3674 // These cases should be handled in InstSimplify: 3675 // umax(X, Y) u>= X --> true 3676 // umax(X, Y) u< X --> false 3677 return nullptr; 3678 } 3679 3680 return nullptr; 3681 } 3682 3683 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 3684 if (!I.isEquality()) 3685 return nullptr; 3686 3687 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3688 const CmpInst::Predicate Pred = I.getPredicate(); 3689 Value *A, *B, *C, *D; 3690 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3691 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3692 Value *OtherVal = A == Op1 ? B : A; 3693 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3694 } 3695 3696 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3697 // A^c1 == C^c2 --> A == C^(c1^c2) 3698 ConstantInt *C1, *C2; 3699 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 3700 Op1->hasOneUse()) { 3701 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 3702 Value *Xor = Builder.CreateXor(C, NC); 3703 return new ICmpInst(Pred, A, Xor); 3704 } 3705 3706 // A^B == A^D -> B == D 3707 if (A == C) 3708 return new ICmpInst(Pred, B, D); 3709 if (A == D) 3710 return new ICmpInst(Pred, B, C); 3711 if (B == C) 3712 return new ICmpInst(Pred, A, D); 3713 if (B == D) 3714 return new ICmpInst(Pred, A, C); 3715 } 3716 } 3717 3718 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 3719 // A == (A^B) -> B == 0 3720 Value *OtherVal = A == Op0 ? B : A; 3721 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3722 } 3723 3724 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3725 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3726 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3727 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3728 3729 if (A == C) { 3730 X = B; 3731 Y = D; 3732 Z = A; 3733 } else if (A == D) { 3734 X = B; 3735 Y = C; 3736 Z = A; 3737 } else if (B == C) { 3738 X = A; 3739 Y = D; 3740 Z = B; 3741 } else if (B == D) { 3742 X = A; 3743 Y = C; 3744 Z = B; 3745 } 3746 3747 if (X) { // Build (X^Y) & Z 3748 Op1 = Builder.CreateXor(X, Y); 3749 Op1 = Builder.CreateAnd(Op1, Z); 3750 I.setOperand(0, Op1); 3751 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3752 return &I; 3753 } 3754 } 3755 3756 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3757 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3758 ConstantInt *Cst1; 3759 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 3760 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3761 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3762 match(Op1, m_ZExt(m_Value(A))))) { 3763 APInt Pow2 = Cst1->getValue() + 1; 3764 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3765 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3766 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 3767 } 3768 3769 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3770 // For lshr and ashr pairs. 3771 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3772 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3773 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3774 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3775 unsigned TypeBits = Cst1->getBitWidth(); 3776 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3777 if (ShAmt < TypeBits && ShAmt != 0) { 3778 ICmpInst::Predicate NewPred = 3779 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 3780 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3781 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3782 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 3783 } 3784 } 3785 3786 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3787 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3788 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3789 unsigned TypeBits = Cst1->getBitWidth(); 3790 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3791 if (ShAmt < TypeBits && ShAmt != 0) { 3792 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3793 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3794 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 3795 I.getName() + ".mask"); 3796 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 3797 } 3798 } 3799 3800 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3801 // "icmp (and X, mask), cst" 3802 uint64_t ShAmt = 0; 3803 if (Op0->hasOneUse() && 3804 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 3805 match(Op1, m_ConstantInt(Cst1)) && 3806 // Only do this when A has multiple uses. This is most important to do 3807 // when it exposes other optimizations. 3808 !A->hasOneUse()) { 3809 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3810 3811 if (ShAmt < ASize) { 3812 APInt MaskV = 3813 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3814 MaskV <<= ShAmt; 3815 3816 APInt CmpV = Cst1->getValue().zext(ASize); 3817 CmpV <<= ShAmt; 3818 3819 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 3820 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 3821 } 3822 } 3823 3824 // If both operands are byte-swapped or bit-reversed, just compare the 3825 // original values. 3826 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 3827 // and handle more intrinsics. 3828 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 3829 (match(Op0, m_BitReverse(m_Value(A))) && 3830 match(Op1, m_BitReverse(m_Value(B))))) 3831 return new ICmpInst(Pred, A, B); 3832 3833 // Canonicalize checking for a power-of-2-or-zero value: 3834 // (A & -A) == A --> (A & (A - 1)) == 0 3835 // (-A & A) == A --> (A & (A - 1)) == 0 3836 // A == (A & -A) --> (A & (A - 1)) == 0 3837 // A == (-A & A) --> (A & (A - 1)) == 0 3838 // TODO: This could be reduced by using the ctpop intrinsic. 3839 A = nullptr; 3840 if (match(Op0, m_OneUse(m_c_And(m_OneUse(m_Neg(m_Specific(Op1))), 3841 m_Specific(Op1))))) 3842 A = Op1; 3843 else if (match(Op1, m_OneUse(m_c_And(m_OneUse(m_Neg(m_Specific(Op0))), 3844 m_Specific(Op0))))) 3845 A = Op0; 3846 if (A) { 3847 Type *Ty = A->getType(); 3848 Value *Dec = Builder.CreateAdd(A, ConstantInt::getAllOnesValue(Ty)); 3849 Value *And = Builder.CreateAnd(A, Dec); 3850 return new ICmpInst(Pred, And, ConstantInt::getNullValue(Ty)); 3851 } 3852 3853 return nullptr; 3854 } 3855 3856 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 3857 /// far. 3858 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { 3859 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 3860 Value *LHSCIOp = LHSCI->getOperand(0); 3861 Type *SrcTy = LHSCIOp->getType(); 3862 Type *DestTy = LHSCI->getType(); 3863 3864 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 3865 // integer type is the same size as the pointer type. 3866 const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool { 3867 if (isa<VectorType>(SrcTy)) { 3868 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 3869 DestTy = cast<VectorType>(DestTy)->getElementType(); 3870 } 3871 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 3872 }; 3873 if (LHSCI->getOpcode() == Instruction::PtrToInt && 3874 CompatibleSizes(SrcTy, DestTy)) { 3875 Value *RHSOp = nullptr; 3876 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 3877 Value *RHSCIOp = RHSC->getOperand(0); 3878 if (RHSCIOp->getType()->getPointerAddressSpace() == 3879 LHSCIOp->getType()->getPointerAddressSpace()) { 3880 RHSOp = RHSC->getOperand(0); 3881 // If the pointer types don't match, insert a bitcast. 3882 if (LHSCIOp->getType() != RHSOp->getType()) 3883 RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType()); 3884 } 3885 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 3886 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 3887 } 3888 3889 if (RHSOp) 3890 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 3891 } 3892 3893 // The code below only handles extension cast instructions, so far. 3894 // Enforce this. 3895 if (LHSCI->getOpcode() != Instruction::ZExt && 3896 LHSCI->getOpcode() != Instruction::SExt) 3897 return nullptr; 3898 3899 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 3900 bool isSignedCmp = ICmp.isSigned(); 3901 3902 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 3903 // Not an extension from the same type? 3904 Value *RHSCIOp = CI->getOperand(0); 3905 if (RHSCIOp->getType() != LHSCIOp->getType()) 3906 return nullptr; 3907 3908 // If the signedness of the two casts doesn't agree (i.e. one is a sext 3909 // and the other is a zext), then we can't handle this. 3910 if (CI->getOpcode() != LHSCI->getOpcode()) 3911 return nullptr; 3912 3913 // Deal with equality cases early. 3914 if (ICmp.isEquality()) 3915 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3916 3917 // A signed comparison of sign extended values simplifies into a 3918 // signed comparison. 3919 if (isSignedCmp && isSignedExt) 3920 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3921 3922 // The other three cases all fold into an unsigned comparison. 3923 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 3924 } 3925 3926 // If we aren't dealing with a constant on the RHS, exit early. 3927 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 3928 if (!C) 3929 return nullptr; 3930 3931 // Compute the constant that would happen if we truncated to SrcTy then 3932 // re-extended to DestTy. 3933 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 3934 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 3935 3936 // If the re-extended constant didn't change... 3937 if (Res2 == C) { 3938 // Deal with equality cases early. 3939 if (ICmp.isEquality()) 3940 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3941 3942 // A signed comparison of sign extended values simplifies into a 3943 // signed comparison. 3944 if (isSignedExt && isSignedCmp) 3945 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3946 3947 // The other three cases all fold into an unsigned comparison. 3948 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 3949 } 3950 3951 // The re-extended constant changed, partly changed (in the case of a vector), 3952 // or could not be determined to be equal (in the case of a constant 3953 // expression), so the constant cannot be represented in the shorter type. 3954 // Consequently, we cannot emit a simple comparison. 3955 // All the cases that fold to true or false will have already been handled 3956 // by SimplifyICmpInst, so only deal with the tricky case. 3957 3958 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 3959 return nullptr; 3960 3961 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 3962 // should have been folded away previously and not enter in here. 3963 3964 // We're performing an unsigned comp with a sign extended value. 3965 // This is true if the input is >= 0. [aka >s -1] 3966 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 3967 Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 3968 3969 // Finally, return the value computed. 3970 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 3971 return replaceInstUsesWith(ICmp, Result); 3972 3973 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 3974 return BinaryOperator::CreateNot(Result); 3975 } 3976 3977 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 3978 switch (BinaryOp) { 3979 default: 3980 llvm_unreachable("Unsupported binary op"); 3981 case Instruction::Add: 3982 case Instruction::Sub: 3983 return match(RHS, m_Zero()); 3984 case Instruction::Mul: 3985 return match(RHS, m_One()); 3986 } 3987 } 3988 3989 OverflowResult InstCombiner::computeOverflow( 3990 Instruction::BinaryOps BinaryOp, bool IsSigned, 3991 Value *LHS, Value *RHS, Instruction *CxtI) const { 3992 switch (BinaryOp) { 3993 default: 3994 llvm_unreachable("Unsupported binary op"); 3995 case Instruction::Add: 3996 if (IsSigned) 3997 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 3998 else 3999 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4000 case Instruction::Sub: 4001 if (IsSigned) 4002 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4003 else 4004 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4005 case Instruction::Mul: 4006 if (IsSigned) 4007 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4008 else 4009 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4010 } 4011 } 4012 4013 bool InstCombiner::OptimizeOverflowCheck( 4014 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, 4015 Instruction &OrigI, Value *&Result, Constant *&Overflow) { 4016 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4017 std::swap(LHS, RHS); 4018 4019 // If the overflow check was an add followed by a compare, the insertion point 4020 // may be pointing to the compare. We want to insert the new instructions 4021 // before the add in case there are uses of the add between the add and the 4022 // compare. 4023 Builder.SetInsertPoint(&OrigI); 4024 4025 if (isNeutralValue(BinaryOp, RHS)) { 4026 Result = LHS; 4027 Overflow = Builder.getFalse(); 4028 return true; 4029 } 4030 4031 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4032 case OverflowResult::MayOverflow: 4033 return false; 4034 case OverflowResult::AlwaysOverflowsLow: 4035 case OverflowResult::AlwaysOverflowsHigh: 4036 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4037 Result->takeName(&OrigI); 4038 Overflow = Builder.getTrue(); 4039 return true; 4040 case OverflowResult::NeverOverflows: 4041 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4042 Result->takeName(&OrigI); 4043 Overflow = Builder.getFalse(); 4044 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4045 if (IsSigned) 4046 Inst->setHasNoSignedWrap(); 4047 else 4048 Inst->setHasNoUnsignedWrap(); 4049 } 4050 return true; 4051 } 4052 4053 llvm_unreachable("Unexpected overflow result"); 4054 } 4055 4056 /// Recognize and process idiom involving test for multiplication 4057 /// overflow. 4058 /// 4059 /// The caller has matched a pattern of the form: 4060 /// I = cmp u (mul(zext A, zext B), V 4061 /// The function checks if this is a test for overflow and if so replaces 4062 /// multiplication with call to 'mul.with.overflow' intrinsic. 4063 /// 4064 /// \param I Compare instruction. 4065 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4066 /// the compare instruction. Must be of integer type. 4067 /// \param OtherVal The other argument of compare instruction. 4068 /// \returns Instruction which must replace the compare instruction, NULL if no 4069 /// replacement required. 4070 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4071 Value *OtherVal, InstCombiner &IC) { 4072 // Don't bother doing this transformation for pointers, don't do it for 4073 // vectors. 4074 if (!isa<IntegerType>(MulVal->getType())) 4075 return nullptr; 4076 4077 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4078 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4079 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4080 if (!MulInstr) 4081 return nullptr; 4082 assert(MulInstr->getOpcode() == Instruction::Mul); 4083 4084 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4085 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4086 assert(LHS->getOpcode() == Instruction::ZExt); 4087 assert(RHS->getOpcode() == Instruction::ZExt); 4088 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4089 4090 // Calculate type and width of the result produced by mul.with.overflow. 4091 Type *TyA = A->getType(), *TyB = B->getType(); 4092 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4093 WidthB = TyB->getPrimitiveSizeInBits(); 4094 unsigned MulWidth; 4095 Type *MulType; 4096 if (WidthB > WidthA) { 4097 MulWidth = WidthB; 4098 MulType = TyB; 4099 } else { 4100 MulWidth = WidthA; 4101 MulType = TyA; 4102 } 4103 4104 // In order to replace the original mul with a narrower mul.with.overflow, 4105 // all uses must ignore upper bits of the product. The number of used low 4106 // bits must be not greater than the width of mul.with.overflow. 4107 if (MulVal->hasNUsesOrMore(2)) 4108 for (User *U : MulVal->users()) { 4109 if (U == &I) 4110 continue; 4111 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4112 // Check if truncation ignores bits above MulWidth. 4113 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4114 if (TruncWidth > MulWidth) 4115 return nullptr; 4116 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4117 // Check if AND ignores bits above MulWidth. 4118 if (BO->getOpcode() != Instruction::And) 4119 return nullptr; 4120 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4121 const APInt &CVal = CI->getValue(); 4122 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4123 return nullptr; 4124 } else { 4125 // In this case we could have the operand of the binary operation 4126 // being defined in another block, and performing the replacement 4127 // could break the dominance relation. 4128 return nullptr; 4129 } 4130 } else { 4131 // Other uses prohibit this transformation. 4132 return nullptr; 4133 } 4134 } 4135 4136 // Recognize patterns 4137 switch (I.getPredicate()) { 4138 case ICmpInst::ICMP_EQ: 4139 case ICmpInst::ICMP_NE: 4140 // Recognize pattern: 4141 // mulval = mul(zext A, zext B) 4142 // cmp eq/neq mulval, zext trunc mulval 4143 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4144 if (Zext->hasOneUse()) { 4145 Value *ZextArg = Zext->getOperand(0); 4146 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4147 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4148 break; //Recognized 4149 } 4150 4151 // Recognize pattern: 4152 // mulval = mul(zext A, zext B) 4153 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4154 ConstantInt *CI; 4155 Value *ValToMask; 4156 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4157 if (ValToMask != MulVal) 4158 return nullptr; 4159 const APInt &CVal = CI->getValue() + 1; 4160 if (CVal.isPowerOf2()) { 4161 unsigned MaskWidth = CVal.logBase2(); 4162 if (MaskWidth == MulWidth) 4163 break; // Recognized 4164 } 4165 } 4166 return nullptr; 4167 4168 case ICmpInst::ICMP_UGT: 4169 // Recognize pattern: 4170 // mulval = mul(zext A, zext B) 4171 // cmp ugt mulval, max 4172 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4173 APInt MaxVal = APInt::getMaxValue(MulWidth); 4174 MaxVal = MaxVal.zext(CI->getBitWidth()); 4175 if (MaxVal.eq(CI->getValue())) 4176 break; // Recognized 4177 } 4178 return nullptr; 4179 4180 case ICmpInst::ICMP_UGE: 4181 // Recognize pattern: 4182 // mulval = mul(zext A, zext B) 4183 // cmp uge mulval, max+1 4184 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4185 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4186 if (MaxVal.eq(CI->getValue())) 4187 break; // Recognized 4188 } 4189 return nullptr; 4190 4191 case ICmpInst::ICMP_ULE: 4192 // Recognize pattern: 4193 // mulval = mul(zext A, zext B) 4194 // cmp ule mulval, max 4195 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4196 APInt MaxVal = APInt::getMaxValue(MulWidth); 4197 MaxVal = MaxVal.zext(CI->getBitWidth()); 4198 if (MaxVal.eq(CI->getValue())) 4199 break; // Recognized 4200 } 4201 return nullptr; 4202 4203 case ICmpInst::ICMP_ULT: 4204 // Recognize pattern: 4205 // mulval = mul(zext A, zext B) 4206 // cmp ule mulval, max + 1 4207 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4208 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4209 if (MaxVal.eq(CI->getValue())) 4210 break; // Recognized 4211 } 4212 return nullptr; 4213 4214 default: 4215 return nullptr; 4216 } 4217 4218 InstCombiner::BuilderTy &Builder = IC.Builder; 4219 Builder.SetInsertPoint(MulInstr); 4220 4221 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4222 Value *MulA = A, *MulB = B; 4223 if (WidthA < MulWidth) 4224 MulA = Builder.CreateZExt(A, MulType); 4225 if (WidthB < MulWidth) 4226 MulB = Builder.CreateZExt(B, MulType); 4227 Function *F = Intrinsic::getDeclaration( 4228 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4229 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4230 IC.Worklist.Add(MulInstr); 4231 4232 // If there are uses of mul result other than the comparison, we know that 4233 // they are truncation or binary AND. Change them to use result of 4234 // mul.with.overflow and adjust properly mask/size. 4235 if (MulVal->hasNUsesOrMore(2)) { 4236 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4237 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4238 User *U = *UI++; 4239 if (U == &I || U == OtherVal) 4240 continue; 4241 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4242 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4243 IC.replaceInstUsesWith(*TI, Mul); 4244 else 4245 TI->setOperand(0, Mul); 4246 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4247 assert(BO->getOpcode() == Instruction::And); 4248 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4249 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4250 APInt ShortMask = CI->getValue().trunc(MulWidth); 4251 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4252 Instruction *Zext = 4253 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); 4254 IC.Worklist.Add(Zext); 4255 IC.replaceInstUsesWith(*BO, Zext); 4256 } else { 4257 llvm_unreachable("Unexpected Binary operation"); 4258 } 4259 IC.Worklist.Add(cast<Instruction>(U)); 4260 } 4261 } 4262 if (isa<Instruction>(OtherVal)) 4263 IC.Worklist.Add(cast<Instruction>(OtherVal)); 4264 4265 // The original icmp gets replaced with the overflow value, maybe inverted 4266 // depending on predicate. 4267 bool Inverse = false; 4268 switch (I.getPredicate()) { 4269 case ICmpInst::ICMP_NE: 4270 break; 4271 case ICmpInst::ICMP_EQ: 4272 Inverse = true; 4273 break; 4274 case ICmpInst::ICMP_UGT: 4275 case ICmpInst::ICMP_UGE: 4276 if (I.getOperand(0) == MulVal) 4277 break; 4278 Inverse = true; 4279 break; 4280 case ICmpInst::ICMP_ULT: 4281 case ICmpInst::ICMP_ULE: 4282 if (I.getOperand(1) == MulVal) 4283 break; 4284 Inverse = true; 4285 break; 4286 default: 4287 llvm_unreachable("Unexpected predicate"); 4288 } 4289 if (Inverse) { 4290 Value *Res = Builder.CreateExtractValue(Call, 1); 4291 return BinaryOperator::CreateNot(Res); 4292 } 4293 4294 return ExtractValueInst::Create(Call, 1); 4295 } 4296 4297 /// When performing a comparison against a constant, it is possible that not all 4298 /// the bits in the LHS are demanded. This helper method computes the mask that 4299 /// IS demanded. 4300 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4301 const APInt *RHS; 4302 if (!match(I.getOperand(1), m_APInt(RHS))) 4303 return APInt::getAllOnesValue(BitWidth); 4304 4305 // If this is a normal comparison, it demands all bits. If it is a sign bit 4306 // comparison, it only demands the sign bit. 4307 bool UnusedBit; 4308 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4309 return APInt::getSignMask(BitWidth); 4310 4311 switch (I.getPredicate()) { 4312 // For a UGT comparison, we don't care about any bits that 4313 // correspond to the trailing ones of the comparand. The value of these 4314 // bits doesn't impact the outcome of the comparison, because any value 4315 // greater than the RHS must differ in a bit higher than these due to carry. 4316 case ICmpInst::ICMP_UGT: 4317 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4318 4319 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4320 // Any value less than the RHS must differ in a higher bit because of carries. 4321 case ICmpInst::ICMP_ULT: 4322 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4323 4324 default: 4325 return APInt::getAllOnesValue(BitWidth); 4326 } 4327 } 4328 4329 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4330 /// should be swapped. 4331 /// The decision is based on how many times these two operands are reused 4332 /// as subtract operands and their positions in those instructions. 4333 /// The rationale is that several architectures use the same instruction for 4334 /// both subtract and cmp. Thus, it is better if the order of those operands 4335 /// match. 4336 /// \return true if Op0 and Op1 should be swapped. 4337 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4338 // Filter out pointer values as those cannot appear directly in subtract. 4339 // FIXME: we may want to go through inttoptrs or bitcasts. 4340 if (Op0->getType()->isPointerTy()) 4341 return false; 4342 // If a subtract already has the same operands as a compare, swapping would be 4343 // bad. If a subtract has the same operands as a compare but in reverse order, 4344 // then swapping is good. 4345 int GoodToSwap = 0; 4346 for (const User *U : Op0->users()) { 4347 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4348 GoodToSwap++; 4349 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4350 GoodToSwap--; 4351 } 4352 return GoodToSwap > 0; 4353 } 4354 4355 /// Check that one use is in the same block as the definition and all 4356 /// other uses are in blocks dominated by a given block. 4357 /// 4358 /// \param DI Definition 4359 /// \param UI Use 4360 /// \param DB Block that must dominate all uses of \p DI outside 4361 /// the parent block 4362 /// \return true when \p UI is the only use of \p DI in the parent block 4363 /// and all other uses of \p DI are in blocks dominated by \p DB. 4364 /// 4365 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4366 const Instruction *UI, 4367 const BasicBlock *DB) const { 4368 assert(DI && UI && "Instruction not defined\n"); 4369 // Ignore incomplete definitions. 4370 if (!DI->getParent()) 4371 return false; 4372 // DI and UI must be in the same block. 4373 if (DI->getParent() != UI->getParent()) 4374 return false; 4375 // Protect from self-referencing blocks. 4376 if (DI->getParent() == DB) 4377 return false; 4378 for (const User *U : DI->users()) { 4379 auto *Usr = cast<Instruction>(U); 4380 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4381 return false; 4382 } 4383 return true; 4384 } 4385 4386 /// Return true when the instruction sequence within a block is select-cmp-br. 4387 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4388 const BasicBlock *BB = SI->getParent(); 4389 if (!BB) 4390 return false; 4391 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4392 if (!BI || BI->getNumSuccessors() != 2) 4393 return false; 4394 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4395 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4396 return false; 4397 return true; 4398 } 4399 4400 /// True when a select result is replaced by one of its operands 4401 /// in select-icmp sequence. This will eventually result in the elimination 4402 /// of the select. 4403 /// 4404 /// \param SI Select instruction 4405 /// \param Icmp Compare instruction 4406 /// \param SIOpd Operand that replaces the select 4407 /// 4408 /// Notes: 4409 /// - The replacement is global and requires dominator information 4410 /// - The caller is responsible for the actual replacement 4411 /// 4412 /// Example: 4413 /// 4414 /// entry: 4415 /// %4 = select i1 %3, %C* %0, %C* null 4416 /// %5 = icmp eq %C* %4, null 4417 /// br i1 %5, label %9, label %7 4418 /// ... 4419 /// ; <label>:7 ; preds = %entry 4420 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4421 /// ... 4422 /// 4423 /// can be transformed to 4424 /// 4425 /// %5 = icmp eq %C* %0, null 4426 /// %6 = select i1 %3, i1 %5, i1 true 4427 /// br i1 %6, label %9, label %7 4428 /// ... 4429 /// ; <label>:7 ; preds = %entry 4430 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4431 /// 4432 /// Similar when the first operand of the select is a constant or/and 4433 /// the compare is for not equal rather than equal. 4434 /// 4435 /// NOTE: The function is only called when the select and compare constants 4436 /// are equal, the optimization can work only for EQ predicates. This is not a 4437 /// major restriction since a NE compare should be 'normalized' to an equal 4438 /// compare, which usually happens in the combiner and test case 4439 /// select-cmp-br.ll checks for it. 4440 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4441 const ICmpInst *Icmp, 4442 const unsigned SIOpd) { 4443 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4444 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4445 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4446 // The check for the single predecessor is not the best that can be 4447 // done. But it protects efficiently against cases like when SI's 4448 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4449 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4450 // replaced can be reached on either path. So the uniqueness check 4451 // guarantees that the path all uses of SI (outside SI's parent) are on 4452 // is disjoint from all other paths out of SI. But that information 4453 // is more expensive to compute, and the trade-off here is in favor 4454 // of compile-time. It should also be noticed that we check for a single 4455 // predecessor and not only uniqueness. This to handle the situation when 4456 // Succ and Succ1 points to the same basic block. 4457 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4458 NumSel++; 4459 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4460 return true; 4461 } 4462 } 4463 return false; 4464 } 4465 4466 /// Try to fold the comparison based on range information we can get by checking 4467 /// whether bits are known to be zero or one in the inputs. 4468 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4469 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4470 Type *Ty = Op0->getType(); 4471 ICmpInst::Predicate Pred = I.getPredicate(); 4472 4473 // Get scalar or pointer size. 4474 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4475 ? Ty->getScalarSizeInBits() 4476 : DL.getIndexTypeSizeInBits(Ty->getScalarType()); 4477 4478 if (!BitWidth) 4479 return nullptr; 4480 4481 KnownBits Op0Known(BitWidth); 4482 KnownBits Op1Known(BitWidth); 4483 4484 if (SimplifyDemandedBits(&I, 0, 4485 getDemandedBitsLHSMask(I, BitWidth), 4486 Op0Known, 0)) 4487 return &I; 4488 4489 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4490 Op1Known, 0)) 4491 return &I; 4492 4493 // Given the known and unknown bits, compute a range that the LHS could be 4494 // in. Compute the Min, Max and RHS values based on the known bits. For the 4495 // EQ and NE we use unsigned values. 4496 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4497 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4498 if (I.isSigned()) { 4499 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4500 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4501 } else { 4502 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4503 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4504 } 4505 4506 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4507 // out that the LHS or RHS is a constant. Constant fold this now, so that 4508 // code below can assume that Min != Max. 4509 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4510 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4511 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4512 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4513 4514 // Based on the range information we know about the LHS, see if we can 4515 // simplify this comparison. For example, (x&4) < 8 is always true. 4516 switch (Pred) { 4517 default: 4518 llvm_unreachable("Unknown icmp opcode!"); 4519 case ICmpInst::ICMP_EQ: 4520 case ICmpInst::ICMP_NE: { 4521 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4522 return Pred == CmpInst::ICMP_EQ 4523 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4524 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4525 } 4526 4527 // If all bits are known zero except for one, then we know at most one bit 4528 // is set. If the comparison is against zero, then this is a check to see if 4529 // *that* bit is set. 4530 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 4531 if (Op1Known.isZero()) { 4532 // If the LHS is an AND with the same constant, look through it. 4533 Value *LHS = nullptr; 4534 const APInt *LHSC; 4535 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4536 *LHSC != Op0KnownZeroInverted) 4537 LHS = Op0; 4538 4539 Value *X; 4540 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4541 APInt ValToCheck = Op0KnownZeroInverted; 4542 Type *XTy = X->getType(); 4543 if (ValToCheck.isPowerOf2()) { 4544 // ((1 << X) & 8) == 0 -> X != 3 4545 // ((1 << X) & 8) != 0 -> X == 3 4546 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4547 auto NewPred = ICmpInst::getInversePredicate(Pred); 4548 return new ICmpInst(NewPred, X, CmpC); 4549 } else if ((++ValToCheck).isPowerOf2()) { 4550 // ((1 << X) & 7) == 0 -> X >= 3 4551 // ((1 << X) & 7) != 0 -> X < 3 4552 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4553 auto NewPred = 4554 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4555 return new ICmpInst(NewPred, X, CmpC); 4556 } 4557 } 4558 4559 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 4560 const APInt *CI; 4561 if (Op0KnownZeroInverted.isOneValue() && 4562 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 4563 // ((8 >>u X) & 1) == 0 -> X != 3 4564 // ((8 >>u X) & 1) != 0 -> X == 3 4565 unsigned CmpVal = CI->countTrailingZeros(); 4566 auto NewPred = ICmpInst::getInversePredicate(Pred); 4567 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 4568 } 4569 } 4570 break; 4571 } 4572 case ICmpInst::ICMP_ULT: { 4573 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 4574 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4575 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 4576 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4577 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 4578 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4579 4580 const APInt *CmpC; 4581 if (match(Op1, m_APInt(CmpC))) { 4582 // A <u C -> A == C-1 if min(A)+1 == C 4583 if (*CmpC == Op0Min + 1) 4584 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4585 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4586 // X <u C --> X == 0, if the number of zero bits in the bottom of X 4587 // exceeds the log2 of C. 4588 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 4589 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4590 Constant::getNullValue(Op1->getType())); 4591 } 4592 break; 4593 } 4594 case ICmpInst::ICMP_UGT: { 4595 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 4596 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4597 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 4598 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4599 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 4600 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4601 4602 const APInt *CmpC; 4603 if (match(Op1, m_APInt(CmpC))) { 4604 // A >u C -> A == C+1 if max(a)-1 == C 4605 if (*CmpC == Op0Max - 1) 4606 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4607 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4608 // X >u C --> X != 0, if the number of zero bits in the bottom of X 4609 // exceeds the log2 of C. 4610 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 4611 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 4612 Constant::getNullValue(Op1->getType())); 4613 } 4614 break; 4615 } 4616 case ICmpInst::ICMP_SLT: { 4617 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 4618 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4619 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 4620 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4621 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 4622 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4623 const APInt *CmpC; 4624 if (match(Op1, m_APInt(CmpC))) { 4625 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 4626 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4627 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4628 } 4629 break; 4630 } 4631 case ICmpInst::ICMP_SGT: { 4632 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 4633 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4634 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 4635 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4636 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 4637 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4638 const APInt *CmpC; 4639 if (match(Op1, m_APInt(CmpC))) { 4640 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 4641 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4642 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4643 } 4644 break; 4645 } 4646 case ICmpInst::ICMP_SGE: 4647 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 4648 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 4649 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4650 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 4651 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4652 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 4653 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4654 break; 4655 case ICmpInst::ICMP_SLE: 4656 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 4657 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 4658 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4659 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 4660 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4661 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 4662 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4663 break; 4664 case ICmpInst::ICMP_UGE: 4665 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 4666 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 4667 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4668 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 4669 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4670 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 4671 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4672 break; 4673 case ICmpInst::ICMP_ULE: 4674 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 4675 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 4676 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4677 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 4678 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4679 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 4680 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4681 break; 4682 } 4683 4684 // Turn a signed comparison into an unsigned one if both operands are known to 4685 // have the same sign. 4686 if (I.isSigned() && 4687 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 4688 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 4689 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 4690 4691 return nullptr; 4692 } 4693 4694 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 4695 /// it into the appropriate icmp lt or icmp gt instruction. This transform 4696 /// allows them to be folded in visitICmpInst. 4697 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 4698 ICmpInst::Predicate Pred = I.getPredicate(); 4699 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 4700 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 4701 return nullptr; 4702 4703 Value *Op0 = I.getOperand(0); 4704 Value *Op1 = I.getOperand(1); 4705 auto *Op1C = dyn_cast<Constant>(Op1); 4706 if (!Op1C) 4707 return nullptr; 4708 4709 // Check if the constant operand can be safely incremented/decremented without 4710 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 4711 // the edge cases for us, so we just assert on them. For vectors, we must 4712 // handle the edge cases. 4713 Type *Op1Type = Op1->getType(); 4714 bool IsSigned = I.isSigned(); 4715 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 4716 auto *CI = dyn_cast<ConstantInt>(Op1C); 4717 if (CI) { 4718 // A <= MAX -> TRUE ; A >= MIN -> TRUE 4719 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 4720 } else if (Op1Type->isVectorTy()) { 4721 // TODO? If the edge cases for vectors were guaranteed to be handled as they 4722 // are for scalar, we could remove the min/max checks. However, to do that, 4723 // we would have to use insertelement/shufflevector to replace edge values. 4724 unsigned NumElts = Op1Type->getVectorNumElements(); 4725 for (unsigned i = 0; i != NumElts; ++i) { 4726 Constant *Elt = Op1C->getAggregateElement(i); 4727 if (!Elt) 4728 return nullptr; 4729 4730 if (isa<UndefValue>(Elt)) 4731 continue; 4732 4733 // Bail out if we can't determine if this constant is min/max or if we 4734 // know that this constant is min/max. 4735 auto *CI = dyn_cast<ConstantInt>(Elt); 4736 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 4737 return nullptr; 4738 } 4739 } else { 4740 // ConstantExpr? 4741 return nullptr; 4742 } 4743 4744 // Increment or decrement the constant and set the new comparison predicate: 4745 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 4746 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 4747 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 4748 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 4749 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 4750 } 4751 4752 /// Integer compare with boolean values can always be turned into bitwise ops. 4753 static Instruction *canonicalizeICmpBool(ICmpInst &I, 4754 InstCombiner::BuilderTy &Builder) { 4755 Value *A = I.getOperand(0), *B = I.getOperand(1); 4756 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 4757 4758 // A boolean compared to true/false can be simplified to Op0/true/false in 4759 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 4760 // Cases not handled by InstSimplify are always 'not' of Op0. 4761 if (match(B, m_Zero())) { 4762 switch (I.getPredicate()) { 4763 case CmpInst::ICMP_EQ: // A == 0 -> !A 4764 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 4765 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 4766 return BinaryOperator::CreateNot(A); 4767 default: 4768 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4769 } 4770 } else if (match(B, m_One())) { 4771 switch (I.getPredicate()) { 4772 case CmpInst::ICMP_NE: // A != 1 -> !A 4773 case CmpInst::ICMP_ULT: // A <u 1 -> !A 4774 case CmpInst::ICMP_SGT: // A >s -1 -> !A 4775 return BinaryOperator::CreateNot(A); 4776 default: 4777 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4778 } 4779 } 4780 4781 switch (I.getPredicate()) { 4782 default: 4783 llvm_unreachable("Invalid icmp instruction!"); 4784 case ICmpInst::ICMP_EQ: 4785 // icmp eq i1 A, B -> ~(A ^ B) 4786 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 4787 4788 case ICmpInst::ICMP_NE: 4789 // icmp ne i1 A, B -> A ^ B 4790 return BinaryOperator::CreateXor(A, B); 4791 4792 case ICmpInst::ICMP_UGT: 4793 // icmp ugt -> icmp ult 4794 std::swap(A, B); 4795 LLVM_FALLTHROUGH; 4796 case ICmpInst::ICMP_ULT: 4797 // icmp ult i1 A, B -> ~A & B 4798 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 4799 4800 case ICmpInst::ICMP_SGT: 4801 // icmp sgt -> icmp slt 4802 std::swap(A, B); 4803 LLVM_FALLTHROUGH; 4804 case ICmpInst::ICMP_SLT: 4805 // icmp slt i1 A, B -> A & ~B 4806 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 4807 4808 case ICmpInst::ICMP_UGE: 4809 // icmp uge -> icmp ule 4810 std::swap(A, B); 4811 LLVM_FALLTHROUGH; 4812 case ICmpInst::ICMP_ULE: 4813 // icmp ule i1 A, B -> ~A | B 4814 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 4815 4816 case ICmpInst::ICMP_SGE: 4817 // icmp sge -> icmp sle 4818 std::swap(A, B); 4819 LLVM_FALLTHROUGH; 4820 case ICmpInst::ICMP_SLE: 4821 // icmp sle i1 A, B -> A | ~B 4822 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 4823 } 4824 } 4825 4826 // Transform pattern like: 4827 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 4828 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 4829 // Into: 4830 // (X l>> Y) != 0 4831 // (X l>> Y) == 0 4832 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 4833 InstCombiner::BuilderTy &Builder) { 4834 ICmpInst::Predicate Pred, NewPred; 4835 Value *X, *Y; 4836 if (match(&Cmp, 4837 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 4838 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4839 if (Cmp.getOperand(0) == X) 4840 Pred = Cmp.getSwappedPredicate(); 4841 4842 switch (Pred) { 4843 case ICmpInst::ICMP_ULE: 4844 NewPred = ICmpInst::ICMP_NE; 4845 break; 4846 case ICmpInst::ICMP_UGT: 4847 NewPred = ICmpInst::ICMP_EQ; 4848 break; 4849 default: 4850 return nullptr; 4851 } 4852 } else if (match(&Cmp, m_c_ICmp(Pred, 4853 m_OneUse(m_CombineOr( 4854 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 4855 m_Add(m_Shl(m_One(), m_Value(Y)), 4856 m_AllOnes()))), 4857 m_Value(X)))) { 4858 // The variant with 'add' is not canonical, (the variant with 'not' is) 4859 // we only get it because it has extra uses, and can't be canonicalized, 4860 4861 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4862 if (Cmp.getOperand(0) == X) 4863 Pred = Cmp.getSwappedPredicate(); 4864 4865 switch (Pred) { 4866 case ICmpInst::ICMP_ULT: 4867 NewPred = ICmpInst::ICMP_NE; 4868 break; 4869 case ICmpInst::ICMP_UGE: 4870 NewPred = ICmpInst::ICMP_EQ; 4871 break; 4872 default: 4873 return nullptr; 4874 } 4875 } else 4876 return nullptr; 4877 4878 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 4879 Constant *Zero = Constant::getNullValue(NewX->getType()); 4880 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 4881 } 4882 4883 static Instruction *foldVectorCmp(CmpInst &Cmp, 4884 InstCombiner::BuilderTy &Builder) { 4885 // If both arguments of the cmp are shuffles that use the same mask and 4886 // shuffle within a single vector, move the shuffle after the cmp. 4887 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 4888 Value *V1, *V2; 4889 Constant *M; 4890 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && 4891 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && 4892 V1->getType() == V2->getType() && 4893 (LHS->hasOneUse() || RHS->hasOneUse())) { 4894 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 4895 CmpInst::Predicate P = Cmp.getPredicate(); 4896 Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) 4897 : Builder.CreateFCmp(P, V1, V2); 4898 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 4899 } 4900 return nullptr; 4901 } 4902 4903 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 4904 bool Changed = false; 4905 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4906 unsigned Op0Cplxity = getComplexity(Op0); 4907 unsigned Op1Cplxity = getComplexity(Op1); 4908 4909 /// Orders the operands of the compare so that they are listed from most 4910 /// complex to least complex. This puts constants before unary operators, 4911 /// before binary operators. 4912 if (Op0Cplxity < Op1Cplxity || 4913 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 4914 I.swapOperands(); 4915 std::swap(Op0, Op1); 4916 Changed = true; 4917 } 4918 4919 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, 4920 SQ.getWithInstruction(&I))) 4921 return replaceInstUsesWith(I, V); 4922 4923 // Comparing -val or val with non-zero is the same as just comparing val 4924 // ie, abs(val) != 0 -> val != 0 4925 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 4926 Value *Cond, *SelectTrue, *SelectFalse; 4927 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 4928 m_Value(SelectFalse)))) { 4929 if (Value *V = dyn_castNegVal(SelectTrue)) { 4930 if (V == SelectFalse) 4931 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4932 } 4933 else if (Value *V = dyn_castNegVal(SelectFalse)) { 4934 if (V == SelectTrue) 4935 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4936 } 4937 } 4938 } 4939 4940 if (Op0->getType()->isIntOrIntVectorTy(1)) 4941 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 4942 return Res; 4943 4944 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 4945 return NewICmp; 4946 4947 if (Instruction *Res = foldICmpWithConstant(I)) 4948 return Res; 4949 4950 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 4951 return Res; 4952 4953 if (Instruction *Res = foldICmpUsingKnownBits(I)) 4954 return Res; 4955 4956 // Test if the ICmpInst instruction is used exclusively by a select as 4957 // part of a minimum or maximum operation. If so, refrain from doing 4958 // any other folding. This helps out other analyses which understand 4959 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4960 // and CodeGen. And in this case, at least one of the comparison 4961 // operands has at least one user besides the compare (the select), 4962 // which would often largely negate the benefit of folding anyway. 4963 // 4964 // Do the same for the other patterns recognized by matchSelectPattern. 4965 if (I.hasOneUse()) 4966 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 4967 Value *A, *B; 4968 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 4969 if (SPR.Flavor != SPF_UNKNOWN) 4970 return nullptr; 4971 } 4972 4973 // Do this after checking for min/max to prevent infinite looping. 4974 if (Instruction *Res = foldICmpWithZero(I)) 4975 return Res; 4976 4977 // FIXME: We only do this after checking for min/max to prevent infinite 4978 // looping caused by a reverse canonicalization of these patterns for min/max. 4979 // FIXME: The organization of folds is a mess. These would naturally go into 4980 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 4981 // down here after the min/max restriction. 4982 ICmpInst::Predicate Pred = I.getPredicate(); 4983 const APInt *C; 4984 if (match(Op1, m_APInt(C))) { 4985 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 4986 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 4987 Constant *Zero = Constant::getNullValue(Op0->getType()); 4988 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 4989 } 4990 4991 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 4992 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 4993 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 4994 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 4995 } 4996 } 4997 4998 if (Instruction *Res = foldICmpInstWithConstant(I)) 4999 return Res; 5000 5001 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5002 return Res; 5003 5004 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5005 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5006 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5007 return NI; 5008 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5009 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5010 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5011 return NI; 5012 5013 // Try to optimize equality comparisons against alloca-based pointers. 5014 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5015 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5016 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 5017 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5018 return New; 5019 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 5020 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5021 return New; 5022 } 5023 5024 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5025 return Res; 5026 5027 if (isa<CastInst>(Op0)) { 5028 // Handle the special case of: icmp (cast bool to X), <cst> 5029 // This comes up when you have code like 5030 // int X = A < B; 5031 // if (X) ... 5032 // For generality, we handle any zero-extension of any operand comparison 5033 // with a constant or another cast from the same type. 5034 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 5035 if (Instruction *R = foldICmpWithCastAndCast(I)) 5036 return R; 5037 } 5038 5039 if (Instruction *Res = foldICmpBinOp(I)) 5040 return Res; 5041 5042 if (Instruction *Res = foldICmpWithMinMax(I)) 5043 return Res; 5044 5045 { 5046 Value *A, *B; 5047 // Transform (A & ~B) == 0 --> (A & B) != 0 5048 // and (A & ~B) != 0 --> (A & B) == 0 5049 // if A is a power of 2. 5050 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5051 match(Op1, m_Zero()) && 5052 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5053 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5054 Op1); 5055 5056 // ~X < ~Y --> Y < X 5057 // ~X < C --> X > ~C 5058 if (match(Op0, m_Not(m_Value(A)))) { 5059 if (match(Op1, m_Not(m_Value(B)))) 5060 return new ICmpInst(I.getPredicate(), B, A); 5061 5062 const APInt *C; 5063 if (match(Op1, m_APInt(C))) 5064 return new ICmpInst(I.getSwappedPredicate(), A, 5065 ConstantInt::get(Op1->getType(), ~(*C))); 5066 } 5067 5068 Instruction *AddI = nullptr; 5069 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5070 m_Instruction(AddI))) && 5071 isa<IntegerType>(A->getType())) { 5072 Value *Result; 5073 Constant *Overflow; 5074 if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B, 5075 *AddI, Result, Overflow)) { 5076 replaceInstUsesWith(*AddI, Result); 5077 return replaceInstUsesWith(I, Overflow); 5078 } 5079 } 5080 5081 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5082 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5083 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5084 return R; 5085 } 5086 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5087 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5088 return R; 5089 } 5090 } 5091 5092 if (Instruction *Res = foldICmpEquality(I)) 5093 return Res; 5094 5095 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5096 // an i1 which indicates whether or not we successfully did the swap. 5097 // 5098 // Replace comparisons between the old value and the expected value with the 5099 // indicator that 'cmpxchg' returns. 5100 // 5101 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5102 // spuriously fail. In those cases, the old value may equal the expected 5103 // value but it is possible for the swap to not occur. 5104 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5105 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5106 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5107 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5108 !ACXI->isWeak()) 5109 return ExtractValueInst::Create(ACXI, 1); 5110 5111 { 5112 Value *X; 5113 const APInt *C; 5114 // icmp X+Cst, X 5115 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5116 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5117 5118 // icmp X, X+Cst 5119 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5120 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5121 } 5122 5123 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5124 return Res; 5125 5126 if (I.getType()->isVectorTy()) 5127 if (Instruction *Res = foldVectorCmp(I, Builder)) 5128 return Res; 5129 5130 return Changed ? &I : nullptr; 5131 } 5132 5133 /// Fold fcmp ([us]itofp x, cst) if possible. 5134 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5135 Constant *RHSC) { 5136 if (!isa<ConstantFP>(RHSC)) return nullptr; 5137 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5138 5139 // Get the width of the mantissa. We don't want to hack on conversions that 5140 // might lose information from the integer, e.g. "i64 -> float" 5141 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5142 if (MantissaWidth == -1) return nullptr; // Unknown. 5143 5144 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5145 5146 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5147 5148 if (I.isEquality()) { 5149 FCmpInst::Predicate P = I.getPredicate(); 5150 bool IsExact = false; 5151 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5152 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5153 5154 // If the floating point constant isn't an integer value, we know if we will 5155 // ever compare equal / not equal to it. 5156 if (!IsExact) { 5157 // TODO: Can never be -0.0 and other non-representable values 5158 APFloat RHSRoundInt(RHS); 5159 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5160 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 5161 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5162 return replaceInstUsesWith(I, Builder.getFalse()); 5163 5164 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5165 return replaceInstUsesWith(I, Builder.getTrue()); 5166 } 5167 } 5168 5169 // TODO: If the constant is exactly representable, is it always OK to do 5170 // equality compares as integer? 5171 } 5172 5173 // Check to see that the input is converted from an integer type that is small 5174 // enough that preserves all bits. TODO: check here for "known" sign bits. 5175 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5176 unsigned InputSize = IntTy->getScalarSizeInBits(); 5177 5178 // Following test does NOT adjust InputSize downwards for signed inputs, 5179 // because the most negative value still requires all the mantissa bits 5180 // to distinguish it from one less than that value. 5181 if ((int)InputSize > MantissaWidth) { 5182 // Conversion would lose accuracy. Check if loss can impact comparison. 5183 int Exp = ilogb(RHS); 5184 if (Exp == APFloat::IEK_Inf) { 5185 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5186 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5187 // Conversion could create infinity. 5188 return nullptr; 5189 } else { 5190 // Note that if RHS is zero or NaN, then Exp is negative 5191 // and first condition is trivially false. 5192 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5193 // Conversion could affect comparison. 5194 return nullptr; 5195 } 5196 } 5197 5198 // Otherwise, we can potentially simplify the comparison. We know that it 5199 // will always come through as an integer value and we know the constant is 5200 // not a NAN (it would have been previously simplified). 5201 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5202 5203 ICmpInst::Predicate Pred; 5204 switch (I.getPredicate()) { 5205 default: llvm_unreachable("Unexpected predicate!"); 5206 case FCmpInst::FCMP_UEQ: 5207 case FCmpInst::FCMP_OEQ: 5208 Pred = ICmpInst::ICMP_EQ; 5209 break; 5210 case FCmpInst::FCMP_UGT: 5211 case FCmpInst::FCMP_OGT: 5212 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5213 break; 5214 case FCmpInst::FCMP_UGE: 5215 case FCmpInst::FCMP_OGE: 5216 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5217 break; 5218 case FCmpInst::FCMP_ULT: 5219 case FCmpInst::FCMP_OLT: 5220 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5221 break; 5222 case FCmpInst::FCMP_ULE: 5223 case FCmpInst::FCMP_OLE: 5224 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5225 break; 5226 case FCmpInst::FCMP_UNE: 5227 case FCmpInst::FCMP_ONE: 5228 Pred = ICmpInst::ICMP_NE; 5229 break; 5230 case FCmpInst::FCMP_ORD: 5231 return replaceInstUsesWith(I, Builder.getTrue()); 5232 case FCmpInst::FCMP_UNO: 5233 return replaceInstUsesWith(I, Builder.getFalse()); 5234 } 5235 5236 // Now we know that the APFloat is a normal number, zero or inf. 5237 5238 // See if the FP constant is too large for the integer. For example, 5239 // comparing an i8 to 300.0. 5240 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5241 5242 if (!LHSUnsigned) { 5243 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5244 // and large values. 5245 APFloat SMax(RHS.getSemantics()); 5246 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5247 APFloat::rmNearestTiesToEven); 5248 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 5249 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5250 Pred == ICmpInst::ICMP_SLE) 5251 return replaceInstUsesWith(I, Builder.getTrue()); 5252 return replaceInstUsesWith(I, Builder.getFalse()); 5253 } 5254 } else { 5255 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5256 // +INF and large values. 5257 APFloat UMax(RHS.getSemantics()); 5258 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5259 APFloat::rmNearestTiesToEven); 5260 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 5261 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5262 Pred == ICmpInst::ICMP_ULE) 5263 return replaceInstUsesWith(I, Builder.getTrue()); 5264 return replaceInstUsesWith(I, Builder.getFalse()); 5265 } 5266 } 5267 5268 if (!LHSUnsigned) { 5269 // See if the RHS value is < SignedMin. 5270 APFloat SMin(RHS.getSemantics()); 5271 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5272 APFloat::rmNearestTiesToEven); 5273 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 5274 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5275 Pred == ICmpInst::ICMP_SGE) 5276 return replaceInstUsesWith(I, Builder.getTrue()); 5277 return replaceInstUsesWith(I, Builder.getFalse()); 5278 } 5279 } else { 5280 // See if the RHS value is < UnsignedMin. 5281 APFloat SMin(RHS.getSemantics()); 5282 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 5283 APFloat::rmNearestTiesToEven); 5284 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 5285 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5286 Pred == ICmpInst::ICMP_UGE) 5287 return replaceInstUsesWith(I, Builder.getTrue()); 5288 return replaceInstUsesWith(I, Builder.getFalse()); 5289 } 5290 } 5291 5292 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5293 // [0, UMAX], but it may still be fractional. See if it is fractional by 5294 // casting the FP value to the integer value and back, checking for equality. 5295 // Don't do this for zero, because -0.0 is not fractional. 5296 Constant *RHSInt = LHSUnsigned 5297 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5298 : ConstantExpr::getFPToSI(RHSC, IntTy); 5299 if (!RHS.isZero()) { 5300 bool Equal = LHSUnsigned 5301 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5302 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5303 if (!Equal) { 5304 // If we had a comparison against a fractional value, we have to adjust 5305 // the compare predicate and sometimes the value. RHSC is rounded towards 5306 // zero at this point. 5307 switch (Pred) { 5308 default: llvm_unreachable("Unexpected integer comparison!"); 5309 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5310 return replaceInstUsesWith(I, Builder.getTrue()); 5311 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5312 return replaceInstUsesWith(I, Builder.getFalse()); 5313 case ICmpInst::ICMP_ULE: 5314 // (float)int <= 4.4 --> int <= 4 5315 // (float)int <= -4.4 --> false 5316 if (RHS.isNegative()) 5317 return replaceInstUsesWith(I, Builder.getFalse()); 5318 break; 5319 case ICmpInst::ICMP_SLE: 5320 // (float)int <= 4.4 --> int <= 4 5321 // (float)int <= -4.4 --> int < -4 5322 if (RHS.isNegative()) 5323 Pred = ICmpInst::ICMP_SLT; 5324 break; 5325 case ICmpInst::ICMP_ULT: 5326 // (float)int < -4.4 --> false 5327 // (float)int < 4.4 --> int <= 4 5328 if (RHS.isNegative()) 5329 return replaceInstUsesWith(I, Builder.getFalse()); 5330 Pred = ICmpInst::ICMP_ULE; 5331 break; 5332 case ICmpInst::ICMP_SLT: 5333 // (float)int < -4.4 --> int < -4 5334 // (float)int < 4.4 --> int <= 4 5335 if (!RHS.isNegative()) 5336 Pred = ICmpInst::ICMP_SLE; 5337 break; 5338 case ICmpInst::ICMP_UGT: 5339 // (float)int > 4.4 --> int > 4 5340 // (float)int > -4.4 --> true 5341 if (RHS.isNegative()) 5342 return replaceInstUsesWith(I, Builder.getTrue()); 5343 break; 5344 case ICmpInst::ICMP_SGT: 5345 // (float)int > 4.4 --> int > 4 5346 // (float)int > -4.4 --> int >= -4 5347 if (RHS.isNegative()) 5348 Pred = ICmpInst::ICMP_SGE; 5349 break; 5350 case ICmpInst::ICMP_UGE: 5351 // (float)int >= -4.4 --> true 5352 // (float)int >= 4.4 --> int > 4 5353 if (RHS.isNegative()) 5354 return replaceInstUsesWith(I, Builder.getTrue()); 5355 Pred = ICmpInst::ICMP_UGT; 5356 break; 5357 case ICmpInst::ICMP_SGE: 5358 // (float)int >= -4.4 --> int >= -4 5359 // (float)int >= 4.4 --> int > 4 5360 if (!RHS.isNegative()) 5361 Pred = ICmpInst::ICMP_SGT; 5362 break; 5363 } 5364 } 5365 } 5366 5367 // Lower this FP comparison into an appropriate integer version of the 5368 // comparison. 5369 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5370 } 5371 5372 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5373 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5374 Constant *RHSC) { 5375 // When C is not 0.0 and infinities are not allowed: 5376 // (C / X) < 0.0 is a sign-bit test of X 5377 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5378 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5379 // 5380 // Proof: 5381 // Multiply (C / X) < 0.0 by X * X / C. 5382 // - X is non zero, if it is the flag 'ninf' is violated. 5383 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5384 // the predicate. C is also non zero by definition. 5385 // 5386 // Thus X * X / C is non zero and the transformation is valid. [qed] 5387 5388 FCmpInst::Predicate Pred = I.getPredicate(); 5389 5390 // Check that predicates are valid. 5391 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5392 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5393 return nullptr; 5394 5395 // Check that RHS operand is zero. 5396 if (!match(RHSC, m_AnyZeroFP())) 5397 return nullptr; 5398 5399 // Check fastmath flags ('ninf'). 5400 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5401 return nullptr; 5402 5403 // Check the properties of the dividend. It must not be zero to avoid a 5404 // division by zero (see Proof). 5405 const APFloat *C; 5406 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5407 return nullptr; 5408 5409 if (C->isZero()) 5410 return nullptr; 5411 5412 // Get swapped predicate if necessary. 5413 if (C->isNegative()) 5414 Pred = I.getSwappedPredicate(); 5415 5416 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5417 } 5418 5419 /// Optimize fabs(X) compared with zero. 5420 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { 5421 Value *X; 5422 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5423 !match(I.getOperand(1), m_PosZeroFP())) 5424 return nullptr; 5425 5426 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5427 I->setPredicate(P); 5428 I->setOperand(0, X); 5429 return I; 5430 }; 5431 5432 switch (I.getPredicate()) { 5433 case FCmpInst::FCMP_UGE: 5434 case FCmpInst::FCMP_OLT: 5435 // fabs(X) >= 0.0 --> true 5436 // fabs(X) < 0.0 --> false 5437 llvm_unreachable("fcmp should have simplified"); 5438 5439 case FCmpInst::FCMP_OGT: 5440 // fabs(X) > 0.0 --> X != 0.0 5441 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 5442 5443 case FCmpInst::FCMP_UGT: 5444 // fabs(X) u> 0.0 --> X u!= 0.0 5445 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 5446 5447 case FCmpInst::FCMP_OLE: 5448 // fabs(X) <= 0.0 --> X == 0.0 5449 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 5450 5451 case FCmpInst::FCMP_ULE: 5452 // fabs(X) u<= 0.0 --> X u== 0.0 5453 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 5454 5455 case FCmpInst::FCMP_OGE: 5456 // fabs(X) >= 0.0 --> !isnan(X) 5457 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5458 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 5459 5460 case FCmpInst::FCMP_ULT: 5461 // fabs(X) u< 0.0 --> isnan(X) 5462 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5463 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 5464 5465 case FCmpInst::FCMP_OEQ: 5466 case FCmpInst::FCMP_UEQ: 5467 case FCmpInst::FCMP_ONE: 5468 case FCmpInst::FCMP_UNE: 5469 case FCmpInst::FCMP_ORD: 5470 case FCmpInst::FCMP_UNO: 5471 // Look through the fabs() because it doesn't change anything but the sign. 5472 // fabs(X) == 0.0 --> X == 0.0, 5473 // fabs(X) != 0.0 --> X != 0.0 5474 // isnan(fabs(X)) --> isnan(X) 5475 // !isnan(fabs(X) --> !isnan(X) 5476 return replacePredAndOp0(&I, I.getPredicate(), X); 5477 5478 default: 5479 return nullptr; 5480 } 5481 } 5482 5483 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 5484 bool Changed = false; 5485 5486 /// Orders the operands of the compare so that they are listed from most 5487 /// complex to least complex. This puts constants before unary operators, 5488 /// before binary operators. 5489 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 5490 I.swapOperands(); 5491 Changed = true; 5492 } 5493 5494 const CmpInst::Predicate Pred = I.getPredicate(); 5495 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5496 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 5497 SQ.getWithInstruction(&I))) 5498 return replaceInstUsesWith(I, V); 5499 5500 // Simplify 'fcmp pred X, X' 5501 Type *OpType = Op0->getType(); 5502 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 5503 if (Op0 == Op1) { 5504 switch (Pred) { 5505 default: break; 5506 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 5507 case FCmpInst::FCMP_ULT: // True if unordered or less than 5508 case FCmpInst::FCMP_UGT: // True if unordered or greater than 5509 case FCmpInst::FCMP_UNE: // True if unordered or not equal 5510 // Canonicalize these to be 'fcmp uno %X, 0.0'. 5511 I.setPredicate(FCmpInst::FCMP_UNO); 5512 I.setOperand(1, Constant::getNullValue(OpType)); 5513 return &I; 5514 5515 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 5516 case FCmpInst::FCMP_OEQ: // True if ordered and equal 5517 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 5518 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 5519 // Canonicalize these to be 'fcmp ord %X, 0.0'. 5520 I.setPredicate(FCmpInst::FCMP_ORD); 5521 I.setOperand(1, Constant::getNullValue(OpType)); 5522 return &I; 5523 } 5524 } 5525 5526 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 5527 // then canonicalize the operand to 0.0. 5528 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 5529 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { 5530 I.setOperand(0, ConstantFP::getNullValue(OpType)); 5531 return &I; 5532 } 5533 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { 5534 I.setOperand(1, ConstantFP::getNullValue(OpType)); 5535 return &I; 5536 } 5537 } 5538 5539 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 5540 Value *X, *Y; 5541 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 5542 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 5543 5544 // Test if the FCmpInst instruction is used exclusively by a select as 5545 // part of a minimum or maximum operation. If so, refrain from doing 5546 // any other folding. This helps out other analyses which understand 5547 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5548 // and CodeGen. And in this case, at least one of the comparison 5549 // operands has at least one user besides the compare (the select), 5550 // which would often largely negate the benefit of folding anyway. 5551 if (I.hasOneUse()) 5552 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5553 Value *A, *B; 5554 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5555 if (SPR.Flavor != SPF_UNKNOWN) 5556 return nullptr; 5557 } 5558 5559 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 5560 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 5561 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { 5562 I.setOperand(1, ConstantFP::getNullValue(OpType)); 5563 return &I; 5564 } 5565 5566 // Handle fcmp with instruction LHS and constant RHS. 5567 Instruction *LHSI; 5568 Constant *RHSC; 5569 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 5570 switch (LHSI->getOpcode()) { 5571 case Instruction::PHI: 5572 // Only fold fcmp into the PHI if the phi and fcmp are in the same 5573 // block. If in the same block, we're encouraging jump threading. If 5574 // not, we are just pessimizing the code by making an i1 phi. 5575 if (LHSI->getParent() == I.getParent()) 5576 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 5577 return NV; 5578 break; 5579 case Instruction::SIToFP: 5580 case Instruction::UIToFP: 5581 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 5582 return NV; 5583 break; 5584 case Instruction::FDiv: 5585 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 5586 return NV; 5587 break; 5588 case Instruction::Load: 5589 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 5590 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 5591 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 5592 !cast<LoadInst>(LHSI)->isVolatile()) 5593 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 5594 return Res; 5595 break; 5596 } 5597 } 5598 5599 if (Instruction *R = foldFabsWithFcmpZero(I)) 5600 return R; 5601 5602 if (match(Op0, m_FNeg(m_Value(X)))) { 5603 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 5604 Constant *C; 5605 if (match(Op1, m_Constant(C))) { 5606 Constant *NegC = ConstantExpr::getFNeg(C); 5607 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 5608 } 5609 } 5610 5611 if (match(Op0, m_FPExt(m_Value(X)))) { 5612 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 5613 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 5614 return new FCmpInst(Pred, X, Y, "", &I); 5615 5616 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 5617 const APFloat *C; 5618 if (match(Op1, m_APFloat(C))) { 5619 const fltSemantics &FPSem = 5620 X->getType()->getScalarType()->getFltSemantics(); 5621 bool Lossy; 5622 APFloat TruncC = *C; 5623 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 5624 5625 // Avoid lossy conversions and denormals. 5626 // Zero is a special case that's OK to convert. 5627 APFloat Fabs = TruncC; 5628 Fabs.clearSign(); 5629 if (!Lossy && 5630 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != 5631 APFloat::cmpLessThan) || Fabs.isZero())) { 5632 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 5633 return new FCmpInst(Pred, X, NewC, "", &I); 5634 } 5635 } 5636 } 5637 5638 if (I.getType()->isVectorTy()) 5639 if (Instruction *Res = foldVectorCmp(I, Builder)) 5640 return Res; 5641 5642 return Changed ? &I : nullptr; 5643 } 5644